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Abstract: The current practice in aluminum recycling plants is to change the waste into molten metal
through the conventional recycling (CR) manufacturing process. However, the CR technique is
so energy-intensive that it also poses an indirect threat to the environment. This paper presents a
study on meltless direct recycling hot press forging (DR-HPF) as an alternative sustainable approach
that has fewer steps with low energy consumption, as well as preventing the generation of new
waste. A laboratory experiment was conducted to study the mechanical properties and surface
integrity of AA7075 aluminum alloy by employing a hot press forging (HPF) process under different
temperatures (380, 430, and 480 ◦C) and holding times (0, 60, and 120 min). It was found that as the
parameter increased, there was a positive increase in ultimate tensile strength (UTS), elongation to
failure (ETF), density, and microhardness. The recycled chips exhibit the best mechanical properties at
the highest parameters (480 ◦C and 120 min), whereas the UTS = 245.62 MPa and ETF = 6.91%, while
surface integrity shows that the calculated microhardness and density are 69.02 HV and 2.795 g/cm3,
respectively. The UTS result shows that the highest parameters of 480 ◦C and 120 min are comparable
with the Aerospace Specification Metals (ASM) Aluminum AA7075-O standard. This study is a guide
for machinists and the manufacturing industry to increase industry sustainability, to preserve the
earth for future generations.

Keywords: direct recycling; hot press forging (HPF); solid-state recycling (SSR); AA7075 aluminum
alloy; mechanical properties; surface integrity

1. Introduction

Raw material production consumes roughly 21% of the world’s energy demand and
accounts for 25% of global carbon dioxide emissions [1,2]. The second most produced metal
after steel is aluminum, which is also the most commonly produced non-ferrous metal [3].
As far as lightweight metal is concerned, from 2005 to 2050, aluminum demand is predicted
to increase by a factor of 2.6–3.5 [4,5]. Aluminum alloys have become quite popular in the
automotive and aerospace industry, due to their excellent properties [6–8]. AA7075 is a
group of AlZnMgCu or 7xxx series aluminum alloys that are used to manufacture aircraft
and aerospace vehicles, where a combination of high strength, hardness, and corrosion
resistance are required [9–11]. The continuous increase in aluminum consumption has led
to a rise in the quantity of aluminum scrap [12].

The production of raw aluminum alloys from bauxite ore requires a huge amount
of energy consumption [13,14]. To minimize anthropogenic carbon dioxide emissions
and decouple economic growth from resource use, it is necessary to reduce raw material
demand. [15]. Aluminum recycling is implemented as a countermeasure. The most no-
table benefit of aluminum recycling is its ability to significantly reduce the extraction of
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virgin ores, protect non-renewable resources, and minimize the devastation of the land-
scape [16,17]. Aluminum recycling is more cost-effective compared to other materials and
the alloy properties are not adversely affected by the recycling process [18]. Moreover,
aluminum recycling can reduce carbon dioxide emissions by 93% [19]. Several studies have
addressed that aluminum recycling requires only 5% of the energy required for raw metal
production, implying that it represents a significant opportunity to reduce environmental
risk if managed sustainably [20,21]. Despite these gains, there is still room to make the
recycling process more efficient and less resource-intensive.

Conventional recycling (CR) is a current remelting-based practice used in most recy-
cling plants, which involves charging scrap into a molten state [22]. As far as lightweight
aluminum alloys are concerned, the CR approach is still energy-intensive and demonstrates
low energy efficiency [23,24]. In every remelting process, metal losses occur in slag mixing
and metal oxidation [25,26]. By replacing metal permanent losses with primary aluminum,
the embodied energy of recycled aluminum can increase by up to 30 megajoules/kg [15,27].
The disposal of hazardous dross has been a concern for the aluminum industry [28]. In
a recent study, Hatayama et al. forecasted that 6.1 megatons of aluminum scrap would
be unable to be recycled by 2030 due to concentrated alloying elements [29]. Since the
removal of alloying elements during the remelting process is difficult in the case of most
of the elements, hence, a different approach focusing on solid-state recycling (SSR) can
offer significant environmental benefits by preventing aluminum loss during remelting [30].
The method of direct SSR promises a significant energy reduction compared to the CR
technique, which requires a very high temperature to reach the melting point [31,32]. A
review paper written by Wan et al. clustered the SSR process into two sub-categories,
namely, powder metallurgy (PM) and severe plastic deformation (SPD) [16]. For plastic
deformation to be effective, it should be sufficient to fracture the surface oxide layer that
hinders metallic bonding [33]. To date, various SPD processes have been studied, including
cold extrusion, hot extrusion, compaction, forging, friction extrusion, sideways extrusion,
and compressive torsion [34–39].

Initially, the SSR technique utilizes the powder metallurgy processes developed by
Gronostajski et al. [40], as followed up in studies conducted by Fogagnolo et al. [41]. Some
of the SSR techniques that have been studied lead to bestowing excellent mechanical
properties by employing powder metallurgy and extrusion processes [42–48]. Meanwhile,
in a recent work, Al-Alimi et al. successfully employed hot extrusion, followed by a
hot equal-channel angular processing (ECAP) process [49]. According to the findings,
further plastic deformation by hot ECAP following hot extrusion greatly improved the
mechanical properties of recycled aluminum, compared to samples obtained solely from hot
extrusion [49–51]. Khajouei-Nezhad et al. examined the properties of recycled aluminum
composite, using a high-pressure torsion (HPT) process [52]. The study concluded that the
addition of aluminum powder as a binder enhanced the mechanical performance, which
reduced porosity and improved metallic bonding. According to the research published
by Kuzman et al., smaller and simpler chips provided better input material for cold
compression [53]. Khamis et al. investigated the direct hot press forging (HPF) process
and discovered that the most influential factor on mechanical strength was holding time,
followed by pre-compaction and aluminum chip size [54]. The HPF technique is a single-
step process that has garnered interest and will be pursued further in this study.

The present paper will be employing the direct recycling hot press forging (DR-HPF)
process as an alternative sustainable approach. The deformation of the HPF process
occurs at a temperature above the metal recrystallization temperature [55]. This fewer-step
approach is known as direct recycling by eliminating the pre-processing steps of cold-
compaction and ball milling, thus reducing the cost, time, and energy consumption [55–57].
The purpose of this paper is to explore the potential of the HPF process, to be used for
manufacturing AA7075 aluminum chips as secondary products. Many researchers agree
that temperature is the most important factor to consider when dealing with aluminum
alloys [32,47,58]. To validate this, a study on the effect of DR-HPF parameter setting on the
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mechanical properties and surface integrity will be presented in this study. The parameter
setting for the HPF process is crucial for improving the mechanical properties and surface
integrity of recycled AA7075 aluminum billets.

2. Materials and Methods

This section briefly elaborates on a general plan of experimental work. This study
focuses on the recycling of AA7075 aluminum chips using hot press forging (HPF) at
different process parameters of operating temperature and holding time. Several tests on
the material’s mechanical properties and surface integrity were conducted to observe the
potential of the recycling process by improving the quality of the recycled specimen. The
analysis of mechanical properties included ultimate tensile strength (UTS) and elonga-
tion to failure (ETF). Meanwhile, the analysis of surface integrity included the testing of
microstructure, grain analysis, fracture, density, and microhardness.

2.1. Material Preparation and Processing

The chemical element of the AA7075 bulk material is depicted in Table 1. It was
measured via energy-dispersive X-ray spectroscopy (EDS) using a field-emission scanning
electron microscope (FESEM), brand JSM-7600F, JEOL, Akishima, Japan. Aluminum alloy
is the main element of AA7075 alloys (87.1–91.4 wt %). It has been proven that the material
used in this study is AA7075 aerospace alloy, by comparing it to the percentage of elements
found in the ASM material data sheet.

Table 1. The element composition of the as-received AA7075 aluminum matrix.

Elements Weight Percentage (wt %)

Aluminum, Al 88.21
Magnesium, Mg 3.01

Silicone, Si 0.25
Titanium, Ti 0.18

Chromium, Cr 0.26
Iron, Fe 0.39

Copper, Cu 1.61
Zinc, Zn 6.08

The commercial AA7075 aluminum bulk was milled using high-speed machining
(Mazak NEXUS 410A-II, Oguchi, Japan) to produce aluminum chips. The produced chips
were cleaned in acetone solution for 10 min using an ultrasonic bath (Elmasonic S 60 H,
Elma, Wetzikon, Switzerland) and then dried for 30 min in a thermal oven (SOV140B, KWF,
Beijing, China) at 60 ◦C. The standard practice for cleaning and drying follows ASTM
G131-96 and the procedure used by Yusuf (2017) [59]. The chips must not contain any
contaminants or impurities that would affect their chemical composition and impede the
diffusion of metal chip bonding throughout the manufacturing process.

The cleaned AA7075 chips were filled and compacted into a dog-bone closed die. The
aluminum recycling process was performed using a laboratory hot press forging (HPF)
machine, UTHM, Malaysia. The hot press forging (HPF) process, as shown in Figure 1,
was executed at a constant pressure of 35 tonnes, with a four-times pre-compacting cycle.
Figure 2 portrays the process diagram of DR-HPF. The selected operating temperatures in
this process are 380, 430, and 480 ◦C, and the holding times are 0, 60, and 120 min. The
recommended range of forging temperatures for AA7075, based on the ASM handbook
committee, volume 14A is between 380 and 440 ◦C [60]. However, Yusuf et al. (2013)
suggested that the forging temperature must be chosen to fall between the solidus and
recrystallization temperatures [58]. It has been proposed that the recrystallization temper-
ature for AA7075 should be between 430 and 480 ◦C [61], while the solidus temperature
started at 477 ◦C (ASM Material Data Sheet). Meanwhile, the most commonly selected
holding time from the previous studies for AA7075 is 60 min [62–67]. As a result, the
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temperature and holding time chosen in this study are based on the previously indicated
recommended data. Recycled specimens with different parameter settings are presented in
Table 2. The recycled samples after the DR-HPF process are denoted as T1- temper and will
be compared with theoretical ASM AA7075-O, to observe the potential properties of the
secondary material.
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2.2. Mechanical Characterization

Tensile tests were carried out at room temperature using a universal testing machine
(UTM), the Shimadzu Servopulser, Kyoto, Japan, EHF-EM0100K1-020-0A, with a 25 kN
load and a gauge length of 25 mm to record the strain. The tests were performed at a speed
of 1 mm/min. The detailed dimensions of the dog-bone recycled specimens with standard
size specifications are shown in Figure 3 and Table 3.
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Table 2. The HPF process parameter for operating temperature and holding time.

Sample Designation Operating Temperature, Ts (◦C) Holding Time, ts (min)

S1 380 0
S2 380 60
S3 380 120
S4 430 0
S5 430 60
S6 430 120
S7 480 0
S8 480 60
S9 480 120
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Table 3. The standard size specifications for dog-bone recycled specimens.

Subsize Sample (6 mm Wide) Dimensional (mm)

G—Gauge length 25
W—Width 6

T—Thickness <6
R—Radius of fillet, min 6
L—Overall length, min 100

A—Length of reduced section, min 32
B—Length of grip section, min 30

C—Width of grip section, approximate 10

Based on in Figure 3, A refers to the length of the reduced section which is 32 mm, B
refers to the length of the grip section which is 30 mm, C refers to the approximate width of
the grip section which is 10 mm, L refers to the overall length which is 100 mm, W refers
to the width which is 6 mm, G refers to the gauge length which is 25 mm, T refers to the
thickness which is less than 6 mm and R refers to the radius of the fillet which is 6 mm.

2.3. Surface Integrity
2.3.1. Microstructure Analysis

A SU1510 scanning electron microscope (SEM) (Hitachi, Ibaraki, Japan) was used
to study the surface microstructure of the specimen. The specimens were prepared for
metallographic analysis by grinding them consecutively with 240, 600, and 1200-grit SiC
paper, followed by polishing with 6 and 1 µm DIAMAT polycrystalline diamond cloths,
finishing with 0.02 µm SIAMAT non-crystalline colloidal silica. The specimens were
etched with Baker’s reagent to expose the grain boundary formed by dynamic recovery
or recrystallization.

2.3.2. Fracture Analysis

When the recycled specimens were broken, the breakage mode varied depending
on the parameter setting. The fracture analysis was conducted using a JSM-7600F field
emission scanning electron microscope (FESEM), JEOL, Akishima, Japan. The fracture
samples were cut for testing into 1 cm × 1 cm × 1 cm units. The cause of breakage can
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be determined from the breakage mode by examining the fracture surface of the broken
material using FESEM. Fracture surface analysis is an effective tool for determining the
cause of fractures.

2.3.3. Grain Analysis

Grain analysis was performed to measure the grain size of recycled specimens using
atomic force microscopy (AFM) with an XE-100 from Park Systems, Suwon, South Korea.
AFM is preferred due to its ability to produce a high vertical resolution for an aluminum
specimen. This makes it feasible to precisely determine the grain size, which is related to
the nanometric structure properties. The method used for AFM is a watershed with a filter
level of three. The grain size was measured via an auto-statistic count.

2.3.4. Microhardness Test

The Vickers microhardness test was chosen to measure the hardness of the recycled
specimens using small, applied loads. A Vickers microhardness tester, Shimadzu, Kyoto,
Japan was used in this study. Testing was performed by pressing an indenter into the
surface metal under a controlled force of 980.7 mN (HV0.1) for 10 s, followed by removing
the indenter and measuring the indentation size. A minimum of three indentations were
made into each tested specimen.

2.3.5. Density Measurement

The density of the material was obtained using the Archimedean method by weighing
small pieces cut from the specimens, first in the air and then in water. The density of the
specimen was measured using a density balance (HR-250A, A&D, Seoul, Korea).

3. Results and Discussion

Table 4 represents the response data for the DR-HPF process with different parameters
of holding time and temperature. As part of this study, the data included ultimate tensile
strength (UTS), elongation to failure (ETF), density, and microhardness. This data was then
grouped into mechanical properties and surface integrity.

Table 4. Data responses at different operating temperatures and holding times.

Sample
Designation

Ultimate Tensile
Test (UTS)

Elongation to
Failure (ETF) Microhardness Density

(MPa) (%) (HV) (g/cm3)

S1 17.02 0.53 45.79 1.645
S2 26.48 0.79 50.89 1.709
S3 43.48 0.87 51.89 2.290
S4 63.19 0.64 53.49 2.608
S5 77.85 1.05 55.97 2.699
S6 113.08 1.28 59.12 2.726
S7 185.89 2.30 61.58 2.755
S8 218.87 4.63 63.74 2.783
S9 245.62 6.91 69.02 2.795

3.1. Mechanical Properties

As shown in Figures 4 and 5, it was found that the UTS and ETF increased as the
temperature and duration rose. The mechanical properties of aluminum alloys are depen-
dent on the control of the temperature and time during processing [69]. The HPF process
requires a high temperature that does not exceed the melting point for long enough for the
phase containing copper and magnesium to completely dissolve, resulting in a virtually
homogenous solid solution [32].
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As seen in Figure 4, the inclination trend for UTS, depicted at a maximum duration
of 120 min from 43.48 MPa (380 ◦C), surged up to 245.62 MPa (480 ◦C). At zero holding
time, the UTS rose with increasing working temperatures, ranging from 17.02 MPa (380 ◦C)
to 185.89 MPa (480 ◦C). The operating temperature has a substantial impact on the HPF
process by demonstrating that, at a constant holding time, increasing the operating tem-
perature from 380 ◦C to 480 ◦C increased the UTS value from 168.87 MPa to 202.14 MPa.
In brief, the working temperature has the greatest influence in terms of enhancing the
mechanical properties. Stress in a deformation process has a significant effect on forge-
ability [70]. The forgeability of metals increases with rising temperature as the grain size
decreases, resulting in excellent tensile strength. Besides this, the solubility increases with
temperature; therefore, working at a lower temperature will result in poorer properties [71].
Moreover, solid solution strengthening is likely to have a significant influence at high
temperatures [32]. According to Sajadifar, the optimal temperature parameter for AA7075
aluminum alloy is 480 ◦C. The formation of detrimental intermetallic particles occurred
when the temperature exceeded 480 ◦C [72]. Meng agreed that the increase in UTS was
a result of the increase in heating temperature, stating that solute atoms were dissolved
in the aluminum matrix during solutionizing and remained in a metastable state [69]. A
similar trend has been observed when comparing the influence of holding time to UTS. At
the temperature of 380 ◦C, the UTS value climbed from 17.20 MPa (0 min) to 43.48 MPa
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(120 min). At a maximum temperature of 480 ◦C, the UTS value rises from 185.89 (0 min) to
245.62 (120 min).

As shown in Figure 5, the ETF exhibited a linear trend with increasing temperature,
which is very similar to the UTS trend. At the maximum holding time (120 min), the ETF
value for 380 ◦C was 0.87% and elevated up to 6.91 at 480 ◦C. At zero holding time, the ETF
values rose with rising temperature from 0.53% (380 ◦C) to 2.30% (480 ◦C). The operating
temperature showed a substantial influence on the HPF process by showing that the value
of ETF rose from 1.77% to 6.04% when the temperature went from 380 ◦C to 480 ◦C at a
constant holding time. Meanwhile, at the minimum temperature of 380 ◦C, the value of
ETF went up from 0.53% (0 min) to 0.87% (120 min), while at the maximum operating
temperature of 480 ◦C, the ETF value went up from 2.30% (0 min) to 6.91% (120 min).

By increasing the temperature from 380 to 480 ◦C at a maximum holding time of
120 min, the UTS grew by 82.3% and the ETF climbed by 87.41%. Meanwhile, when
studying the effect of holding time from 0 to 120 min at the maximum working temper-
ature of 480 ◦C, the UTS increased by 24.32% and ETF grew by 66.71%. Therefore, the
operating temperature was the most influential factor in increasing the ETF and UTS. On
the other hand, the UTS value increased from 17.02 MPa to 245.62 MPa when comparing
the minimum-maximum parameter. The maximum parameter (480 ◦C/120 min) of the
recycled sample shows a 7.17% increase over the theoretical AA7075-O value. The increase
in UTS value clarifies the possibility of the HPF process being used as a meltless process.

3.2. Surface Integrity
3.2.1. Microstructural Analysis

Figure 6 and Table 5 show the microstructure and the grain size at the minimum S1
(380 ◦C/0 min) and maximum S9 (480 ◦C/120 min) parameters of the recycled AA7075
specimen, respectively. The images of the specimens were magnified at 50×. The images
show the grain, grain boundary, and pores.
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Figure 6. Minimum and maximum parameters of the microstructure at 50× magnification for samples
(a) S1 (380 ◦C/0 min) and (b) S9 (480 ◦C/120 min).

Table 5. Grain size for minimum and maximum hot-press forging parameters.

Sample
Designation

Operating
Temperature (◦C)

Holding Time
(Minutes)

Grain Size
(µm)

S1 380 0 0.435
S2 380 120 0.212

S1 (380 ◦C/0 min) has a grain size of 0.435 µm, while S9 (480 ◦C/120 min) has a grain
size of 0.212 µm, which is smaller than S1. The porosity of the microstructure can be clearly
seen at the minimal parameter in Figure 6a, indicating that at this lowest temperature and
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holding time, the chip is merely interlocking, rather than becoming consolidated with each
other. The grain size appeared to be coarser as a result of the temperature being below
recrystallization temperature [58].

On the contrary, when the temperature and holding time increase, the grain size
decreased from 0.435 µm to 0.212 µm by 51.25%. As can be seen, increasing the working
temperature and duration time resulted in a decrease in the void size between the aluminum
chips. Furthermore, the crystalline size increased with increasing temperature and time [55].
The grain of the maximum parameter in Figure 6b became finer (0.212 µm) and with less
porosity, due to the temperature above the recrystallization. This can be explained by the
fact that, upon recrystallization, the structure entered the second phase of precipitation [56].
Attaining precipitation is accomplished by heating the aluminum alloy below the solidus
line for a sufficient amount of time and temperature [58]. During this process, the atoms
will diffuse to form fine precipitation [73]. These fine precipitates behave as a barrier to
dislocation movement, increasing the initial strength [69].

The results from the tensile test show that grain size affects the mechanical properties.
At the maximum working temperature and time, it can be seen that UTS and ETF had the
highest values of 245.62 MPa and 6.91%, respectively, with a small grain size (0.212 µm)
and less porosity in the microstructure.

3.2.2. Fracture Surface Analysis

Figure 7 shows an observation of the effect of minimum (380 ◦C/0 min) and maximum
(480 ◦C/120 min) parameters on the fractured surface. When the metallic aluminum is
broken, the breakage will vary, depending on the parameter setting of the HPF process.
Figure 7a–c represents the fractured surfaces at minimum parameters, while Figure 7d–f
represents the fractured surfaces at maximum parameters at different magnifications. At
the minimum parameter, the fractured surface is revealed as shallow and flat, with no
dimples at all. The image shows that fracture occurs along the crystallographic plane,
known as the cleavage plane, with no plastic deformation where the normal stress is
maximized [32]. At high magnification, as seen in Figure 7c, these flat areas exhibit fine
cups and ridges. The metallic bonding between chips is also not fully formed, as a result of
insufficient temperature and holding time. Low temperature leads to little or no oxidation
and precision dimensioning, but it increases flow stress and decreases ductility, which
promotes cracking [70]. This supports the result of the ETF value, which is as low as 0.53%.

At the maximum parameter, many microvoids and dimples can be seen, indicating
the ductile fracture mode. The presence of deep and large dimples in Figure 7f indicates
that the specimen has a high fluent strain. The maximum parameter has the highest ETF
value, which is 6.92%. The higher temperature results in low stress and more ductility. The
higher temperatures enhance ductility, allowing for greater plastic deformation [74].

3.2.3. Density and Microhardness Analysis

Figure 8 represent the overall density graph and microhardness graph at different
parameters. As seen in Figure 8, the density and microhardness values increased with
the increasing operating temperature and time. The minimum and maximum values of
microhardness are 45.79 HV and 69.02 HV, respectively. Meanwhile, the minimum and
maximum values of density were 1.645 g/cm3 and 2.795 g/cm3, respectively.

By increasing the temperature from 380 ◦C to 480 ◦C at the maximum holding time
(120 min), the microhardness increased by 24.83% and the density increased by 18.04%. As
the holding time increased from 0 to 120 min at maximum operating temperature, the micro-
hardness increased by 10.78%, and the density increased by 1.43%. In short, the operating
temperature yielded a higher percentage than the holding time. It can be concluded that the
most influential factor for increasing microhardness and density is operating temperature.
At the minimum and maximum holding times, the percentage of microhardness increased
by 33.66%, while the density value increased by 41.14%. Insufficient working tempera-
tures and holding times produce large gaps between the metal chips, hence decreasing
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the material’s density. Meanwhile, a fine grain size enhanced the microhardness of the
aluminum alloy [75]. The highest value of the microstructure has a small amount of pore
formation [76]. Therefore, increased grain boundaries, decreased grain size and porosity in
the microstructure, and increased density led to a greater microhardness value [77].
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Figure 7. FESEM micrographs for surface fracture at minimum–maximum parameters: (a) an
overview of the S1 fracture surface at 100×, (b) the periphery coarse topology of S1 at 250×,
(c) equiaxed dimples of S1 at 1000×, (d) an overview of the S9 fracture surface at 100× (e) the
periphery coarse topology of S9 at 250×, (f) the equiaxed dimples of S9 at 1000×.
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Figure 8. Microhardness and density graph at different temperatures and holding times.

4. Conclusions

The direct recycling of AA7075 aluminum alloys by employing the HPF process has
a significant influence on the material’s surface integrity and mechanical properties. The
following is a succinct summary of the findings:

• The ETF value shows a linear trend with increasing temperature that is quite similar to
the UTS trend. From the minimum (380 ◦C/0 min) to the maximum (480 ◦C/120 min)
parameters, the UTS value increased by 93.07% and the ETF value increased by 92.33%.

• Increasing the operating temperature and time resulted in a decrease in the grain by
51.26% and in void size between the aluminum chips. At the maximum working
temperature and time, it can be seen that UTS and ETF had the highest values of
245.62 MPa and 6.91%, respectively, with a small grain size (0.212 µm) and less
porosity in the microstructure.

• At the minimum parameter, the fractured surface was revealed as shallow and flat,
with no dimples at all. Meanwhile, at the maximum parameter, many microvoids and
dimples can be seen, indicating the ductile fracture mode.

• From the minimum to maximum holding time, the percentage of microhardness
increased by 33.66% and the density value increased by 41.14%.

• The most influential factor for increasing UTS, ETF, microhardness, and density is the
operating temperature. The operating temperature contributes to a higher increment
percentage result than the holding time.

• An increase in UTF and ETF values causes an increase in grain boundaries with the
decrease in grain size, porosity in microstructure, and increased density, leading to a
greater microhardness value.
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