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A bstract

High-spin states in '$3Ce and '35Ce have been studied using the reactions
9Mo(°°S,5n) and '9°Mo(36S,4n) respectively, at a beam energy of 155 MeV. The
Furogam <-ray spectrometer was used at the Nuclear Structure Facility, Daresbury,
U.K..

Excited superdeformed bands have been observed in these nuclei for the first time.
One such band has been observed in '*'Ce, whilst two bands have been observed in
“2Ce. This brings a total of two superdeformed bands in *'Ce and three superde-
formed bands in '**Ce. Possible configurations are proposed in terms of particle-hole
excitations from a theoretical analysis based on the cranked shell model with a de-
formed Woods-Saxon potential.

From relationships between the experimental 3*) moments of inertia, and corres-
ponding ~y-ray energies, the existence of identical superdeformed bands in the Mass
A=~130 region is established for the first time.

Al=2 energy staggering is observed in three of the superdeformed bands discussed
in this work. This is not only the first observation of this phenomenon in the Mass
A=130 region, but is also the first observation of the effect in a pair of identical bands.
The staggering distribution observed in these nuclei also has the unique property of
a mid-band disappearance.

Some of the results discussed in this work are reported in [San95] and [Sem95].
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Introduction

The study of deformed nuclei is a subject of considerable interest in nuclear struc-
ture physics. During the last ten years, large ~-ray detector arrays have revealed
the existence of very deformed nuclei at high angular momenta in three main mass
regions; A=130, 150, 190.

T'his thesis concerns the study of large deformation in two isotopes of cerium,
131Ce and '"?Ce. The present work is built upon the initial discoveries that 31Ce
[Luo87] and '**Ce [Nol85] each contain a single rotational band, which has properties
indicative of superdeformed nuclei. The development of the Eurogam ~-ray spectro-
meter has facilitated an in-depth study of these nuclei to search for new and weaker
superdeformed phenomena.

In order to justify the nuclear models used in the interpretation of the data, basic
principles of nuclear structure are presented prior to the experimental, analysis, and
discussion chapters.

Chapter 1 summarises some fundamental aspects of nuclear structure. In partic-
ular, concepts crucial to the study of nuclear rotation are introduced.

Chapter 2 describes the nuclear models which have been used in this work. The
liquid-drop model is a first attempt to understand the bulk properties of the nucleus.
The treatment of the nucleus in terms of a shell structure is then described by the
shell model, and the discussion then progresses to include deformation (the Nilsson
Model) and rotation (the cranked shell model). The liquid-drop and shell models are
then combined to produce a total energy description of the nucleus. This enables the
stability of the nucleus to be described in terms of its deformation, which naturally
leads to the prediction of superdeformed nuclei.

Chapter 3 discusses the population of high-spin states and the detection of y-rays
emitted as they decay. Methods of data analysis are then briefly discussed.

Chapter 4 presents the details of the experiment carried out to study #!'Ce and
132Ce at high-spin. After a brief description of the characteristics of the data ob-

tained, the superdeformed bands observed in these nuclei are introduced. Various

10



measurements and aspects of these bands are then presented.

Chapter 5 then compares these results with theoretical predictions, and their
agreement 1s discussed. The most probable nuclear structures for the bands are
also deduced. Finally, the observation of new fine structures, underlying the gross

phenomena, is presented.

11



Chapter 1

Nuclear Properties and Parameters

1.1 Some Fundamental Properties

In this section, some properties of the nucleus which are essential to the understanding

of nuclear structure, and particularly to high spin states of the nucleus, are described.

1.1.1 Nuclear Forces

The nucleus is composed ot protons and neutrons. The Coulomb repulsion between

protons would prevent the formation of stable nuclei unless some attractive forces
existed. The strong nuclear force, shown schematically in Fig. 1.1, is responsible for

binding the nucleons together and has a number of important properties.

1. Short range and saturation properties. Nuclear forces do not extend beyond
a nucleon’s nearest neighbours, and saturate beyond ~ 2 fm. Below this sep-
aration they are strongly repulsive. This balancing of attractive and repulsive

forces results in nucleons possessing a mean separation.
2. The nuclear force between nucleons is charge independent.

3. The nuclear forces which are responsible for binding nucleons together, are the

strongest forces in nature. They are 10*° times stronger than the gravitational
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forces at nuclear separations.

Nuclear Potential

0 1 2 3 4 5
Nucleon Separation (fm)

Figure 1.1: Typical Nuclear Potential

1.1.2 Nuclear Size and Density

Although the atomic nucleus is often thought of as a single entity, it is not a solid
body with a definite boundary. The ‘size’ of the nucleus therefore, depends upon the
experiment being carried out to measure it. The nuclear size may be described in
terms of either nuclear charge (primarily due to protons) or nuclear matter. Electron
scattering experiments (such as [Ehr59|) reveal that the central nuclear charge density
is nearly the same for all nuclei. Therefore, if the number of nucleons per unit volume

is roughly constant, then

A
%’H'RS

where R 1s the mean nuclear radius, and A is the mass number. It follows that

~ constant (1)

R =roAs3 (1.2)

where 1y &~ 1.2 fm from experimental measurements.
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The radius of a typical nucleus is therefore R ~ 2 x 107! m. It is perhaps a
surprising result that a-particle scattering experiments reveal that the matter radii
of nuclei are nearly equal to the charge radii, even though for larger nuclei the number
of neutrons is 50% more than the number of protons.

From eqn. 1.1, if R &~ 107!° m, then an estimate of the nuclear matter density is

p ~ 10" kg m—.

1.1.3 Nuclear Binding Energy

Measurements of nuclear masses show that the mass of a nucleus is less than the
sum of the masses of the constituent protons and neutrons. This ‘lost’ mass, or mass
defect, corresponds to the energy released when individual nucleons fuse to form a

single nucleus. The released energy, or binding energy B, of the nucleus is given by
B(N,Z) = (Z M, + (A-Z) M,, - My)c? (1.3)

for a nucleus of mass My, composed of Z protons of mass M,, and (A-Z) neutrons of
mass M,,.
Experimental measurements of nuclear masses enable the variation of binding

energy per nucleon B/A, with mass number A to be determined. This is shown in

Fig. 1.2 (see e.g [Kra88|).

10
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100
Mass Number A

Figure 1.2: Binding Energy per Nucleon as a Function of Mass Number
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The average binding energy per nucleon for most nuclei is within 10% of 8 MeV,
and reaches a maximum for the nucleus *°Fe. The approximate constancy of B/A is

indicative of the staturation properties of the nuclear forces discussed in section 1.1.2.

1.2 Deformation Parameters

The surface of a nucleus can be described by a radius vector R defined in spherical

co-ordinates from its centre to a point on its surface

00 A
R(@, Qb) = C(ﬁ}t,,u)RO } =t Z Z a,\,uyf\,u(gn ¢’) (14)

| A=0 p=-—M\

where :
e Ry is the radius of a sphere having the same volume as R(6, ¢)

e C(f\,) conserves the volume enclosed by the surface with respect to a sphere

of radius Ry
e Y, .(0,¢) are spherical harmonics with coefficients a; ,

e A classifies the deformation type : e.g A=2 represents quadrupole, A=3 octupole,

and A=4 hexadecapole deformations
e ;. 1s an integer in the range of —A to +A

For this study, quadrupole deformation (A=2) is the most important type of deform-

ation. Under this constraint, the nuclear shape is described in terms of five ay
coefficients (A=2 and p = -2 to +2). These five coefficients may be reduced to two
real independent variables, which give a description of the nucleus with quadrupole
deformation : as and s 5.

The parameters s and as s may be expressed by another set of parameters, 3,

and 7y, which have a more direct physical significance :

(g0 = [Jp COS 7Y (1.5)
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1 .
22 = E Pa sin 7y (1.6)

(5 1s the quadrupole deformation parameter and 7 is the triaxiality parameter which
describes the nuclear deviation from an axially symmetric shape. Eqn. 1.4 can now

be simplified in terms of quadrupole deformation :

R(0,¢) = RoC(B2)[1 + B2Y20(0, @)] (1.7)

where Yqq(0,0) is a spherical harmonic of quadrupole order.

The shapes correspond to various (f»,7) co-ordinates for A=2 and are illustrated

in Fig. 1.3.

=
| | 60" Single-particle Oblate
A
"B
Collective Prolate
- 60 °
- 120
~
$2 -
= Single-particle .’ _ Collective Oblate
- Prolate p
N

Figure 1.3: Nuclear deformation in terms of 3 and =y
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In the Lund convention for v [And76, HW53|, rotation takes place around the
smallest, the intermediate and the largest axes corresponding to the three sectors 0° <
v <60°, —60° < v <0° and -120° < v <-60° respectively. The nucleus is described as
rotating collectively if its angular momentum is generated by the collective motion
of all its nucleons. If the angular momentum is generated by single-particle processes
(Sec. 1.3.1) then the nucleus is described as rotating non-collectively.

The maximum collectivity is observed for —60° < v <0°, whereas non-collective
rotation occurs at y=60° (oblate shape) and y=-120° (prolate shape) where the
rotation axis coincides with the symmetry axis. Usually, only the 0° — 60° sector is
required, as this is where the collective-prolate and single-particle oblate structures
are defined. These structures rotate about their smallest axis and are thus favoured
energetically over those which rotate about their larger axes. The —120° < v <60°
sector 1s required when nuclear vibrations occur, since the nucleus may then rotate
about any one of its three axes.

The quadrupole deformation parameter 3, can be defined in terms of the length

of the axes :
4 [t AR

= SV Bk,

Where AR is the difference between the major and minor axes. The type of deform-

B (1.8)

ation then depends on the sign of 3 :

Spherical : 35 = 0
Prolate deformations : (G5 > 0

Oblate deformations : 3, < 0

The Nilsson model [Nil69]| (sec. 2.3.2) uses a further description of quadrupole

deformation, €;. This is related to (33 by the simple expression

3 [0
€9 N Z\/;’BQ ~ 095,82 (19)
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1.3 Rotation Parameters

This section describes the parameters and concepts that are used throughout this

work to describe superdeformed nuclei at high spin (or high rotational frequencies).

1.3.1 Angular Momentum

Large angular momentum in nuclei may be generated in two ways :
1. By collective rotation of a deformed system.

2. By the alignment of the intrinsic angular momenta of the individual nucleons

along the rotation axis.

The total angular momentum I, of an axially symmetric deformed nucleus, rotating
about an axis which is perpendicular to the symmetry axis, can be decomposed into
the collective rotational angular momentum of the core R, and the intrinsic angular
momentum of the unpaired valence nucleons J (paired nucleons couple their angular

momenta so that J=|J|=0), such that
[I=R+J (1.10)

J can be expressed more explicity as the vector sum of the intrinsic angular momenta

of the individual nucleons :
J=)J (1.11)
:
Fig. 1.4 shows a vector diagram which represents this type of angular momentum
coupling. The vectors are represented in the body-fixed intrinsic system, i.e. in a
frame of retference in which the nucleus is at rest.
The valence nucleons act more or less independently within the deformed potential
created by the core. The magnitude of the nucleon-core coupling determines how ‘free’
the valence nucleons are. For an axially symmetric shape, collective rotation about

the symmetry (z) axis is forbidden in quantum mechanics. Collective rotation may

therefore only occur about an axis which is perpendicular to the symmetry axis.
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Rotation axis, X

Figure 1.4: Coupling of angular momentum for an axially symmetric deformed nucleus

rotating about an axis perpendicular to the symmetry axis

The axial symmetry condition ensures that the projection onto the symmetry

axis K 1s a conserved quantum number in the deformation aligned coupling scheme

(Sec. 1.3.7)
e = Z Qs (1.12)

where () is the projection of the intrinsic angular momentum j onto the symmetry

axis.

1.3.2 Rotational Frequency, hw

Nuclear rotation is often described as a function of rotational frequency, w. Classically,
the rotational frequency of an object rotating about an axis is defined as

 dE

oI

(1.13)

where K 1s the total energy of the object, and I is its angular momentum.
The collective rotation of a nucleus can be experimentally observed as a rotational

band of states. The rotational frequency of the nucleus rotating about its x-axis (with
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the component I on the x-axis being I,) is calculated quantum mechanically by

dE  E; - E;

g dI:r: [:I:z - dxf

(1.14)

where the subscripts ¢ and f denote initial and final states respectively. For stretched
electric quadrupole transitions (for which AI=2) and for high spin (for which I, —

I), eqn. 1.14 is conventionally quoted as

E

hw ~ —
2

(1.15)

where E., 1s the energy of the y-ray emitted when the rotational sequence decays from
1ts 1nitial state ¢, to its final state f by the emission of a stretched electric quadrupole

transition.

1.3.3 Parity, =

The only symmetries that remain for an axially symmetric quadrupole deformed
nucleus, rotating about an axis perpendicular to its symmety axis, are the space
reflections (parity), and the transformation described by the rotation operator R
(a rotation of m about the rotation axis). Nuclear states in a rotating nucleus are
therefore labelled in terms of the parity of the state and by the quantity signature.
Parity refers to the symmetry under space reflection (reflection through the origin).
In one dimension, if the parity operator © acts on a wavefunction ¥(x), then for odd

parity
TV (x) = V¥ (—x) (1.16)

and for even parity

TV (xr) = ¥ (x) (1.17)

The eigenvalues of 7 must therefore be 4+ 1. Parity describes configurations in terms of

positive or negative assignments (7 = %), depending upon the effect of the reflection
operation on the single-particle wavefunction. The total parity of the nucleus is

therefore determined by the product of the parities of all occupied levels.
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1.3.4 Signature, o

The signature of a particular state is obtained from a consideration of the rotation
operator R, which acts on the nuclear state u, (see Sec. 2.4.3 for a more complete
description of R).

Rug = exp(—injy)ta (1.18)

and the eigenvalues are

Ru, = exp(—IiTQ)Ug (1.19)

which can be related to the angular momentum I, by
I = o+ 2k (1.20)

where k=0,1,2... and

o = (0 or 1 for even - A nuclei

o = %5 for odd - A nuclei

For a non-rotating deformed nucleus, the nucleon orbits are two-fold degenerate
(Sec. 2.3.2) with respect to 2. For a rotating nucleus this degeneracy is removed
(Sec. 2.4.3), and each energy level is split into two energy levels of opposite signature

(a=+35 and a=-3). These energy levels (now called Routhians as they are energy

2
levels in the rotating frame) are called ‘signature partners’, and the energy splitting

between them is called ‘signature splitting’. The degree of splitting is dealt with in

Sec. 1.3.7.

1.3.5 Rotational Bands

For the ground state of an even-even nucleus, the nucleons fill each orbital in time-
reversed pairs with single-particle angular momentum components ££{2. The resulting
nuclear ground state is composed of spin and parity (Sec. 1.3.3), I" = 0". A rotational

band may be built upon nuclear states with excitation energy proportional to I(I+1)

(eqn. 1.21) with 1=0,2,4... .[Here, K=0 because J=0. The states with odd angular
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momentum are excluded and the parity is positive because of the rotational invariance
for an axially-symmetric shape (Sec. 2.4.3)].

Excited rotational bands are built up in a similar manner, but in this case the
lowest spins for these bands (called the bandhead spin) may have I#0h. The bandhead
spin 1s governed by the projection K, of the total angular momentum I, of the valence
nucleons onto the symmetry axis.

The rotational band of states which have the lowest energy for a given spin is

known as the yrast (meaning dizziest) band.

1.3.6 Moments of inertia

T'he excitation energy E, of the states within a rotational band are given by (see e.g

BVT78|)
32

E= 5ol

I+1)— K7 (1.21)

where 3(® is the static moment of inertia and I is the angular momentum. As
discussed in Sec. 1.3.1 angular momentum can be built up by two distinct mechanisms
which are spin dependent. Consequently, this moment of inertia is not a constant but
1s a function of spin. In order to extract more information about the effect of rotation
on the nuclear structure, it is instructive to define two more types of moment of inertia.
These are related to the first and second derivatives of eqn. 1.21, with appropriate
approximations for high spin : I >> K and I = I, so that K — 0. I, is the projection

of the total angular momentum I on the rotational axis, and is defined by

I, = JII +1) - K (1.22)

The kinematic moment of inertia 3(!) is defined by the first derivative of eqn. 1.21

dE1™Y T
) = K] = fi-= 1.2
3 hoI, [dlx hw (1.23)

-

and the dynamic moment of inertia 3(?) by the second derivative of eqn. 1.21

(1.24)

9 —1
i) [d E] _dL,

dl? dw
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The differential part of these definitions have been eliminated using eqn. 1.14.

The quantities SV and 3(? are related by the expression

d<(1)
x(2) — (1) 1.95
3 + w . (1.25)
which for a rigid rotor there is no longer a dependence of 3 on w, so
S IOFSES SR (1.26)

where 44 1s the rigid body moment of inertia.

In the experimental measurements of these quantities, the expressions are simpli-
fied by a consideration of the stretched electric quadrupole (E2) ~v-ray transitions in
rotational bands.

The expression for 3V is then

AT — 2)
3 — 2l 1.2
X 2F, (1.27)
and for (2 :
4h”°
x(2) —
3 AL, (1.28)

where AL, 1s the spacing between consecutive 7y-rays of energy E,. Because of its
relationship to the second derivative, the 3(?) is very sensitive to changes in internal
structure (e.g alignments). Also, it is only dependent on the spacing of the y-rays and
is not dependent on spin (which is not conclusively known for superdeformed bands).
The 3 is therefore directly related to experimental data and is used widely in the

study of superdeformation such as contained in this work.

1.3.7 Coupling Schemes

The coupling of the angular momentum of a valence nucleon to a deformed, col-
lectively rotating nuclear core may be described in terms of two coupling schemes :
the deformation aligned scheme (DAL) and the rotation aligned scheme (RAL). The
description of these schemes uses the same vector representation as that discussed

previously.
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The DAL and RAL schemes represent extreme limits within which all rotational

coupling behaviour falls. The text refers to Fig. 1.5.

Figure 1.5: (Top) DAL Coupling : The alignment of a valence nucleon’s intrinsic angular
momentum J, with the deformation, and (Bottom) RAL Coupling : The alignment of a
valence nucleons intrinsic angular momentum j, with the rotation axis. The effect of each

coupling on the single-particle Routhian is also shown.

1. Deformation aligned (DAL)
When there 1s a large deformation and low rotational frequency, a valence nuc-
leon will follow the core closely and its angular momentum j, will be aligned with
the deformation, so that j precesses about the symmetry axis. In this scheme 2
1S a good quantum number. The valence nucleon is strongly coupled to the core,
and 1s unaffected by the Coriolis force : the Coriolis force can do little to align
the angular momentum of the valence nucleon with the rotation axis. This res-

ults in the Routhians of the signature-partners exhibiting very little signature
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splitting (alternatively, the -wj, term in eqn. 2.33 is small so that modifications

to its energy are small). The Routhians are therefore degenerate. See Fig. 1.5

(top).

2. Rotation aligned (RAL)
When there is a smaller deformation and rapid rotation, the Coriolis force dom-
inates, and aligns the intrinsic angular momentum of the valence nucleon with
the axis of rotation so that j precesses about the rotation axis. In this scheme
() is not conserved and is no longer a good quantum number (although it is still
used as a label in the asymptotic limit). This results in the nucleon orbit lying
in the plane of the symmetry axis. High-j, low-{2 orbitals are effected most by
the Coriolis force. The valence nucleon becomes almost completely decoupled
from the core. The Coriolis force has maximum effect on the energy of such

orbitals and the Routhians exhibit a large degree of signature splitting. See

Fig. 1.5 (bottom).

1.3.8 Band Crossings

The ‘backbend’ (so-called because of the shape of the variation of spin with Aw), such
as that exhibited by the yrast normal-deformed band in *?Ce (Fig. 1.6), is interpreted
as the crossing of two bands built upon different internal configurations. The crossing
arises when the Coriolis force becomes large enough to overcome the pairing force
between a pair of nucleons, and the nucleons align their angular momentum with the
axis ot collective rotation.

At the rotational frequency of the backbend, it is energetically favourable to gen-
erate angular momentum by such an alignment, and the rate of collective rotation
may be reduced. Such pair alignment causes backbending because the aligned con-
figuration has a greater I than the unaligned one at the same w.

The ‘sharpness’ of a backbend is dependent on the interaction strength of the

band crossing. For weak interaction strengths, a sharp backbend is observed (hw =~

0.35 MeV on Fig. 1.6).
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For strong interaction strengths, more smooth changes are observed and occur

over several transitions (hw =~ 0.6 MeV on Fig. 1.6).

30.0

Spin I (h)

10,0

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
Rotational Frequency (hw) MeV

Paired Protons Aligned Protons Aligned Protons
Paired Neutrons Paired Neutrons Aligned Neutrons

Figure 1.6: Plot of spin I (h) v rotational frequency (hw) for the yrast normal-deformed
rotational band in '**Ce, illustrating beckbending. The first backbend is due to a pair of
hy protons aligning (solid orbits), while the upbend at the end is due to a pair of hu

]
-

neutrons (dashed orbits) aligning.

1.4 Electromagnetic Decay

Excited states of nuclei, decay rapidly to the ground state via the emission of photons

of electromagnetic radiation. The photon may be described in terms of multipole
moments : a multipole of order L transfers an angular momentum of LA. Consider a

v-decay from an initial excited state of angular momentum I; and parity 7; to a final
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state 1y and parity m;. Conservation of angular momentum requires that :
| L —I; |KLL| L+ 1 | (1.29)

and so the order (L) of the multipole is restricted. The resulting radiation will be a

mixture of possible multipoles, e.g;

L=1 Dipole
L=2 Quadrupole
L=3 Octupole
LL=4 Hexadecapole

Whether the emitted radiation is of the electric or magnetic type is determined by
the relative parity of the initial and final levels. If there is no change in parity, then
the radiation field must have even parity. If there is a change in parity, then the

radiation field must have odd parity.
m(ML) = (-1)"*! (1.30)

w(EL) = (—1)" (1.31)

where ML 1s a magnetic multipole of order L, and EL is an electric multipole of order
L. For transitions where more than one multipole is possible, the lowest permitted
multipole dominates. So if possible transitions are E2, M3, E4, M5... etc, then the
E2 transition would be dominant. The exception to this rule is that the electric order
L. and magnetic order (L-1) are comparable in strength; e.g E2 and M1 would both

be dominant.



Chapter 2

Nuclear Models

2.1 The Liquid-Drop Model

In an attempt to understand the relationship between binding energy and mass num-
ber (Fig. 1.2), and also the bulk properties of the nucleus, an analogy can be drawn
between the nucleus and a drop of incompressible liquid. This analogy leads to the

liquid-drop model, which was the first theoretical model used to describe the nucleus,

e.g |[RS80].
The liquid-drop model is able to reproduce the following bulk properties of the

nucleus :

1. Saturation properties of the nuclear forces (Sec. 1.1.1)

2. Very low compressibility.

3. Well defined surface.

The total energy of the nucleus in the liquid-drop model E; p, is given by the sum of

5 terms [Wei35|:
Eirp = Evor + Esurr + Ecovr + Esym - 60A (2.1)

where the first 4 terms represent the volume, surface, Coulomb and so-called sym-

metry (extra stabilty for N=Z nuclei) contributions to the energy of the nucleus
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respectively, and the 6A term acknowledges the extra stability obtained for paired
nucleons.

Such a treatment of the nucleus leads to a rather good agreement of the vari-
ation of binding energy per nucleon with mass number (Fig. 1.2). The treatment fails
however, for certain nuclei which are observed to have exceptionally stable config-

140

urations (e.g 5He, ‘g0, 55Sr, '2¢Ce...). These nuclei have neutron (N) or proton (Z)

numbers corresponding to the magic numbers of
N,Z = 2,8,20,28,50,82 and 126

The extra stability of these ‘magic’ nuclei reflect the effects of shell structure within

the nucleus which have been neglected in the liquid-drop model.

2.2 The Shell Model

2.2.1 Introduction : The Nuclear Mean Field

Soon after the discovery of the neutron in 1932, attempts were made to describe the
nucleus in terms of a shell structure in a manner analogous to that for the electrons
in an atom. In the atomic case, the potential is supplied by the Coulomb field of the
nucleus. The Schrodinger equation is then solved for this potential and the energies
(eigenvalues) of the electron orbits are calculated.

There 1s no equivalent central potential for the nucleus, so in the nuclear shell
model, a single nucleon is considered to move in a mean field (or potential) produced
by all the other nucleons. Although the form of this average potential should re-
flect the shape of the nucleus, it cannot be expected to describe all aspects of the
nuclear force. Some of the remaining properties are described by residual two body
interactions; e.g the pairing force. The shell model Hamiltonian H is composed of

this average potential V', plus the sum of the individual kinetic energies of all the

independent nucleons T

H=T+V (2.2)
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H:i L+ Vi(r) (2.3)

H= i l—z- Vi +V;('r)] (2.4)

where m and p represent the nucleon mass and momentum respectively, and V;(r)
represents the exact form of the potential well. The existence of definite orbits is then
a result of the Pauli Exclusion Principle. Each nucleon exists in a fixed energy state
with a set of unique quantum numbers, and no two nucleons can possess the same
set of quantum numbers.

The mean-field approximation is a good starting point for the development of
a successful nuclear model. By adding various other features such as deformation,
spin-orbit interactions and rotation, a more realistic nuclear potential can be ob-
tained. Fig. 2.1 (based on a figure by J.D.Garrett|Gar85]) illustrates the evolution
of the nuclear potential from the three-dimensional simple harmonic oscillator (SHO)
to the cranked shell model. The three dimensional SHO (Sec. 2.2.2) is the simplest
approximation to the nuclear potential. However, not only is it necessary to improve
the radial shape (as in the Woods-Saxon potential, Sec. 2.2.3), but a spin-orbit term
must also be added (Sec. 2.2.4). Deformation (Sec. 2.3.2) then has dramatic con-
sequences on the nuclear energy levels, and when the nucleus is rotated (Sec. 2.4.3),
Coriolis and centrifugal forces acting on the nucleons, further alter the single-particle
spectrum.

The remaining part of this chapter will deal with the treatment of the nucleus in

terms of a shell structure, and the development of a suitable nuclear potential.

2.2.2 The Harmonic Oscillator Potential

The harmonic oscillator potential is a useful starting point to describe the nucleus,
because 1t describes the prescence of a restoring force that acts to return a system to

1ts equilibrium condition. It is defined as

2
MW

Viho(T) = 5 (TQ ¥ Rg) (2.5)
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Figure 2.1: The evolution of the nuclear potential. The degeneracy (Deg) and the quantum

number (q.n.) labeling is also shown. The 2s level is unaffected by the spin-orbit interaction

(because 1=0), but is shown reduced in energy for clarity.

and is shown schematically in figure 2.2.

The harmonic oscillator Hamiltonian H sho Can then be written

2
. —h mwy

Hsho = V2 + 9

(r* — Ry)

2m

(2.6)

where wy 1s the oscillator frequency, Ry is the nuclear radius and r is the displacement

from the centre of the potential. The energy eigenvalues are given by

3 3
2) — hwg(Q'n—I- [ + 5)

En[ — th(N |

(2.7)
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Figure 2.2: The harmonic oscillator and Woods-Saxon potentials. The Nuclear radius Ry

1s indicated.

Where N, n and | are the principal, radial and angular momentum quantum numbers
respectively. The quantum numbers n and 1 arise from the spherical harmonics which

are required to describe the eigenfunctions. It is clear from the above equation that
1. The energy levels are evenly spaced.
2. All levels in a major shell are degenerate, with a degeneracy %(N—I—l)(N—I—Q).

Fach oscillator shell only contains states of the same parity, given by
= (=1)" (2.8)

Therefore, shells with even N have positive parity and shells with odd N have negative
parity. However, for heavier nuclei the shape of the simple harmonic oscillator po-
tential 1s incorrect; nucleons at the surface of the nucleus should experience a smaller

potential than those at the centre - a condition which is not reproduced (the harmonic

oscillator potential has infinite values at infinite radii). The next set of modifications

(Fig. 2.1) are described by Woods-Saxon potential.
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2.2.3 The Woods-Saxon Potential

The degeneracy of the harmonic oscillator is removed by altering its shape to reflect

the fact that the nuclear forces have a finite range. So that the condition
V(r) — 0,r > Ry (2.9)

is met. The Woods-Saxon potential [WS54] reproduces this condition quite well, and
1s defined by the expression

Vsl P)iss (2.10)

and 1s shown in Fig. 2.2. The shape of the potential well is given a flatter bottom and
the walls are made steeper. The above expression uses Ry = rOA% with Ry the nuclear
radius, rp ~ 1.2 im, and a gives the surface diffuseness =~ 0.5 fm. V, represents the
depth of the potential ~ 50 MeV, which can be adjusted to suit measured separation

energies. The nuclear Hamiltonian becomes

' - VA (2.11)

Although the agreement with the experimentally observed magic numbers is now

better, the Woods-Saxon potential still does not reproduce them sufficiently well.

2.2.4 Spin Orbit Coupling

The success of the shell model was really only confirmed by the introduction of a spin
orbit term by Haxel, Jensen and Suess [HJS49]. They showed that the inclusion of
a spin-orbit interaction term in the nuclear potential could correctly reproduce the
experimentally observed magic numbers.

The total angular momentum j, of a nucleon is equal to the vector sum of its

orbital angular momentum I, and its spin angular momentum s :
j=1+s (2.12)

and 1s illustrated in Fig. 2.3.
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Figure 2.3: Coupling of 1 and s. Components on the symmetry axis are shown. Total
angular momentum j precesses about the symmetry axis. 1 and s precess about j. 1, and s,

vary. J. remains fixed.

The spin-orbit coupling is such that it splits the possible energy states into

j:l—% (2.13)
and
i) o
such that
Eioi_1>E;_ 1 (2.15)

1.e. a given | state is split into 2 possible j states, such that the high-j state is lower in
energy than the low-j state. This is illustrated for the 1d (N=1, 1=2) level in Fig. 2.1.
This 1s incorporated into the nuclear potential by the spin-orbit potential term

Vo(T)
Vso(r) = — f(r)l.s (2.16)

1 6V (r)
r or

where f(r) (a function of r with f(r) o ) controls the strength of the coupling,

and l.s 1s the spin-orbit term. The nuclear Hamiltonian now becomes

H=T+V, +V, (2.17)

ey — f(r)Ls (2.18)
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and correctly reproduces the magic numbers. The inclusion of the spin-orbit (pro-
portional to l.s) results in levels being depressed more as | increases. In particular,
levels with the highest j (j = 1 + s) are depressed the most by this coupling and
generally penetrate into the major oscillator shell below. These depressed states will
have opposite parity (see eqn. 2.8) to the states in which they reside, and are called
‘intruder orbitals’. They play a particularly important role when the nuclear potential

is deformed (Sec. 2.3.2) and when rotation is considered (Sec. 2.4.3).

2.3 Deformation and The Shell Model

2.3.1 Introduction

The shell model considered so far has assumed that the average nuclear field is spher-
ically symmetric. This is not a bad assumption for nuclei which possess a closed shell
(‘magic nuclei’) or are close to a closed shell. However, the experimental evidence
of rotational bands and large quadrupole moments indicate the existence of nuclei
that possess stable ground state deformation. As a consequence of the non-spherical
nuclear shape, an orientation of the nucleus may be specified. In turn, this enables
quantum mechanical rotation to be described. Spherical nuclei have already been de-
scribed by the simple harmonic oscillator potential and the Woods-Saxon potential.

The following section discusses the formulation of a nuclear model to incorporate

deformation into the above potentials.

2.3.2 The Nilsson Potential

The deformed average nuclear potential may be described by an anisotropic harmonic
oscillator potential. The Nilsson potential is a harmonic oscillator potential modified
to take into account the deformation of the nucleus. Nilsson also added further

modifications to include a spin-orbit term, and a correction to reflect the flatter
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potential felt by those nucleons in the centre. The Nilsson potential is defined as

1Tl
Vose = 5—( T+ wiy® + wiz?) (2.19)

where w,, w,, w, are one-dimensional oscillator frequencies in cartesian co-ordinates.
The energy difference between major N shells (eqn. 2.7) defines the oscillator fre-
quency wo

hwo = 41473 MeV (2.20)

which also conserves the volume contained within the nuclear surface :
WalyW, = Wy (2.21)

The elegance of this potential is in its separation into easily solvable 1-D potentials in
x, y and z. The eigenstates are therefore easily calculated and may be characterised

by the quantum numbers n,, n, and n, with eigenvalues given by

1 1 1
E(ng,ny,n,) = hwz(ng + 5) + hwy(n, 1 2) + hw,(n, + 5) (2.22)

The deformed simple harmonic oscillator potential may be simplified further by con-
sidering only axially-symmetric shapes with the z-axis defined as the symmetry axis:

Viose = %(wi(afsz +y%) + wz®) (2.23)

where now w; and w, are the oscillator frequencies perpendicular and parallel to the
symmetry (z) axis.

The deformation is introduced through the parameter e

1

W) = Wz = wy = wy(e)(1 4 36) (2.24)
e ge) (2.25)

Finally, Nilsson added a spin-orbit term (Sec. 2.2.4) to reproduce the correct magic
numbers, and an angular momentum term to flatten the potential. The latter term
creates a more realistic ‘squarer’ potential in order that the nucleons near the surface

experlence a deeper potential. The Nilsson potential is now defined as

Viit = Vise — 26hwg [Ls — p(P— < I >p) (2.26)
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where L.s is the spin orbit term and (I* - <1* >y) is the angular momentum term. &
determines the strength of the spin-orbit interaction and the product xu controls the
'squareness’ of the potential. The values of x and p are chosen so as to reproduce the
experimentally observed level sequences.

The effect of this potential on the energy levels depends on the spatial orientation
of the orbit. The top half of Fig. 2.4 shows the possible orientation of orbits with j:%

for prolate and oblate deformations (for clarity, only positive projections are shown).

) Energy
Q2 Q .
Q, Q.
Qs $2,
Q, Q
OBLATE PROLATE

Figure 2.4: The effect of deformation on orbitals depends on the orbits spatial orientation.

(2 1s the component of the relevant j on the symmetry axis.

A nucleon with j:% can have eight possible components of j along the symmetry
axis : —-g- to —I—-g-. The component of j on the symmetry axis is €. Because prolate
and oblate nuclei have reflection symmetry for either of the two possible directions

of the symmetry (z) axis (i.e a rotation of 7 about an axis perpendicular to z), the
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components —{2 and +{2 are degenerate, so that each Nilsson orbital has a degeneracy
of 2. Thus a j=3 state is split into 4 states with Q=1, 3, 2 I. The bottom half of
Fig. 2.4 shows the effect of deformation (as described by the Nilsson potential) on the
various orientations.

For prolate detormation, the low {2 component corresponds to an orbit that inter-
acts closely with the core and is therefore lower in energy (more stable). Conversely,

for oblate deformation, the high 2 component is lower in energy. For complete de-

scription of orbitals, the Nilsson model uses the followi