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Abstract: Additive manufacturing technology has been widely used in aviation, aerospace, automobiles
and other fields due to the fact that near-net-shaped components with unprecedented geometric
freedom can be fabricated. Additively manufactured aluminum alloy has received a lot of attention,
due to its excellent material properties. However, the finished surface of additively manufactured
aluminum alloy with nanoscale surface roughness is quite challenging and rarely addressed. In this
paper, a novel machining technology known as ultrasonic elliptical vibration-assisted cutting (UEVC)
was adopted to suppress the generation of cracks, improve the surface integrity and reduce tool
wear during the ultra-precision machining of selective laser melting (SLM) additively manufactured
AlSi10Mg alloy. The experimental results revealed that, in the conventional cutting (CC) process,
surface defects, such as particles, pores and grooves, appeared on the machined surface, and the
machined surface rapidly deteriorated with the increase in cumulative cutting area. In contrast, an
almost flawless machined surface was obtained in the UEVC process, and its roughness value was
less than 10 nm. Moreover, the tool wear of the CC tool was remarkably greater than that of the
UEVC tool, and the standard flank wear width of the CC tool was more than twice that of the UEVC
tool. Therefore, the UEVC technology is considered to be a feasible method for the ultra-precision
machining of SLM additively manufactured AlSi10Mg alloy.

Keywords: ultrasonic elliptical vibration-assisted cutting; ultra-precision cutting; additively
manufactured AlSi10Mg alloy; surface integrity; tool wear

1. Introduction

Additive manufacturing technology is able to manufacture near-net-shaped parts with
unprecedented geometric freedom, which is considered promising [1,2]. Selective laser
melting (SLM) is one of the main additive manufacturing techniques, in which the metallic
parts can be directly created by melting metal powder [3]. Additively manufactured parts
have been widely used in aviation, aerospace, automobiles and other fields due to their
excellent economic benefits and huge application potential. However, the additive man-
ufacturing methods also have some disadvantages, such as incomplete powder melting,
increased porosity, high surface roughness and unsatisfactory dimensional and shape
accuracy, which lead to the fact that the additively manufactured parts are usually not
directly usable, especially in precision and ultra-precision applications [4-6]. Therefore, an
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additional machine-finishing step is usually required for achieving close tolerances and
improving the surface quality. However, notably, the properties of the additively manufac-
tured material significantly differ from those of the traditional forged material due to the
complex heat transfer of the material during the laser melting and cooling processes [1,7,8].
The additively manufactured material is usually accompanied by large and highly inhomo-
geneous residual stresses, enhanced strength and toughness and unmelted or only partially
melted powder particles; therefore, the machinability of additively manufactured parts is
significantly different from that of wrought or cast metals [4,9].

Additively manufactured aluminum alloy has received a lot of attention, and it is
frequently used in the aerospace, aviation, shipbuilding and optical engineering fields
because of its excellent mechanical properties, such as, light weight, high strength, cor-
rosion resistance and small thermal expansivity. In recent years, intensive research has
been carried out to understand the physical principles and to study the machinability of
additively manufactured aluminum alloys [10-12]. Struzikiewicz et al. [13] researched the
machinability of SLM additively manufactured AlSi10Mg alloy; their findings indicated
that breaches appeared on the finished surface, which adversely affected the value of
surface roughness. In addition, breaches, pores and failure-like cracks were also found on
the finished surface in the milling of SLM additively manufactured AlSi10Mg alloy, and
the recommended machining method was down-milling [14]. The thrust forces during the
drilling machining of additively manufactured and conventionally wrought AlSi10Mg were
examined by Ullah et al. [6]. Their findings indicated that the thrust forces could be tested
by drilling machining of the wrought material and were obviously smaller than those in the
additively manufactured material. Zimmermann et al. [4] studied chips, cutting forces, sur-
face morphology, micro-hardness and burr formation during the milling of conventionally
cast and additively manufactured AlSi10Mg aluminum alloy. Guo et al. [15] investigated
the ultra-precision machining performance of V-groove structures on additively manu-
factured RSA-905 alloy. The surface roughness (Ra) of the machined surface was 15 nm
under the best machining condition, which indicated that the ultra-precision machinability
of additively manufactured aluminum alloy was poor compared with that of wrought
or cast aluminum alloy. Moreover, experimental research on the magnetic field-assisted
machining of additively manufactured RSA-905 alloy was carried out by Guo et al. [16].
The above studies indicated that the machinability of additively manufactured aluminum
alloy was worse in comparison to the conventional wrought or cast metals, and the finished
surface of additively manufactured aluminum alloy with nanoscale surface roughness was
a serious challenge and was rarely resolved. Hence, a better machining method is necessary
to improve the ultra-precision machinability of additively manufactured aluminum alloy.

Ultrasonic elliptical vibration-assisted cutting (UEVC) is a promising machining tech-
nology that is particularly advantageous compared to conventional cutting (CC), such as a
smaller cutting force, extended tool life, better cutting stability and improved surface in-
tegrity [17-20]. Furthermore, the ultra-precision machined surfaces of difficult-to-machine
materials were obtained by using UEVC technology with a diamond tool [21-27]. It should
be noted that, during the UEVC machining process, the extrusion effect exerted by the
cutting tool is periodically applied to the machined surface, which causes the inhibition
of the generation of pores and particles [26]. In addition, the smaller cutting and friction
forces are beneficial to suppress the generation of cracks, reduce the residual stress and
improve the machined surface’s quality [27,28]. However, a comprehensive investigation
of the ultra-precision machining of SLM additively manufactured AlSi10Mg alloy has not
been performed using UEVC technology.

Thus, a comprehensive investigation of the feasibility of UEVC technology as a ma-
chining method for the ultra-precision cutting of SLM additively manufactured aluminum
alloy is needed. In this paper, the influence mechanism of UEVC technology regarding
the suppression of the generation of cracks, the improvement of surface integrity and the
suppression of tool wear is considered during the ultra-precision machining of SLM addi-
tively manufactured aluminum alloy. The structure of this article is as follows. First of all,
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additively manufactured aluminum alloy. The structure of this article is as follows. First
of all, the UEVC principles and the experimental setup are presented. Then, the compre-
hensive investigation of surface integrity and tool wear during UEVC and CC processes
is performed. Finally, the conclusions are drawn. In this paper, a feasible machining
method is presented for the ultra-precision cutting of SLM additively manufactured (E)lﬁ%l-

minum alloy.
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L5 : contact between rake face and chip
13 : reversal of friction force

€4 : end of cutting
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a, : the nominal depth of cut

Ve : the nominal cutting speed
Workpiece

Vez : the chip flowing velocity component in z-direction

Figure 1. Schematic diagram of UEVC,
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inhibition of the generation of pores an , leading to a significant improvement
in the machined surface’s quality [26]. The instantaneous uncut chip thickness reaches its
maximum at time point ¢,. Significantly, the maximum value of the instantaneous uncut
chip thickness is smaller than the nominal one (2;max < @p). The velocity component of the
tool in the z-direction becomes equal to the velocity component of the chip flowing velocity
in the z-direction (2’ (t3) = V)z) at time point t3. Moreover, during the time period (t4 — t3),
the velocity component of the tool in the z-direction is increasing; thus, the friction force
between the tool and chip is reversed. Following this, the cutting tool separates from the
workpiece at time point f4. In summary, the intermittent machining and the diminution of
the instantaneous uncut chip thickness lead to the enlargement of the cooling effect and
the diminution of the cutting and friction forces, leading to a reduced cutting temperature
and extended tool life. In addition, the effect of reversed friction results in an increase in
the nominal shear angle, which contributes to the significant diminution of the cutting and
friction forces. Most notably, the extrusion effect of the cutting tool on the workpiece is
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nent of the tool in the z-direction becomes equal to the velocity component of the chip
flowing velocity in the z-direction (z'(Z, )=V,.) at time point t>. Moreover, during the
time period (t« — t3), the velocity component of the tool in the z-direction is increasing;
Materials 2022, 15, 8910 thus, the friction force between the tool and chip is reversed. Following this, the cutfing
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Table 1. Experimental conditions.

Cutting Method CC Process UEVC Process
Amplitude in cutting direction ) 6.5
(Hm) '
Vibration parame- Amplitude in cutting depth direc- ) 5
ters tion (pm)

Frequency (kHz) - 29.75
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Table 1. Experimental conditions.

Cutting Method CC Process UEVC Process
Amplitude in cutting ; 65
direction (pm) '
Amplitude in cutting
Vibration parameters depth direction (m) - 5
Frequency (kHz) - 29.75
Phase shift difference (°) - 120
Speed (r/min) 1600 20
Cutting parameters Depth of cut (um) 5 5
Feed rate (um/r) 5 5
Material Polycrystalline diamond
) Radius (mm) 1.0
Cutting tool Clearance angle (°) 11
Rake angle (°) 0
. Workpiece material Additively manufactured AlSi10Mg alloy
Workpiece Dimension (mm) @20 x L10
Coolant Air cooling

Table 2. Material properties of the selected SLM additively manufactured AlSi10Mg alloy.

Tensile Strength ~ Elastic Modulus  Brinell Hardness Elongation A5 Density
(MPa) (GPa) (HB) (%) (g/mm?>)
270 75 124 3 2.65

Table 3. Chemical composition of the selected SLM additively manufactured AlSi10Mg alloy (%).

Si Mg Fe Mn Ti Zn Cu Ni Pb Sn Al
9.57 0.45 <0.55 <0.45 <0.15 <0.1 <0.05 <0.05 <0.05 <0.05 Balance

In this experiment, the workpiece was a round pipe, the height of the workpiece was 10
mm, and the diameter of the workpiece was 20 mm. In this study, the two workpieces were,
respectively, used in the CC and UEVC process experiments. The machining surface area
was an annular region, as displayed in Figure 4. The inner diameter of the annular region
was 8 mm and the outer diameter was 20 mm; thus, the area of the machining surface was
around 264 mm?. When the cutting experiments were completed, two measurement areas
were selected and analyzed, as shown in Figure 4. Atomic force microscopy (AFM, Nanite B,
supplied by Nanosurf Ltd., Liestal, Switzerland) was employed for the measurement of
the machined surface’s roughness value. The roughness test for each measurement area
was repeated five times, and the average of the test results was calculated and recorded.
Furthermore, when the cutting experiments were completed, the detection and assessment
of tool wear during the CC and UEVC processes were performed by using a scanning
electron microscope (SEM, SU8010, supplied by Hitachi High Technologies Corporation,
Tokyo, Japan).
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measurement area was repeated five times, and the average of the test results was calcu-
lated and recorded. Furthermore, when the cutting experiments were completed, the de-
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by usmg a scanning electron microscope (SEM, SU8010, supplied by Hitachi, Figh Tech-
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process, the extrusion effect of the cutting tool on the machined surface is beneficial for
the inhibition of the generation of pores and particles, as discussed in Section 2.1. Moreo-
ver, the regenerative chatter of the cutting tool is effectively suppressed due to the smaller
cutting and friction forces. In addition, during the UEVC process, the regular and clear
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ing process is performed smoothly.
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Figure 7 reports the surface roughness (Ra) values obtained by different machining
methods in different measurement areas. As expected, the surface roughness value obtained
with the UVEC process is lower than that in the CC process. It is worth noting that, in
measurement area I, the difference between the roughness values of the finished surface
obtained by the CC and UEVC processes is not obvious. This can be interpreted as follows:
during the UEVC machining process, the vibrational texture has a detrimental effect on the
roughness values of the machined surface. In contrast, during the CC machining process,
the surface defects, such as pores, grooves and particles, are the main factors affecting the
surface roughness value, as shown in Figure 5a. Furthermore, when the calculation range
is set to the AFM test range, namely 50 pm x 50 um, the influence of surface defects on
the surface roughness (Ra) values is similar to that of the vibrational texture on the surface
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roughness (Ra) value. Moreover, it is worth noting that the repeatability of the surface
roughness (Ra) values in measurement area I is better than that in measurement area II.
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During the CC process, the surface roughness (Ra) value rapidly grows with the
growth in the cumulative machining area. This result is consistent with the previous
test results; that is, there are more grooves in measurement area II, which results in a
significant increase in the surface roughness values. However, during the UEVC process,
the increase in the surface roughness value with the growth in the cumulative machining
area is observably lower compared with that in the CC process. It is worth noting that
the roughness values of measurement areas I and II are approximately equal and are less
than 10 nm. This can be interpreted as follows: during the UEVC machining process,
the wear rate of the cutting tool is small. In measurement area II, the negative effect of
the grooves on the surface roughness value is roughly equal to the positive effect of the
shallower vibrational texture on the surface roughness value. These results indicate that
the ultra-precision machined surface of the SLM additively manufactured AlSi10Mg alloy
can be obtained through the UEVC technology.

In general, the ultra-precision machined surface of the SLM additively manufactured
AlSi10Mg alloy was obtained through the UEVC technology. Another noteworthy fact is
that, in the measurement areas, the finished surface exhibited negligible damage, and the
machined surface roughness value was less than 10 nm. On the contrary, under the CC
machining process, surface defects, such as pores, grooves and particles, emerged on the
finished surface, which had an adverse effect on the service performance and service life
of the ultra-precision manufactured part. Furthermore, the finished surface was rapidly
aggravated with the increase in the cumulative cutting area. Therefore, the experimental
results confirm that the UEVC technology plays a great role in improving the surface
integrity during the ultra-precision cutting of SLM additively manufactured AlSi10Mg alloy.

3.2. Tool Wear

Figure 8 shows the SEM photographs of the CC tool and UEVC tool, when the cutting
experiment was completed. As displayed in Figure 8a, the significant wear of the cutting
tool edge was observed. There was significant desquamation on the cutting tool edge
and some material bonded to the cutting tool edge. Moreover, according to the standard
ISO 3685, the standard flank wear width of the cutting tool was 37 um. These results
indicate that non-negligible wear appeared, which corresponds to the analyzed results of
the machined surface. This can be interpreted as follows: the SLM additively manufactured
AlSi10Mg alloy has a larger hardness value in comparison to the conventional wrought or
cast metals [7,8]. Moreover, during the selective laser melting process, a large number of
defects, such as hot cracking and porosity, was generated. Thus, the final properties of the
SLM additively manufactured AlSi10Mg alloy were difficult to control. Therefore, during
the CC process, the random vibration of the tool and the cutting and friction forces were
enhanced, leading to the significantly faster tool wear.

With the same cumulative machining area, the wear of the UEVC tool was obviously
smaller than that of the CC tool. As shown in Figure 8b, there was no adhered material,
and no obvious wear on the cutting tool edge; only micro-cracks were observed in the
further enlargement, which corresponds to the analyzed results of the machined surface.
According to the standard ISO 3685, the standard flank wear width of the cutting tool
was 16 pm. This can be interpreted as follows: in the UEVC process, the cutting tool is
separated periodically from the workpiece in each cutting cycle; the nominal shear angle
is increased, and the instantaneous uncut chip thickness is smaller, which result in the
remarkable diminution of the friction and cutting forces. Moreover, more remarkably;,
the extrusion influence of the cutting tool on the workpiece is beneficial to the inhibition
of the generation of pores and particles, and the random vibration of the cutting tool is
suppressed, which is beneficial in reducing tool wear. These results indicate that, during
the ultra-precision cutting of SLM additively manufactured AlSi10Mg alloy, the extension
of the tool life was achieved through the UEVC technology.
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of tool wear were achieved simultaneously, indicating that the ultra-precision machin-
ability of SLM additively manufactured AlSi10Mg alloy can be enhanced through
UEVC technology. Further research should be conducted to achieve the greater
dimensional accuracy of parts by optimizing the machining path of the cutting tool.
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