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Synopsis

Traditional signal representations are defined on one-dimensional axes (time or

frequency representations). Alternative two-dimensional time-frequency repre-

sentations are considered and their properties explored. Thesignificant advan-

tage of this approach is the detailed description of the ’instantaneous’ frequency

content of a signal as a function of time. Signal analysis using time-frequency rep-

resentations is mathematically analogous to the coherent state theory of quantum

mechanics. The uncertainty principle in signal processing and its consequences

are studied in the context of time-frequency analysis.

Three different representations on the time-frequency plane are used: the

Wigner function, the Gabor transform and the Bargmann analytic representa-

tion. The properties of these methods are studied and transforms between them

are investigated. Implementation of these ideas on realistic signals (at optical

frequencies) are considered in the context of areas like signal compression, signal

synthesis, chromatic analysis, and optical sensing. The same mathematical tech-

niques are also applied in the context of quantum optics and quantum optical

communication, where the construction of non-classical states as a superposition

of a few coherent states is presented. The Maximum Entropy methodis also used

for noise suppression. Applications of these methods for solving current problems

in the practical areas of optical sensing and signal detection and processing are

also studied.
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Chapter 1

Introduction

1.1 The Scope of This Thesis

During the last two decades, there has been an increasing interest in joint time-

frequency representationsof signals. The need for such alternative representations

has been recognised not only by the community of signal processing theorists, but

also by practical signal processing researchers. Although the pioneering papers

of D. Gabor [63] (1946) and J. Ville [173] (1948) had suggested joint signal repre-

sentations a long time ago, time-frequency representations obtained considerable

attention quite recently, partly because of the increase in the available computa-

tion power.

These methods aim to offer a satisfactory representation of signals which is

complementary to the traditional Fourier analysis. Speech processing was one

of the first areas to use this kind of representation (sound spectrogram), due to

the difficulties arising from the non-stationary nature of speech signals. Recently,

time-frequency analysis is an important issue in vision research.

In many cases of practical importance, traditional Fourier techniques are in-

sufficient. Time-frequency representations can be used in such cases to overcome

the drawbacks of Fourier analysis. As they can sufficiently describe the random-

ness and nonstationarities of noisy and time-varying signals, they are powerful

tools for signal analysis and synthesis as well as for the design of systems with
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time-varying characteristics.

In this thesis, various time-frequency signal representations are considered,

their useful properties are studied, new ideas and methods for applying these

representations are introduced. In a general context, the various representations

(of both time-frequency and traditional approaches) are compared,their suitabil-

ity for specific applications is examined and their potential for signal processing

is explored.

Morespecifically, the aim of this work is to use time-frequency representations

in the context of optical signal processing. Applications for various types of

optical signals are suggested and practically implemented. So far the processing

of optical signals has been performed mainly using Fourier transform techniques.

In this work, various alternative time-frequency representations are applied and

their potential for analysis and synthesis of optical signals is explored.

Although the examples presented in this thesis are limited to applications in

optical signal processing, the suggested methods are rather general and can be

easily applied to other areas related to signal processing and communication.

Oneof the objectives of this thesis is to provide a more complete andcritical

view of the various methods and to introduce new techniques and applications

in the context of time-frequency analysis. Inter-relations between the different

representations are also investigated.

Anattempt has been madeto interpret the results in a consistent way. Prac-

tical implementation and potential applications are discussed and a comparison

with traditional Fourier analysis is made. Quantitative analysis of the results

is carried out and several methods of measuring the efficiency of the numerical

approximations are considered.

In this work, concepts from the mathematical theory of communication, signal

theory and information theory are used. The mathematical frameworkis taken

from probability theory, the theory of analytic functions, and theoretical physics.

As it will be pointed out, there exists a mathematical analogy between signal

theory and quantum mechanics.

In this respect, applications of the developed techniques in the context of
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quantum optics are also considered. A convenient method for constructing non-

classical states of light is implemented, promising important practical applications

in the fields of quantum state engineering and quantum optical communications.

One method of current interest for processing noisy signals and imagesis the

Mazimum Entropy method. This method uses probabilistic criteria to estimate

the ’most likely’ original (undistorted) signal. The Maximum Entropyprinciple

plays an importantrole in information theory and its rigorous formulation is due

to E.T. Jaynes [87, 88], who introduced a new formalism of probabilistic inference

based on concepts of statistical mechanics. Here, this technique is used in the

context. of speckle noise analysis. The method is powerful and could be also used

in other areas.

1.2 A Brief Overview

The main bodyof this thesis is organised in two parts. Thefirst part (Chapters

2-6) deals with time-frequency representations of signals; the Wigner distribution

function, the Gaussian expansion and the Bargmannrepresentation are examined

in detail. The second part contains one chapter (Chapter 7) and explores max-

imum entropy techniques in optical signal processing. An effort has been made

to follow a natural development of the ideas from the early chapters to the later

ones and to maintain a uniform logical structure throughout the thesis. Different

chapters have been dedicated to the different subjects addressed in this work.

The second and the third chapters of this thesis are moreorless introductory.

Chapter 2 provides a general backgroundin signal theory and traditional Fourier

analysis, which will be necessary for the chapters to follow. In this chapter,

the fundamental concepts of signal theory are described and basic definitions

are given. The concepts of orthogonality and completeness of representations

are introduced. A brief discussion on traditional methods (Fourier transform

representation) is included; the properties of the Fourier transform are mentioned,

its discrete version is considered, and the advantages and disadvantages of Fourier

analysis are presented. The very important uncertainty principle is discussed in

the context of communication theory. This chapter also offers an introduction
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to the ideas of modern signal processing, which further analysis in later chapters

will be based on.

Chapter 3 serves as an introduction to time-frequency analysis. A briefre-

view of the various time-frequency representations is given. The implications of

the well-known analogy between signal processing and quantum mechanics are

pointed out. The notion of the analytic signal is introduced andrelevant examples

with optical signals are presented.

Chapters 4-7 are the central chapters of this thesis. The theme in Chap-

ter 4 is the Wigner distribution function representation. The properties of the

Wignerfunction andits relation to the well-known ambiguity function are pre-

sented. Interpretation of the Wigner representation and its potential for signal

processing are discussed in considerable detail. Implementation of the method

for optical signal processing applications is described and further developments

are discussed.

Chapter 5 develops a practical method to represent a signal using Gabor’s

Gaussian expansion. The Gabor expansionis introduced and its analogy with the

coherent state representation in quantum optics is discussed. A convenient. basis

of a ’truncated’ von-Neumannlattice is proposed and numerical implementation

for the case of optical signals is demonstrated with various examples. Emphasisis

given to the robustness property of the calculated representation. The potential

of the method for practical applications in optical and acoustical frequencies is

explored and the idea of ’Gabor devices’ is suggested. At the end of Chapter

4, the Bargmann analytic representation, which is another time-frequency rep-

resentation, is considered and therelationship between the Bargmann transform

and other representations is investigated. Potential applications of the Bargmann

transform in optical signal processing are also discussed.

Chapter 6 applies the same techniques in the context of quantum optics and

quantum optical communication. Morespecifically, it describes an application

of the ’truncated’ Gaussian expansion (described in Chapter 4) in the context of

quantum state engineering. Here, construction of quantum states is considered,

by meansof linear combinations of coherent states on a ’truncated’ von-Neumann

lattice. Numerical examples are given, followed by potential applications in quan-
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tum optical communications.

Chapter 7 introduces the Maximum Entropy method, which is a probabilistic

approach suitable for the processing of noisy or incomplete data. An analytic

solution for the problem of two moments is given, and the technique is then

applied to speckle pattern images for noise suppression. Applications in optical

fibre sensing and communications are considered.

Finally, in Chapter 8, the main conclusions and recommendations for further

work are given.

Most chapters contain worked examples. The corresponding figures are also

included at the end of each chapter.
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Chapter 2

Elements of Signal Theory and

Fourier Analysis

2.1 Introduction

In this chapter, a brief introduction to the fundamental theoretical aspects ofsig-

nal analysis is made. The concepts ofstationarity and causality are presented and

basic definitions necessary for the chapters to follow are given. Signal representa-

tions using orthogonalbases are introduced. The Fourier transform receives spe-

cial attention, to be followed by an additional section on the uncertainty principle

in signal theory. Finally, the differences between deterministic and the stochas-

tic(random) signals are pointed out and the implications of non-stationarity are

discussed.

2.2 Orthogonal Bases for Signal Analysis

A signal defined on the whole time axis is called a continuous-time signal or an

analogue signal. All physically-realizable signals (defined in a time domain) are

causal. A causal signal is one which is zero-valued on the negative time half-axis;

that is, an arbitrary signal s(t) is causal if

e(t).= 0, vi< 0.
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Real-life signals that are used in processing applications or observed and mea-

sured in nature are offinite energy. For this reason, natural signals belong to the

class of square (or absolutely) integrable or square-modulus measurable or simply

energy signals. They can be described as elements s(t) of the Hilbert space L%

of square-integrable functions:

+00

seC: | |s(t)Pdt=B, <x, (2.1)

where |s(¢)| stands for the absolute value (or modulus) of the signal s(t). Such

natural signals are always real-valued. In the following sections, the general case

of complex signals is considered. A generalisation from real-valued to complex-

valued signals is described in Chapter 3 in detail.

Sometimes, in certain applications, it is convenient to express the signal s(t) as

a set of numbers u;(f) (coefficient space) which, when combined with a properly

chosen set of elementary signals r(t; f) (the coordinate space or the basis), will

uniquely specify the signal s(t). These special signals r(t; f) are called the basis

signals and are characterised by the variable f, which here is considered to be

real just for the sake of simplicity. It is desirable that the basis signals satisfy

two requirements:

Orthogonality. A basis is defined to be orthogonalif for any signals r(¢; f1)

and r(t; fo) of the basis:

+00

| v(t fir feddt = 6(f. — ft). (2.2)
—-co

where the asterisk indicates the complex conjugate. This means that the members

of the basis are linearly independent on each other. r(t; f,)r*(t; fo) is called the

inner product of the signals r(t; f;) and r(t; fo).

The set of the basis signals r(t; f) is normalisedif

+00

| ire fPae=1 (2.3)

for all f; that is, the energy of the basis signals is equal to unity. An orthogonal

basis which is normalised according to Eq. (2.3) is called orthonormal and the

integral on left-hand side of Eq. (2.3) is called the norm.

8
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Completeness. A basis is complete if any signal s(t) can be uniquely expressed

in termsof the basis signals r(t; f) as:

+00

s(t) =f uslf)r(tAd (2.4)

The completeness implies that there is no such signal which is orthogonal to every

member of an orthogonalbasis.

In the case of representations of square-integrable signals using a complete

orthogonal basis, it is known that

[ is@Pat =f jus(A)Par (2.5)

This relation offers an expression of the energy of the signal in termsof the given

representation and is known as the Parseval’s theorem for energy signals.

In the general case, the set of coefficients and the basis are infinite continuous

sets. In applications, however, discrete (and sometimesfinite) sets have been

considered, which can provide exact representations or good approximations of

signals. A representation using an infinite discrete orthonormalbasis is sometimes

called a ” generalised (non-harmonic) Fourier series representation”.

2.3. The Fourier Transform Representation

Fourier analysis is a well known mathematical tool with a vast range of applica-

tions in sciences and engineering. It is named after the great physicist Jean Bap-

tiste Fourier (1768-1830), who proved that periodic functions can be expressed

as a sum of harmonic functions.

The Fourier transform is an orthogonal-basis signal representation which plays

a fundamental role in signal processing. In this section, an introduction to the

basic aspects of the Fourier transform will be made.
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2.3.1 The Continuous-Time Fourier transform

The Fourier transform §(f) of a square-integrable signal s(t) is an integral trans-

formation defined by:
+00

a(f) = |s(eP*at, (2.6)
—oo

where the tilde denotes the Fourier transform and f is the characteristic variable

of the representation; in the context of signal processing, f is the variable in the

frequency domain. The inverse Fourier transform is given by

+00

s(t) = f a(f)e"af. (2.7)
—oo

The Fourier basis is both orthogonal and complete and its members are complex

exponential functions. In signal theory, the Fourier transform §(f)) (or its absolute

value |§(f)| ) of a signal s(t) of finite energy is sometimes referred to as the

(frequency) spectrum and it is used for frequency domain analysis. The squared

modulus of the Fourier transform (|§(f)|?) gives the so-called energy spectral

density function or shortly spectral density of the signal, which represents its

energy per unit of frequency. In applications, the energy spectral density related

to a continuous Fourier transform can be measureddirectly by specially designed

analogue systems called spectrum analysers.

2.3.2 Properties of the Fourier transform

In this section, we summarise the most important properties of the Fourier trans-

form. For clarity, the symbol F is used as an alternative notation for the Fourier

transform operation.

I Linearity/Superposition. For any signals s;(t) and s(t) and any arbitrary

numbers a, and a2, we have

F{ays1(t) + aso(t)} = aF{s1(t)} + aoF{s2(t)}. (2.8)

II Complex Conjugate. For complex-valued signals, we have

F{s*(t)} = #(f). (2.9)

10
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III Symmetry. The Fourier transform of a signal which is an even function of

timeis real, and the Fourier transform of a signal which is an odd function

is imaginary.

IV Duality. A duality exists between the time domain and the frequency do-

main as expressed by the perfect symmetry of Eqs. (2.6) and (2.7). This

can be expressed by

F{a(f)} = (2). (2.10)

V Coordinate scaling theorem. For any real-valued scaling constant a: (in some

fields referred to as the ” magnification factor”),

1 J
Fis(at)} = —s(-). 2 Al{s(a)} a2) (2.11)

If we compress the function in the time domain,its frequency spectrum

will be expanded, and vice versa. This phenomenon is called reciprocal

spreading and is directly associated with the uncertainty relation discussed

in Section 2.4.

VI Time shifting (delay/advance). The effect of the translation of the time

origin by to is described by

F{s(t — to)} = 3(f)e92". (2.12)

VI — Frequency shifting (modulation). This is the dual of the time shifting. For

frequency-translation by fo, we have

F{s(t)e277} = 8(f — fo). (2.13)

VIII Differentiation/Integration. If ds/dt is square-integrable,

 F a = j2nfa(f). (2.14)

The derivative in the frequency domain is

a= F{—j2rts(t)}. (2.15)

11
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IX

Differentiation in time enhances the frequency components of a signal,

whilst integration in time suppresses them. Relations for the integration

operation over time or frequency can beeasily derived from Eq. (2.14) and

(2.15).

Convolution. An important property of the Fourier transform is that it

reduces the integral operation of convolution in time between two signals

s;(t) and so(t)

+00 +00

s1(t) * $9(t) = / 81(T) S(t — T)dr = / 81(t — T)89(7)dr (2.16)

to an algebraic product:

F{s1(t) * 82(t)} = 51(f)52(f). (2.17)

This is a very important theorem in the theory of linear systems. The dual

property (frequency-convolution) is the following:

F{si(t)so(t)} = 81(f) * 5o(f). (2.18)

The spectra of modulated signals are easily obtained through frequency-

convolution of the carrier and modulating signals, i.e. through multiplica-

tion of the two signals in the time domain.

Parseval’s formula. In the Fourier representation, Eq. (2.5) becomes

+00 +00

| s@Pae= f \3()Par = 2 (2.19)
—oo —oo

and provides the total energy of the signal. This is also known as the energy

theorem.

2.3.3 Digital Signal Processing and the Discrete Fourier

Transform

A signal which is defined on a discrete set of points in timeis called a discrete-

time signal or a digital signal; that is, a discrete-time signal can be described

12
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by a sequence of complex or real numbers. In manycases, practical application

involves digital data, even if the original signal is analogue. Manipulation of

digital data is very popular nowadays dueto the availability of fast analogue-to-

digital (A/D) converters and powerful digital computers. The topic dealing with

the theory of digital signals is known as Digital Signal Processing (DSP).

A discrete-time signal s[n] can be obtained from a continuous-time signals(t)

by means of sampling (usually uniform), provided that s(t) is band-limited; i.e.

it contains no frequency components above a certain frequency. The process of

sampling can be considered as multiplication of the given continuous-time signal

with a periodic train of unit impulses (i.e. d-functions). It always produces a

periodic spectrum.

The sufficient condition that there is no loss of information in the sampling

process is given by Shannon’s (uniform) sampling theorem [142] which states that

”a band-limited real signal having no spectral components above fy, is completely

described by uniformly spaced samples if the sampling frequency is greater than

twice f,”. The critical frequency f, = 2f, is called the Nyquist rate or the

folding frequency. Sampling below the Nyquist rate results in overlapping of the

individual spectra due to periodicity in the frequency domain (a phenomenon

often referred to as aliasing or interference). In this case, complete reconstruction

of the original continuous-time signal is impossible.

In practical situations, there are always limitations. Ideal samplers corre-

sponding to delta-functions do not exist and natural signals are not strictly band-

limited. However, it is generally acceptable that the energy content of a signal is

negligible beyond a certain frequency.

For digital applications, a discrete version of the Fourier transform is nec-

essary. The Discrete Fourier Transform (DFT) can be applied in the case of

time-limited signals and assumes periodicity. The DFT of a finite discrete-time

signal s[n], (n =0,1,..., N — 1) is defined by

N-1
ak] = S> s[nJe“P™*"/", k= 0,1,..,N-1, (2.20)

n=0

where k is the variable in the frequency domain. The Inverse Discrete Fourier
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Transform (IDFT)is given by

s{n] = =ake n=0,1,.,N=1. (2.21)

i
M
iI

N

It can be seen that the DFT producesa discrete frequency spectrum. Numerically,

the DFT is equivalent to the well-known Fourier series for periodic discrete-time

signals. Manyofits properties correspond to properties of the continuous Fourier

transform, but generally the discrete case can not be derived directly from the

continuous case.

The DFT methodis the basic tool of modern digital signal analysis. Only for

ill-posed problems, the aliasing effect may present a considerable limitation in its

practical use. For the analysis of an N-point digital signal, the ordinary DFT

algorithm requires N? complex multiplications. A more efficient algorithm for

DFT computation, known as the Fast Fourier Transform (FFT), was developed

by Cooley and Tukey in 1965 [40]. The FFT reduces dramatically the amount of

required calculations (only N log, N multiplications are required for an N-point

transform). It offers not only enormous savings in computer processing time,

but also better accuracy. The FFT algorithm has been used with overwhelming

success for a wide range of digital processing problems.

2.3.4 Limitations of the Fourier transform representation

The Fourier transform is an integral transformation which provides a representa-

tion of the frequency content of a signal. It offers a powerful theoretical framework

and possesses many important properties that have been widely used in applica-

tions of telecommunications and signal processing. Additionally, in the discrete

case, its calculation is very fast andefficient.

Its ability to provide meaningful interpretation, however, is limited, based on

an assumption of periodicity or stationarity. In the case of signals which are

time-varying in nature or possess some random non-stationary features, ordi-

nary Fourier analysis fails to describe the dynamics of change of the frequency

components.

The basic limitation of the traditional Fourier transform techniques is that

14
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the frequency information arises from averaging over the complete duration of

the signal. Indeed, the Fourier integral of Eq. (2.6) extends over all time from

—co to +00. This means that, if at some point in the lifetime of the signal, a

particular feature is present, this will be taken into account for the calculation of

the Fourier transform, but its specific location on the time axis will be lost. This

fact makes it impossible to determine the position or the duration of the lifetime

of a single frequency component andit is related to the uncertainty principle in

communication theory.

2.4 The Uncertainty Principle in Communica-

tion Theory

The scaling property of the Fourier transform described by Eq. (2.11) implies

that a signal s(t) and its Fourier transform S(t) can not both be of short ’du-

ration’. The unit impulse d(t), which is a signal of zero ’duration’ in the time

domain, provides a characteristic example of reciprocal spreading. Indeed, its

Fourier transform is constant (equal to 1) over the whole frequencyaxis; i.e., the

duration’ in the frequency domainis infinite. This type of uniform spectrum is

called white, in analogy to white light.

Let us quantify the abstract term ’duration’, by defining an effective width

and aneffective bandwidth in the time and frequency domain respectively. Given

a (generally complex) signal s(t), the effective width along the time axis of the

signalis
+00 1/2

J (t= WPs@s* (Hat
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and the effective bandwidth along the frequency axis of the signalis

— 1/2

[f= nysear
Af = |= (2.23)

[ (NsAar
—0o

The effective widths of Eq. (2.22) and (2.23) represent standard deviations in

time and frequency and they are sometimes referred to as uncertainties.

From Eqs. (2.22) and (2.23), it can be easily derived that the time(width)-

bandwidth or uncertainty product At-Af has to satisfy the uncertainty inequality:

1
: >—. .At Af > 7 (2.24)

The time-bandwidth product has a lower boundandthis fact prohibits an arbi-

trarily sharp frequency discrimination from being possible within an arbitrarily

short period of time, or vice versa. The inequality of Eq. (2.24) is called the

uncertainty relation of information theory or the Gabor-Heisenberg inequality. It

can be noticed that there is a straightforward analogy to the well-known Heisen-

berg’s uncertainty principle found in quantum mechanics; the time-frequency

duality corresponds to the position-momentum duality of quantum mechanics

[76], [175]. In the context of the theory of communication, the uncertainty rela-

tion was rigorously derived by D. Gabor in 1946 [63]. It implies that bandwidth

and time-width are irreconcilable quantities. High resolution can not be obtained

simultaneously in both the time domain and the frequency domain.

The dimensionless uncertainty product At- Af is an important parameterin

signal processing applications. For example, it can be intentionally increasedor

decreased (down to its lower bound) according to the specific design requirements

(eg. for radar design, design of spread-spectrum systemsetc.). In applied signal

processing, the uncertainty relation renders the trade-off between temporal and

spectral resolutions unavoidable.

There is a case that this trade-off is optimised; indeed, it can be proven that a

Gaussian signal (or Gaussian pulse), that is, a signal of the form exp[—t?/(207)],

exhibits a minimum time-bandwidth product. Gaussian signals are signals of

minimum uncertainty , in the sense that At- Af = (47)7!.
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Thefact that there is an uncertainty principle in both signal theory and quan-

tum theory often leads to misconceptions and there has been a lot of confusion

in the past about proper interpretation; therefore, a distinction between the two

uses of the uncertainty relation should always be made [151, 38]. In quantum

mechanics, it expresses the inherent uncertainty, in a probabilistic sense, related

to the measurementof physical quantities. In signal theory, it refers to the math-

ematical fact that a signal and its Fourier transform can not be made arbitrarily

narrow. A further discussion about the relation between signal processing and

quantum mechanics will be done in Chapter 3.

2.5 Autocorrelation functions

The autocorrelation function Q,(t) of a signal s(t) is defined by

Q,(r) = / s(t +7/2)s*(t — 7/2)dt. (2.25)

The autocorrelation function of a signal provides information about the degree

of dependence of the value of the signal at some instant in time on its values at

other instants. It is used for time-domain analysis.

In the case of random signals, the power spectral density (PSD) or simply

power spectrum corresponds to the energy spectral density (Section 2.3). The

powerspectral density S,(f) of a signal s(t) is given by

Ss(f) = |8(f)P. (2.26)

The power spectral density describes the relative amount of energy at various

frequencies. The total area under S;,(f) is the energy of the signal. The power

spectral density is used for spectral analysis (in the frequency domain) and con-

tains no phase information.

The autocorrelation function and the power spectral density function are re-

lated according to the Wiener-Khintchine theorem:

+00

S.fy= if Q,(t)e"dt; (2.27)
—0Oo
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that is, the power spectral density S,(f) of the signal s(t) is the Fourier transform

of the signal’s autocorrelation function.

Our study so far has been based on the assumption of stationarity. However,

this is not the case for many of the signals encountered in every day practice.

Physical signals, quite often, are time-varying, that is, non-stationary. Because

of their time-dependent behaviour, non-stationary signals do not possess an or-

dinary spectral density and can not be successfully analysed using the ordinary

Fourier methods.

2.6 Discussion

In Section 2.3, it was stated that the Fourier transform method is based on the

stationarity assumption. It seems that, in general, weakly stationary signals can

be successfully represented in the frequency domain by the ordinary spectral

density (Section 2.5); but in the case that a signal is only locally stationary or

generally non-stationary, the ordinary spectral analysis is not sufficient.

It becomes clear that the disadvantages of the Fourier analysis have their

greatest effect in the case of random non-stationary signals; the Fourier spec-

trum is unable to provide theall-essential ’instantaneous’ information contained

in the signal. The notion of a time-varying spectrum can be considered as a gen-

eralisation of the ordinary spectrum, preserving all the useful properties of the

Fourier transform representation, but also describing the time-varying change in

the frequency domain.
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Chapter 3

An Introduction to

Time-Frequency Signal Analysis

3.1 Introduction

The difficulties of the classical Fourier analysis for the case of non-stationary

signals have been presented in the previous chapter. ‘To overcome the prob-

lems of the processing of non-stationary signals, alternative methods have been

considered. Most of these methods use two-dimensional time-frequency repre-

sentations. These joint representations describe successfully the time-varying

frequency characteristics of a non-stationary signal. They provide a means for

isolating the signal features of interest in the time-frequency plane (eg. amplitude

and frequency non-stationarities in harmonic signals) and they are particularly

suitable for applications in random and/or non-stationary signal analysis. Re-

cently, time-frequency representations have found applications in areas as diverse

as speech analysis/synthesis, radar, geophysics, musical voice synthesis, sonar,

image processing, audio engineering, biology and biomedicine.

Historically, the first ideas toward time-frequency analysis are found in the

classic works of D. Gabor [63] and J. Ville [173], who pointed out the analogy

between communication theory and quantum mechanics. In Gabor’s pioneering

paper, the uncertainty relation of communication theory is rigorously derived,
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the “instantaneous frequency” is suggested as a useful concept, the Gaussian

expansion (later to be known as the Gabor expansion) in terms of elementary

signals is introduced and a predecessor to the analytic signal is presented. This

Gaussian expansion,referred to as information diagram” in Gabor’s paper, was

chronologically the first joint time-frequency signal representation.

It is clear that concepts of instantaneous information (such as instantaneous

frequency or instantaneous power) are very important in time-frequency analysis.

The notion of ”instantaneous frequency” was further studied by J. Ville [173].

An early definition of the instantaneous frequency describes it as the rate of

change of the phase of a time-varying signal, which was found to be equivalent

to the derivative of the phase of Ville’s analytic form. Later, in the light of

the formulated joint time-frequency representations, the instantaneous frequency

was defined as the average frequency at a particular point in time (see Section

3.2). Linearity of the instantaneous frequency is a highly desirable property in

time-frequencysignal analysis.

3.2. A Short Review of Time-Frequency Repre-

sentations

Joint time-frequency representations (sometimesreferred to as ” conjoint” or ” time-

scale” representations) map a one-dimensionalsignal s(t) into a two-dimensional

function Y(t, f) in order to extract meaningful information. They provide a

more complete description of a non-stationary signal than the traditional (single-

domain) Fourier representation; the one-dimensional signal representations (time

description s(t) or Fourier transform s(f)) are just special cases of a joint rep-

resentation. Two of the most popular time-frequency methods used in modern

digital spectral analysis - which are conceptually close to the traditional Fourier

transform - are the Short-Time Fourier Transform and the Wigner-Ville method.

The Short-Time Fourier Transform (STFT) is a complex-valued representa-

tion. It performs local spectral analysis using a short window centred at time

t. A local spectrum is thus obtained which describes the frequency content, of
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the signal at time t. The window is shifted covering the complete time domain

of the signal and in this way, the Short-time Fourier transform provides a two-

dimensional local spectrum description. The notion of instantaneous frequency,

as proposed by J. Ville, can be applied.

The uncertainty principle presents a fundamental problem to Short-time

Fourier transform analysis. Using a short window (high resolution in time) au-

tomatically means that the frequency resolution of the local spectrum will be

low, and vice versa. The two requirements of a short windowin the time domain

and of a narrow bandwidth in the frequency domain are in contradiction. A

trade-off has to be made between the frequency resolution and the observation

time (length of data window which determines the time resolution) and this is a

major disadvantage. The squared magnitude of the Short-time Fourier transform

offers a real-valued alternative and is sometimes referred to as the spectrogram or

equivalently the perzodogram.

The second approach is the Wigner-Ville or Wigner Distribution function

method. E.P. Wignerfirst used this representation in quantum mechanics[188].

The Wigner Distribution function is a two-dimensional real-valued function of

time and frequency and wasfirst applied to signal analysis by J. Ville [173].

The Wigner function representation overcomes the drawbacks of the Short-time

Fourier transform method. However, the fundamental uncertainty principle of

signal theory is incorporated in the mathematical structure of the Wignerdis-

tribution function and limits its resolutional ability. The Wigner-Ville technique

will be discussed extensively in the next chapter.

The Wigner distribution function belongs to a family of energetic time-

frequency distributions known as the Cohen’s generalised class first introduced

in an important paper by Cohen in 1966 [37]. Time-frequency distributions of

the Cohen’s class are bilinear functions of time and frequency which are designed

to satisfy certain desirable properties (such as the time and frequency marginal

energy distributions and reduced interference). They share the same general

formulation and they are uniquely characterised by a two-dimensional function

referred to as the time-frequency kernel [35]. The properties of a time-frequency

distribution are directly related to conditions of the characteristic kernel. Due to
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its unique properties, the Wigner distribution function is the ideal time-frequency

distribution in many respects (see Section 4.2). Other members of Cohen’s gen-

eral class of joint energy representations which are of current interest are:

i the Page distribution [120],

ii the Rihaczek distribution [131],

iii the Choi-Williams (or exponential) distribution [31],

iv the Born-Jordan distribution [38],

v the cone-kernel distribution [200], and

vi the minimum variancedistribution [75].

The spectrogram is also a special case in this family. A detailed review of time-

frequency distributions of the Cohen’s general class can be found in [38].

Other time-frequency representations, which do not use the ordinary harmonic

analysis, are the Gabor transform, the wavelet transform, and the Bargmann

representation. These methodsare based on analytic functions and their potential

for signal processing applications is significant because of the powerful analytic

properties.

The Gabor transform and the wavelet transform decomposea signal in terms

of alternative orthogonal basis functions. These functions are localised in time

and frequency. The Gabortransform uses a Gaussian basis and the wavelet trans-

form uses a wavelet basis consisting of special functions called wavelets. Both

methods are particularly suitable for non-stationary signal analysis. Although

these methods are mathematically complex, the numerical algorithms involved

are very fast. The Gabor transform wasfirst introduced in the early paper ofD.

Gaborback in 1946 [63] , while the use of wavelets originated from the analysis of

earthquake records [69]. These methods are now significant tools in signal analy-

sis and have found important applications in speech, random vibration and radar

signal analysis, and more recently in image processing. Using these methods, the

major disadvantage of Fourier transform techniques is overcome by breaking a
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signal down into well-localised elements. In recent years, the wavelet analysis has

enjoyed popularity and has been extensively studied with a vast andstill growing

rapidly bibliography [46, 47, 48, 110, 117].

Another representation used in quantum mechanics is the Bargmann analytic

representation. In the context of signal analysis, the Bargmann analytic function

has not been used so far, although it provides an alternative time-frequency

representation and has been successfully applied in otherfields.

In the following chapters, the Wigner-Ville method, the Gabor transform and

the Bargmann representation are presented and examined from a signal theoretic

point of view. The common mathematical background of these methodslies on

the theory of quantum mechanics and here the potential of each methodfor signal

processing applications is explored. Special emphasis is given to practical appli-

cations in optical signal analysis. The use of these methodsas signal synthesis

aids and as diagnostic tools for real-life random processes will be demonstrated.

Furthermore, relations between the various time-frequency representations will

be studied and someuseful conclusions derived.

3.3. Signal Processing and Quantum Mechanics

From our discussion on the uncertainty principle in signal theory (Section 2.4) as

well as the ’mathematical origin’ of the various time-frequency representations,

it is clearly indicated that there is a formal mathematical analogy between signal

analysis and modern quantum theory. At an early time, the original papers of

Gabor and Ville pointed out the quantum-mechanical influence on the work on

time-frequency methods.

Thesimilarities between the two different fields originate from the fact that,

in quantum theory, the probability associated to momentum is given by the

squared modulus of the Fourier transform of the wave function. The time and

frequency pair of signal theory can be thus associated with the position and

momentum pair of quantum mechanics correspondingly. Additionally, the same

kind of association can be made between the signal and the wave function as

well as between the signal energy and the probability for finding the particle at
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a certain position. The time-frequency space correspondsto the so-called phase

space in quantum mechanics and sometimesthe latter is used in the context of

signal processing as well. For these reasons, between the twofields there is a very

good mathematical correspondence.

Despite this formal analogy, there exist significant fundamental differences.

The quantum-mechanical theory is inherently probabilistic, while in signal theory

this is not generally the case; only a stochastic signal can be considered in a

probabilistic sense. Another important difference is that the physical quantities

of quantum mechanics are described by operators instead of functions. This is the

reason whysignals do not suffer quantisation. That said, thereis a great similarity

between the theory of hermitian operators in quantum mechanics and the so-

called hermitian representation of square-integrable signals. It has been known

that manyof the properties of time-frequency representations can be derived from

an hilbertian condition [58).

Even though their conceptual differences are important, the mathematical

analogies between signal theory and single-particle (non-relativistic) quantum

mechanics can often be quite useful and the two fields may share the same nu-

merical techniques, but not to an unlimited extend. Sometimes, interpretation of

the formulae can be dramatically different. One has to be cautious in transcrib-

ing quantum-mechanical relations to the language of signals since this may yield

results which are totally meaningless in a signal-theoretical sense.

3.4 The Notion of the Analytic Signal

For the calculation of time-frequency representations,it is generally convenient to

use not the original real signal but the so-called analytic signal (or pre-envelope)

associated with the real signal (the idea was originally proposed by J. Ville).

The analytic signal was first applied in radar signal analysis and later on, has

been used as a useful theoretical tool in various time-frequency methods. The

following analysis considers only one-dimensionalsignals.

Let u(t) be a real signal in time. The corresponding analytic signalis defined
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as:

s(t) = u(t) + jv(t), (3.1)

where v(t) is given by the Hilbert transform of u(t). It is common practice that

the total energy in the signal is normalised:

co

/ |s(t)dt = 1. (3.2)
—oo

It is convenient to employ the normalising conventions of the quantum mechan-

ical theory, since this enables the direct mathematical analogy between signal

processing and quantum mechanicsto beeasily identified.

In his early paper, Gabor had suggested a different complex form of the signal

which is known as the exponential or quadrature representation. This provides

a good approximation of the Hilbert-transform analytic representation, partic-

ularly if the real signal is narrowband; that is, it contains frequencies only in

narrow bands about a certain frequency +f. The Hilbert-transform signal s(t)

of Eq. (3.1) is called the analytic signal since the generalised signal s(z) is an

analytic function (the complex numberz lies in the upper half of the complex

plane and zp = Rez is the time variable); that is, it satisfies the important

Cauchy-Riemann equations:

ou Py (3.3
OZR — Oz,’ : )

Ou Ov
ae, o ~Btp’ (3.4)

where z; is the imaginary part of z. In fact, the Hilbert-transform signal of

Eq. (3.1) is the only complex signal that satisfies the requirement of analyticity.

This complex representation consists in working solely in terms of the positive

frequencies [189]; as described by Gabor [63], this can be achieved by removing

the amplitudes belonging to negative frequencies from the spectrum of the real

signal and multiplying the amplitudes of positive frequency by 2. In this way,

the total energy of the original real signal is preserved. This process is equivalent

to the process described by Eq. (3.1). In terms of the previous definition of the

analytic signal, the concept of instantaneous frequency can be well described by

the phase of the analytic signal, particularly for narrowbandsignals.
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There are several advantages in using the analytic signal for applications of

time-frequency analysis:

e The instantaneous frequency can be defined in termsof the analytic signal.

e Aliasing in discrete implementations is avoided and a sampling rate equal

to the standard Nyquist rate is maintained.

Interference terms between positive and negative frequencies are eliminated.

Information in the negative frequency bandof real signals is redundant.

Calculations are more straightforward.

Very often the very first step to the calculation of a time-frequency represen-

tation of a signal is the required calculation of the associated analytic form. The

analytic signal approach leads to a convenient implementation since the calcula-

tion uses the Hilbert transform.

The Hilbert transform of the signal u(t) is defined by

 da, (3.5)

where P stands for the Cauchy principal value of the integral at a = t. In the

context of linear system theory, Hilbert transform represents the response (to the

real signal u(t)) of the so-called quadrature filter. This filter is described by the

transfer function:

A(f) = —j senf, (3.6)

where f denotes the variable in the frequency space. The corresponding impulse

response is equal to 1/mt and it follows that the Hilbert transform can be given

by the convolution:

We) att) *. (3.7)

which enables us, by Fourier transforming both sides of Eq. (3.7), to get a simple

expression of the Fourier transform of v(t):

o(f) = —ju(f) sen f, (3.8)
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where the tilde denotes the Fourier transform operation. The inverse of the

Hilbert transform of Eq. (3.5) is:

 u(t) =-=P / MO)ag (3.9)

From Eqs. (3.1), (3.8), the Fourier transform of the analytic signal can be ob-

tained:

a(f)=9 af) , f=; (3.10)
0 , f <0.

The imaginary part v(t) of the analytic signal is sometimescalled the quadrature

signal, because its frequency components are in phase quadrature with those of

the real signal u(t) (i.e. their phase difference is 90°).

Practical applications usually require discretisation of the original continuous-

time signal (see Section 3.3). The discrete-time analytic signal of a finite discrete

signal u[n] is of the form:

s[n] = u[n] + jr[n], (3.11)

where the imaginary part vn] is given by the Discrete Hilbert transform of u{n].

From the previous analysis, it is evident that the Discrete Hilbert transform can

be computed using powerful FFT algorithms. In processing applications, after

analysis has been carried out using the Hilbert transform representation, the real

signal can be recovered by taking the real part of the resulting analytic signal.

Numerical algorithms are presented in Appendix B.

3.5 Application in Optical Signal Processing

As a real-life example, the analytical signal representation of a given real signal

u(t) (Fig. 1) was calculated. This is an optical signal occurring when monitoring a

power switch (see Appendix A). Such signals are obviously highly non-stationary.

They provide useful information about the condition of power electronic devices

and can be usedfor optical monitoring and maintainance managementof systems.

For numerical implementation, the discrete-time version of the signal was used
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(see Eq. (3.11)). The given signal was sampled at a rate of 40kHz and contains

2,380 points.

The first step of the analysis was the calculation of the Fourier transformof

the signal u(t) using an FFT algorithm. The modulus of the Fourier transform

of u(t) is shown in Fig. 3.4. It is evident that u(t) can be considered as a

narrowbandsignal. Thus, we are able to evaluate the analytic form of the signal

using the method described earlier.

Using Eq. (3.8), we calculated the Fourier transform of the Hilbert transform

of the original signal (see Appendix B). The Hilbert transform v(t) was then

derived by an inverse FFT. The Hilbert transform v(t) is the imaginary part of

the analytic signal and is shown in Fig. 3.2. Given that the real part is the

original signal u(t), we can easily obtain the modulus of the analytic form s(t) of

u(t) (Fig. 3.3).

The modulusof the Fourier transform of the analytic signal s(t) is illustrated

in Fig. 3.5 (where, for the sake of detail, the dc contribution has been omitted).

A comparison between Fig. 3.4 and Fig. 5.5 reveals that the analytic signal

has a one-sided spectrum that consists only of the positive frequencies of the real

signal which have double amplitudes.

3.6 Discussion

Time-frequency representations and the concept of the analytic signal have been

discussed. Joint time-frequency representations provide the means to deal with

’traditional’ problemsof signal analysis. Time-frequency analysis has a preference

for analytic signals because, in this way, the instantaneous frequencyis defined.

The analytic signal can be generally applied to narrowband signals and provide

information about the instantaneous characteristics of signals. The above analysis

will become very useful for the methods presented in the chapters that follow.
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Figure 3.1: An optical signal (u(t)) taken from the emission of a power switch.
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Figure 3.2: The imaginary part v(t) of the analytic form s(t) of the given real

signal u(t); that is, the Hilbert transform of u(t).
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Figure 3.3: The modulus of the analytic signal s(t) corresponding to the real

signal u[n].
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Figure 3.4: The modulus of the Fourier transform of the real signal u(t).
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Figure 3.5: The modulus of the Fourier transform of the analytic signal s(t).
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Chapter 4

The Wigner Distribution

Function Representation and

Applications in Optical Signal

Processing

4.1 Introduction

Let u(t) be a real square-integrable signal in time. As described earlier, the

corresponding analytic signal is given by

s(t) = u(t) + jv(t), (4.1)

where u(t) is given by the Hilbert Transform of u(t), as mentioned earlier (Chapter

3). As in previous chapters, the total energy in the signal is usually considered

to be normalised:

/ |s(t)[2dt = 1. (4.2)

The Wigner (or Wigner- Ville) distribution function is a bilinear (quadratic)

signal representation. It was first introduced by Wigner [188] in 1932 within the

context of quantum mechanics and soon becamea representation of great signif-

icance that provided insight into the connection between quantum andclassical
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mechanics. It was later proposed by Ville [173] in the context of signal theory and

recently became very popular with applications in many areas of signal process-

ing. It is suitable for representing a signal in both time and frequency domains

(or, in the case of images, in the spatial and spatial frequency domains) and its

popularity is, to a large extend, due to the fact that the Wigner Distribution

Function (WDF)possesses a plethora of attractive properties.

The Wigner representation is unique and theoretically optimal in the sense

that it satisfies a maximum number of desirable mathematical properties and

features optimal time-frequency concentration. As mentioned earlier, the Wigner-

Ville representation is the prominent member of Cohen’s generalised class of

joint representations, associated with the simplest kernel (equal to unity). In

the context of signal processing, the Wigner distribution function provides an

accurate characterisation of the energy density distribution in the time-frequency

plane and it is a powerful tool for local frequency analysis since it describes the

dynamics of change in the frequency components through thesignal’slifetime.

The cross-Wigner distribution function of two signals f(t) and g(t) is given

by
-+oo

Wyo(t, f) = / eP"ITFe 4 7/2)g*(t —7/2)dr. (4.3)

The auto-Wignerdistribution function (AWDF)of s(t) is defined as

+00

W,(t, f) = / eP"F754 4.7/2)5*(t — 7/2)dr. (4.4)
—0o

The analogy to single-particle non-relativistic quantum mechanicsis straightfor-

ward (the time and frequency variables of signal theory correspond to the posi-

tion and momentum variables of quantum mechanics). At this point, it would be

worth to note that the word ”distribution” here is not used in the strict proba-

bilistic sense, although for stochastic non-stationary signals this would be exactly

the case. In general, for time-frequency analysis, ” distribution” means intensity

or energy density and it may have negative values, in contrast to the standard

terminology of probability theory. In the following sections, WDF will always

denote the auto-WDF,unless it is otherwise stated.
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According to Eq. (4.4) and Eq. (2.25), the WDFisrelated to the instantaneous

autocorrelation function R,(7;t) of s(t) (see Chapter 2) defined by

R, (r,t) = s(t + 7/2)s*(t — 7/2). (4.5)

The Fourier transform of R,(7,t) provides the instantaneous spectral density

function
+co

D,(f;t) = / eI"R(7, t)dr = Wolt,f). (4.6)

It is clear that the Wigner function of a signal can be viewed as an instantaneous

spectral density.

An interesting problem in signal processing would beto identify a signal with

a rotationally invariant WDF. This case correspondsto a uniform ‘distribution of

uncertainty’ in the time-frequency plane. Drawing the analogy to the well-known

solution of quantum mechanics (numbereigenstates), the corresponding signal

waveform is given by the following relation [98, 78]:

hy, = 2!/4(2"n!)-/? exp(—mt?)An(V2at), n=0,1,... (4.7)

where H,,(t) is the nth-order Hermite polynomial:

H,(t) = (—1)" exp(?/2)<— exp(—/2) (4.8)

The WDFof these Hermitian signals has a rotational symmetry and it is given

by:

Wi”(t, f) = (2m)?(-1)"eOTOL,[4r(P + f?)], (4.9)

where L, is the nth-order Laguerre polynomial [1]:

mn nt(—t)!
Lat) = =——— - 4.1

(t) ihil (4.10)

The Hermitian signals {h,} form a complete orthonormal basis which can be

useful in signal analysis.

The potential fields of application of the WDF in a signal theoretical con-

text are numerous: signal detection andclassification, time-varyingfilter design,

Fourier and ray optics, loudspeaker design, radar Doppler theory, texture anal-

ysis, sonar, biomedicine etc. The WDFrepresentation can be happily used in
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conjunction with modern signal estimation techniques [129] (especially in the

non-stationary case). In this chapter, application of the WDFin the processing

of time-varying optical signals will be presented.

There are two ways to evaluate the WDF of an optical signal (the exact

evaluation being generally impossible):

1. Purely optical means to obtain an approzimation of Eq. 4.4. Fourier meth-

ods are the foundations of the modern optical system theory. The WDF repre-

sentation has been applied to provide an alternative way of optical generation

and analysis yielding significant results [15, 11]. It has successfully led to the

connection between different viewpoints of optical theory.

2. Discretisation of the analogue signal. For practical implementation of real-

life signals, one usually has to deal with digital or digitised data. For this reason,

actual signals can be analysed using the Discrete Wigner distribution function

(DWDF) which will be introduced in later section.

The following sections will concentrate on the application of the WDF in the

processing of sampled optical signals. Purpose-developed software is found in

Appendix B. Theinterest in the employed techniques is demonstrated by various

results. Several types of optical signals are analysed using the Wigner Distribu-

tion Function representation. The aim of this analysis is the characterisation and

interpretation of these signals and the extraction of meaningful features. ‘The

analysis is restricted to one-dimensional signals. In the following section, some

known properties of the WDFare reviewedbriefly to provide understanding of

the signal representation application.

4.2 Properties of the Wigner Distribution Func-

tion

The (auto)Wigner Distribution Function has many important properties which

are very useful for signal analysis [35, 193, 81]. The basic properties of the Wigner

Function are summarised as follows:
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I

II

III

IV

~\

VI

Unicity. The Wigner representation is unique in the sense that it is the

only Time-Frequency representation which provides:

e the ordinary spectrum if the signal is stationary,

e time-frequency linearity, and

e linear modulation and filtering.

If §(f) is the Fourier transform of s(t), then:

Rs ¢ $WilF.t) = f Presf+ Sysr(f- S)dd (4.11)

and

Ws(f,t) = Welt, f). (4.12)
Eqs. (4.11), (4.12) show the symmetry between the time and the frequency

domain.

The Wigner function is always a real-valued function:

W,(t, f) = W(t,f). (4.13)

For a real signal u(t), the WDFis an even function of frequency:

W.(t, f) = Walt, -f). (4.14)

Time Shift. If g(t) = f(t — to), then:

W,(t, f) = W,(t — to, f). (4.15)

This is called the shift property of the WDF.

Frequency Shift. If g(t) = s(t)e??"/, then:

W,(t, f) = Ws(t, f — fo): (4.16)

This is known as the modulation property of the WDF.
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VII The integration of the WDF with respect to frequency gives the instanta-

neous signal power:

J Wolt, far = |s(t)P. (4.17)

VIII Theintegration of the WDF with respect to time provides the power density

spectrum of the signal:

| Wolt, Fat = |3(F)P. (4.18)

IX Thefirst-order moment of the WDF with respect to frequency gives the

instantaneous frequency ¢(t) of the signal:

+00

= | FW, df. (4.19)

X The first-order moment of the WDF with respect to time gives the group

delay T(f):
+00

= / tW,(t, f)dt. (4.20)

XI Moyal’s formula. The integral of the square of the WDFgives the square

of the total energy of the signal:

 

+00 +00

if / IW, (t, f)|2dtdf = f/ |s(t«pael (4.21)

Moyal’s formula is the analogon to Parseval’s theorem.

XII Convolution property. If s(t) = g(t) * A(t), then:

W(t, f) = W(t, f) * Walt, f), (4.22)

where the convolution operation acts with respect to time.
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XIII Windowing property. If s(t) = g(t)h(t), then:

W.(t, f) = W,(t, f) *« Wilt, f), (4.23)

where the convolution operation acts with respect to frequency.

XIV Negativity. The WDFis not always positive. The fact that it can take

negative values as well means that it does not provide a ’true’ energy den-

sity. This behaviour of the WDFis connected to the uncertainty principle

in signal theory (Section 2.3). The only signals that achieve an all-positive

WDFare Gaussian signals, which are minimum uncertainty signals. It can

be easily proved that the WDF of a Gaussian signal is a two-dimensional

Gaussian function. In general, the negativity of the WDF does not present

a significant problem. Indeed, suitable averages of the WDF,over carefully

chosen regions of the time-frequency plane (the area of which is in accor-

dance with the uncertainty principle) are shown to result only in positive

values. The uncertainty in a time-frequency representation (”representa-

tional uncertainty”) can not be easily defined in a quantitative way. To

deal with this problem, Jacobson and Wechsler [81] have suggested that

joint entropic measures of uncertainty should be used.

XV For the special case f = 0, from Eq. 4.4: W(t, f = 0) is equal to the

autocorrelation function Q,(t) (defined in Eq. (2.25)).

XVI Theintegral of the WDF over the whole T-F plane gives the total energy

of the signal:
+00 +00 +90

/ / W,(t, f)dt df = \s(t)|Pdt. (4.24)

XVII The absolute value of the WDF never exceeds 1:

= = W,(t, f) S 1 (4.25)

(considering the previous normalisation of the signal’s energy).

The last two properties of the (auto)Wigner distribution function are funda-

mental, since they lead to its interpretation as a pseudo-distribution of the energy

of the signal in the time-frequency plane.
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4.3 The Ambiguity Function and its Relation to

the WDF

The ambiguity function A,(7,¢) of a signal s(t) with total energy equal to 1 is

given by

+00

A, (7, ¢) = / s(t + 7/2)s*(t — T/2) exp(—j2mot)dt = A;($,7) =

+00

= [ 3(f +4/2)8°(F - 8/2) exp(i2mrfydf (4.26)

In the literature of radar signal theory, the ambiguity function is sometimes

described as the complex or time-frequency autocorrelation function, the delay-

Doppler ambiguity function, the radar uncertainty function or the matched-filter

response function. The connection between ambiguity functions and Wigner

distribution functions has been first brought forward by Klauder[98]. He pointed

out the analogy to the uncertainty principle of quantum theory. The ambiguity

function is the analogon of the Weyl function in quantum mechanics.

It can be proved that the the ambiguity function is the (double) Fourier

transform of the WDF:

+00 +00

A,(7,¢) = / / eF2M(O-INW(t, f)dtdf. (4.27)
—co —co

The proofis based on three properties of the Fourier transform: the complex

conjugate, the duality and the convolution theorem (Section 2.3). Using the

function R,(7,t) defined in Eq. (4.5) and its symmetrical function

P(o, f) = 5(f + 6/2)3"(f — 6/2), (4.28)
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we have

A(T, ¢) = (4.29)
+00

/ ePTHR(7, t)dt =
—oo

+00

["Plo, Daf =
—oo

+00 +00 +00

/ / ‘h ef27otp—Jangt {e?"!"P,(¢, f)} dfdtd _

—00 —0O —0O

+00 +00|pewefr) eae(4, pa| dtdf =

[fom$t—fr) fem"Rs(7, oar| dtdf,
—Co

which, with the use of Eq. (4.5), results in the expression of Eq. (4.27). Conse-

quently, the properties of the ambiguity function can be easily derived by com-

bining the properties of the WDF (Section 4.2) and the properties of the Fourier

transform (Section 2.3).

Ambiguity function representation has become very popular in radar theory.

Its important application as a signal design criterion in mathematical radar the-

ory wasfirst presented by P.M. Woodward [189]. In radar theory, the pair (7, ¢)

represents the range (time) and velocity (Doppler frequency) pair of variables.

High range resolution and high velocity resolution are irreconcilable requirements

(uncertainty relation in radar signal theory [19]) and signal design for specified

tasks under certain conditions can be done successfully using the ambiguity func-

tion which characterises the trade-off between the resolution in the range domain

and the resolution in the velocity domain [7, 171, 52]. A detailed study of the

ambiguity function is presented in [132].

Three important general properties of the ambiguity function are:

I The ambiguity function reaches its maximum value at the origin:

|A,(7, d)| < A,(0,0) =1 . (4.30)
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II The volume under|A,(r, ¢)| is unity:

+00 +00

| [ \Aclr, @)larad = |4,(0,0)/? = 1, (4.31)
—co —cO

which corresponds to the total signal energy. This equation is known as the

radar uncertainty principle and it shows that the ambiguity function can

not be concentrated arbitrarily close to the origin.

III It is very interesting that for signals that are odd or even functions oftime

(s(t) = s(—t) or (s(t) = —s(—t)), the ambiguity function and the WDFare

the same except for a scaling factor:

W,(t, f) = +2A,(2f,2t) . (4.32)

The scaling factor of 2 appears as a consequenceofthe definitions of Eqs. (4.4),

(4.26) we used.

From Eq.(4.26) it is obvious that the ambiguity function is a (complex-valued)

function of correlation lags. In contrast, the Short-Time Fourier transform, the

WDFrepresentation and the Gabor transform can all be viewed as functions of

phase-space variables. The ambiguity function provides a ” correlative” point of

view, whereas the three aforementioned time-frequency representations provide

an “energetic” point of view.

4.4 The Wigner Distribution Function and its

Applications in Signal Analysis and Synthe-

sis

In this section, practical implementation of the WDF with computer algorithms

(see Appendix B) is discussed and inherent problems of the representation are

examined. Applications in the areas of signal analysis and synthesis are also

considered.

To apply the WDFrepresentation to digital data, a discrete version of the

Wignerdistribution is needed. Historically, the adaption of the WDF methods
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for discrete-time signal processing is due to Claasen and Mecklenbrauker (1980).

A consistent definition of the Discrete Wigner Distribution Function (DWDF)is

foundin their classic paper [35]. If s[n] represents finite discrete-time (generally

complex) signal (or a digital image in a one-dimensional space), the DWDFcan

be defined by
N-1

Wn, 0] = 3 SeMAO"sin + k]s*[n — kl], (4.33)
k=0

where N is the numberofpoints ofthe digital signal s[n] and k = 0,1, 2,..., N—1.

Notall the properties of the continuous WDFare preserved bydiscretisation, due

to the aliasing effects occurring in the discrete case. The above definition satisfies

the followingcriteria:

e Simplicity;

e Preservation of as many of the properties of the continuous WDFas possi-

ble;

e Simple description of the relationship between the continuous WDF ofa

continuous-time (analogue) signal and the DWDFofthe discrete-time sig-

nal obtained by sampling the continuous-timesignal.

A major problem in practical applications is presented by interference or

cross terms in the WDFof real signals. Interaction between aliasing positive

and negative frequency components generate unwanted peaks between the actual

frequency components. Various methods have been suggested to reduce these

interference terms. Most of these methods consider attenuation of these terms

using a two-dimensional ”smoothing kernel” [5, 79]). Another approach is the

oversampling of analogue signals. Since the DWDFof Eq. (4.33) has a ’periodic-

ity’ of N/2 on the frequency axis, the Nyquist criterion for the discrete real signal

is not strong enough for its DWDF-.Interpolation with additional data points or

oversampling at twice the Nyquist rate or higher provide a satisfactory remedy.

An alternative way to avoid aliasing is to apply the WDFrepresentation to the

analytic signal associated with the real signal rather than to the real signalitself.

Interference is avoided by elimination of the negative frequencies [193].
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The discrete-time(space) analytic signal of the discrete-time(space) real signal

u[n] is of the form: s[n] = u{n]+jv[n], where the associated imaginary part v[n] is

given by the Discrete Hilbert transform of s[n]. The analytic signal approach leads

to a convenient implementation since the calculation uses the Hilbert transform

(Chapter 3). Usually the Discrete Hilbert transform can be computed very fast

by using powerful FFT algorithms. The advantages of using the analytic signal

are extensively discussed in Section 3.4.

The formulation of the DWDF (Eq. (4.33)) is similar to the Discrete Fourier

Transform of the discrete time(space)-dependent correlation function R,[n],

which is a complex function of two variables and can be calculated using cross-

multiplication:

R,[n] = s[n + k]s*[n — k], (4.34)

wheres[n] is the analytical signal corresponding to the originalreal signal u[n] and

by convention s[m] = 0 form < 0andm > N—1. This means that the calculation

of the DWDFcan becarried out simply by using an FFT algorithm. The use of

an FFT actually makes the calculation faster to execute than a straightforward

calculation of the sum of Eq. (4.33). However, preliminary processing of the data

to obtain the analytic signal is required.

So the procedure for the evaluation of the DWDFis:

1. Pre-processing: Discrete Hilbert transform of the data. Calculation of

the analytic form. Efficient ways to calculate the DHT are presented in

Chapter 3.

2. Time-dependentcorrelation function R,[n] of the analytic signal is calcu-

lated using Eq. 4.34.

3. DWDFis calculated by means of the adapted FFT of the correlation func-

tion (Eq. (4.33)).

Sometimes the negativity of the DWDF makes it unsuitable for certain ap-

plications. In such cases, the removal of the negative values in a consistent way

46



CHAPTER 4 THE WIGNER DISTRIBUTION FUNCTION

is attractive, usually by taking a suitable sliding averaging window V[n,0] to

smooth the WDF.This all-positive version of WDFis usually referred to as the

pseudo-Wignerdistribution function.

The WDF representation can be successfully applied to signal synthesis

[21, 137]. A simple synthesis algorithm based on Eq. (4.17) has been developed

(Appendix B). Theoriginalsignal is reconstructed from its evaluated WDF. This

can be helpful in order to check if the WDFis accurately evaluated. Reconstruc-

tion of the spectrum of the signal can be achieved by an analogous process based

on Eq. (4.18).

Using this method, the modulus of the analytic form can be estimated accu-

rately. The WDFis a real-valued function and from its definition (Eq. (4.4)),

it is clear that it retains no phase information. This means that the sign of the

reconstructed (real) signal can not be recovered. However, this is not important

in certain applications, like radar signal design. Sometimes,it is useful to select

a set of phase terms whichareasclose as possible to those of the original signal.

The general synthesis procedure includes the following stages:

1. Calculation of the WDFofthe signal s[n]: W[n,6] (signal analysis).

2. Filtering. Modification of the WDF by meansof a time-dependentfilter

function H[n, 6] designed to retain desirable signal components and sup-

press noise: Y[n, 0] = H[n, 0]W[n,6].

3. Evaluation of the new version of signal from modified WDF Y{n,6] (signal

synthesis).

Generally, the modified WDF Y[n, 6] is not a valid WDF. This problem is a

subject of further investigation.
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4.5 Implementation of the Method Using Opti-

cal Signals

Algorithms for the required calculations were developed (Appendix B) andvar-

ious signals of experimental interest were examined in the light of the WDF

representation. Here, the processing of several examples of time-varying signals

encountered in experimental optics will be presented.

The calculations were carried out using the techniques described in Section

4.4. The results for the WDF evaluation have been verified using the synthesis

algorithm (Appendix B) to reconstruct successfully the initial signal from the

evaluated WDF. Moreover, the developed signal processing software was thor-

oughly tested using the theoretical results (for example, the fact that WDFis a

real function).

4.5.1 Two Interesting Cases

A Kronecker delta function (unit impulse) is an example which provides a good

understanding of the Time-Frequency representation (see Section 2.4). A 3-D

graph of the DWDFfor the function 6[{n — 60] is given in Fig. 4.1. As can be

noticed, the Wignerdistribution function is mainly concentrated on a single point

in time domain, whilst the spectrum at this point is similar to a white spectrum.

Thesignal I(t) of Fig. 4.2 is a typical non-stationary noise signal (this type of

noise frequently appears in biomedical engineering and is known as Lanshammar’s

noise). A 3-D graph of its WDFcan be foundin Fig. 4.3, where as in Fig. 4.4 a

contour map of the same WDFisillustrated. It is interesting to see the detail in

which the WDFrepresentation describes the intrinsic randomnessof the signal.

4.5.2 The WDFofan Electric Arc Signal

Examples of real-life optical signals related to the optical emission of an elec-

tric arc plasma, were supplied by the Optics Laboratory in the Department of

Electrical Engineering and Electronics, the University of Liverpool. Signals of
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this nature exhibit high nonstationarity and a random behaviour, and are very

important in arc monitoring applications [134, 94]. The signal u(t) of Fig. 4.5

was obtained from the output of an optical fibre particle concentration monitor

or, simply, powder monitor (see Appendix A). Its magnitudeis a function of time

and it is expressed in units of dominant wavelength. The illustrated version of

the signal has a mean equal to zero.

The imaginary part and the modulusof the corresponding analytic form s(t)

are shown in Figures 4.6 and 4.7 respectively. The analytic signal has a total en-

ergy equal to one. As mentioned earlier (Chapter 3), the concept of the analytic

signal s(t) is applicable in the case of band-limited or relatively narrowbandsig-

nals. It is known that the analytic signal has a one-sided Fourier transform which

is nonzero only in the positive axis. The Fourier transform of s(t), illustrated in

Fig. 4.8 (real part only), is confined to a narrow interval of frequency. It is seen

that s(t) can be considered narrowband.

In order to investigate the potential of these signals for condition monitor-

ing and fault diagnosis in electric arc systems, seven different signals u;(t), (7 =

1, ...,7) of the same type were considered (Figs. 4.9-15). The illustrated versions

of the signals have their energy normalised to unity and zero mean. The signals

ua(t), s(t), Ue(t) and u7(t) correspond to the samevalueof the fault current (14.9

kA) (see figure captions in Figs. 4.9-4.15).

The WDFrepresentations of each one of the signals u;[n] are illustrated in

the contour maps of Figures 4.16-22 respectively. The detailed structure of these

signals in the time-frequency plane can be clearly seen. Comparing the contour

maps corresponding to the same current (14.9kA), it is evident that along the

frequency axis, the DWDFis concentrated in a relatively small region near zero

frequency; this is another strong indication that our signal is approximately nar-

rowband. More specifically, we can see that the largest part of the frequency

content of the signal lies around 0.25 kHz. In this frequency range, three dis-

tinct highly concentrated areas successively in a descending order of intensity can

be noticed.

It is evident that the interpretation of the WDF maps can sometimes be

tricky and requires examination of an adequate amount of data. However,asit

LIVERPOOL
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was demonstrated above, the WDFrepresentation offers a new insight and reveals

important time-varying features of the signal. In optical monitoring applications

(for example, in powerelectronics), careful investigation using the WDFpromises

to yield valuable information about the condition of the equipment, lead to effi-

cient techniques for problem identification and diagnosis (eg. for production of

better equipment-damage maps), and improve system control.

In a similar way, the method can also be used for extraction of useful informa-

tion from mechanical vibrations (time-frequency analysis of acoustical signals).

4.6 Discussion

The Wignerdistribution function describes the energy density of a signal in both

time and frequency in a probabilistic way. The WDFrepresentation has proved

to be a powerful tool in the area of signal processing.

Here, the potential of this representation for applications in signal synthesis,

optical signal analysis and classification has been demonstrated, highlighting its

use as a diagnostic tool in important applications where condition monitoring of

electrical and mechanical systems is needed (eg. arc plasma processing, monitor-

ing of high voltage switch gear, mechanical vibration analysis etc.). The main

original aspects of this work are the use of the Wigner function in the context

of optical signal processing and optical monitoring, the WDF analysis for fault

diagnosis and the development of robust computer algorithms for WDF analysis

and synthesis.

Comparedto other signal analysis methods, the WDFrepresentation is highly

informative; actually, it provides more information than required for a complete

reconstruction of the signal being analysed (N?/2 data points of WDFfora digital

signal of N data points). Depending on the specific application, this could be

viewed as an advantage or a disadvantage. Its potential for the extraction of

meaningful features present in a signal is quite substantial.

A major disadvantage of the WDFrepresentation, though, is arguably that

the computation takes a long time to complete. Another disadvantage of the
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WDFisits intrinsic negativity.

Further work for WDFanalysis of two-dimensional images is recommended.

The evaluation of a suitably defined Discrete Wigner distribution function for a

two-dimensional image and the use of this function as a tool for image analysis

or synthesis still present. a major challenge [11, 130, 202, 203, 201].
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Figure 4.1: The Wigner distribution function of the pulse 6[n — 60].
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Figure 4.2: An example of Lanshammar’s noise (I(t)).
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Figure 4.5: An electric arc signal (u(t)) obtained from the output of a powder

monitorofelectric arc plasma in the form of dominant wavelength as a function

of time.
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Figure 4.6: Imaginarypart of the analytic form of the electric arc signal u(t).
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Figure 4.7: Modulus of the analytic form ofelectric arc signal u(t).
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Figure 4.8: Real part of the Fourier transform of the analytic form ofelectric arc

signal u(t).
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Figure 4.9: Electric arc signal u(t), corresponding to an electrical current of

1.9kA at the powder monitor.

61



MA
GN

IT
UD

E
(i

n
V)

CHAPTER 4 THE WIGNER DISTRIBUTION FUNCTION

0.40 TEST0058 i=4.5kA: SIGNAL (normalised in energy)

0.25

0.10

—0.05 %

\ee: vad

—0.20

—0.355

0 2 4
TIME (in ms)

Figure 4.10: Electric arc signal u2(t), corresponding to an electrical current of

4.5 kA at the powder monitor.
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Figure 4.11: Electric arc signal u3(t), corresponding to an electrical current of

9.5 kA at the powder monitor.
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Figure 4.12: Electric arc signal u4(t), corresponding to an electrical current of

14.9 kA at the powder monitor.
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Figure 4.13: Electric arc signal us(t), corresponding to an electrical current of

14.9 kA at the powder monitor.
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Figure 4.14: Electric arc signal ug(t), corresponding to an electrical current of

14.9 kA at the powder monitor.
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Figure 4.15: Electric arc signal u7(t), corresponding to an electrical current of

14.9 kA at the powder monitor.
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Figure 4.16: The Wignerdistribution function of the electric arc signal(7).

68



FR
EQ
UE
NC
Y(
i
n

kH
z)

CHAPTER 4 THE WIGNERDISTRIBUTION FUNCTION

 

TEST0058 i=4.5kA: CONTOURMAP OF WDF(7levels)

v   
   

0.5

0 1 2 3 -

TIME (in ms)

Figure 4.17: The Wignerdistribution function of the electric arc sigual wo(/).
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Figure 4.18: The Wigner distribution function of the electric arc signal ws(f).
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Figure 4.19: The Wignerdistribution function of the electric are signal w,(/).
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Figure 4.20: The Wignerdistribution function of the electric arc signal u;(t).
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Figure 4.21: The Wignerdistribution functionof the electric arc signal ug(t)
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Figure 4.22: The Wignerdistribution function of the electric arc signal u7(t).



Chapter 5

The Gabor Expansion of a Signal

Using a ’Truncated’

von-Neumann Lattice

5.1 Introduction

The expansion of an arbitrary signal in terms of Gaussian signals - known as

the Gabor transform or the Gaussian expansion - is due to D.Gabor. Since the

approximate expansion he introduced in his classic monograph [63], later exact

expansions were found [76, 118] and studied extensively [16, 82, 57, 161, 187,

192, 170, 204]. A considerable amount of work has been done on the existence,

the completeness and the uniqueness of the Gabor transform [82, 16]. It is now

known that Gabor expansions exist for any reasonable signal.

The Gaborrepresentation is a joint representation in both time and frequency

and its energy spectrum is a special case of Cohen’s generalised class of time-

frequency representations, related to the representation of a spectrogram using

a gaussian window (Section 3.2) [81, 38]. From a mathematical point of view

this expansion is similar to the expansion of an arbitrary quantum state in terms

of coherent states (the analogue of Gaussian signals) in quantum mechanics and

quantumoptics [77, 99, 108, 125, 164]. A signal is represented by a superposition
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of time-and-frequency shifts of a two-dimensional Gaussian. Similar to other

time-frequency representations, the Gabor transform provides the time history of

the frequency content of a non-stationary signal.

The Gabor expansion has been successfully applied in manysignal processing

applications such as radarsignal design [175], and more extensively in image pro-

cessing (image compression [50, 56], pattern recognition [128], texture analysis

[128] and computervision [114, 49, 127] ). During thelast thirty years, the com-

munity of perceptual and neurophysical vision research has shown special interest

in the Gabor transform. The reason is that the Gaussian elementary signalsfit

the receptive field profiles of the simple cells in the visual cortex of mammals

very well (in the sense of a least-squares fit). Indeed, the requirements of the

visual nervous system (which deals with an enormous amount of information) for

optimal economylead to profiles similar to the two-dimensional Gaussian signals

(which achieve the smallest possible uncertainty product). The function of these

cells is analogous to the function of image processors or spatial/spatial-frequency

filters. The Gabor representation provides an important mathematical tool for

studyingthelocal spatial/spatial-frequency characteristics of these cells [114, 49].

In most practical cases, a signal can be expanded in terms of only a few

Gaussian signals. Here, a novel technique to represent signals using the Gabor

scheme is proposed. Asit will be demonstrated, the new technique has many

advantages.

In the following sections, the Gabor expansion of an arbitrary signal in terms

of complex Gaussian signals that form an N x M ’truncated’ von Neumann

lattice in the time-frequency plane is introduced. Quantitative analysis of the

expansion for various values of (V,/) and various widths of the Gaussians is

performed. Additionally, the stability of the Gabor expansion, which is a very

desirable property, is demonstrated by examples. The potential of the method

for applications in the context of optical signal processing is emphasised and

practical implementation through devices that measure the Gabor coefficients

(Gaboranalysers’) is also discussed. The relevant algorithms are described in

detail in Appendix B.

For the sake of completeness, the potential of the Bargmann analytic represen-
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tation for applications in signal and image processing is explored in Section 5.6.

This is another representation used in quantum theory and it can be employed

as an alternative time-frequency representation.

5.2 The Gabor Expansion of a signal

Let u(t) be a square-integrable real signal in time. The corresponding analytic

signal (Section 3.4) is given by

s(t) = u(t) + jo(t). (5.1)

We assumethe analytic signal is energy-normalised:

+00

/ |s(t) [dt = 1. (5.2)
—oo

Let us consider the basis of generalised Gaussian or Gabor elementary signals

described by

r(t; A, p) = (2p)'/* exp[—mpt? + 20?(pAn+ jAr)t — pA —jARAr], (5.3)

where A = Ap +A, is a complex number (representing a point in the time-

frequency plane), and p > 0. The meaning of the parameterp is discussed in the

following section. Ap and Ar are effectively the average time (t) ((t) = 7~2 Ap)

and average frequency (f) ((f) = ~2Ay) of thesignal.

All the Gaussian elementary signals are square-integrable. It is also known

that the set of all these Gaussian signals with fixed p, and A takingall values in the

complex plane, provides an overcomplete basis for signal analysis [76, 82, 175, 47].

Morespecifically, for any two elements of the basis r(t; A, p) and r(¢; B, p) it can

be proved that

+00
1

/ r(t; A, p)r*(t; B,p)dt = exp[—5(|AP + |BI’) + AB] (5.4)
—oco

and 1

Iar(ts A, p)r*(7; A, p)d’A = 6(t — 7), (5.5)
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where the asterisk indicates the complex conjugate and the integrals are taken

from —oo to +00. d?A is used as an abbreviation for dArdA;. Eq.(5.4) expresses

the non-orthogonality of the two signals r(t;.A, ) and r(t; B, p). The two Gaus-

sian signals overlap and therefore they are not orthogonal; the left-hand side of

Eq. (5.4) is called the overlap integral. Eq. (5.5) provides the so-called resolution

of the identity which is a very important property of the Gaussian elementary

signals. Even though the Gaussian basis is non-orthogonal, Eq. (5.5) enables us

to expand an arbitrary complex normalised signal s(t) as

y= f f=s r(t; A, p)d2A, (5.6)

where
+00

S(A, p) = [G5 A,e)s(r)ar. (5.7)
—oo

The resolution of identity expressed by Eq. (5.5) ensures that the Gaussian

signals of Eq. (5.3) span the whole Hilbert space of square-integrable signals and

can form a basis for representation of other signals.

Eq. (5.6) implies that an elementary signal r(t; A, a) can always be expressed

in terms ofall the others, i.e. the signals of the Gaussian basis are not linearly

independent, and consequently the basis is overcomplete. This suggests that the

expansion of Eq. (5.6) is not unique. Using Eqs. (5.6) and Eq. (5.4), any element

of the basis r(t;.A,) can be expressed as

r(t; A, p) =ff=r(t; B, p) exp —(4P + |BP)+ AB] @B. (5.8)

5.3 The Analogy Between Gabor Expansion in

Signal Processing and Coherent States in

Quantum Theory

The analogy between signal theory and quantum mechanics was discussed in

Chapter 3. The Gaborrepresentation with p = 1 is related to the expansion of

an arbitrary quantum state in terms of the over-complete set of the coherent states
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of a harmonicoscillator [77, 99, 111] . The generalised Gabor representation with

p # 1 corresponds to the expansion of an arbitrary quantum state in terms of

the squeezed states, recently of interest in quantum optics [108, 125, 164]. For a

further discussion on quantum states, see Chapter 6.

The uncertainty principle in signal processing is given by Eq. 2.24 and quan-

tifies the known statement that narrow signals in the time domain are wide in

the frequency domain, and vice versa. As it was noted in Section 2.4, the Gaus-

sian signals of Eq. 5.3 assume the smallest uncertainty product allowed by the

uncertainty principle:
1

the effective widths (see Chapter 2, Eqs. (2.22), (2.23)) for normalised signals are

given by

At = (t?) — (t)?, (5.10)

Af = (f?) —(f)’, (5.11)
nY\ __ I n 2 32. _ ri") = 5 [e[s(t)Pdt; n=1,2 (5.12)

n 1 ni) 2 2
P= s/f Is(f)\'df; n= 1,2. (5.13)

§(f) is the Fourier transform of s(t) and the brackets indicate expected values.

The Gaborelementary signals corresponding to the coherent states (with p = 1)

exhibit equivalent amounts of uncertainty in both time and frequency domains.

The squeezing” parameter p determines the trade-off of uncertainty between

time and frequency:

p=Af/At. (5.14)

It is clear that the parameter p allows us to improve time resolution at the

expense of the frequency resolution, or vice versa. The effective widths in time

and frequency domain are determined by p, as follows:

At = (4p); (5.15)

Af = (4n)7¥/?pl. (5.16)

In the following sections, a technique for the numerical implementation of the

Gaussian expansion will be presented. Additionally, the use of p in signal pro-

cessing applications will be demonstrated.

re)



CHAPTER 5 THE GABOR EXPANSION OF A SIGNAL

5.4 The Basis of a ’Truncated’ von-Neumann

Lattice

The above analysis uses all Gaussian signals with fixed p, and A taking all values

in the complex plane. The basis of all the Gaussian signals is overcomplete and

there exist much smaller subsets of this basis which are also overcompletesets.

For practical applications, it is convenient to consider small discrete subsets of

the whole basis.

The most well known subset is the set of the Gaussian elementary signals of

Eq. (5.3) which are located on the points of the so-called von-Neumann. lattice

[119] in the time-frequency plane. In this case, A takes the discrete values

A=may + jndg, (5.17)

where m,n take all integer values and a,Q2 are the lattice constants. It is

known [119, 13, 125, 8] that when the area a;q2 of the elementary cell of this

lattice is smaller(greater) than 4, the corresponding basis of Gaussian signalsis
4n?

overcomplete(undercomplete). The von-Neumannlattice can be considered as a

regular sampling grid on the whole Gaussian basis[13, 77, 82, 175].

In many practical applications, even the (exactly complete) von-Neumann

lattice might be offering much more information about the signal than what is

actually needed. Practical signals (in digital form) are bounded in both time

and frequency; assuming that frequency components above a certain frequency

contribute only to noise, physical signals can be also considered to be boundedin

both frequency and time. In mathematical language, this means that they can be

represented in terms of a very small subspace of the total Hilbert space. In these

cases, it is clear that a properly chosen finite subset of the (full) von Neumann

lattice could be sufficient.

So let us consider a truncated version of the lattice of Eq. (5.17) where m =

1,.., M@ and n = 1,..., N, which provides a basis of NM elementary signals[159].

Eqs. (5.6) and (5.7) become

s(t) >> “Sn(prt may + jnag, p) = Srec(t) (5.18)
myn
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and
+00

Snap) = / r*(T; ma, + jnag, p)s(r)dr. (5.19)
—oo

Theright handside of Eq. (5.18) is approximately equal to the original signal and

we refer to it as the ”reconstructed signal”. The integral of Eq. (5.19) becomes

a sum in the case of a sampled or discrete signal. The reconstruction is limited

to a discrete finite set of Gaussian elementary signals which are suitably located

in the time-frequency plane according to the time-frequency characteristics of

the given signal. By neglecting the non-important elements of the (full) von

Neumannlattice which lie outside the ‘truncated’ von-Neumann lattice, we get a

signal representation using a finite set of the expansion coefficients, which from

a practical point of view is much easier to handle, and whichis sufficient for an

accurate reconstruction of the signal. In a different context (Chapter 6), [54] and

[86] have expanded quantum mechanical wavefunctions in termsof a few coherent

states in a straight line. In signal theory, this corresponds to the 1 x N truncated

von-Neumannlattice.

The ’truncated’ von-Neumannlattice is an approximate representation and it

is important to introduce quantities that provide a measure of the accuracy ofthe

expansion. As a measure of how good the reconstruction is, the reconstruction

error in the time domain is evaluated:

+00

De / [u(t) — Uree(t)]2dt, (5.20)

where w(t) is the original signal and u,,-(t) is the reconstructed signal. Addition-

ally, the Wigner function representation (Chapter 4) can successfully describe the

difference between the original and reconstructed signals in the time-frequency

domain.

In the numerical results presented in Section 5.5, these quantities are used to

describe how accurately the signal can be reconstructed from a small number of

coefficients. It is shown that the representation of a ’truncated’ von-Neumann

lattice provides a satisfactory approximation of the original signal.

An important aspect is the robustness of the expansion. It describes the

stability of the representation against small perturbations; that is, how sensitive
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is the reconstruction to small amounts of random noise.

In the numerical examples presented in Section 5.5, small amounts of random

noise are added to the Gaborcoefficients Syn:

Sran(P) = Smn(p) + Amn (5.21)

where J is a constant and hyp, a random numberin the interval [—1,1] with a
/flat distribution. It is shown that the reconstructed signal s‘.,. (t) from the per-

turbed Gaborcoefficients is very close to the reconstructed signal s,,-,(¢) from the

unperturbed Gabor coefficients, for reasonably large values of A. The expansion

is robust and this makes it particularly attractive for practical applications.

5.5 Numerical Implementation of the Gabor

Expansion using a Truncated von-Neumann

Lattice

Various optical signals were analysed with very good results. Here, as an example,

a signal obtained from the output of a powder monitor (see Appendix A) in the

form of dominant wavelength as a function of time is considered (Fig. 5.1, 32 data

points in time). The Gabor expansion in terms of a truncated von-Neumann

lattice is implemented. A numberof specialised algorithms were deyeloped to

perform the required processing (see Appendix B). Particular attention should

be drawn to the reconstruction algorithm; a high degree of numerical accuracy is

required because the calculation of the Gabor expansion involves very demanding

exponential operations. The performance of the algorithms used in the following

examples is found to be satisfactory. In the calculations, the normalised analytic

form of the signal is used (as described in Sections 3.4, 5.1).

The Gaussian expansion of the given signal is calculated for different sets

of coefficients in the time-frequency space for the cases p = 1 and p = 0.1.

Reconstructions for the cases of N x M corresponding to 1 x 3, 3 x 3, and 1 x 8

are illustrated in Figs. 5.2-4. The reconstructed signals with p = 1 are indicated

by a dashed line and those with p = 0.1 with a dotted line, whilst the original
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signal is indicated by a solid line. The signal is reconstructed from its expansion

coefficients using Eq. (5.18). The set of coefficients is a complex N x M matrix.

For example, in the case 1 x 3 the three Gaborcoefficients are: —2.821 + 73.275,

—1.227 + 72.806 and —1.397 + 72.475.

Table 5.1 shows the reconstruction error D given by Eq. (5.20) for various

cases (different sets of coefficients) with p = 1. For the specific case of the given

signal, it can be seen that for the same numberofcoefficients N x M, small N

and large M give better results, i.e., in this case, when constructing the truncated

von-Neumannlattice, it is better to take more points in the imaginary(frequency)

axis. It is evident that it is possible to describe the signal accurately with a small

numberof coefficients.

The accuracy of the method can be also demonstrated by comparing and

contrasting the Wigner functions for both the original and reconstructed signals.

In order to describe from a different point of view the difference between the

reconstructed signals and the original one, Figs. 5.5-7 show the corresponding

Wigner functions for the original signal and for the cases 1 x 3 and 3 x 3 (with

p = 1). Differences in the detailed structure of these signals in the time-frequency

plane are clearly seen.

As we have seen from Eq. (5.14), we can use the parameter p to selectively

reduce the uncertainty in either the time domain or the frequency domain. To

point out the effect of the parameter p on the efficiency of the reconstruction,

Table 5.2 shows the reconstruction error given by Eq. (5.20) for different values

of the parameter p for the case of 1 x 4 lattice. Fig. 5.8 shows the graph of the

reconstruction error D against p for the same case. In this specific case, small

values of p (9 << 1) produce more accurate representations. The advantage of

the parameter p is that it enables us to optimise the reconstruction of a given

signal.

Additionally, the stability of the representation has been investigated. In the

given example, arbitrary small error values are added to the existing coefficients

as described by Eq. (5.21) (with A = 0.35). Figs. 5.9-11 show the outcome

for the cases 1 x 3, 3 x 3 and 1 x 8 (with p = 1). In these graphs, the solid

line indicates the original signal, the dashed line the initial reconstruction and
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RECONSTRUCTION ERROR(p = 1)

9x29 5.00 0.4458

9x3 0.2397
x 0.1946

5x5 0.1693
6x6 0.1616

1x8 0.4986

Pont[aos[os]ost
raxt[32s[oe]ose
raxt[200]0s]022s
riéx1[12508]oar

5.00 0.1283
2.00 0.2114
3.25 0.1199

0.1

 

   
  

   

    

      

  

   

  

  

 

rex[00]01] oon
Table 5.1: Reconstruction error D, as calculated by Eq. (5.20), for various recon-

      

structions of the original signal (shown in Fig. 5.1) using different N x M lattices

with p = 1; a, (time domain) and ay (frequency domain) are given in units of

ms and kHz respectively.
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Reconstruction Error vs p

0.2 0.2167

0.4 0.2755

ros[ae
ros0366

 

Table 5.2: Reconstruction error D, as calculated by Eq. (5.20), for different values

of the parameterp, for the case of 1 x 4 reconstruction of the original signal (shown

in Fig. 5.1).

the dotted line the distorted reconstructed signal from coefficients with random

noise. The difference between the two reconstructed signals as measured by the

quantity FTlupec(t) —ul.(t)|?dt (where u/.,.(t) is the noisy” reconstruction) is

found to Be 0.002, 0.060 and 0.095 correspondingly for each case. As it can

be seen, the expansion is robust in the sense that random perturbations in the

coefficients affect weakly the reconstruction. This is very important for practical

applications.

As demonstrated, the basis of a truncated von-Neumannlattice, can be suc-

cessfully used as an efficient method to represent signals. Depending on the spe-

cific application, we can select the optimum N x M combination for a satisfactory

representation of the original signal and we can also optimise the parameterp.

This results in information compression in time and spectral domains.
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5.6 Practical Applications in Optical and

Acoustical frequencies: Gabor Devices

An important application of the previous analysis is the development of ’Gabor

devices’ or ’analysers’. Processing of a signal in time and frequency can be carried

out by a Gabor linear system described in the same time-frequency space [103].

This ’Gaborfilter’ modifies the Gabor time-frequency representation of a signal

according to the required specification. In fact, Gaborfilters are a generalisation

of the ordinary linear time-invariant systems. Their function can be described by

the multiplication of the Gabor transform of the signal and the (time-frequency)

transfer function” of the Gaborfilter.

The method can be used at all frequencies. At optical frequencies, the Gabor

expansion of Eq. (5.18) can be implemented practically using appropriate hard-

ware that plays the role of a Gabor analyser in an analogous way to a spectrum

analyser that performs a Fourier analysis in terms of sinusoidal signals. Gabor

filters (with a gaussian transfer function) can be used to perform the integrations

of Eq. (5.19) and thus measure directly the Gabor coefficients. In this context,

ordinary chromatic analysis can be viewed as a Gabor expansion and optical

chromatic systems as Gabor devices operating at optical frequencies. Chromatic

methods consider the spectral distribution (chromaticity) of light, which gives a

quantitative measure of colour.

In this context, a first step toward Gabor devices are the widely used ” chro-

matic devices” that contain 3 detectors with overlapping approximately-gaussian

responsivity curves which provide the three chromaticity values (RGB: Red,

Green, Blue), corresponding to the tri-stimulus colour system of human vision.

Indeed, the responsivity curve for an inexpensive charge-coupled device (CCD)

camera (Fig. 5.12) is approximately gaussian. These RGB devices have been used

successfully for optical sensing, image processing, chromatic modulation, plasma

processing etc. In the context of the previous analysis, they can be considered

as Gabor devices which correspond to an 1 x 3 truncated von-Neumannlattice

(67, 95, 134, 153, 186]. The RGB methodsprovide a basic approximation, as the

reconstruction of an optical signal is only based on the three corresponding RGB
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values. Extension of these devices into other ones with N detectors leads to gen-

eralised chromatic devices which can measuredirectly the coefficients of the 1 x N

Gabor expansion. An application of such generalised chromatic methodsis found

in [41], where the Gabor expansion is implemented for optical signal processing

and a chromatic measurement system with detectors of Gaussian responsivity is

used for monitoring high voltage switch gear. The stability of the expansion that

we mentioned aboveis very important in such applications because it implies that

implementation can be done using inexpensive hardware of modest accuracy.

Emphasis should be given to the fact that, due to the inherent overcomplete-

ness of the Gabor expansion (overlap integral of Eq. (5.4)), the use of three (or

more) a priori determined terms in a truncated von-Neumann lattice (as em-

ployed in the proposed generalised chromatic methods) is adequate. The chosen

terms only need to lie reasonably within the effective time-frequency area where

the signals of interest live”, but they do not need to be the dominant terms in

the expansion. Compared to other methods (eg. Fourier transform) and given

the robustness of the Gabor expansion, this property is highly advantageous and

very important for practical applications.

Similar devices can also be built for other frequencies eg. in the acoustical

domain. Gabor analysers can be successfully used for the analysis of acoustic

vibration signals and improvethe detection of defects in mechanical systems[135].

5.7 The Bargmann Transform in Signal Pro-

cessing

5.7.1 Introduction

The Bargmann analytic representation [12] is another representation used in

quantum mechanics. In the context of signal analysis, the Bargmann analytic

representation has not been used so far, although it belongs to the family of

time-frequency representations. It is known to be a powerful technique for quan-

tum mechanics.
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The Bargmann function is defined in the complex plane and belongs to the

general class of the analytic representations. Images and signals can be repre-

sented by such functions which are analytic in the complex plane and the powerful

theory of analytic functions could be exploited for the accurate representation of

a signal in terms of a small numberof parameters. Useful transforms between the

Bargmannrepresentation and other representations are also available. In the fol-

lowing sections, an analysis for signal/image processing applications is presented.

5.7.2 The relationship between the Bargmann transform

and other representations

Let us consider a one-dimensional signal represented by the function g(); it can

also be a one-dimensional image in which case g(x) gives the level of grayness at

the point x(—oo < x < oo). It is assumed that the function g(x) is normalised:

+oo

J \9(@)Pax =1. (5.22)

Wecall the representation of a signal by the function g(x), ’z-representation’.

The image can bealso represented in the spatial frequency domain by the Fourier

transform of the function g(z):

+00

if) = | ola) exp(—jfa)de. (5.23)

The representation of a signal by the function g(f) is called ” f-representation”.

Let H. be the Hilbert space of all the functions g(x). In this Hilbert space, the

Hermitian orthonormal basis is defined by

Un (a) = 9-42-8212) exp(-52) (5.24)

+00

i Uy(2)Uy(x)dx = 1, (5.25)

es Un(x)Un(y)dz = 6(a — y), (5.26)

88



CHAPTER 5 THE GABOR EXPANSION OF A SIGNAL

where Hy(zx) are the Hermitian polynomials (Section 4.1, Eq. (4.8)). The func-

tion g(x) can be analysed in termsof this basis as follows:

g(x) = >> gnUn(z); (5.27)
N=0

+00

9N = / g(x)Un(z)da, (5.28)

> low? =1. (5.29)
N=0

The Bargmannrepresentation of the signal is defined to be

B(z) = So (N!)-292%, (5.30)
N=0

and is an analytic function in the complex plane. For a two-dimensional image

the Bargmann function is a function of two variables, one for each dimension.

It is not difficult to prove that the Bargmann function can be calculated

directly from the z— and f— representations [182]:

+00 2
B(z) = qose727/2 / exp (222 = 5] g(x)da; (5.31)

+00 f?

B(z) = gdhgeit / exp (2527 = 5) g(f)df. (5.32)

As an example let us consider the Gaussian function

1
g(t) =a4 exp(—52 + 21/2Ax — A’), (5.33)

where A is a real number. In this case, we have

1
gw = (N})“"?AN exp(—.A’), (5.34)

1
B(z)'= exp(—5.4” + Az). (5.35)

The inverse relations can be easily found using the relations of Eqs. (5.31),

(5.32):

+00 +00 it

g(x) = 1/4e-2"/? / it exp (-e" = ae: 2e2*| B(z)d’z; (5.36)
—oo —oO
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poco *2

qf) =nPePP / / exp (-le? + = — aif?) B(z)d?z. (5.37)

If zp, zy are the real and imaginary parts of z, we can derive the rather useful

forms
+00

g(zp) = 13/4e7*hl? / exp(—2?)B(2"/?z)dz;; (5.38)
—oo

+00

iz) = 14e41?? / exp(—z2,) B(2"/?2*)dzp. (5.39)

It is evident that the inverse relation that provides the gy from a known

Bargmann function B(z) is given by the transform:

(N!)2
gn = aaj fBe"Maz. (5.40) 

5.7.3. Potential Applications of the Bargmann Transform

in Optical Signal Processing

Let us consider a realistic example: a one-dimensional digitised imageofa face

against a roughly uniform background (Fig. 5.13). Fig. 5.14 illustrates the real

part of the Bargmann function for the image of Fig. 5.13 as a function ofthe

complex variable z. The corresponding Bargmann function is calculated using

Eq. (5.31).

The analyticity of the Bargmann function makes it particularly useful for

theoretical studies. Its potential in practical signal processing remains to be

explored (for example, approximate reconstruction of a signal can be done using

Eq. (5.38)).

Here we have investigated the relationship between the Bargmann represen-

tation and other representations and we have produced some numerical results.

Further work is required to reveal its potential applications in a practical signal

processing context.
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5.8 Discussion

In conclusion, the original contribution of this chapter comprises the novel tech-

nique of a truncated von-Neumannlattice; the use of the important properties of

stability and overcompleteness, which enable adequate reconstruction from a few

pre-selected terms; the generalisation of chromatic methods using Gabordevices;

and the development of dedicated software to perform the necessary analyses

(Appendix B).

The full Gabor expansion of Eqs. (5.6), (5.7) provides an exact representation

of a signal. However in practical applications truncated Gabor expansions are

considered. A truncated N x M von-Neumann lattice of Gaussian signals is

introduced in Eqs. (5.18), (5.19). A quantitative analysis of the reconstruction

error shows that the truncated von-Neumann lattice provides a satisfactorily

accurate representation.

Addition of small amounts of random noise to the Gaborcoefficients do not

affect the results drastically. The method is robust and this means that satisfac-

tory performance can be achieved with inexpensive hardware. Theeffect of the

relative width of the Gaussian signals (squeezing effect) can be useful in certain

applications. Indeed, it has been pointed out that variation of the relative width

(which depends on p) can be used for an improvement of the truncated Gabor

approximation.

Comparing and contrasting the Gabor analysis with the Fourier analysis, they

both reconstruct exactly a signal if we consider an infinite number of terms.

In practical applications where truncated series are used, signals which in one

expansion are well represented with only a few terms, in the other expansion

may require many terms for the same degree of accuracy. A truncated expansion

characterises always a family of signals which differ from each other only in the

higher order terms which have been truncated. Two signals which cannot be

distinguished in a truncated Fourier expansion, might be easily distinguishable

in a truncated Gabor expansion, and vice versa. The Gabortransform is a time-

frequency representation andis particularly suitable for the case of non-stationary

signals (Chapter 2). It reveals the localised frequency distribution of a signal,
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instead of the global frequency information provided by the Fourier transform.

In the case of an N-point discrete signal, the ordinary DFT requires N points

in the frequency domain for a complete reconstruction. The number of points

of the truncated’ Gabor representation in the time-frequency plane is smaller

and is related to the dimensions of the chosen truncated von-Neumann lattice.

Of course, in the latter case, the accuracy of the approximation depends on

the number of coefficients which determines the amount of information to be

retained from the original signal. Compared to the Fourier representation, the

Gabor transform is very flexible and enables reconstruction using fast and simple

algorithms.

Additionally, the Gabor expansion reduces the amount of the data required to

reconstruct the signal (data compression). Compression of information is an im-

portant aspect of the truncated expansion. Using only a few coefficients, the Ga-

bor expansionefficiently represents the important componentsof the signal and is

capable to retain sufficient information to reconstruct the signal with low distor-

tion. It can be successfully used in applications in data transmission/compression

and noise reduction, since for such applications strictly accurate representation

is not required and a certain amount of distortion is acceptable.

Practical implementation of these ideas with devices that use Gabor analysers

to measure directly the coefficients of the Gabor expansion seems to be very

promising. Gabor analysers are the analogue of the spectrum analysers for the

Fourier expansion. They consist of a number of Gaborfilters with Gaussian

transfer function. The methodis suitable for practical applications in optical and

acoustical frequencies. Suitable numerical algorithms can be found in Appendix

B. Application of the same techniquesin a different context (quantum optics) are

presented in Chapter6.
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Figure 5.1: Original signal - Dominant wavelength of optical emission as a func-

tion of time.
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Figure 5.2: 1 x3 reconstruction . Original signal(solid line), reconstructed signal

with p = 1.0 (dashed line) and reconstructed signal with p = 0.1 (dotted line).
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Figure 5.3: 3x 3 reconstruction . Original signal(solid line), reconstructed signal

with p = 1.0 (dashed line) and reconstructed signal with p = 0.1 (dotted line).
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Figure 5.4: 1 x 8 reconstruction . Originalsignal(solid line), reconstructed signal

with p = 1.0 (dashed line) and reconstructed signal with p = 0.1 (dotted line).
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Figure 5.5: Wigner function of the original signal.

98

  

 



FR
EQ
UE
NC
Y

(k
Hz

)

CHAPTER 5 THE GABOR EXPANSION OF A SIGNAL

 

125

O

 
Figure 5.6: Wignerfunction of the reconstructed signal for the case 1x3 (p = 1.0).
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Figure 5.7: Wigner function of the reconstructed signal for the case 3x3 (p = 1.0).
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Figure 5.8: The reconstruction error as a function of p, for the case 1 x 4.
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Figure 5.9: 1 x3 reconstruction . Original signal (solid line), reconstructed signal

with p = 1.0 (dashedline) and reconstructed signal from coefficients with random

noise (dotted line)
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Figure 5.10: 3 x 3 reconstruction . Original signal (solid line), reconstructed

signal with p = 1.0 (dashed line) and reconstructed signal from coefficients with

random noise (dotted line).
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Figure 5.11: 1 x 8 reconstruction . Original signal (solid line), reconstructed

signal with p = 1.0 (dashedline) and reconstructed signal from coefficients with

random noise (dotted line).
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Figure 5.12: Responsivity curve for an element of an ordinary Charge-Coupled

Device (CCD) camera.
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Figure 5.13: One-dimensional line from a two-dimensional digitised image of a

face against a roughly uniform bright background.
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Figure 5.14: The real part of the Bargmann function (Eq. (5.31)) for the image

of Fig. 5.13 and as a function of the complex variable z.
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Chapter 6

Application of the Same Methods

in Quantum Optics and Quantum

Optical Communications

6.1 Introduction

Following the formal analogy between signal theory and quantum mechanics (Sec-

tion 5.3), there exists an important application of the novel technique introduced

in Chapter 5 in the modern field of quantum optics.

In quantum theory, it is well known that the coherent states form an over-

complete set in the Hilbert space. This basis corresponds to the Gaussian basis

presented in Section 5.2 in a different context. The term ”coherent state” is due

to R. Glauber, who pointed out the importance of coherent states in the area of

quantum optics [66, 65]. The coherent states are used in many different areas of

theoretical physics [109, 185, 136, 17, 20, 179, 199, 176, 178, 125, 124, 14, 154,

196, 177, 18, 12, 181]. The von-Neumannlattice of coherent states is another well

known overcomplete basis in the Hilbert space (see Section 5.4). In this chapter,

a small finite subset of the von-Neumann lattice of coherent states is used to

construct quantum states. This approach contributes to the existing framework

of quantum state engineering [157, 156] .
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Recent work in this area has shown that quantum states can be expressed as

finite superpositions of coherent states [196, 176, 101, 86, 83, 84, 138, 174, 54].

Coherent states along a straight line in the complex plane have been considered

(176, 86, 26, 2] and resolutions of the identity in terms of these states have been

studied [180]. It is also known that numbereigenstates can be constructed using

superpositions of coherent states through quantum interference [101]. An up-to-

date review of the subject can be found in [27]. More recently, related work has

been done by J. Janszky et al. [85, 162] and A. Vourdas [180]. Particular attention

has been paid to the experimental side of the subject. Indeed, nonclassical field

states can be generated using micromaseror laser systems. Substantial progress

in realising experimentally discrete superpositions of coherent states has been

madein thefields of quantum optics [196, 73] and atomic physics [23, 22, 72, 74].

Engineering of quantum states is a fast growingfield.

Here, it is demonstrated that non-classical states can be sufficiently approxi-

mated by superpositions of a few (properly chosen) coherent states. More specif-

ically, a ’truncated’ von-Neumann lattice is used as a discrete coherent-state

basis for an approximate construction quantum states, with a good accuracy.

Numerical results show that the technique is very accurate. Examples of noisy

reconstruction (where additive random noise is applied to the coefficients) are

used to demonstrate the robustness of the expansion, which is a very desirable

property. Indeed, it is shown that the reconstruction is robust, in the sense that

the constructed state is particularly insensitive to small amounts of random noise

in the coefficients. Detailed comparison between original and reconstructed states

as well as the associated Wigner function representations shows that the agree-

ment in all cases is very good. The advantages of the method are presented and

its ability to construct non-classical states accurately is demonstrated.

The methodis general and can be applied for any family of quantum states

[156]. Here, construction of squeezed states and numbereigenstates is considered

in a quantum optical context. For this purpose, the software developed in Chapter

5 can be used with slight modifications (Appendix B). In the following section,

basic definitions for these quantum states and some properties of the coherent

states are briefly introduced.
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6.2 Coherent States, Squeezed States, and

Number Ejigenstates

6.2.1 Basic Definitions

The Hamiltonian H of a single-modeelectromagneticfield is

H=@a+-, (6.1)

N
o
l

R
e

in units where the Planck’s constant h, the velocity of light c, and the angular

frequency w are equal to 1, and @', @ are the photon creation and annihilation

operators, respectively: :
a; &£-ip
a'=a (6.2)

papa (6.3) Va”

where ¢ and 7 are the position and momentum operators respectively. The com-

mutator of operators @', @ is

(a, a4] = 1. (6.4)

The photon number (or Fock) states |n), n = 0,1, 2,..., are eigenstates of the

Hamiltonian of Eq. (6.1). The number eigenstates describe states of an exact

number of photons. They exhibit large fluctuations and are not minimum un-

certainty states. The wavefunction y,(x) of the numbereigenstate |n) is given

by
Wal) = 1-¥4Q-"/2(n!)-Hy(2) exp(-52”), (6.5)

where H,,(a) are the Hermitian polynomials (Section 4.1, Eq. (4.8)). From our

discussion in Section 5.7, it follows that the set of the numbereigenstates |),

n =0,1,2,..., forms a Hermitian basis which is complete and orthonormal. The

vacuum state |0) is a special member of the numbereigenstates with n = 0

(ground state of the radiation field).

In quantum optics, the Wigner function is a quasi-probability distribution of

great importance. It characterises uniquely the quantum state and describes
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completely the quantum-mechanical system in the whole phase space. For an

arbitrary quantum state |f), its Wigner function W(z, p) is defined by

a 1 1
W(2,p) = / dq{x + Salf)(f| — 59) exp[—tpa]. (6.6)

The Wigner function for the numbereigenstate |n) is known to be [78]:

Wn) (x, p) = (—1)"e-@'4?)L[2(a? + p”)], (6.7)

where L,, is the Laguerre polynomialof order n, and it has a rotational symmetry

(see Section 4.1). Eq. (6.7) implies that number eigenstates are rotationally

invariant and highly nonclassical.

The coherent states |A), are defined as right eigenstates of the annihilation

operator:

a|A) = AA), (6.8)

where a is a complex amplitude. They can also be regarded as displaced vacuum

states:

|A) = D(A)|0), (6.9)

where D(A) is the Glauber unitary displacement operator:

D(A) = exp(Aat — A*4). (6.10)

It is known that

D(A)aD*(A) = @ — Ai; (6.11)

D(A)atDt(A) = at — Ati. (6.12)

Clearly, the vacuum state is a special case of a coherent state.

The wavefunction 7,4(2) of the coherent state |A) is a Gaussian:

sba(a) = (a|A) = 1-44 exp[—52” + V2Aa — (ReA)A]. (6.13)

The Wigner function of a coherent state is also gaussian (Section 4.2):

Wa(a,p) =aexp {- IG — V/2ReA)? + (p— V2ImA)?] } (6.14)
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Coherent states are minimum uncertainty states, that is

((A2)4) (Ap)A) = 3 (6.15)
where ((Az)%) and ((Ap)%) are the variances in the ” position” space and in the

”momentum” space, respectively. According to Heisenberg’s uncertainty princi-

ple, the uncertainty product of Eq. (6.15) expresses the minimal quantum fluc-

tuations of physical observables (vacuum fluctuations). In coherent states, both

”position” and ”momentum” variables have equal dispersions. Being quantum

states, coherent states are as close to classical behaviour as possible. Because

they are highly localised, that is, they ’occupy’ minimum area in the ’position-

momentum’ space, they are as close as possible to single points in classical phase

space; they can be regarded as points in phase space with vacuum fluctuations

(Eq. (6.9)).

The squeezed states |A; r,) can be regardedas a generalisation of the coherent

states | A):

|A;r,0) = S(r,0)|A), (6.16)

where S(r,@) is the so-called unitary squeeze operator

1 . i, -
S(r, 0) = exp[—gre“(al)” + gre); (6.17)

re’® is the complex squeezing parameter. The wavefunction of a squeezed state

is a ’generalised’ Gaussian. Like coherent states, squeezed states are also mini-

mum uncertainty states and satisfy Eq. (6.15). However, in squeezed states, the

dispersion of the ” position” variable is reduced at the expense of an increase in

the dispersion of the ”momentum”variable. This means that fluctuations in one

variable can be below the coherent-state limit. This reduction of fluctuations

below the vacuum level is called squeezing. Squeezing is particularly desirable in

a lot of practical applications, because it reduces quantum noise.

Not surprisingly, the Wigner function for the squeezed state is also a ’squeezed’

Gaussian. The squeezed states correspond to the generalised Gaussian elemen-

tary signals of Eq. (5.3), that were studied in Chapter 5. The amplitude r of

the complex squeezing parameter in Eq. (6.17) is connected to the parameter p

(Chapter 5) by

r=Inp. (6.18)
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Recently, the fundamental and practical aspects of squeezing have received

a lot of interest [194, 184, 140, 183, 108, 164, 165, 176, 177, 96, 97]. Currently,

experimental work on squeezing of light is making rapid progress. During the

last decade, significant reductions in quantum noise have been achieved using

various experimental configurations [152, 145, 190, 123, 126] and recently noise

level below 0.25 (compared to 1.0 of the vacuum limit) has been recorded. The

vacuum fluctuations of light can now be controlled and manipulated and thisis

very promising for a wide range of applications. The first application of squeezed

light considered the reduction of quantum noise in optical communications [195,

194, 144]. Light squeezing is of great value in low-noise optical communications

because it can dramatically increase the signal-to-noise ratio. Other applications

of squeezed light have been considered in the areas of optical interferometry [30]

and laser spectrometry [29, 198}.

Squeezed states and numbereigenstates are highly nonclassical states, while

coherent states are the most classical of quantum states. In the following sec-

tions, it will be shown that both squeezed states and numbereigenstates can be

approximately expressed as a superposition of a small numberof coherent states.

There has been a lot of theoretical and experimental progress in the problemof

how to construct superpositions of coherent states and this opens the way for the

construction of an arbitrary quantum state (known as quantum state engineer-

ing).

6.2.2 Coherent states as an overcomplete basis

The coherent states form a non-orthogonal basis in the Hilbert space and,in this

context, the resolution of the identity is given by

aA
fFlayal=4, (6.19)

where d?A is a shorthand notation for d(ReA)d(ImA). An arbitrary (normalised)

state |f) can be expressed as

i) =(Araiay 4) = A). (6.20
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It is well known [100, 13, 8, 111, 107, 125] that the set of all coherent states {|A)},

where A takes all the values in the complex plane, is highly overcomplete and,

as mentioned earlier, there are smaller subsets of coherent states which are also

overcomplete. For example, the set of coherent states lying on a sequence {zy}

which converges to some point z, in the complex plane is overcomplete [125]; the

set of coherent states lying on a one-dimensional manifold in the complex plane

is therefore overcomplete set.

The von-Neumann lattice of coherent states is also known to form an over-

complete basis in the Hilbert space [119, 13, 125, 8] (Chapter 5). In the lan-

guage of quantum theory, the von-Neumannlattice is the set of coherent states

{|S'/2M +iS/?N)} where M,N are integers and S is the lattice area. It is well

knownthat this set is overcomplete if S < 7; undercomplete if S > 7; and exactly

complete if S =m (in analogy to the signal processing case in Chapter5).

6.3 The ’truncated’ von-Neumannlattice of co-

herent states

Here, a finite rectangular sublattice of the von-Neumannlattice, i.e. a truncated’

von-Neumann lattice, of coherent states is used for an approximate construction

of various quantum states. For any quantum state |f), many of the coherent states

on a (full) von-Neumannlattice are very far in phase space and, consequently,

their contribution to the expansion of |f) is very small. From a practical point

of view, a truncated von-Neumannlattice would be mucheasier to handle, and

could still provide an accurate reconstruction of| f).

A truncated von-Neumannlattice of coherent states is the set of states

|Aun) =|aM+i6N +4), (6.21)

where a, ( are lattice constants; y is a complex number; and (M, JV)is a pair of

integers which takes values in a set J (which is a finite subset of Z x Z). Wecall I’

the set of the rest of the values of the pair of integers (M, NV)(i.e. I' = Zx Z—I).

In order to have a good approximation, the set J should be chosen in such a way
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that for all (M,N) € I’ we have

(f|Amy) << 1. (6.22)

One way of achieving this is by calculating the expectation values (x), (p), and

the dispersions Az, Ap where

(x) = (flalf), (6.23)

(2?) = (f|2”|f), (6.24)

Az = [(2) — («)?]”, (6.25)

and similar definitions hold for the momentum p. Theset J containsall the values

of M,N such that

(x) — (Ar) <aM+Rey< (x)+p(Az), (6.26)

(p) — p'(Ap) < BN+Imy< (x) +y'(Ap), (6.27)

where pu, y’ are positive numbers. Clearly, the bigger the ju, y’ are and the bigger

the size of J is, the better the approximation.

Using the truncated von-Neumannlattice, an approximate expansion of the

state |f) is obtained:

If) * >o funl|Amw) = |fi), (M,N) eI (6.28)
M,N

fun = (Amnlf) -

6.4 Robustness of the expansion and measures

of accuracy

An important aspect of this analysis is to demonstrate with examples, the robust-

ness of this expansion; that is, the expansion is stable in the sense that random
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noise in the coefficients affects weakly the constructed state. This is a very im-

portant property of the expansion and enhancesits potential to be implemented

practically. In the examples presented in Section 6.5, this is shown by evaluating

the sum

lfo) = >> funlAmy), (6.29)
M,N

fun = fun + (rh, + irDy),

(R) _U)where risy,T7un are random numbers with a flat distribution in the interval

[—A/2, A/2]. A is the width of the noise.

In quantum state engineering, the objective is to construct accurately a known

quantum state; in this case, one is able to select the optimal truncated lattice

(ie the dominant terms of the Gabor expansion) for individual quantum states.

The robustness of the method guarantees reasonable accuracy. In contrast, the

generalised chromatic approach presented in Chapter5 is restricted to an a priort

determined set of terms to enable processing large numbers of similar signals.

As a measure of how close the |f,) and |f2) are to |f) the following quantities

have been calculated:

Di = f Melf) = (alfi)P dx, i= 1,2 (6.30)

Ai= [|KelAP-elAyP| dz, i= 1,2. (6.31)
Clearly the quantities D,, A; refer to the noiseless case, while the D2, A» refer

to the noisy case.

In order to show that the agreement is indeed very good in the whole quan-

tum phase space, the associated Wigner function representations were calculated

according to Eq. (6.6): the Wigner function W(2, p) for the state |f); the Wigner

function W,(x,p) for the state |f,) of Equation 6.28; and the Wigner function

W2(x,p) for the ‘noisy’ state |f.) of Equation 6.29. A measure of the difference

between these Wigner functions can be given by the quantity

AW; = | |Wix,p) — W(2,p)|drdp, (6.32)
where i = 1,2. It is clear that 7 = 1 characterises the noiseless case and i = 2

characterises the noisy case.
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is related to the integrand in Eq. (6.30), for the noiseless case; and Fig. 6.5 il-

lustrates the difference |(x|f)|? — |(x|f;)|?, which is related to the integrand in

Eq. (6.31), for the same case. It is seen that, for the case of the numberstate,

the results are also very good.

In Table 6.1 we give the quantities D,, D2, A,, A> that characterise the

difference between the exact and the approximate result for all cases. It becomes

clear that the method is robust. From a practical point of view, this means

that equipment limitations and other factors of experimental error do not have a

significant effect on the result.

A 0.01003 0.02678 0.15078 0.16655 0.39500 0.42490

B 0.00032 0.00202 0.01444 0.04997 0.05686 0.09708

C 0.02894 0.04882 0.18033 0.19776 0.36488 0.46587

 

Table 6.1: The quantities D,, D2, A;, Ao, AW;, AW, defined in Sections 6.4-5 by

Eqs. (6.30), (6.31), and (6.32) correspondingly, for (A) squeezed states with the

3 x 2 lattice defined in Section 6.5:Eq. (6.33), (B) squeezed states with the 5 x 3

lattice defined in Section 6.5:Eq. (6.34), (C) numbereigenstates with the 3 x 3

lattice defined in Section 6.5:Eq. (6.35); the constructed states are calculated

according to Eq. (6.28). The quantities D;, A; and AW; (i = 1,2) provide three

different measures to quantify the accuracy of the method.

Additionally, the associated Wigner function representations were calculated

using Eq. (6.6) to verify the agreement from a phase-space perspective. In Fig-

ures 6.6-8, the Wigner functions W (x, p), W(x, p) and W2(z, p) (see Section6.4)

for the given squeezed state are shown respectively (3 x 2 lattice). It is seen

that the Wigner functions for |f,;s) and |f2;s) are very close to the Gaussian.

This confirms that the constructed states | f,;s) and |f2;s) (for the 3 x 2 lattice)

are very close to the squeezed state. Figures for the 5 x 3 lattice case are not

presented, since in this case no deviation from a Gaussianis visible. To show the

difference between W(x, p) and W,(x,p) (noiseless case, 3 x 2 lattice) in detail,

the quantity W,(x, p) —W(a, p) (related to the integrand in Eq. (6.32)) is plotted
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6.5 Examples

As an example,let us consider the squeezed state (Eq. (6.16)) with A = 6.2(1+7),

r = 0.5, 0 =0. Two different truncated von-Neumannlattices are used. Thefirst

one is a 3 x 2 truncated lattice:

Ayw = (4.8+1.4M)+i(5.54+14N) M=0,1,2; N=0,1 (6.33)

and the second one is a 5 x 3 truncated lattice:

Aun = (4.6+0.8M) +i(5+1.2N), M=0,1,2,3,4; N=0,1,2. (6.34)

The noise added in these two cases had width \ = 1 (see Eq. (6.29)) .

Let us also consider the numbereigenstate |n = 2). In this case, the use of a

3 x 3 truncated lattice seems more suitable:

Aun = (—1.25 4+ 1.25M) +7(—1.25 + 1.25) M =0,1,2; N=0,1,2 . (6.35)

The noise added in this case had width X = 3. Weshall denote |f;s) and

|f1;n) the state of Eq. 6.28 corresponding to the squeezed state of Eq. 6.16 and

to the numbereigenstate |2), correspondingly. Similarly we shall denote| f2; s)

and | fo;n) the ”noisy” state of Eq. 6.29 corresponding to the squeezed state of

Eq. 6.16 and to the numbereigenstate |2), correspondingly.

Fig. 6.1 shows P(x) = |(x|f)|? for the squeezed state (3 cases). It is seen

that the agreement in all cases is very good. In particular, with the 5 x 3 lattice

for the squeezed state case, the agreement is excellent even in the noisy case.

Correspondingly, Fig. 6.2 shows P(x) for the numberstate (3 cases). Additionally,

Fig. 6.3 shows the wavefunction (x) = («|f) for the three cases. According to

Kq. (6.5), the wavefunction (x) of the second-order numbereigenstate is given

by

(2) = Wala) = (242-9F(x) exp(-52”), (6.36)
where

H2(x) = 4x? — 2 (6.37)

is the hermite polynomial of the second order. In order to have a better under-

standing of the results, Fig. 6.4 illustrates the difference (x|f) — (x|f;), which
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in Fig. 6.9.

According to Eq. (6.7), the Wigner function for the numbereigenstate |2) is

W(a,p) = e+")7, [2(a? + p*)], (6.38)

where Lis the second-order Laguerre polynomial. In Figures 6.10-12, the Wigner

functions W(x, p), Wi(x,p) and W2(x,p) for the given number state (|2)) are

presented. It can be seen that the Wigner functions for | f,;) and | fo; n) are very

close to the exact result. For example, they have the rotational symmetry with

a very good approximation. The difference W,(x,p) — W(z, p) for the noiseless

case is plotted in Fig 6.13. The quantities AW, and AW, that characterise the

difference between the approximate and the exact result are also given in Table

6.1 for all cases.

6.6 Discussion

The work presented in this chapter uses the expansion described earlier (Chap-

ter 5) and is a contribution to the current framework of quantum state engineer-

ing. The concept of the truncated von-Neumann lattice of coherent states has

been introduced in Equations (6.21)-(6.27) and discrete superpositions of coher-

ent states on this lattice have been used to build quantum states. It has been

shown that the method can be used to construct accurately non-classical states

(squeezed states and numbereigenstates). An important result is the fact that the

expansion is robust, in the sense that small random noise in the coefficients does

not affect significantly the results. An original aspect of the methodis its robust-

ness which makesit particularly attractive for practical applications. Synthesis

of quantum states extends further our ability to manipulate light. Particularly,

engineering of squeezed states is of great importance due to its noise reduction

properties. Several applications in quantum optical telecommunications and ex-

perimental quantum optics can be envisaged. The method also promises potential

benefits in many other areas.
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Figure 6.1: Probability distribution P(x) for the squeezed state |A;r,@) with

A = 6.2(1 +2), r = 0.5, 0 = 0 (solid line); the constructed state | f1;s) with the

3 x 2 lattice (dash-dot line); the ‘noisy’ constructed state | f.;s) with the 3 x 2

lattice (star line); and correspondingly, the state |f1;s) with the 5 x 3 lattice

(dashed line); the state | fo; s) with the 5 x 3 lattice (dotted line).
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Figure 6.2: Probability distribution P(x) for the number eigenstate |2) (solid

line); the state |f1;n) with the 3 x 3 lattice (dashed line); the state | f2;n) with

the 3 x 3 lattice (dottedline).
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Figure 6.3: Wavefunction 7(x) for the number eigenstate |2) (solid line); the

state |f\;n) with the 3 x 3 lattice (dashed line); the state | f2;n) with the 3 x 3

lattice (dotted line).
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Figure 6.4: The difference ((x|f) — (x|f;)) for the number eigenstate (noiseless

case).
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Figure 6.5: The difference|(x|f)|? — |(z|f;)|* for the number eigenstate (noiseless

case).
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Figure 6.6: The Wignerfunction for the squeezed state |A;r,@) with A = 6.2(1+

t), F = 09.
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the 3 x 2 lattice.

Figure 6.7: The Wignerfunction for the constructed squeezed state | fj; s) with
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Figure 6.8: The Wigner function for the ’noisy’ constructed squeezed state| f2; s)

with the 3 x 2 lattice.
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Figure 6.9: The difference (W(x, p) — W(x, p)) between the Wigner functions of

the exact and the constructed squeezed states (noiseless case, 3 x 2 lattice)
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Figure 6.10: The Wigner function for the numberstate |2).
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Figure 6.11: The Wignerfunction for the constructed numberstate| f1; 7).
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              Figure 6.12: The Wigner function for the noisy’ constructed numberstate| f2; 7).
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Figure 6.13: The difference (W(x, p) — W(x,p)) between the Wigner functions

of the exact and the constructed numberstates (noiseless case)
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Chapter 7

Speckle Noise Analysis Using

Entropic Methods

7.1 Introduction

In many practical situations, optical measurement of a physical or chemical pa-

rameter is desirable. For example, optical sensing can be applied efficiently in

environments with high magnetic or electrical fields. Due to their attractive

properties, optical fibres have been used widely for sensing and monitoring appli-

cations. Intrinsic fibre sensors rely upon an optical signal propagating through

the fibre being influenced by the parameter to be measured. One class of such

intrinsic fibre sensors utilises interference between the various propagation modes

in a multimodefibre to produce changes in the spatial distribution of the inten-

sity of light (speckle pattern) at the fibre output in response to, for instance,

acoustical vibrations [42, 135]. Noise however limits the use of the detailed shape

of this distribution for the development of highly sensitive sensors. This type of

noise, known as speckle noise, is caused by surface roughness,fibre defects, small

vibrations, and other factors [44, 59, 155).

In this chapter, the spatial variation of the speckle pattern as captured by a

charge-coupled device (CCD) camera(in the form of digital data) is examined

and entropic methods are employed for reducing the noise content of the observed

135



CHAPTER 7 SPECKLE NOISE ANALYSIS

image. The speckle pattern provides very detailed information, a part of whichis

merely undesirable noise. Assuming that the useful information is in the lowest

momentsof the intensity distribution and that the higher moments are influenced

mainly by noise, a new ’improved’ distribution can be obtained which has the

same lowest moments as the observed one. Asit will be explained in the following

section, the unbiased way to do this is to maximise the entropy of the distribution

under the constraint of having fixed lower moments [87, 141, 90, 106].

From a mathematical point of view, this leads to a treatment of the prob-

lem of moments with the maximum entropy method for the case of a discrete

variable that takes a finite number of values. Much of the work presented in

the literature on similar problems considers the moments of distributions of a

continuous variable [116, 55, 34, 163, 102]. In contrast, here, the variable posi-

tion represented by the pixel numberis discrete and it takes a finite number of

values. The mathematical details in these two cases are different. For example,

in the case of a thermodynamic system, the maximum entropy approach leads

to the Bose-Einstein distribution when the Hilbert space of the system is infinite

dimensional, and to the uniform distribution (py = 1/N) when the Hilbert space

is N-dimensional. The statistics in these two cases are different and therefore a

separate study of these two cases is required. Similarly, the study of distributions

of a discrete variable that takes a finite number of values is different from the

continuous case.

Here, these ideas are applied in the context of noise analysis of the output

image in an optical fibre. A local dependence of the speckle noise is assumed, as

described in existing work on speckle noise analysis [153, 44]. The well known

maximum entropy methodis used to provide the most ‘likely’ spatial distribution

consistent with the available noisy data.

More specifically, the optical images at the exit of a fibre are captured in

digital form by a CCD cameraand partitioned into many small regions within

each of which the first two moments of the intensity distribution in the various

pixels are calculated. An ’improved’ imageis then constructed which has the same

first two moments in each region and maximum entropy. Noise reductionis, thus,

associated with the elimination of the detailed information in the higher moments
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of the original image. The reconstructed image is improved in the sense that it

contains the same information as the original one in the lowest moments which

are assumed to contain the desirable information, whilst it loses the content of the

higher moments which are assumed to be due to noise. There are several solutions

corresponding to various extrema of the entropy (local minima, local maxima,

saddle points). All these solutions are investigated and the global maximum is

found. Dependenceof the result on the size of the regions is also studied.

The techniqueis a contribution to the general area of digital image processing.

It can be used for suppression of the speckle noise in an optical fibre system and,

consequently, play an importantrole in increasing the sensitivity of these systems.

The following section introduces briefly the maximum entropy method.

7.2 The Maximum Entropy Method in Image

Processing

7.2.1 The Maximum Entropy Principle

The concept of entropy was first introduced by Clausius (1865) in the context

of thermodynamics (second Law of Thermodynamics). In 1948, Shannon [141,

143] introduced a mathematically similar concept, which von Neumann named

information-theoretic entropy.

Let P = (p1, po, .--, Pn) be a probability distribution, where p, po, ..., pn are the

probabilities of n outcomes, satisfying the normalisation condition of probability

theory [191]:

Spl, p20, (7.1)
i=

where i = 1,2,...,n. Then the Shannon-von-Neumannentropyof the distribution

P provides a measure of the uncertainty (or a measure of the missing information)

of P andis defined by

n

S(p1, pa, 0 Pri) = — opi In pj. (7.2)
i=1

In this definition, the entropy is given in nats (natural units). In information
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theory, the quantity J = Sia2z — S is called information of the probability distri-

bution.

The entropy function of Eq. (7.2) has a lot of interesting properties, the most

important of which are given below:

S
l
eI It takes its maximum value when p; = p2 = ... = Pn =

II It is minimum when oneof the probabilities is equal to 1 and all the others

are zero.

III Its minimum valueis zero.

IV Its maximum value increases with n.

The introduction of the concept of entropy in information theory led to a new

formalism of statistical inference called the mazimum entropy method.

A common problem in physical sciences is to find the corresponding prob-

ability distribution (p1, po,...,2n) from incomplete and noisy data, given some

constraints. If only partial and distorted information about the probabilities is

available, the mazimum entropy principle states that the probability distribu-

tion which maximises the uncertainty about the missing information (i.e. which

has maximum entropy) should be chosen; or in Jaynes’ words, ”when we make

inferences based on incomplete information we should draw them from that prob-

ability distribution that has the maximum entropy permitted by the information

we do have” [90]. The maximum entropy principle provides the least biased esti-

mate possible on the given information. Since entropy describes the randomness

in the distribution, the maximum entropy principle chooses the most random

distribution that satisfies the given constraints.

The mathematical framework for the maximisation of the entropy wasfirst

given by Gibbs [64, 139] in the context of statistical mechanics. It was shown

later by Jaynes [87, 88] that statistical mechanics can be regarded as a form

of statistical inference and can be derived from the maximum entropy principle

[166, 169].

Let us consider N trials of a random experiment with n possible outcomes

at each trial. The probabilities p;, (¢ = 1,2,...,n) can now be represented by
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the frequencies (or proportions) N;/N, where N; is the sample numberfor the

i-th outcome, and Eq. (7.1) is still satisfied [191, 133, 92, 168, 43]. Then the

expression for entropy given in Eq. (7.2) can be used in many different contexts:

e Probability Theory: An ideal die with n faces is tossed N times.

e Communication Theory: A message of length N is received, using anal-

phabet of n symbols.

e Statistical Mechanics: A system of N molecules which can be in n different

quantum states.

e Time Series: N realisations of a time series are generated, when n different

series are possible.

e Image Processing: N elements of luminanceare distributed over n pixels to

form an image.

In the case of a continuous variable x with a probability density P(x), the entropy

functional is defined as

S(P) = — f P(2) In P(x) dz. (7.3)

The theory and rationale of the maximum entropy method have been studied in

depth [149, 148, 91, 90]. The principle of maximum entropy can be rigorously

derived from four consistency axioms[146, 93]: (i) Uniqueness, (ii) Permutation

Invariance, (iii) System Independence, and (iv) Subset Independence, which must

be satisfied by any estimate consistent with the given constraints.

The maximum entropy method has proved to be a valuable estimation tool

in the case of noisy and incomplete data and has been used in a widevariety of

applications [3, 150, 9, 147, 105, 104, 115]. Applications in statistical mechan-

ics are straightforward [87, 89, 167, 51]. It has also been applied in areas like

statistics [68], image analysis [61, 70, 24, 53, 60], analysis of scattering data [4],

spectral analysis [25], astrophysics [70], and crystallography [106]. The conse-

quences of maximum entropy formalism in quantum theory were also pointed

out very early [88, 17].
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The constraints for the maximisation of the entropy are usually expressed

as certain expectation values or bounds on these values. A trivial constraint is

obviously imposed by the normalisation condition of Eq. (7.1). In the case that no

constraints are applied, then the result is the uniform distribution (see properties

above). Maximisation of the entropy is achieved by requiring its first derivative

to be equal to zero. This leads to several solutions corresponding to the various

extrema.

7.2.2 Entropy of an Image

In the case that the intensity of an image is additive and takes always positive

values, the maximum entropy method can be applied straightforwardly. Indeed,

the maximum entropy method has been shownto be the only consistent extremum

principle for the problem of reconstructing a positive image from incomplete

and noisy data [146, 150]. Various approaches have been suggested for optimal

reconstruction of noisy images [70, 45, 24, 53, 60, 61, 71, 62].

In the case of optical images, which are both positive and additive, the so-

called configurational entropy (150, 67, 71] can be defined as follows:

Let J; be the intensity of light at the i-th pixel of a one-dimensional image of

n pixels (i = 1,2,...,n). The normalised intensities f; are given by

l;
 f=a— (7.4)
vi
i=1

i=1

O0<fi <1.

The f; satisfy the Kolmogorov axioms of probability theory (positivity, additiv-

ity and the normalisation condition) and can be treated as probabilities. The

configurational entropy of the image is expressed as

n

S(fis fares fn) = — Do fila fi. (7.6)
i=1

In the case that prior information is known, the maximisation of the entropy is

subject to the given constraints, which define the set of ”feasible” images. The
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general expression for a constraint is

C(fi, fa, +5 fn) = Co. (7.7)

For maximisation under constraints, we can use the method of Lagrange multi-

pliers. In the case of one constraint, the function to be maximised becomes

Q(fi,A) = — >> filn fi — AC(fi). (7.8)
i=1

It is seen that, in the case of optical noisy images, the maximum entropy theory

can be easily applied. The reconstructed image is the one which has maximum

entropy andis consistent with the given constraints. In the general case, Eq. (7.8)

is implicit and nonlinear in respect to the Lagrange’s multipliers. Extension of

these ideas to the two-dimensional caseis trivial.

In the following sections, an example of specialised application of the maxi-

mum entropy methodis presented [158, 160]; the undetermined moment problem

for the case of digital images is considered and optimal reconstruction of speckle

noise imagesis carried out.

7.3. The Method of Moments for the Discrete

Case

7.3.1 Introduction

The classical problem of moments consists of determining the distribution of a

variable from the knowledge of its moments. In the case that all moments are

known, the distribution is defined uniquely. But in the case that only thefirst

K moments are given, there are many solutions which have the given moments

and which differ from each other with respect to the unknown moments. The

maximum entropy method chooses among them the one with maximum entropy.

Earlier studies on similar problems consider the moments of distributions of

a continuous variable [55, 34, 163, 102] and maximise a functional of the form

of Eq. (7.3). Applications of the moment method in various areas (eg. quantum
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physics [17, 116]) have been also considered. Here, the case of a discrete variable

that takes a finite numberof values is considered. Aninitial study of the general

N-moment problem is presented and an explicit solution of the two-moment

problem is given in section 7.3.2. For completeness, we have also considered the

simple case where the first moment only is used as a constraint (section 7.3.1).

Let us consider a two-dimensional optical image and divide it into M square

regions, each of which contains L pixels. Let Jj; be the intensity and fj; be the

normalised intensity of the j pixel in the 7 region:

.. Sigfy = ly’ (7.9)

> fis =— IF (7.10)

iJ

0< fix <1,

where i = 1,2,...,M,7 = 1,2,...,L. The moments within each region are calcu-

lated from the formulae:

m) = rot (7.11)

ay tt
Yom a N’

and ,

ME(vm) 2
The entropy of the imageis given by

— > fig ln fig. (7.13)
uJ

The expression to be maximised,in this case, is

N N 1)\V N
Q (fi, AP?) = Lhefsa Ne> (fig —m) — mm! } (7.14)

j=]

where MW) are the Lagrange multipliers corresponding to the N-th moment. The

distribution of the new values of f;; will have maximum entropy and at the same

time it will also have the original moments mb) (N = 1,2,..., K).
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7.3.2 The case of the first moment

In this case, the single constraint corresponds to fixed mean value in each region,

which is here denoted as ju; [= mi). The expression to be maximised, in this

case, is:

O(fi, 44) = = » fis ln fg — Dri (= fx - bs) ; (7.15)
1,9 a j

where \; are the undetermined Lagrange multipliers referring to the 7 region.

Maximisation with respect to fj; gives

which leads to the result f;; = p44, that is, of substituting all intensities within a

region with their average. This rather trivial and intuitively clear result is derived

here through the maximum entropy method.

7.3.3. The case of the first two moments

In this case, the constraints correspond to preservation of the mean value and

the standard deviation in each region which here we denote as 4; € mt”) and

1/2
0; (= (m®) ; ), correspondingly.

The expression to be maximised,in this case, is:

Q(fi, Ais 71) = — DE fig In fgi (= fig - bs)Ti (= (iy = x) = tat)

i es . (7.17)
where 4; is the undetermined Lagrange multiplier for the first moment term and

7; is the Lagrange multiplier for the second moment term,referring to the 7 region

(i = 1,2,...,M). Taking the first derivative of Q with respect to fi; to be equal

to zero, we obtain:

aQOQ _ _ Lyx exp(—27fi)
Ofij

= xCh (7.18)0 — fz

The relations in Eqs. (7.11), (7.12), and (7.18), with N = 2, are considered

for every region and they form a nonlinear system of M(L + 2) equations with
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M(L +2) unknowns (VL intensity values and 2M Lagrange multipliers). This

system of equations provides the solution. From relation (7.18), one can easily

derive that

ln fiz — In fa, = —274(fey — Sax). (7.19)

The last equation can besatisfied for all pixels within a region only if the nor-

malised intensities within that region take one of two possible values: f;; = A; or

B;. If we assume that in the 7 region there are x; pixels with normalised intensity

A; and y; pixels with normalised intensity B;, then we have:

 

 

tiAj + yiBi = wL => fig, (7.21)
J

and

«(Aj — wi)” + yi(Bi — mi)” = Lo}. (7.22)

Equations (7.20), (7.21), and (7.22) give the solution:

1L—2;)\ ?
Ai = wi 04( —*), (7.23)

and :

B= £0i( at ) ; (7.24)i Li i pe i; : .

x; can take all values between 1 and L — 1, but only the ones that lead to non-

negative A;, B; are acceptable. All these solutions represent local extrema of the

entropy function. An investigation of all these local extrema is needed in order to

find the global maximum. The method does not define which of the pixels have

normalised intensity A; and which have B;, because the entropy remains the same

if we scramble the pixels within a certain region (permutation invariance).

7.4 Practical Implementation for Maximum En-

tropy Analysis of Speckle Noise

The speckle images used for this application were experimentally produced at the

Optics Laboratory in the Department of Electrical Engineering and Electronics

(see [153]). The software developed for this analysis is presented in Appendix B.
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The imagesrepresent speckle patterns which are produced at the output of a

step index multimode optical fibre with a core diameter of 50m, and captured

by a colour CCD camera. A monochromatic source is used to excite modes within

the fibre. The CCD array views the exit plane of the optical fibre and provides

the far-field intensity distribution. The images captured and digitised by the

CCD cameraare square arrays of 496 x 496 pixels.

The speckle pattern is a result of modal interference andis affected by noise

due to surface roughness and other imperfections in the fibre, stability of the

laser source and small displacements of the fibre caused by vibration. Existing

analysis [153, 44, 59] stresses the local statistical properties of speckle noise. In

this context, the speckle image can be divided in small regions and the method

of moments presented in Section 7.3 can be applied for each region.

Since the CCD camera provides RGB data (see Section 5.6), we used the data

corresponding to the blue optical band which had the highest overall intensity.

Fig. 7.1 shows a 496 x 496 256-level digital image of the speckle pattern as

captured by a CCD camera. The random nature of the speckle pattern can be

seen. The ’improved’ versions of this image with L = 4, 16, 64 for the case of one

moment are given in Figs. 7.2-4.

It should be emphasized at this point that the term ’improved image’ is used

here in the context of the previous rationale on maximum entropy and the given

requirements. The new version of the image is ’improved’ in the sense that

the higher moments have been removed (based on the assumption that they

are associated with noise), and provides a simpler and ’cleaner’ dataset which is

easier to handle, process or transmit. It should be clear that in a different context,

where a detailed study of the noise is required (eg. speckle interferometry), this

approach would be inappropriate.

For the two-moment case, Figs. 7.5-7 show the ’improved’ images with

L = 4,16,64 respectively. In each of these three cases we have investigated

all possible values of x; that lead to non-negative A;, B; and which correspondto

local extrema. Table 7.1 gives the entropies of all these extrema and the images

corresponding to the global maximaareplotted in Figs. 7.5-7.

In order to see in detail the effect of the maximum entropy method,Figs. 7.8

145



CHAPTER 7 SPECKLE NOISE ANALYSIS

 

Table 7.1: Method of Two Moments: The local extrema of the entropy (given

in nats) for all possible values of the integer x;, which represents the numberof

pixels with normalisedintensity A; as given by Eq.(7.23), for various regionsizes.

The asterisk indicates the maximum of all the extrema which is the maximum

entropy image.

and 7.9 show a line-scan of the original state of the image, together with the

’improved’ versions with L = 4, 16, 64, 256, for the cases of one moment and two

moments, correspondingly. It can be seen that the method produces a smoother

image and suppresses the effects of noise (eg. narrow peaks or wells).

b=
Table 7.2: Entropies of the ’improved’ images as reconstructed with the method

     
  

     

      

of one moment and two momentsfor variousregion sizes (given in nats).

In Table 7.2 we present the entropies of the new images as reconstructed with

the method of one moment and two moments. As expected the entropy is an

increasing function of the region size and a decreasing function of the numberof
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moments that are used as a constraint.

7.5 Discussion

The maximum entropy method has been used for the reduction of noise in im-

ages at the output of an optical fibre. The original aspects of this work include

the theoretical result of explicitly solving the discrete problem of moments and a

processing method for cleaning speckle images (algorithms are presented in Ap-

pendix B). Assuming that the useful information is in the lowest moments and

that the higher moments are affected by noise, a new ’clean’ image is produced

that has the samefirst two momentsas the original ones and maximum entropy.

A detailed investigation of all local extrema has been performedin order to find

the solution corresponding to the global maximum of the entropy. The method

can be used to reduce the effect of speckle noise in optical fibres and thus, im-

prove the sensitivity of optical sensing systems operating under noisy conditions.

It can be seen that the methodis general and can be easily applied in other areas

of digital signal and imageprocessing.
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Figure 7.1: Original image, which represents a speckle pattern producedat the

output of a step index multimodeoptical fibre. In the plot, colour indicates

intensity, which increases from the blue areas (zero intensity) to the bright white

ones.
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Figure 7.2: Improved imagewith region size L = 4 for the method of one moment.

In the plot, colour indicates intensity, which increases from the blue areas (zero

intensity) to the bright white ones.
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Figure 7.3: Improved image with region size L = 16 for the method of one

moment. In the plot, colour indicates intensity, which increases from the blue

areas (zero intensity) to the bright white ones.
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Figure 7.4: Improved image with region size L = 64 for the method of one

moment. In the plot, colour indicates intensity, which increases from the blue

areas (zero intensity) to the bright white ones.
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Figure 7.5: Improved image with region size L = 4 for the methodof two mo-

ments. In the plot, colour indicates intensity, which increases from the blue areas

(zero intensity) to the bright white ones.
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Figure 7.6: Improved image with region size L = 16 for the method of two

moments. In the plot, colour indicates intensity, which increases from the blue

areas (zero intensity) to the bright white ones.
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Figure 7.7: Improved image with region size L = 64 for the method of two

moments. In the plot, colour indicates intensity, which increases from the blue

areas (zero intensity) to the bright white ones.
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Figure 7.8: Line-scans of the original image and the improved versions with

L = 4,16, 64, 256, for the method of one moment.
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Figure 7.9: Line-scans of the original image and the improved versions with

L = 4,16, 64, 256, for the method of two moments.



Chapter 8

Conclusion

8.1 Summary of Main Conclusions

The main subject of this thesis is time-frequency signal analysis. Time-frequency

representations have been studied and their potential for signal processing has

been demonstrated. It was shown that they can be used as powerful tools for the

analysis of time-varying signals.

In this work, results from quantum theory have been used in the context

of signal processing and communication. It was pointed out that the powerful

techniques of quantum mechanics can beof considerable benefit to applied signal

analysis.

New ideas have been introduced and the practical value of the developed

techniques was demonstrated by examples, mainly borrowed from the areaof

optical signal processing. The main conclusions of this work are:

8.1.1 Wigner Representation of Signals

The Wigner function has very attractive properties and offers a powerful method

for time-frequency analysis. Implementation of the methodin optical signal pro-

cessing has been considered. Its capabilities for signal synthesis and for extracting

the important time-frequency characteristics of a signal has been demonstrated.
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Finally its potential for applications of arc plasma processing and condition mon-

itoring of power electronic devices was demonstrated with examples of practical

importance and its use as a diagnostic tool was pointed out. Extension of the

method for the case of two-dimensional images opens a challengingfield.

8.1.2 Gabor Expansion Using a Few Coefficients: Gabor

Analysers

A truncated N x M von-Neumannlattice of Gaussian signals has been introduced

and used as a basis for signal representation. Numerical implementation for

the case of optical signals is demonstrated with various examples of practical

importance. A quantitative analysis of the reconstruction error showed that

expansion in terms of this discrete basis provides an accurate representation.

The effect of the relative width of the Gaussian signals (squeezing) has also been

studied and it was shown that variation of the width can be used to improve

accuracy.

Compared and contrasted to the Fourier representation, the Gaussian expan-

sion is shown to have a lot of relative advantages. In the case of nonstationary

signals, the method can achieve significant improvements over the traditional

Fourier approach. Its use for applications in transmission, data compression and

noise reduction has been also pointed out.

The expansion has been shownto bestable, that is, addition of small amounts

of random noise to the Gaborcoefficients affects weakly the reconstruction. This

is an attractive property in the sense that it enables practical implementation

using inexpensive equipment.

The method seems to be very promising for practical applications in the ar-

eas of optical and acoustical signal processing. Gabor analysers, that measure

directly the coefficients of the Gabor expansion, can be be used for practicalsig-

nal analysis. Gaboranalysis leads to a generalisation of the well-known chromatic

methods, which can extract useful information from signals and beof significant

benefit for processing applications in the optical and acoustical frequencies.

The Bargmannrepresentation of quantum mechanics has been also considered
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in the context of signal analysis. Relations between the Bargmann transform

and other well-known representations have been studied and its potential for

applications in image processing has been investigated.

8.1.3 Quantum State Engineering

Applications of the truncated Gaussian expansion in the context of quantum op-

tics have been also considered. The concept of the truncated von-Neumannlattice

of coherent states has been introduced and used as a tool for engineering quan-

tum states. Superpositions of a few coherent states on a truncated von-Neumann

lattice can be used to construct quantum states in an efficient way. Indeed, nu-

merical results show that it can be used to construct highly non-classical states,

such as squeezed states and numbereigenstates, with very good accuracy.

It is emphasised that the expansion is robust in the sense that random noise

in the coefficients does not affect significantly the generated state; this implies

convenient implementation of the method for applications in quantum state en-

gineering, particularly in quantum optical telecommunications.

8.1.4 Maximum Entropy Image of a Speckle Pattern

Thefinal section of this thesis was dedicated to the maximum entropy method

and its potential application to optical signal processing. An analytic solution for

the problem of two moments has been given, and the technique was then applied

to speckle pattern images for noise reduction in optical fibre systems.

More specifically, the maximum entropy method has been used to ’clean’

speckle images at the output of an optical fibre. Using as a constraint thefirst two

moments, a new maximum-entropy image can be constructed. It has been shown

that in this improved imagethe intensities within each region are distributed in

only two distinct levels. A detailed investigation of all local extrema has been

carried out in order to find the solution corresponding to the global maximum

of the entropy. The method can be of substantial benefit in optical sensing,

improving the sensitivity of systems operating under noisy conditions; considering
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that its formulation is general and application-independent, it might also be useful

in many cases where the available discrete data are noisy or incomplete.

8.2 Epilogue

In conclusion, some novel ideas have been introduced in the context of prac-

tical signal processing. These techniques have yielded satisfactory results and

their efficiency has been demonstrated. Of course, there are still a lot of prob-

lems requiring further investigation. The techniques presented here can be easily

adapted for use in other areas.
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Optical Fibre Particle

Concentration Monitor

High power circuit breaker arcs trigger the production of suspending particles

due to the decomposition of sulphur hexafluoride into a wide range of products.

These particles take time to settle out of the gas and their concentration can

provide a measure of the post-arc dielectric strength.

Anoptical fibre particle concentration monitor (or simply a powder monitor)

can be used to indicate the time needed for the particles to settle out of the

gas; this is useful in order to identify component wear and system failures. A

prototype optical fibre particle concentration monitor was designed at the the

Optics Laboratory in the Department of Electrical Engineering and Electronics,

the University of Liverpool, and was used for circuit breaker tests. The electric

arc signals analysed in Chapters 4-5 were obtained from this seriesof tests.

The prototype powder monitor uses a ” LIBIDO” distimulus chromatic mon-

itoring system. Broadband white light from the LIBIDO source (transmitted

through a fibre) is collimated by a ball lens (10mm diameter) and then travels

through a particle-containing region of the gas (a gap of 10mm length) before

being refocused by a secondlens into a receiving fibre and complete its journey

at the end of the LIBIDO detector. The light is modulated due to its passing

through the suspending particles in the gap and this modulation is determined

by the concentration of the particles.
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It is well known that light scattering is wavelength dependent (Rayleigh and

Mie scattering). The LIBIDO system measures the dominant wavelength \p of

the modulated signal which, in the case of distimulus systems (like LIBIDO),

is equivalent to the chromaticity value. Distimulus systems provide only one

chromatic variable output (ie dominant wavelength). The dominant wavelength

Ap is related to the particle size N and radius r, ie Ap = f(N,r). Thus,forthis

system, particle size and concentration can be estimated using the change ofthe

dominant wavelength of broadband whitelight.

The optical fibre particle concentration monitor was used to monitor the con-

centrations of particles within a circuit breaker tank, produced by the decom-

position of arced sulphur hexafluoride. The signals shown in Figures 4.5,4.9-15

and 5.1 are taken from series of relatively low fault current tests (up to 15kA

maximum) using a short time scale (not more than 30ms recording time). The

given signals (see Chapter 4) correspond to fault currents ranging from 1.9kA to

14.9kA, which provide a steady and controllable production of particles.

From Figures 4.9-15, it is clear that the arc radiation reduces the dominant

wavelength of light during the lifetime of the arc. This is the result of the su-

perposition of the source light (tungsten halogen lamp of the LIBIDO system,

dominant wavelength of 820nm) and the arc radiation, which has a lower domi-

nant wavelength (690 — 730nm).
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Algorithms

The work presented in this thesis involved a substantial amount of computer

programming. In this appendix, the basic routines are included.

A short description of the algorithms is presented using pseudo-code,ie the

algorithmsare described in termsof successive steps. In the following sections, the

main steps for each routine are shown (which, of course, comprise smaller steps).

These basic routines were used, sometimes with modifications, throughout this

project. The algorithms were realised using FORTRAN programming language

and high-precision arithmetic was used for optimum accuracy.

Additionally, a lot of auxiliary routines were written to address smaller tasks

(eg. for data handling and conversion, normalisation, numerical calculation of

various quantities, evaluation of special functions like squeezed and number wave-

functions, etc.).

B.1 Analytic Signal: anal-sig.f

This routine calculates the analytic form ofa real signal (Chapters 3-5).

INPUT: A file containing the points of a discrete-time real signal.

OUTPUT:A file containing the points of the imaginary part of the analytic
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form.

PSEUDO-CODE

1. Initialise main parameters.

2. Read signal datafile.

3. Calculate FFT of real signal (Chapter 2: Eq. (2.21)).

4. Set negative frequencies to zero.

5. Calculate Inverse FFT of the modified spectrum (Hilbert Transform ofreal

signal, see Chapter 3: Eq. (3.5-8)).

6. Write result (imaginary part) into the outputfile.

B.2 WODEFanalysis: wdf-anal.f

This routine calculates the Wigner distribution function of a real signal (Chapters

4-6).

INPUT:A file containing the points of a discrete-time real signal.

OUTPUT:A file containing the points of the two-dimensional Wigner func-

tion.

PSEUDO-CODE

1. Initialise main parameters.

2. Read signal datafile.

3. Calculate analytic signal (anal-sig.f).

4. Normalise the energy of the analytic signal (Chapter 4: Eq. (4.2)).

5. Calculate the instantaneous autocorrelation function (Chapter 4:

Eq. (4.5)).
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6. Calculate one-dimensional FFTsof the instantaneous autocorrelation func-

tion, keeping the t-variable fixed; thus obtaining one FT for each point in

time (Chapter 4: Eq. (4.6)).

7. Create the 2-D Wigner function.

8. Write the DWDFinto the outputfile.

B.3. WDEsynthesis: wdf-syn.f

This routine reconstructs a signal from its WDF representation or modifies it

using a filtering WDF (Chapter4).

INPUT:A file containing the points of the 2-D Wigner function.

OUTPUT:A file containing the points of the analytic form of signal’s new

version.

PSEUDO-CODE

1. Initialise main parameters.

2. Read WDFdatafile.

3. Read time-frequencyfilter datafile (H[n, 0], see Section 4.4).

4. Calculate new WDF: H[n, 6]W|[n, 6] (Section 4.4).

5. Integrate the modified WDF over frequency for each point in time and

obtain the modulus of the modified analytic form.

6. Write the new version of the analytic signal into the outputfile.

B.4 Gabor expansion: gab-exp.f

This routine calculates the Gaborcoefficients of a real signal (Chapters 5,6).

INPUT:A file containing the points of a discrete-time real signal.
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OUTPUT: A file containing the coefficients of the Gabor expansion on a

truncated von-Neumannlattice.

PSEUDO-CODE

1. Initialise parameters.

2. Read signal datafile

3. Calculate analytic signal (anal-sig.f).

4. Normalise the energy of the analytic signal (Chapter 5: Eq. (5.2)).

5. Create the truncated von-Neumann lattice (Chapter 5: Eq. (5.17)).

6. Calculate the generalised Gaussian signals at each lattice point (Chapter5:

Eq. (5.3)).

7. Evaluate the integral of Eq. (5.19) for each lattice point.

8. Produce the Gaborcoefficients.

9. Write the coefficients into the outputfile.

B.5 Gabor reconstruction: gab-rec.f

This routine reconstructs a signal from its Gaborcoefficients (Chapters 5,6).

INPUT: A file containing the the coefficients of the Gabor expansion on a

truncated von-Neumannlattice.

OUTPUT:A file containing the points of the signal in time.

PSEUDO-CODE

1. Initialise parameters.

2. Read coefficient datafile.

3. Create the truncated von-Neumann lattice (Chapter 5: Eq. (5.17)).
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4,

5.

6.

Calculate the generalised Gaussian signals at each lattice point (Chapter5:

Eq. (5.3)).

Calculate the sum of Eq. (5.18) for each point in time (reconstruction).

Write the real part of the resulting signal into the output file.

B.6 Entropy Maximisation: max-ent.f

This routine processes a two-dimensional image and returns an ’improved’ image

with maximum entropy and the samefirst moments (Chapter 7).

INPUT:A file containing the points of a discrete 2-D image.

OUTPUT:A file containing the points of the ’improved’ version of the image.

PSEUDO-CODE

10.

11.

. Initialise parameters.

. Read 2-D imagefile.

. Normalise image (Chapter 7: Eq. (7.10).

. Calculate entropy of original image (Chapter 7: Eq. (7.13).

. Create partitions of size L of the original image.

. Calculate the first moment for each region.

. Calculate the second moment for each region.

. Replace the pixels of the partitions with the results of Equations 7.16,23-24.

. Compose ’improved’ image.

Calculate entropy of ’improved’ image.

Output ’improved’ image and the entropies of the original and ’improved’

versions.
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