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Using Knowledge Graphs to enhance the utility of Curated Document Databases

Abstract

The research presented in this thesis is directed at the generation, maintenance and query-
ing of Curated Document Databases (CDDs) stored as literature knowledge graphs. Liter-
ature knowledge graphs are graphs where the vertices represent documents and concepts;
and the edges provided links between concepts, and concepts and documents. The central
motivation for the work was to provide CDD administrators with a useful mechanism for
creating and maintaining literature knowledge graph represented CDDs, and for end users
to utilise them. The central research question is “What are some appropriate techniques
that can be used for generating, maintaining and utilizing literature knowledge graphs to
support the concept of CDDs?”. The thesis thus addresses three issues associated with
literature knowledge graphs: (i) their construction, (ii) their maintenance so that their
utility can be continued, and (iii) the querying of such knowledge graphs. With respect
to the first issue, the Open Information Extraction for Knowledge Graph Construction
(OIE4KGC) approach is proposed founded on the idea of using open information extrac-
tion. Two open information extraction tools were compared, the RnnOIE tool and the
Leolani tool. The RnnOIE tool was found to be effective for generation of triples from
clinical trial documents. With respect to the second issue two approaches are proposed
for maintaining knowledge graph represented CDDs; the CN approach and the Knowledge
Graph And BERT Ranking (GRAB-Rank) approach. The first proposed approach used a
feature vector representation; and the second a unique hybrid domain specific document
embedding. The hybrid domain-specific document embedding combines a Bidirectional En-
coder Representations from Transformers embedding with a knowledge graph embedding.
This proposed embedding was used for document representation in a LETOR model. The
idea was to rank a set of potential documents. The Grab-Rank embedding based LETOR
approach was found to be effective. For the third identified issue the standard solution is to
represent both the query to be addressed and the documents in the knowledge graph in a
manner that will allow the documents to be ranked with respect to the query. The solution
proposed for this was to utilize a hybrid embedding for query resolution. Two forms of
embedding are utilized for query resolution: (i) a Continuous Bag-Of-Words embedding
was combined with graph embedding and (ii) for the second BERT and Sci-BERT em-
bedding were combined with graph embedding. The evaluation indicates that the CBOW
embedding combined with graph embedding was found to be effective.
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Chapter 1

Introduction

1.1 Overview

The volume of scientific literature is increasing at a rapid rate on a year-on-year basis

[56, 81]. This rate of growth has led to an increase in the cumulative domain knowledge

that researchers need to access. This has created a challenge for the scientific community

in terms of the resources required to manually search and analyse relevant documents

in the literature. One solution is the usage of Curated Document Databases (CDDs),

specialised document collections that bring together published work, in a defined domain,

into a single scientific literature repository. One example of such a CDD, and that used

both as a focus and for illustrative purposes throughout this thesis, is the Online Resource

for Recruitment research in Clinical trials (ORRCA) CDD [58]. The ORRCA CDD1 brings

together abstracts of papers concerned with the highly specialised domain of recruitment

strategies for clinical trials, and serves to limit the documents that clinical trials researchers

need to access. However, the use of CDDs only offers a partial solution as the volume of

available literature continues to grow. For instance, at time of writing, the ORRCA CDD

had a year-on-year increase in publications as shown in Figure 1.1.

Another way of minimising the difficulty researchers face when reviewing the volume

of scientific literature that is available is by harnessing advances in Artificial Intelligence

(AI) and Machine Learning (ML) [30]. The tools and techniques of AI and ML have made

significant advances over recent decades. This has led to the automation of many tasks that

once required significant human resource. One example, and one of particular relevance

1https://www.orrca.org.uk/
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to this thesis, is the automation of search methods for scientific literature [106, 44, 129].

Various research studies have been published since 2006, referencing the need for screening

automation when reviewing scientific literature and the benefits that can be realised [92].

However, with respect to CDDs these advantages have yet to make significant “in roads”.

This is largely because the concept of CDDs was initially seen as presenting a solution

to the information overload challenge associated with the volume of scientific literature

available. However, as demonstrated in Figure 1.1, the concept of CDDs has only offered

a “stop-gap” solution. As the volume of documents held in CDDs continues to increases

there is a corresponding need for the application of AI and ML-based automated search

methods; this challenge was highlighted in [42] in the context of the ORRCA CDD.

Figure 1.1: ORRCA papers and articles by year, 1976-2017, illustrating the rapid growth
of the number of publications directed at recruitment strategies for clinical trials.

In the context of CDDs the screening of scientific literature is not just about finding

appropriate documents within the CDD, it is also concerned with the creation of CDDs

and their maintenance. The manual process for creating CDDs is frequently referred to

as the “systematic review process” [91, 58]. Systematic reviews are carried out by those

responsible for the provision of CDDs so as to update and maintain such databases. The

systematic review process is resource intensive. It is estimated that carrying out a single

systematic review can take from several months to a whole year. Automation of the process,
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using the tools and techniques of AI and ML, therefore has clear benefits. Various types

of AI and ML technique have been reported on for analysing and extracting information

from scientific documents. A state-of-the-art AI technique for representing knowledge is

the idea of knowledge graphs. A knowledge graph is a graph where the vertices represent

entities of some kind, the knowledge we are interested in representing, and the edges the

relationships between these entities. As such they are frequently used with respect to linked

open data in the context of the “semantic web”. However, they are also used by internet

search engines, such as Google and Yahoo, and by question-answering services such as those

provided by Apple’s Siri and Amazon’s Alexa. In addition they play a role with respect

to the facilities provided by social network platforms, such as LinkedIn and Facebook.

Where a knowledge graph is used to represent documents, the term literature knowledge

graph (or sometimes document knowledge graph) is used. In a literature knowledge graph

the entities are documents and/or concepts referenced in documents, and the edges the

connections between them. A toy example literature knowledge graph is shown in Figure

1.2. In the figure the blue vertices indicate concepts and the yellow vertices documents.

There are two kinds of edge in the figure:

1. Edges linking Concepts (blue colour)

2. Edges linking Concepts and Documents (red colour)

The advantage offered by literature knowledge graphs is that their usage speeds up the

process of query resolution and consequently information retrieval [129, 18]. Literature

knowledge graphs have clear potential in the context of CDDs. This observation is the

central motivation underpinning the work presented in this thesis.

1.2 Research Question and Issues

Given the foregoing motivation the fundamental objective of the work presented in this

thesis is to investigate how best the benefits offered by the idea of literature knowledge

graphs can be realised in the context of CDDs. The central research question that this

thesis seeks to address is thus formulated as follows:

1. What are some suitable techniques that can be used for generating, maintaining and

utilizing literature knowledge graphs to support the concept of CDDs?
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Figure 1.2: A toy example of a literature knowledge graph generated using OIE4KGC

The resolution of this overriding research question involves the resolution of a number of

Subsidiary Research Questions (SRQs):

1. Given a collection of documents within a CDD, represented using traditional rela-

tional database technology, how can these best be processed so that they form a

literature knowledge graph.

2. Given an existing CDD, represented as a literature knowledge graph, how can this

knowledge graph best be maintained to ensure that it is up to date.

3. Given an existing CDD, represented as a literature knowledge graph, how can this

knowledge graph best be queried so as to retrieve relevant documents.

4. Assuming that the maintenance and querying of literature knowledge graphs will

entail some kind of document ranking what is a suitable mechanism for deriving a

ranked list of documents and what would this mechanism entail?
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5. In the context of document ranking can the concepts within a literature knowledge

graph be utilized to improve a document ranking mechanism and how would this

operate?

6. Given the foregoing SRQ, can the embeddings implicit within a literature knowledge

graph be used to provide an answer to a query in the context of document retrieval?

The significance of SRQ2 is that a CDD, however it is represented, is only as good as its

last update; it needs to be maintained. SRQ4 to SQR6 are all related to SRQ2 and SRQ3

in that any solution to literature knowledge graph maintenance and document retrieval is

likely to entail document ranking.

1.3 Research Methodology

The research methodology that was adopted to provide answers to the above SRQs, and

consequently the overriding research question, comprised three Phases:

1. Literature Knowledge Graph Construction

2. Literature Knowledge Graph Maintenance

3. Literature Knowledge Graph Querying

The start point for Phase 1, was to hand generate a literature knowledge graph using

ten records from the ORRCA CDD. This was a proof of concept exercise to demonstrate

the viability of using literature knowledge graphs in the context of CDDs. The next step

was to develop an automated literature knowledge graph construction mechanism. The

central idea was to use the concept of Open Information Extraction (OIE), the established

RnnOIE (Recurrent Neural Network OIE) tool was adopted for this purpose. The result

was the Open Information Extraction for Knowledge Graph Construction (OIE4KGC sys-

tem). This was evaluated using the bespoke ORRCA data sets and the ClauseIE ReVerb

benchmark dataset.

For Phase 2 a number of techniques were considered, with a focus on two. The first

considered the use of a n-gram support vector regression based learning to rank model to

update curated document collections. The second considered two kinds of embedding:

1. BERT word embeddings
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2. Knowledge graph concept embedding

The result was the Knowledge Graph And BERT Ranking (GRAB-Rank) approach to the

updating of CDDs. In both cases evaluation was conducted using the pre-2015 ORRCA

data set, and tested using the 2015 and 2017 update data sets. Good results were obtained.

The update dataset had been labelled in a binary manner with positive labels indicating

the documents to be included in the CDD and negative labels indicating the documents

not to be included in the CDD. The metrics used to measure effectiveness were precision

and recall, calculated as given in Equations 1.1 and 1.2 where:

1. TP is the number of true positives

2. FP is the number of false positives

3. FN us the number of false negatives

A true positive is an outcome where the model correctly predicts the positive class. A

true negative is an outcome where the model correctly predicts the negative class. A false

negative is an outcome where the model incorrectly predicts the negative class.

Precision = TP/(TP + FP ) (1.1)

Recall = TP/(TP + FN) (1.2)

Phase 3 commenced with the query-resolution for knowledge graph approach. For this

approach, there was a need for an appropriate query-document dataset. This required

participation of end users. To this end £20,000 of grant funding was obtained from the

Medical Research Council - National Institute for Health Research (MRC-NIHR) Trials

Methodology Research Partnership.

1.3.1 Contributions and Publications

A number of proposed techniques were developed as a consequence of the work presented

in this thesis. Of note are the following:

1. The Open Information Extraction for Knowledge Graph Construction (OIE4KGC)

system for constructing a literature knowledge graph given a corpora of documents

to be included [84].
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2. The Knowledge Graph And BERT Ranking (GRAB-Rank) based on a hybrid docu-

ment embedding updating a literature knowledge graph represented CDD [83].

3. Utilizing a hybrid document embedding for query-resolution based on a combination

of knowledge graph and

A further contribution of the work is the ORRCA CDD document extraction benchmark

data set, which has been made available to the community.

The work presented in this thesis has resulted in a number of publications as follows:

1. Muhammad, I., Coenen, F., Gamble, C., Kearney, A. and Williamson, P. (2020).

Knowledge graph construction using open information extraction. Proc. the 2nd

International Workshop on Machine Learning and Knowledge Graphs (MLKG2020).

This paper presents the OIE4KGC (Open Information Extraction for Knowledge

Graph Construction) approach. Central to the approach is the concept of Open

Information Extraction (OIE), using the established RnnOIE tool. Evaluation was

conducted using the bespoke ORRCA data sets and the benchmark ClauseID; 400

records from each F-scores of 51% and 37% respectively were obtained. This was es-

sentially a proof-of-concept paper indicating the viability of automatically generating

literature knowledge graphs using OIE. This paper presented the first of the above

contributions and has formed the foundation of the material discussed in Chapter 4.

2. Muhammad, I., Coenen, F., Gamble, C., Kearney, A. and Williamson, P. (2020).

Maintaining Curated Document Databases Using a Learning to Rank Model: The

ORRCA Experience. Accepted for publication AI-2020, the 40th Annual Interna-

tional Conference of the British Computer Society’s Specialist Group on Artificial

Intelligence (BCS - SGAI).

This paper described the first of the two mechanisms considered in ths thesis whereby

literature knowledge graph represented CDDs can be updated. The motivation for

the paper was the observation that the updating of CDDs is a labour intensive and

time consuming task and that ML techniques can help to automate the update pro-

cess and reduce the workload involved. More specifically the paper introduced a

technique for the maintenance and updating of CDDs using a learning to rank model.

The approach was evaluated using the ORRCA CDD. Data from the ORRCA origi-

nal systematic review was used to train the learning to rank model, which was then
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tested using the 2015 and 2017 ORRCA updates. The evaluation demonstrated that

significant time resource savings could be made using the proposed approach. The

work included in the paper has provided the foundation for the material presented

in Chapter 5 of this thesis.

3. Muhammad, I., Bollegala, D., Coenen, F., Gamble, C., Kearney, A. and Williamson,

P. (2021). Document Ranking for Curated Document Databases using BERT and

Knowledge Graph Embeddings: Introducing GRAB-Rank. In: Golfarelli M., Wrem-

bel R., Kotsis G., Tjoa A.M. and Khalil I. (Eds), Big Data Analytics and Knowledge

Discovery, Proc. DaWaK 2021, LNCS 12925, Springer, pp116-127.

This paper described the Knowledge Graph and BERT Ranking (GRAB-Rank) ap-

proach for the updating of Curated Document Databases (CDDs). The novel feature

of GRAB-Rank was that it uses a hybrid embedding comprosed of BERT word em-

beddings and knowledge graph concept embedding. Evaluation was presented in the

context of the ORRCA CDD. The work presented in this paper has provided the

foundation for the material presented in Chapter 5 of this thesis.

4. Kearney, A., Roberts, A., Muhammad, I., Gillies. K., Coenen, F., Gamble, C. and

Williamson, P. (2022) Using machine learning to maintain and improve the OR-

RCA resource: Lessons learnt and future considerations Submitted In: International

Clinical Trials Methodology Conference (ICTMC 2022)

This paper highlights the use of machine learning from the perspective of project

management including a brief non-technical overview of the algorithm adopted and

its impact on ORRCA Curated Document Database. The paper also highlights the

challenges and opportunities identified in terms of timing, and resources used along

with the scope of the algorithm.

1.4 Thesis Outline

The rest of this PhD thesis is divided into the following chapters. Chapter 2 provides an

overview on the relevant literature. Chapter 3 then provides an overview of the ORRCA

CDD used throughout this thesis both as a focus and as an evaluation CDD. The generation

of literature knowledge graphs is then considered in Chapter 4, and the OIE4KGC approach

proposed. The work in Chapter 4 is directed at providing an answer to SRQ1. Chapters
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5 then considers the two proposed mechanisms for updating literature knowledge graphs

with a particular focus on document ranking. The work in Chapter 5 is specifically directed

at SRQ2 but also, in part, is directed at SRQ4, SRQ5 and SRQ6. Chapter 6 considers

query based document retrieval in the context of literature knowledge graph represented

CDDs, with a focus on knowledge graph embeddings. The work presented in Chapter 6

is specifically directed at SRQ3, but also covers further aspects of SRQ6. The thesis is

completed with some concluding remarks, a summary of the main finding in the context

of the overriding research question and the related SRQs, and some suggestion for future

work, in Chapter 7.

1.5 Summary

This opening chapter has presented the foundations and motivation for the work presented

in the thesis. The chapter included the research question that the thesis seeks the address,

the adopted research methodology, the main contributions and publication of the research,

and the structure of the remainder of the thesis. In summary, the central idea of the work

presented in this thesis is to research and investigate techniques and methods whereby CDD

literature knowledge graphs can be generated, maintained and queried. The following

chapter provides a literature review covering the relevant previous work related to the

thesis.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a review of existing work relevant to the research presented in this

thesis regarding the use of literature knowledge graphs in the context of Curated Document

Databases (CDD). Literature knowledge graphs are used for the management of scientific

literature. In this context the use of literature knowledge graphs provides two advantages:

1. Efficiency: The use of knowledge graphs is a more efficient and effective mechanism,

with respect to data organisation and consequent data retrieval, than that associated

with more traditional relational database systems.

2. Deep Learning Compatibility: Various deep learning algorithms can be applied

to knowledge graphs for generating knowledge graph embeddings for document re-

trieval and document ranking; algorithms that are not well suited to the relational

database context.

Before considering the background work relevant to this thesis it is appropriate to first

conduct some “scene setting”. It was observed in the introduction to this thesis, that

researchers continually strive to expand our body of knowledge, to continuously push out

the “knowledge envelope”, through a process of scientific research. Scientific research is

an incremental process whereby researchers seek to build on existing knowledge. To do

this, researchers must continuously monitor, and be aware of, existing work in their field.

This awareness is largely obtained from scientific literature; a body of literature that is

10
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continuously being added to. The quantity of scientific literature has increased at a rapid

rate over the last decade; as evidenced in, for example, [56, 81]. Hence the management

of such scientific literature is critical to the scientific community. This management is

typically conducted using Curated Document Databases (CDDs), literature repositories

dedicated to a particular field of study such as the ORRCA CDD considered in this thesis.

The management of CDDs when done manually can prove to be very cumbersome and

resource intensive [58]. One solution, and that advocated in this thesis, is the use of

literature knowledge graphs for the management of CDDs [3, 116]. This literature review

chapter thus commences with a review of knowledge graphs, and literature knowledge

graphs in particular, in Section 2.2.

Three elements to the use of literature knowledge graphs can be identified, each with

related existing research work:

1. Construction: The initial construction of a literature knowledge graph given a text

corpus such as a collection of scientific paper abstracts as in the case of the ORRCA

CDD.

2. Maintenance: The maintenance of the literature knowledge graph as the body

of knowledge continues to expand (in the form of further publication of scientific

papers).

3. Utilisation: The utilisation of the literature knowledge graph given that the aim is

to make it easier for researchers to identify previous work in the form of scientific

papers relevant to their domain of study.

Each of these elements is considered in further detail in Sections 2.3 to 2.5. Section 2.3

considers knowledge graph generation with a particular focus on Open Information Extrac-

tion (OIE) techniques. Section 2.4 considers knowledge graph maintenance with particular

consideration of document ranking techniques to identify documents to be included in an

existing literature knowledge graph. Section 2.5 then gives an overview of document re-

trieval, concentrating on how knowledge graphs can be queried for the purpose of document

retrieval, especially using knowledge graph embeddings. The chapter is completed with

some conclusions and a summary in Section 2.5.3.
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2.2 Knowledge graphs

This section presents a brief review of Knowledge graphs. Well established examples in-

clude Google knowledge graph [122], DBpedia [116], Freebase [9] and YAGO [105]. The idea

of knowledge graphs has revolutionised the domain of information retrieval [73, 129, 147].

A knowledge graph is a graph where the vertices represent concepts and the edges re-

lations between those concepts as presented in Figure 2.1, where we have eight concepts

{c1, c2, c3, c4, c5, c6, c7, c8} and eight relations {r1, r2, r3, r4, r5, r6, r7, r8}. A pair of concepts

and a relation connecting them, is referred to as a relational triple ⟨c1, r, c2⟩ where c1 and

c2 are two concepts belonging to some set of concepts C (c1 ̸= c2), and r is a relation

belonging to some set of relations R. A knowledge graph can therefore be thought of as

a structure for a better organization of data in that it provides for a more effective way

of accessing this data than in the case of more traditional relational database approaches

[3, 48]. There are two kinds of knowledge graphs:

1. Domain Specific Knowledge Graphs

2. Literature Knowledge Graphs

The following two subsections will present a detail overview on the related work relevant

to domain specific and literature knowledge graphs.

2.2.1 Domain Specific Knowledge Graphs

The term domain-specific implies that the data used in the generation of the knowledge

graph is limited to a specialised domain like biology or computer science. The biomedi-

cal domain has a few examples of existing knowledge graphs. One of the earliest works

in the biomedical domain was on the use of rdf-extraction for the generation of domain-

specific knowledge graphs [41]. More recently, the work presented in [107] focused on the

construction of a knowledge graph for the domain of biomedical sciences. Besides the

examples in the biomedical domain, there are also domain-specific knowledge graphs ded-

icated to the field of computer science. A few examples of such domain-specific knowledge

graphs directed at the topic of computer science can be found in [36, 70]. An example

fragment of a domain-specific knowledge graph on the topic of computer science is shown

in Figure 2.2. The figure shows the concepts and relations between the concepts. This

fragment of a knowledge graph, contains two concepts, “Tim Berners Lee” and “www”.
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Both these concepts are related to each other by a directed edge, representing the relation

“has invented”. As mentioned earlier, concepts are real-life objects, also known as entities

and are usually nouns. Relations (shown by edges in the graph) are verbs describing the

relationship between any two concepts (entities).

Figure 2.1: Schematic of a simple Knowledge Graph, {c1, c2, c3, c4, c5, c6, c7, c8} ∈ C and
{r1, r2, r3, r4, r5, r6, r7, r8} ∈ R

Figure 2.2: A schematic diagram for a domain-specific knowledge graph
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2.2.2 Literature knowledge graphs

A literature knowledge graph is a specialised form of knowledge graph. An example frag-

ment of a generic literature knowledge graph is presented in Figure 2.3, whereas a knowl-

edge graph is designed to capture a generic body of information about some real world

domain, a literature knowledge graph is designed to capture information related to a spe-

cialized domain represented by a document collection (document corpus). Another way

of distinguishing between the two is that in a literature knowledge graph some concepts

will reference documents (typically scientific research papers) whilst a general knowledge

graph will only reference concepts of various kinds. A literature knowledge graph will

thus also feature relations linking document with concepts. The fragment of a literature

knowledge graph shown in Figure 2.3 features four documents {d1, d2, d3, d4}, four concepts

{c1, c2, c3, c4} and eight relations {r1, r2, r3, r4, r5, r6, r7, r8}.

Figure 2.3: Schematic of a simple Literature Knowledge Graph, {d1, d2, d3, d4} ∈ D,
{c1, c2, c3, c4, c5, c6, c7, c8} ∈ C and {r1, r2, r3, r4, r5, r6, r7, r8} ∈ R

The first example of a literature knowledge graph is that used within Semantic Scholar

as presented in [3]. Another widely-used literature knowledge graph was created by Mi-

crosoft; the literature knowledge graph in this case comprised author vertices, concept

vertices, paper vertices and edges connecting them [35]. Semantic scholar and Microsoft’s

literature knowledge graphs contain documents from all kinds of specialized domains. Some

other examples of literature knowledge graphs include Bio2RDF [5] and MeSH [72]. Bio2RF

is some of the widely used literature knowledge graphs in life sciences in the context of

Human Immunodeficiency Virus (HIV) [90]. MeSH is a literature knowledge graph which
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contains knowledge on subject indexing and a search facility for books or journals in life

sciences [72]. It was produced by National Library of Medicine (NLM) and is used by

many applications. Other examples can be found within the biomedical and life sciences

domain where literature knowledge graphs have been used to combine multiple kinds of

life sciences data [115]. In [55] the generation of an Ebola literature knowledge graph was

described.

2.3 Literature Knowledge Graph Construction

The construction of literature knowledge graphs entails two main challenges:

1. The process for identifying concept entities and relations within a given corpus of

scientific texts.

2. The nature of the specific domains that CDDs are directed at, where the vocabulary

can be extensive and feature semantic variations and interpretations of concepts used

in common parlance.

One of the technologies used to address the above two challenges, and that adopted

with respect to the work described in this thesis, is Open Information Extraction (OIE).

Broadly, OIE is the process of generating a machine-readable structure for the information

contained in a body text and (typically) representing this information as a set of triples

expressed using the Resource Description Framework (RDF). Note that RDF is a standard

model for data interchange, particularly in the context of the semantic web. OIE, in the

context of knowledge graph construction, is typically used to extract the required concepts

and relations from sentences in a given a corpus of documents [119]. Two concepts linked

by a relation are called the subject and object arguments, and the relation is the predicate.

Thus we have triples of the form:

⟨subject, predicate, object⟩ (2.1)

The OIE techniques used for the generation of knowledge graphs, can be categorised as

being either rule-based or supervised [31]. The categories for open information extraction

have been adopted from the work in [86]. Both are considered in further detail in the

following two sub-sections.
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2.3.1 Rule-based OIE for knowledge graph construction

Rule-based OIE techniques use a set of rules for the extraction of concepts and relations,

given a corpus of documents [128]. These rules are hand-crafted according to a pre-defined

set of target relations along with associated extraction patterns. Well-known examples

of rules-based OIE tools include Predpatt [128] and REVERB [32]. PredPratt made use

of a set of non-lexicalised rules, defined over universal dependency parses for generating

predicate-argument structures. REVERB is what is described as a “shallow extractor” and

was particularly focused on avoiding uninformative and incoherant extractions. The ad-

vantage offered by rules-based OIE is that no training data is required. The disadvantages

are: (i) the resource required to hand-craft the rules which, (ii) usually requires domain

experts, and (iii) that the rules will only work with the identified relations. The rule-based

approaches for OIE was therefore deemed inappropriate for the clinical trials knowledge

graph generation application considered in this thesis.

2.3.2 Supervised OIE for Knowledge graph construction

The second type of OIE technique is supervised OIE, also referred to as “learning-based”

techniques, where a a training dataset, with labelled entities and relations, is used to

train (learn) a model that can be used to automatically identify relations and concepts

in previously unseen text [119]. Examples where supervised OIE has been used for entity

and relation extraction can be found in [137, 141, 126]. One of the first examples of a

supervised OIE model used for extracting relational triples was TextRunner [141]. The

process of using TextRunner, for the generation of triples, starts with a small sample of

sentences first parsed using Penn TreeBank and then a dependency tree parser is used

for the identification of a set of positive and negative labelled “extractions” (training

examples). In [126] an OIE technique that relied on a bootstrapping process based on a

wikipedia dataset was described. In [137] the idea of a supervised OIE process was discussed

that starts with a very small set of seed facts and then learns more relations with the help

of distant supervision. The disadvantage of supervised OIE over unsupervised OIE is the

requirement for training data which, typically, has to be hand-crafted by domain experts

and thus presents a significant resource overhead. The advantage of Supervised OIE over

Unsupervised OIE is that the relations and entities of interest do not need to be predefined

hence it is often more effective than unsupervised OIE [119]. A further advantage is

that pre-trained OIE models are available. One such model is the RnnOIE model [119].
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RnnOIE1 was generated using deep-learning applied to the OIE2016 dataset. The reported

evaluation of RnnOIE [119], demonstrated that it was able to outperform many information

extraction benchmarks. Thus, given the foregoing, for the literature knowledge graph

construction process proposed later in this thesis (see Chapter 4), supervised OIE was

adopted using the RnnOIE pre-trained OIE model.

2.4 Literature Knowledge Graph Maintenance

As noted in the introduction to this literature review chapter, an essential element of CDDs

realised using literature knowledge graphs is the requirement that they are maintained so

that they remain useful to the particular communities which they were intended to serve.

Given a collection of candidate documents D we wish to select a subset U ⊂ D to be

included in our CDD. We can conceive of a number of ways that this might be achieved

including manual review. Manual review of documents is a labour intensive and time

consuming task. The idea advocated in this thesis is to rank the documents in D and then

select the top k to form U . The questions are then:

1. What is an appropriate document ranking mechanism to be adopted?

2. What is an appropriate value for k?

Document ranking is frequently referred to as a score and sort problem. As the name

implies, it means listing documents in decreasing order of relevance. Clearly, we wish to

automate the ranking process. One way of doing this is to learn a document ranking model,

a process frequently referred to as Learning To Rank (LETOR). LETOR models, as the

name applies, “learn” a document ranking model given a training set of documents and

relevance labels. The discussion on maintaining CDDs presented here is therefore focused

on an in-depth review of existing work directed at various kinds of techniques for document

ranking, highlighting techniques that increase the effectiveness and efficiency of document

ranking. With respect to the work presented in this thesis it should be noted that document

ranking also has a role to play with respect to search query resolution whereby potential

query responses are listed in order of relevance and the top k returned [91, 4].

Document ranking models can best be categorised according to their adopted docu-

ment representation. The simplest, “traditional”, approach to document representation

1https://github.com/gabrielStanovsky/supervised-oie
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for document ranking is to use statistical measures, such as the frequency of occurrence

of selected terms in D [82]. A review of such statistical-based approaches to document

representation for document ranking is given in Sub-section 2.4.1 below. The disadvan-

tage of these statistical-based approaches is that they tend to fail to capture the different

semantic meanings that can be attached to the selected terms. An alternative document

representation method for document ranking, considered more effective than statistical-

based document representation, is semantic representation [16, 95]. Semantic document

ranking models are discussed in further detail in Sub-section 2.4.2. A further alternative,

and that of particular relevance with respect to the work presented in is thesis, is knowl-

edge graph embedding for document ranking. This third alternative is discussed in further

detail in Sub-section 2.4.3.

2.4.1 Statistical Document Representation for Ranking Models for Up-

dating Literature Knowledge Graphs

Statistical (traditional) document ranking techniques rely on statistical features such as the

frequency of words in documents. There are various kinds of document representations that

have been used with respect to statistical approaches to ranking, but the frequently used

is the Vector Space Model (VSM) [63]. In a VSM, each dimension represents an attribute

associated with the document corpus of interest. Typically, each attribute represents a

word or phrase that exists within the document collection. The associated value may be

a frequency count, or some kind of weighting, for the word or phrase in question. Term

Frequency Inverse Document Frequency (TF/IDF) and Okapi BM25 are popular options

here [51]. Each document is thus described by a set of attribute values which serve to

locate the document within a multidimensional space. In other words, each document is

described by a vector. Using a VSM, a document collection is thus represented by a set

of vectors. A disadvantage of the use of VSMs is that they can get very large, given a

significant number of attributes and/or a large number of documents, in which case they

become computationally cumbersome.

An alternative to a VSM is a Statistical Language Model (SLM). SLMs are defined

in terms of the probabilistic distribution of words in a given document corpus. SLMs can

therefore be used to give estimates about the relevance of a document in terms of document

ranking [74]. Various criteria can be used for the ranking such as Kullback-Leibler (KL)

divergence or Maximum Mutual Information.
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Regardless of whether a VSM or a SLM is used, traditional, statistically-based, docu-

ment representations for document ranking have shown good performance in the context of

document ranking as evidenced by the encouraging results that have been reported using

the datasets provided for text retrieval competitions run as part of the annual Text Re-

trieval Conference (TREC) [96]. However, the principal disadvantage of these traditional

approaches is that they take no account of the context of words or phrases. Semantic doc-

ument representation for ranking models, as discussed in the following sub-section, have

attempted to address this disadvantage.

2.4.2 Semantic Document Representation for Ranking Models for Up-

dating Literature Knowledge Graphs

As the name implies, the representations used by semantic document ranking models cap-

ture the meaning behind the relevant terms in a document. Statistical and document

representations, notably VSM and SLM, assume each term is independent of its neigh-

bouring terms, whereas semantic document representations for ranking models take into

account the context of a term with respect to its surrounding terms, in other words the

“semantic” context associated with each term. The distinction can be demonstrated by

considering the word “bank”; using a semantic context representation this would comprise

a number of vectors depending on the context of the word “bank”, either as:

1. An organisation for investing and borrowing money

2. The side of a river or lake

3. A long heap of some substance

4. The process of heaping up some substance

5. The process of causing a vehicle to tilt to negotiate a corner

Using a statistical non-contextualised representation the word “bank” would be repre-

sented using a single vector regardless of context, whereas a contextualized representation

of the word “bank” would represent multiple contexts in a single vector. Such a vector is

referred to as a word embedding. Prior work [16, 88, 144] suggests that contextualized rep-

resentations, as opposed to statistical representations, are of great importance for effective

and efficient document ranking. A frequently cited example of a document ranking model
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that used word embeddings to represent documents is ConvKNRM [16]. ConvKNRM is a

convolution neural network together with a contextual word representation. Similar work

described in [78] used a recurrent neural network. Both of these approaches, and similar

approaches, were limited by the requirement for training data. It can be difficult to obtain

large amounts of high-quality training data [144], hence recent work has been directed at

using pre-trained contextualized term representations for document ranking. The idea is to

reuse an existing pre-trained contextual model to generate a word embedding for a given

corpus. A popular choice of pre-trained contextual model is the Bidirectional Encoder

Representations from Transformer (BERT) model. BERT has been widely adopted for

generating word and sentence embeddings. Note that BERT was generated using neural

networks that considers the context of a target word using the neighbouring words in a

large corpora. BERT has been used with respect to many downstream natural language

processing tasks including document ranking [88, 136]. BERT is also used extensively with

respect to Google translation, to give another example of its application [21]. An alter-

native pre-trained contextual model that can be used to generate word embeddings is the

Embeddings Language Model (ELMo) [100]. This model is based on deeply contextualized

word embeddings generated from Language Models (LMs). The difference between BERT

and ELMo is that BERT features a transformer-based architecture whereas ELMo uses

a Long Short Term Memory (LSTM) Language model. BERT is Bi-directional, whilst

ELMo is semi-bidirectional. BERT relies on a “self-attention” mechanism which gives it

the advantage of producing superior word embeddings compared to other models. Self-

attention in this context refers to the quantification of the influence that neighbouring

terms have on a term under consideration. Language models, such as BERT, that use

self-attention mechanisms, are referred to as transformer models. A further advantage of

transformer models, such as BERT, with respect to LSTM models such as ELMo, is that

transformer models can make use of parallel processing in that attention calculations can

be conducted in parallel before calculating the output. This other an efficiency advantage.

For the work presented later in this thesis BERT was adopted with respect to one of the

proposed literature knowledge graph updating approaches (see Chapter 4).
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2.4.3 Knowledge Graph Embedding Representation for Ranking Models

for Updating Literature Knowledge Graphs

The third category of representation for document ranking models considered in this section

is the knowledge graph embedding representation [135]. The idea is to utilize the entities

from a knowledge graph to form an embedding representation [18, 66, 133, 134, 136]. It

has been shown that document ranking models can be improved significantly by using

knowledge graph entities and their attributes [71, 133]. Examples of recent work directed

at using knowledge graphs for document ranking include the entity-based language models

described in [67][73][136]. Another example of existing work that has demonstrated the

effectiveness of knowledge graph based document ranking can be found in [4].

Literature knowledge graphs can be utilized in various forms to provide a knowledge

source for improving the effectiveness and efficiency of document ranking over alternative

statistical and contextual approaches. Many well-known knowledge graphs are publicly

available and their entities can be used to annotate documents. Given a document corpus

this can be represented using the entities in a given knowledge graph by identifying similar

entities in the documents. The knowledge graph entities have links to other vertices in

the knowledge graph and these can thus be used to provide context with respect to the

similar entities identified in the document corpus. A process referred to as entity feature

expansion. Entity feature expansion has been used for learning to rank applications as in

[18].

Examples from the literature where knowledge graph embedding have been used to

represent documents can be found in [26, 71, 136]. In [71] a “latent space model” was

proposed for unsupervised document retrieval where rankings of documents was based

on their textual similarities with entities in a knowledge graph. A similar model, called

EsdRank, is described in [132] that uses connections between knowledge graph entities

as features from which to learn a ranking model. In [104] a knowledge graph embedding

representations was also used in the context of unsupervised document retrieval. In [26] an

entity-based model called the Semantics-Enabled Language Model (SELM) was proposed

founded on a knowledge graph entity-based document representation. A unique example

of combining word embeddings and entity embeddings for document representation can be

found in [73] where the authors used a hybrid embedding model to represent documents

for document ranking.
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2.5 Literature knowledge graph query resolution

The motivation for using literature knowledge graphs, as already noted, is the desire to

provide an efficient mechanism to support researchers in a particular domain. The ability to

query a literature knowledge graph is therefore of paramount importance. The advantage

offered by knowledge graphs is that their usage speeds up the process of query resolution

and consequently information retrieval [129, 18]. Therefore, in the context of the literature

review presented in this chapter, the third research area of interest is the querying of

literature knowledge graphs for document retrieval.

Knowledge graphs can be queried in a variety of ways. One way is to use a query

language of some kind such as such as SPARQL. However, the use of such query languages

requires, on behalf of the user, a comprehensive understanding of the nature of the adopted

data model. This drawback has led to the development of query-resolution (QR) systems,

also known as Query-Answer systems that enable end-users to express their information

needs in natural language [17, 22].

In the context of literature knowledge graphs the focus is on document retrieval, rather

than more generic forms of information retrieval. Given a query, the aim is to return

a set of documents that match the query. The idea of document ranking therefore also

seems to be applicable here. Given a query, documents can be ranked according to their

similarity with the content of the query. Document ranking was discussed in the context

of literature knowledge graph updating in the previous section where document ranking

techniques were categorised as being either:

1. Statistical-based (traditional)

2. Semantic-based

3. Knowledge graph based

In the foregoing the disadvantages of statistical-based approaches was made clear;

their inability to take context into account which in turn tended to limit their accuracy.

Statistical-based approaches are therefore not discussed further here. The remainder of

this section considers semantic-based and knowledge graph-based approaches to literature

knowledge graph query resolution in the following two sub-sections.
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2.5.1 Semantic Document Ranking Models for Literature Knowledge

Graph Query Resolution

The first category of query-resolution system that might be viable in the context of litera-

ture knowledge graph is semantic document ranking models. Semantic document ranking

models for query-resolution system are based on semantic word embeddings [12, 29]. A

general criticism of semantic query resolution models is that they tend to feature lower

precision and recall in comparison to knowledge graph embeddings based query resolution

methods for document retrieval [110, 18, 73] as considered in the following sub-section.

Hence the idea of semantic QA models was not adopted in the context of the query reso-

lution mechanism for literature knowledge graphs presented later in this thesis.

2.5.2 Knowledge Graph Document Ranking Models for Literature Knowl-

edge Graph Query Resolution

The second category query resolution approach whereby literature knowledge graphs can

be queried is the knowledge graph embedding approach. Knowledge graph embeddings

have already been discussed earlier in this chapter, examples from the literature that pro-

mote the ideas of representing queries and documents using knowledge graph embeddings,

in the context of QA systems, can be found in [17, 28, 43, 71, 136, 138]. In [138] one

of the earliest QA systems that used knowledge graph embeddings was proposed. Natu-

ral language questions were mapped to knowledge graph entities using a structured query

construction process. Low-dimensional embeddings of n-grams, entity types, and predi-

cates were simultaneously learned from an existing knowledge graph with weak supervision.

These generated embeddings were used to measure the semantic associations between lexi-

cal phrases, and entity types and logical predicate. The reported evaluation demonstrated

that the proposed model outperformed three Knowledge Base QA (KB-QA) baseline sys-

tems. This shows the effectiveness of using knowledge graph embeddings in representing

questions/queries in a QA system. In [71] a knowledge graph embedding for query based

document retrieval and document ranking was proposed directed at Semantic Scholar, an

AI supported search engine for academic papers developed by the Allen Institute for Ar-

tificial Intelligence [135]. In [136] the Entity-Duet Neural Ranking Model (EDRM) was

proposed founded on a neural entity embedding-based search technique. The reported

evaluation indicated the effectiveness of using entity embeddings generated using neural

networks. In [28] a similar approach was described, using a knowledge graph and a corpus
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of documents, to produce ranking scores for the top-k relevant textual passages for a given

set of entities. Again, the reported evaluation demonstrated the effectiveness of entity

embeddings. Models based on entities were also explored in [43] where entities represent

knowledge graph concept mentions, either within queries or documents. Similar signifi-

cant work directed at the use knowledge graph embeddings for document retrieval can be

found in [28, 71, 136]. The main advantage of utilizing the entities held in a knowledge

graph is that they provide a relatively simple means for matching queries to documents

[40]. A knowledge graph embedding representation was therefore adopted with respect to

the work presented in this thesis. Partly because of its superior performance to semantic

representations as discussed above, and partly because it seemed a natural choice given

the scope of the thesis were the predetermined focus was CDDs represented as literature

knowledge graphs.

2.5.3 Summary

The central idea of the work presented in this thesis is to research and investigate techniques

and methods whereby CDD literature knowledge graphs can be generated, maintained and

queried. This chapter has presented a literature review of the relevant work that underpins

the work presented in this thesis. The literature review was divided into three research

areas:

1. Knowledge Graph Construction

2. Knowledge Graph Maintenance

3. Knowledge Graph Utilisation

The chapter thus included review of the relevant literature on generating knowledge graphs,

updating CDDs using document ranking and the querying of knowledge graphs. In the

next chapter, evaluation dataset used with respect to this evaluations reported in Chapter

4, 5 and 6 is discussed.
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Evaluation Dataset

3.1 Introduction

A fundamental requirement for any machine learning technique, is the availability of data

sets from which a specific model can be trained and then tested; so called training and

test datasets. The work presented in this PhD is directed at Curated Document Databases

(CDDs) represented as literature knowledge graphs. More particularly, as noted earlier,

the reported research is directed at three research areas:

1. Literature knowledge graph generation

2. Literature knowledge graph updating using learning to rank models

3. Literature knowledge graph querying

For many application domains involving knowledge graphs in general, and literature

knowledge graphs in particular, many benchmark datasets are readily available, but this is

not the case (at least at time of writing) with respect to CDD literature knowledge graphs

of concern with respect to this thesis. Therefore, to act as a focus for the work presented,

a specific CDD was considered; namely the Online Resource for Research in Clinical trials

(ORRCA) CDD which was produced as a result of the ORRCA research project directed

at recruitment strategies clinical trials [58]. This provided the additional benefit that the

team of experts, from the Department of Bio-statistics at the University of Liverpool in

the UK, who established the dataset, were readily available to assist and advise the author

of this thesis. The ORRCA dataset is used throughout this thesis for both illustrative and
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evaluation purposes. This short chapter therefore provides an overview of the ORRCA

project and the three ORRCA datasets considered in this thesis. The chapter commences,

Section 3.2, with a presentation of the background to ORRCA. The chapter then goes on,

Section 3.3, to provide a comprehensive overview of three ORRCA datasets collected to

support the work presented in this thesis. The chapter is concluded, Section 3.4, with a

short summary of the contents of the chapter.

3.2 Background to ORRCA

As noted on the introduction to this thesis, the amount of available scientific literature has

increased at a rapid rate over the past decade. There is therefore a need to manage this

literature in an efficient and effective manner. As also noted in the introduction to this

thesis, for the management of scientific literature one solution is the use of CDDs. ORRCA

is an example of such a CDD. The ORRCA CDD was created as part of the ORRCA project

[58] whose stated aim was to “to bring together published and ongoing work in the field

of recruitment and retention research into a searchable database”1. The result was the

ORRCA CDD; a collection of abstracts concerned with the highly specialised domain of

recruitment and retention strategies for clinical trials. The ORRCA CDD was designed

to help clinical trialists, and clinical trials scientific researchers, to identify interventions

relevant to specific recruitment and retention challenges. Currently there exists a significant

ORRCA international community. The ORRCA project was initially funded by the Trials

Methodological Research Partnership (TMRP). The ongoing maintenance of the ORRCA

CDD is supported by the Trial Conduct Working group within TMRP.

Most of the manual work of identifying relevant documents for inclusion in the ORRCA

CDD is currently done by a team of experts. Each person in this team can also be referred

to as an annotator, annotating each article for inclusion or exclusion in the ORRCA CDD.

The specialized domain experts need to have inter-annotator agreement when reading and

flagging each document for inclusion or exclusion in a CDD. A two-stage process, referred

to as the structured review process, is employed to screen records and identify relevant

articles. In Stage 1 the title and abstract of each scientific document to be considered are

analysed, by the team of experts, and a “long list” constructed of eligibility documents for

inclusion in the CDD. In Stage 2 the team of experts process the long list by reading the

1https://www.orrca.org.uk/
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full texts of each scientific document in the long list, and deciding whether each text should

be included in the CDD or not. In the case of the ORRCA CDD the main criterion for

inclusion was that the documents to be included should reference an applied methodology

for determining which outcome domains should be measured in a clinical trial or other

forms of health research. The inclusion and exclusion criteria are described in more detail

in [42]. The ORRCA database was first set up in 2014. It has been subsequently updated in

2015 and 2017 using the structure review process described above, However, the structured

review process is very resource intensive. The automation, or a least partial automation,

of the process would therefore be of great benefit. There is no such automation technique

available at present that can make the curation and maintenance of CDDs more efficient.

The desire to address this overhead was the main motivation for the work presented in this

thesis.

Facilitating researchers with reduction in workload and time can be done using machine

learning as discussed earlier. A huge number of datasets were publicly available for this

PhD; but none of these datasets were annotated as per the requirements of recruitment

research for clinical trials. Hence, it was necessary to address the challenge of curating a

dataset and asking a team of experts to label a dataset of clinical trial documents.

3.3 Review of ORRCA Datasets

This section presents an overview of the three ORRCA datasets used for training and

testing with respect to the research presented in this thesis. This dataset was collated by

a team of experts within the Department of Bio-statistics, at The University of Liverpool,

who collaborated with the author of this thesis. The raw dataset consisted of multiple

features including abstract, title, ISBN, journal name and keywords. In the context of the

work presented in this thesis, the generation of CDD literature knowledge graphs, and the

maintenance and querying of such knowledge graphs, only the abstract and title of each

scientific document was required.

The first of the three datasets consisted of the original curated database collected in

2014 and is referred to as the Pre-2015 ORRCA dataset. For machine learning training

purpose all three datasets needed to have both negative and positive examples. A positive

example in this case was defined as a “relevant” abstracts and a negative example as a

“not relevant” abstracts. CDDs do not, by definition, contain negative examples. Hence,

the pre-2015 ORRCA dataset had to be augmented with negative examples. The negative
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Table 3.1: Statistical overview of the ORRCA evaluation data sets

Database Name
Positive Examples Negative Examples

Total
Num. % Num. %

Pre-2015 Dataset 4570 8.2 51460 91.8 56030
ORRCA 2015 Update Dataset 1302 11.7 9797 88.3 11099
ORRCA 2017 Update Dataset 1027 7.1 13458 92.9 14485

examples were obtained by a member in the team at the Bio-statistic’s Department at the

University of Liverpool. Once the ORRCA CDD was established, two updates were un-

dertaken by the Bio-statistics team in 2015 and 2017. The 2015 and 2017 update datasets

comprised both positive and negative examples. These update datasets were collected

from a combination of searches over public databases like Medline and Scopus [11, 13].

The datasets were all initially stored using EndNote2, a commercial reference management

software system, designed for the management of bibliographies and references when writ-

ing reports, papers and articles. EndNote allows data to be exported in Comma Separated

Variable (CSV) format, this was the format used with respect to the work presented in this

thesis. Some statistics concerning the three ORRCA evaluation datasets are given in Table

3.1. From the table it can be seen that the number of negative examples was significantly

larger than the number of positive examples by an approximate ratio of 1 : 10. The evalu-

ation datasets were clearly highly unbalanced. To mitigate against this, certain weighting

techniques were used and implemented from the sklearn python library3 with respect to

the machine learning techniques presented later in this thesis (see Chapter 4). The 2015

update dataset was used for training and 2017 was used for testing on the suggestion of

the domain experts from the department of bio-statistics university of Liverpool. All of

the datasets were pre-processed according the knowledge graph generation and updating

approaches proposed in Chapter 4 and Chapter 5.

3.4 Summary

This short chapter has provided an overview of the three ORRCA datasets used with

respect to the work presented in this thesis: (i) the Pre-2015 Dataset, (ii) the 2015 Update

2https://endnote.com
3Sklearn is a python based machine learning library.
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Dataset and (iii) the 2017 Update Dataset. The chapter commenced by giving an overview

of the ORRCA project, and then went to consider the three datasets in more detail. In

the following chapter, the generation of literature knowledge graphs will be covered.



Chapter 4

Knowledge Graph Generation

4.1 Introduction

In Chapter 1 it was noted that document knowledge graphs provide for a better organi-

sation of data compared to more traditional relational data storage approaches; a better

organisation which consequently provides for more effective query resolution than was pre-

viously obtainable. Recall also that a literature knowledge graph is a graph where the

vertices represent concepts and documents. Concepts are phrases representing real-life

ideas. These concepts are linked to documents and other concepts in the knowledge graph

by edges. Edges linking concepts to one another represent directional relations, concepts

linked to documents are also directional relations.

Literature knowledge graphs can be generated manually from scratch by human ex-

perts, however this requires a considerable amount of human resource, as evidenced by

the experience gained with respect to the ORRCA CDD [91, 58]. In many cases, and the

ORRCA CDD is a good example, the documents that we wish to include in a literature

knowledge graph are already available in a computer readable form. Thus it would be

of great benefit if a CDD held in a relational format could be automatically translated

into a Knowledge graph format; this is the central theme of this chapter. To this end the

Open Information Extraction for Knowledge Graph Construction OIE4KGC approach,

designed to automate the document knowledge graph generation process (given a corpus

of documents), is presented in this chapter. The work presented is also designed to address

Subsidiary Research Question 1 from Chapter 1:

SQ 1: Given a collection of documents within a CDD, represented using traditional

30
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relational database technology, how can these best be processed so that they form a

literature knowledge graph?

The challenge here is: (i) how best to identify the concepts contained in the documents

so that these can be encapsulated as concept vertices within the knowledge graph, and

(ii) how to identify the linkages between concepts. Note that with respect to the first it is

assumed that we do not have a predefined set of concepts; this is certainly the case with

respect to the ORRCA exemplar domain considered in this thesis. The above challenges

are compounded by the fact that the documents, however they are stored, will be unstruc-

tured. Some structure therefore needs to be imposed on the document collection. The idea

presented in this chapter is therefore to use an Open Information Extraction (OIE) model

[20, 77] whereby content can be expressed as a set of machine-readable Subject Predicate

Object (SPO) triples of the form:

⟨as, r, ao⟩

where as, r and ao are phrases, and as is the subject argument, ao is the object argument

and r is a predicate (relation) between them. In the context of literature knowledge graph

generation this is useful because the subject and object can be considered to represent

a pair of concept vertices, and the predicate as a directional edge describing the relation

linking the subject and object. This makes OIE models ideal for generating knowledge

graphs from free text documents.

OIE models can be generated from scratch, but it is more convenient to use a pre-

trained, “off-the-shelf”, model provided that the application domain under consideration

is not too specific. There are a number of pre-trained OIE models available [34, 119]. Two

are considered with respect to the work presented in this chapter:

1. The Recurrent Neural Network OIE (RnnOIE) model [119]

2. LeoLani Triple Extraction Tool [124]

The remainder of this chapter is organised as follows. Section 4.2 presents a formalism

of the knowledge graph generation problem considered in this chapter. Section 4.3 presents

the proposed OIE4KGC approach. This is followed by an evaluation of the results obtained,

from experiments conducted using the proposed approach, in Section 4.4. The chapter is

completed with a set of concluding remarks in Section 4.5. To aid understanding of the

material presented in this chapter the symbols used are presented in Table 4.1.
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Symbol Symbol Definition

G A literature knowledge graph

V A set of Vertices in a knowledge graph

E A set of Edges in a knowledge graph

D A set of n documents where D = {D1, . . . , Dn}
S A set of sentences where S = {S1, . . . , Sm}
T A set of triples

as Subject argument in a triple

ao Object argument in a triple

r A predicate (relation) between as and ao in a triple

Table 4.1: Symbol table for Chapter 4

4.2 Problem Definition

The objective of the work presented in this chapter is, given a document corpus D, to

construct a literature knowledge graph G = {V,E} where V is a set of vertices and E

is a set of Edges. The vertices in the set V represent either documents (abstracts) or

concepts. The edges in the set E represent relationships between documents and concepts,

or concepts and concepts. The assumption is that the corpus D comprises n documents

such that D = {D1, . . . , Dn}. Each document in the corpus consists of m sentences. The

set of sentences for a document Di ∈ D is given by S = {S1, . . . , Sm}. In order to generate

the desired literature knowledge graph the start point is to iteratively extract triples from

the sentences in each document Di ∈ D, using an OIE tool of some kind, and store these

as a set of triples T = {T1, T2, . . . }. As noted above, the triples to be extracted were of

the form ⟨as, r, ao⟩, where as is the subject argument, ao is the object argument and r

is a predicate; each is represented by a string. The set T is then pruned so that it only

comprises those triples with most frequently occurring arguments. It is to be noted that

in order for a triple to be complete, it should have both subject and object arguments.

Note that a list is also maintained of which triples occur in which document. The triples in

the pruned set T thus define pairs of concept vertices in the desired literature knowledge

graph. Note that, given the above, every concept vertex will be linked to at least one

other concept vertex using a directed edge. It should also be noted that each vertex in the

literature knowledge graph will be unique, be it a document or a concept. There cannot be

two documents with the same title, nor can there be two concepts described by the same

phrase.
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4.3 The Open Information Extraction For Knowledge Graph

Generation (OIE4KGC) Approach

This section provides an overview of the proposed OIE4KGC approach. The approach

operates by processing each document D = {D1, D2, . . . } in turn. A schematic of the

workflow whereby a single document Di ∈ D is processed is given in Figure 4.1. For

illustrative purposes a sentence, chosen at random from the ORRCA corpus, is included

in the figure; in practice this would be an abstract or a document. From the figure it can

be seen that there are four stages that are sequentially applied to D:

• Triple Extraction: The extraction of a set of triples T = {T1, T2, . . . }, using an OIE

technique. Triples are extracted from each of the sentences in each of the documents

in D.

• Triple Filtering: The filtering of the set T to give an updated set T.

• Concept Linking: The identification of subject and/or object arguments that define

a concept.

• Knowledge Graph Population: The population of Neo4j database with concepts from

the previous stages and documents

The more detailed content of Figure 4.1 will be made clear later in this section. The

top-level OIE4KGC algorithm is given by the psuedo code shown in Algorithm 1. The

input to the algorithm is a document corpus D and the output is a literature knowledge

graph G. The algorithm commences, line 2, by creating a lexicon of the k most frequently

occurring nouns in D. For the evaluation presented later in this chapter k = 1000 was used

as it was deemed appropriate to selected a value of k, that was suited to the vocabulary

of ORRCA domain. This value of k should be neither too small or too large. A small

value of k would have meant that only a very few concepts were included in the literature

knowledge graph. A large value with too many concepts would be included many of whom

would not be sufficiently distinctive. A document corpus D is then processed document

by document. For each document Di ∈ D a vertex in G is created (line 4). Next a set S is

created (line 5) comprised of the sentences in Di. The Spacy sentence extraction tool1 was

used for this purpose, but other appropriate tools could have been used instead. Spacy

1https://spacy.io/
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Figure 4.1: A Schematic showing the document processing stages involved in the construc-
tion of a literature knowledge graph using the OIE4KGC approach
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is a free open-source library for Natural Language Processing. It includes features like

Named Entity Recognition (NER), POS tagging and dependency parsing. The set S is

then processed sentence by sentence and the triples extracted (OIE4KGC Stage 1). The

triples for the current sentence are then processed (lines 9 to 13). First noun chunking is

applied (line 10) so as to convert longer noun phrases into shorter ones and also to remove

anything that is not a noun because subject and object arguments in each triple should

have atleast one noun in them.

Filtering (OIE4KGC Stage 2) is then applied (line 11) using the nouns held in the

lexicon L created earlier. Concept linking is then applied (OIE4KGC Stage 3). For the

ORRCA domain this involved assigning Concept Unique Identifiers (CUIs) taken from the

Unified Medical Language System (UMLS)[8]; but for other domains alternative resources

would need to be employed. The set of triples T is then incorporated into G (OIE4KGC

Stage 4). This includes adding edges to relevant documents. Each of the four component

stages are described in further detail in the following four sub-sections, Sub-sections 4.3.1

to 4.3.4.

Algorithm 1 OIE4KGC Pseudocode

1: Input D, Output G
2: L = Lexicon of most frequently occurring words in D
3: for ∀D1 ∈ D do
4: G = G plus vertex representing Di

5: S =Set of Sentences in Di

6: T = ∅ (Set to hold triples)
7: for ∀Sj ∈ S do
8: T = Set of triples in Si ▷ Stage 1
9: for ∀ti ∈ T do where ti = ⟨as, r, ao⟩

10: ti = ti with noun chunking applied
11: ti = ti filtered using L ▷ Stage 2
12: ti = ti annotated with relevant concept links ▷ Stage 3
13: end for
14: end for
15: G = G incorporating content of T ▷ Stage 4
16: end for
17: Exit with G



36

4.3.1 Triple Extraction (OIE4KGC Stage 1)

From Figure 4.1 the first stage in the proposed OIE4KGC process is triple extraction; line 8

of Algorithm 1. Figure 4.1 includes a set of three triples extracted from the example input

(taken from the ORRCA domain). The first triple is ⟨the objective of this study, determine,

cardiovascular risk factors among men⟩, where determine is the relation (predicate), and

the objective of this study and cardiovascular risk factors among men are its arguments.

There are many learning-based and rule-based information extraction systems that

can be used for the extraction of triples. However such tools are not suitable for domain

specific cases [7, 33]. For the OIE4KGC approach presented here an OIE approach was

therefore adopted. OIE models are designed to address sequence labelling problems [119].

Sequence labelling is a supervised machine learning pattern recognition application domain

that involves assigning a categorical label to each member of a sequence of values.

Figure 4.2: A schematic diagram for a predicate-argument sequence labelling problem

The particular sequence labelling problem of interest with respect to the proposed

OIE4KGC approach is argument/predicate tagging, where the goal is to label the phrases

in a sentence as either arguments, or predicates linking the arguments. This is illustrated

in Figure 4.2. In the figure the sentence “The objective of this study is to determine

cardiovascular risk factors among men” is considered. The sentence is conceptualised as

a sequence. The phrase “determine” is identified as a predicate (relationship) and the

pre-fix and post-fix phrases to the predicate identified as arguments, namely the subject

and object of the relationship. In the context of the OIE4KGC approach the arguments

are considered to be concepts to be potentially included as vertices in the final literature

knowledge graph to be generated. It is recommended here that OIE tools founded on

a pre-trained model should be adopted, because of the resource that would otherwise be

requested. For the evaluation presented later in this chapter two OIE tools were considered:



Chapter 4. Knowledge Graph Generation 37

1. RnnOIE. The RnnOIE tool was introduced in [119] and is a triple extraction tool

based on a Bi-LSTM transducer originally designed to address sequence labelling

problems. The Bi-LSTM transducer used has 3 layers. Each LSTM cell comprises

128 hidden units and a linear rectifier (ReLU) activation function.

2. Leolani. The Leolani Triple Extraction tool was introduced in [124] to generate

triples, given an input sentence, and is based on the idea of context free grammar

parsing.

The RnnOIE pre-trained triple extraction tool was selected because:

1. Triple extraction conducted using rule-based OIE tools and context-free grammars

based tools, for example as described in [7, 33], are incomplete. A triple is incomplete

when it doesn’t contain both the subject and object arguments.

2. RnnOIE was one of the first tools that was trained on a hand-labelled dataset (for

triple extraction) and can be adapted to domain-specific settings using a “transfer-

learning” process [119]. An in-built feature in Pytorch was used for optimization of

RnnOIE.

The Leolani triple extraction tool was used for comparison because it was a recently

(2018) proposed approcah (see [124]). The evaluation of this stage is presented in Section

4.4.

4.3.2 Triple Filtering (OIE4KGC Stage 2)

This section gives an overview of Stage 2 of the OIE4KGC approach, the triple filtering

stage (see Figure 4.1 and Algorithm 1). The goal of Stage 2 was to filter the SPO triples

generated in Stage 1 so as to only retain the most relevant triples. Prior to filtering,

noun chunking was applied to the subject and object arguments. Noun chunking is the

process of dividing text into short phrases. For the implementation used with respect

to the evaluation presented later in this chapter, the Spacy’s Noun Chunker2 was used.

Once noun chunking was complete, the triple filtering could commence. This involved the

removal of “redundant” words found within the triple arguments, and the retainment of

“informative” words. The words to be retained, the informative words, were those held in

2https://spacy.io/usage/linguistic-features
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the lexicon L generated in line 2 of Algorithm 1. Recall, these are the nouns that appear

most frequently in the corpus. Thus L holds the most frequent occurring concepts. It is to

be noted that the “triple filtering stage” can be seen as a pre-processing stage for cleaning

triples.

The approach to filtering SPO triples according to frequency seems a suitable and

straight forward approach. It might be possible to identify more sophisticated alternatives

filtering techniques, but this was considered to be outside the scope of the thesis (because

of the human resource required).

4.3.3 Linking of Clinical Concepts to UMLS (OIE4KGC Stage 3)

Stage 3 of the proposed OIE4KGC approach is the linking of the concepts in the filtered

triples; line 12 of Algorithm 1. The objective is to filter the triple vocabulary even further

by identifying arguments retained in the triples that reflect the same concept; arguments

that express the same concept but in a different manner. The objective of Stage 3 is thus

to resolve such ambiguities within the identified arguments, as otherwise the utility of the

resulting literature knowledge graph would not be as effective as it might be otherwise have

been because concepts that should be linked will not be linked. There are a number of

ways whereby the presence of such ambiguity can be addressed, but the idea presented here

is to use an existing concept vocabulary. Using an existing concept vocabulary arguments

can be annotated with their synonyms so as to allow the desired disambiguation. Concept

vocabularies are available for many domains, sometimes in the form of published ontologies.

In the case of the ORRCA application domain the arguments were annotated using the

relevant Concept Unique Identifiers (CUIs) held in the Unified Medical Language System

(UMLS) Metathesaurus [111]. For other application domains, other kinds of appropriate

ontologies can be used as well. With respect to the illustrative example included in Figure

4.1, the arguments have been annotated with a unique CUIs. The word “study” is related

to the CUI 5432, while the phrase “cardiovascular risk factors” to the CUI 5465. It is to

be noted that since the application domain of focus was “recruitment strategies for clinical

trials”, specialized medical ontologies like ICD9 [117], SNOMED CT [23] and MeSH [69]

could not be used for comparison.
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4.3.4 Knowledge Graph Population (OIE4KGC Stage 4)

The arguments in the set triples T associated with a document Di ∈ D, were disambiguated

in Stage 3 as described above (Sub-section 4.3.3), using Concept Unique Identifier(CUI).

This section presents detail concerning the final stage in the OIE4KGC approach, knowl-

edge graph population. Knowledge graph population is the process of populating a knowl-

edge graph database with the identified concepts(vertices) and edges (relationships) be-

tween them. There are a range of graph database managements systems available. For the

implementation of the proposed OIE4KGC approach, used with respect to the evaluation

presented later in this chapter, the Neo4j NoSQL graph database management system3 was

adopted because of its current popularity. The data structures provided within Neo4j were

used for the storage of concept vertices, document vertices and edges (relations between

concepts).

Figure 4.3: An example of a literature knowledge graph generated using OIE4KGC

The literature knowledge graph end-goal was generated by processing each of the ti ∈ T ,

for a given document Di ∈ D, in turn. For each triple two kinds of vertices were created

3https://neo4j.com/
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in the knowledge graph, vs and vo, connected by the given relation r, and each connected

to the document vertex created for Di. These were then compared to the knowledge graph

G so far. There are four options explained below:

1. If vs and vo match two vertices v1 and v2 in G: merge vs and vo with v1 and v2

adding the relation r if not already in existence.

2. If vs matches a vertex v1 in G, but vo does not match any vertex in G: merge vs

with v1.

3. If vo matches a vertex v2 in G, but vs does not match any vertex in G: merge vo

with v2.

4. Otherwise (vs and vo do not match any vertices in G): No merging.

For literature knowledge population and merging, Neo4j has a merge utility. The merging

of vertices is done to ensure that each concept vertex in the literature knowledge graph is

identified by a unique ID. Figure 4.3 shows an illustrative example of a literature knowledge

graph generated using the OIE4KGC approaches. Note that the literature knowledge graph

includes two types of vertices:

1. Concept vertices (Green color)

2. Document vertices (Peach color)

In the case of the ORRCA application the concept vertices possessed two properties:

1. An argument string (the concept name)

2. A CUI based ID that connects the argument string to the UMLS Metathesaurus.

It is to be noted that none of the concepts can have the same CUI and the stage of

concept linking using the UMLS Metathesaurus ensures that each concept has a unique ID.

The stage of “knowledge graph population” stage could possibly be evaluated by compari-

son of various graph databases. Given that in the initial stages of the PhD, Neo4j was the

only open source choice available hence it was adopted for knowledge graph population.

The evaluation of “knowledge graph population” can be carried out by comparing multiple

graph databases as future work.
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4.4 Evaluation

This section presents the evaluation of the proposed OIE4KGC approach for knowledge

graph construction. The focus of the evaluation was Stage 1 of the proposed OIE4KGC

process, the triple extraction stage. This was because it was considered to be significant

with respect to the effectiveness of the proposed process. The second and third stages, triple

filtering and linking, are essentially data processing stages where the number of identified

triples is reduced. Both stages adopted simple straightforward approaches that therefore

were considered not to merit any significant evaluation. The fourth stage comprised the

creation of the desired literature knowledge graph by populating a graph database using a

Graph Database Management System (GDBMS). Neo4j was used for this purpose although

it could equally well have been conducted using some other form GDBMS. The Graph

Database population process was not considered to require particular consideration in

terms of comparative evaluation with some alternative. The objectives of the evaluation

presented here were this:

1. To compare the RnnOIE and Leolani triple extraction Tools.

2. To conduct a qualitative comparison between the triple extractions of RnnOIE and

Leolani tools.

Two data sets were used for the evaluation of the proposed approach.

1. The ORRCA data set [58]

2. The ReVerb ClauseIE dataset4 [19]

The ORRCA data set mentioned above was presented and explained in Chapter 3 in

Section 3.3 so as to provide the reader with a background knowledge on the dataset ap-

plication domain. For the scope of this chapter and with respect to the ORRCA dataset,

a set of 100 sentences was randomly chosen from the ORRCA dataset and a set of triples

were generated, using RnnOIE and Leolani, from these 100 sentences. The manual inspec-

tion of triples was done by the author so as to determine whether a triple is correct or

not; therefore there was a human resource consideration. Each sentence had on average 5

triples which resulted in around 500 triples to be manually inspected for evaluation. The

4https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/software/clausie/
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choice of 100 sentences was therefore an amalgamation of expediency versus effectiveness.

The same argument was implied in [1] where the authors hand annotated a sample of 100

sentences to compare a number of methods for extracting subject-verb-object triples from

news texts. A further example can be found in [118] where 100 sentences were also used.

The ReVerb dataset is a a triples dataset extracted as a result of extraction facilitated

by the ReVerb OIE tool [19]. A subset of the ReVerb dataset was taken comprised of 100

sentences randomly selected from this dataset because a similar number had been selected

for the ORRCA dataset.

The evaluation metrics used was F-score, the harmonic mean of precision and recall.

Precision was defined as the number of correct triples extracted divided by the total number

of triples extracted. Recall was defined as the number of correct triples extracted divided

by the overall number of correct triples that should have been extracted, for the selected

100 sentences [1]. The RnnOIE and Leolani triple extraction tool were evaluated at the

sentence level as triples are extracted at the sentence level.

4.4.1 Comparison of OIE Tools

The evaluation of the RnnOIE and Leolani tools with respect to the two selected datasets

is presented in Tables 4.2 and 4.3. Table 4.2 shows that the RnnOIE was able to achieve an

F-Score of 51% when applied on the ORRCA data set and 37% using the ReVerb dataset.

The results presented in the Table 4.2 indicate that the precision was better when using the

ORRCA dataset when compared with the ReVerb dataset. The reason for this difference in

precision is possibly due to the nature of the sentences in the ORRCA dataset. Sentences

in the ReVerb dataset are shorter compared to those in ORRCA dataset.

Table 4.3 shows that the Leolani triple extraction tool was able to achieve an F-score of

41% on the ORRCA dataset and 29% using the ReVerb dataset. Table 4.3 also indicates

that for the Leolani triple extraction tool, the precision was better using the ORRCA

dataset. Both the ORRCA and ReVerb datasets have structural differences at the sentence

level and this could be the reason for such difference in precision. It was conjectured that

triples extracted from the ReVerb dataset had numerical values in the arguments; which,

using the proposed approach, results in a triple being discarded. It was also observed that

the sentences in the ORRCA dataset on average had 30 words, whereas the average number

of words per sentence in the ReVerb dataset was ten. Comparing the obtained results using

the RnnOIE tool and the Leolani triple extraction tool from Table 4.2 and Table 4.3, it can
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be seen that the RnnOIE tool coupled with the OIE4KGC approach performs better on

both datasets when compared to the Leolani triple extraction tool. This could be due to the

fact that RnnOIE is pre-trained on a large triples dataset whereas the Leolani tool is based

on context Free Grammar parsing. It can therefore be observed that triple extraction tools

which use the concept of “transfer learning” are more effective at generating triples than

other existing OIE tools. This observation is supported by previous work, for example that

reported in [119]. The results in Table 4.2 also show that the RnnOIE tool is appropriate

with respect to the clinical document collections in the ORRCA dataset.

4.4.2 Qualitative Analysis of Open Information Extraction Tools

This section gives an overview of the qualitative analysis of the triple extractions conducted

using the two triple extraction OIE tools. The two tools used were the RnnOIE tool and the

Leolani triple extractor. There was a need to analyze the output of OIE tools qualitatively

as qualitative analysis had been conducted in similar work, such as that reported in [119].

The reason behind this analysis was to determine the nature and correctness of the triples

extracted by the considered OIE tools. For longer sentences in a textual dataset, an OIE

tool gives multiple extractions, whereas for shorter sentences a single extraction results.

The triple extractions were judged by considering the following:

1. Clearness and correctness of extractions: In Table 4.4 and 4.5, example extraction

outputs using the Leolani and RnnOIE triple extraction methods are presented. A

triple extracted by either of the tools is considered to be clear and correct, if it doesn’t

have any missing subject or object arguments. Secondly, for a triple generated by an

OIE tool, it should also make logical sense when read from the subject argument to

the object argument. We can see in Table 4.4 and 4.5 that both the triple extrac-

tion tools have similar outputs on the sentence,“The two groups had similar levels

of functional impairment and similar ages at onset of symptom” and that this triple

is correct and clear in meaning. Both Leolani and RnnOIE make mistakes on the

Sentence “Conducting clinical research involving critically ill patients is challenging”

in terms of the triple generated. RnnOIE was not able to identify a second argument

for the sentence “Conducting clinical research involving critically ill patients is chal-

lenging” as shown in Table 4.4. Triples with missing arguments or which clearly do

not make logical sense (when read from left to right) are regarded as unclear and not

correct. The sentence “The two groups had similar levels of functional impairment
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and similar ages at onset of symptoms” in both Tables has the only correct triple

identified by both tools with tangible arguments and predicate; the triple also makes

logical sense.

2. Distinctiveness of triples extracted: The distinctiveness of triples generated by an

OIE tool is defined as the uniqueness of the triple, or that triples are not duplicated

if multiple triples have been generated. In Tables 4.4 and 4.5, we can see that

RnnOIE extracts only single triples whereas Leolani might extract multiple triples for

longer sentences. Sentences like “The nations health maintenance organisations were

required to tell the Federal government by midnight Monday” resulted in duplicate

extractions using the Leolani triple extraction tool whereas RnnOIE only produced

a single triple as the output. Duplication of triples as a result of using an OIE tool

is a disadvantage because uniqueness of triples is important in triple generation.

Dataset Precision Recall F-score

ReVerb dataset 0.473 0.311 0.375

ORRCA dataset 0.783 0.391 0.512

Table 4.2: Performance of RnnOIE using the ORRCA and ReVerb dataset

Dataset Precision Recall F-score

ReVerb dataset 0.30 0.28 0.293

ORRCA dataset 0.540 0.333 0.412

Table 4.3: Performance of Leolani using the ORRCA and ReVerb datasets
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Sentence Triple Extracted

The two groups had similar levels
of functional impairment and simi-
lar ages at onset of symptoms

“[ARG0: The two groups] [V: had] [ARG1:
similar levels of functional impairment and
similar ages at onset of symptoms]”

Older adults receive most of their
end-of-life care in the community

“[ARG0: Older adults] [V: receive] [ARG1:
most of their end-of-life care]”

Conducting clinical research involv-
ing critically ill patients is challeng-
ing.

“[V: Conducting] [ARG1: clinical research in-
volving critically ill patients] is challenging.”

The nations health maintenance or-
ganisations were required to tell
the federal government by midnight
Monday

“[ARG0:][V:Conducting][ARG1:clinical re-
search involving critically ill patients]”

Table 4.4: Example triples extracted using the RnnOIE triple extraction tool applied to
sentences in the ORRCA dataset

4.5 Summary

This chapter has presented an overview of a proposed literature knowledge graph construc-

tion technique called OIE4KGC that can be used to generate from a corpus of documents.

The work presented was divided into Four major stages:

1. Triple Extraction

2. Triple Filtering

3. Linking of clinical concepts to UMLS

4. Merging of vertices and knowledge graph population

The chapter started off with an introduction and background to the proposed OIE4KGC

approach followed by the proposed technique and the results obtained from the evaluation.

Two open information extraction tools were adopted for comparison, the RnnOIE tool and

the Leolani tool. A comparison of the tools in terms of precision, recall and F-score was

presented in Section 4.4 using the ORRCA and ReVerb datasets. A qualitative analysis

of the triples produced from each of the tools was also presented considering two factors:
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Sentence Triple Extracted

The two groups had similar levels
of functional impairment and simi-
lar ages at onset of symptoms

“[ARG0: two groups] [V: have] [ARG1:
similar-levels-of-functional-impairment]”

Older adults receive most of their
end-of-life care in the community

“[ARG0:older-adults] [V:receive] [ARG1:end-
of-life-care]”

Conducting clinical research involv-
ing critically ill patients is challeng-
ing

“[ARG0:research][V:conduct][ARG1:is chal-
lenging]”

The nations health maintenance or-
ganisations were required to tell
the federal government by midnight
Monday

“[ARG0:The-nations-health-maintenance-
organisations ][V:require-to][ARG1:tell-the-
federal-government-by-midnight-Monday]”,
“[ARG0:The-nations-health-maintenance-
organisations ][V:require][ARG1:federal-
government-by-midnight-Monday]”

Table 4.5: Example triples extracted using the Leolani triple extraction tool applied to
sentences in the ORRCA dataset

(i) clearness and completeness of the triples extracted. and (ii) the distinctiveness of the

triples generated. The results indicated that the triples extracted by RnnOIE were more

clear and distinctive than those extracted using the Leolani triple extraction tool. In

summary, the central idea of this chapter was to discuss how triples can be extracted using

open information extraction and the generated triples evaluated in terms of effectiveness,

completeness and distinctiveness. The generated triples are then used to create a literature

knowledge graph. In the following chapter, the updating of literature knowledge graphs

will be discussed.



Chapter 5

Maintenance of literature

knowledge graph using document

ranking

5.1 Introduction

The previous chapter explained how a Curated Document Database (CDD) can be rep-

resented as a literature knowledge graph so that end users can take full advantage of the

benefits offered by knowledge graphs. However, as already noted earlier in this thesis, the

amount of scientific literature published each year is increasing rapidly. Hence, so that our

knowledge graph represented CDD can remain useful, it is essential that it is maintained

(further relevant documents added as and when the come available).

The maintenance of a CDD, regardless of whether it is stored in the form a literature

knowledge graph or not, requires a review of a set of candidate publications that might

potentially be included, U , to identify a subset Q of publications to be included in the

CDD (Q ⊂ U). In the case of the ORRCA CDD, used as a focus for the work presented in

this thesis, a manual systematic review process was used previously to maintain the CDD.

Other examples where such systematic reviews have been adopted can be found in [58, 91].

Systematic review, as in the case of any other manual approach to maintaining CDDs,

requires substantial human resource. The central theme of this chapter is how best to

automate the process of systematic review with respect to the maintenance of knowledge

47
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graph represented CDDs. The work presented in this chapter seeks to address subsidiary

research questions SQ2 and SQ5 from Chapter 1:

[SQ2] Given an existing CDD, represented as a literature knowledge graph,

how can this knowledge graph be maintained to ensure that it is up to date.

[SQ5] In the context of document ranking can the concepts within a literature

knowledge graph be utilized to improve a document ranking mechanism and

how would this operate?

The central idea promoted in this chapter is that of a document ranking mechanism

whereby the candidate documents in U are ranked in decreasing order of relevance, so

that the top k most relevant documents, the set Q, can be selected for inclusion in the

CDD. The question is how can this ranking best be achieved. It is suggested here that

some form of machine learning is adopted whereby a model is trained to rank documents,

a process known as a Learning-To-Rank (LETOR) [82, 85]. The motivation here is that

LETOR offers advantages of efficiency and effectiveness compared with the hand-crafting

of a ranking model, provided that appropriate training data is available [58]. The LETOR

process takes as input a pre-ranked set of documents D, which is then used to train a

ranking model. The quality of the model can be assessed using a second pre-ranked set

of documents (a test dataset). The LETOR model once generated can be applied to U to

generate Q. LETOR models can be categorised as being either:

1. Pointwise approaches [47]

2. Pairwise approaches [127]

3. Listwise approaches [102]

Pointwise approaches consider a single document at a time to produce a ranking; each

document is considered to be a “point” in a “document space” and assigned a ranking value.

Each document is assigned a ranking (a relevance score) using, a pre-trained regression

model. On completion the documents can then be sorted into rank order [47]. Pointwise

approaches offer the advantage of simplicity and have been shown to work well [47, 91].

The following two approaches are based on pointwise ranking model.

1. The CN approach
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2. The Knowledge Graph And BERT Ranking (GRAB-Rank) approach.

The first is founded on work presented in [91] where a pointwise LETOR approach was

considered that used a feature vector representation of U . The significance of the work

presented in [91] is that it was directed at a clinical outcomes CDD not dissimilar from

the ORRCA CDD (although not represented in the form of a knowledge graph). This

approach is referred to as the CN approach after the initials of the author of [91]. The

CN approach uses a feature vector representation that represents a set of n-grams selected

using Term Frequency - Inverse Document Frequency (TF-IDF) scores. The advantage of

feature vector representations based on n-grams and TF-IDF, as used with respect to the

CN approach, is that they are simple to implement. The disadvantage is that they fail to

capture the semantic meaning present between words in the input set of documents.

The alternative is to use a word embedding of some kind. A word embedding is a

learnt numeric vector representation of a word that captures its “usage” by taking into

account preceding and proceeding words. The representation for a word embedding takes

the form of a numeric vector comprised of many elements (> 300 for even the simplest word

embedding). The embedding for a sentence can be defined as the average of the component

word vectors in a sentence. The evidence from recent literature [27, 85] suggests that

LETOR approaches founded on word embedding are more effective compared to traditional

approaches, such as CN approaches, founded on n-grams and TF-IDF. However to learn

a set of word embeddings requires a large training dataset. This presents a particular

challenge, especially in the context of the CDD application domain considered in this

thesis where such a training dataset is not readily available. A popular solution is to

use an existing embedding that has been pre-learnt. Arguably the state-of-the-art in pre-

learnt embedding models is the Bidirectional Encoder Representations from Transformers

(BERT) model [88] previously referenced in Chapter 2.

In the context of knowledge graph represented CDDs, pre-trained embeddings, feature

two disadvantages:

1. By their nature, pre-trained embeddings tend to be generic, whilst CDDs, by defini-

tion, tend to be domain specific. Therefore a pre-trained embedding may not be the

most appropriate.

2. Pre-trained embeddings make no use of the available structure of the knowledge

graph represented CDDs as advocated in this thesis.
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One solution to the first of the above disadvantages is to use a more domain-specific pre-

trained embedding. For example, there are many variations of BERT embedding that

have been trained for particular domains of interest such as SciBert, a pre-trained BERT-

based language model for performing scientific NLP applications. Another option is to

“fine tune” an existing embedding model; many embedding environments support this.

However, as in the case of generating a dedicated embedding from scratch, this requires

training data, thus not a realistic option in the case of the CDD application considered in

this thesis because of the resource required. The solution presented in this chapter is to

use some form of graph embedding [38, 125], a Knowledge Graph Embedding. This offers

three advantages with respect to knowledge graph represented CDDs:

1. It does not require dedicated training data.

2. It makes full use of the information captured in the knowledge graph represented

CDD (the second of the two disadvantages of generic pre-trained embedding models

listed above).

3. It is not necessary to first create a knowledge graph as this will already exist, although

if this was a requirement the techniques explored in Chapter 4 could be adopted.

A Knowledge Graph Embedding could be used on its own for the purpose of generating a

LETOR model to support the maintenance of knowledge graph represented CDDs. How-

ever, the idea presented in this chapter is that a better LETOR model can be used if a

“general purpose embedding” is combined with a “domain specific embedding”. This is

the philosophy underpinning the second approach considered in this chapter, the GRAB-

Rank approach. For the general purpose embedding, as indicated by the GRAB-Rank

acronym (Knowledge Graph And BERT Ranking), BERT was used because of it being

state-of-the-art in word embeddings [21].

The rest of this chapter is structured as follows. Section 5.2 gives a problem definition

for the Knowledge Graph represented CDD maintenance problem. The relevant notations

and symbols used with respect to this chapter are defined in Table 5.1 below. Section 5.3

presents the generic LETOR framework adopted with respect to the work presented in this

thesis. Further detail of the CN and GRAB-Rank approaches are given in Sections 5.4 and

5.5. The comparative evaluation of the two approaches is then presented in Section 5.6.

The chapter ends with a set of concluding remarks in Section 5.7.
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Symbol Symbol Definition

D A database of documents for a CDD of the form D =
{d1, d2, . . . }

U A set of candidate publications for inclusion in a CDD

Q The set Q, generated using a systematic review process ap-
plied to a larger data set U (Q ⊂ U)

k The top k most relevant documents in Q selected for inclu-
sion in CDD di a document in D

σ A threshold defined as the percentage of documents in U to
be included in Q

θ A frequency threshold value θ used to decide which n-grams,
using the CN approach, should be included in a feature vec-
tor representation

p The probability that a previously unseen document in U
belongs to the positive (to be included) class, the set Q

w An n-gram, defined as a contiguous sequence of words found
in a piece of text (a sentence in a document)

n Number of words in a n-gram

tfidf(w) The TF-IDF value for an n-gram w

G A knowledge graph

R A set of random walks over a knowledge graph G

rw Random walk length over a knowledge graph

vj A concept vertex in G (as opposed to a document vertex)

Table 5.1: Symbol table for Chapter 5

5.2 Problem Definition

This section provides a formal definition of the problem addressed in this chapter. The

reader may find it useful to refer to Table 5.1 with respect to the following. A CDD

is defined as a set D = {d1, d2, . . . } where each di ∈ D is a document, for example an

abstract. To maintain D it is necessary to periodically add a set Q = {q1, q2, . . . } of recent

relevant publications, Dnew = D ∪ Q. The set Q, as noted in the introduction to this

chapter, is traditionally generated using a systematic review process applied to a larger

data set U (Q ⊂ U). A systematic review is performed by a team of domain experts,

using a search strategy with the goal of identifying Q in U [58, 91]. Systematic reviews are

resource intensive. Hence, it is suggested in this chapter that a learning-to-rank (LETOR)

approach is adopted. The idea is that the resulting ranking model will be able to order
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U according to relevance. The top k most relevant documents can then be selected for

inclusion in D.

5.3 The Proposed LETOR Framework

This section presents an overview of the end-to-end LETOR process as adopted with respect

to the work presented in this chapter. A schematic of the proposed framework is presented

in Figure 5.1. The process commences, top left of the figure, with an existing Curated

Document Database D and ends with an updated Curated Document Database, bottom

middle of the figure. By definition D only contains “positive” examples. To train a ranking

model we need both positive and negative examples. The first step is thus to augment the

set D with negative examples. The set of positive and negative examples then needs to

be pre-processed so as to generate some kind of vector representation of the documents

(feature vectors and/or embeddings). This is then the input to the selected learning to

rank algorithm which then generate a ranking model (the grey box with rounded corners to

the right of the figure). This model can then be used to rank documents to be potentially

included in D.

The set U of documents to potentially be included needs to be pre-processed and feature

vectors generated for them so that they are represented in the same manner as the set D.

The set U of candidate documents is typically generated from a bibliographic database

of some kind, that list titles, authors and publication details. The generated LETOR

model (the grey box with rounded corners to the right of the figure) was used to assign a

probability value p to each document in U . This probability value is treated like a score.

The probability p that a previously unseen document in U belongs to the positive (to be

included) class. The probability that the document belongs to the negative class (the not

to be included class) is then p − 1. The result, bottom right of the figure, is the set of

documents U ranked according to p. A “cut-off” threshold value σ is then applied and the

top k selected (the set Q). A final “human screening” is then undertaken and the final

selection added to the CDD. The human screening is undertaken to ensure no anomalies

are included in Q (the top k documents). Only the top k documents are selected as these

will be the most relevant. This strategy is analogous with that adopted with respect to web

search engines where the end-user is assumed to be only interested in the most relevant hits

(to avoid “information overload”) since a domain expert will potentially be only interested

in seeking the a limited number of relevant clinical trial abstracts at the top of documents
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list.

Figure 5.1: The Proposed LETOR Framework

Note that the proposed LETOR framework generates a probability score which is then

used to rank documents and select documents for inclusion in the CDD. The proposed

LETOR framework is basically a static pointwise document ranking approach and similar

literature [91] supports the idea of such static pointwise document ranking for selection

of documents for CDDs. As noted above, two are considered in this chapter; the CN

approach and the GRAB-Rank approach. Further detail concerning these two approaches

is presented in the following two sections, Section 5.5 and 5.4 respectively.
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5.4 The CN Approach

This section presents the CN approach, the first of the two approaches for maintaining

CDD represented as knowledge graphs, considered in this chapter. As noted earlier, the

CN approach is founded on the work presented in [91] where a LETOR algorithm was

proposed directed at clinical outcomes articles2 which has similarities with the ORRCA

data set used here for evaluation purposes in this thesis. The distinctions between the

proposed CN approach and that presented in [91] are:

1. The LETOR presented in [91] used the SGD Classifier from the Sklearn 3 Python

library whilst the proposed CN approach uses the SVR algorithm (also from Sklearn).

2. CN approach used two kinds of n-grams (n ≤ 3) over words in each document, whilst

the LETOR presented in [91] used five kinds of n-grams (n ≤ 5) over words in each

document.

Figure 5.2 presents a schematic of the CN approach. It is useful to compare this

schematic with the general schematic presented previously in Figure 5.1. The main differ-

ences are in the pre-processing stages where TF-IDF values, for n-grams included in the

document set (D or U) are used to generate feature vectors. For the pre-processing, the

python Natural Language Processing Toolkit (NLTK)1 library was used along with stop

word removal. The generated feature vectors were then fed into the SVR learning to rank

model for training. The rest of the stages in the LETOR process are the same as for the

general LETOR framework presented in Figure 5.1.

For the ORRCA application considered here, the ranking model was trained using log

loss2. Using the CN approach the candidate set of documents U was represented using

feature vectors, as seen in the top right corner of Figure 5.2. In natural language processing

the features used in a feature vector representation are typically keywords. These can be

defined in a variety of ways, for example using a lexicon. As noted earlier, the approach

adopted with respect to the CN approach was to select frequently occurring n-grams. An

n-gram is defined as a contiguous sequence of n words found in a piece of text (a sentence

2http://www.comet-initiative.org/
3Sklearn Python machine learning library
1https://www.nltk.org/
2Logarithmic loss (related to cross-entropy) measures the performance of a classification model where

the prediction output is a probability value between 0 and 1
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Figure 5.2: The Proposed CN Approach
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in a document). Uni-grams, bi-grams and tri-grams were used with respect to the work

presented here. The frequency for each identified n-gram was then determined using the

well known Term-Frequency Inverse-Document Frequency (TF-IDF) metric [45]. The TF-

IDF value for a n-gram w, TFIDF (w), is calculated as shown in Equations 5.1, 5.2 and

5.3 where:

• TF is the term frequency.

• u is a document in U .

• w is a n-gram.

• |u| is the size of the document u ∈ U in terms of words.

• |U | is the size of document collection U in terms of documents.

A frequency threshold value θ was then used to decided which n-grams should be included

in the feature vector representation. A default value for θ was used for this purpose as

calculated using Sklearn3 Python library.

TFIDF (w) = TF (w) × IDF (w) (5.1)

TF (w) =
frequency count of w ∈ u

|u|
(5.2)

IDF (w) =
|U |

total number of u ∈ U in which w appears
(5.3)

The next stage was to use the feature vector representations to generate the desired ranking

model (the stage shown in the right side of Figure 5.2). Support Vector Regression (SVR)

was adopted for this purpose. SVR is the regression equivalent of classification Support

Vector Machines [50]. The reasons for selecting SVR were as follows:

1. For large datasets in natural language processing, with respect to applications in doc-

ument ranking, SVR has proven to give improved results similar to neural networks

and in some cases better [24, 120].

2. SVR provides a better implementation compared to other machine learning algo-

rithms when deployed at scale commercially, as seen in similar systems as reported

in [52, 91].

3https://scikit-learn.org/stable/modules/generated/Sklearn.linear model.SGDClassifier.html
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Once the ranking model has been generated, as shown in lower part of Figure 5.2, it

can be used to process set U and identify Q in order to update an existing CDD.

5.5 The GRAB-Rank Approach

This section presents the GRAB-Rank approach. As noted above, the novelty of the

GRAB-Rank approach is that it uses a combination of two embeddings:

1. The well established “off-the-shelf” general purpose BERT word-embedding.

2. A domain specific knowledge graph embedding that captures the knowledge held in

the knowledge graph.

The intuition underpinning the proposed GRAB-Rank approach was that if two document

embeddings, generated in different ways, were concatenated together it would produce a

better document embedding than if the embeddings were used in isolation. It should be

noted here that, in the context of literature knowledge graphs, GRAB-rank is not the first

to use document embeddings. However, in the initial stages of PhD (2019) there was no

reference found in the literature in the context of “to the use of hybrid embeddings. Figure

5.3 gives a schematic of the GRAB-Rank approach, note that it differs slightly from the

generic LETOR framework presented in Figure 5.1. The main two differences between the

generic LETOR framework and the GRAB-Rank LETOR framework are in (i) the pre-

processing of the training set of documents D, and the candidate unseen test documents

U ; and (ii) the BERT and knowledge graph embeddings generated for U used as an input

to the SVR learning to rank model. The rest of the stages in the GRAB-Rank LETOR

process are the same as in generic LETOR process presented in Figure 5.1.

For the pre-processing stages, the default BERT tokenizer was used. Knowledge graph

embeddings were then added to each of the BERT embeddings. To differentiate between the

BERT embedding and knowledge graph embedding, we refer to a “left hand embedding”

and a “right hand embedding” respectively. The remainder of this subsection is organised

as follows. Further detail concerning the BERT embedding process is given in Sub-section

5.5.1, whilst further detail concerning the Knowledge Graph embedding process is given in

Sub-section 5.5.2. In the context of medical application domains, it should also be noted

here that Grab-Rank is not the first system to consider knowledge graph random walk

embeddings [143, 146].
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Figure 5.3: The GRAB-Rank LETOR process

5.5.1 BERT Embedding

The general purpose (left hand) document embedding incorporated into the proposed

GRAB-Rank approach was a BERT embedding. BERT language models are generated

using a transformer-based deep learning architecture first developed by the Google Brain

Team [123] to address the shortcomings of Recurrent Neural Networks (RNNs). Trans-

former deep network learners dispense with the need for recurrence by replacing the recur-

rent layers used in RNNs with a multi-headed self-attention mechanism. The advantage

is that the self-attention mechanism processes items in a sequence in parallel. The trans-

former has an encoder which reads an input sequence, and a decoder which produces an

output sequence. BERT makes use of the encoder part of the transformer to generate word

embedding models. As a result the language models produced by BERT are context-aware

because they take into consideration words the precede and proceed each current word;

unlike models such as GLOVE [99] where each word is represented using a single vector
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regardless of context. Examples of studies that have utilized BERT word embeddings

for document ranking to realise an improved performance when compared to traditional

LETOR models can be found in [35, 88]. Using the GRAB-Rank approach the pre-trained

embeddings from BERT were used to generate the left-hand general purpose embeddings

that were then concatenated with the right-hand knowledge graph embedding (discussed

in the following sub-section).

5.5.2 Knowledge Graph Embedding

The domain specific (right-hand) embedding in Figure 5.3 incorporated into the proposed

GRAB-Rank approach was a literature Knowledge graph embedding generated using a

random walk technique applied to a graph G. There has been some previous work where the

idea of knowledge graph embeddings have been used for document ranking [73, 125]. The

idea of a random walk was presented in [108]. From this previous work there is evidence that

knowledge graph embeddings can achieve improved results over more traditional document

ranking models such as statistical document ranking models [67, 73, 136]. The proposed

knowledge graph embedding was generated by first identifying a set of random walks

(paths) R = {R1, R2, ...}, where each Ri ∈ R is of the form [v1, v2, . . . , vk] where: vj is a

concept vertex in G, rw is the length of the walk and no two values for vj are the same.

In other words, each Ri ∈ R links a sequence of concept vertices in a given literature

knowledge graph. Each random walk across G can be conceptualised as a “sentence” to

which natural language processing (NLP) techniques can be applied. Each sentence can

be represented using (say) a “bag of words” model or a “skip gram” model [60].

With respect to the work presented in this thesis, the Node2vec framework was used to

generate random walk embeddings. This was chosen because it has proven to be effective

for document ranking in recent works [94, 108, 131]. Using the Node2vec framework two

strategies can be adopted for generating random walks:

1. Breadth-First Sampling (BFS)

2. Depth-First Sampling (DFS)

The BFS strategy generates random walks in parallel from a given start vertex vj and

considers all immediate neighbours of vj before moving on to the immediate neighbours plus

one, and so on until a pre-specified maximum random walk length rw is reached. Using the

DFS strategy random walks from a given start vertex vj are generated in sequence rather
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than in parallel. The BFS strategy was adopted with respect to the propose GRAB-

Rank approach for generating knowledge graph embeddings because it had been proven to

generate effective embeddings as reported in [37, 112].

Figure 5.4: Example graph for explaining the concept of random walk

Figure 5.5: Some example random walks generated from the graph given in Figure 5.4

As noted earlier, a random walk can be conceptualised as a sentences. This can be

illustrated using the example graph given in Figure 5.4. The figure shows seven ver-

tices identified by the upper case letters {A,B,C,D,E, F,G}, and eight bi-direction edges

{AB,AC,BC,BD,DE,DG,EF, FG}. A vertex is then randomly selected from which the

random walk will commence. Let us assume vertex B is selected and that rw = 6. Then,

using DFS, a neighbour to B is selected randomly, possible candidates are A, C and D.

Then the next neighbourhood node is selected and so on. This process is repeated until a

length rw is arrived at. Cycles are permitted. The process is then repeated. Some example
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random walks generated from the graph given in Figure 5.4 are presented in Figure 5.5.

Thus we have the “sentences”: ABCBDG, DEFGDB, BCBDGF and so on. Note that

the same set of sentences can be generated using BFS.

To summarize, the Node2vec algorithm uses random walks to generate sentences from

nodes in a knowledge graph. Once the sentences from the graph are generated using

random walks, the Node2vec algorithm inputs the sentences into the Word2vec skip-gram

model and retrieves the node embeddings. Word2vec skip-gram is a neural network based

language model that is capable of generating embeddings and in this case vertex (node)

embeddings. More details about the Word2vec skip-gram model for generating embeddings

can be found in [39]; a variant of Word2vec is considered in Section 6.3.1 of Chapter 6. It

is to be noted that node embeddings from a knowledge graph, have external knowledge in

them, which can prove to be helpful in increasing the effectiveness of a document ranking

technique [87].

5.6 Evaluation

The previous two sections have presented two approaches for maintaining knowledge graph

represented CDDs: the CN approach and the GRAB-Rank approach. This section presents

the outcomes of the comparative evaluation of the two approaches. For the evaluation both

were implemented using the Python Programming Language. All experiments were run

using a NVidia K80 GPUs kaggle kernel. The objectives of the evaluation were as follows:

1. To determine the most appropriate value for σ, the “cut-off” threshold for separating

Q from U , both for the CN and the Grab-Rank algorithm.

2. In the case of the GRAB-Rank approach, to determine most appropriate value for

rw, the random walk length.

3. Also in the case of the GRAB-Rank approach, to determine whether the hypothesis

that using a combined BERT and Knowledge Graph embedding was more effective

than when using a single embedding was correct.

4. To determine the comparative effectiveness of the proposed approaches.

5. To estimate the time saving gained using the proposed approaches in comparison

with conducting a manual systematic review.
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Recall that for the CN approach frequency threshold θ was used to determine, whether

a n-gram should be included in the feature vector representation or not. For the selection

of the CN frequency threshold θ, a parameter called maxdf in the Sklearn Python library,

was also used 4. This parameter automatically selects the default value for θ. Thus,

experiments were not conducted to consider alternative values for θ.

The rest of this section is organised as follows. Some detail concerning the evaluation

data sets used are presented in Sub-section 5.6.1. The evaluation metrics used are discussed

in Sub-section 5.6.2. The evaluation results with respect to the individual evaluation

objectives listed above are then discussed in Sub-sections 5.6.3 to 5.6.7.

5.6.1 Evaluation Data Set

For the evaluation presented in this section, the following data sets were used:

ORRCA-400: A small dataset which could be easily inspected. It comprised 400 ab-

stracts (hence the name), 200 positive examples (examples to be included in Q) and

200 negative examples (examples not to be included in Q).

ORRCA-Update 2015: The 2015 ORRCA update collection comprised of 11, 099 ab-

stracts, 1302 positive examples and 9797 negative examples.

ORRCA-Update 2017: The 2017 ORRCA update collections, comprised of 14,485 ab-

stracts, 1027 positive examples and 13458 negative examples.

Details concerning these data sets were presented previously in Chapter 3. Recall that in

each case each document consisted of a title and an abstract. The titles and abstracts were

pre-processed so that punctuation and stop words were removed. A statistical overview of

these data sets was presented in Table 3.1 in Chapter 3.

5.6.2 Evaluation Metrics

To compare the effectiveness of the two proposed approaches precision and recall were used.

LETOR algorithms are usually analysed using metrics such as Mean Average Precision

(MAP) or Mean Reciprocal Rank (MRR). However, for the work presented in this chapter

we are interested in whether a given document (abstract) u ∈ U should be included in

4https://scikit-learn.org/stable/modules/generated/Sklearn.feature_extraction.text.

TfidfVectorizer.html

https://scikit-learn.org/stable/modules/generated/Sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/Sklearn.feature_extraction.text.TfidfVectorizer.html


Chapter 5. Maintenance of literature knowledge graph using document ranking 63

Q or not. In other words we have a binary classification problem. Hence, precision and

recall were adopted with respect to the evaluation presented here, metrics normally used

in the context of classification. This approach has been adopted with respect to earlier

work where LETOR has been expressed in terms of a binary classification problem [25, 91]

Precision and recall are calculated as shown in Equations 5.4 and 5.5 where:

1. TP is the number of true positives

2. FP is the number of false positives

3. FN is the number of false negatives.

4. TN is the number of true negatives.

A true positive (TP) is an outcome where the model correctly predicts the positive class

(ui should and was included in Q). A true negative (TN) is an outcome where the model

correctly predicts the negative class (ui should not and was not included in Q). A false

negative (FN) is an outcome where the model incorrectly predicts the negative class (ui

should have been included in Q, but was not included).

Precision = TP/(TP + FP ) (5.4)

Recall = TP/(TP + FN) (5.5)

5.6.3 Determination of The Most appropriate Value for sigma

As noted earlier, a threshold σ was used to define a “cut-off decision threshold” for docu-

ments to be included in Q (from which the top k will be selected); thus a value of between

0 and 1 (0 ≤ σ ≤ 1). If σ = 1 all u ∈ U will be included in Q. If σ = 0 no documents will

be included (Q = ∅). The value for σ therefore needs to be chosen appropriately so that

false positives are minimised so as to limit the resource required for the human interven-

tion. The intuition here is that for a LETOR algorithm to effectively rank documents, the

maximum number of relevant documents should be present at the top of a ranked docu-

ment list. For 100% of relevant documents to be within the top k of documents within the

ranked document list requires a recall of 1, with a compromise of values for precision. In

other words there is a trade off between the two. An optimum point for the value of σ can
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thus be identified using a precision-recall curve. Note that in any typical precision-recall

curves for document ranking, if the recall increases the precision decreases.

Figure 5.6: Precision-recall curve for OR-
RCA 2015 dataset using CN approach, de-
cision thresholds σ given on the x-axes, and
precision and recall on the y-axes

Figure 5.7: Precision-recall curve for OR-
RCA 2017 dataset using CN approach, de-
cision thresholds σ given on the x-axes, and
precision and recall on the y-axes

For the evaluation reported here a sequence of experiments was conducted using a

range of values for σ from 0 to 1 increasing in steps of 0.2. The precision and recall results

obtained were plotted using a precision-recall curve. Experiments were conducted using

the ORRCA-Update 2015 and ORRCA-Update 2017 data sets. The resulting precision-

recall curves, using both the CN and GRAB-Rank approaches, are given in Figures 5.6, 5.7,

5.8 and 5.9. Potential values for σ are plotted on the x-axis and the precision-recall score

on the y-axis. Selecting the value of σ is a compromise between the number of relevant

documents and the number of irrelevant documents in Q with respect to individual values

of σ. Considering the CN approach first, Figures 5.6 and 5.7 show the relevant precision

and recall curves. Inspection of Figure 5.6 indicates that if σ = 0.4 is chosen, this would

result in identifying 97% of the relevant abstracts in terms of recall. From Figure 5.7 it

can be seen that if σ = 0.4 was chosen this would result in identifying 97% of the relevant

abstracts in terms of recall. It was considered that a “safety margin” should be included,

and that a loss of 3% to 5% was acceptable trade-off when ranking clinical trial documents
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Figure 5.8: Precision-recall curve for OR-
RCA 2015 dataset using GRAB-Rank ap-
proach, decision thresholds σ given on the
x-axes, and precision and recall on the y-
axes

Figure 5.9: Precision-recall curve for OR-
RCA 2017 dataset using GRAB-Rank ap-
proach, decision thresholds σ given on the
x-axes, and precision and recall on the y-
axes

(a view supported by the individuals responsible for updating the ORRCA CDD). Hence

it was concluded that σ = 0.4 was the most appropriate value in the case of CN algorithm

(for getting 97% of the relevant abstracts). Figures 5.8 and 5.9 present the precision-recall

curves obtained using the GRAB-Rank approach, for the ORRCA 2015 and 2017 update

data sets respectively. As before, the potential values for σ are plotted on the x-axis and

the precision-recall score on the y-axis. From Figure 5.8 it can be seen that σ = 0.1 should

be selected (from the x-axis) if the goal is to achieve a recall of 97%. From Figure 5.9 it

can be seen that a value of σ = 0.2 results in a recall of 97%. Again a loss of 3% to 5% in

recall was considered an acceptable trade-off when ranking clinical trial documents. Hence

it was concluded that in the case of GRAB-Rank algorithm σ = 0.1 − 0.2 would be the

best possible value in order to achieve a recall of almost 97%.
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5.6.4 Determination of The Most appropriate Value for the random walk

length

The investigation of the use of the most appropriate value for the parameter rw, the random

walk length, was conducted by considering the knowledge graph embedding in isolation.

Recall that it was noted in Section 5.5.2 that the higher the value for rw the more concepts

will be included in the knowledge graph embedding. Experiments were conducted using a

range of values for rw from rw = 1 to rw = 5 incremented in steps of 1. The experiments

were conducted using the following:

1. The ORRCA-400 dataset used as a prototype literature knowledge graph (400 ex-

amples)

2. The concatenation of the ORRCA-Update 2015 and ORRCA-Update 2017 datasets,

referred to simply as the ORRCA-Update data set. The concatenated dataset repre-

sents the whole literature knowledge graph (11099 + 14485 = 25584 example).

A training testing split of 80:20 was used as adopted with respect to other similar work

[57]. The knowledge graph embeddings were generated using the random walk technique

presented in Section 5.5.2. A value of σ = 0.2 was used for these experiments because it

had been found to be the most appropriate value for the GRAB-Rank algorithm according

to the experiments and observations reported on in Sub-section 5.6.3 above. Recall that

σ = 0.2 is the percentage of documents in U to be included in Q. So in the case of the

ORRCA-400 dataset this will be 80, and in the case of the ORRCA-Update dataset this

will be 5116. The experiments follow the same method of cross-validation as mentioned in

[101]. Table 5.2 presents the precision and recall values obtained in each case (best results

in bold font). From the table, the first thing that can be observed is that there were

differences between the two sets of results. It was conjectured that these differences were

due to the small number of examples in the ORRCA-400 dataset (400 examples), compared

to number of examples in the ORRCA-Update data set (25584 examples), which meant

that there were significant differences in the overall size of the two knowledge graphs.

The ORRCA-400 dataset had 1600 vertices and the ORRCA-update knowledge graph had

102,336 vertices. Using 100 random walks, a greater coverage would be obtained for a

small knowledge graph (as in the case of the ORRCA-400 knowledge graph), than for a

large knowledge graph (as in the case of the ORRCA-Update knowledge graph). Closer
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Table 5.2: The performance of GRAB-Rank using a range of values for rw, the random
walk length (best results in bold font).

rw ORRCA-400 ORRCA-Update
Precision Recall Precision Recall

1 0.68 0.42 0.17 0.59
2 0.75 0.46 0.24 0.83
3 0.74 0.46 0.26 0.87
4 0.73 0.45 0.26 0.86
5 0.74 0.46 0.26 0.86

inspection of Table 5.2 indicates that better recall results were obtained using the ORRCA-

Update knowledge graph than ORRCA-400 knowledge graph; and that better precision

results were obtained using the ORRCA-400 knowledge graph than the ORRCA-Update

knowledge graph. However, as noted above, we wish to maximise recall. From the table

the larger knowledge graph supports this.

Further inspection of Table 5.2 indicates that rw = 1 did not perform well in both cases.

Again this is likely to have been because of the poor coverage in both cases. For the smaller

ORRCA-400 knowledge graph best results were obtained using rw = 2. As the value of rw

increases, in the context of the ORRCA-400 knowledge graph, there is little improvement.

It is conjectured that this is because that coverage (quality) of embedding has reached a

“plateau” beyond which no further improvement is gained. The same phenomena can be

observed with respect to the ORRCA-Update knowledge graph except with rw = 3. An

argument can therefore be made that rw = 3 is the most appropriate value.

5.6.5 Combined BERT and Knowledge Graph Embedding Versus Single

Embedding

To determine whether the hypothesis that a combined BERT and Knowledge Graph em-

bedding would produce a more effective ranking, an ablation study was conducted by

comparing the effectiveness of using the combined GRAB-Rank embedding with that of

using BERT and Knowledge Graph embeddings on their own. The comparison was con-

ducted using the ORRCA 400 data set (prototype knowledge graph) and the ORRCA

update data sets (the larger ORRCA literature knowledge graph). For the experiments a

value of σ = 0.2 was used because of the conclusions made in Section 5.6.3. A value of

rw = 3 to was used as it was concluded to be the most suitable value according to the
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Table 5.3: Comparison, in terms of precision and recall, using the GRAB-Rank approach,
and using BERT and knowledge graph embeddings in isolation (best results in bold font).

LETOR technique ORRCA-400 ORRCA-Update
Precision Recall Precision Recall

GRAB-Rank with SVR 0.81 0.50 0.26 0.88
BERT embeddings only with SVR 0.76 0.47 0.23 0.80
Knowledge graph embeddings only with SVR 0.75 0.46 0.26 0.87

experiments discussed in Section 5.6.4. A training test split of 80 : 20 was again used. The

experiments here follow the same method of cross-validation as mentioned in [101].

The metrics used were again precision and recall. Support Vector Regression (SVR)

was again used to generates probabilities as to whether each ui ∈ U should be include in

Q. The results are presented in Table 5.3, best results are indicated in bold font. From the

table it can clearly be seen that the combined GRAB-Rank approach outperforms the usage

of BERT and knowledge graph embeddings when used in isolation. It was conjectured that

the differences in magnitude between the results obtained using the ORRCA 400 data set

and the ORRCA update data sets was due to the significant difference in size between the

two data sets; 400 examples versus 25584 document examples.

5.6.6 Comparative effectiveness

To analyse the comparative effectiveness of the two proposed approaches, the CN Approach

and the GRAB-Rank approach, their operation was compared with a “classical document

ranking system”. Namely an approach founded on the Okapi BM25 ranking function

presented in [51, 121] and presented in Sub-section 2.4.1 of the literature review (Chapter

2). Influenced by earlier results σ = 0.2 and k = 3 were again adopted with respect to

the evaluation reported on in this sub-section. Table 5.4 presents the results obtained in

terms of precision and recall. From the table it can be seen that the proposed GRAB-Rank

hybrid approach produced the best performance for both the ORRCA-400 and ORRCA

update datasets.

5.6.7 Time Savings Gained

To evaluate the time savings gained (in comparison to a manual systematic review) using

the proposed approaches effort recall curves were constructed (Figures 5.10 to 5.13). In
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Table 5.4: The performance of GRAB-Rank and CN approaches in comparison with the
Okapi BM25 approach (best results in bold font).

LETOR technique ORRCA-400 ORRCA-Update
Precision Recall Precision Recall

GRAB-Rank with SVR 0.81 0.50 0.26 0.88
CN algorithm 0.79 0.49 0.07 0.49
Okapi BM25 ranking 0.53 0.33 0.16 0.54

these graphs “effort” is presented on the x-axis and “recall” on the y-axis. Effort is de-

fined as the number of candidate abstracts (thus both relevant and irrelevant abstracts)

to be screened as a percentage of the total number of abstracts. Recall is defined as the

percentage of relevant documents identified in the ranked document list. For the evalu-

ation the ORRCA 2015 and 2017 update datasets were used as they represent the real

manual systematic review updates. For calculating the hours saved after automating the

updating of ORRCA CDD (if compared to the manual systematic review), we must con-

sider the number of total candidate articles for that systematic review dataset and the

relevant articles identified. Hence the following equation was used for calculating the

hours saved:

hours saved =
total candidate articles− relevant articles identified

60
(5.6)

The 60 used in the equation earlier was to convert minutes to hours as the assumption

made was that the screening rate of a domain expert is one abstract per minute.

Figure 5.10: The 2015 update effort-recall curve using CN algorithm

Figures 5.10 and 5.11 present the effort-recall curves for the CN approach in the context
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Figure 5.11: The 2017 update effort-recall curve using CN algorithm

of the ORRCA 2015 and ORRCA 2017 update data sets. From Figure 5.10, it can be seen

that in order to get 97% of relevant abstracts (on the y-axis), we would need to screen

the top 40% of the candidate abstracts (on the x-axis). Estimating the time saved by

automating the manual screening process, an assumption was made that the screening

rate of a domain expert is one abstract per minute. Assuming a best value for σ of

0.4 for the CN algorithm (see discussion in Sub-section 5.6.4), and considering the 2015

ORRCA update data set, this will result in 6660 (11099 − 4439 = 6660) abstracts being

excluded, equating to a time saving of 6660 ÷ 60 = 111.0 hours (assuming an experienced

screener for the abstract screening process). Similarly, from Figure 5.11 and with respect

to the 2017 ORRCA Update, and selecting best value for σ of 0.4 for the CN algorithm,

(14485 − 5794 = 8691) 8691 abstracts would be excluded equating to a time saving of

8691 ÷ 60 = 144.0 hours. Hence it can be concluded that when using the CN algorithm,

savings of between 111 and 144 persons hours could be made (when compared to manual

systematic review process) respectively.

Figure 5.12 and 5.13 present the corresponding effort-recall curves for the GRAB-rank

algorithm with respect to the ORRCA 2015 and 2017 update datasets. From earlier work

(see Sub-section 5.6.3), reported above, σ = 0.2 was considered to be the most appropriate

value when using the GRAB-Rank approach. A σ value of 0.2 means that the top twenty

percent of the documents should be screened in a ranked document list. From Figure 5.12
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(the ORRCA 2017 update dataset), we would need to screen 20% of the candidate abstracts

using σ = 0.2, in order to get 97% of relevant abstracts (on the y-axis). This equates to

almost 2897 abstracts. Similarly, for Figure 5.13 (the ORRCA 2015 Update dataset), using

the σ = 0.2, we would need to screen almost 20% of the candidate abstracts in order to

get 97% of relevant abstracts (on the y-axis). This equates to 2219 documents. Again

assuming a screening rate of a domain expert as one abstract per minute, and considering

the 2017 ORRCA update, for the GRAB-Rank algorithm, referring to Figure 5.12, this will

result in 11588 (14485−2897 = 11588) abstracts being excluded, equating to a time saving

of 11588 ÷ 60 = 193 hours (assuming an experienced screener for the abstract screening

process). Similarly for the GRAB-Rank algorithm referring to Figure 5.13 and with respect

to the 2015 ORRCA Update and using σ = 0.2 value, 8880 abstracts would be excluded

(11099−2219 = 8880) equating to a time saving of 8880÷60 = 148 hours. Hence it can be

concluded for the Grab-Rank algorithm, that savings of 148 and 193 persons hours could

be made (when compared to manual systematic review process) respectively.

Figure 5.12: The 2017 update effort-recall curve using GRAB-Rank algorithm
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Figure 5.13: The 2015 update effort-recall curve using GRAB-Rank algorithm

5.7 Summary

This chapter has presented an overview of two proposed approaches to maintaining knowl-

edge graph represented CDDs: the CN approach and the GRAB-Rank approach. The

first used a feature vector representation and the second an embedding representation.

The novel element of the GRAB-Rank approach was that it combined two embeddings,

a general purpose embedding and a domain specific embedding. For the first BERT was

adopted and for the second a bespoke knowledge graph embedding was adopted. The

knowledge graph embedding was generated using a graph random walk of length rw. The

fundamental idea was to rank a set of potential documents to be considered and select the

top rw. A range of experiments were conducted from which it was established that the

most appropriate values for σ and rw were σ = 0.2 − 0.4 and rw = 3. Out of the two

approaches, and comparing with BM25 as a baseline, and BERT and knowledge graph

embeddings used in isolation, the proposed GRAB-Rank approach was found to be the

most effective. It was estimated that by using the GRAB-Rank approach a time saving

of 148 to 193 persons hours could be obtained over the manual systematic review process

currently often used to update CDDs. In the next chapter, techniques to query literature

knowledge graph will be considered.



Chapter 6

Literature Knowledge Graph

Query Resolution

6.1 Introduction

In the previous two chapters, Chapters 4 and 5, the knowledge graph construction and

updating approaches were presented, and evaluated using the Online Resource for Recruit-

ment research in Clinical trials (ORRCA) data set. The central theme to this chapter is

the utilisation (querying) of literature knowledge graphs constructed and maintained as

described in the foregoing two chapters. Recall that the central motivation for the work

presented in this thesis is to make it convenient for researchers to identify previous work,

in the form of scientific papers, relevant to their domain of study. At the same time, the

work presented in this chapter is directed at deriving an answer to Subsidiary Questions

three and six from Chapter 1:

[SQ 3]: Given an existing CDD, represented as a literature knowledge graph,

how can this knowledge graph be queried so as to retrieve relevant

documents?

[SQ 6] Can the embeddings implicit within a literature knowledge graph be

used to provide an answer to a query in the context of document retrieval?

This chapter provides answers to SQ3 and SQ6 using a proposed approach to literature

knowledge graph querying.

73
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The fundamental idea, as with the majority of document query resolution mechanisms,

is to represent a given query and the documents in the knowledge graph in a manner that

will allow the documents to be ranked, according to some relevance measure, with respect

to the query. From the literature [3, 76, 136], there are a number of ways in which the

query and documents in the literature knowledge graph can be represented. The current

trend is to use a word embedding approach of some kind. An embedding is a learned text

representation whereby each term in a given corpus is represented using a numerical vector,

also referred to as an embedding [2, 85, 98]. Once a word embedding has been generated,

a document embedding can be obtained by averaging the individual word embeddings. An

intuitive way of generating document embeddings is by averaging the word embeddings of

all the words in a document. Given a single document, each word in the document would be

represented by a single word embedding. A simple arithmetic operation of averaging can be

performed on these word embeddings to obtain a single document embedding. Recently,

many methods involving deep learning, have been used to generate embedding models,

which have been used to effectively score query-document pairs [6, 21, 78]. Three different

embedding models were considered with respect to the work presented in this chapter:

1. Continuous Bag of Words (CBOW) [80].

2. Bidirectional Encoder Representations from Transformers (BERT) embedding [21].

3. SciBERT embedding [6].

Each of these word embeddings, once generated, were combined with the random walk

knowledge graph embedding presented earlier in Chapter 5. The intuition here was that

by using knowledge graph embeddings additional semantic knowledge would be added

which might help to increase the effectiveness of query resolution when applied to CDDs

represented as literature knowledge graphs [115, 114, 129].

The remainder of this chapter is organised as follows. The relevant notations and

symbols used are given in Table 6.1 below.

6.2 The Query Resolution Process

The proposed high level query resolution process is illustrated in Figure 6.1. The input, top

of the Figure, is a query Q and the document collection D = {D1, D2, . . . } referenced by
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Symbol Symbol Definition

Q A set of Queries, Q = {Q1, Q2, . . . Qk}
D A set of Documents, D = {D1, D2, . . . } referenced by the knowledge

graph

d A set of terms in a document Di where d = {d1, d2, . . . dn}
Q′ A cleaned, pre-processed query Qi

D′ A cleaned and pre-processed version of sD, D′ = {D′
1, D

′
2, . . . }

ti Term ti (in a query or a document)

eli The Left hand Embedding with respect to the Schematic given in Dia-
gram 6.1

eri The Right hand Embedding with respect to the Schematic given in Di-
agram 6.1

EQ Query Embedding

ED A Set of Document Embeddings, ED = {ED1, ED2, . . . }
k The number of documents to be selected from the top of a given ranked

list.

c Context words in the CBOW language model

t Target words in the CBOW language model

t Number of Transformer Blocks in the BERT language model

h Number of hidden layer size in the BERT language model

a Number of attention heads in the BERT language model

Scos The cosine similarity between two given vectors

apjk The average precision metric used for evaluation purposes

Table 6.1: Symbol table for Chapter 6, Utilisation of Literature Knowledge Graphs using
Query Based Document Ranking
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Figure 6.1: Schematic of the adopted literature knowledge graph query resolution process.
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the knowledge graph. The query shown in this query-resolution process is expressed in the

form of a natural language sentence. A bespoke query language, such as SPARKQL, was

not used. The reason for this was that how queries were expressed using the pre-existing

ORRCA system used as a test bed throughout thesis. Some examples of biomedical queries

used in the form of a natural language sentence can be found in [53, 54]. Note also that the

adopted query format does not provide for logical operators such as “OR”, again since this

was because of a design decision made with the pre-existing ORRCA interface. It should

be noted that the whole document collection need only to be processed once for document

embedding generation, after which the generated document embedding is stored (provided

the document collection remains unchanged). Each document Di ∈ D comprises n terms.

Di = {d1, d2, . . . dn}.

From Figure 6.1 it can be seen that the query resolution process comprises four stages:

Stage I: Pre-processing of the documents

Stage II: Word embedding generation for both the query and each of the document in

the knowledge graph

Stage III: Concatenation of knowledge graph embeddings generated from the knowledge

graph and pre-trained word embeddings.

Stage IV: Similarity Measurement between query embedding and document embedding,

generated above from Stage III, using the cosine similarity measure, and the ranking

of documents using cosine similarity score

Although query-resolution can be done using various strategies, the above “query-

resolution process” is founded on the concept of text-matching between a query embedding

and a document embedding. Similar work on text matching can be found in [46, 49, 103].

In this context, text matching using cosine similarity measures results in a ranked list of

abstracts which is a different concept from the pointwise learning-to-rank model used for

knowledge graph maintenance as described in the foregoing chapter. The first stage in the

above “query-resolution process”, Stage I, comprises the pre-processing of the inputs Q

and D. The nature of the pre-processing will be dependent on the nature of the language

model used. Using the CBOW model all documents and queries were pre-processed by

removing punctuation and stop words to give Q′ and D′. For stop word removal the

Python Natural Language Tool Kit (NLTK) was used2. Both BERT and SciBERT required

2https://www.nltk.org/
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that the input is tokenized. The BERT default tokenizer was used for this purpose which

applied pre-processing prior to tokenization. Note that the BERT tokenizer requires special

“classification” (CLS) and “seperating” sentence (SEP) tokens to be added to the start

and end of each sentence. The result was a cleaned version of Q and D, Q′ and D′ =

{D′
1, D

′
2, . . . }.

The next stage, Stage II, was to generate the desired word embeddings for Q′ and each

document D′
i ∈ D′. Note that a word embedding is expressed as a numeric vector of a

constant length. As indicated in Figure 6.1, three alternatives were considered, CBOW,

BERT and SciBERT, for word embedding generation. Details concerning CBOW, BERT

and SciBERT embedding generation are given in the following section, Section 6.3.

In Stage III, the word embeddings from Stage II are concatenated with Random Walk

Knowledge Graph embeddings, generated as described in Chapter 5, and then averaged to

generate document embeddings. The idea encapsulated in this stage is that a better word

embedding can be produced if two embeddings are concatenated together, as opposed

to using the embeddings individually. To distinguish between pairs of embeddings, we

refer to a “left hand embedding” and a “right hand embedding” as indicated in Figure

6.1. The result is two embeddings for each term (word) ti contained in a query or a

document, eli (left) and eri (right). For the work presented here the right hand embedding

was the random walk knowledge graph embedding presented in Chapter 5. For the left

hand embeddings, as stated above, and as indicated in Figure 6.1, three alternatives were

considered (CBOW, BERT and SciBERT) for query and document embedding. It is to be

noted that for each term ti (in a query or a document), we get an embedding (numerical

vector) ei such that ei = eli + eri (the + infix operator used here should be interpreted as

an append operator). The desired document and query embeddings are then generated by

averaging the content of the constituent word embeddings. The result is a query embedding

EQ and a set of document embeddings ED = {ED1, ED2, . . . }. Once the document

embeddings have been generated they are stored.

The final stage, Stage IV, involves determining the similarity between EQ and each

document in ED to produce a ranked list as indicated in Figure 6.1. Embedding similarity

measurement is discussed in Section 6.4, however, for the evaluation presented later in this

chapter cosine similarity was used. The generated cosine similarity values were then used

to create a ranked list from which the top k could be selected. It is to be noted that the

query-resolution defined here, is the similarity matching between a query embedding and a

document embedding. Similar work on text matching can be found in [14, 103, 109]. The
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document ranking defined in Chapter 5 was a static pointwise document ranking technique,

which doesn’t involve any similarity matching between documents.

6.3 Contextual and Non-contextual Embedding Systems

This section gives some background concerning the three “left hand” embeddings consid-

ered:

1. Continuous bag of word embedding (CBOW)

2. Bi-directional transformer embedding (BERT)

3. Scientific Bi-directional transformer embedding (SciBERT)

Recall that an embedding is essentially a learnt numerical vector used to represent a word

in a document. Document embeddings can be generated by averaging or concatenating

word embeddings. The ability to represent documents using some form of embedding has

a wide range of applications, including query based document retrieval. In [60, 79], the

authors mention the use of embeddings for semantic relatedness, paraphrase detection,

document retrieval and ranking.

There are various techniques for generating document embeddings. We can categorise

these techniques as being either non-contextual or contextual techniques. CBOW is an

example of the first, and BERT and SciBert of the second. Both non-contextual and

contextual embeddings can be used in the context of transfer learning. The concept of

transfer learning is the idea of learning a model for one domain with the intention that it

be applied in related domains. The CBOW, BERT and SciBERT embeddings adopted with

respect to the work presented in this thesis were used in this manner. The embeddings

were generated using one domain with the intention of using them in the context of a

curated document database domain (particularly the ORRCA domain). The remainder of

this section is structured as follows. Non-contextual document embedding is considered

in Sub-Section 6.3.1 with a focus on CBOW. Contextual document embedding is then

considered in Sub-Section 6.3.2 with a focus on BERT and SciBERT.
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Figure 6.2: A schematic diagram for CBOW model word embedding generation

6.3.1 Non-Contextual Embedding Systems (CBOW)

Non-contextual embeddings do not take into account the context of individual words within

a document. The advantage offered by non-contextual techniques is that they are easier

to implement than contextual techniques; especially when deployed as part of a large scale

document retrieval system. This section gives an overview of the Continuous Bag-Of-

Words (CBOW) non-contextual embedding approach. A popular class of non-contextual

embedding is what is known as Word2Vec embeddings. As the name suggests, the input

to a Word2Vec model is a word and the output is a vector (an embedding). There are two

common Word2Vec models, skip-gram and CBOW. With respect to the work presented

in this thesis only the CBOW model was considered, because of its effectiveness [80, 149].

CBOW operates in an iterative manner, on each iteration producing an embedding of an

input word. Once we have the embeddings CBOW is no longer required. This makes

CBOW embeddings easy to use.

A high level overview of CBOW is presented by the Schematic presented in Figure 6.2.

The figure should be read from left to right. The left most side in the figure shows a corpus

of documents. The CBOW model takes one sentence from the corpus at a time, iteratively.

Given each sentence in the corpus, a sliding window is used to take a set of words as the

input from each sentence in the document. The sliding window will slide over a sequence

of words from each sentence in an iterative manner (for the whole document). The goal of

CBOW model is to generate word embeddings for each target word t. For each iteration

in this word embedding generation process, a sequence of input words (using the sliding

window) is taken from the corpus. These words from the sliding window are then fed into

the CBOW model as seen in Figure 6.2. The right side of the figure shows the output of
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the CBOW model, an embedding for a target word.

6.3.2 Contextual Embedding Systems (BERT and SciBERT)

Contextual embedding techniques take the context of surrounding words into account. The

distinction between contextual and non-contextual embedding can best be illustrated by

considering the following two sentences:

The man was accused of robbing a bank.

The man went fishing by the bank of the river.

A non-contextual embedding system would create the same word embeddings for the

word “bank” regardless of its usage, whereas a contextual embedding system would gener-

ate different word embeddings depending on the context of the word “bank”. The coexis-

tence of many possible meanings for a word is referred to as polysemy. From the foregoing

it can be seen that context-informed word embeddings can be argued to produce better rep-

resentations than non-context-informed word embeddings. Contextual models have shown

great promise with respect to various NLP tasks [21, 75]. However, contextualized lan-

guage models require significantly more computing resources than non-contextual models

(such as CBOW). Contextual models are typically generated using some form of machine

learning, usually either a LSTM or a transformer deep learner. An overview of the two

contextual embedding systems considered in this thesis, BERT and SciBERT, is presented

below, commencing with BERT.

BERT

BERT stands for Bidirectional Encoder Representations from Transformers [21]. It is

bidirectional because it takes into account the context of words both before and after a given

target word. As the acronym suggests, BERT is founded on the use of transformers, a deep

learning model learnt using a process of attenuation [123]. As noted above, the primary

distinction between non-contextual embedding systems, such as CBOW, and contextual

embedding systems, such as BERT, is that non-contextual systems generate single unique

embeddings (one for each word in the vocabulary), while contextual systems can generate

more than one embedding for each word. In the case of BERT this is done using the

location (index) of each word. Therefore, instead of individual words as in the case of
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CBOW, BERT requires whole sentences as input. The “knock-on effect” of this is that the

model needs to be retrained so that specific embeddings can be generated given a particular

document corpus; not the case with respect to CBOW.

BERT expects input data in a specific format, with special tokens to mark the beginning

(CLS) and separation/end of sentences (SEP). The given query Q and documents D in

our knowledge graph thus had to be translated into this format. A tokenizer is available to

achieve this; the BERT tokenizer. For the items in each tokenized sentence, BERT requires

input IDs. BERT input IDs are a sequence of integers identifying each input token to its

index number in the BERT tokenizer vocabulary. BERT models are usually defined by

the number of transformer blocks (t), the number of hidden layers (h) and the number of

attention heads (a). Two primary models were created by the BERT developers, BASE

and LARGE, defined as follows:

• BASE: t = 12, h = 768 and a = 12.

• LARGE: t = 24, h = 1024 and a = 16.

Both were trained using words extracted from the BooksCorpus [148] and from the entirety

of English Wikipedia. The BooksCorpus is a collection of 11036 books written by unpub-

lished authors (around 74M sentences and 1G words). With respect to the work presented

in this thesis the BERT BASE model was selected, because of the limited computational

resource available, which meant that BERT LARGE could not be deployed at scale. A

BERT model is essentially a deep neural network comprised of a number of layers. The

authors in [21] identified that it helped to sum the last 4 layers of BERT. This was therefore

also adopted with respect to the work presented here to generate EQ and ED.

SciBERT

As noted above, BERT was trained using words extracted from Wikipedia and BookCorpus.

In other words BERT is a general, all-purpose, language model. It might thus be the case

that it is not well suited to specialised domains such as query resolution with respect to

the ORRCA domain-specific dataset. We have two options here:

1. Continuing to train BERT with domain-specific examples so as to create a more

specialise, domain specific, language model.

2. Use an existing domain specific language model that fits the domain of interest.
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The latter are created by using the BERT architecture to train a dedicated BERT model

using a domain-specific corpus. There are many domain specific BERT models that are

readily available. Well known examples include: FinBERT for financial services applica-

tions [139], BioBERT for biomedical applications [64], and SciBERT for biomedical and

computer science applications. Inspection of the many domain specific BERT models that

are available indicated that SciBERT might be well matched to the ORRCA clinical trials

research domain. SciBERT was trained on a random sample of 1.14M scientific publications

[3]. SciBERT word embeddings are therefore considered to be well-suited to representing

scientific document content [6].

Implementation Details

For evaluating the proposed knowledge graph query resolution approach, all three varia-

tions using the above three document embeddings, were implemented using Pytorch [97],

with the Hugging Face transformer library [130] and Scikit-learn library [61]. All the above

models mentioned earlier in this section were specialised to the clinical trails domain using

the Adam optimizer [59].

6.4 Similarity Measurement and Ranking

From the methodology presented in Section 6.2, and shown in Figure 6.1, the fourth stage

in the proposed process was measuring the similarity between the query embedding EQ

and each document embedding EDi in ED. There are various mechanisms whereby the

similarity between two embeddings can be calculated (recall that an embedding is simply

a vector of numbers). Popular choices are dot product, Euclidean distance and Cosine

similarity. Dot product similarity favours long vectors, which may skew the outcome and

thus not be ideal for query resolution. Euclidean distance similarity measures the distance

between the two points defined by two vectors. Cosine similarity measures the angle

between the two vectors. These are not the same thing, the points defined by two vectors

may be a long way apart, but the angle between the vectors may be small. Euclidean

distance similarity is only significant where we wish to take the length of the vectors into

consideration whereas cosine similarity is important when the angle between two vectors

is important. Therefore, for the evaluation presented later in this chapter cosine similarity

was adopted.
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Cosine similarity, as the name suggests, is the cosine of the angle between two vectors

x and y. This is the same as the inner product of the two vectors (normalized so that they

both have a length of 1). Cosine Similarity (Scos) is calculated as shown in Equation 6.1,

where x.y is the dot product between the two vectors. The notation ||x|| (||y||) denotes

the “norm” of x within the normalised vector space. A cosine similarity of 1 indicates an

exact match.

Scos(x, y) =
x.y

||x|| × ||y||
(6.1)

The documents in ED were ranked according to their cosine similarity scores. The top

k could then be selected to be returned to the user. The value for k depends on the number

of documents that the end user would like to be returned. For the evaluation presented

later in this chapter k = 5 and k = 10 were considered.

6.5 Evaluation

This section presents the evaluation of the proposed query-based document retrieval from

a literature knowledge graph approach. The challenge here was the lack of an appropriate

test data set. A bespoke data set had thus to be created. To this end funding was

obtained, from the UK Medical Research Council - National Institute for Health Research

(MRC-NIHR) Trials Methodology Research Partnership1, in a collaboration between the

Universities of Liverpool, Leeds and Aberdeen (all in the UK).

The objective of the evaluation was to compare the operation of the considered em-

beddings (CBOW, BERT and SciBERT) coupled with the random walk knowledge graph

embedding, and when used in isolation. The evaluation metrics used were Average Preci-

sion and Mean Average Precision (MAP). The experiments were conducted using NVidia

K80 GPUs kaggle kernel GPUs. Each method was limited to accessing only one GPU for

fair comparisons. The remainder of this section is organised as follows. Further detail

concerning the evaluation dataset is presented in Sub-section 6.5.1. The dataset collection

process is explained in Sub-section 6.5.2. The evaluation metrics used are considered in

1Anna Kearney (PI and University of Liverpool), Frans Coenen (Co-I and University of Liverpool),
William Cragg (Co-I and University of Leeds), Katie Gillies (university of Aberdeen, Co-I), Iqra Muhammad
(Co-I and University of Liverpool), Amanda Roberts (Co-I and University of Liverpool), Paula Williamson
(Co-I and University of Liverpool) January 2021. Using Machine learning with user feedback to improve
ORRCA. Medical Research Council - National Institute for Health Research (MRC-NIHR) Trials Method-
ology Research Partnership. £20,000
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further detail in Sub-section 6.5.3. The results obtained are then presented and discussed

in Sub-section 6.5.4. The section is concluded with a discussion of the results obtained

from an empirical study in Sub-section 6.5.5.

6.5.1 Evaluation Dataset

For the evaluation, a dataset of query-document pairs was collected along with relevance

judgements using the funding obtained from MRC-NIHR. The dataset consisted of a set of

45 clinical trial queries. Each query was paired with the relevant and irrelevant documents.

The relevance judgements were binary, ‘relevant’ or ‘not-relevant’ for each document cor-

responding to a query. A similar approach was adopted in [68, 65, 89]. This dataset was

collected by a team of experts from:

1. The Health Services Research Unit at the University of Aberdeen

2. The Department of Health Data Science at the University of Liverpool

3. The Department of Public Health, Policy and Systems at the University of Liverpool

The querying was conducted using the existing ORRCA CDD, not the knowledge graph

variation proposed in this thesis (because at this stage the new version of the CDD was

not yet generally available), which was queried using a bespoke graphical interface which

allowed the user to enter keywords or phrases. A fragment of the dataset is given in in

Table 6.2. The left hand column gives the query (one or more keywords or phrases). The

middle column gives a document title returned as a consequence of the query. The right

hand column gives the reviewer’s view as to whether the document was relevant or not.

6.5.2 Evaluation Dataset Collection Process

The ORRCA dataset collection process is described in this section. The dataset was

collected using human labelling done by a group of experts. This was because the author

had no knowledge of the specialized domain of clinical trials. As noted above participants

from various institutions took part in the data set collection process. The following process

were adopted for the collection and relevance labelling process:

1. Experts from various institutes, were selected based on the criteria that they should

be members of the TMRP Group. The TMRP group is a specialized group of clinical

trials recruitment strategy experts.
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Query Document Title Document Rele-
vance

labour Use of a cancer registry. Not Relevant

labour Parental preferences for
neonatal resuscitation

Relevant

Postpartum
haemorrhage

Marma therapy for
stroke rehabilitation

Not-Relevant

Postpartum
haemorrhage

VERA Relevant

D2 and cancer
does Partici-
pant Information
Sheet and Con-
sent Form in
cancer trials af-
fect recruitment

Response rates in a
case-control study: ef-
fect of disclosure of bi-
ologic sample collection
in the initial contact let-
ter

Not Relevant

D2 and cancer
does Partici-
pant Information
Sheet and Con-
sent Form in
cancer trials af-
fect recruitment

Randomised compari-
son of procedures for
obtaining informed
consent in clinical trials
of treatment for cancer

Relevant

situational inca-
pacity Recruit-
ment research
methods

Why do breast can-
cer patients decline en-
try into randomised tri-
als and how do they
feel about their deci-
sion later: a prospec-
tive, longitudinal, in-
depth interview study

Relevant

situational inca-
pacity Recruit-
ment research
methods

The role of therapeu-
tic optimism in recruit-
ment to a clinical trial
in a peripartum setting:
balancing hope and un-
certainty

Not Relevant

Table 6.2: Fragment of ORRCA Query-document Evaluation Data set
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Figure 6.3: A screenshot of the Online Resource for Research in Clinical trials (ORRCA)
main search interface
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Figure 6.4: A screenshot of the Online Resource for Research in Clinical trials (ORRCA)
advance search interface
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2. The ORRCA main search interface presented in Figure 6.3 and ORRCA advance

search interface presented in Figure 6.4 were modified for downloading CSV files of

documents returned for each search query.

3. Each expert was then given a specific number of search queries and given a certain

allocated time for relevance labelling.

The author collaborated with a number of experts so as to seek insight as to whether

the relevance labels and number of documents retrieved were meaningful given the clinical

trials domain.

6.5.3 Evaluation Metrics

The generated evaluation data set did not have a ground truth ranking, although the

advocated approach presented in this chapter, given a query, produced a document rank-

ing. Therefore metrics usually used with respect to “learning to rank” algorithms, such

as Normalized Discounted Cumulative Gain (NDCG), could not be used. Thus Average

Precision (AP) and Mean Average Precision (MAP) was considered to be the most ap-

propriate evaluation metrics. The MAP at a rank k was calculated as follows (there are

alternative formulations):

MAP (k) =
1

|Q|

j=|Q|∑
j=1

APjk (6.2)

Where: (i) k is a desired rank threshold, (ii) Q is the evaluation query dataset and (iii)

apjk is the “Average Precision” at the rank threshold k (up to the rank threshold k) for a

query j. The average precision, AP , at rank k for a query j is calculated as follows:

APj,k =
1

m

i=k∑
i=1

pji if document at i is relevant (6.3)

Where: (i) m is the number of relevant documents returned, and (ii) pji is the ranked

precision for query j at rank i. Ranked precision is defined as the fraction of relevant

documents for a query qj retrieved from the the total number of documents retrieved at

(up to) rank i. Ranked precision is calculated as shown in the following equations, where:

(i) tpji is the number of “true positives” at rank i, the number of documents that should

have been retrieved in response to a query j, and were retrieved up to rank i; and (ii) fpji
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is the number of “false positives” at rank i, the number of documents that should not have

been retrieved in response to a query qj , but were retrieved up to rank i.

pji =
tpji

tpji + fpji
=

(
relevant

retrieved

)
(6.4)

Note that pji will have a value between 0 and 1, the nearer to 1 the better. For the

evaluation presented later in this chapter k = 5 and k = 10 were used; thus MAP values

for the top 5 and top 10 documents were generated. This was because the average number

of documents returned per query was never greater than 20, given the evaluation data

set used. For the results presented in the following sub-section the “average” precision

and “mean average” precision at rank k were used, indicated by the notations AP@k

and MAP@k. Note that an Average Precision of 0.0 occurs when no relevant documents

are identified, and an Average Precision of 1.0 occurs when all relevant documents are

identified, with respect to a given test query.

6.5.4 Results and Discussion

This section presents the Average Precision (AP) at k = 5 and k = 10 results with respect

to the evaluation of the proposed querying mechanisms. For each of the 45 clinical trial

queries in the ORRCA query-document dataset the results are presented as follows.

1. The results obtained using CBOW embeddings combined with the KG random walk

embedding approach, and CBOW embeddings when used in isolation, are presented

in Table 6.3

2. The results obtained using BERT embeddings combined with KG random walk em-

bedding approach, and BERT embeddings when used in isolation, are presented in

Table 6.4

3. The results obtained using Sci-BERT embeddings combined with KG random walk

embedding approach, and Sci-BERT embeddings when used in isolation, are pre-

sented in Table 6.5.

4. The results obtained using Knowledge Graph Random Walk embeddings when used

in isolation are presented in Table 6.6.
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Search Code
CBOW + Random Walk CBOW only

P@5 P@10 P@5 P@10

Search1 0.4 0.4 0.0 0.3
Search2 0.4 0.3 0.4 0.3
Search3 0.2 0.2 0.6 0.5
Search4 0.6 0.6 0.6 0.6
Search5 0.4 0.2 0.0 0.0
Search6 0.2 0.4 0.8 0.7
Search7 0.8 0.9 0.6 0.6
Search8 0.0 0.0 0.0 0.0
Search9 0.4 0.4 0.4 0.5
Search10 0.6 0.6 0.6 0.6
Search11 1.0 0.9 1.0 0.9
Search12 0.4 0.7 0.6 0.7
Search13 0.4 0.0 0.6 0.0
Search14 0.8 0.7 1.0 0.7
Search15 0.4 0.5 0.2 0.3
Search16 0.6 0.4 0.4 0.4
Search17 0.0 0.0 0.0 0.0
Search18 0.6 0.5 0.4 0.4
Search19 1.0 1.0 1.0 1.0
Search20 0.4 0.2 0.2 0.2
Search21 0.8 0.5 0.8 0.5
Search22 0.6 0.5 0.2 0.3
Search23 0.6 0.8 0.4 0.5
Search24 1.0 0.9 0.0 0.0
Search25 0.0 0.0 0.0 0.0
Search26 0.0 0.0 0.0 0.0
Search27 0.8 0.8 1.0 0.8
Search28 0.6 0.7 0.8 0.7
Search29 0.8 0.0 0.8 0.0
Search30 1.0 0.0 1.0 0.0
Search31 1.0 1.0 1.0 1.0
Search32 1.0 0.9 1.0 0.9
Search33 1.0 1.0 0.8 0.9
Search34 1.0 1.0 1.0 0.9
Search35 0.0 0.0 0.0 0.0
Search36 0.4 0.2 0.6 0.3
Search37 0.4 0.0 0.4 0.0
Search38 0.4 0.2 0 0.4
Search39 0.0 0.0 0.2 0.1
Search40 0.4 0.4 0.2 0.3
Search41 0.6 0.4 0.4 0.3
Search42 0.0 0.0 0.0 0.0
Search43 0.2 0.1 0.2 0.1
Search44 0.6 0.0 0.8 0.0
Search45 0.0 0.0 0.0 0.2

Table 6.3: AP@k results for combined CBOW and random walk embeddings, in comparison
with CBOW used in isolation
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Search Code
BERT + Random Walk BERT only

P@5 P@10 P@5 P@10

Search1 1.0 1.0 0.0 0.0
Search2 0.2 0.3 0.0 0.2
Search3 0.6 0.5 0.6 0.4
Search4 0.4 0.6 0.6 0.6
Search5 0.0 0.0 0.0 0.0
Search6 0.2 0.4 0.2 0.5
Search7 0.4 0.7 0.0 0.4
Search8 0.0 0.0 0.0 0.0.1
Search9 0.0 0.2 0.2 0.3
Search10 0.6 0.8 0.8 0.8
Search11 1.0 0.9 1.0 0.9
Search12 0.6 0.6 0.8 0.7
Search13 0.6 0.0 0.6 0.0
Search14 0.8 0.8 0.8 0.8
Search15 0.6 0.4 0.4 0.4
Search16 0.4 0.4 0.6 0.5
Search17 0.0 0.0 0.0 0.0
Search18 0.4 0.4 0.2 0.3
Search19 1.0 0.9 1.0 0.9
Search20 0.2 0.3 0.2 0.2
Search21 0.4 0.5 0.6 0.5
Search22 0.6 0.6 0.4 0.4
Search23 0.2 0.5 0.6 0.7
Search24 0.4 0.7 0.6 0.7
Search25 0.0 0.0 0.0 0.0
Search26 0.0 0.0 0.0 0.0
Search27 0.6 0.7 0.6 0.7
Search28 0.6 0.8 0.8 0.7
Search29 1.0 0.0 0.6 0.0
Search30 1.0 0.0 1.0 0.0
Search31 1.0 1.0 1.0 1.0
Search32 1.0 0.9 1.0 0.9
Search33 1.0 0.9 1.0 1.0
Search34 1.0 0.9 1.0 0.9
Search35 0.0 0.0 0.0 0.0
Search36 0.4 0.2 0.0 0.0
Search37 0.4 0.0 0.4 0.0
Search38 0.2 0.1 0.2 0.1
Search39 0.2 0.1 0.2 0.2
Search40 0.0 0.1 0.2 0.3
Search41 0.2 0.2 0.2 0.2
Search42 0.0 0.0 0.0 0.0
Search43 0.2 0.1 0.0 0.0
Search44 0.6 0.0 0.6 0.0
Search45 0.0 0.1 0.0 0.1

Table 6.4: AP@k results for combined BERT and random walk embeddings, in comparison
with BERT used in isolation
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Search Code
Sci-BERT + Random Walk Sc-BERT only

P@5 P@10 P@5 P@10

Search1 0.0 0.3 0.0 0.3
Search2 0.2 0.2 0.0 0.3
Search3 0.4 0.3 0.2 0.5
Search4 0.6 0.6 0.6 0.6
Search5 0.0 0.1 0.0 0.1
Search6 0.2 0.1 0.2 0.3
Search7 0.4 0.6 0.0 0.5
Search8 0.0 0.0 0.0 0.0
Search9 0.6 0.4 0.6 0.4
Search10 0.8 0.7 1.0 0.8
Search11 1.0 0.9 1.0 1.0
Search12 0.2 0.3 0.8 0.7
Search13 0.6 0.0 0.4 0.0
Search14 0.4 0.5 0.8 0.8
Search15 0.4 0.2 0.6 0.4
Search16 0.0 0.1 0.2 0.4
Search17 0.0 0.0 0.0 0.0
Search18 0.4 0.4 0.4 0.4
Search19 1.0 1.0 1.0 0.9
Search20 0.0 0.0 0.0 0.2
Search21 0.4 0.5 0.4 0.5
Search22 0.8 0.6 0.4 0.2
Search23 0.4 0.6 0.6 0.5
Search24 0.6 0.6 0.6 0.7
Search25 0.2 0.1 0.0 0.1
Search26 0.0 0.0 0.0 0.0
Search27 0.4 0.5 1.0 0.0
Search28 0.6 0.7 0.8 0.7
Search29 0.6 0.0 0.8 0.0
Search30 1.0 0.0 0.0 0.0
Search31 1.0 1.0 1.0 1.0
Search32 1.0 0.9 1.0 0.9
Search33 1.0 0.9 1.0 0.9
Search34 1.0 0.9 1.0 0.0
Search35 0.0 0.0 0.0 0.0
Search36 0.0 0.0 0.0 0.1
Search37 0.4 0.0 0.2 0.0
Search38 0.2 0.4 0.0 0.1
Search39 0.0 0.1 0.0 0.0
Search40 0.2 0.2 0.4 0.2
Search41 0.4 0.2 0.4 0.0
Search42 0.0 0.0 0.0 0.0
Search43 0.2 0.1 0.2 0.1
Search44 0.6 0.0 0.5 0.0
Search45 0.0 0.0 0.0 0.2

Table 6.5: AP@k results for combined SciBERT and random walk embeddings, in com-
parison with Sci-BERT used in isolation
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Search Code (Query ) P@5 P@10
Search1 0.0 0.3
Search2 0.4 0.4
Search3 0.2 0.2
Search4 0.6 0.6
Search5 0.0 0.3
Search6 0.2 0.4
Search7 0.6 0.7
Search8 0.0 0.0
Search9 0.8 0.5
Search10 0.8 0.9
Search11 1.0 0.9
Search12 0.4 0.6
Search13 0.0 0.0
Search14 0.6 0.7
Search15 0.2 0.3
Search16 0.4 0.3
Search17 0.0 0.0
Search18 0.8 0.6
Search19 0.0 0.0
Search20 0.2 0.3
Search21 1.0 0.5
Search22 0.4 0.5
Search23 0.6 0.8
Search24 0.6 0.7
Search25 0.0 0.1
Search26 0.0 0.0
Search27 0.8 0.8
Search28 0.8 0.8
Search29 0.8 0.0
Search30 1.0 0.0
Search31 1.0 1.0
Search32 1.0 0.9
Search33 1.0 1.0
Search34 1.0 1.0
Search35 0.0 0.0
Search36 0.2 0.3
Search37 0.4 0.0
Search38 0.2 0.3
Search39 0.0 0.2
Search40 0.6 0.3
Search41 0.2 0.2
Search42 0.0 0.0
Search43 0.2 0.1
Search44 0.6 0.0
Search45 0.0 0.0

Table 6.6: AP@k results for Random Walk embeddings used in isolation
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Embedding Model MAP@5 MAP@10

CBOW and KG embeddings 0.486 0.313

BERT and KG embedding 0.420 0.256

SciBERT and KG embedding 0.414 0.252

SciBERT only embedding 0.393 0.186

BERT only embedding 0.409 0.256

CBOW only embedding 0.433 0.259

Random Walk KG only embedding 0.458 0.271

Table 6.7: MAP@k Table for BERT, SciBERT and CBOW when combined with Random
Walk embeddings, and when in isolation

In each of the tables, Table 6.3 to 6.6, results in bold show the queries that performed

significantly better than other queries. Query numbers 31, 32, 33 and 34 produced the

best results from all the query searches considered. This could be attributed to the fact

that the number of keywords in these queries, on average, was greater compared to the

rest of the queries. It is conjectured that queries with a greater number of keywords tend

to achieve better results compared to those with fewer keywords as seen in similar works

recorded in [62, 113]; this makes logical sense.

Table 6.7 presents a summary of the results obtained using the Mean Average Precision

at k (MAP@k) for all the embedding techniques. In the table best results are highlighted

in bold. Inspection of the table indicates that combined CBOW and random walk embed-

dings produced the best results and random walk embeddings on their own also produced

good results. It was conjectured that this was because the CBOW embedding training

vocabulary, although “general” in nature, was more suitable to the ORRCA application

domain than in the case of BERT and SciBERT. Among the experiments where CBOW,

BERT, SciBERT and Knowledge Graph Random Walk embeddings were used in isolation

for query resolution, the Random Walk embeddings produced better results (in terms of

MAP@k). Knowledge Graph Random Walk embeddings used in isolation were also found

to performed better than BERT and SciBERT embeddings when combined with random

walk embeddings. It was conjectured that for datasets such as ORRCA external knowl-

edge from a knowledge graph is helpful in getting a high number of relevant documents

hence Knowledge Graph Random Walk embeddings performed better overall. However,

when coupled both BERT and SciBERT embeddings this produced a negative affect. From

Table 6.7 it can be seen that the recorded MAP@k values were relatively lower for the

BERT and SciBERT embeddings when used in isolation. It was thus concluded that this

was because the BERT embeddings were more suitable for shorter queries; with respect to
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the ORRCA dataset, the majority of the queries are relatively longer in length [93].

Figure 6.5: A bar chart showing the recorded MAP@5 values for the document embedding
techniques considered

The results from Table 6.7 are presented in bar graph in Figures 6.5 and 6.6. The

figures indicate the distribution of the recorded MAP@5 and MAP@10 values across

all embedding techniques. In the figures the document embedding techniques for query

resolution are plotted on the x-axis, whereas the values for MAP@5 and MAP@10, as

appropriate, are plotted on the y-axis from 0 upwards incrementing in steps of 0.1. From

Figure 6.5, which gives the MAP@5 results, it can again be be seen that best results were

obtained using CBOW embeddings coupled with Random Walk embeddings. The overall

distribution for the MAP values, shows that the MAP values were usually in the range of

0.4 to 0.5. This range of values indicates that most of the document embedding techniques

considered were partially successful in retrieving documents.

Returning to Tables 6.3 to 6.6 it is useful to investigate the spread of Average Precision

values so as to get an alternative indicator of the operation of the different approaches

considered. The distribution of the Average Precision values, AP@5 and AP@10, for

the different approaches, are shown in bar graph form in Figures 6.7 to 6.20 (using the

information given in Tables 6.3 to Table 6.6). Bar graphs are presented for: (i) CBOW
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Figure 6.6: A bar chart showing the recorded MAP@10 values for the document embedding
techniques considered

and Random walk embeddings, (ii) CBOW only embeddings, (iii) BERT and Random walk

embeddings, (iv) BERT only embeddings, (v) SciBERT and Random walk embeddings,

(vi) SciBERT only embeddings and (vii) Knowledge Graph Random walk only embeddings.

For each bar graph Average Precision values are listed on the x-axis (incremented in steps

0.1) and the number of associated queries on the y-axis. A summary of the information

contained in the bar charts is given below:

1. CBOW and random walk embedding combined (Figures 6.7 and 6.8: From Figure

6.7 (bar graph for AP@5), it can be seen that the value of AP = 0.4 has the highest

number of search queries. The same figure also shows that the second highest number

of search queries is for AP = 0.6. In addition to this, from Figure 6.8 (bar graph for

AP@10), it can be seen that the value of AP = 0 has the highest number of search

queries and the second highest search queries is for AP = 0.4. Recall that a value of

AP = 0 means that such search queries failed to retrieve any relevant documents.

2. CBOW in isolation (Figures 6.9 and 6.10: From Figure 6.9, AP@5, it can be noted

that the highest number of search queries is for AP = 0 and the second highest

number of search queries is for AP = 1. From Figure 6.10, AP@10, it can be seen
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Figure 6.7: Bar graph showing number of queries against AP@5 values when using
CBOW+RandomWalk document embeddings

that the highest number of search queries was associated with AP = 0 and the second

highest with AP = 0.3.

3. BERT and random walk embedding combined (Figures 6.11 and 6.12): From Figure

6.11, AP@5, it can be seen that the AP = 0 has the highest number of search queries

associated with it, whereas the second highest number of search queries in this case

was for AP = 0.9. In the case of Figure 6.12, AP@10, the highest number of search

queries was also associated with AP = 0 and second highest number of search queries

for AP = 0.9.

4. BERT in isolation (Figures 6.13 and 6.14): From Figure 6.13, AP@5, it can be

seen that AP = 0 had the highest number of search queries associated with it, and

AP = 0.6 the second highest. From Figure 6.14, AP@10, it can be seen that the

highest number of search queries was associated with AP = 0 and the second highest

with AP = 0.7.

5. SciBERT and random walk embedding combined (Figures 6.15 and 6.16: From Fig-

ure 6.15 (bar graph for AP@5), it can be observed that the highest number of search
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Figure 6.8: Bar graph showing number of queries against AP@10 values when using
CBOW+RandomWalk document embeddings

queries was associated with AP = 0, meaning that in these cases no relevant doc-

uments were returned. Whereas for the same figure, the second highest number of

search queries was associated with an AP = 0.4. For Figure 6.16 (bar graph for

AP@10), the highest number of search queries had a value of AP = 0, whereas the

second highest number of search queries is for AP = 0.1.

6. SciBERT in isolation (Figures 6.17 and 6.18): From Figure 6.17, AP@5, the highest

number of search queries are associated with AP = 0 and the second highest number

of search queries with AP = 1. Similarly, Figure 6.18, AP@10, demonstrates that

the highest number of search queries was associated with AP = 0 and the second

highest with AP = 0.1.

7. Random walk in isolation (Figures 6.19 and 6.20): Figure 6.19, AP@5, shows that

the highest number of search queries was associate with AP = 0 and the second

highest with AP = 0.2. Figure 6.20, AP@10, shows that the highest number of

search queries was associated with AP = 0 and the second highest with AP = 0.3

From the foregoing analysis, it can be concluded that for the majority of the embedding
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Figure 6.9: Bar graph showing number of queries against AP@5 values when using CBOW
only document embeddings

techniques used above for query resolution, on average 12/45 search queries (both for AP@5

and AP@10) failed at retrieving relevant documents. Secondly,the second highest number

of search queries (both for AP@5 and AP@10 bar graphs) varied in terms of average

precision for each document embedding technique. The overall trend in the bar graphs is

that for most search queries, the average precision was between 0.4 and 0.9 meaning that

they at least retrieved some relevant articles.

6.5.5 Empirical study for knowledge graph query resolution

To obtain a better understanding of the operation of the proposed knowledge graph query

resolution mechanism, an empirical study was conducted by gathering information regard-

ing experience of using the proposed approach. The idea was to select a number of queries

and present the results to selected ORRCA end users, domain experts selected from the

Department of Health Data Science at the University of Liverpool. The study was moti-

vated by the observation that query resolution would result in the following categories of

document:

1. Documents identified by the proposed system and also identified using the ORRCA
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Figure 6.10: Bar graph showing number of queries against AP@10 values when using
CBOW only document embeddings

search function, the set Dpo. The po stands for relevant documents returned by both

proposed search system (p) and ORRCA keyword matching system (o).

2. Documents identified by the proposed system and not identified using the ORRCA

search function, but which should have been identified by the ORRCA search func-

tion, the set Dpr. The pr stands for documents returned only by the proposed search

system (p) that are relevant (r).

3. Documents identified by the proposed system and not identified using the ORRCA

search function, which should not have been identified by the proposed system, the

set Dpn. The pn stands for the documents that are returned only by the proposed

search system (p) that are not relevant (n).

The sets of interest here are the sets Dpr and Dpn; the content of Dpo can be readily

established from the ORRCA query-document pairs data set. The sets Dpr and Dpn

collectively form the set of false positives, the set Dfp (Dfp = Dpr ∪Dpn). To demonstrate

the advantages of the literature knowledge graph approach, the focus of the work presented
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Figure 6.11: Bar graph showing number of queries against AP@5 values when using
BERT+RandomWalk document embeddings

in this thesis, the ideal result would be a substantial number of items in Dpr and for Dpn

to be empty.

For the experiment the “CBOW and Random walk embeddings” approach was used

with k set to 10. A set of four queries were selected randomly from the ORRCA query-

document pairs dataset identified by the key words: (i) Facebook, (ii) Bereaved, (iii)

Palliative and (iv) Obesity. Recall that each query in the query-document pairs dataset has

multiple documents associated with it, with their relevance manually labelled by domain

experts in each case (as described in Sub-section 6.5.2). For each of the selected queries the

sets Dpo and Dfp were generated. The set Dfp was then presented to the selected end user

domain experts for allocation to Dpr and Dpn. The results obtained are shown in Table 6.8.

From the table it can be seen that the proposed search system with CBOW+ Knowledge

Graph random walk embedding was able to identify relevant documents not identified by

ORRCA search system for the search query “facebook” and “Palliative”, whereas for the

search query “obesity” and “bereaved” it was not able to identify relevant documents.

From table 6.8 it can thus be concluded for two queries, the proposed knowledge graph

query resolution system successfully identified relevant documents, not identified on the



Chapter 6. Literature Knowledge Graph Query Resolution 103

Figure 6.12: Bar graph showing number of queries against AP@10 values when using
BERT+RandomWalk document embeddings

Query
Number of documents

Dpo Dpr Dpn

Facebook 5 3 2
Bereaved 1 0 9
Palliative 7 3 0
Obesity 10 0 0

Total 23 6 11

Table 6.8: Results from empirical study

existing system. The possible reason for this is that semantic matching signal play an im-

portant role in the success of query resolution. The proposed CBOW + Knowledge Graph

random walk document embeddings contain semantic knowledge sourced from the knowl-

edge graph in the form of random walk knowledge graph embeddings and that resulted in

more successful query resolution.

Figure 6.21 shows the overall performance of knowledge graph query resolution mech-

anism in terms of relevance score with respect to the empirical study. In this figure, the

relevance scores returned by the proposed query resolution mechanism are plotted on the
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Figure 6.13: Bar graph showing number of queries against AP@5 values when using BERT
only document embeddings

x-axis, and the number of relevant and irrelevant documents identified by the proposed

system according to the relevance score on the y-axis. It can be seen from Figure 6.21

that the highest number of relevant documents with a relevance score are in the range of

0.3− 0.4. In addition to this, the highest number of irrelevant documents with a relevance

score were in the range of 0.5 − 0.6.
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Figure 6.14: Bar graph showing number of queries against AP@10 values when using
BERT only document embeddings

6.6 Conclusion

This chapter has proposed document embedding techniques for knowledge graph query res-

olution. The objective of the proposed document embedding techniques was to represent

a query and the documents in the knowledge graph in a manner that will allow the docu-

ments to be ranked, according to some relevance measure, with respect to the query. The

work presented in this chapter was divided into two main proposed document embedding

techniques:

1. Non-Contextual Embedding Systems(CBOW embeddings)

2. Contextual Embeddings Systems (BERT and Sci-BERT embeddings)

The first, non-contextual embedding systems do not consider the context of individual

words in a document. CBOW embeddings is a type of non-contextual embedding technique

and was used in this chapter for query and knowledge graph document representation.

The second, contextual embedding systems considered the context of individual words in

a document. BERT and Sci-BERT were the two types of contextual embedding systems
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Figure 6.15: Bar graph showing number of queries against AP@5 values when using SciB-
ERT+Random Walk document embeddings

used for query and knowledge graph document representation. The chapter started off, for

completeness, with an introduction and background to document embedding techniques

followed by the proposed methodology for query resolution. The evaluation considered

precision and recall for the top five and ten documents returned by the system. The

results show that CBOW combined random walk embeddings were the most suitable for

query-resolution system. An empirical study was also conducted with experts from the

University of Liverpool, Bio-statistics department. The empirical study demonstrated

that the proposed knowledge graph query resolution system was able to identify relevant

documents that the existing system was not able to identify. In some cases, there was a

vocabulary mismatch between the words in a query and words in a document. In summary,

the central idea in this chapter was to research and investigate techniques and document

embedding methods whereby CDD literature knowledge graphs can be queried to retrieve

and rank relevant documents. The following Chapter 7 concludes this thesis.
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Figure 6.16: Bar graph showing number of queries against AP@10 values when using
SciBERT+Random Walk document embeddings

Figure 6.17: Bar graph showing number of queries against AP@5 values when using SciB-
ERT only document embeddings
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Figure 6.18: Bar graph showing number of queries against AP@10 values when using
SciBERT only document embeddings

Figure 6.19: Bar graph showing number of queries against AP@5 values when using Ran-
dom Walk document only embeddings
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Figure 6.20: Bar graph showing number of queries against AP@10 values when using
Random Walk only document embeddings

Figure 6.21: A bar graph representing the relevance scores from the KG query resolution
empirical study on x-axis and number of irrelevant/relevant documents on y-axis



Chapter 7

Conclusion and Future Work

7.1 Introduction

This chapter concludes the work presented throughout this PhD thesis with a summary

of the content, the main findings and some directions for future work. The chapter starts,

Section 7.2, with a summary of the work. Section 7.3 then presents the main findings and

contributions of the work presented in the context of the research questions and subsidiary

research questions presented in Chapter 1. The chapter ends with Section 7.4, which lists

a number of potential areas for future work that build upon the work presented in the

thesis.

7.2 Summary of Thesis

This section gives a summary of the work presented in each chapter of this thesis. The

thesis started with an introductory chapter, Chapter 1.

7.2.1 Chapter 1 key findings

1. The motivation for the research presented.

2. The research questions to be addressed, together with a set of subsidiary questions.

3. The research methodology adopted so as to provide answers to the subsidiary ques-

tions and consequently the main research question.

110
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The central idea underpinning the thesis is the construction, maintenance and uti-

lization of Literature Knowledge graphs in the context of Curated Document Databases

(CDDs) so that scientific literature can be stored, managed and queried efficiently and

effectively. The main motivation behind the idea of Literature Knowledge Graphs was

the rapid increase in the volume of scientific literature being published, together with the

difficulty researchers face in maintaining and querying it. Researchers, in any domain of

discourse, must continuously analyse, and be aware of, existing work in their field; CDDs

provide a solution. One well-known example of a CDD that has been used throughout the

thesis, as both a focus for the work and as a evaluation application, is the Online Resource

for Recruitment research in Clinical trials (ORRCA) CDD [58]. The ORRCA CDD1 is

a CDD of scientific publications directed at the highly specialised domain of recruitment

strategies for clinical trials.

Various types of AI and machine learning techniques could have been potentially used

to address the problem of creating, maintaining and using literature knowledge graph

represent CDDs; however, the research focus in this thesis has been on the following:

1. Generation of literature knowledge graphs using open information extraction tech-

niques.

2. Maintenance of literature knowledge graphs using document ranking algorithms.

3. Query-resolution using various embedding techniques including CBOW, BERT and

knowledge graph embeddings.

7.2.2 Chapter 2 key findings

Chapter 2 then provided a review of the previous relevant work in context of Literature

knowledge graphs. The chapter commenced with an overview of the defining literature on

knowledge graphs. The chapter was divided into three research areas matching the focus

for the work presented in the thesis :

1. Knowledge graph construction

2. Knowledge graph maintenance

3. Knowledge graph utilisation

1https://www.orrca.org.uk/
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The relevant literature was reviewed with respect to each of these research areas. With

respect to the first the relevant literature on how to generate knowledge graphs using vari-

ous forms of information extraction techniques was discussed. The chapter then discussed

existing techniques that were adapted to update and maintaining knowledge graphs using

Learning To Rank (LETOR) techniques. The chapter concluded with a review of the word

embedding techniques presented in the literature; techniques that can be potentially be

used to support the querying of literature knowledge graphs.

7.2.3 Chapter 3 key findings

The following chapter, Chapter 3, gave a description of the ORRCA CDD and the eval-

uation data sets. The chapter started with a review of the ORRCA application domain.

The chapter then went on to consider the ORRCA CDD itself and the motivation behind

its usage in this thesis. The chapter was concluded with a comprehensive review of the

various ORRCA evaluation data sets used to support the work presented in this thesis.

The following three chapters, Chapters 4 to 6, presented a sequence of proposed ap-

proaches for the generation, maintenance and querying of CDDs represented as literature

knowledge graphs. All these chapters were structured in a similar manner comprising an

introduction, a description of the proposed approach, the evaluation of the approach and

discussion.

7.2.4 Chapter 4 key findings

Chapter 4 introduced the proposed Open Information Extraction for Knowledge Graph

Construction (OIE4KGC) approach for literature knowledge graph generation. The prin-

ciple idea behind this approach was to use an Open Information Extraction (OIE) mecha-

nism for the extraction of triples from a document collection that would be representative

of vector-edge-vector constructs. The pre-trained RnnOIE [119] OIE extraction tool was

embedded into the OIE4KGC approach. Two OIE tools, RnnOIE and Leolani [124] were

compared and evaluated using two data sets, the ORRCA and Reverb data sets. Precision,

recall and F-score were used as evaluation metrics. The results indicated that RnnOIE,

turned out to be the better than Leolani in terms of precision, recall and F-score, when

generating triples from a clinical trials dataset.
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7.2.5 Chapter 5 key findings

Chapter 5 presented two proposed approaches to maintaining and updating literature

knowledge graphs:

1. The CN approach founded on work presented in [91] and named after the initials of

the author in [91].

2. The Knowledge Graph And BERT Ranking (GRAB-Rank) approach.

The chapter commenced with a review of the CN approach which used a TF-IDF n-gram

feature vector representation. The GRAB-Rank approach was described next, based on a

hybrid document embedding technique. The unique aspect of the GRAB-rank approach

was that it combined two types of word embedding, BERT word embedding and knowledge

graph embedding. The knowledge graph embeddings were generated using a random walk

applied over the knowledge graph followed by the application of the node2vec framework

for generating embeddings. For both the approaches the idea was to rank a set of potential

documents for inclusion in a CDD, and then to select the top k for inclusion. The chapter

was concluded with the evaluation of the proposed approaches. A sequence of experiments

were conducted aimed at identifying the best possible values for the parameters used, and

to determine the comparative effectiveness of the CN and Grab-rank approaches and the

time savings gained. The evaluation suggested that the GRAB-rank approach was the

most effective approach; significant time savings were identified.

7.2.6 Chapter 6 key findings

Chapter 6 commenced with a discussion of hybrid document embedding techniques for

literature knowledge graph query-resolution. The work presented in this chapter comprised

three proposed techniques, categorised according to the nature of the adopted embedding:

1. Continuous Bag Of Word (CBOW) embedding.

2. BERT embedding.

3. SciBERT embedding.

Each of the above embedding was combined with a graph embedding and utilized for

query-resolution. The best approach identified in Chapter 6 was the combined CBOW and

graph embeddings approach for query-resolution according to the evaluation performed.
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7.3 Main Findings and Contributions

This section revisits the primary and subsidiary research questions that the work presented

in this thesis sought to provide answers to as listed in Chapter 1. The motivation for this

thesis was to investigate a set of machine learning techniques that can best support the

generation, maintenance and querying of CDDs represented as literature knowledge graphs.

The challenge was how this could best be achieved; the primary research question to be

answered was thus:

What are some suitable techniques that can be used for generating, maintaining and

utilizing literature knowledge graphs to support the concept of CDDs?

The resolution of this research question involved the resolution of a set of five subsidiary

research questions. These Subsidiary Research Questions (SRQs) will therefore be consid-

ered first. Note that some of the solutions presented below impact more than one of the

subsidiary research questions.

[SRQ 1] Given a collection of documents within a CDD, represented using traditional rela-

tional database technology, how can these be processed so that they form a literature

knowledge graph.

Knowledge graphs can, of course, be created manually by using human experts but

this would require extensive resource. Hence the proposed solution was to harness the

tools and techniques of machine learning techniques. The challenge was to identify

the nature of the vertices and edges to be included in the knowledge graph. Hence

it was proposed that an existing pre-trained machine learning model should be used

to extract triples from a given document collection. More specifically the OIE4KGC

approach was proposed (Chapter 4). It was found that the proposed approach can

support the effective extraction of triples from the document collection which could

then be used to represent the document collection as a literature knowledge graph.

The RnnOIE tool, incorporated into the OIE4KGC approach, was found to be one of

only a very few pre-trained models that could successfully be used to extract coherent

triples from document collections. Other OIE tools, such as Leolani tool [124] failed

to extract meaningful and coherent triples from scientific text like ORRCA because

of the long and complex sentence structure found in scientific documents. The most

appropriate mechanism for processing a CDD represented as a relational database

was thus found to be the proposed OIE4KGC approach.
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[SRQ 2] Given an existing CDD, represented as a literature knowledge graph, how can this

knowledge graph be maintained to ensure that it is up to date.

The answer to this subsidiary research question is that a knowledge graph represented

CDD can best be updated by applying some form of document ranking to a collection

of candidate documents and then selecting the top k.

The challenge was how to represent the set of candidate documents in a manner

compatible with a literature knowledge graph. Two Learning-to-rank (LETOR)

techniques were considered, the CN approach and the GRAB-Rank approach, the

second featured the novel element that it combined two embeddings, a general pur-

pose BERT embedding and a domain specific knowledge graph embedding. This

representation was found to be best suited to the task of maintaining CDD literature

knowledge graphs.

[SRQ 3] Given an existing CDD, represented as a literature knowledge graph, how can this

knowledge graph be queried so as to retrieve relevant documents.

To addresses the challenge of query resolution with respect to CDD literature knowl-

edge graphs a four stage process was proposed:

Stage 1: Pre-processing

Stage 2: Word embedding generation.

Stage 3: Concatenation of knowledge graph embedding and word embedding.

Stage 4: Measuring similarity between query embedding and document embed-

dings, and ranking.

For the word embedding generation stage three alternatives were considered:

(a) Continuous bag of word (CBOW) embeddings

(b) BERT

(c) SciBERT

Each of these embeddings was used in combination with the proposed knowledge

graph embedding. Again, the intuition was that combining two forms of word em-

bedding would yield better results in terms of the effectiveness of queries than using
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a single embedding on its own. The final stage, Stage 4, involved determining the

similarity between queries and documents to produce a ranked list. The similarity

values were then used to create a ranked list from which the top k could be selected

as a response to a query. For the evaluation, a data set of query-document pairs

was collected along with relevance judgements. The results indicate that the hybrid

approach of CBOW and Knowledge graph Random Walk embeddings for query-

resolution gave the best results. This is therefore presented as the answer to SRQ

3.

[SRQ 4] Assuming that the maintenance and querying of literature knowledge graphs will entail

some kind of document ranking, what is some suitable mechanism for deriving a

ranked list of documents and what would this mechanism entail?

The answer to SRQ 4 was considered within the context of the resolution of SRQs 2

and 3 as discussed above. The most most suitable mechanism for deriving a ranked

list of documents was to use some form of hybrid embedding that included a pro-

posed domain-specific knowledge graph embedding (a graph walk embedding was

advocated), and a more general embedding of some kind. For maintaining knowledge

graphs a BERT embedding was found to be the most appropriate general embedding

(the GRAB-Rank approach), while for querying knowledge graphs CBOW was found

to be the most appropriate general embedding.

[SRQ 5] In the context of document ranking can the concepts within a literature knowledge

graph be utilized to improve a document ranking mechanism and how would this

operate?

With respect to SRQ 5 the answer was obtained as a consequence of the work directed

at identifying a solution to SRQs 2 and 3. As noted above, it was established that the

concepts within a literature knowledge graph could be usefully employed to improve

document ranking by capturing information held within a knowledge graph using a

knowledge graph embedding. The idea was incorporated into the GRAB-Rank ap-

proach where the proposed knowledge graph embedding was combined with a BERT

embedding to form a hybrid embedding. The intuition in the case of the proposed

Grab-Rank approach was that if two document embeddings, generated in different

ways, were concatenated together it would produce a better document embedding

than if the embeddings were used in isolation. Various experiments were carried
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out, reported in Chapter 5, with embeddings used in combination with other em-

bedding methods, and when used in isolation. The proposed GRAB-Rank approach

was found to be the most effective. It was estimated that by using the GRAB-Rank

approach a time saving of from 148 to 193 persons hours could be obtained over the

manual systematic review process often used to update CDDs.

[SRQ 6] Can the embeddings implicit within a literature knowledge graph be used to provide

an answer to a query in the context of document retrieval?

The resolution of SRQ 6 was investigated using the knowledge graph embedding

model used in the context of query resolution. This embedding model was compared

with three other word embedding models including:

(a) Continuous bag of word (CBOW) embeddings

(b) BERT document embeddings

(c) SciBERT embedding

Various experiments were performed to investigate if knowledge graph embeddings

can yield better results in the context of query-resolution. The reported evaluation

indicated that when CBOW embeddings were combined with knowledge graph ran-

dom walk embeddings effective query-resolution could be undertaken. The reason

for this could be due to the fact that CBOW embeddings were trained on a a more

“general” data set and its vocabulary more suited to the ORRCA application domain

when combined with a knowledge graph embedding. The pairing therefore provided

for a more effective embedding than when the individual embeddings were used in

isolation.

7.4 Future Work

This section presents some suggested directions for future work whereby the work presented

in this thesis can be extended. Eight potential future research directions are identified as

follows:

1. Further experimentation with knowledge graph embeddings: In Chapters

5 and 6 knowledge graph embeddings were used for the purpose of updating and
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querying knowledge graph represented CDDs. Because of the computational overhead

involved, the knowledge graph embeddings generated were limited to 100 random

walks. It was conjectured that it might be possible, given an appropriate value

for rw, the length of the random walk, to reduce this number. There is clearly a

correlation between the number of random walks and the value of rw, that merits

further investigation in the context of future work.

2. Use of a Generative Pre-Trained Transformer (GPT) language model: In

Chapters 5 and 6, the BERT [21] deep learning based language model was used for

generating hybrid document embeddings. The BERT language model is based on a

transformer architecture. BERT only uses the encoder part of the architecture but

not the decoder part. One possible fruitful avenue for further research is to investigate

the use of a transformer architecture based on blocks of decoder. A Generative Pre-

Trained Transformer (GPT) language model [10] can be used for this purpose. In

recent literature, GPT Version 2 (GPT-2) has proven to outperform BERT with

respect to many NLP tasks including document ranking. GPT-2 was trained on 175

billion parameters (ten times more than previous models, including BERT). Using

GPT for word and document embeddings may lead to increasing effectiveness with

respect to CDD literature knowledge graph maintenance and CDD knowledge graph

query resolution. The most recent versions of GPT is GPT-3.

3. Query expansion: The work described in Chapter 6 proposed a query resolution

mechanism. Recent literature [15, 142] has proposed the idea of query expansion

whereby a given query is reformulated so as to improve retrieval performance. This

recent work has shown that the use of query expansion techniques results in an

increase in recall. In the context of the ORRCA CDD, the queries used by end-

users are clinical in nature and domain-specific. Another topic for future research is

therefore to investigate the potential of a machine learning model that can suggest

additional clinical keywords when a user queries a Literature knowledge graph thereby

expanding the query. The idea is that these additional keywords added to a query will

improve recall and retrieve more relevant documents. It is suggested that language

models like BERT and GPT-2 can be used for the query expansion.

4. Alternative domains: The application domain for the work presented in this thesis

is the clinical trials domain; however, it is conjectured that the proposed approaches
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have much wider generic applicability. It is anticipated that the proposed approaches,

such as GRAB-Rank, can equally well be applied to other domains. This will provide

another fruitful area for future work.

5. Knowledge Graph Completion: In Chapter 4 the OIE4KGC knowledge graph

generation technique was proposed. The proposed technique generated a literature

knowledge graph from a documents corpus. However, a literature knowledge graph

generated in this way may have missing entities or concepts. To address the issue, a

technique called Knowledge Graph Completion [145, 140] can be applied to improve

the coverage of the Literature Knowledge Graph by “filling in” missing vertices and

edges. This is thus the fifth proposed area for future research.

6. Triple Extraction using alternative neural network models: The work de-

scribed in Chapter 4, used an RNN based open information extraction tool, the

RnnOIE tool, for literature knowledge graph generation. With respect to future

work, instead of using the RnnOIE tool it nay be worthwhile to investigate the use

of a BERT based architecture. It is suggested here that this may result in increased

effectiveness in terms of the nature of the triples extracted. The intuition here is

that BERT has been trained on a million parameters and hence might be argued to

be more effective than the RnnOIE tool adopted with respect to the work presented

in Chapter 4.

7. Query resolution using a Pseudo Relevance Feedback Framework: The

work described in Chapter 6 proposed a query resolution mechanism using knowledge

graphs. This proposed mechanism can be improved in real-time by receiving feedback

from the user. A new concept in the field of information retrieval, called Psuedo-

Relevance Feedback can be used to used to boost the performance of traditional

Information Retrieval (IR) models by using top-ranked documents to identify new

query terms, thereby reducing the effect of query-document vocabulary mismatches.

It might be useful, in this context, to investigate the use of an end-to-end neural

network based framework for the generation of query-terms for pseudo-relevance

feedback.

8. Knowledge Graph updating using a few-shot based document ranking

approach: Few-Shot Learning (FSL), is a kind of machine learning used in scenarios

where the training data set is very limited. The general practice in machine learning
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methods is to feed as much data to a machine learning model as possible to get better

results. However, in domain specific cases, the data might be limited. In this case

it may be fruitful to adopt FSL based methods. For the clinical trials application

domain, the focus of the work presented in this thesis, the amount of training data

can be argued to be limited. Hence it is suggested that it would be worthwhile to

investigate the use of FSL LETOR models in the context of updating (maintaining)

CDDs represented as literature knowledge graphs.
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[124] Piek Vossen, Selene Baez, Lenka Bajcetić, and Bram Kraaijeveld. Leolani: a reference

machine with a theory of mind for social communication. In International conference

on text, speech, and dialogue, pages 15–25. Springer, 2018.



134

[125] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding:

A survey of approaches and applications. IEEE Transactions on Knowledge and

Data Engineering, 29(12):2724–2743, 2017.

[126] Daniel S Weld, Raphael Hoffmann, and Fei Wu. Using wikipedia to bootstrap open

information extraction. Acm Sigmod Record, 37(4):62–68, 2009.

[127] Tino Werner. A review on instance ranking problems in statistical learning. Machine

Learning, pages 1–49, 2021.

[128] Aaron Steven White, Drew Reisinger, Keisuke Sakaguchi, Tim Vieira, Sheng Zhang,

Rachel Rudinger, Kyle Rawlins, and Benjamin Van Durme. Universal decomposi-

tional semantics on universal dependencies. In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Processing, pages 1713–1723, 2016.

[129] Colby Wise, Vassilis N Ioannidis, Miguel Romero Calvo, Xiang Song, George Price,

Ninad Kulkarni, Ryan Brand, Parminder Bhatia, and George Karypis. Covid-19

knowledge graph: accelerating information retrieval and discovery for scientific liter-

ature. arXiv preprint arXiv:2007.12731, 2020.

[130] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Hug-
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Appendix A

Appendix 1

Table A.1: Table showing the search queries in the ORRCA

query-document dataset mentioned in Chapter 6.

File Name Search Terms in Query Records

ORRCA 06 04 16 10 52 E5 84

ORRCA 06-17 Blinding 37

ORRCA 06 18 10 40 25 B3 and health

area=Cancer

32

ORRCA 06 21 13 38 30BD searchone Qualitative inter-

views

10

ORRCA 06 23 11 40 33 jh SEARCH 2 randomisation 156

ORRCA 06 28 19 02 19 JH search 3 recruiter equipoise 82

ORRCA 06 29 11 31 52 JH search 4 D3 and Health

area=Cancer

86

ORRCA 06 29 16 43 42 AK3 Methods=focus

groups AND Out-

comes+ reasons

for participation or

refusal

66

ORRCA 06 3013 51 07 JH search 5 B8 21

Continued on next page
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Table A.1 – continued from previous page

File name Search Terms in Query Records

ORRCA 07 06 11 28 59 JH search 6 D2 AND cancer 64

ORRCA 07 1513 50 08 AK4 Abstract= ’ethnic’

AND Health de-

scription=Diabetes

11

ORRCA 07 1513 59 04 AK5 Evidence type =

randomised evalua-

tion AND research

outcomes =recruit-

ment Cost

20

ORRCA 07 15 14 48 51 AK6 Newsletter 6

ORRCA 07 15 14 56 28 AK7 Video 39

ORRCA 07 15 1020 17BDSearch 2b Abstract =’so-

cial media’ AND

Timing= during

feasibility

61

ORRCA 07 15 10 58 02 BD search three labour 31

ORRCA 07 15 10 20 17 BD Search 5 Postpartum haemor-

rhage

31

BD Search 6 Abstract= ’situa-

tional incapacity’

AND Recruitment

research

meth-

ods=

Qual-

ita-

tive

inter-

views

31

ORRCA Search2021-07-2811 − 17 − 10AK8 Recruitment setting

=intensive care

80

ORRCA Search2021 08 09 14 16 34 AK Pharmacy 20

Continued on next page
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Table A.1 – continued from previous page

File name Search Terms in Query Records

ORRCA Search2021 08 09 14 40 33 Ak10 F3 49

ORRCASearch2021 08 0915 20 03AK11 rural 90

ORRCA Search2021 08 19 13 13 30 Ak12 C10 AND Health

area=Cardiovascular

10

ORRCA Search2021 08 19 13 33 36 Ak13 Research methods=

systematic review

and reviews AND

Health area= Mental

Health

34

ORRCA Search2021 08 20 10 13 58 BD search 7 Abstract=Research

without prior con-

sent AND A4

64

ORRCA Search2021 08 20 11 55 25 BD 8 Abstract= accept-

ability AND Host

design =Cluster

15

ORRCA Search2021 08 26 11 41 12 BD search 9 Migraine 6

ORRCA Search2021 08 26 13 48 27 search 10 abstract= obesity

AND research meth-

ods= qualitative

interviews

8

ORRCA Search2021 08 26 14 43 18 bd search 11 v4 abstract =paediatric

AND recruitment

research methods

=qualitative inter-

views AND host

design =RCT

14

ORRCA Search2021 08 26 15 14 43 AK14 Facebook 47

ORRCA Search2021 08 26 15 43 23 AK15 palliative 63

ORRCA Search2021 08 27 11 18 48 jh SEARCH 7 C10 98

ORRCA Search2021 08 27 12 20 18 JH SEARCH 8 B5 41

Continued on next page
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Table A.1 – continued from previous page

File name Search Terms in Query Records

ORRCA Search2021 08 27 12 47 16 JH SEARCH 9 D4 AND health

area= Cardiovascu-

lar

9

ORRCA Search2021 08 27 12 55 28 Jh Search 10 D3 AND health

area= Infection

35

ORRCA Search2021 08 27 13 57 00 JH Search 11 E2 AND health

area= Mental

Health

25

ORRCA Search2021 08 27 14 25 34 JH search 12 C8 AND host de-

sign =RCT AND

health intervention=

surgery

25

ORRCA Search2021 08 27 14 38 46 JH Search 13 F2 AND host design

=RCT

74

ORRCA Search2021 08 27 17 01 22 JH Seaarch 14 F3 AND Health

area= Cancer

4

ORRCA Search2021 08 27 17 06 38 JH Search 15 c7 AND Host de-

sign = RCT and

Health interven-

tion= surgery

16

ORRCA Search2021 08 27 13 57 00 JH Search 11 E2 AND health

area= Mental

Health

25

ORRCA Search2021 08 26 15 04 21 bd search 12 bereaved 11

ORRCA Search2021 08 31 20 42 03 BD search 13 abstract=obstetrics 9

ORRCA Search2021 09 04 20 36 28 BD search 14 Situational incapac-

ity

4

ORRCA Search2021 08 26 15 04 21 bd search 12 bereaved 11

Continued on next page
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Table A.1 – continued from previous page

File name Search Terms in Query Records

ORRCA Search2021 09 03 14 03 43search15 abstract=outcome

measures setting

AND research meth-

ods= Focus groups

28

Document title Document
Relevance
label

Why is recruitment to trials difficult? An
investigation

n

What are the barriers and facilitators to
patient and carer recruitment

n

Recruitment strategies for caregivers of
children with mental health problems

n

Participation rates in epidemiologic stud-
ies

n

Surrogate and patient discrepancy regard-
ing consent for critical care research

y

Challenges of a community based prag-
matic, randomised controlled trial of
weight loss maintenance

n

Cancer clinical trials: reasons for poor pa-
tient accrual

n

The effect of depression on the decision to
join a clinical trial

n

Bayesian modeling and prediction of ac-
crual in multi-regional clinical trials

n

Recruitment and retention of homeless
mentally

n

Table A.2: Table showing documents returned by the proposed system as part of the
Empirical Study for the query “bereaved” and their relevance label as discussed in Chapter
6
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Document title Document
Relevance
label

I will do it if it will help others: motiva-
tions among patients taking part in qual-
itative studies in palliative care

y

Predictive Hierarchic Modeling of Opera-
tional Characteristics in Clinical Trials

n

Strategies for assessment and recruitment
of subjects for nursing research

n

PLANNING A CLINICAL-TRIAL WITH
ALLOWANCE FOR COST AND PA-
TIENT RECRUITMENT RATE

n

Recruiting for research in hospice: Feasi-
bility of a research screening protocol

y

Equipoise: a case study of the views of
clinicians involved in two neonatal trials

n

Conceptual framework and systematic re-
view of the effects of participants’ and pro-
fessionals’ preferences in randomised con-
trolled trials

n

Recruitment in multicentre trials: Predic-
tion and adjustment

n

Preparation, information and liaison: con-
ducting successful research in palliative
care

y

Surgical management of subfoveal
choroidal neovascular membranes in
age-related macular degeneration by
macular relocation: experiences of an
early-stopped randomised clinical trial

n

The impact of patient involvement in the
work of the Dementias

n

Table A.3: Table showing documents returned by the proposed system in Empirical Study
for the query “palliative” and their relevance label as discussed in Chapter 6
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Document title Document
Relevance
label

Conducting online focus groups on Face-
book to inform health behavior change in-
terventions

y

The effect of exposure to social annotation
on online informed consent beliefs and be-
havior

n

Recruiting young adults to child maltreat-
ment research through Facebook: A feasi-
bility study

y

Clinical Trial Recruitment with Social Me-
dia - What to Expect

y

Impact of Baseline Assessment Modality
on Enrollment and Retention in a Face-
book Smoking Cessation Study

y

Internet versus mailed questionnaires: a
randomized comparison

n

The Use of Facebook in Recruiting Par-
ticipants for Health Research Purposes: A
Systematic Review

y

Exploring the Viability of Using Online
Social Media Advertising as a Recruit-
ment Method for Smoking Cessation Clin-
ical Trials

y

Outcomes in Child Health: Exploring the
Use of Social Media to Engage Parents in
Patient-Centered Outcomes Research

y

Social Media-Delivered Sexual Health In-
tervention A Cluster Randomized Con-
trolled Trial

y

Recruitment of adolescents for a smoking
study: use of traditional strategies

y

Table A.4: Table showing documents returned by the proposed system in Empirical Study
for the query “facebook” and their relevance label as discussed in Chapter 6
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Document title Document
Relevance
label

Small Changes and Lasting Effects
(SCALE) Trial

n

Organizational and employee level recruit-
ment into a worksite-based weight loss
study

n

Evaluation of active and passive recruit-
ment methods used in randomized con-
trolled trials targeting pediatric obesity

n

Recruitment Evaluation of a Preschooler
Obesity-Prevention Intervention

n

A feasibility randomised controlled trial
of a motivational interviewing-based in-
tervention for weight loss maintenance in
adults

n

Sample size in obesity trials: Patient per-
spective versus current practice

y

Reach, engagement, and retention in an
internet-based weight loss program in a
multi-site randomized controlled trial

n

Evaluation of recruitment methods for a
trial targeting childhood obesity: Families
for Health randomised controlled trial

y

Recruiting young adults into a weight loss
trial: Report of protocol development and
recruitment results

y

Barriers to Recruitment in Pediatric Obe-
sity Trials: Comparing Opt-in and Opt-
out Recruitment Approaches

n

Racial and ethnic minority enrollment in
randomized clinical trials of behavioural
weight loss utilizing technology: a system-
atic review

n

Table A.5: Table showing documents returned by the proposed system in Empirical Study
for the query “obesity” and their relevance label as discussed in Chapter 6
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