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To the Memory of my Grandfather ...



Every man gets a narro wer and narrower field of knowledge in which he 

must be an expert in order to compete with other people. The specialist 

knows more and more about less and less and finally knows everything 

about nothing.

Konrad Lorenz
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A bstrac t

Classical correlations are described consistently within classical information the­

ory. This thesis presents a consistent quantum information theory of purely quan­

tum correlations, i.e. entanglement. The main problem arises when we consider 

mixed states, for which it is difficult to separate quantum from purely classical cor­

relations. This problem is the main subject of the thesis and is undertaken from 

two different perspectives. The first approach follows Shannon’s own approach, 

where we define a number of intuitively clear and physically sound conditions that 

a “good” measure of entanglement has to satisfy, and then search for measures 

satisfying these conditions. Our second approach is to extend the classical idea 

of distinguishing two probability distributions to quantum physics. The amount of 

entanglement will then determine the experimental ability to distinguish a given 

entangled state from a classical, disentangled state. We show that these two ap­

proaches have a number of features in common, leading to the same measures of 

entanglement.

Classical information can be spoilt due to interactions with the environment. 

Classical information theory has a branch dealing with methods for protecting in­

formation called classical error correction. Quantum information is even more frag­

ile and here we develop the quantum analogue of error correction. We develop a 

code that protects quantum states in the presence of spontaneous emission. We 

then show how to protect entanglement using this method.

We also present a cavity QED implementation of various schemes aiming at 

increasing and protecting entanglement between two cavities using the standard 

Jaynes-Cummings interaction model between an atom and a cavity.
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C h ap te r 1

Overview

Information theory initially developed as a branch of communication theory deal­

ing with the fundamental questions of information manipulation. In a nutshell, it 

provides answers to the two fundamental questions concerning the ultimate limit 

of data compression (given by the entropy, S) and the ultimate limit of communi­

cation (given by the maximum amount of mutual information, 7, over all possible 

inputs to a communication channel) [1]. Today, information theory is an extremely 

successful and widely used theoretical tool, having important implication in ther­

modynamics and statistical physics [2], probability theory, statistics [3], economics, 

mathematics, and computer science [4]. When we say information theory, we gen­

erally mean classical information theory, which implies that the information that 

we manipulate is written into binary digits—bits, for short. A bit represents two 

different logical states, conventionally labelled as 0 and 1. When information is 

processed in any way, we have to use physical systems in order to represent bits. 

Take as an example a modern computer: the electrical circuits that make up the 

building blocks of modern computers, electronic chips, consist of wires conducting 

electrical current. These wires have two basic states of existence: either there is 

a current flowing through them, which is taken as representing a 1, or there is no 

current, meaning that we have a 0. Therefore, in reality 0 and 1 are not only two 

different logical states, but must also be two different (i.e. distinguishable) physical
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states. Any information processing is therefore performed using physical systems, 

and consequently, is directly dependent on the laws of physics that these systems 

obey. Electronic wires in the above example obey laws of classical physics (New­

tonian mechanics, Maxwell’s equations, statistical mechanics and thermodynamics 

and Einstein’s general relativity). This is why the information laws arising from 

using classical systems to encode information lead to classical information theory. 

Suppose, however, that the information is instead written into an atom: choose, for 

instance, two electronic energy levels of this atom and label them as 0 and 1. Then, 

since atoms obey the laws of quantum mechanics, the nature of information pro­

cessing, its efficiency and the ultimate bounds will be different to those predicted by 

classical information theory. Studies of quantum information processing, its limits 

and efficiency are a part of quantum information theory.

The basic difference between the two lies in the superposition principle. Quan­

tum systems, unlike their classical counterparts, can be in a coherent superposition 

of their basic states. This gives rise to the notion of a. quantum bit, or {qubit) for 

short [5], which is in general in the state

o|0) + / l - H 2|l> , (1.1)

having more possibilities than a classical bit. When we consider two qubits, the 

coherent superposition property of quantum systems leads to the notion of entan­

glement, i.e. the fact that two qubits can be correlated to an extent not accessible 

to two bits. 'Fhe term entanglement was coined by Schrodinger [6] who used it to 

exemplify the strange nature of quantum mechanics (he actually used a German 

word Versch rank ting which roughly translated means entanglement). An example 

is the often quoted Einstein, Podolsky, Rosen (EPR) state [7, 8]

which has absolutely no classical analogue. We can readily see that the above state 

displays a high degree of correlations: if we measure the first system, and learn its
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slate, we then immediately know the state of the second system. However, this can 

also be true for classical systems. Take as an example a person who wears either 

two blue or two red socks. Then if we observe the colour of one of the socks, we 

know that the colour of the other sock must be the same. Nevertheless, it is known 

that the EPR pair is more correlated than the socks described above, or, indeed, 

any other two classical systems can ever be, since it violates the so called Bell 

inequalities [8, 9] which are always satisfied by classical systems. Bell’s inequalities 

will be introduced in the following chapter and serve to put an upper bound on the 

amount of correlations that can be possessed by two correlated classical systems. 

In general, two correlated quantum systems will have both quantum and classical 

correlations. The separation of these two contributions is a central problem solved 

in this thesis. Classical information theory has developed a method for quantifying 

the amount of classical correlations. The core of this thesis presents the development 

of its quantum counter-part, i.e. a quantum information theory of purely quantum 

correlation (or entanglement; we will use both expressions, but they will always 

have the same meaning throughout this thesis).

As far as quantum information theory is concerned there is already a developed 

quantum theory of data compression [5], and there exist preliminary results pro­

viding bounds to certain quantum communication protocols [10, 11, 12, 13]. Also 

quantum computation has been developed [14, 15] and shown to be more efficient 

in principle than its classical counter-part [16, 17]. In addition quantum commu­

nication is in principle more efficient [18] and also more secure [19] than classical 

communication. All these features and advantages of quantum information process­

ing use the superposition principle and are a. direct consequence of the existence 

of entangled states mentioned above. However, as soon as the entanglement is de­

stroyed, which happens when the system storing the information interacts with the 

environment, the quantum computer inevitably reduces to the classical one. There­

fore in addition to creating a consistent theory of quantum correlations we will show 

in this thesis how to protect them from negative and unwanted influences from the
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“outside”. This will be the analogue of classical information protection and will 

therefore be called quantum error correction. Quantum error correction is already 

a well established field [20. 21, 22, 23, 24], but our exposition will be different to 

the above and hence an original contribution to the field.

In this thesis we will be describing quantities that measure uncertainties in 

classical and quantum information theory which will hence assume different forms. 

The general convention used throughout is that Shannon’s name will be always 

associated with the classical quantities, whereas von Neumann’s name will always 

be written together with their quantum analogues (e.g. the Shannon entropy vs 

the von Neumann entropy). Note that this does not imply that classical informa­

tion theoretic quantities cannot be used in quantum mechanics. For example, the 

Shannon entropy can be used to quantify the uncertainty in the spectrum of an 

observable pertaining to a certain quantum system. In contrast, the von Neumann 

entropy will be basis independent, and will refer to the state of that system as a 

whole.

My contribution to the field of quantum information included in this thesis has 

been to generalize the entanglement measures to mixed quantum systems containing 

two and more subsystems. I have realized that the main principle leading to en­

tanglement. quant ification is that “the amount of entanglement cannot be increased 

by local operations” (I have linked this to the classical analogue stating that the 

relative entropy does not increase under stochastic evolution, as proven in Chapter 

2). In the spirit of Shannon’s formulation of entropy, I have postulated two ad­

ditional, physically intuitive conditions that any measure of entanglement has to 

satisfy (Chapter 4). These three condition1, alone do not lead to a unique measure, 

but imply a whole class of different measures which I presented in Chapter 4. 1 

have provided statistical interpretations for two of the measures, i.e. the relative 

entropy of entanglement and the Bures metric of entanglement. This statistical way 

of interpreting entanglement, which is also my original contribution to the quantum 

information field, can naturally lead to an upper bound lo the amount of entangle­
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ment that can be locally distilled from a given ensemble of quantum states. 1 have 

then provided an alternative derivation to Ivnill’s and Laflamme’s, and Bennett’s, 

DiVincenzo’s, Smolin’s and Wootters’, of the conditions that quantum error correct­

ing codes have to satisfy in order to be successful (Chapter 5). In addition I have 

worked on constructing the first quantum code to correct for spontaneous emission. 

1 have then presented a practical cavity QED implementation of purification pro­

tocols that can be directly translated into ion-trap settings. Within this scheme 1 

have illustrated the fact that the non-local quantum properties (entanglement) can 

be preserved by local error correcting methods.

The remainder of the thesis is organized as follows:

Chapter 2. This presents the mathematical background for the thesis. The first, 

part concerns the basics of classical information theory putting emphasis on the 

formalism describing classical correlations. We show how this is reflected in classical 

communication theory and expose the relationship between information theory and 

thermodynamics, and statistics via the theory of types. This leads to the idea of 

distinguishing between different classical probability distributions.

Chapter 3. We then present some basic results of quantum information theory. 

We show how a procedure called Schmidt decomposition leads to an easy under­

standing of quantum correlations of a system in a joint pure state of two entangled 

quantum subsystems. Bell’s inequalities are then derived and shown not to be en­

tirely adequate for quantifying quantum correlations in general. We briefly review 

quantum communication theory and quantum computation emphasising the central 

role of entanglement.

Chapter 4. We generalize the classical theory of correlations to quantum mechan­

ics. We offer two different ways of understanding quantum correlations. One is 

through purification procedures which aim at increasing, or strictly speaking, com­

pressing quantum correlations by the means of local measurement and including 

the possibility of classical communication. The other one is by creating a quantum 

theory of types, and looking at the distinguishability of quantum states (which are
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the equivalent of classical probability distributions). These two ways are then com­

pared and lead to the same idea of how to quantify entanglement. We show how 

this way of measuring entanglement can naturally be generalised to more than two 

quantum subsystems.

Chapter 5. Basic conditions for quantum error correction are introduced. We then 

show how to preserve information written in a single atom which is spontaneously 

radiating into vacuum.

Chapter 6. We propose cavity QED implementations of the purification proce­

dures. It is then shown how to preserve entanglement between two modes in two 

different cavities by using quantum error correction methods introduced in Chapter 

5 and involving atoms.

Chapter 7. Here we summarize the thesis and briefly review the topics which can 

be illuminated by the results from this thesis. We also indicate various possibilities 

for future investigations.
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T heoretical B ackground

The enormous usefulness of mathematics in natural sciences is some­

thing bordering on the mysterious, and there is no rational explanation 

for it. It is not at all natural that daws of nature’ exist, much less that 

man is able to discover them. The miracle, of the appropriateness of the 

language of mathematics for the formulation of the laws of physics is a 

wonderful gift which we neither understand nor deserve.

Eugene P. Wigner

2.1 Classical Information Theory

Classical information theory is a very wide subject encompassing three basic mathe­

matical disciplines: the theory of communication, theory of computation and t heory 

of error correction. In this chapter we present basic results from classical informa­

tion theory with emphasis on the correlations between two random variables. The 

notion of correlations forms the basis ol classical theory of communications and its 

quantum generalization will be the main subject of this thesis.

8
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2.1.1 M easures o f Uncertainty and Correlations

In this subsection we introduce various classical information measures [4]. Quan­

tum analogues are then defined in the following chapter. Fundamental to our un­

derstanding of correlations is the measure of uncertainty in a given probability 

distribution. This uncertainty can be quantified by introducing the idea of usur­

prise” (first realized by the Roman Petronius Arbitrer c 60 AD [25]). Suppose 

that a certain event happens with a probability p. Then we would like to quantify 

how surprised we are when that event does happen. The first guess would be 1/p: 

t he smaller the probability of an event, the more surprised we are when the event 

happens. However, an event might be composed of two independent events which 

happen with probabilities p\ and p2 respectively, so that p = p\ x p 2. Now, we would 

intuitively expect that the surprise of p is the same as the surprise of p\ plus the 

surprise of p2. So, 1/p is not really a satisfactory definition from this perspective. 

However, if we define surprise as ln(l/p) then the above property called additivity is 

satisfied since — lnpi/>2 =  — In pi — lnp2 . Now if we have a probability distribution 

YlnPn — 1, then the total uncertainty is just the average of all the surprises, which 

brings us to our first definition.

D efinition. The uncertainty in a collection of possible states al with corresponding 

probability distribution p(a,) is given by an entropy

S{p) := -  YlP(a<) ln P(fl.) (2.1)
t

called the Shannon entropy. We note that there is no Boltzmann constant term in 

this expression, as there is for the physical entropy, since /.:« is by convention set to 

unity.

We frequently require a means of comparing two different probability distribu­

tions, and for this reason we introduce t he notion of relative entropy (first introduced 

by Fullback and Lei bier in [26]).

D efinition. Suppose that we have two sets of discrete events a, and bj with the cor­

responding probability distributions, p(a,) and p(/q). The Shannon relative entropy
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between these two distributions is defined as

S(p(a) ||p(6)) : - Y ^ p ( ai) In . (2.2)
T  P(°<)

This function is a good measure of the ‘distance’ between p(a,) and p(bj), even 

though, strictly speaking, it is not a mathematical distance since S(p(a) | | ;>(/>)) ^  

S(p(b) || />(«)). Its information -theoretic significance becomes apparent through the 

notion of mutual information.

D efinition. The Shannon mutual information between two random variables A 

and B, having a joint probability distribution ò7), and marginal probability 

distributions p(o,-) and p(bj) is defined as

Is(A: B):= S(p(a)) + )) - . (2.3)

We now present two very instructive ways of looking at this quantity, which will 

form a basis for the work in this thesis. Mathematically, Is can be written in terms 

of the Shannon relative entropy. In this sense it would represent a distance between 

the distribution p(a,b) and the product of the marginals p(a) x p(b). As such, it is 

intuitively clear that this is a good measure of correlations, since it shows how far 

a joint distribution is from the product one in which all the correlations have been 

destroyed. So, we have that

Is(A  : B)  =  S(p(a,b) ||p(a) x p(b)) . (2.3)

Let us now view this from another angle. Suppose that we wish to know the 

probability of observing l>, if at has been observed. This is called a conditional 

probability and is given by:

Paiibj) P{(h,bj)
P(<*i)

s motivates us to introduce a conditional entropy, Sa(B), as:

Sa(B) = ~Y^P(ai ) Y lp ^ ( bj )^Pa, (bj)
» j

=  - Y ^ P ( aiibj ) ]nPa,(bj) ■

(2.5)

(2 .6 )

(2.7)
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This quantity tells us how uncertain we are about the value of B once we have 

learned about the value of A. Now the Shannon mutual information can be rewritten 

as

Is(A  : B) =  S(B)  -  Sa (B) =  S(A) -  Sb (A) . (2.8)

So, the Shannon mutual information, as its name indicates, measures the quantity 

of information conveyed about the random variable A (B) through measurements 

of the random variable B (.4). This quantity, being positive, tells us that the 

initial uncertainty in B(A)  can in no way be increased by making observations on 

A(B). Note also that, unlike the Shannon relative entropy, the Shannon mutual 

information is symmetric. Let us briefly go back to our original idea of a surprise 

to interpret the Shannon mutual information as a measure of correlations. Suppose 

that one of our friends likes to wear socks of two colours only: red and blue. In 

addition we know that her socks are always the same colour and that when she 

gets up in the morning, she randomly chooses the colour, but we know that she 

prefers blue to red with the ratio 3 : 1 .  So, when we meet our friend, before we 

have looked at the colour of her socks, we know that she wears blue socks with the 

probability p(b) = 0.75 and red socks with the probability p(r) =  0.25. However, 

when we look at one sock and observe, say, blue colour, we immediately know that 

the other colour must be blue, too. This means that the colours of her two socks are 

correlated. So, before we look at one of the socks, we are uncertain about the colour 

of the other sock by an amount of —0.75 In 0.75 — 0.25 In 0.25. Hut then, when we 

look at one of them the uncertainty immediately disappears. So, we expect that the 

information we gain about one sock by looking at the colour of the other is given 

by —0.75 In 0.75 — 0.25 In 0.25. The Shannon mutual information predicts exactly 

the same thing. We see that the largest correlations would be if p =  q =  0.5 and 

would be In 2. This, of course, agrees with our intuitive notion of surprise, since 

then, before looking at her one sock, we would be completely uncertain about the 

colour of the other sock. Therefore by observing its colour we obtain the largest 

possible amount of information (i.e. remove the largest possible uncertainty in this
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case).

Although it will be seen that the Shannon mutual information is a good measure 

of correlations between two random variables, its natural generalization to three and 

more random variables fails. It is easy to see that for three random variables the 

Shannon mutual information should be of the following form:

Is(A : B : C )  = S(A, B , C) -  S (A ,B )  -  S(A, C ) -  S(B, C)

+ S(A) + S(B) + S (C ) .  (2.9)

However, there exist A , B ,C  such that Is{ A : B : C) < 0 [27], and since we regard 

the amount of correlation as being strictly positive, this is automatically ruled out as 

a good measure of correlation. Curiously, the measures of entanglement proposed 

in this thesis in Chapter 4, and which are quantum generalization of the above 

classical ideas, will not suffer from this problem, and can thus naturally be defined 

for any number of correlated subsystems.

We mention that there are many other measures of correlations, but that the 

above are the most suitable for the purpose of this thesis. It is their generalizat ion 

to the quantum case that will represent the solution to the problem of quantification 

of the amount of quantum correlations in a given quantum state. Among other, 

more significant measures of classical correlations, we have

• Coefficient of correlations. Suppose that we have two random variables x and 

y. Let ( ) denote the expectation value, then the coefficient of correlation is 

defined as:

r <(x -  (x))(y — (y)))
[ 2 . 10 )(x -  (x»(y  -  (y))

It can be seen that |r| < 1 being 0 when x and y are independent. This 

quantity is unfortunately only appropriate for measuring linear correlations.

Namely, if x and y are independent then r =  0; however, the converse is not

true [27], since the two variables can be non-linearly dependent and still have

r =  0.
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In general, as soon as we have a function that measures some kind of distance 

between two distributions, we can immediately define correlations to be that dis­

tance between a joint state and the product of the marginals. Here we present two 

examples:

• The Rényi relative entropy is a generalization of the Shannon relative entropy 

(reducing to it when a  -A 1) given by

:= - 2 -  1„ (  £ •  (2.11)

Therefore a quantity that would measure correlations would be the Rényi 

mutual information

Ia (A :B )  = Sa(p(a,b)\\p(a)xp(b)) . (2.12)

(Note that the relative entropy formulation of mutual information is indis­

pensable here. A formula of the type Sa(p(a)) + Sa(p(b)) -  Sa(p(a, b)) cannot 

be derived in a consistent manner.)

• The Rényi overlaps are defined as

ft,(p (“ )IM&)) := (2-13)
1

The measure of correlation is then defined in a completely analogous fashion 

to the Rényi relative entropy.

Quantum generalizations of these two measures (for a detailed account see [28]) will 

be useful to us in Chapter 4. In the remainder of this section we confine ourselves 

only to Shannon’s measures of entropy and correlations.

One very important property of any measure that aims at quantifying the 

amount of correlations between two random variables is the following: if either 

or both of the variables undergo a local stochastic evolution, then the amount of 

correlations cannot increase (in fact, it usually decreases). We now prove this in



Chapter 2 T heoretical Background 14

the case of the Shannon mutual information, following an approach similar to that 

given by Everett in [29].

First, we establish without proof some inequalities following from the convex 

properties of the logarithmic functions.

Lem m al. Y i  C-'r, In Y i  C.r, < Y i  P>x i lna:,-, where Xi > 0, P, > 0 and Y i  P< = L

Lemma 2. Y i  x i In < Y, x > In £j-, where ;r, > 0 and «, > 0 for all i. (ProofzU “• a<
follows from Lemma 1.)

We first show that the Shannon relative entropy between two probability distri­

butions decreases when the same two undergo a stochastic process. This is a very 

satisfying property from a physical point of view, where two probability distribu­

tions undergoing stochastic changes can represent two evolving physical systems. It 

says that two probability distributions are in some sense closer to each other (i.e. 

“harder to distinguish”) after a stochastic process, or analogously, that two physical 

systems become more alike.

So, we consider a sequence of transition-probability matrices 7'/), where Y j  'Hj — 

1 for all n, i, and 0 < 7]’j < 1, and a sequence of positive measures a" having the 

property that

(2.i4)
%

We further suppose that we have a sequence of probability distributions P[l gener­

ated by the action of the above stochastic process, such that

pn+‘ = V  _ (2-15)

For each of these probability distributions the relative information [n is defined as

S“( C ||« ) := S ( H I ‘>") = £ r ] n T -T  <
We prove the following theorem:

Theorem . .S'n+1(P||n) < Sn{P\\a).

Proof. Expanding 5,n+1(7>||«) we obtain:
p n+ 1 pn'pn

5 n+l(P||(/) = Z  PP '=  D E  In
j j  j  i Lji <*i I ij

(2.16)

(2.17)
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However, using the concave property of the logarithmic function we have the fol­

lowing inequality
E  purr'll

i 1 i 1 ij

From the above two it follows that
X

pnrpn1 i 1 ¡j < E 'rc
pn rpn
1 i 1 ij
a'yp1 (2 .18)

i”+1(U 1«) < E E p ? t
pn

C) In - L
13 af E pn

pn
u In —,J a?

(2.19)

(2 .20 )

and the proof is completed □.

This proof can be immediately specialized to the cases when T  is stationary, i.e. 

T  is independent of n, and when T  is doubly stochastic, i.e. Yh Tt) — 1 for all j .  A 

corollary to this important lemma is the following

Corollary. If we take P  = p(a,6), and a = p(a)p(h), and suppose that the stochas­

tic process acting separately on A and B are uncorrelated, we see that the Shannon 

mutual information does not increase under these local stochastic processes (by 

local we mean that they act separately on A and B).

Proof. Obvious.

This is a very important, and physically intuitive, property of any measure of 

correlations; its quantum analogue will be of central importance for quantifying 

quantum correlations between entangled subsystems which is the main subject of 

this thesis. This corollary, in fact, can be taken as a guidance for a “good” measure 

of correlations. We can state that any measure of correlations has to be non­

increasing under local stochastic processes. The nature of quantum local stochastic 

processes will form the physical basis for our argument in the next chapter. A 

condition similar to property above, but employing quantum stochastic processes 

will be a key element in our search for measures of entanglement. When we go to 

quantum mechanics, the notion of a probability distribution will be replaced by a 

quantum state (i.e. density matrix), and a stochastic process will become a mea­

surement process in quantum theory. A formulation of the probability theory which
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is then most naturally generalized to quantum states is provided by Kolmogorov 

[30], and the quantum generalization expressing similarities with von Neumann’s 

Hilbert Space formulation [31] can be found in [32] (c.f. [33]). However, knowl­

edge of this approach will not be necessary for the rest of the thesis. At the end, 

it is important to stress that if the local stochastic processes are correlated, the 

correlations between the systems can increase as well as decrease. For more results 

on the behaviour of the Shannon relative entropy under stochastic processes it is 

instructive to read the work by Cohen et al in [34]; however this goes far beyond 

the subject of this thesis.

Correlations between two subsystems are sometimes very important to main­

tain. In classical communication theory, we wish the input and the output of a 

communication channel to be maximally correlated, since this implies that the re­

ceiver has obtained maximum information about what has been sent. The channel, 

on the other hand, introduces some noise through stochastic processes and disrupts 

communications. In order to maintain a low level of errors we have to use methods 

of error correction. We first describe the mathematical basis of classical communi­

cation and error correction theory. The second aim of this thesis is to generalize 

these methods to the quantum case in order to protect entanglement, on which both 

quantum communication and computation very much depend.

2.1.2 Classical Com m unication Theory

Let us suppose that the sender (source) of information, usually called Alice, encodes 

words into strings of the type nxa2 ...a jv  where each symbol aj appears with the 

probability pr  The Shannon entropy of the source is ,S'(/1). Now the message 

goes through a channel which introduces various errors. If the output is the string 

bxb2. . .  6tv, then the channel is completely specified by giving the probabilities of 

the type: the probability of receiving bj if a, was sent for all i and j .  The receiver, 

usually called Bob, now tries to decode the original information. Bob’s aim is to
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obtain as much information as possible about A from the measurements conducted 

on D\ this is, as we have seen, described by the Shannon mutual information, 

I (A : 13). The channel capacity is now defined as

C =  max I (A : B) . ( 2 .21)

Since B  is related to A via the above described channel’s transition matrix, the 

channel capacity depends only on the channel’s characteristics and is independent of 

the input and output of the channel. This quantity is of a fundamental importance 

in classical communication theory due to the following result proved by Shannon 

[ 11-

Theorem  (Shannon [1]). If R is the rate of information production, then providing 

that R < C the information can be transmitted with an arbitrary reliability.

Here we only present an intuitive reasoning to justify the above form of the capacity 

(for a mathematically rigorous theory of communication see for example [35]). We 

stress that this proof is valid only for ergodic, stationary sources for which most 

sequences of n bits of a source with an entropy S  have a probability of about e~nS. 

Loosely speaking a source is stationary if the probabilities of emitting states do 

not change over time; it is ergodic if each subsequence of states appears in longer 

sequences with a frequency equal to its probability (the physical meaning of this 

statement will be analysed in section 2.3). This statement is then an information 

theoretic analogue of the Law of Large Numbers in probability theory. The source 

with entropy S  will generate about eTS(-A) sequences in a time interval T  (this 

result also follows from the Law of Large Numbers and ‘about’ indicates that this 

is only true asympt otically This will be explained in a greater detail in the section 

2.3 Information Theory and Statistics). Now, each of these will be measured at 

the output and each output could then be produced by about eT5fl(-4) inputs, since

Sb [A) represents the entropy of A once B  has been measured. Therefore the total 

number of useful (non-redundant) messages (as they are called in communications)
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is
yY = et(s(a)~sb{A)) (2  ‘>2)

and therefore for the capacity we choose a source with the entropy that maximizes 

S(A) — Sg(A),  as stated before. If we instead chose a source whose entropy produces 

a larger quantity than the channel capacity, then that particular channel will not 

be able to handle the input and inevitably errors will result. The mutual informa­

tion between the input and the output of a communication channel is thus a very 

important quantity since it determines the maximum rate at which the information 

can be transmitted without errors occurring.

2.1.3 Classical Error Correction

In the above we saw that, at least in principle, it is possible to communicate at a 

rate arbitrarily close to the channel’s capacity with an arbitrarily small error. The 

above argument is informal and does not show us the exact way how this can be 

achieved. In practice we would complete a number of transmissions and encode 

our information into a few which are “separated enough” so that the error in the 

channel does not confuse them at the output. This method is knov^under the name 

of classical error correction [36]. The word classical is important to emphasize 

because the quantum analogue, although based on the same idea, will be different 

due to the basic differences between quantum and classical physics. Now we review 

the basic principles of classical error correction, which will help us to preserve the 

information in an error-inducing environment. First we focus on single errors and 

then generalize to an arbitrary number of errors. The quantum analogue of this 

procedure will be presented in Chapter 5.

A string of bits 0010... is sent through a classical channel which then introduces 

errors. For simplicity, we suppose that the errors affect the bits independently. 

In this case we have the following possibilities (we take a simple case where the 

probabilities for 0 and 1 are the s w z  . so that the name of the channel is the
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binary symmetric channel)

P

Now suppose that we wish to protect a bit ‘O’ from an error. The simplest way is 

to use the so called repetition code: we encode a 0 into three 0’s, i.e. 0 —> 000. 

Now, if we allow only a single error to happen we can use a “majority vote” to 

restore the original. By the same token we encode 1 as 111. So in this way we have 

eliminated all the first order (single) errors. The total probability of error is now 

easily calculated to be

Terror = 3p2 -  2p3 (2.23)

of the second order. The strings 000 and 111 will be referred to as code-words. 

Let us now generalize this simple idea. Suppose that we have e errors. Let d be 

the Hamming distance between two code-words: this is defined as the number of 

places (bits) where the two codes differ, so that, for example, r/( 101,001) =  2 and 

<r/(000, 111) = 3. For error correction to work we need that at least d =  2e + 1. 

The reason for this is that if each code-word suffers e errors they are still different 

at the end (by at least one bit). Then if n denotes the length (number of bits) in 

each code-word, we have the following upper bound on the number of code -words

A(n,d)
____ / n \

A(n, d) ^  < 2
At—0

(2.24)

called the sphere-packing, or Hamming bound. If we wish to send two letters 0 and 

1 {A — 2) protected against a single error (e = 1) then the above says that:

1 . /  77,\
(2.25)E  < 2 -

A-=o
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The smallest n satisfying this bound by saturating the equality is n = 3 which is 

the repetition code described above. In general a code satisfying the equality is 

called the perfect code.

Let us now briefly look at the notion of the channel’s capacity from the error 

correction point of view. Suppose that we are encoding a string of k bits into n 

bits. The number of code-words is then A(n,d ) = 2 . Substituting this into eq. 

(2.24) and taking the limit for large n,A:,e we obtain

where II(x) — —x log x — (1 — x) log(l — x). Now we can define the capacity of the 

channel to be the number of useful bits (k ) to the total number of bits needed for 

error correction (?i), and take the limit n oo. Therefore the quantity on the right 

hand side of eq. (2.26) is the channel capacity of the binary symmetric channel. 

Note that e/n = p where p is the error probability. A simple calculation shows that 

the same result is obtained from the original definition of capacity in eq. (2.21).

We now generalize our discussion by introducing some basic facts about linear 

codes through a simple example. These will be used later when constructing quan­

tum error correcting codes. A binary code is linear if and only if the bitwise sum 

(modulo 2) of any two code-words is yet another code-word from that code. Linear 

codes are convenient because they have a number of simple properties [37]. First of 

all, there is a generator matrix whose rows form a basis of a linear code. Suppose 

that we wish to encode u = {00,01,10,11}, i.e. two bits of information, to protect 

against a single error. In order to do this we need to add another two bits to obtain 

the corresponding codewords C = {0000,1011,0101,1110}. The generator matrix 

for this code is given by

In fact,, once we have the generator we can easily obtain t he code by bitwise addition 

of its codewords (including the addition of a, codeword to itself). The encoding

(2.26)
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process is now given by a multiplication of u with G. We now need to understand 

how to correct an error and then the resulting code-word can be decoded to produce 

the original message. For this we introduce the notion of a cose! of C. If a ¡S a four 

bit string, then the coset of C is a ® C. In our example a consecutively takes the 

value of four different strings aj =  0000, a2 =  10 0 0 , as =  0 10 0 ,a,| = 0 0 10  for a and 

this will generate the set of all the possible four bit strings a*' 0 C. For example, 

1000  0  6 ' =  {10 0 0 , 0 0 1 1 , 1 1 0 1 , 0 1 1 0 }, and altogether we have

0 0 0 0 1011 0101 1 1 1 0

1 0 0 0 00 1 1 1101 0 1 1 0

0 1 0 0 1111 0 0 0 1 1010

0 0 1 0 1001 0111 1 1 0 0

(2.27)

Note that the coset leaders are in the first column and that rows contain the 

cosets generated by the corresponding coset leader. In order to error correct 

we construct a parity check matrix, / /, which is a generator matrix for the code 

C L = {1101,0111,1010,0000} so that we have the following

/
// =

V
0 1 0  ̂

1 0 1 ,

Suppose now that the initial state to encode is 10 . The corresponding code-word 

is u =  1011. Suppose that the error has occurred on the second, bit arid that the 

resulting state is v = 1111. Then if we look at the table the corrected state is the 

one at the top of the column where 1 1 1 1  is found. This state is indeed u = 1011, and 

the error correction has been successful. However this search for the position of the 

word in the table is inefficient (time consuming), and this is where the parity check 

matrix offers help. The parity check matrix is used to generate error syndrome. 

This is done by multiplying the final state (after the error) by the transpose of the
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parity check matrix v l l 1. So in our example if v = 1111 then

/  i i \

( 0 1 ) .
0 1 

1 0

v 0 1  /
V ' in 2..T.7

The crucial observation now is that all the words in the same row have the same

error syndrome, so that, for example

( 0100 )

i \  \ \  

0 1 

1 Û

V o 1  /

(01) •

Therefore the error syndrome helps allocate the position of the code-word after

undergoing an error, and thus speeds--up the error correction process. A simple

way to understand this is to realize that the product of the generator and the 
t

parity check =  0. The state after the error can be represented as v = u © e 

where e is the error vector. Now we have,

//(v ) = H(u © e) =  / /(u) © //(e) = 0 © //(e) = //(e) (2.28)

so that the value of //(v ) does not depend on u but only on the error e. If //(v) 

is different for all possible errors, we will be able to determine precisely what error 

occurred and will be able to correct it.

In Chapter 5 we present the basic rules of quantum error correction, providing 

a quantum analogue of the single error correcting perfect code, and designing a 

code to cope with the atomic spontaneous emission of radiation. We will see that 

the above concepts, such as linear codes and error syndromes, retain their basic 

meaning in quantum error correction and prove to be very useful.
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2.2 Comparing Therm odynam ical and Shannon’s 

Entropy

T he particular form of a measure of uncertainty depends on the physical conditions. 

What will briefly be discussed in this section is that the Shannon entropy is the 

thermodynamically appropriate measure of uncertainty only if the system under 

consideration is ergodic. If, however, this is not the case, we are forced to use a 

more general quantity which corresponds to the so called Levy statistics. Before 

we quantify this, let us formally state the conditions which single out the Shannon 

entropy as a good measure of uncertainty.

We have seen that there is a number of different measures of uncertainty. Each 

one of these posesses different properties distinguishing them from one another. Let 

us consider the following four conditions [27]:

1. Continuity: S(p\,p2, ■ ■ • ,/>«) continuous in pk for all k.

2. Symmetry: S{pi ,p2, . . . , pn) = S(p>, P i , , pn)-

3. Extremal property: Maximum of .S'is

(2.29)

4. Additivity: Let pn — Y^k-\ clk- Define,

Sl(pi,P2, - ■ • ,Pn)

S2 (P i > P i 1 • • • 1 Pn— 1 > Ql i Q2i • • ■ ) dm )

Additivity requires that S2 = Si -f pnS3.

The physical basis of the first three conditions is immediately clear: firstly, if we 

change the probabilities slightly we do not want the uncertainty to be very much
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different; secondly, all the probabilities are equally important, and thirdly, the un­

certainty is maximum when we have absolutely no a priori knowledge to believe 

one outcome to be more likely than any other. The last property is the one men­

tioned before, at the beginning of this chapter. Loosely stated, if we combine two 

independent events their uncertainties must add up, a property sometimes referred 

to as additivity. Now the crucial result is that if we decide to use the natural log­

arithm and to set the overall multiplication constant to be equal to I (instead of 

Boltzmann’s constant), then the only function satisfying the above four conditions 

is S  — -  J2i Pi In Pi [27] (this was originally proven by Shannon).

Suppose that we wish to extremize S  with the constraint Y^iLxPi — I• Us­

ing Lagrangian multipliers we immediately see that S  is extremized in the case 

of having the equiprobable distribution, i.e. when p, = 1 /\'V (corresponding to a 

microcanonical ensemble treatment). In this case

S = \n W  (2.33)

which, when multiplied by Boltzmann’s constant, produces the celebrated Boltz­

mann expression.

Suppose now that we want to extremize S  with the following two constraints 

(corresponding to a canonical ensemble treatment):

it'
,

¿=1
w

The extremized S  is given by

(2.34)

(2.35)

Pi

Z

e ß E,

~z~
w

¿=1

where (2.36)

(2.37)

and ß  — l / k ß T i T  being the temperature. So, the Shannon and Boltzmann entropy 

are very closely related. Now, the key result in classical thermodynamics is the
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Second Law which states that the entropy of a closed (i.e. noninteracting) system 

never decreases. It is important to point out that, in the case of the Shannon 

entropy, this is not always true [38, 39]. What is true is that the Shannon relative 

entropy never increases, as shown in subsection 2 . 1 . However, the Shannon relative 

entropy decrease does not always imply an entropy increase. A counter-example 

is provided by a Markov chain with a non-uniform, stationary distribution [4]. A 

uniform distribution is the one for which all the probabilities are equal and the 

stationary distribution is the one independent of n. If we start this Markov chain 

from a uniform distribution (maximal entropy), the distribution will tend to the 

stationary one (which has lower entropy) (a good discussion of this can be found in 

the first chapter of [40]).

If, however, the stationary distribution is uniform (as is required for the Boltz­

mann formula) the Shannon relative entropy is given by:

S(Pn\\a) = \n W  -  S (P n) . (2.38)

In this case the monotone decrease in the Shannon relative entropy implies a mono­

tone increase in S[P n), as in the Second Law of Thermodynamics. Thus the crucial 

observation to remember is that, in information theory, the central result states that 

the Shannon relative entropy decreases under stochastic evolution [34] (rather than 

the erroneous law stating that the Shannon entropy increases under a stochastic 

evolution).

The second important observation we wish to make is that the physical circum­

stances might be such that the above four assumption categorising the measure of 

uncertainty (and hence correlations) are no longer appropriate. Many physical sys­

tems do not behave according to the Maxwell-Boltzmann exponential law described 

above. An extraordinary example is found in medicine: Peng and colleagues from 

Harvard medical school, found that the erratic patterns observed in the heartbeats 

of healthy subjects do not follow a Gaussian (Maxwell-Boltzmann) distribution, but 

the more general, so called Levy statistics (curiously the heartbeats of unhealthy
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subject more closely resemble a Gaussian) [41]. The Levy distribution is given by

Pi = (2.39)

where

z , = E ( i  - ß i i - W (2.40)
1 =  1

The parameter q describes how much a given distribution deviates from the Maxwell- 

Boltzmann law. When q —> 1 we recover the Maxwell-Boltzmann exponential dis­

tribution. The Shannon entropy is no longer appropriate to maximize under these 

circumstances, and a new, generalized entropy is required:

S,(p) = 1 (2.41)q -  1

which is the so called Tsallis entropy [43] (although originally introduced by Daroczy 

in [44]). For q -> 1 this reduces to the Shannon entropy. Systems satisfying these 

statistics do not satisfy the law of additivity discussed before. Namely if we have 

two independent systems A  and B then

Sg(AB)  =  Sq(A) +  Sq(B) -  (q -  l )Sq(A)S,(B)  . (2.42)

This law should now replace the condition 4 of additivity in order to derive the 

generalized entropy S,, as a unique measure of uncertainty. The physical basis 

of the difference between the systems obeying Maxwell-Boltzmann statistics and 

the systems obeying Lévy statistics lies in the ergodic property we mentioned in 

relation to the channel capacity. Namely, the former systems are ergodic, meaning 

that the long time average of physical quantities is equal to the ensemble average; 

the latter are, on the other hand, non-ergodic, where the long time average is not 

equal to the ensemble average (this is directly analogous to ergodic and non-ergodic 

information sources analysed in the previous subsection). Therefore, measures of 

uncertainly and hence correlations, are by no means unique, and different physical 

circumstances give rise to different measures. This will also be seen in the case of 

quantum measures of uncertainty and correlations (entanglement). In Chapter 4
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we shall present a whole class of “good” measures of entanglement each one suitable 

to a different physical background. Now we turn to the idea which provides the 

physical, or strictly speaking statistical, interpretation behind the Shannon entropy 

and relative entropy.

2.3 Information Theory and Statistics

Here we present a fruitful connection between information theory and statistics. 

This will provide us with another interpretation of the Shannon entropy and the 

Shannon relative entropy, but this time from the statistical point of view. The 

generalization of this formalism to the quantum domain will be presented in the 

next section and we will offer an operational interpretation of the measures of 

quantum correlations to be introduced therein. We follow the approaches of Cover 

and Thomas in [4], and Csiszar and Korner in [45].

2.3.1 The Theory o f Types

Let Ah, Ah, ...An be a sequence of n symbols from an alphabet A =  {oq, a2,..., 0 |yi|}. 

We denote a sequence aq, X2, ..., x n by xn or, equivalently, by x. The type Px of a 

sequence aq, .r2, ..., x n will be called the relative proportion of occurances of each 

symbol of A , i.e. Px(a) =  Ar(a |x )/n  for all a G A , where vV(u|x) is the number of 

times the symbol a occurs in the sequence x G An. Vn will denote the set of types 

with denominator n. If P G Vn, then the set of sequences of length n and type P 

is called the type class of /', denoted by T ( P ), i.e. mathematically

T(P) = {x G An : Px = P} . (2.43)

We now approach the first theorem about types which is at the heart of success of 

this theory and states that the number of types increases only polynomially with 

n.
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T heorem .

\Vn\ < (n  + l ) 141 (2.44)

Proof. Obvious □.

The most important point is that the number of sequences is exponential in 

n, so that at least one type has exponentially many sequences in its type class. 

Actually, the largest type class has essentially the same number of elements as the 

entire set of sequences (they become equivalent as n —> oo). We now arrive at the 

most important theorem for us, which, in fact, present the basis of the statistical 

interpretation of the Shannon entropy and relative entropy.

T heorem . If A'j, X 2, ...Xn are drawn according to Q(x ), then the probability of x 

depends only on its type and is given by

Qn(x ) = e~n{S(P*)+S{P*\m (2.45)

Proof.

Q"(x) =  f [ Q M  (2-46)
i=i

=  n  Q(«)N,aW (2.47)

= J ]  Q(a)nP* ^  (2.48)
aeA

— enPx(a) In Q(o) (2.49)

= exp i n  Y ,  - P M  In + Px(a) In Px(a)} (2.50)
1 aeA Q(a) >

= e- " W p*)+s(P*\m D (2.51)

Corollary. If x is the type class of Q, then

- Qn{x) =  e~nSW  (2.52)

Proof. Obvious □.

The above theorem has very important implications in the theory of statistical 

inference and distinguishability of probability distributions. To see how this comes
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about we state without proof two theorems that give bounds to the size of a type 

class and also bounds on the probability of a particular type class. The proofs 

follow directly from the above two theorems and the corollary [4, 45],

Theorem . For any type P € Vn,

< |r (P ) | < e”s<p> (2.53)

T heorem . For any type P £ Vn, and any distribution Q, the probability of the 

type class T(P)  under Qn is e_nS(pl^) to first order in the exponent. More precisely,

( n T i j W e~nS im )  ~ Qn{T{l,)) ~  e' nS(P|IQ) (2.54)

The above two results can be succinctly written in an exponential fashion that will 

be useful to us as

\T(P)\ -» e~r,5(P) (2.55)

Qn(T(P)) -> e“"5™ )  . (2.56)

We have already made use of these statements when dealing with the channel capac­

ities and proving the Shannon theorem, and now they are set on a firm theoretical 

basis. The first statement also leads to the idea of data compression, where a string 

of length n generated by a source with entropy S  can be encoded into a string of 

length nS.  The second statement says that if we are performing n experiments 

according to distribution Q, the probability that we will get something that looks 

as if it was generated by distribution P decreases exponentially with n depending 

on the relative entropy between P and Q. This idea immediately leads to Sanov’s 

theorem, whose quantum analogue will provide a statistical interpretation of the 

measure of entanglement presented in the next chapter. Now we present examples 

of data compression and introduce Sanov’s theorem.

2.3.2 D ata Com pression and Sanov’s theorem

Suppose that we have a binary source generating 0’s with twice as big a probability 

as that of l ’s, so that the Shannon entropy is S  = In3 — 2/3 In 2 =  0.64. Imagine
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that vve have a string of 15 digits coming out oi this source. Then, according to 

the above considerations (eq. (2.56)) , the most likely type will be the one with ten 

0’s and five l ’s. But the size of this class is only 0.64 x 15 ~  10. So we can use 

only 10 digits to encode all the above sequences of 15 numbers just by assigning the 

following conventional mapping: the first sequence of 15 numbers is to be encoded 

in 0000000000, the second sequence is to be encoded in 00000 00 001, ... , the eI0th 

sequence is to be encoded in 1111111111. This encoding is for obvious reasons 

called data compression. This, in fact, offers a statistical reason for employing the 

Shannon entropy as a measure of uncertainty.

Now we look at the distinguishability of two probability distributions. Suppose 

we would like to check if a given coin is “fair” , i.e. if it generates a “head-tail” 

distribution of /  = (1/2,1/2). When the coin is biased then it will produce some 

other distribution, say u f  — (1/3,2/3). So, our question of the coin fairness boils 

down to how well we can differentiate between two given probability distributions 

given a finite, n, number of experiments to perform on one of the two distributions. 

In the case of a coin we would toss it n times and record the number of 0’s and l ’s. 

From simple statist ics we know that if the coin is fair than the number of 0 ’s, N (0), 

will be roughly n / 2  — s/n < tV(0 ) < n / 2  -f y/n, for large n and the same for the 

number of l ’s. So if our experimentally determined values do not fall within the 

above limits the coin is not fair. We can look at this from another point of view 

which is in the spirit of the method of types; namely, what is the probability that a 

fair coin will be mistaken for an unfair one with the distribution of (1 /3 ,2 /3) given 

n trials on the fair coin? For large n the answer is given in the previous subsection

p(fair - A  unfair) =  e ~ nS M W  , (2.57)

where S  ( u / | | / )  = 1/3 In 1/3 T 2/3 In 2/3 — 1/3 In 1/2 — 2/3 In 1/2 is the Shannon 

relative entropy for the two distributions. So,

//fair -A unfair) = 3n2~an , (2.58)

which tends exponentially to zero with n - A  oo. In fact we see that already after
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~  20 trials the probability of mistaking the two distributions is vanishingly small, 

< 10-10. Sanov’s theorem [46] now states that if we have a probability distribution 

Q and a set of distributions E C V  then

is the distribution in E  that is closest to Q in the Shannon relative entropy. This can 

also be rephrased in the language of distinguishability: when we are distinguishing 

a given distribution from a set of distributions, then what matters is how well we 

can distinguish that distribution from the closest one in the set. When we turn 

to the quantum case in the next chapter, the probability distributions will become 

quantum densities representing states of a quantum system, and the question will 

be how well we can distinguish between these states.

(2.59)

where

P* = min S(P ||Q ) ( 2.60)



C h ap t er 3

Q uan tum  Inform ation  T heory

3.1 Quantum Correlations

The main difference between quantum and classical physics is seen in the superpo­

sition principle which, when two or more systems are involved, leads to the phe­

nomenon of entanglement. Quantum systems, unlike their classical counter-parts, 

can be in states involving superpositions of their basic states. This alone is respon­

sible for the fact that information theory based on quantum mechanics is radically 

different from the classical information theory described previously. This basic 

difference is manifested in the fact that the amount of correlations in two entan­

gled quantum subsystems can exceed the amount of “allowed” classical correlations. 

This excess of correlations enables quantum communications to be in a certain sense 

more efficient than classical communications and also quantum computation to be 

“faster” than its classical equivalent. Therefore quantum correlations have a central 

role in quantum information theory. This section introduces the basic ingredients 

of quantum information theory that will enable us to obtain a class of measures of 

quantum correlations and set the basis of quantum error correction.
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3.1.1 Entanglem ent and Schmidt D ecom position

A composite quantum system is one that consists of a number of quantum subsys­

tems. When those subsystems are entangled it is impossible to ascribe a definite 

state vector to any one of them. The most often quoted entangled system is a pair 

of two photons, being in the “EPR” state [7, 8]. The composite system is then 

mathematically described by

w ^ a t i i w  + m i t »  (3.i)

where the first ket in either product belongs to one photon and the second to the 

other. The property that is described is the direction of spin or polarization along 

the z-axis, which can either be “up” (| t)) or “down” (| j)). A two level system of 

this type is a quantum analogue of a bit, which we shall henceforth call a qubit. We 

can immediately see that neither of the photons possesses a definite state vector. 

The best that one can say is that if a measurement is made on one photon, and it 

is found to be in the state “up” for example, then the other photon is certain to be 

in the state “down”. This idea cannot be applied to a general composite system, 

unless the former is written in a special form. This motivates us to introduce the 

so called Schmidt decomposition [47], which not only is mathematically convenient, 

but also gives a deeper insight into correlations between the two subsystems.

According to the rules of quantum mechanics, the state vector of a composite 

system, consisting of subsystems U and V, is represented by a vector belonging to 

the tensor product of the two Hilbert Spaces Hu ®'Hy. The general state of this 

system can be written as a linear superposition of products of individual states:

W  =  X ]  cnm |W n)|u m) (3 -2 )
n m

where {|itn)}^_j and {|?;,„)}[)[_, are the orthonormal basis of the subsystems U and 

V  respectively, whose dimensions are dim U — N  and dim V  =  M. We will now 

describe the procedure of Schmidt decomposition whereby the above state |T ) is 

re-expressed in terms of the so called Schmidt basis.
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To that end, let us assume that M  > N,  which in no way affects our line of 

argument since the procedure is symmetric with respect to the subsystems. Then 

we have the following five steps:

1 . First we construct a density matrix describing |lP). Once the density matrix 

is known all the properties of the system can be deduced from it. Moreover, 

ensembles which are prepared differently, but have the same density matrix 

are statistically indistinguishable and therefore equivalent (see [48] on how 

to construct all different ensembles given a density matrix). Generally, if we 

have a mixed state involving vectors |tyt), |vf 2), • ■ • \ ^ d) with corresponding 

classical probabilities ur, u>2, • . . ,  w3, then the density matrix is defined to be:

P = Y l WdlvM ( 'I'rfl • (3-3)
d-i

Since in our case |fy) is a pure state, the density matrix is a projection operator 

on to |lf), i.e.

P = |4,)(lI, | = E E P n m M ( Up\ @ |um)(u9| (3.4)
nm pg

where pnmpq — cnmc*q. If we, however, wish to deal with one of the subsystems 

only, then we employ the concept of the reduced density matrix.

2. We find the reduced density matrix of the subsystem [/, obtained by tracing 

p over all states of the subsystem V , so that

PU ^  ^ W \p\ Vq) — ^ "] }  ̂  Pnmpm |Un) (^p] • (3.o)
q nm p

The crucial step in the Schmidt decomposition is diagonalizing the above. We 

shall call the eigenvalues of pu |£fi|2, |<?2 |25 • • •, \9 n \2 , and the corresponding 

eigenvectors |uj), ju '2) , ... ', |u'N).

3. Then we re-express the above in terms of i.e

lll') = E E C,n m K > k ) .  (3.0)
n m
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4. Now, we construct a new orthonormal basis of the subsystem V  such that 

each new vector is a “clever” linear superposition of the old ones, so that

E  - f  K >  ■
m yi

(3.7

5. The Schmidt decomposition of |T) is now given by

l*> =  L « » K > K > -  (3.8)
n

There are two important observations to be made, which are absolutely fundamental 

to understanding correlations between the two subsystems in a joint pure state:

• The reduced density matrices of both subsystems, written in the Schmidt 

basis, are diagonal and have the same positive spectrum, in particular, the 

overall density matrix is given by

P = X ^ n iC K K u 'J  © K )<uml (3-9)
nm

whereas the reduced ones are

Pu = S K J p K )  =  £ b n l 2K ) « l  (;U °)
m n

pv =  ]C (UnMU»> = S l f f m H O K il  • (3.11)
n m

• If a subsystem is N  dimensional it then can be entangled with no more than 

N  orthogonal states of another one.

At the end we would like to point out that the Schmidt decomposition is, in 

general, impossible for more than two entangled subsystems. Mathematical details 

of this fact are exposed in [49]. To clarify it, however, we consider three entangled 

subsystem as an example. Here, our intention would be to write a general state such 

that by observing the state of the one of the subsystems we instantaneously and 

with certainty know the state of the other two. But, this is impossible in general, for 

the presence of the third system makes the prediction uncertain. Loosely speaking,
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while we know the state oi one of the subsystems, the other two might still be 

entangled and cannot have definite vectors associated with them (an exception 

to this general rule is, for example, a state of the Greenberger Horne Zeilinger 

(GHZ) type ( l / \ / 2 )(| t)l t)l t )  +  I 4-) I I )  I I)))- Clearly, involvement of even more 

subsystems complicates this analysis even further and produces, so to speak, an 

even greater mixture and uncertainty. The same reasoning applies to mixed states 

of two or more subsystems (i.e. states whose density operator is not idempotent 

p2 ^  p), for which we cannot have the Schmidt decomposition in general. This 

reason alone is responsible for the fact that the entanglement of two subsystems in 

a pure state is simple to understand and quantify, while for mixed states, or states 

consisting of more than two subsystems, the question is much more involved. 'The 

solution to the problem of understanding entanglement and quantifying its amount 

in a given, general, quantum state consisting of an arbitrary number of systems is 

the central theme of this thesis.

Next we turn to some natural quantum generalizations of the classical measures 

of uncertainty and correlations given in the previous section of this chapter. We talk 

about two subsystems mainly, and any generalizations will always lie emphasised 

in particular.

3.1.2 Quantum M easures o f U ncertainty and Correlations

When two subsystems become entangled, we saw that the composite state can be 

expressed as a superposition of the product of the corresponding Schmidt basis 

vectors. From eq. (3.8) it follows that the i-th vector of either subsystem has a 

probability of |q, | 2 associated with it. We are, therefore, uncertain about the state 

of each subsystem, the uncertainty being larger if the probabilities are evenly dis­

tributed. Since the uncertainty in the probability distribution is naturally described 

by the Shannon entropy, t his classical measure can also be applied in quantum the­

ory. In an entangled system this entropy is related to a single observable. The
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general state of a quantum system, as we have already remarked, is described by its 

density matrix p. if A is an operator pertaining to the system described by p, then 

by the spectral decomposition theorem .4 = a¡Pi, where P, is the projection onto 

the state with the eigenvalue a,-. The probability of obtaining the eigenvalue a, is 

given by pj = Tr(pPj) = Tt(Pjp). The uncertainty in a given observable can now be 

expressed through the Shannon entropy. Let the observables A and Í3, pertaining 

to the subsystems U and V  respectively, have a discrete, non-degenerate spectrum, 

with corresponding probabilities p(a¡) and p(bj) of observables A being a, and B 

being bj. Let also the joint probability be p(a¡,bj). Then,

S'(/l) = -  h i/>(«,•) = - ' )P p (a t,bJ) \n Y ^ p (ai,bj) (3.12)
* »1 i

S { B )  =  -  Y j p ( h ) l n p ( bj )  =  ~ Y 1  b.i) l n  P ( a «> l)j )  ( 3 - • 3 )
j ij i

S(A, B) = — 5Z P(«*» *i) In/>(«», ) (3.14)
ij

where we have used the fact that YljP(ai,bj) = p(a¿) and YliP{ai,bj) = p(bj). 

We have seen that a signature of correlations is that the sum of the uncertainties 

in the individual subsystems is greater than the uncertainty in the total state. 

So, the Shannon mutual information is a good indicator of how much the two 

given observables are correlated. However, this quantity describes the correlations 

between single observables only. The quantity that is related to the correlations 

in the overall state as a whole is the von Neumann mutual information. Since it 

is assigned to the state as a whole, it is of little surprise that it involves in its 

expression the density matrix. First, however, we define the von Neumann entropy 

[31], which can be considered as the proper quantum analogue of the Shannon 

entropy [50, 51, 52].

D efinition. The von Neumann entropy of a quantum system described by a density 

matrix p is defined as

Sn (p) := —Tr(plnp) . (3.15)

(We will drop the subscript N whenever there is no possibility of confusion). The
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Shannon entropy is equal to the von Neumann entropy only when it describes the 

uncertainties in the values of the Schmidt observables. Otherwise,

S { A ) > S n (p) (3.16)

where A is any observable of a system described by p. This means that there is 

more uncertainty in a single observable than in the whole of the state, the fact 

which entirely contradicts our expectations.

We will now state without proof, a relation concerning the entropies of two 

subsystems. One part of it is somewhat analogous to its classical counterpart, but 

instead to referring to observables is related to the two states. This inequality is 

called the Araki-Lieb inequality [53] and is one of the most important results in the 

quantum theory of correlations. Let pA and ps  be the reduced density matrices of 

subsystems A and B respectively, and p be the matrix of a composite system, then:

Sn (pa) + Sn (pb ) > Sn (p ) > \Sn (pa) -  Sn {p b )\ • (3.17)

Physically, the left hand side implies that we have more information (less uncer­

tainty) in an entangled state than if the two states are treated separately. This 

arises naturally, since by treating the subsystems separately we have neglected the 

correlations (entanglement). We note that if the composite system is in a pure 

state, then S(p) — 0 , and from the right hand side it follows that S(p,\) — S(pu). 

To appreciate the extent to which this is a counter-intuitive result we consider the 

following example. Suppose a two level atom is interacting with a single mode of 

an EM field as in the Jaynes-Cummings model which will be described in detail in 

Chapter 6 . If the overall state is initially pure, and the whole system is isolated 

then the entropies of the atom and the field are equally uncertain at all the times. 

Out this is not expected since the atom has only two degrees of freedom and the 

field infinitely many [54]! This, however, is possible, as, by the second observation, 

the atom, as a two dimensional subsystem, is only entangled with two dimensions 

of the field.
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We now present without proofs several properties of entropy which will be used 

in the later sections [52]. These are:

1. additivity: Sn (pa <8> Pb ) = Sn (pa) +  Sn (pb )’, (3.18)

2. concavity: SN ^  A,/?,- j  Ç  A,SW(p.); (3.19)

3. strong subadditivity:SN(pABc) + Sn (pb ) < Sn (p a b ) + Sn {pbc) (3.20)

(where pb = TracPabc and similarly for the others). The first property is the same 

as in classical information theory, namely the entropies of independent systems add 

up. The concavity simply reflects the fact that “mixing increases uncertainty”. It 

is also worth mentioning that the consequence of the strong subadditivity is the so 

called weak subadditivity described by the Araki Lieb inequality introduced before.

Following the definition of the Shannon mutual information we introduce the 

von Neumann mutual information, which refers to the correlation between the whole 

subsystems rather than relating two observables only.

D efinition. The von Neumann mutual information between the two subsystems 

pu and pv of the joint state pay is defined as

In (pu '• pv\puv) = Sjy(pu) + Sn (p v ) — Sn (puv) • (3.21)

As in the case of the Shannon mutual information this quantity can be interpreted 

as a distance between two quantum states. For this we first need to define the von 

Neumann relative entropy, in a direct analogy with the Shannon relative entropy 

(in fact, this quantity was first considered by Umegaki in [55], but for consistency 

reasons we name it after von Neumann).

D efinition. The von Neumann relative entropy between the two systems a and p 

is defined as

SjvMlp) = Tnr(ln<r — Inp) . (3.22)

Now, the von Neumann mutual information can be understood as a distance of the 

state puv to the uncorrelated state pu ® p y ,

I n (pu  ■ P v ' ,P vv)  =  S n {p u v \\pu  ® p v )  ■ (3.23)
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The von Neumann relative entropy will be the most important quantity in classi­

fying and quantifying quantum correlations in Chapter 3. It will be seen that this 

quantity does not increase under local general measurements, which are quantum 

analogues of the stochastic processes considered in subsection 2.1. Therefore, a 

natural concept to consider now is that of the general measurement in quantum 

mechanics.

3.1.2.1 C om plete  M easurem ent

In this subsection we present two different ways of describing the dynamical evolu­

tion of a quantum system. First we can look at the joint unitary evolution of the 

system, S, and its environment, E. The environment can be a similar quantum 

system to the one we observe, or much larger: we leave this choice completely open 

in order to be as general as possible. Let the joint 'S+E'  state initially be disentan­

gled, 10) <?10)£■, after which we apply a unitary evolution Use on lS+ E '  resulting 

in the state

Us b W s W b ■ (3.2-1)

Since we are interested in the system’s evolution only, to obtain its final state, ps, 

we have to trace over the environment, i.e.

Ps = (3.25)

Another way to obtain the same result is to exclude the environment from the 

picture completely by defining operators of the ‘complete measurement’ [56, 57, 58] 

(sometimes also referred to as the Positive Operator Valued Measure, POVM)

'¿T A**A' — 11 (3.26)
t

which act on the system alone, and therefore to be equivalent to the above system’s 

evolution they must satisfy

Y lA 'W s W s A ' 1 = Ps •
l

(3.27)
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Let us now derive the necessary form of A’s using eq. (3.24). Let an orthonormal 

basis of E  be {I«/»)#}. Then,

A' = W E Us e W e ■ (3.28)

It can easily be checked that the above {AQ’s satisfy the completeness relations 

in eq. (3.26). Since the choice of basis for E is not unique, then neither is the 

choice of complete measurement operators. In fact, there is an infinite number 

of possibilities for the operators {/V}. Note that the dimension of the complete 

measurement, A, is in general different to the dimension of the observed system, 

and is in fact equal to the dimension of E. Although this infinity at first sight 

appears to be creating problems for concrete calculations, it is, in fact, unnecessary. 

This is a consequence of the fact that a set of complete measurements is a convex 

set. Namely, if <1>, are complete measurements, and 0 < A, < I are such that 

Yli A; = 1 , then Y ,  Ablq is also a complete measurement. This implies that we 

need no more than d2 terms in the sum, where d = dim Us- This is a general 

result for convex sets, and is known under the name of Caratheodory’s theorem 

[59]. We will prove this theorem in the following chapter, when this result will be 

of great importance in quantifying quantum correlations. Now, having developed a 

formalism for describing quantum stochastic evolution through measurements, we 

consider the problem of local increase of correlations in quantum mechanics.

3.1.2.2 Local In te rac tions C annot Increase C orrela tions

The central problem addressed now, and described in the classical case in the pre­

vious section, is summarised in the following theorem:

T heorem . Correlations, as measured by the von Neumann mutual information, do 

not increase during local complete measurements carried on two entangled quantum 

systems.

We present here two quite separate, but mathematically rigorous proofs of this
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theorem, the first using the notion of entropy, the second using the ideas of complete 

measurements and conditional entropy as a measure of relative information.

P roof 1 . This proof is due to Partovi [60], who proved it as a general result, rather 

than applying it to increasing correlations by local operations. We decide to drop the 

subscript N  for the von Neumann entropy since there is no possibility of confusion 

with the Shannon entropy. Consider three quantum systems .4, B, C, initially in the 

state described by a density matrix of the form: p,4nc(0 ) = Pah(0)/>c;(0), i.e. A and 

B are initially correlated and both are completely independent of C . We are now 

going to let B and C interact and evolve unitarily for time t, resulting in the state 

Pabc(0- The partial trace is defined in the usual fashion, e.g. Pa bU) — TrcpABc{t)i 

and similarly for all the other subsystems. Now we use the strong subadditivity [60] 

applied to A + B + C at time t to obtain

SABc(t) +  Sb (t ) < Sab{I) + Ssc(t)  • (3.29)

But S a b c { 1) — ¿m bc(O), as the whole system evolves unitarily. Also, =

Sa b (Q) + Sc(0), since at the beginning C is independent of A ,B .  A is only a 

spectator in the evolution of B and C, so that, as shown above, Sa (t ) =  5A(0), 

SBc(t) =  (S'bc(0). Finally, there are no correlations between B  and C at the begin­

ning, implying: .S’jgc(O) = Sb {0) + S c (0)• Invoking the definition in eq. (3.21) for 

the amount of correlations, and using the above properties and strong subadditivity 

in eq. (3.29), we arrive at the following

I{Pa • Pb ! Pa b ){1) < I(pA '• Pb ’,Pab )(0) • (3.30)

Adding another system D to interact with .4 locally would lead to the same con­

clusion, hence completing the proof □.

P roof 2. This proof is a quantum analogue of the well known classical result 

that can loosely be stated as ‘Stochastic processes cannot increase correlations’ and 

which was presented in the previous chapter. We will now describe the interactions 

of A + B with C and I) in terms of complete measurements performed on A + B. Let
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the state of A -f B be initially described by the density operator p, whose diagonal 

elements, pa, give the probabilities of being in various states, depending on the basis 

of the density matrix. Let this state undergo a complete measurement, described 

by operators A \  such that

^ A i jAJ = \[. (3.31)

The new diagonal elements are then:

nlm

Let us introduce a relative information measure to pa: to each value of pa we 

assign a nonnegative number «,?;• We now wish to compare the distance [29] between 

p and a before and after (p' and a') the complete measurement, A (this will in fact be 

done using the Shannon relative entropy given in Definition 2.). We note that this 

measure of correlations is more appropriate in the classical case than in the quantum 

case, since for the latter it is not invariant under local unitary transformations and 

can in addition be infinite. 'The distance after the measurement is:

E  i°g
i \nlm /

¿Lm/m ‘ Phn ^  m
Ylnlm A ];) 0 /?n A^m.

< Z f e  A " ,)
i \nlm )  aim J  ̂ mi

\7ilm

Pirn

dim
Pirn

dim= I Z Pirn ( 5̂2 Au A]mi)
Im \ in /

= X^'m<hml°g —
Im a,m

=
I dll

where for the inequality in the second line we have used one of the consequences 

of the concave property of the logarithmic function [29, 52], and in the fifth line

we used the completeness relation given in eq. (3.31), The locality of the complete 

measurement A is used in the fact that a' is disentangled if a is disentangled,
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which is a necessary requirement for the above measure to be meaningful. This 

implies that the distance between the density matrix distribution and the relative 

information measure decreases by making a complete measurement, if we now 

consider the particular case where a is taken to be a distribution generated by the 

direct product of the reduced density matrices (i.e. if we assume no correlations), 

then the result above implies that the full density matrix becomes ‘more like’ the 

uncorrelated density matrix. From this, the theorem immediately follows □.

The Shannon mutual information, although having the above desired property, 

does not distinguish between the quantum and classical correlations. In order to 

do this we will have to introduce the possibility of classical communication between 

A and B. This will allow classical correlations to increase while leaving quantum 

correlations intact, as will be seen in the following chapter. We have emphasised 

a number of times that the quantum correlations can be higher that their clas­

sical counter-part, and a manifestation of this fact is described next through the 

statement of Bell’s inequalities.

3.1.3 B ell’s Inequalities

Bell’s inequalities concern correlations between observables pertaining to two entan­

gled quantum subsystems. We first derive the Clauser-Horne-Shimony-Holt (CUSH) 

form of Bell’s inequality. Our derivation is based on the Locality Principle which 

we formulate following Redhead [61]:

Locality  P rincip le . A sharp value for an observable cannot be changed into an­

other sharp value by altering the setting of a remote piece of apparatus.

Consider an EPR pair of spin ~ particles distributed between two observers: Alice 

and Bob. Let Alice perform a measurement on her particle of the value of spin in 

two different directions specified by vectors a and a'. Let Bob perform the same 

kind of measurement on his particle, in directions given by b and b'. The Locality 

Principle will reflect itself in our calculations as the fact that the measurements
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of Bob will in no way affect the measurements of Alice, and vice versa. When 

expressed in units of h/2  the result of any of these measurem ents belongs to  the set 

{1, - 1}. Consider now an observable constructed in the following way:

7,1 := anK  + a J>'n +  a'nK  ~ o,'nb'n (3.34)

where subscript n refers to result of the n th  m easurem ent of the corresponding 

observable. By writing 7 in a different way

7n =  +  K )  +  a'n(^n ~  b'n) (3.35)

we observe th a t |7„| <  2. We now average 7 over N m easurem ents, and define 

correlation coefficients as:

N

c(a, b) := lim — £  anbn
N  -> o o  A '

and similarly for other three expressions. Given this we can now sta te  Bell’s in-

equality as:

lim —
N-400 N Z - r

71=1
=  |c(a, b) +  c(u, b') +  c(a', b) +  c(a\ b')\ < 2 .

We emphasise th a t the only assumption th a t went into the above derivation was 

the Locality Principle. There exists, however, a class of states of E P Il pairs tha t 

violate Bell’s inequality. This happens because quantum  mechanically the value of 

for instance, is generally not defined before the m easurem ent and depends on 

whether Bob measures b or //, i.e. it is somehow influenced by altering the setting 

of a remote piece of apparatus. Note th a t this, nevertheless, does not allow for 

superlum inal communications between Alice and Bob. This is related to the fact 

tha t w hatever Alice or Bob do locally, providing they do not communicate via a 

classical channel, will not affect the other party ’s reduced density m atrix . To prove 

this let us perform a complete measurem ent on A, defined by Jfi A**A* ® ILn =  11 

where the identity in the direct product signifies tha t the other subsystem  does not 

undergo any interaction. Let the overall state  of ‘ be described by p. Then
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after A lias undergone a complete measurement, JVs reduced density matrix is given

by:

p'B = I r.i W 0  llB P A¿t 0  UB j

= ^ T im{p .TM í 0 ilb } =  Tr ® Uej

=  Tr A{p} = PB.  (3.38)

The impossibility of superluminal communication puts severe constraints on pos­

sible non-linear modifications of Schrodinger’s equation to accommodate wave- 

function collapse in general (see e.g. [62]).

Following the Horodecki family [63] let us now analyse the situation from the 

quantum mechanical point of view. The quantum analogue of 7  is

B  =  ñu (g) (b + b ')(7 + a'rr ® (b — b')cr (3.39)

where hats signify unit vectors and it’s represent Pauli matrices. If á  =  (0 1 , 0 2 , 03) 

then a <7 = a |irt +  a2<r2 + 0303 is the operator representing the spin observable in 

the direction of a. We can immediately write Bell’s inequality as:

\(B)P\ < 2 (3.40)

where p is the density matrix describing the state of the EPR pair. The average of 

operator B is given by the well known formula

(B)p = Tv(pB).  (3.41)

We now introduce a necessary and sufficient condition for violating the inequality 

in eq. (3.40). Any two spin ~ particle state can be described by a density matrix 

of the form

1 3
p =  - ( 1L ® 11 + r<r <g> 11 + 1L ® so + /nmO„ ® crm) (3.42)

n,m~l

where 7 stands for the identity operator, er’s are Pauli matrices and r and s are vec­

tors in R3. Note that the above form already contains the normalisation condition
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tr(p) — 1 . Additional constraints on r,-, s, and tnm imposed by the non-negativity 

condition and by the fact that Tr(p2) < 1 have not been included in the above as 

they are not important for our present analysis. Let l'p be the real matrix whose 

elements are tnm = Tv(pan ® am). Define Up := Tp Tp, which, being a symmet­

ric matrix, can always be diagonalized. Denoting by u and u the two largest, by 

definition positive, eigenvalues of Up, we define

M(p) := a. + u . (3.43)

Horodecki’s theorem then reads:

T heorem . The necessary and su fficient condition for p to violate Bell's inequality 

is that M (p) > 1 .

The knowledge of the proof of this theorem is not necessary for further discussion 

and we refer the interested reader to the Horodecki’s original paper [63] for a detailed 

proof. It can now be seen that the product states pa 0  pa obey Bell’s inequalities, 

and non-product pure states violate them [64]. In fact, any mixture of product 

states E , PiPa ® P'b  likewise obeys Bell’s inequalities [65]. A question is whether all 

other states can be considered to be entangled? The answer is positive for two qubits 

and a qubit and a three level system, since from any state not of this (separable) 

form we can “distill” a subensemble of maximally entangled states (e.g. singlets) 

by using only local operations and classical communication [66](these procedures 

are referred to as purification procedures and will be described in greater detail 

below and are mathematically formalized in Chapter 4). However, some of these 

inseparable states satisfy Bell’s inequalities. This leads ns to conclude that violation 

of Bell’s inequalities is not a. sufficient condition for having an entangled state in 

general (i.e. for mixed states). We now present a simple example.

The idea to increase nonlocality by local interactions originates from Cisin’s 

analysis of Polarisation Dependent Losses (PDL) in optical fibres [67]. As its name 

indicates this effect reflects itself in the observation that the fibre absorption is 

dependent on the polarisation of the propagated light. Fibres of this kind have
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already been manufactured, and the PDL observed. Gisin proposes the following 

experiment. Suppose that Alice and Bob each have an optical fibre with PDL. 

Let Alice’s fibre attenuate only spin “up” photons (|l)) and Bob’s fibre only spin 

“down” photons (|0)). Let the initial state of the photon pair, before propagating 

through the fibres, be:

Pi(\ ,a)  = A P'xpaJ} +  — — (P^i, i + /JV’o,o) (3.44)

where P ’s denote projections onto onto the following states: if>atp =  (ct|0) J l ) ^  T 

m A\0)B), V’u  =  11)yi11 and 4>o,o = |0)^ 10)^, and ¡3 = y/1 -  a2. If we assume

that A > the condition that M (p) < 1 becomes

A < (3.45)
1 + a 2/? 2

and no violation of Bell’s inequality occurs. Let now the pair be distributed to Alice 

and Bob and be propagated through the fibres. According to Gisin the action of 

the fibres with PDL are described by two diagonal matrices:

where the fibres are manufactured in such a way that the loss is equal to in 

both fibres. When the photons have propagated through, the final state is given 

by:

P j( A, a ) + P00,0 )

where ip i ^  = ^ ( | 0)4 |1 )B + |l ) 4 |0)jg), and N = is the normalization

constant. Note that at this point Alice and Bob will have to communicate to 

each other about the presence or absence of their photons. They then subselect 

the ensemble in which both the photons are present. This is a crucial step, since 

without the communication and subselection the entire ensemble after the action 

of PDL fibres could not be more entangled. This (subselected) state now violates 

Bell’s inequality iff
1
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Consider now the following values for our parameters: A = 0.9, a/3 = 0.2. Then 

M ( p i )  =  0.77 <  1 and M ( p / )  — 1 .2 2  >  1. Thus the interaction of photons with their 

local environments apparently creates a nonlocal state out of a local one. This is, of 

course, incorrect and we have to conclude that the initial state was already entangled 

even though it satisfies Bell’s inequalities. Thus Bell’s inequalities are not entirely 

satisfactory for distinguishing between entangled and disentangled states. This 

idea of locally concentrating entanglement will be the basis of our quantification 

of entanglement in Chapter 4. Before considering this central problem, we review 

how entanglement affects quantum communications and how it makes quantum 

computation exponentially more efficient than classical computation. This will be 

a good illustration of the extent to which quantum correlations are fundamental in 

communications and computation and hence provide the main motivation behind 

this thesis.

3.2 Quantum Com m unication Theory

We do not intend an in-depth and rigorous presentation of this subject here, but 

will only focus on the role of entanglement in communications. The question of 

quantum channel capacities is an area not entirely understood at present, and to 

which this thesis can provide a valuable contribution. Open questions for further 

research will be presented in Chapters 4 and 7.

A quantum communication channel (QCC) consists of a number, N,  of quantum 

systems prepared in states p \, p2 ■ ■ - Pn - These states are then sent by Alice one after 

another with certain a priori probabilities, pi,p2, ■ • -Pn , t.o the receiver, Bob, who 

then performs measurement to “decipher” the correct sequence of states comprising 

a message. If the states suffer no error on the way to the receiver, then the channel 

is called noiseless; otherwise it is noisy. First we consider the notion of capacity of a 

noiseless QCC, since the generalization to a noisy channel is then straightforward.

Let S(p) = —Trpln p be the standard von Neumann entropy of a density matrix
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p. Then, we define the capacity of a QCC as

C : = m a xC( { p} , p )  (3.48)
{p}

where

C{{p},p) = SiJ^Pipi )  - Y ^ P i S ( p i )  , (3.49)
i i

is the so called Holevo bound. Note that the above can be expressed succinctly as

C{{p},p) =  , (3.50)
i

where S(  || ) is the von Neumann relative entropy and p = Yhi 'Pipi• When there 

is no possibility of confusion we write C({p},p)  = C{{p}).  To see the physical 

motivation behind this consider only two states pi and p2 sent by Alice to Bob 

according to probabilities p\ and p2 — 1 — p\ respectively. Bob now performs a 

set of POVMs Yli Ei = I in order to determine which state was sent to him. The 

accessible information to Bob is given by the mutual information between p\ and 

P2 [11, 57], defined as

l(pi  : p2) = max { ^  - T r (pEt) ln(Tr(p®))  + PiTr(Pl E%) ln(Tr(Pl Et))

+ p2Tv{p2Ei)\n{Tv

= max Ei ^2 , n \ , (Tr(piEi))>'{plEi)\n— - —
( HPoEi))

T t  n i  (Tr(p2^ ) ) )
+ 1>2 riPl ‘) ln I ' (3.52)

The Holevo bound is an upper bound of the above accessible information

SQ^PiPi) ~  E  P>S (P‘) > ] (Pi ■ Pi) , (3.53)
* *

where the equality is saturated if and only if [pi,pj\ = 0 for all i and j  [28]. There­

fore since the Jlolevo bound is an upper bound to information that Bob can gain 

about Alice’s signal we identify its maximum over all possible initial probabilities 

with the classical capacity of a quantum channel. Note that one of the most pro­

found implications of the Holevo bound is that a quantum bit cannot store more
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information than a classical bit. In spite of this limitation, quantum computing 

is more efficient than its classical analogue due to different natrure of information, 

which is reflected in the existence of entanglement between qubits.

We would like to emphasise the similarity of this expression to the capacity of 

a classical communication channel [10]. This exists because the Holevo bound is 

defined in direct analogy with the classical notion of mutual information, whose 

maximization leads to the notion of classical channel capacity as described before. 

This, as we might expect, will happen when all p,s are diagonal in the same basis, 

i.e. they commute. Let us call this representation the B representation, with 

orthonormal eigenvectors |b). Then the probability that the measurement of the 

symbol represented by p, will yield the value b is just (b\pi\b). This we call the 

conditional probability p,(6), that if p; was sent the result b was obtained. The 

conditional entropy is now given by

Sb {Px) =  Y P '  M b\pi\b) = Y PiPt • (3>54)
i b i

Now the classical capacity would be

C = S(p) -  SB(pi) = S(p) -  Y  PiPi > (3.55)
t

which is identical to the Holevo bound. In general, the usual rule of thumb for 

obtaining quantum information theoretic quantities from their classical counter­

parts is by the convention

E  - -> Trace (3.56)

Y p(u) In p(a) - -> Trpa In pA (3.57)

Y M
, P(a)
[nW )  ~

-> Tr{pA In pA -  Pa hi pB) , (3.58)

so that, for example, the Shannon mutual information l (A  : B) — S(p(a)) -\- 

S(p(b)) — S(p{a,b)) now becomes the von Neumann mutual information f(pA, pB; 

Pa,b ) — S(Pa ) + S(pn) — S(pa,b )- Next we prove a result which shows that without 

entanglement we cannot increase the classical capacity of a quantum channel. The
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author is not aware of any similar proof of this type, although the general result is 

well known in the literature [18].

3.2.1 D isentangled Channels are A dditive

First we show that if we have several quantum channels in parallel, through which 

we send a disentangled input state, the capacity will be equal to the sum of the 

capacities of the individual channels.

P roposition . Classical capacities of QCC with disentangled inputs are additive. 

Proof. We show this in the case of two QCC; the general result follows immediately. 

Let the input to the two QCC be in the most general disentangled state

Pl+2 = Y,Pijp]®P ] (3-59)
ij

where YliPij — Pj and YLjPij — Pi- From the Araki-Lieb inequality it follows that,

s (5 2 p n P i® p 2i) -  s Œ , pI) + 5 ( E ^ i )  • (3-6°)
ij i j

Thus,

C{{pij}) := S(J2pijp} 0  pf) -  £ p i j S ( p j  0  pj) (3.61)
ij ij

< s ( E f t h  + s ( E d > - £ » * ( * * ) (3-62)
I j i j

■= C Y M l  +  C y fo } )  ■ (3.63)

Taking the maximum of both of the sides of the above inequality we obtain

C i+2 55 Cj T Co . (3.64)

However we know that the equality can be reached for p,j — piPj which proves 

the above proposition □. This result is related to the result of classical informa­

tion theory where two classical channels have capacity always less than the sum of 

individual capacity if there inputs are correlated. If we wish to achieve the maxi­

mum capcity of the two channels their inputs should be uncorrelated, a physically 

intuitive property [68].
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3.2.2 Entangled Channels are Superadditive

In contrast with the above result is the fact that if the inputs to parallel channels 

are entangled, then the total capacity can be greater than the sum of the individual 

capacities -  a property known as the superadditivity of classical capacities of QCC. 

There is no rigorous general proof of this fact, but there are a number of particular 

examples corroborating this result [69, 70]. We will explain the role of entanglement 

through the following discussion involving two channels. It is well known that the 

von Neumann relative entropy is superadditive (as opposed to the von Neumann 

entropy which is subadditive). Namely, we have that

5(a;1+2||01® ^ ) > 5 ( u ; 1||0 1) + 5(a,2| |^ )  , (3.65)

where ui1 = Tr2u;1+2 and uj2 = Trjic1+2. So, imagine that states •}•)(., and 

are used as the respective inputs to the two QCC’s such that

E pM = </>’ (3.66)

EPirf - <t>1 , (3.67)

and in addition

E piu\2 = (j>1 ® 4? . (3.68)
i

These three conditions will be needed so that the corresponding von Neumann 

relative entropies do represent channel capacities. Then it follows from eq. (3.65) 

that

X > .S (W +21|$ ® (tf) > E p^ M )  + E pjS (u] ll^j) • (3.69)

Now using the von Neumann relative entropy representation of the channel’s ca­

pacity in eq. (3.50) and taking the maximum of both sides in the above, we derive

C 1+2 > C x + C 2 , (3.70)

which would imply that entanglement can increase classical capacity of a QCC. The 

problem with the last step is that it is not clear that, in the process of maximizing,
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all three conditions in eq. (3.67) and eq. (3.68) can be maintained. Thus, the above 

line of thought, although not being a general proof, does offer a heuristic argument 

supporting the claim that entanglement can increase classical capacity of a QCC. 

An open question is whether we can use this difference C 1+2 — (Cj + C 2) to quantify 

the purely quantum capacity of a QCC. To that end let us explain what the quantum 

capacity of a QCC would be. This second, and different scenario of communication, 

is if Alice wishes to transmit a given (to her unknown) state of a quantum system 

to Hob as accurately as possible through a noisy QCC [71]. This general problem 

is closely related to the notion of entanglement and can be understood as follows. 

Suppose that Alice prepares an entangled state a|00) + ¡3¡11). She now sends one 

of the particle to Bob through a noisy channel described by a decoherent (POVM) 

measurement, (I>, such that

«100) + m )  — > «|0)<h(|0» + 0|1>*(|1>) , (3.71)

where the positive map ‘h describes the action of the QCC. Once they have estab­

lished some entanglement between them /Mice can use the standard teleportation 

protocol [72] to send her state to Bob. Teleportation is a protocol between Alice 

and Bob who share an entangled pair. Then Alice receives qubit in an unknown 

state and performs a measurement on her two qubits, the outcome of which she then 

communicates to Bob. Bob then performs an appropriate measurement on his qubit 

which, as a result, is in the state of Alice’s original unknown qubit. The entangled 

pair they originally shared is destroyed at the end of the protocol. Since the effi­

ciency of teleportation is directly dependent on the amount of entanglement shared 

between Alice and Bob, we first need to understand how to quantify entanglement 

in order to study this case. We turn to this problem in Chapter 4, but before that 

we review some basic, concepts of quantum computation, where entanglement also 

plays a central role.
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3.3 Quantum Com putation

A quantum computer is a physical system that can accept input states which rep­

resent a coherent superposition, i.e. an entangled state, of many different possible 

basis states and subsequently evolve them into a corresponding superposition of 

outputs. Computation, i.e. a sequence of unitary transformations, affects simul­

taneously each element of the superposition, generating a massive parallel data 

processing albeit within one piece of quantum hardware [14]. This way quantum 

computers can efficiently solve some problems which are believed to be intractable 

on any classical computer [16, 17]. Therefore the advantage of a quantum computer 

lies in the exploitation of the phenomenon of entanglement. The great importance 

of the quantum theory of computation is in the fact that it reveals the fundamental 

connections between the laws of physics and the nature of computation and mathe­

matics [73]. However, practical realization of a quantum computer is limited by the 

problem of decoherence, i.e. by the fact that the computer interacts with its envi­

ronment and hence undergoes errors. Here, methods of quantum error correction 

are also useful and this area has been extensively studied recently. We will develop 

this subject in Chapter 5 and then apply it to studying entanglement in Chapter 6.

3.3.1 Quantum  G ates

For the purpose of this thesis a quantum computer will be viewed as a quantum 

network (or a family of quantum networks) composed of quantum logic gates; each 

gate performing an elementary unitary operation on one, two or more two-state 

quantum systems called qubits [15]. Each qubit represents an elementary unit of 

information; it has a chosen “computational" basis {|0), 11)} corresponding to the 

classical bit values 0 and 1. Boolean operations which map sequences of 0’s and Cs 

into another sequences of O’s and l ’s are defined with respect to this computational 

basis.

Any unitary operation is reversible and that is why quantum networks effecting
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a b a 1)'

0 0 0 0

0 1 0 1

1 0 1 1

1 1 l 0

a a
0
1

i
0

¡io
a b c a l>'

0 0 0 0 0 0

0 0 1 0 0 I

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 l

1 1 l 1 1 0

Figure 3.1: Truth tables and graphical representations of the elementary quantum 

gates used for the construction of more complicated quantum networks. The control 

qubits are graphically represented by a dot, the target qubits by a cross, i) NOT 

operation, ii) Control- NOT. This gate can be seen as a bitwise “copy operation” in 

the sense that a target qubit (b) initially in the state 0 will be after the action of the 

gate in the same state as the control qubit, iii) TOFFOLI gate. This gate can also 

be seen as a Control-control NOT: the target bit (c) undergoes a NOT operation

only when the two controls (a and b) are in state t.

elementary arithmetic operations such as addition, multiplication and exponentia­

tion cannot be directly derived from their classical Boolean counterparts (classical 

logic gates such as AND or OR are clearly irreversible: reading 1 at the output of the 

OR gate does not provide enough information to determine the input which could be 

either (0,1) or (1,0) or (1,1)). Quantum arithmetic must be built from reversible 

logical components. It has been shown that reversible networks (a prerequisite for 

quantum computation) require some additional memory for storing intermediate 

results [74, 75]. Hence the art of building quantum networks is often reduced to 

minimising this auxiliary memory or to optimising the trade-off between the aux­

iliary memory and a number of computational steps required to complete a given 

operation in a reversible way (see [76] for some optimization techniques). Figure 

3.1 presents three basic reversible gates used in quantum computing: NOT gate, 

Controlled NOT gate and TOFFOLI gate. Controlled NOT gate (CNOT, for short) 

is a two qubit gate, where the value of the first qubit (called control) determines
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what will happen to the second qubit (called target) qubit. Namely if the control 

qubit is 1, we apply the NO T gate to the target qubit and otherwise nothing hap­

pens to it (hence the name Controlled NOT). TOFFOLI gate can be understood 

as Controlled-Controlled NOT. An extremely useful result is that any quantum 

computation can be done in terms of a CNOT gate and a single qubit gate [77, 78] 

(which varies), although, of course, it might sometimes be more convenient to use 

other gates as well [79]. These basic gates will be directly used in Chapter 5 and 

Chapter 6, where we will also present their cavity QED implementation. Another 

important one qubit gate is the so called Hadamard transformation whose action is 

the following (the normalization is omitted)

|0> — > |0) + |1> (3.72)

|1) — > |0 ) - |1 ) .  (3.73)

This transformation will also be used frequently in the later chapters.

An interesting and important question is how to create an entangled EPR. state 

starting form just a disentangled, say, |01) state. The required quantum computa­

tion is very simple: first we apply a Hadamard transformation to the first qubit, 

and then a Controlled Not between the first qubit and the second qubit, where the 

second qubit is the target. These two steps can be written as

|01> — > (|0) + |1))|1) — » ¡01) + |10) . (3.7-1)

We see that after the action of the Hadamard transformation the qubits are still 

disentangled. This is because this transformation acts on only one of the qubits, 

i.e. is applied locally and not globally, and therefore cannot create global features 

such as entanglement. This principle that local operations cannot create non-local 

features is the central theme of this thesis.

This computational way of representing unitary evolution of quantum systems 

will be very helpful in describing quantum error correction and its use in preserving 

entanglement in Chapters 5 and (>. Next we briefly review the biggest breakthrough
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in quantum computing, Shoe’s quantum algorithm for factorization of natural num­

bers.

3.3.2 Slior’s Algorithm

The algorithm for factorization dates back to the Ancient Greeks (the book by 

Knuth in [80] is a bible for algorithms, containing a number of important classical 

computational problems). It was probably known to Euclid, and it can be described 

simply as follows. We wish to find the prime factors of N. This amounts to finding 

the smallest r such that ar =  l(mod/V), where a is chosen to be coprime to N, i.e. 

so that a and N  have no common divisors apart from 1. In other words, we want 

to determine the period of the function ar (modA). Let us see how this works for, 

say, N  -  15.

• We choose a=2. Then obviously gcd(2,15) =  1.

• Next we compute 2°, 21, . . .  2' modulo 15, and this gives 1,2,4,8, 1,2,4,8, —

• This sequence is periodic with the period r = 4, which also satisfies 24 =  

l(modl5).

• Once r is obtained we find the factors of N by computing gcd(«'/2 ±  1,15), 

which in our case is gcd(4 ±  1,15) = 3,5.

Hence we have factorised 15 into 3 x 5. Now this algorithm (or some of its close 

variants) can be implemented on a classical or on a quantum computer. To be 

able to compare their efficiency we need to know that there are two basic classes of 

problems:

1. easy problems: the time of computation T  is a polynomial function of the 

size of the input /, i.e. T  = cnln -f ... -f- c\l + c<), where the coefficients c are 

determined by the problem.
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2. hard problems: the time of computation is an exponential function of the size

The size of the input is always measured in bits (qubits). For example, if we are to 

factorize 15 then we need 4 bits to store this number. In general, to store a number 

N  we need about / =  log N, where the base of the logarithm is 2. (this is easy to 

see: just ask yourself how many different numbers can be written with l bits). The 

easy problems are considered as computationally efficient, or tractable, whereas the 

hard problems are computationally inefficient, or intractable. Now the upshot of 

this discussion is that, for a given N, there is no known efficient classical algorithm 

to factorise it. Let us illustrate how the simplest factorization algorithm performs: 

suppose that we want to determine the factors of /V by dividing it by 2, then 3 then 

4 and so on up to y/N. So the time of computation (which is in fact the number 

of elementary steps) is proportional to the number of divisions we have to perform, 

and this is y/N  = 2^2, i.e. it is exponential. However, using a quantum computer 

and the above-described Euclid’s approach to factorization, we can factor any N  

efficiently in polynomial time involving a linear number of qubits. This is essence 

of Shor’s algorithm.

There are two distinct stages in this algorithm [17] (for an extensive review of 

this algorithm see [81]). Initially, we have two registers (plus several other registers 

containing garbage, but these are irrelevant for explaining the basic principle of 

quantum factorization) at the input to the quantum computer. First, we prepare 

the first register in a superposition of consecutive natural numbers, while leaving 

the second register in 0 state to obtain (as usual we omit the normalization)

where M  =  2m is some sufficiently large number. Now in the second register we

of the input (e.g. T = 2cl, where c is problem dependent).

M-1
>P) =  £  |n)|0) (3.75)

compute the function a'modlV. This can be achieved unitarily and the result is
A / - 1

I'Pi) =  X] |»)|anmod/V) .
71=1
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Here again we see the famous quantum parallelism in action. This completes the 

first stage of the algorithm and the trick now is to extract the period r from the 

first register. To help us visualise this let us think of our previous example when 

N  = 15 and a =  2. Then we would have

I'J'i) = |0)|2°modl5) + |l)|2 'm odl5) + |2)|22modl5) + |3)|23modl5) +

+  |4)|24modl5) + |5)|25m odl5).“.. + |2A/-1modl5) (3.77)

— 10)11) + 11)12) + |2)|4) + |3)|8) + |4)11) + . . .  + |2a? 'm odl5) . (3.78)

Let us recall that we do not need to extract all the values of 2 'modi5, but just the 

period of this function. This now sounds very much like Deutsch’s problem, where 

only the knowledge of a property of /  was important and not both its values. The 

solution is likewise similar, but is however much more computationally involved. 

Suppose that we now perform a measurement on the second register to determine 

its state. Suppose further that we obtain 4 as the result. The remaining state will 

be

IM  = (|2) + |6) -f |10) + .. .)|4) (3.79)

so that the first register contains numbers repeating periodically with the period 4. 

This is now what we have to extract by manipulating the first register. To see how 

this works suppose for simplicity that r divides M exactly. For general a and N  

this state is

l*»> =  S >  +  W  (3.80)
j-0

where A = M /r  — 1 and the second register is obviously irrelevant. Extracting r 

involves performing a Fast Fourier Transform on the first register, so that the final 

state becomes
r — 1

I'M  = exp(27nI j / r)\jM /r)  (3.81)
3 = 0

We can now perform a measurement in the ij — jM /r  basis where j  is an integer. 

Therefore, once we obtain a particular y we have to solve the following equation 

y /M  — j / r  where y and M are known. Assuming that j  and 7' have no common
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factors (apart from 1) we can determiner by cancelling y/M  down to an irreducible 

fraction. Once r is obtained we can easily infer the factors of N .

In general, of course, Shor’s algorithm is probabilistic. This means that r, and 

hence the factors of N  that we obtain by running the above quantum computation, 

might sometimes not be the right answer. However, whether the answer is right 

or wrong can be easily checked by multiplying the factors to get N. Since mul­

tiplication is an easy computation this can be performed efficiently on a classical 

computer. If the result is not N, we then repeat the whole Shor’s algorithm all 

over again, and we keep doing this until we get the right answer. Shor showed that 

even with this random element his algorithm is still efficient. In fact, the most time 

consuming part is the first one, where we have to obtain the state in eq. (3.76). 

Modular exponentiation takes of the order of (log N ):i elementary gates and this 

dominates the whole algorithm [76]. We should say that the memory space, i.e. 

the number of qubits needed for the entire computation, is of the order of log /V. 

For completeness we state that all the above networks for addition, multiplication 

and exponentiation can be improved using standard computational techniques (see 

e.g. [82]), however, this improvement is not substantial and does not change the 

fundamental conclusion about the efficiency of quantum factorization.

3.3.3 Practical Realisations o f Q uantum  Com puters

In the previous subsections we have seen that quantum computation is a fundamen­

tally new concept that promises the solution of problems which are intractable on 

classical computers. We will now address the question of how to implement such 

a quantum computer in practice. An important question is whether a quantum 

computer requires fundamentally new experimental techniques for its realization or 

whether already known techniques would be sufficient. In fact, some of the early 

proposals had the disadvantage of using somewhat “futuristic” experimental tech­

niques. Then, however, a very beautiful model for an ion-trap quantum computer
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was proposed by Cirac and Zoller [83] which employed only experimental methods 

which were already realized or which were expected to be realizable in the near 

future. Subsequently, other realistic suggestions, such as quantum computation 

based on nuclear magnetic resonance methods, have been proposed [84, 85, 86, 87]. 

Although these new proposals are very interesting, we confine ourselves here to the 

description of the linear ion trap implementation of Cirac and Zoller which exhibits 

all the important features of any quantum computer. The experimental situation 

is given in Fig. 3.2. The basic element is a linear ion trap: electrodes generate a 

time dependent electric quadrupole field which generates an effective (time inde­

pendent) potential which has a minimum along the axis of the trap where the ions 

are trapped. The equilibrium between the trapping force of the effective potential 

and the mutual electrostatic repulsion of the ions is achieved when the ions form a 

string where adjacent ions are separated by a few wavelengths of light. Therefore, 

they can be addressed individually by a laser. The idea of a linear ion trap is ba­

sically equivalent to that of a Paul trap [88] which is being used to trap single ions 

for very long times. Linear ion traps are already working and it is possible to trap 

strings of 30 ions or more in them [89].

The practical problem with this proposal is the mechanical degree of freedom 

of the ions. Although the ions are trapped along the axis of the linear ion trap 

they are not at rest, but oscillate around their equilibrium position. After having 

trapped the ions, the next step is then to cool them using methods of laser cooling 

[90, 91]. While it is fairly standard today to cool ions to temperatures of the order 

of milli Kelvin, it is very difficult to cool them to the necessary ground state of 

motion, i.e. to a state in which only the unavoidable motion due to the quantum 

mechanical uncertainty principle is present. While a single ion has been cooled to 

its ground state of motion [92], no laboratory in the world has yet cooled a string 

of only two ions to the ground state of motion.

To see why we need to cool the ions, remember that we want to implement 

quantum gates between different qubits. In the ion trap, these qubits are localized
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Figure 3.2: Schematic picture of a linear ion trap computer. Electrodes generate 

a time dependent electric field which generates an effective potential such that a 

string of ions (the blue dots in the middle of the trap) is trapped. The motion of the 

ions, and in particular the centre of mass mode, has to be cooled to its ground state. 

The centre of mass mode then acts as a bus that allows us to generate interactions 

between any two ions.

t o■y
and we cannot really move them from one place another. If we want to implement 

a quantum gate between two ions that are separated, e.g. one at the beginning of 

the string and one at the end, then we need some ’medium’ that can be used for 

communication between these ions. Note that this communication is not classical 

but has to be quantum mechanical in nature as we want to establish quantum 

mechanical coherence between different ions. This communication is achieved by 

using the centre-of-mass mode of the ions. II' we excite the centre-of-mass mode 

of the ions then all of the ions will oscillate and therefore all of them will feel this 

oscillation in the same way. Therefore even distant ions will be connected. This 

behaviour is illustrated in Fig. 3.3.

This idea of using the centre-of-mass mode as a ‘bus’ is the key ingredient in 

the ion trap quantum computer. It allows the implementation of two-bit gates such 

as a CNOT gate, for example. In the following we will briefly explain how one can 

implement a CNOT gate in a linear ion trap computer. More complicated gates 

can be constructed, but a CNOT gate together with one bit rotations is sufficient
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a) Center-of-mass mode

m- - #

■ up .■*"■■■ ^ time

b) Higher mode
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#

Figure 3.3: In part a) the centre-of-mass mode is illustrated. All the ions oscillate 

with the same phase. In part b) a mode of higher frequency is given. Here the ions 

have different phases and their relative distances change.
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to implement any unitary operation between any number of quantum bits [77, 78]. 

Obviously single ion gates are simple as they are implemented by manipulating a 

single ion with a suitably made laser pulse. In a CNOT gate it is essential that 

the two qubits interact and this is achieved by exciting the centre of mass mode 

of all the ions in the trap. Therefore, before we describe how to implement a full 

quantum gate we first explain how we can excite the centre of mass mode of the 

ions. Let us first have a look at the energy levels of a single qubit and the centre 

of mass mode. The situation is depicted in Fig. 3.4. The vertical axis represents 

the energy of the joint system ion+centre-of-mass mode. On the far left there are 

no phonons excited and the lower state of the qubit is at energy zero, the upper 

state has energy Hu where u  is the transition frequency between the qubit levels. 

Then there are two more energy levels to the right. These represent the energies 

of the qubit when there is one excitation of the centre-of-mass mode around. The 

energy required to excite the centre-of-mass mode is hu and this is usually a very 

small energy compared to the energy required to excite the qubit, u is of the order 

of MHz as compared to the transition frequency in a qubit which is of the order 

of 10i5IIz. In the diagram the energy levels are rising to the right indicating that 

the degree of excitation of the centre-of-mass mode is increasing. Before we give 

the relevant Hamiltonian, let us take a qualitative look at the system. Imagine 

that a laser drives the qubit. If the laser has a frequency u> (shown by a vertical 

arrow in Fig. 3.4), then the laser will be more likely to induce transitions between 

the lower and upper state of the qubit without affecting the centre of mass mode. 

This is simply because all other transitions are out of resonance. If, however, the 

frequency of the laser is u> — u (shown by the other arrow in Fig 3.4), then it 

generates transitions between the upper state of the ion and the vibrational state 

with n excitations in the centre-of-mass mode and the ground state of the ion and 

n -f 1 excitations in the centre-of-mass mode. If the ion is in the ground state 

and the centre-of-mass mode is not excited then nothing at all happens. Therefore 

we can see two things. Firstly, a red detuned laser can change simultaneously the
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electronic state of the qubit and the state of the centre of mass mode. Secondly the 

dynamics is conditional on the state of the qubit. If the ion is in the ground state 

then there is no dynamics, while there are Rabi oscillations if the system is excited. 

One can easily see that this would not be possible if the ions were not cooled to the 

ground state of the motion. If with high probability there is at least one phonon in 

the centre-of-mass mode then the red detuned laser would always affect ions that 

are in the ground state. This qualitative discussion neglects the importance of the 

position of the ion in the standing laser field. This is a very important factor as it 

can be shown that an ion localized at the anti-node of the standing wave will, in 

leading order, interact with the laser without changing the excitation of the centre- 

of-mass mode. If, on the other hand, the ion is localized at the node of the standing 

wave then in leading order both the internal degrees of freedom of the ion as well 

as the excitation of the centre-of-mass mode are changed. Qualitatively this can 

be understood in the following way. If the ion is at the anti node of the field then 

it does not see any photons. Therefore in order to interact with the field it has to 

change position and therefore it either has to absorb or emit a photon. Hence a 

change in its internal degree of freedom always requires a change in the motional 

degree of freedom of the ion. If the ion is sitting at the node of the field then it is 

not necessary for it to move in order to see photons. This qualitative reasoning can 

be corroborated by a precise derivation of the interaction Hamiltonian between ion, 

laser and centre-of-mass mode. However, we refer the reader to the literature [Oil].

If the ion is localized at the node of the standing wave light field and if we use 

a a red detuned laser then in leading order the Hamiltonian is given by

U =
ij Ü

|l) (0 |a e ^ +  |0)(l|a te~,V (3.82)s/N  2 b

where N  is the number of ions that are in the linear ion trap, 0  is the Rabi frequency 

of the laser, rj =  [2n/X)\Jli/2Mr is the Lamb-Dicke parameter which describes 

how well the ions are localized and a', a are creation and annihilation operator for 

excitations in the centre-of-mass mode. The phase of the lasers detuned to the
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Figure 3.4: The vertical axis gives the energy while the horizontal axis gives the 

degree of excitation of the centre-of-mass mode. In \xy) the first number x denotes 

the internal degree of freedom of the ion, while the second number y denotes the 

degree of excitation of the centre of mass mode.

red side of electronic transition is cf). This Hamiltonian is an approximation and 

represents only the first term in an expansion of the true Hamiltonian in terms of 

q [94]. In addition, it does not describe the interaction with other modes than the 

centre-of-mass mode and off-resonant terms which can usually be neglected [95]. 

These are good approximations as q is much smaller than unity and because other 

modes of oscillation have different resonance frequencies and are therefore out of 

resonance with the laser. This interaction is known as the Jaynes-Cummings model 

[96] and will be described in a greater detail in Chapter 6 (the first derivation of 

the Jaynes-Cummings interaction in a quantized trap is in [97]). An advantage 

is that the same Hamiltonian is used in cavity QED to describe the interaction of 

cavity field with atoms. This means that when we implement a certain quantum 

computation using cavities and atoms to encode information, then exactly the same 

computation can be performed in a linear ion-trap.

If the ion is localized at the anti node of the standing wave of frequency ui then 

the Hamiltonian is given by

//
n

11)<01e*̂  + |0)(J \e~'^ (3.83)
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The motional degree of freedom of the ions remains (in leading order) unchanged 

during the interaction with the laser. Again there will be higher order corrections 

in 7/ and off-resonant terms that can usually be neglected.

Now let us see how we can implement a CNOT gate [83]. For simplicity we 

assume that we have only two ions in the linear ion trap, as the whole procedure 

generalizes easily to more ions in the trap. We split the procedure into two parts, 

as it then becomes more transparent. First we show how one can implement a 

controlled phase gate, i.e. a gate that changes the phase of the upper state of the 

target bit only if the control bit is in the upper state.

Initially the centre-of-mass mode is in the ground state. Now we apply a laser 

pulse on the control bit which is described by the Hamiltonian eq. (3.82). The 

duration of the laser pulse is t = tt /  (ih) /  \/2) so that it produces a 7r-pulse. Note 

that the action of the laser depends on the state of the control ion. If the control 

bit is in the ground state then nothing happens, but if it is in the upper state then 

it goes to the ground state and simultaneously the centre-of-mass mode is excited. 

The effect is

|00)|0) —> |00)|0) (3.84)

|01)|0) -> |01)|0)

|10)|0) -> - i |0 0 ) |l)

|n>|0> -> —i|01 )|1) .

The first number describes the state of the control qubit, the second the target 

qubit and the third one describes the state of the centre-of-mass mode which was 

initially in the ground state. Now we manipulate the target qubit. In this step we 

make use of the fact that we have more atomic levels available. We now couple the 

lower level of the qubit to a third level again using a Hamiltonian of the form eq. 

(3.82). We apply the laser for a time t =  2n /  (Sir) /  \/2) so that we effectively perform 

a full 2tt rotation and the system ends up in the same state as it started, with one 

exception: The ground state of the target bit flips its phase if the centre-of-mass
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mode is excited. Therefore we obtain

|00)|0> -» |00)|0> (3.85)

|01)|0) -> |01)|0)

-¡100)11} -> (¡00)11)

-* io i) |i)  -*• - ¡ io i) |i )  .

In the next step we apply again a pulse of duration t — 7r/(ib;/\/2) to the control 

bit using Hamiltonian eq. (3.82). This results in the total transformation

|00)|0) —> |00)|0) (3.86)

|01)|0) -► |01)|0)

|10>|0) -> |10)|0)

|11)|0) -> —|11>|0) •

Therefore we have implemented a controlled phase gate. Now let us see why this 

transformation is really a basic building block for a CNOT gate. Consider the 

different set of basis states

|±) =  ( |0 )± |l» /% /2  , (3.87)

and let us look at the controlled phase transformation again, but now in the new 

basis. We find

|0+>|0> -> |0+)|0) (3.88)

|Q—)|o) -A Io ) Io)

|1+)|0) -» 11—) |o)

|1 -)|0 ) |1+)|0) ,

and this is a version of a CNOT gate. All we need to do is to rotate the {|0), 11)} 

basis of the target bit into the {)+), |—)} basis, then perform the controlled phase 

gate, and finally we rotate the basis back. This then gives us a CNOT gate in
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the {|0), 11)} basis. The rotation between the basis sets can be achieved using the 

Hamiltonian eq. (3.83), i.e. with a standing wave that has the target ion at its 

anti-node. We chose the phase of the laser to be (f> = —tt/ 2 and we perform a 

7t/ 2 pulse, i.e. a pulse with the length t =  7r/(2H) for the transformation from 

the 10/1) basis to the |±) basis. Going back from the |±) basis to the |0/1) basis 

is then done by a — tt/2 = 3n/2 pulse. Therefore we are now able to generate a 

CNOT gate as well as single qubit gates and this is all we need to implement any 

unitary transformation between qubits. It should be said that a single CNOT gate 

has been demonstrated using a single ion in a trap by Monroe et al [98], albeit by 

a somewhat different scheme to the one we described above.

However, we have made a number of simplifying assumptions, some of which 

we have already mentioned. The Hamilton operators Eqs. (3.82,3.83) are only the 

leading order terms in an expansion with respect to the Lamb-Dicke parameter. In 

addition we have only taken int o account the centre-of-mass mode although there are 

many other modes that might also get excited. This is a reasonable approximation 

because t hese modes have different frequencies and are therefore detuned from the 

laser so that their coupling is weak. We also neglected any spontaneous emission 

from the ions and losses of excitations of the centre-of mass mode. In addition to 

these more fundamental problems, we also have to face technical sources of errors 

which are, at the moment, the dominant source of error in experiments. We will 

see how to combat general errors in Chapter 5, and also how to protect against 

spontaneous emission of ions in an ion trap computer. Before that we turn to the 

main part of this thesis, analysis of the measures of quantum entanglement. The 

next chapter can be understood without any knowledge of quantum computation.
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E ntang lem ent M easures and 

P11rilication P ro ro d u re s

4.1 Introduction

In this chapter the problem of entanglement quantification is analysed. In the pre­

vious chapter we have seen that there is a number of good measures of entanglement 

for two entangled subsystems in a joint pure state (see also [99] for an extensive 

presentation). This is a consequence of the Schmidt decomposition procedure in­

troduced earlier. However, for the mixed stales of two subsystems, or for more than 

two subsystems this procedure does not exist in general. Therefore it is not imme­

diately clear how to understand or quantify correlations for these states. Initially, 

it was thought that Bell’s inequalities would provide a good criterion for separating 

quantum correlations (entanglement) from classical correlations in a given quantum 

state. However, we saw that, while it is true that a violation of Bell’s inequalities is 

a signature of quantum correlations (non locality), not all entangled states violate 

Bell’s inequalities although some of them can be purified to singlets by a procedure 

due to Gisin [67]. So, it is clear that in order to completely separate quantum from 

classical correlations we need a new criterion. This is closely related to the question

71
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of the amount of entanglement contained in a given quantum state. In an important 

paper Bennett et al [100] have recently proposed three measures of entanglement 

(we will discuss these in more detail later in this chapter). Their measures are based 

on concrete physical ideas and are intuitively easy to understand. They investigated 

many properties of these measures and calculated one of them, the entanglement of 

formation, for a number of states. More recently, Hill and Wootters [101] have con­

jectured a closed form for the entanglement of formation for two spin 1/2 particles 

and Wootters has recently proven this to be the correct form [102].

We adopt an entirely different approach to Bennett et al and show how to 

construct a whole class of measures of entanglement [103, 104], and in addition 

impose conditions that any candidate for such a measure has to satisfy [103, 104]. 

In short, we consider the disentangled states which form a convex subset of the set 

of all quantum states. Entanglement is then defined as a distance (not necessarily 

in the mathematical sense) from a given state to this subset of disentangled states 

(see Fig. 4.1). An attractive feature of our measure is that it is independent of the 

number of systems and their dimensionality, and is therefore completely general, 

[103, 104, 105]. We present here two candidates for measuring distances on our 

set of states and prove that they satisfy generalized conditions for a measure of 

entanglement.

It should be noted that, in much the same way, we can calculate the amount 

of classical correlations in a state. One would then define another subset, namely 

that of all product states which do not contain any classical correlations. Given 

a disentangled state one would then look for the closest uncorrelated state. The 

distance could be interpreted as a measure of classical correlations. The physical 

consequences of this definition of classical correlations is still under investigation. 

In addition to many analytical results we also explain how to calculate efficiently 

using numerical methods our measure of entanglement of two spin 1 /2 particles. 

We present a number of examples and prove several important properties of our 

measure which have important physical consequences. To illuminate the physical
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meaning behind the above ideas we present a statistical view of our entanglement 

measure in the case of the von Neumann relative entropy [105]. We then relate our 

measure to a purification procedure and use it to define a reversible purification. 

This reversible purification is then linked to the notion of entanglement through 

the idea of distinguishing two classes of quantum states. We also argue that the 

measures of entanglement that we propose give an upper bound for the number 

of singlet states that can be distilled from a given state. We find that in general 

the distillable entanglement is smaller than the entanglement of formation. This 

result was independently proven for Bell diagonal states using completely different 

methods [106].

The rest of the chapter is organized as follows. Section 4.2 introduces the basis 

of purification procedures, conditions for a measure of entanglement and our sugges­

tion for a measure of entanglement. We also prove that the von Neumann relative 

entropy and the modified Bures metric (to be defined later) satisfy the imposed 

conditions and can therefore be used as generators of measures of entanglement. 

We compute our measure explicitly for some simple examples. In section 4.3 we 

introduce a simple numerical method to compute our measure of entanglement nu­

merically and we apply it to the case of two spin 1/2 systems. We present a number 

of examples of entanglement computations using the von Neumann relative entropy. 

In section 4.4 we present a statistical basis for the von Neumann relative entropy as 

a measure of distinguishability between quantum states and hence of amount of en­

tanglement. Based on this, in section 4.5 we derive an upper bound to the efficiency 

(number of maximally entangled pairs distilled) of any purification procedure. We 

also show how to extend our measure to more than two subsystems.



Chapter 4 Entanglement Measures and ...

Figure 4 .1: The set of all density matrices, T  is represented by the outer circle. Its 

subset, a set of disentangled states V  is represented by the inner circle. A state 

(7 belongs to the entangled states, and p” is the disentangled state that minimizes 

the distance D(a\\p), thus representing the amount of quantum correlations in a. 

State p*j <g> p*B is obtained by tracing p* over A and B. D(p*\\p\ ® p*B) represent 

the classical part of the correlations in the state a.
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4.2 M athem atical Prelude

4.2.1 Purification Procedures

There arc three different ingredients involved in procedures aiming at distilling 

locally a subensemble of highly entangled states from an original ensemble of less 

entangled states.

1. Local general measurements (LGM): these are performed by the two parties 

A and B  separately and are described by two sets of operators satisfying the 

completeness relations 4-4,- — la n d  Y j  HjBj =  lb The joint action of the 

two is described by Yij ® B j  = Y i  4,- ® Y j  Bji which is again a complete 

general measurement, and obviously local.

Alice Bob

joint
unitary

evolution
+

measurement

© d w w k = ) joint
unitary

evolution
+

measurement

Figure 4.2: Local general measurements (LGM) by Alice and Bob and classical 

communication (CC) between-Alice and Bob which correlates local general mea­

surements.
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2. Classical communication (CC): this means that the actions of A and B  can be 

correlated. This can be described by a complete measurement on the whole 

space A +  B  and is not necessarily decomposable into a sum of direct products 

of individual operators (as in LGM). If p,\B describes the initial state shared 

between A and B  then the transformation involving ‘LGM+CC’ would look

like

§ { p a b ) — Ai  ®  Bi p,\B A- <g> B\ , ( 4 .1 )
f

where £), A A , j9,-5,- = 11, i.e. the actions of A  and B are ‘correlated’ (see Fig. 

4.2).

3. Post-selection (PS) is performed on the final ensemble according to the above 

two procedures. Mathematically this amounts to the general measurement 

not being complete, i.e. we leave out some operations. The density matrix 

describing the newly obtained ensemble (the subensemble of the original one) 

has to be renormalized accordingly. Suppose that we kept only the pairs where 

we had an outcome corresponding to the operators A; and B j,  then the state 

of the chosen subensemble would be

A  ®  B i Pa b  A\ ®  B\
p \ b —  ̂ ---------------------- 1-------+r (4-2)

Tr(A, ® Bt pAB A? ® Bj)

where the denominator provides the necessary normalization (see Fig. 4.3).

A manipulation involving any of the above three elements or their combination we 

shall henceforth call a purification procedure. It should be noted that the three 

operations described above are local, and that, strictly speaking, we can derive the 

whole formalism without assuming eq. (4.1). This implies that the entanglement 

of the total ensemble cannot increase under these operations. However, classical 

correlations between the two subsystems can be increased, even for the whole en­

semble, if we allow classical communication. A simple example easily confirms this. 

Suppose that the initial ensemble contains stat es |0x)<8> (|0b ) + |1b ))/>/2. The cor­

relations (measured by e.g. the von Neumann mutual information) between A and
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Figure 4.8: Subselection (SS) according to measurement results: the original en­

semble of entangled pairs E is split under the action of LGM+CC into a number of 

subensembles which contain pairs with different degrees of entanglement.

B are zero. Suppose that B performs measurement of his particles in the standard

0, 1 basis. If 1 is obtained, B communicates this to A who then “rotates” his qubit 

to the state |Fi). Otherwise they do nothing. The final state will therefore be

P ~  q(|(M (0a | ® |0b )(0b | +  |1a)(1a | 0  |1b )(1b |) > (4.3)

where the correlations are now In 2 (i.e. nonzero). So, the classical content of corre­

lations can be increased by performing local general measurements and classically 

communicating.

An important result was proved for pairs of spin-1/2 systems in [66]: All states 

that are not. of the form p,\B = Za PiP\®plBi where Yh Pi =  1 and pt > 0 for all i, can 

be distilled to a subensemble of maximally entangled states using only operations

1, 2 and 3. (The states of the above form obviously remain of the same form under 

any purification procedure). The local nature of the above three operations implies 

that we define a disentangled state of two quantum systems A and B as a state 

from which, by means of local operations, no subensemble of entangled states can
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be distilled. It should be noted that these states are sometimes called separable in 

the existing literature. We also note that it is not proven in general that if the state 

is not of this form then it can be purified (in fact, a recent letter by Ilorodecki et, 

al. shows that there are states of two spin one systems which are inseparable, or 

entangled, but cannot be purified [107]).

D efinition 1. A state pab is disentangled iff

PAB =  Y j PiPA ® Pb > (4-4)
i

where, as before, — 1 and Pi T 0 for all i. Otherwise it is said to be entangled. 

Note that all the states in the above expansion can be taken to be pure. This is 

because each pl can be expanded in terms of its eigenvectors. So, in the above sum 

we can in addition require that p\ — p \  and p'B =  plB for all i. This fact will 

be used later in this section and will be formalized further in section 4.3. For two 

entangled qubits there is a criterion [108, 109] determining whether a given density 

operator can be written in the above separable form in eq. (4.4): it says that iff 

either partial transposition of pab over the first or over the second qubit results in 

a negative operator then the state pab is entnagled.

4.2.2 Purification o f Pure States

In Chapter 3 we provided an argument for using the von Neumann entropy as a 

measure of entanglement for pure bipartite systems. Now we present an additional 

argument to strengthen this conclusion, but from the point of view of pure states 

involving two entangled qubits. We consider the following problem first analysed 

by Bennett and coworkers in [110]: Alice and Bob share n entangled qubit pairs, 

where each pair is prepared in the state

|4Mb ) =  a|00) + h |ll)  (4.5)

where we take a, b € K, and a2 + b2 =  1. flow many maximally entangled states 

can they purify? It turns out that the answer is governed by the von Neumann
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reduced entropy and is asymptotically given by N  x Sn (p.a)- To see how this is so, 

consider the state of n pairs given by

\ V % )  =  (a|00) + 6 | ll) )®(a|00) + 6 | l l) ) . . . (a |00)  + 6|ll)) (4.6)

= a n|0000.. .  00) + a (n_1)62(|0000. . .  11) + . . .  4- |1100... 00))

+ . . . b  n| l l l l . . .  11) . (4.7)

(The convention in the second and the third line is that the odd states in the large 

joint ket states belong to Alice and the even states belong to Bob). Alice can now 

perform projections (locally, of course) onto the subspaces which have no states |1), 

2 states |1), 4 states |1), and so on, and communicates her results to Bob. The 

probability of having a successful projection onto a particular subspace with 2k 

states |1) can easily be seen for the above equation to be

P2k = a*n- % n (^J  . (4.8)

On the other hand, the entanglement of a state in this subspace is equal to

(4.9)

This can be seen by treating Alice’s n particles as a single 2" level system and Bob’s 

particles likewise, and then applying the Schmidt decomposition to this state. In 

addition it can be shown that this state can be converted into singlets preserving 

the amount of entanglement [110], Therefore, the total expected entanglement is 

seen to be

E = Y , a ^ n- % 2k<
k=0

In (4.10)

We wish to see how this sum behaves asymptotically as n —> oo. From the theory 

of types presented in the previous chapter we know that the dominant term, i.e. 

the most likely outcome sequence will be such that

(« 2) na2(ò2)n6S (4.H)
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which can, in turn, he simplified using Stirling’s approximation to obtain

E  ~  e-nSN(PA)en\nn-a>n\na*n-b2n\nb*n(n ,n J? _  ^  jn f a  _  f a  )n f a }  

=  e-"‘SN(P̂)en5N(p4) x n s N (pA ) = nSN{pA) .

This now shows that for pure states the singlet yield of a purification procedure 

is determined by the von Neumann reduced entropy. It is also important to stress 

that the above procedure is reversible, i.e. starting from rn singlets Alice and Bob 

can locally produce a given state a|0,0) + 6|1,1) with an asymptotic efficiency of 

m in 2 = n ,S'/v(p,\)• This will be the basis of one of the measures of entanglement 

introduced by Bennett et al. [100]. Of course, Alice and Bob cannot do better 

than this limit, since both of them see the initial string of qubits as a classical 0,1 

string with the corresponding probabilities a2 and b2. This, we have seen, cannot 

be compressed to more than its Shannon entropy (which in this case coincides with 

the von Neumann entropy). In fact, it is worth mentioning that the von Neumann 

entropy describes how much a string of qubits can be compressed in the same way 

that the Shannon entropy shows by how much a string of bits can be compressed 

[5, 111]. Now we consider the quantification of entanglement in general, including 

the mixed states.

4.2.3 Quantification o f Entanglem ent

In the previous section we have indicated that out of certain states it is possible 

to distill by means of LGM + CC+PS a subensemble of maximally entangled states 

(we call these states entangled). The question remains open about how much en­

tanglement a certain state contains. Of course, this question is not entirely well 

defined unless we state what physical circumstances characterize the amount of en­

tanglement. This suggests that there is no unique measure of entanglement. Before 

we define three different measures of entanglement we state three conditions that 

every measure of entanglement has to satisfy. The third condition represents a 

generalization of the corresponding one 1 presented with my co-workers in [103].
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El. E(a) = 0 iff rr is separable.

E2. Local unitary operations leave E(a) invariant, i.e. E(a) = E(Ua 0  E u a 0

E3. The expected entanglement cannot increase under LGM+CC+PS given by 

E  V?Vi = 11, i.e.

X^Tr(cr,-) E(<j,/Tr(cr,)) < E(a) , (4.13)

where <7t — Vi<rV?.

Condition El ensures that disentangled and otdy disentangled states have a zero 

value of entanglement. Condition E2 ensures that a local change of basis has no 

effect on the amount of entanglement. Condition E3 is intended to remove the 

possibility of increasing entanglement by performing local measurements aided by 

classical communication. It is an improvement over the condition 3 in [103] which 

required that E(J2i CoT^) < E(tr). The condition E3 is physically more appropri­

ate as it takes into account the fact that we have some knowledge of the final state. 

Namely, when we start with n states a we know exactly which m, — n x  Tr(<7j) 

pairs will end up in the state a, after performing a purification procedure. Therefore 

we can separately access the entanglement in each of the possible subensembles de­

scribed by at. Clearly the total expected entanglement at the end should not exceed 

the original entanglement, which is stated in E3. This, of course, does not exclude 

the possibility that we can select a subensemble whose entanglement per pair is 

higher than the original entanglement per pair. We now introduce three different 

measures of entanglement which obey El E3.

First we discuss the entanglement of formation [100]. Bennett et al [1.00] define 

the entanglement of formation of a state p by

Ec{p) := min p,S{plA) (4.14)
i

where S(pa) — — Trp/i In pa is the von Neumann entropy and the minimum is 

taken over all the possible realisations of the state, pAB — E j 7b |V’j){Vbl with p'A —
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Tra(|'0,)('0t |). The entanglement of formation satisfies all the three conditions E l-  

E3 [100]. The physical basis of this measure presents the minimum number of 

singlets needed to be shared by Alice and Bob in order to create a given entangled 

state by local operations. The result in eq. (4.14) follows immediately from the 

entropic efficiency of reversible purification of pure state shown in the previous 

subsection in eq. (4.12). We will analyse the relationship between the entanglement 

of formation and measures proposed here in section 4.5.

Related to this measure is the entanglement of distillation [100]. It defines the 

amount of entanglement of a state a as the proportion of singlets that can be 

distilled using a purification procedure. As such, it is dependent on the efficiency of 

a particular purification procedure. It can be made more general only by introducing 

some sort of universal purification procedure or asking for the best state dependent 

purification procedure. We investigate this in subection 4.5.

We now introduce our suggestion for a measure of an amount of entanglement. It 

is seen in subsection 3.5 that this measure is intimately related to the entanglement 

of distillation by providing an upper bound for it. If V  is the set of all disentangled 

states, the measure of entanglement for a state a is then defined as

where D is any measure of distance (not necessarily a metric) between the two 

density matrices p and a such that E(a) satisfies the above three conditions El - 

E3. Note that this, in fact, generates a whole class of measures depending on the 

form of D(a\\p).

Now the central question is what condition a candidate for l)(cr\\p) has to satisfy 

in order for El E3 to hold for the entanglement measure? We present here a. set of 

sufficient conditions published in [104].

El. D(a\\p) > 0 with the equality saturated iff a = p.

F2. Unitary operations leave D(a\\p) invariant, i.e. D{cr\\p) — D(UcrlP\\UplP).

E{cr) := min D{a\\p) pev
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F3. D(Trpcr||Trp/9) < D(a\\p), where Trp is a partial trace.

F4. YlPi D(cnlpi\\pilqi) < T,D[<Ti\\pi), where pt = Tr(<r{), <li =  Tr(p,) and at = 

VicrVi and p, — Vtp\p (note that Vi’s are not necessarily local).

F5a. /)(E i P<<rPi\\Y,i PipPi) =  E . D{PioPi\\PipPi), where P, is any set of orthog­

onal projectors such that PiPj =  SijPi.

F5b. D(a ® Pa\\p ® Pa) — /4(cr||p) where Pa is any projector.

Conditions FI and F2 ensure that El and E2 hold; F2, F3, F4 and F5 ensure that 

E3 is satisfied. The argument for the former is trivial, while for the latter it is more 

lengthy and will be presented in the remainder of this section.

4.2.4 Proofs

We claim that F2, F3, F4 and F5 are sufficient for E3 to be satisfied and hence

need to prove that F 2 — F 5 =8 E3. If F2, F3 and F5b hold, then we can prove the 

following statement,

T heorem  1. For any completely positive, trace preserving map <!>, given by <1»cr — 

£  V,aV> and £  V 'T  = 11, we have that D($cr\\$p) < D(cr\\p). 1 

Proof. It is well known that a complete measurement can always be represented as 

a unitary operation+partial tracing on an extended Hilbert Space H  0 'H u, where 

dim Pin — n [112, 113]. Let {[*)} be an orthonormal basis in Hn and |a) be a unit 

vector. So we define,

W  =  Vi ®  |i)(cv| . ( 4 .1 6 )
i

Then, VFHF = 11 <S> Pa where Pa — |o )(a |, and there is a unitary operator U in 

H ® ‘Hn such that W  = U (l®  Pa) [114]. Consequently,

U(A ® Pa)U' = J2 ViAV] ® |i)(il , (4 .17)
O'

1 W e  f r e q u e n t ly  in t e r c h a n g e  t h e  4> a n d  l ’ t V  n o t a t io n s  f o r  o n e  a n o t h e r  t h r o u g h o u t  t h i s  s e c t io n .
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so that,

Tv2{U(A ® Pa)U'} =  £  ViAV? . (4.18)
i

Now using F3, tlien F2, and finally F5b we find the following

D(Tv2{U(cr®Pa)U'} || Tr2{U{p®Pa)W })

< D(U{a ® Pa)U'\\U{p® Pa)U*)

= D(<7 ® Pa\\p® Pa)

= D(a\\p) . (4.19)

This proves Theorem 1 □.

Corollary. Since for a complete set of orthonormal projectors P, XC Pi <7 Pi is a 

complete positive trace preserving map, then

Y ,D (P iaPi\\Pil>Pi)<D(a\\p) . (-1.20)
i

(The sum can be taken outside as F5a requires that D(Yli P|CrP«||XXi P\pP\) — 

E i D(PtcrPt\\PipPi)). Now from F2, F3, F5b and eq. (4.20) we have the follow­

ing

T heorem  2. If crt = VjcrVf then XZ D(at\\pt) < D(a\\p).

Proof. Equations (4.16) and (4.17) are introduced as in the previous proof. From 

eq. (4.17) we have that

Tr2{ l® P iU (A  ® Pa)U 'l® P i}  =  WAV? . (4.21)

where Pi =  \i)(i\. Now, from F3, the Corollary and F5b it follows that

£  D (Tra{ l®  PiU{c ® Pa)U 'l  ® Pt}||Tr2{ll ® PtU(p ® Pa) lP l  ® P,})
i

< D{l®PiU(<r ® PQ)U 'l®  Pi\\l® PiU(p ® Pa)U 't®  Pi)
i

< D(U(<r®Pa)U'\\U(p®Pa)U')

D (< 7  ® Pa | |p® Pa ) 

D{cr\\p) • (4.22)
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This proves Theorem 2 □.

From Theorem 2 and F4 we have,

< D{cr\\p) (4.23)

Now let E(a) = D{a\\p*), i.e. let the minimum of D(a\\p) over all p € P  be 

attained at pm. Then from eq. (4.23)

E(a) ■.= D(o\\p’ ) > Y
l V 'k

> £  !>• E

and E3 is satisfied. Note that in all the proofs for D{a\\p) we never use the fact 

that the completely positive, trace preserving map $ is local. This is only used 

in the last inequality of eq. (4.24) where LGM (+CC+PS) maps disentangled 

states onto disentangled states. This ensures that p* is disentangled and therefore 

D(at/p,\\p*/qi) > E{ai/pi). So, the need for local <i> arises only in eq. (4.24); 

otherwise all the other proofs hold for a general <!>. Note also that we can derive, 

by the same methods, a slightly more general condition

753*. The expected entanglement of the initial state an = a  ̂ ® . . .  0  an cannot 

increase under LGM+GC+PS given by J2 =  T i.e.

E(an) = r(V>"V'it) E(Vi<rnV ? m V u r 'V ? ))  ■ (4.25)

where Vi can be of the form V)1 ® ® V)n, but also can be of any other

completely general form.

However, in the following we will not make use of this generalization until section

3.5 when we will use it to estimate the efficiency of purification procedures.

4.2.5 Two R ealisations o f D ( a , p )

In this section we show that F1-F5 hold for the von Neumann relative entropy and 

for the modified Bures metric, which as we have seen immediately renders them 

generators of a good measure of entanglement.
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4.2.5.1 Von N eum ann relative entropy

We first prove F1-F5 for the von Neumann relative entropy, i.e. when D(a\\p) — 

.S'(er||p) := Tr {cr(lncr — Inp)} (Note that the von Neumann relative entropy is 

not a true metric, as it is not symmetric and does not satisfy the triangle in­

equality. Such quantities are usually called pseudo metrics, and in the next sec­

tion the reasons for this asymmetry will become clear. For further properties 

of the von Neumann relative entropy see [13, 115, 116].) Properties FI and F2 

are satisfied [52]. F3 follows from the strong subadditivity property of the von 

Neumann entropy [52, 112] (originally proven by Lieb and Ruskai [117]). Since 

E  pi) = E  Pi S{(Ti/pi\\pi/qi) + J2pt InPi/qi and E Pi In & > 0 (see [4] for proof) 

F4 is also satisfied. Property F5 can be proved to hold by inspection [112]. Now, a 

question arises as to why the entanglement is not defined as E(a) — minpep S,(p||<r), 

Since the von Neumann relative entropy is asymmetric this gives a different result 

to the original definition. However, the major problem with this convention is 

that for all pure states this measure is infinite. Although this does have a sound 

statistical interpretation (see the next section) it is hard to relate if to any physi­

cally reasonable scheme (e.g. a purification procedure) and, in addition, it fails to 

distinguish between different entangled pure states. This is the prime reason for 

excluding this convention from any further considerations. The measure of entan­

glement generated by the von Neumann relative entropy will hereafter be referred 

to as the relative entropy of entanglement.

Properties of the relative entropy of entanglement

For pure, maximally entangled states we showed that the relative entropy of entan­

glement reduces to the von Neumann reduced entropy [103]. We also conjectured 

[103] that for general pure state this would be true. Now we present a proof of this 

conjecture. In short, our proof goes as follows: we already have a guess as to what 

the minimum for a pure state a should be: say, it is a disentangled state p*. Then
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we show that the gradient ^ 6 '(<t||(1 -  x)p* + xp) for any p £ V  is nonnegative. 

However, if p* was not a minimum the above gradient would be strictly negative 

which is a contradiction. In addition, for a convex function on a convex set every 

local minimum is also global (to be proven in the following section), and we arrive 

at the result that p* is indeed a true minimum. Now we present a more formal proof 

[118] that applies to arbitrary dimensions of the two subsystems. An alternative 

proof that also applies to arbitrary dimensions will be given in section 3.

Theorem 3. For pure states a  = E nin2 v'pnip„2|<£„1̂ „I)(0„2V’n2| the relative en­

tropy of entanglement is equal to the Von Neumann reduced entropy, i.e. E(cr) = 

~ E n  Pn 1 n p n -

Proof. For a > 0, log a =  and thus, for any positive operator A,

log A = /0°° r j p - Let f(x,p) = S(<t||(1 -  x)p* + xp). Then

BM  0 ,,)  = - l i n , T , ( g(los((1- :t)'>'  + J,', ) ~ log')' ) }dx x~+o ( x J
roo

= Tr{a (p* + t)~x(p* -  p)(p* + t)~ldt)
Joroo

=1-  Tr W  + t)- 
Joroo

=  1 - /  Tr((p* + t)~ia(p* +  t)~'p)dt (4.26)
Jo

Take p* = E« Pn|</>7iV,n){tEV\i| (this is our guess for the minimum). Then 

(p* + t)~1a(p* + t)~1 -  (P*M +  O“ 1|^n,V’»,)(0n,V»»il
ni,nj,n3ln4

\JPn2Pn3 )(4>n3 Vn3 \{pn4 T t) \4>n4'il,ni){4>n4‘4’n4\

}  . (Pn +  t) y/PnPn1 (Pn‘ T t) 14>n ) (0n' 0?i' | • (4.27 )
n,n'

Set (g(p,q) = Jo°(p + n ~ l Vwii(l + t)~ldt. Then it follows that g(p,p) =  1 and, 

for p <  q,

=  y/pq r  f — ----------- — ) —  dt
V Jo \p  + t q + i j q - pg(p, <l)
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lem m a 0 < g(p,q) < 1 for all p,q 6 [0,1],

proof. We know that g(p,q) = \/pq fo'‘(p + l)~1{q + t)~ldt. But,

(p + t)(q + t) — pq +  t(p + q) + t2 > pq + 2ts/pq + t2 — (y/pq +  t)2 , (4.29)

and so
r oo

g(p,q) < s/pq /  (\/pg + 0 _2<ft = l • (4.30)Jo
Let p — |o)(o| ® \/3)(/3\ where |a) = Y2n an\cf)n) and (3 = Yln Ki>n are normalized 

vectors. Then

~ { Q , p ) ~ \  =  - T r ( ^  (/>* + 0 _V(p* -f t)~ldtp)

= — Tr( Y ,  i/(Pn1,Pn2)|0n1V,n1)(0n2'0n2|
»Ui>mn3,n4,n5,n6

<4i3 f*ri4 dtl5 6„6 |(/>n3 V;»4 I)

=  -  S  9(Pnl ,Pn2)an2bn2anibni (4.31)
ni ,n2

and (employing standard well known inequalities [119])

I§^(o, p) - i | < E  K I K I K I W
OX n\ ,n2

= ( Y  K I M ) 2 < Y  K l 2E  M 2 =  1 • (4-32)
n n n

Thus it follows that |£(0, \a/3)(a(3\) > 0.

But any p G V  can be written in the form p = r4|a ,/3,)(a'/?'| and so

~ ( 0 ,p )  = > 0 . (4.33)

Proposition Let <h € II have the following Schmidt decomposition [47]

1$) = Y  nV’n) (4.34)
n

and set cr = |<1>)(<1>|. Then i?(<x) = -  £ nP« logp„.

Proof. S'((t||p*) =  — XL„Pn logpn so it is sufficient to prove that 5(<r||p) > .9(rx|l^“") 

for all p 6 D. Suppose that 5'(cr||p) < .9(rr| ) for some p G V. Then, for 0 < x < 1,

f(x,p) =  9(<t||(1 -  x)p* +  xp) <  (1 -  ar).9(cr||/>”‘) +  a?S(<7||/>)
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=  ( l - i ) / ( 0 , r t  +  x / ( l , p )
_  /(x,/>) -  /(()./)) <

X
/ ( l , p ) - / ( 0 , p ) < 0 .  (4.3.5)

This is impossible since |£(0,p) = lim ^o  > 0. This therefore proves

the above proposition

Therefore we have shown that for arbitrary dimensions of the subsystems the 

entropy of entanglement reduces to the entropy of entanglement for pure states. 

This is, in fact, a very desirable property, as the entropy of entanglement is known 

to be a good measure of entanglement for pure states. In fact one might want to 

elevate Theorem 3 to a condition for any good measure of entanglement, i.e.

Ë4: For pure states the measure of entanglement reduces to the entropy of entan­

glement, i.e.

E(a) — —Tr {<ja In cr^} (4.36)

with (xa = Tr#{<r} being the reduced density operator of one subsystem of 

the entangled pair.

However, in subsection 2 we will see that measures which do not satisfy E4 can 

nevertheless contain useful information. We will discuss this point later in this 

chapter.

We would like to point out another property of the relative entropy of entan­

glement that helps us find the amount of entanglement. It gives us a method to 

construct from a density operator a  with known entanglement a new density oper­

ator ct1 with known entanglement.

Theorem 4. If p* minimizes S(<t||/)*) over p G V  then p* is also a minimum for 

any state of the form crT — (1 — x)a  -f xp*.

Proof. Consider,

T(a3.||p) -  .S'(Vr ||/ /)  = Tr{<rr In />* -  ax In p)

xTr(crlnp) - ( 1  -  x)Tr{p* In/))
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+ a;Tr(cr In p*) + (1 -  x)Tx(p* In p*)

= x{S(<r\\p) ~ S(a\\p*)} + (1 -  x)S(p*\\p) > 0. (4.37)

This is true for any p. Thus p* is indeed a minimum of ax □. For completeness we 

now prove here that E(a) is convex. Namely,

Theorem 5. E ( x \ c r \  + cr2) < X \ E { i 7 X )  + x ^ E ^ a ^ ) ,  where .Tj +  *2 =  1.

Proof. Th is property follows from the convexity of the von Neumann relative 

entropy in both arguments [116]

S(x i <ti + x2(T2\\xipi + X2P2) < xiS(cri\\pi) + x 2S(a2\\p2) • (4.38)

Now,

E ( x i a i  +  X 2 0 2 ) <  5 ( ® i f f i  +  x 2(t2 \\x i  p\ +  X 2 P 2 )

< xiS(ai\\pl) + x2S((T2\\pZ)

= X i E M  + X iE fa )  , (4.39)

which completes our proof of convexity o. This is physically a very satisfying 

property of an entanglement measure. It says that when we mix two states having a 

certain amount of entanglement we cannot get a more entangled state, i.e. succinctly 

stated “mixing does not increase entanglement”. This is what is indeed expected 

from a measure of entanglement to predict.

As a last property we state that the entanglement of formation Ec is never 

smaller than the relative entropy of entanglement E. We will show later that this 

property has the important implication that the amount of entanglement that we 

have to invest to create a given quantum state is usually larger than the entangle­

ment that you can recover using quantum state distillation methods.

T heorem  6. Ec(a) > E(cr) = minp6z> S'((r||p).

Proof. G iven a state a then by definition of the entanglement of creation there is 

a convex decomposition a = p, a, with pure states cr, such that

Ec(cr) = Y^PiEc{(ri) . (4.40)
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As the entanglement of formation coincides with our entanglement for pure states 

and as our entanglement is convex it follows that

Ee(a) = >  £ (£ > « - ,)  = , (4.41)

and the proof is completed q.

We add that the relative entropy of entanglement E(a) can be calculated easily 

for Bell diagonal states [103]. We define the density operators <t1/2 =  |e1/2){e1/2| = 

|'I'±)('I'± | and =  |e3/4){e3/4| = |4>±){4>± | where IT *), |4>±) is the usual Bell 

basis. Then a Bell-diagonal state has the for W  =  Y l i ^ i  We now prove the 

following

T heorem  7. For a Bell diagonal state a = A,-oq where all A,- 6  [0, |]  we find

E(a) = 0 (4.42)

while for Ai > |  we obtain

E(cr) = Aj In A] -f* (1 — Aj)ln(l — Aj) T In2 (4.43)

and analogously for A,- > | .

Proof: The first case is simple once we remember that a Bell diagonal state p is 

separable, i.e. p G T>, iff its spectrum lies in [0, |] [109]. Therefore E(cr) = 0.

To prove the theorem for At > \  we again utilize the fact that f ( x )  ~  — Inx is 

convex. We obtain

E(cr) =  ^2  A) ln At + min —Tr{oTn p}
t

> ^ A ,ln A t-+  m i n - ^ A t ln(e,|p|e,) . (4.44)
p(~Vi %

We know that p G V  implies that all pa < \  (or otherwise the state can be purified 

[19, 66]). Therefore we can determine the minimum, not over the states from P, 

but over the space B of all Bell diagonal states with spectrum in [0,4]. This gives 

a lower bound to eq. (4.44) because

min -  A» hi (e,-|p|ej) = min -  V  A, ln (e,'|p|e,-) .P&V . P&B “
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Defining p,- = (e,|/j|et) we have to minimize the function f ( p i , p2, p3 ,p4) = — £,• A,- 

In pi, under the constraints P« — 1 and p, 6  [0 , £]. This minimization yields

Pi = 1/2 Pt = At/2(1 -  AO . (4.45)

The state p = Yli Pi&i with the values from eq. (4.45) lies in V  [66] and therefore 

the lower limit can be reached which proves eq. (4.43). □

Comparing the result to those for the entanglement of formation [100] one finds 

that, in fact, strict inequality holds. In general, we have unfortunately found no 

“closed form” for the relative entropy of entanglement and a computer search is 

necessary to find the minimum p*, for each given a. However, we can find numeri­

cally the amount of entanglement for two spin 1 / 2  subsystems very efficiently using 

general methods independent of the dimensionality and the number of subsystems 

involved which are described in the next section.

For completeness we would also like to state another useful result that might be 

used in estimating the value of the relative entropy of entanglement in a state a. 

T heorem  8: Let a — Then

£ U ) > E s4 ^ ) - 5 u j ik )} -
j   ̂ J

Proof. Recall that for any state p [116],

+ p)-
3 3

Thus

E{a) := 5(a||p(cr)) =  jam 'll/)*) -  ,S(rrJ||cr)| > “  £(°rJllcr)}

We now turn to discussing other measures of entanglement generated by different

measures of distance.
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4 .2 .5.2 B ures M etric

Another distance measure that leads to a measure of entanglement that satisfies 

the conditions E1-E3 is generated by the modified Bures metric (the Bures metric 

was introduced in [120]). However, it will turn out that it does not satisfy the 

condition E4, i.e. it does not reduce to the von Neumann entropy for pure states. 

Based on this it could be said that it is not a measure of entanglement at all; 

however, J believe that this is not the case and that it all very much depends on 

(lie physical basis under considerations as will be clarified later. In this respect we 

have a situation similar to the one existing for classical uncertainty measures, where 

the Shannon entropy is by no means unique, but can be made so be asking for the 

particular properties to be satisfied.

We now prove F1-F5 for the modified Bures metric, i.e. when D(cr\\p) = 

Db{&\\p) 2 — 2F(a,p), where F(cr,p) := Ti'{\/pa \/p} ^ 2 >s the so called fi­

delity (or Uhlmann’s transition probability). The true Bures metric is given by

2 — F(a,p)). Property FI follows from the fact that the Bures metric is a true

metric and F2 is obvious. F3 is a consequence of the fact that Dg does not increase 

under a complete positive trace-preserving map [121]. We can also easily check that 

pi(liF(at/pi, pi/qi) = F(<7 ,', pi), from where F4 immediately follows as qt 6  [0,1]; F5 

also follows by inspection. As conditions F1-E5 are satisfied it immediately follows 

that conditions E1-E3 are satisfied too.

In the following present some properties of the Bures measure of entanglement 

Fg(a). First we show that for pure states we do not recover the entropy of entan­

glement.

T heorem  9: For a pure state |i/>) = cv|00) + /3| 11) one has

E b ( |'0)(V’|) =  4q 2(1 -  a 2) . (4,46)

Proof. To prove Theorem 7 we have to show that the closest disentangled state to 

a = | u n d e r  the Bures metric is given by p* — o 2 |00)(()0| +  (F\11 )(111 To this 

end we consider a slight variation around p* of the form p,\ — (1 — \  )p* -f \p  where
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p € T>. Now we need to show that

j ^ D b {(t\\px)\x=o = 2Fx~ T r  jv V ^ C u /^ }  < 0 , (4.47)

where F\ is the fidelity between a and p\ and is always positive. Invoking the fact 

that yd7 = a as a is pure we obtain

-j^Dg {(r\\p\)\\=o =  2F- \ ^ \ A 4 + /34 + \((ip\p\i>) -  1 ) |a = o < 0 . (4.48)

Using now the closest state p* one then obtains eq. (4.46) □. To obtain the en­

tanglement of an arbitrary pure state one first has to calculate the Schmidt de­

composition [47] and then, by local unitary transformation, transform the state to 

the form \ i p )  = o|00) + /?|11). As local unitary transformations do not change the 

entanglement, we have therefore shown that the Bures measure of entanglement 

does not reduce to the entropy of entanglement for pure states.

The proof presented here can be generalized to many dimensional systems in 

the same fashion as the relative entropy of entanglement. Let

f ( x)  -  2 -  2F(<r, (1 -  x)u> + xp) ,

where a =  £ n ii„2 v//U7 /%l^n1V’n1 )(</>n2V,n2| is the pure state for which we wish to 

find the Bures distance of entanglement, and

W = Y.Vn\Mn){<Pni>n\ (4.49)
n

P = Y  «n1< 2̂ nl^ 2l0nT0n1)(</'n2V,n21 . (4.60)

where to is, as before, our guess for the closest state under the Bures metric (the 

proof also works for the modified Bures metric 2 — 2F). F is the fidelity, which is 

in this case of a being pure given by the expression:

F — Tr{er((l — :r)u,> + ;rp)} . (4.51)

We wish to show that ^\x=o A 0, which would immediately prove that u> is indeed

a minimum of a. So,

dx x=0
= Tr(<xu;) — Tr(crp) . (4.52)
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Thus, in order to show that the above derivative is non- negative we need to show 

that

Tr(<xu>) > Tr(crp) . (4.53)

A simple calculation shows that

Tr (cru;) = Y pI (4.54)
n

Tr(crp) = Y  VPrnPn2anian2bniK3 • (4.55)
"1 n2

But, using the well-known inequality for complex numbers [119] we obtain 

I VP'ai Pn2 an\an2 bn\bn2 | 5; ( Y j Pni Pn2 lGni I lfin2 I\bn\ \\bn2 |)
n\ri'2 n\n2

— E P n lPn2 X^ \(ln}ari2\ XZ l ^ l ^ l
n\n2 n\U2 ^i'̂ 2

< T  (-1-56)
n\n2 n

Taking the square root proves inequality in eq. (4.53). Hence it follows that the 

above derivative is positive and that ^  is therefore a minimum of a with respect to 

the (modified) Bures metric.

In fact, it is now easy to see the following 

Corollary. The Bures measure of entanglement for pure states is smaller than the 

entropy of entanglement, i.e. for any pure state a

Eb {p ) < -T r  {om In <7 4 } . (4-57)

Proof. One can see quickly that for a £ [0, 1]

4o2(1 — a 2) < —a 2 In a 2 — (1 — a-2) ln(l — a 2) (4.58)

from which the Corollary follows □.

As the Bures measure of entanglement does not satisfy condition E4, i.e. does 

not reduce to (lie entropy of entanglement for pure states one might argue that 

it does not provide a sensible measure of entanglement. However, it should be 

noted that the Bures metric immediately gives an upper bound on the following
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very special purification procedure. Assume that Alice and Bob are given EPR 

pairs, but one pair at a time. They are allowed to perform any local operations 

they like, and then, upon communication, decide whether they keep the pair or 

discard it. Then, they are given the next EPR pair, and so on. The question is, 

how many pure singlet states they can possibly distill out of such a purification 

procedure. The answer is immediately obvious from condition E3. The best that 

Alice and Bob can do is to have one subensemble with pure singlets and all other 

subensembles with disentangled states. Then the probability to obtain a singlet is 

simply given by the Bures measure of entanglement for the initial ensemble. As this 

is smaller than the entropy of entanglement we have found the nontrivial, though 

not very surprising result, that this restricted purification procedure is strictly less 

efficient than entanglement concentration described in [110].

4 .2 .5 .3  One Thousand and One G ood M easures o f E ntanglem ent?

Fidelity and relative entropy possess various natural generalizations. First of all we 

can in the usual fashion define quantum Renyi overlaps as the maximum classical 

distinguishability of two quantum states compared in the following way:

F„(<7,p ) = m m ^ ( Tr(<riE,.))"(Tr(pBi))1““ • (4.59)
E, < 7

For a  —* 1 this reduces to the usual expression for fidelity considered in the previous 

subsection. In the similar fashion we can introduce the Renyi relative information

S-U , p) = min - 4 - 1„ [ ^ ( T r ( ffB,)“ (Tr(,<£,■))'-"} (4.60)

which, likewise, reduces to the von Neumann relative entropy for a  -A 1 (not really 

true, explain).

We now introduce a generalization of the von Neumann relative entropy, which 

we simply refer to as the von Neumann relative g-entropy (“g” stands for general­

ized). This is a direct generalization of the quantum formula and does not make
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use of any classical equivalent. It is given by the following expression [122]

Sg(cr\\p) := Tr{ ag(~ ~  !)} » (4.61)

where g(u>) : ( - l ,o o )  ->• R  is a strictly convex function satisfying g(0) =  0. For 

g(uj) — — ln(u> 4- 1) we recover the usual von Neumann relative entropy. There are 

several ways of defining the expression a / p. One way is to postulate that

y - e ]na-\"p (4.62)

which is by the Lie-Trotter formula equivalent to limn_+.i(cr1/np~1/n)T1 [122]. For us 

it is important to note that Petz [123] showed that if g is a convex operator function 

than the quantum relative g-entropy does not increase under completely positive, 

trace preserving map, i.e.

Sfl(4>(cr)|j$(p)) < SsM Ip ) • (4.63)

By the same token as the fidelity, this is now satisfies the condition E3, meaning 

that the measure of entanglement defined as

Ea • -  ™ n S g(c\\p (4.64)

does not increase under <l>. However not all of the quantum relative g-entropies 

satisfy FI, F2, F4 or F5. Those that do, immediately satisfy E1-E3, and therefore 

provide “good” measures of entanglement. However, a general classification of 

metrics according to F1-F5, or based on E1-E3 has not been attempted.

A generalization of the Bures metric is already used here in the form of the 

modified Bures metric. Namely, we used 2 — 2F  as the generator for the measure 

of entanglement. We could, therefore, ask whether F1-F5 are satisfied by a more 

general quantity of the form N (l  — F n), where N  is the appropriate normalization 

and 1 < n. The crucial condition to prove is F4, since all the other are trivially 

satisfied. That F4 holds can easily be confirmed by inspection.

Another at first sight reasonable candidate to generate a measure of entangle­

ment is the Hilbert, Schmidt metric. Here we have that D(A\\B) = ||/l — Zf||2 :=
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Tr(/i — B)2. FI follows from the fact that ||/1 — B || is a true metric, and F2 is 

obvious. However, F3 does not hold. A counter example in the 4-dimensional space 

follows [124]. Let A and B be 4 x 4  matrices defined by

1 0 0 0 0 N

1 0 0 0

0 0 0 0

V 0 0 1 0 y

( o 0 0 0 \

0 1 0 0

0 0 0 0

v ° 0 0 1 J

Then we have

A* A

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

It follows that A fA + fB B = 1] and hence

T{p) = ApA1 + B p B \

where p is arbitrary, defines a completely positive trace preserving linear map. Let 

p and a be density matrices defined by

P =

Then we have

1 1/2 0 0 0 

0 1/2 0 0 

0 0 0 0 

v 0 0 0 0

/

( p - °  f =

\

\ ( o

0
a  =

0

/

1/4 0 0

0 1/4 0

0 0 1/4

0 0 0

0 0 

0 0 

0 1 /2 

0 0

0

0

1/4 y

0 \

0

0

1 /2  y

and hence
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On the other hand, we have

/

ApA* =

0 0 0 0 

0 1/2 0 0 

0 0 0 0 

0 0 0 0

BpB]

0 0 0 0

0 1 /2  0 0

0 0 0 0

0 0 0 0

/1(7/0 =

It follows that

and hence

0 0 0 

0 0 0 

0 0 0

0

0

0

y 0 0 0 1/2 )

B a B '

0 0 0 

0 0 0 

0 0 0

0

0

0

 ̂ 0 0 0 1/2 )

T ( a ) f  =

(o 0 0 0 \ fo 0 0 0 \
0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0

0 0 -1 ) 0 0 J y

Tr[(T(p) -  T(<r))2]

We conclude therefore

Tr[(T(/>) — T(cr))2] > Tr((p — a)2}.

Consequently we cannot prove that this is a good measure by using our sufficient 

conditions F1-F5. Condition E3, therefore, has to he checked using some other, 

to the author unknown, means. We also believe that there are numerous other 

nontrivial choices for D(A\\B) (by nontrivial we mean that the choice is not a 

simple scale transformation of the above candidates). Each of those generators 

would arise from a different physical procedure involving measurements conducted 

on a and p*. None of I he choices could be said to be more important than any other a 

priori, but the significance of each generator would have to be seen through physical
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assumptions.

Define,

To illustrate this point further, let us take an extreme example.

D(A\\B) =
A ± B 

A = B

If entanglement is calculated using this distance, then

i 1 : o i ' D  

l 0 : a £ D

This measure therefore tells us if a given state a is entangled, i.e. when E(cr) — 1, 

or disentangled, i.e. when E(u) = 0 (note that this measure is obtained from the 

generalized Bures metric yV(l — Fn) when n -» 0). We can call it the “indicator 

measure” of entanglement. It should be noted that this measure trivially satisfies 

conditions E1-E3. This shows that there are numerous different choices for D(A\\B) 

and each is related to different physical considerations. We explain the statistical 

basis of the relative entropy of entanglement in section 4.4. The relative entropy of 

entanglement is then seen to be linked very naturally to the notion of a purification 

procedure. First, however, we present an efficient numerical method to obtain 

entanglement for arbitrary particles.

4.3 Num erics for Two Spin 1/2 Particles

In order to understand how our program for calculating the amount of entanglement 

works, we first need to introduce one basic definition and one important result from 

convex analysis [59]. From this point onwards we concentrate on the von Neumann 

relative entropy as a measure of entanglement although most of the considerations 

are of a more general nature.

D efinition 2. The convex hull (co(/t)) of a set A is the set of all points which 

can be expressed as (finite) convex combinations of points in A. In other words, 

x € co(/t) if and only if x has an expression of the form x = Y2k- 1  Pkak where l\ is 

finite, pk = 11 and, for k = 1 , . . . ,  K, pk > 0 and ak € A.
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We immediately see that the set of disentangled states V  is a convex hull of its 

pure states. This means that any state in D can be written as a convex combination 

of the form IZpn|0nV,n)(^nV,n|- However, there is now a problem in the numerical 

determination of the measure of entanglement. We have to perform a search over 

the set of disentangled states in order to find that disentangled state which is 

closest to the state a of which we want to know the entanglement. But how can we 

parametrize the disentangled states? We know that the disentangled states are of 

the form given by Definition 1. However, there the number of states in the convex 

combination is not limited. Therefore one could think that we have to look over 

all convex combinations with one state, then two states, then 1000 states and so 

forth. The next theorem, however, shows that one can put an upper limit to the 

number of states that are required in the convex combination. This is crucial for our 

minimization problem as it shows that we do not have to have an infinite number 

of parameters to search over.

C a ra th eo d o ry ’s theorem . Let A C R'v . Then any x € co(.4) has an expression 

of the form x =  J2n=i Pn«n where Pn =  T and, for n = 1 , . . . ,  N  -f 1, pn > 0 

and an € A.

Proof. S uppose that x € co(,4) has an expression of the form x = Pk^k where 

K  is finite, Ylk=\Pk — 1, and, for k = 1 pk > 0 and cik € A. Suppose

that K  > N  -f 1 and that x cannot be expressed as a convex combination of fewer 

than l\ points. For k = 2 , . . . ,  A', the points ak — ci\ are linearly dependent in R iV, 

so there exists a non-trivial sequence (Ak)k=i € R-/v such that J2k=i =  0 and 

Ylk=] — 0- But then, for any m  for which Am > 0,

K v
x -  Yl(Pkak ~ i~ h c ik )  • (4.65)

. E=1

Choosing m so that pm/ \ m is minimized over in with Am > 0 gives an expression for 

x as a convex combination of fewer than A points in A which is a clear contradiction

A direct consequence of Caratheodory’s theorem is that any state in V  can be



Chapter 4 Entanglement Measures and ... 102

decomposed into a sum of at most (dim(//i) x dim (//2))2 products of pure states. 

So, for 2 spin 1/2 particles there are at most 16 terms in the expansion of any 

disentangled state. In addition, each pure state can be described using two real 

numbers, so that there are altogether at most 15 + 1 6 x 4  =  79 real parameters 

needed to completely characterize a disentangled state in this case. In fact, this 

result can be improved in the case of two spin-1/2 particles, and Wootters has 

shown that only 4 terms are needed in the expansion of any disentangled state 

[102].

A random search over the 79 real parameters would still be very inefficient. 

However, we can now make use of another useful property of the relative entropy, 

which is the fact that it is convex. This means that we have to minimize a convex 

function over the convex set of disentangled states. It can easily be shown that any 

local minimum must also be a global minimum. Suppose that a convex function 

f ( x)  has a minimum at xi  so that df (x)/dx =  0 at X\. Suppose also that, contrary 

to our claim, the function /  has another minimum at x 2 such that f ( x 2) < f ( x j). 

Then since /  is convex we have for any 0 < A < 1 that

f [x2 + A(xj -  x2)] -  f ( x 2) =  /[(1 -  X)x2 +  Arc,] -  f ( x 2)

< ( \ - X ) f ( x 2) + Xf ( x l ) - f ( x 2)

= X [ f ( x i ) - f ( x 2)}. (4.66)

Dividing through by A and taking the limit A —> 0 gives us 0 on the left hand 

side, but also gives us a negative quantity on the right hand side, which is a clear 

contradiction. Hence we must have that f ( xi )  =  f ( x 2) and any local minimum of a 

convex function is therefore also a global minimum. Returning to our problem, we 

can perform a gradient search for the minimum (basically we calculate the gradient 

and then perform a step in the opposite direction and repeat this procedure until 

we hit the minimum). As soon as we have found any relative minimum we can 

stop the search, since this is also a global minimum. To make the gradient search 

efficient we have to chose a suitable parametrization. The parametrization that
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we use has the advantage that it also provides us with another proof of Theorem 3 

which states that for pure states the relative entropy of entanglement reduces to the 

von Neumann reduced entropy. We first explain the parametrization and then state 

the alternative proof for Theorem 3. The following results can easily be extended 

to two subsystems of arbitrary dimensions but for clarity we restrict ourselves to 

two spin 1/2 systems.

Our aim is to find the amount of entanglement of a state a of two spin 1 /2 states, 

i.e. we have to minimize tr{a\ncr — crlnp} over all p £ V.  From Caratheodory’s 

theorem we know that we only need convex combinations of at most 16 pure states 

p\  to represent p € i.e.
16

P =  Y1 Pi Pi ®  P 2  ■ (4 -6 7 )
t=i

(Notice that we use p? instead of p, for convenience, so that here we require that 

— 1). The parametrization we chose is now given by

15
Pi = sin (p,-\ cos fa with <-/>() = 

i=i

7T
2

and

p'k = m m

\-ip\) = cosa;|0) + sin Q,e,,'‘|l)

|0a) = cos/?t |0) + sin/3,e'w|l)

All angles cvn (f>i, p, can have arbitrary values, but due to the periodicity only 

the interval [0,2tt] is really relevant. Numerically this has the advantage that our 

parameter space has no edges at which problems might occur. The program for 

the search of the minimum is now quite straightforward. The idea is that given a 

we start from a random p, i.e. we generate 79 random numbers. Then we com­

pute S(cr\\p), as well as small variations of the 79 parameters of p, to obtain the 

approximate gradient of ,s'(o-||p) at the point p. We then move opposite to the 

gradient to obtain the next p. We continue this until we reach the minimum. As



Chapter 4 Entanglement Measures and ... J 04

explained before, a convex function over a convex set can only have a global mini­

mum, so that the minimum value we end up with is the one and only. The method 

outlined above immediately generalizes to two subsystems of arbitrary dimension, 

however, the number of parameters rises quickly to large values which slows down 

the program considerably.

Before we state some numerical results we now indicate an alternative proof of 

Theorem 3 using Caratheodory’s theorem and the parametrization given in eqs. 

(4.67) - (4.69). For this proof we use the fact that we can represent the logarithm 

of an operator p by

In p =  ~  l
¿ m  J

In
1

(4.69)
z l - p

where the path of integration encloses all eigenvalues of p. We can now take the 

partial derivative of In p with respect to a parameter <f> on which p might depend.

d In p 1 /  1 dp 1
()(/) = —  l2m J

In
: 4L — p 9(f) z I  — p

(4.70)

Now, we have a given pure state

<7 = cv2100)(001 + nV  1 — O'2(|00)(ll| + |11)(00|) +  (1 -  c*2) |l l)< ll | (4.71)

The suspected closest approximation to a within the disentangled states is given

by

pmin = a 2|00)(00| -f (1 -  a 2) |l l ) ( l l |  . (4.72)

If we want to represent pmin using the parametrization given in eqs. (4.67) - (4.69) 

then we find for these parameters cos2 <f>i — a 2 ; o 2 =  (32 — § and zero for all other 

parameters. Using eq. (4.70) one can now calculate all the partial derivatives of 

the relative entropy around the point pmin. It is easy, but rather lengthy, to check 

that these derivatives vanish and that therefore is a relative minimum. rFhis 

concludes the proof as a relative minimum of a convex function on a convex set is 

also a global minimum.

After this additional proof of Theorem 3 we now state some results that we 

have obtained or confirmed with the program that implements the gradient search.
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We present four nontrivial states a for which we can find the closest disentangled 

state p that minimize the von Neumann relative entropy thereby giving the relative 

entropy of entanglement. Using the same ideas as for the proof of Theorem 3 in 

Eq. (4.69 - 4.72) one can then prove that these are indeed the closest disentangled 

states.

E xam ple 1.

o i = A|4>+)(<l>+ | + (l-A)|01><01| (4.73)

Pi = | ( i  - 1)|00>(001 + 2(1 _ 2){|oo)(ii| + ii.c.} +

(1 -  2)2|oi){01| + j|10)(10| + 2(1 -  2 ) |n ) ( l l | (4.74)

E(a,) = ( A - 2 ) l n ( l - 2 )  + ( l - A ) l n ( l - A )  . (4.75)

Here |4>+) is one of the four Bell states defined by

E xam ple 2.

1*9 = 4 | ( |o o ) ± |n » (4.76)

1*9  = ;2=(|01) ±  110 » (4.77)

where

o’2 = A|<h+){(1>+ | + (1 -  A)|00)(00|

pi = ( i - 2 ) |o o ) ( o o | +  2 |n > ( i i |

E(o2) =  s-f In esq. 4" <S— lns_

- 0  -  ~ £ ) -  0  ~

_ f ±  V/1 - 2 A ( 1 -  A)

(4.78)

(4.79)

(4.81)

are the eigenvalues of o2. One could argue that in the above two cases the following 

reasoning can be applied: o ^ 2) is a. mixture of a maximally entangled state (for 

which the amount of entanglement is given by In 2) and a completely disentangled 

state (E = 0). Thus one would expect a total amount of entanglement of A In 2.
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It is curious that this reasoning does not work for either of the two states, since, 

in fact, E(cri(2)) < A In 2. Now, we show how to use Theorem 4 to generate more 

states and their minima. For pure states a 2 — a we know the minimum p. Now, 

the state that is a convex sum of a and p should also have the same minimum p. 

So, we have the following.

E xam ple 3.

<r3 = A|00)(00| + J5|00)(ll| +  £*|11)(00| + (1 -  M)111 >(1LI (4.82)

p3 =  /1|00)(00| + (1 — Fl) 111 > (111 (4.83)

E(fr3) =  e+ In e+ + e_ In e_ — A In /I — (1 — ,4) 1 n(1 — A) , (4.84)

where

e±
1 ±  yjl — 4/1(1 — ,4) — | B\';

Using Theorem 4, the amount of entanglement can be found for a number of other 

spin 1 /2 states. Our program can also hoip us infer the entanglement of some other 

non-trivial states as the last example shows.

Exam ple 4.

where

<74 = /l|00)(00| + £ |0 0 )(ll|z r |ll)< 00 | + (4.86)

+(1 — 2/!)|01)(01| + a4 114) (111 (4.87)

p4 =  C100) (001 + D|00)(11| + D*|11)(00| + E|01)(011 (4.88)

+(1 -2 C -E )|1 0 )< 1 0 | + C ,|11)(11| , (4.89)

F _  (1 — 2A)(1 — A )2 
( l - . A Y - B 2 

C = 1 -  .4 -  E

D = y / E ( l - E - 2 C )  =
(1 -  2.4)(1 — A) 
(.I - A ) * - 1 3 2

It is now easy to compute the amount of entanglement from the above information.
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In addition to the above described methods there is a simple way of obtaining a 

lower bound for the amount of entanglement for any two spin 1/2 system. Suppose 

that we have a certain state a. We first find the maximally entangled state |V>) 

such that the fidelity F = (ip\a\x^) is maximized. Then we apply local unitary 

transformations to a which transform \ip) into the singlet state (this is, of course, 

always possible). Now, we apply local random rotations [100] to both particles. 

These will transform a into a Werner state, where the singlet state will have a 

weight F (since it is invariant under rotations) and all the other three Bell states 

will have equal weights of (1 — F ) /3 (since they are randomized). Since these 

operations are local they cannot increase the amount of entanglement, and we have 

that for any a

E(a) > E{ WF) =  F  In F  + (1 -  F) ln( 1 -  F) + In 2 (4.93)

where WF is the above described Werner state (the Relative Entropy of entangle­

ment for a general Bell diagonal state is calculated in [103]).

We note that this efficient computer search provides an alternative criterion for 

deciding when a given state a of two spin 1/2 systems is disentangled, i.e. of the 

form given in eq. (4.4). The criterion which already exists is the one given by Peres 

and the Horodecki family (see the second and third references in [67]), which states 

that a state is disentangled iff its partial trace over either of the subsystems is a 

non-negative operator. This criterion is only valid for two spin 1/2, or one spin 

1 /2 and one spin 1 systems. In the absence of a more general analytical criterion 

our computational method provides a way of deciding this question. In addition we 

would like to point out that the program is also able to provide us with the convex 

decomposition of a disentangled state p.

At the end of this section we mention additivity as an important property desired 

from a measure of entanglement, i.e. we would like to have

F{<?i2 Q T'ii) — F(cr\2) T F (rr3t ) , (4.94)
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where systems 1 + 2 and systems 3 + 4 are entangled separately from each other. 

The exact definition of the left hand side is

E{ai2  ®  T m) =  min^ S(crn  ®  T i l l  X w M s  ® Pm ) • (4 .95)
i

Why this form? One would originally assume that a i2 ® Tii should be minimized 

by the states of the form (£,• pip\ ® p\) ® (Hj PjPi ® pi)- However, Alice, who holds 

systems 1 and 3, and Bob, who holds systems 2 and 4, can also perform arbitrary 

unitary operation on their subsystems (i.e. locally). This obviously leads to the 

creation of entanglement between 1 and 3 and between 2 and 4 and hence the form 

given in eq. (4.95). Additivity is, of course, already true for the pure states, as 

can be seen from the proof above, when our measure reduces to the von Neumann 

entropy. For more general cases we were unable to provide an analytical proof, so 

that the above additivity property remains a conjecture. However, for two spin 1 /2 

systems, our program did not find any counter-example. It should be noted that it 

is easy to see that we have

E(cr 12 ®  cr34) <  E(cr 12) E((t34) . (4.96)

lu the following we will assume that Eq. (4.94) holds and use it in section 4.5 to 

derive certain limits to the efficiency of purification procedures.

4.4 Statistical Basis of Entanglem ent M easure

Let us see how we can interpret the relative entropy of entanglement in the light 

of experiments, i.e. statistically [105]. We have shown how the notion of the 

Shannon relative entropy arises in classical information theory as a measure of 

distinguishability of two probability distributions. We now wish to generalize this 

idea to the quantum case, i.e. to distinguishing between two quantum states (for 

a discussion of distinguishability of pure quantum states see e.g. [125]). We will 

see that this naturally leads to the notion of the von Neumann relative entropy.
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ft is then straightforward to extend this concept to explain the relative entropy of 

entanglement .

We have seen from the theory of types that the probability of not distinguish­

ing the distributions P(x)  and Q(a') after n trials asymptotically converges to
e -nS(P(x) \ \Q(x))^  w Jle r e

£(P(a:)||<2(;c)) = J ^ P i l n Pi ~  P i Q i  (4.97)
i

is l.he Shannon relative entropy. To generalize this to quantum theory, we need a 

means of generating probability distributions from two quantum states rr and p. 

This is accomplished by introducing a general measurement £,• E{E] — 1. So, the 

probabilities are given by

Pi = Tr (E}E,p)

Qi =  Tr(EjEiCT) . (4.98)

Now, we can use eq. (4.97) to distinguish between a and p. The above is not the 

most general measurement that we can make, however, in general we have N  copies 

of a and p in the state

a N =  a ® a... <g> av------~------*
total of N terms 

pN = p ®p . . . ®p
"-------v------- '

total of N terms

We may now apply a POVM £),- Ai = 1 acting on a N and pN. Consequently, we 

define a new type of relative entropy

S n (v \\p ) :=  SUPA’S{̂ 7 4V/l!e-A luT r.t.a '' -  Trzl,a N ln T r/l.p ^ j . (4.101) 

Now it can be shown that [110}

S(cr\\p)>SN (4.102)

(4.99)

(4,100)

where, as before,

S { ct\\p ) :=  4V(ct In cr — a  ln p ) (4.103)
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is the von Neumann relative entropy [52, 103, 105, 112, 113, 116] (for the summary 

of the properties of the von Neumann relative entropy see [13]). Equality is achieved 

in eq. (4.102) iff cr and p commute [28]. The inequality in eq. (4.102) can be seen 

as a consequence of the Ilolevo bound for the classical capacity of QCC in Chapter 

3 [28]. We already remarked there that the Ilolevo bound is achieved only when all 

the signals commute, which is in direct analogy with the eq. (4.102) when a and p 

commute. However, for any a and p it is true that [115]

SM |p) = lim SN .N-+oo

In fact, this limit can be achieved by projective measurements which are inde­

pendent of a [126]. It is known that if eq. (4.97) is maximized over all general 

measurements E, the upper bound is given by the von Neumann relative entropy 

(see e.g. [116]). In quantum theory we therefore state a law analogous to Sanov’s 

theorem presented in Chapter 2 (see also [105]),

T heorem  10 ( or The quantum Sanov Theorem). The probability of not distin­

guishing two quantum states (i.e. density matrices) a and p after n measurements 

is

p(p -M r) = e"n5^ )  . (4.104)

In fact, as explained before, this bound is reached asymptotically [115], and the 

measurements achieving this are global projectors independent of the state a [126]. 

We note that the quantum Sanov Theorem was presented by Donald in [127] as a 

definition justified by properties uniquely characterizing the quantity e~n's'HID. '['he 

underlying intuition in the above measurement approach and Donald’s approach are 

basically the same. Now the interpretation of the relative entropy of entanglement 

becomes immediately transparent as I have shown with my co-workers in [105]. The 

probability of mistaking an entangled state a for a closest, disentangled state, p, is 

exp{— n x m i n p&DS(a,P)} — e~nh^K If the entanglement of a is greater, than it takes 

fewer measurements to distinguish it from a disentangled state (or, fixing n, there 

is a smaller probability of confusing it with some disentangled state). Let us give
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an example. Consider a state (|00) -f |l l) ) / \ /2 , known to be a maximally entangled 

state. The closest to it is the disentangled state (|00)(00| + | l l ) ( l l |) /2  [103]. To 

distinguish these states it is enough to perform projections on to (|00) + |l l})/>/2. 

I f the state that we are measuring is the above mixture, then the sequence of results 

(1 for a successful projection, and 0 for an unsuccessful projection) will contain on 

average an equal number of O’s and l ’s. For this to be mistaken for the above pure 

state, the sequence has to contain all n l ’s. The probability for that is 2~n, which 

also comes from using eq. (4.104). If, on the other hand, we performed projections 

onto the pure state itself, we would then never confuse it with a mixture, and from 

eq. (4.104) the probability is seen to be e~°° = 0.

Before we apply this simple idea to obtaining an upper bound to the efficiency 

of any purification procedure, we would like to explain briefly how the Bures dis­

tance of entanglement arises statistically. The (modified) Bures metric is given by 

Db (&\\p) = 2 — 2 F(cr,p), where F{a,p) := Tr{y/pcr^/p}1̂  is the fidelity [128].

The (modified) Bures metric offers a very attractive and simple operational basis 

for the measure of entanglement in terms of general measurements [28]. It derives 

from the nature of fidelity as a ‘measure’ of distinguishability between two probabil­

ity distributions pu — Tr(crA-At) and pu = TrfpA-A,), where AfA,- =  I. More

precisely,

F{a, p) = min \ZTr (<r /II A ;) \J’Yx(pA j A *) (4.105)
A] A, i

where the minimum is taken over all possible general measurements. This possibly 

enables us, in principle, to determine eq. (4.15) and therefore also the degree of 

entanglement experimentally. We stress that in order to satisfy F4 we need to use 

somewhat modified Bures metric 2 — 2F(cr,p), i.e. without the square root of the 

fidelity, but this does not change the interpretation in any fundamental way.
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4.5 Therm odynam ics of Entanglem ent

There are two ways to produce an upper bound to the efficiency of any purification 

procedure. Using condition E3 and the fact that the relative entropy of entangle­

ment is additive, we can immediately derive this bound. However, this bound can 

be derived in an entirely different way. In this section we now abandon conditions 

E1-E3 and use only the methods of the previous section to put an upper bound to 

the efficiency of purification procedures. In particular, we show that the entangle­

ment of formation is in general larger than the entanglement of distillation. This is 

in contrast with the situation for pure states where both quantities coincide. The 

von Neumann relative entropy is seen to play a distinctive role here, and is singled 

out as a ‘good’ generator of a measure of entanglement from among other suggested 

candidates.

In the previous section we presented a statistical basis to the relative entropy of 

entanglement by considering distinguishability of two (or more) quantum states en­

capsulated in the form of the Quantum Sanov Theorem. We now use this Quantum 

Sanov Theorem to put an upper bound on the amount of entanglement that can be 

distilled using any purification procedure. This line of reasoning follows from the 

fact that any purification scheme can be viewed as a measurement to distinguish 

entangled and disentangled quantum states. Suppose that there exist a purification 

procedure with the following property

• Initially there are n copies of the state a. If a is entangled, then the end 

product is 0 < m  < n singlets and n — m states in p G 'D. Otherwise, the final 

state does not contain any entanglement, i.e. rn = 0 (in fact, there is nothing 

special about singlets: the final state can be any other known, maximally 

entangled state because these can be converted into singlets by applying local 

unitary operations).

Note that we can allow the complete knowledge of the state er, i.e, that a is 

known to Alice and Bob before they start purifying. We also allow that purification
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procedures differ for different states a. Perhaps there is a “universal” purification 

procedure independent of the initial state. However, in reality, this property is 

hard to fulfill [66]. At present the best that can be done is to purify a certain 

class of entangled states, (see e.g. [19, 110, 142]). The above is therefore an 

idealization that might never be achieved. Now, by calculating the upper bound 

on the efficiency of a procedure described above we present an absolute bound for 

any particular procedure. We ask: “What is the largest number of singlets that 

can be produced (distilled) from n pairs in state o"‘l Suppose that we produce 

rn pairs. We now project them non-locally onto the singlet state. The procedure 

will yield positive outcomes (1) with certainty so long as the state we measure 

indeed is a singlet. Suppose that after performing singlet projections onto all m 

particles we get a string of rn l ’s. From this we conclude that the final state is a 

singlet (and therefore the initial state a was entangled). However, we could have 

made a mistake. But with what probability? The answer is as follows: the largest 

probability of making a wrong inference is 2~m =  e-ml" 2 (if the state that we were 

measuring had an overlap with a singlet state of 1/2). On the other hand, if we 

were measuring a from the very beginning (without performing the purification 

first), then the probability (i.e. the lower bound) of the wrong inference would 

be e- n/?(<T), But the purification procedure might waste some information (i.e. it 

is just a particular way of distinguishing entangled from disentangled states, not 

necessarily the best one), so that the following has to hold

e -#B( ') < e - m ,n2, (4.106)

which implies that

nE(cr) > m  , (4.107)

i.e. we cannot obtain more entanglement than is originally present. This, of course, 

is also directly guaranteed by our condition E3. The above, however, was a delib­

erate exercise in deriving the same result from a different perspective, abandoning 

conditions E1-E3. Therefore the measure of entanglement given in eq. (4.15), when
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D(cr\\p) = *5’(cr11/>), can be used to provide an upper bound on the efficiency of any 

purification procedure. For Bell diagonal states, Rains [106] found an upper bound 

on distillable entanglement using completely different methods. It turns out that 

the bound he obtained in this case is identical to the one provided by the relative 

entropy of entanglement.

Actually, in the above considerations we implicitly assumed that the entangle­

ment of n pairs, equivalently prepared in the state a, is the same as n x E(a). We 

already indicated that this is a conjecture with a strongly supported basis in the 

case of the von Neumann relative entropy. Based on the upper bound considerations 

we can introduce the following definition.

D efinition 3. A purification procedure given by a local complete positive trace 

preserving map a —> Y1 Via W ' s defined to be ideal in terms of efficiency iff

£ T r ( a , )  FAaJTv(at)) =  E(a)  , (4.108)

where, as usual, = VicrV^ and pt =  Tr(VicrVi ) (i.e. the ideal purification is the 

one where E3 is an equality rather than an inequality). Notice that we seem to have 

an apparent formal analogy between a purification procedure and the Carnot cycle 

in Thermodynamics. The Carnot cycle is the most efficient cycle in Thermody­

namics (i.e. it yields the greatest “useful work to heat” ratio), since it is reversible 

(i.e. it conserves the thermodynamical entropy). We would now like to claim that 

the ideal purification procedure is the most efficient purification procedure (i.e. it 

yields the greatest number of singlets for a given input state), since it is reversible 

(i.e. it conserves entanglement, measured by the minimum of the von Neumann 

relative entropy over all disentangled states). Unfortunately this analogy between 

the Carnot cycle and purification procedures is not exact (it is only strictly true 

for the pure states). This is seen when we compare the entanglement of formation 

with the Relative Entropy of Entanglement. In Theorem 6 we have, in fact, shown 

that the entanglement of formation is never smaller than the relative entropy of 

entanglement . As an example one can consider Bell diagonal states for which we
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can exactly calculate both the entanglement of formation [103, 104] and the rela­

tive entropy of entanglement [100]. It turns out that the entanglement of formation 

is always strictly larger than the relative entropy of entanglement except for the 

limiting cases of maximally entangled Bell states or of disentangled Bell diagonal 

states (see Fig. 4.4 for Werner states). This result leads to the following 

Im plication . In general, the amount of entanglement that was initially invested in 

creation of a cannot all be recovered (“distilled”) by local purification procedures. 

Therefore, the ideal purification procedure, though most efficient, is nevertheless 

irreversible, and some of the invested entanglement is lost in the purification process 

itself. This irreversibility is a consequence of the loss of certain information as can 

be seen from the following analysis. Suppose we start with an ensemble of N  of 

singlets and we want to locally create any mixed state a. The state a can always be 

written as a mixture of pure states 4B, $ 2, ••• with the corresponding probabilities 

P\,P2, ■■■ We now use Bennett et al’s (de)purification procedure for pure states [110] 

(whose efficiency is governed by the von Neumann entropy). We convert the first 

Pi x N  singlets into the state $ 1 , the second p2 x N singlets into the state and 

so on... In this way, the whole ensemble is in the state a. But, we have additional 

information: we know exactly that the first p\ x N  pairs are in the state 4' (, second 

P2 x N states are in the state ^ 2, and so on. This is not the same as being given 

an initial ensemble of identically prepared pairs in the state rr with no additional 

information. In this, second, case we do not have the additional knowledge of the 

state of each of the pairs. This is why the purification without this knowledge is 

less efficient, and hence the relative entropy of entanglement is smaller than the 

entanglement of formation. An open question remains as to whether we can use 

some other generator, such as the Bures metric, to give an even more stringent 

bound on the amount of distillable entanglement.
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Fidelity

Figure 4.4: Comparison of the entanglement of formation and the Relative Entropy 

of Entanglement for the Werner states (these are are Bell diagonal states of the form 

W  = diag(F, (1 — F ) /3, (1 — F)/3 , (1 — F)/3.) One clearly sees that the entanglement 

of formation is strictly larger than the relative entropy of entanglement for 0 < F <

In this section we have analysed the theoretical basis of purification procedures 

for two qubits. There is nothing fundamental in our treatment that limits this 

analysis to two qubits only. In fact, the measures of entanglement proposed here 

are independent of the number of systems or their dimensionality; we only need to 

define a distance measure and a set of disentangled states, and then check if E1-E3 

hold. We turn to this subject in the next section.
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4.6 More Than two Subsystem s

The treatment of measures of entanglement does not refer to the number (or, indeed, 

dimensionality) of the entangled systems. This is a very desired property as it makes 

our measure of entanglement universal. However, in order to perform minimization 

in eq. (4.15) we need to be able to define what we mean by a disentangled state 

of say N  particles. We believe that this can be done inductively [105]. Namely, for 

two quantum systems, A\ and /12, we define a disentangled state as one which can 

be written as a convex sum of disentangled states of A 1 and /l2 as follows [103, 105]:

Pn (4.109)
i

where J2iPi — 1 and the p’s are all positive. Now, for N  entangled systems 

A i , A 2, ..M at» the disentangled state is:

P\2...N £
perm{iit2.

.4,
>1»2

1 -‘W • p A'n+ i Ai»+  2 ’ ■ A , f

•1n]
(4.110)

where Eperm{tii2-"*w}  ̂• 1 * 2 • - - * jv  ̂ ® are positive anti wheie Eperm{tii2...ijv}

a sum over all possible permutations of the set of indices {l, 2,..., N}. To clarify 

this let us see how this looks for 4 systems:

E , Pip?lMM ® p f 4 +  m ®  p?3

+ ri p t ' MA' ® p ? ' + s i pAìMA4® p i ì

+ U PAiM ® pAiA4 +  Ui pA' As 0  pA iA *

+ ViP?lAi ®P?2M (4.111)

where, as usual, all the probabilities p,, <■/,,..., v; are positive and add up to unity. 

The above two equations, at least in principle, define the disentangled states for any 

number of entangled systems. Note that this form describes a different situation 

from the one given in eq. (4.95) which refers to a number of pairs shared by Alice 

and Hob only. The above definition of a disentangled state is justified by extending 

the idea that local actions cannot increase the entanglement between two quantum
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systems [100, 103, 105]. In the case of N  particles we have N parties (Alice, Bob, 

Charlie, ... , Wayne) all acting locally on their systems. The general action that 

also includes communications can be written as [105]

P — > E  A*i ® Bi2 ® •■ ■■ ® W iN P A [  W?n (4.112)
*i i»'a , - - J n

and it can be easily seen that this action does not alter the form of a disentangled 

state in eqs. (4.110,4.111). In fact, eq. (4.110) is the most general state invariant 

in form under the transformation given by eq. (4.112). This can be suggested as 

a definition of a disentangled state for N > 3, i.e. it is the most general state 

invariant in form under local POVM and classical communications. Of course, an 

alternative to defining a disentangled state would be

Pi2...N = ' Z riPil ® P t* - - - ® p tN > (4.113)
i

which means that we do not allow any entanglement in any subset of the N  states. 

This would be a disentangled state based on some local hidden variable model. 

Again we repeat that the particular choice of a form of disentangled states will 

depend on the physical background in our model and there is no absolute sense in 

which we can resolve this dichotomy. It should be stressed that for two particles 

this free choice does not exist as both pictures coincide.

4.7 Conclusions

We can look at the entanglement from two different perspectives. One insists that 

local actions cannot increase entanglement and do not change it if they are unitary. 

The other one looks at the way we can distinguish an entangled state from a disen­

tangled one. In particular, the.following question is asked: what is the probability 

of confusing an entangled state with a disentangled one after performing a certain 

number of measurements? These two, at first sight different approaches, lead to 

the same measure of entanglement. This results in the fact that a purification pro­

cedure can be regarded as a protocol of distinguishing an entangled state from a
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disentangled set of states. From this premise we derived the upper bound on the 

efficiency of any purification procedure. It turns out that distil able entanglement is 

in general smaller than the entanglement of formation. Our entanglement measure 

is independent on the number of systems and their dimensionality. This suggests ap­

plying it to more than two entangled systems in order to understand multi-particle 

entanglement. We have shown how to compute entanglement efficiently for two 

spin 1/2 subsystems using computational methods. However, a closed form for the 

expression of this entanglement measure is desirable. An interesting problem is 

to specify all the states that have the same amount of entanglement. We know 

that all the states that are equivalent up to a local unitary transformation have 

the same amount of entanglement (by definition-E2). However, there are states 

with the same amount of entanglement but which are not equivalent up to a local 

unitary transformation (for example one state is pure and the other one is mixed). 

A question for further research is whether they are linked by a local complete mea­

surement. Our work in addition suggest a question of finding a general local map 

that preserves the entanglement of a given entangled state.
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Q uan tum  E rro r C orrection

5.1 Introduction

In the previous chapter we saw how to quantify entanglement, and how to under­

stand entanglement from the statistical point of view. Now we turn our atten­

tion to realistic situations involving entanglement manipulations. In most realis­

tic cases entanglement is gradually lost due to the detrimental interactions with 

an environment. In this chapter we focus on methods of protection of quantum 

states in dissipative and decoherent environments. In particular, with the discovery 

of an algorithm to factorize a large number on a quantum computer in polyno­

mial time instead of exponential time required by a classical computer [17], the 

question of how to implement such a quantum computer has received considerable 

attention [83]. We have already stressed that this exponential increase crucially 

depends on being able to maintain large entangled states for sufficiently long peri­

ods of time. However, realistic estimates soon showed that decoherence processes 

and spontaneous emission severely limit the bit size of the number that can be 

factorized by destroying entanglement [129, 130]. It has become clear that the 

solution to the problem does not lie in an increase in the lifetime of the tran­

sitions used in the computation. Attention has now shifted towards the inves­

120



Chapter 5 Quantum error Correction 121

tigation of methods to encode qubits such that the correction of errors due to 

interaction with the environment becomes possible. In a number of recent pub­

lications, possible encoding schemes have been considered and theoretical work 

has been undertaken to elucidate the structure of quantum error correction codes 

[2 0 , 2 1 , 2 2 , 23, 24, 10 0 , 131, 132, 133, 134, 135, 136, 137, 138, 139, 140]. However, in 

this chapter we focus on a particular part of spontaneous emission-the conditional 

time evolution [141] between spontaneous emissions, which these codes do not cor­

rect perfectly. This has the effect that, for example, the encoded lower state of a 

qubit, which, if unencoded, is not influenced by the conditional time evolution, ac­

quires an error due to the conditional time evolution. We then proceed to construct 

a code that is able to correct one general error and is able to correct to all orders 

the errors due to the conditional time evolution between spontaneous emissions. 

By one general error we mean an arbitrary one bit operation acting on a single 

bit of the code. The conditional time evolution, however, contains terms that act 

on many qubits. The code described here is the first code that has the ability to 

correct a special kind of error (i.e. the one due to the conditional time evolution) 

to all orders. This is an interesting feature, as one would be interested in correcting 

those errors which frequently occur to higher order than rare errors. In addition 

our code is insensitive to any possible detuning of the laser used to drive transitions 

in the atoms (or ions). We explain this feature in greater detail in section 5.4. The 

code presented here is optimal in the sense that it uses the smallest possible number 

of qubits required to perform its task (correcting one general error and all errors 

due to the conditional time evolution). Before we describe this particular code, we 

derive general conditions that all such codes have to satisfy in order to be able to 

protect quantum information.
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5.2 General Conditions

We now describe an alternative way of manipulating quantum states which is best 

handled using the language of quantum computation. An advantage of quantum 

computation lies in the fact that the input can be in a coherent superposition of 

qubit states, which are then simultaneously processed. The practical realisation of 

a qubit can be constructed from any two-state quantum system e.g. a two-level 

atom in an ion trap, where the unitary transformations are implemented through 

interaction with a laser. The computation is completed by making a measurement 

on the output. However, a major problem is that the coherent superpositions must 

be maintained throughout the computation. In reality, the main source of coherence 

loss is due to dissipative coupling to an environment with a large number of degrees 

of freedom, which must be traced out of the problem. This loss is often manifested 

as some form of spontaneous decay, whereby quanta are randomly lost from the 

system. Each interaction with, and hence dissipation to, the environment can be 

viewed in information theoretic terms as introducing an error in the measurement 

of the output state. There are, however, techniques for ‘correcting’ errors in quan­

tum states [20, 21, 23, 142]. The basic idea of error-correction is to introduce an 

excess of information, which can then be used to recover the original state after 

an error. These quantum error correction procedures are in themselves quantum 

computations, and as such also susceptible to the same errors. This imposes limits 

on the nature of the ‘correction codes’, which are explored in this section.

First we derive general conditions which a quantum error correction code has 

to satisfy [142] and which are, in particular, less restricting than those previously 

derived in [132]. We point out that our derivation is an alternative to that by 

Knill and Latlamme in [24], who also arrive at the same conditions, and this is 

the author’s original contribution to the field. Assume that </ qubits are encoded in 

terms of n > q qubits to protect against a certain number of errors, d. We construct 

2g code-words, each being a superposition of states having n qubits. These code­
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words must satisfy certain conditions, which are derived in this section. There 

are three basic errors [132] (i.e. all other errors can be written as a combination 

of those): amplitude, A, which acts as a NOT gate; phase, P, which introduces 

a minus sign to the upper state; and their combination, AP.  A subscript shall 

designate the position of the error, so that P10oi means that the first and the fourth 

qubit undergo a phase error.

We consider an error to arise due to the interaction of the system with a ‘reser­

voir’ (any other quantum system), which then become entangled. This procedure is 

the most general way of representing errors, which are not restricted to discontin­

uous ‘jum p’ processes, but encompass the most general type of interaction. Error 

correction is thus seen as a process of disentangling the system from its environment 

back to its original state. The operators A and P are constructed to operate only 

on the system, and are defined in the same way as the operators for a complete 

measurement described in subsection 2.4, eq. (3.28). In reality, each qubit would 

couple independently to its own environment, so the error on a given state could 

be written as a direct product of the errors on the individual qubits. A convenient 

error basis for a single error on a single qubit is {11, <7,}, where the <t; ’s are the Pauli 

matrices. In this case, the error operators are Hermitian, and square to the identity 

operator, and we assume this property for convenience throughout the following 

analysis.

In general the initial state can be expressed as

I* ) = X > |C ‘}I R)(5.1)

where the \Ck) are the code-words for the states |k) and | li) is the initial state 

of the environment. The state after a general error is then a superposition of all 

possible errors acting on the above initial state

i w  = £ 4 » A £ ‘q c ‘>i (5.2)
a /3  k

where |Ra,p) is the state of the environment. (We keep the hat notation to designate
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operators in this section in order to avoid any confusion.) Note that \Ra,p) depends 

only on the nature of the errors, and is independent of the code-words [132]. The 

above is, in general, not in the Schmidt form, i.e. the code-word states after the 

error are not necessarily orthogonal (to be shown) and neither are the states of the 

environment. Now, since we have no information about the environment, we must 

trace it out using an orthogonal basis for the environment {\Rn),n  = 1 , r/}. The 

resulting state is a mixture of the form ?},• = En |0 n)(V'n|) where

l «  = E < A U l i X > |C ' ‘ ) , (5 .3 )
a ¡3 k

and xcj f  — (Rn\Rap). To detect an error, one then performs a measurement on the 

state ?/ to determine whether it has an overlap with one of the following subspaces

%a,  = { A J ß \ C k),k  = (5.-1)

The initial space after the error is given by the direct sum of all the above sub­

spaces, 'H — ^2ap Qj'H-ap- Each time we perform an overlap and obtain a zero result, 

the state space H reduces in dimension, eliminating that subspace as containing 

the state after the error. Eventually, one of these overlap measurements will give 

a positive result which is mathematically equivalent to projecting on to the corre­

sponding subspace. The state after this projection is then given by the mixture 

Vf =  E n \ i ’nProja0)('PnProjal}\, where

\^PnProjaß) =  Z E * V ^ Pß \C k)<Ck \P ßA a A 1PS\C ,)cl • 
kl 7 S

( 5 . 5 )

The successful projection will effectively take us to the state generated by a super­

position of certain types of error. One might expect that to distinguish between 

various errors the different subspaces ’Hap would have to be orthogonal. However, 

we will show that this is not, in fact, necessary.

After having projected onto the subspace 'Hap we now have to correct the corre­

sponding error by applying the operator P p A a onto \4’Projaß)) since P ß Ä a A a P ß  = 11.
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In order to correct the error successfully, the resulting state has to be proportional 

to the initial state of code words in 10,-). This leads to the condition

c ')c, = ^  . (5.6)
k l  7  i  m

where za(3n is an arbitrary complex number. Now we use the fact that all code 

words are mutually orthogonal, i.e. (Ck\Cl) = Ski, to obtain that

E  E  n xls(CkV \ Â aÂ ,h \C ')  = (5.7)
l 7 <S

for all A’ and arbitrary ck. This can be written in matrix form as

Fa(inc = zapnc , (5.8)

where the elements of the matrix F are given by

n t "  ■ = T . < ‘ ^ k\Pi ,LÀ,Ps\Cl). (5.9)
'y S

As eq. (5.8) is valid for all c it follows that

VA-,/, F ^ n = zapn8kl . (5.10)

However, we do not know the form of as we have no information about the 

state of the environment. Therefore, for the above to be satisfied for any form of 

ads we need each individual term in eq. (5.9) to satisfy

(Ck\P0A aA 1 P&\Cl) = ya™ 8kl (5.11)

where yQ̂ s is any complex number. From eqs. (5.9,5.10,5.11) we see that the 

numbers x, y, and  ̂ are related through

E C * !'yS
aß'yS yc*ßn

Eq. (5.11) is the main result in this section, and gives a general, and in fact 

the only, constraint on the construction of code-words, which may then be used
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for encoding purposes. If we wish to correct for up to d errors, we have to im­

pose a further constraint on the subscripts a, (3,7 , and namely, wt(supp(o) U 

supp(/3)), wt(supp(7 ) U supp(<5)) < d, where supp(.r) denotes the set of locations 

where the n-tuple x is different from zero and wt(s) is the Hamming weight [36], 

i.e. the number of digits in x different from zero. This constraint on the indices of 

errors simply ensures that they do not contain more than d logical M’s altogether, 

which is, in fact, equivalent to no more than d errors occurring during the process.

We emphasise that these conditions are the most general possible, and they in 

particular generalise the conditions given by Ekert and Macchiavello in [132]. By 

substituting zal3l's =  SapS^s in eq. (5.11), we obtain the conditions

(Ck\ P p A j , P s\Cl) =  Sp55aiSkl (5.13)

given in [132]. These are therefore seen only as a special case of the general result 

in eq. (5.10). These generalized conditions (but not the Ekert Macchiavello condi­

tions) show the main difference between a quantum and classical error correction: 

it is possible for two different errors to lead to the same state providing that the 

overlap is the same for all the code-words.

Knill and Laflamme, and Bennett et ah, who arrive at the same conditions as 

in eq. (5.11) [24, 100], give no example of a code that violates the conditions in 

eq. (5.13) but satisfies those of eq. (5.11). One such code, which I introduced with 

my co-workers in [143], will be presented in the next section (but c.f. Shot’ [22]). 

This code violates the conditions given in eq. (5.13), thereby explicitly showing 

that they are not necessary, but merely sufficient.

5.3 Error Correction in the Presence of Sponta­

neous Emission

We will now introduce a code that protects qubits in the presence of spontaneous 

emission [143]. This code is interesting for two reasons. Firstly, it corrects a non­
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unitary part of the evolution (described below) to all orders, and secondly it violates 

the more restrictive conditions of error correction by Ekert and Macciavello in eq. 

(5.13). Before we present the code let us introduce mathematical formalism for 

treating spontaneous emission.

5.3.1 Spontaneous Emission Dynam ics

In general an open system evolves according to the so called Master equation, which 

preserves the positivity of the density matrix. The most general form of evolution 

is described in the following theorem.

T heorem  (Lindblad [144]). A bounded operator C on the set of states 'T('H) is 

the generator of norm-continuous completely positive dynamical semigroup {A* : 

T(7i) -A T{'H)} iir it has the form

Cp =  - i [H , p] +  ~ {[Vj’pVj] + WiP* V j ]} (5.14)

= -¡Iff,/»] + £  ViPV] -  1 [ E  VjVi'P) ■ (5.15)
i “ j

The most general dynamical evolution of a quantum system now looks like

Y i = £ p -<5' 16)

Loosely speaking, this is a continuous version of the POVM formalism introduced 

in Chapter 3.

In the case of spontaneous emission, it turns out that there is only one of the 

V operators present. We can write V =  y/ya- = 1 / 2v/ =y — ia2), where <r_ is the 

Pauli lowering operator and 7  the spontaneous emission rate. Thus the evolution 

of the atomic density p in the presence of the spontaneous emission can be written

as:
dp
dt -i[li,p\ + 7 < .pa+ 2 I9 (7 .̂(7 . (5.17)

where the Pauli raising operator a+ =  1 / 2 (cr1 -f icr2) is the hermitian conjugate of

rr_ and II is the two level system Hamiltonian.
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There is an interesting way of treating this equation which is mathematically 

very convenient for the implementation of error correction to protect against the 

spontaneous emission. It is usually referred to as the quantum jump approach, or 

for an alternative, the quantum state diffusion approach [145]. We assume that the 

atom is at some time t in a pure state p =  |T(f)){T(f )|. Now, in the small interval 

At  there are two possibilities: either the atom emits a photon or it does not emit a 

photon (small At  means that no more than one emission occurs). To propagate the 

conditioned state vector from time t to (t + At)  we need to calculate the current 

probability of emission, given by

Ap = 7Af($(Q|<j+<T_|'5(Q). (5.18)

If the emission happens, the new state afterwards will be given by:

|T) — > iV_1 (T_|T) (5.19)

where N ~ l is a normalization factor. If, on the other hand the emission does 

not happen we propagate |T) under the influence of the non-Iiermitian effective 

Hamiltonian. This can easily be derived from the requirement that the resulting 

evolution must be given by eq. (5.17). So, after a simple calculation we obtain

//eff -  H -  i h ^ a +cr. (5.20)

where H  is the unperturbed atomic Hamiltonian. Therefore when there is no emis­

sion the evolution proceeds according to

|T) —> N~l (\ -  IIeRAt/h)\^) . (5.21)

A single trajectory of |T(Q) evolves in a smooth evolution under //e|f, interrupted 

by the jumps (emissions). When many trajectories are averaged, the traditional 

exponential decay law is recovered. It is curious to note that in order to compensate 

for the emission, the non-emission part is non-unitary (i.e. generated by a non- 

Hermitian effective Hamiltonian). We now turn to analysing single error correcting 

codes before showing how to error correct in t he presence of spontaneous emission.
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5.3.2 Single error correcting codes

Several codes have been proposed to encode one qubit which can correct one general 

error, i.e. amplitude and phase error or a combination of both applied to the same 

qubit. An example [131] of such a code is one where state |0) is represented by

|0l) = 100000)+ |11100)-|10011)-|01111)

+ 1 1 1 0 1 0 ) + |0 0 1 10 ) + 10 10 0 1) + |1 0 1 0 1 ) (5.22)

and the state | 1 ) by

|1L) =  111111) -  100011) +  101100) -  110000)

-100101)+ 111001)+ 110110) -  101010) , (5.23)

where the subscript L indicates that the encoded state \ii) differs from the initial 

state |/). As usual, we omit the obvious normalization factor in the states |0Q and 

|lx,) throughout, as they are irrelevant for the present analysis. We start with a 

state |ip) =  q |0) + /?|1 ), this is encoded as \ipi) = a |0/v) +  /3|11 ). If the state suffers 

an amplitude error A{ (which acts as a NOT operation on qubit i) or a phase error 

Pi (which gives the upper state of qubit i a minus sign) or the combination AiPt 

of both to the ith qubit of it is possible to reconstruct the initial state ¡0 ). 

The code given in eqs. (5.22) - (5.23) has the attractive feature that it is optimal 

in the sense that it only requires 5 qubits which can be shown to be the minimal 

possible number [24]. Using ideas similar to classical error correcting codes one can 

estimate that if one wants to encode l qubits in terms of n qubits in such a way

that one can reconstruct the state after t general errors, then the inec

2 '£ 3 ’ < 2" (5.24)

has to be satisfied [132]. The bound eq. (5.24) is related to the sphere packing 

bound in classical coding theory that we introduced in Chapter 2 . The reason 

for this is that eq. (5.24) was obtained using the assumption that different errors
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lead to different mutually orthogonal error syndromes as in eq. (5.13). The factor 

3', which distinguishes this bound from its classical counterpart, comes from the 

fact that there are three basic errors (the Pauli spin operators). However, we will 

later see that the code presented here (like the one presented in [2 2 ]), violates this

assumption which indicates that it may be possible to find codes that go beyond 

eq. (5.24).

The code given in eqs. (5.22) - (5.23) does not correct for multiple errors. 

In particular, it is not able to correct to all orders for errors that arise due to 

the conditional time evolution between spontaneous emissions. The conditional 

time evolution between spontaneous emissions is unavoidable and it differs from 

the unit operation because the fact that no spontaneous emission has taken place 

provides information about the state of the system and therefore changes its wave 

function. The conditional time evolution of the system under the assumption that 

no spontaneous emission lias taken place is given by the non-unitary time evolution 

operator exp{—i He^ t / h }  [141] introduced earlier. For the case that the qubits are 

not driven by external fields we obtain for the code given in eqs. (5.22) - (5.23) the 

effective Hamilton operator

//off (0T , ~ i h r a u
t=i

(5.25)

where crj'/ is the projector |1 ) ( 1 | onto the excited state of the fth qubit leaving all 

other qubits unaffected. 2 F is the Einstein coefficient of the upper level 1 of the 

qubits. If we apply the conditional time evolution exp(—i to the encoded

state

\4’l) = o |0l) + P \I l) , (5.26)

and subsequently apply the appropriate error correction procedure for this 5-bit 

code [131] we do not recover the original state. This becomes obvious in the special 

case F/ ;§> 1 in which one obtains

|ip c ) =  100000) + 100010) + 101000) -  101110)

+110000) + 110010) + |11000) + |I1 110) . (5.27)
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This shows that this 5-hit code is not able to correct errors clue to the conditional 

time evolution exactly. Especially striking is the effect when we assume that ¡3 — 0 , 

i.e. we encode the (stable) ground state. The conditional time evolution then leads 

to no errors in the unencoded state while it changes the encoded state such that it 

cannot be corrected perfectly anymore. Note, however, that the error introduced 

by the conditional time evolution is, for short times, of fourth order. If, however, 

a spontaneous emission (or any other kind of error) occurs then a subsequent con­

ditional time evolution induces contributions which after error correction lead to 

second order errors in the state. The code presented later in this section preserves 

the encoded state in both cases perfectly, i.e. to all orders.

The reason that the code eqs. (5.22)-(5.23) cannot perfectly correct errors due to 

the conditional time evolution derives from the fact that the words (product states) 

of which the code consists do not all have the same number of excited states. This 

leads to a difference in the rate at which the amplitude of these states decays. The 

amplitude of |00000) remains unchanged under the conditional time evolution while 

the amplitude of 11 1100) for example decreases at a rate exp(—3P7). This can be 

seen as a multiple amplitude error with which the code cannot cope. This problem 

is not restricted to the 5-bit code given in [131] but is present in all other previ­

ously proposed codes. It should be noted that it is not necessary to observe the 

system for these conclusions to hold. If we do not observe the system, it then has 

to be described by a density operator, whose time evolution follows the appropriate 

Bloch equations. 'Phis time evolution can in principle be decomposed into individual 

trajectories, each of which consists of no-jump evolutions interrupted by sponta­

neous emissions [141]. For each of these trajectories our considerations above hold 

and therefore also hold for the incoherent sum of these trajectories which make up 

the ensemble. Therefore our error correction code is not restricted to a particular 

measurement scheme such as for example the detection and reconstruction scheme 

discussed in [146], where it is necessary to detect individual quantum jumps. Nev­

ertheless such a detection of individual jumps would improve the performance of
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the code, as that would exclude the contribution of multiple quantum jumps with 

which our code cannot cope. This would enhance the importance of the conditional 

time evolution as a error source compared to other sources and it is here where our 

code is superior to previous codes.

5.3.3 Correcting spontaneous em ission

The discussion of the last section shows that it is of some interest to construct 

a quantum error correcting code that corrects errors due to the conditional time 

evolution to all orders. This is possible, and in the following we present such a 

quantum error correcting code.

This code was constructed starting from the code (5.22)-(5.23). State |0) is 

encoded as

|0L) =  100001111} +  |11101000} -  110010110} -  101110001}

+ ¡1 1 0 1 0 1 0 0 ) + ¡ 0 0 1 1 0 0 1 1 ) + ¡0 1 0 0 1 1 0 1 ) +  ¡1 0 1 0 1 0 1 0 ) , (5.28)

while state |1 ) is encoded as

|1L) = 111110000} -  100010111} + 101101001} -  110001110}

-  ¡00101011} + ¡11001100} + ¡10110010} -  ¡01010101} . (5.29)

The state eq. (5.28) encoding the logical 0 was obtained in the following way. 

We start with state eq. (5.22) and for each word, e.g. ¡11100} we construct its 

bitwise inverse, i.e. ¡00011}. We concatenate the two words where the second one 

is taken in reverse bit order to obtain ¡1 1 1 0 0 1 1 0 0 0 }. This method, when applied 

to all words in eq. (5.22), already yields a possible code. However, it, is possible 

to shorten the code by removing bits 5 and 6 from every word. This then yields 

eq. (5.28) and analogously eq. (5.29). A computer search was performed by Dr. 

M. B. Plenio to search for potentially shorter codes; this revealed no such codes, 

so we conclude that n = 8 qubits is the minimum number required for the task of
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correcting one general error while errors due to the conditional time evolution are 

corrected perfectly. In the following we present some interesting properties of the 

code and demonstrate that it indeed has the claimed error correction properties. 

However, this code differs in many ways from previously proposed codes. First of 

all, it violates the conditions given for quantum error correcting codes in eq. (5.13) 

thereby explicitly showing that these conditions are overly restrictive. As these 

conditions were used to derive the inequality in eq. (5.24), their violation indicates 

that there might exist codes that require less qubits than expected from eq. (5.24). 

However, we did not yet succeed in constructing such a code. One should also realize 

that the code-words in the code eqs. (5.28)-(5.29) do not form a linear code as this 

would imply that |00000000) is a code-word which in turn would render impossible 

the task of constructing a code with code-words of equal excitation. Nevertheless, 

the code-words of |0/y) form a coset of a linear code. The coset leader is |00001 111). 

This contrasts slightly with other codes such as those presented in [20, 2 1 , 22, 131]. 

The code-words of the code (5.22)-(5.23) for example form a linear code. Given 

the initial state |V>) = o|0) + /3|1), we obtain the code eqs. (5.28)-(5.29) using the 

network given in Fig. 5.1. To correct the error that may have appeared we first 

apply the encoder in the reverse direction (right to left). After the application of 

the decoder, the third qubit contains information about the encoded state while 

the remaining 7 qubits contain the error syndrome, from which one can infer the 

type and location of the error. We measure the qubits of the error syndrome and 

apply, according to the result of our measurement, a suitable unitary operation on 

qubit 3. We assume that after the measurement all the other qubits are reset to 

their ground state |0) so that, in principle, we can re-encode the state again using 

the same qubits.

In table 5.1 we give all possible outcomes of the measurement and the corre­

sponding state of the third qubit. The necessary unitary transformation that has 

to be applied onto the third qubit is then obvious. Careful inspection of table 5.1 

reveals that t his error correction scheme has, for some errors, a slightly different
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Figure 5.1: The encoding network: li describes a one bit rotation which takes 

|0) -> (|0) + |l ) ) / \ /2  and | 1 ) -A (|0) — |l))/>/2. An encircled cross denotes a NOT 

operation while a dot denotes a control bit. For a filled circle the operation is 

carried out if the control bit is 1 ; for an empty circle the operation is carried out if 

the control bit is 0 . A circle with a n represents multiplication with phase exp(i7r). 

Qubit 3 is in the state \ip) that we wish to encode, while all other qubits are initially 

in their ground state |0).

effect than expected. Take for example a phase errors P\ on bit 1 and compare 

with the effect of a phase error I \  on bit 8 . We observe that they both lead to 

the same error syndrome but that the resulting state differs by a global phase —l. 

Therefore it is not possible to correct both states in such a way that they go over 

to the initial state. After the correction they differ by a global phase —1 . But this 

also shows that the dimension of the space Hcode spanned by the code together with 

all states that result from it by single errors is 2  x 2 1  and not as expected from eq. 

(5.24) 2 x 25. The violation of these conditions by the code eq. (5.28)-(5.29) leads 

to these different predictions for the dimension of 'Hcode• 0 » the other hand if can



Chapter 5 Quantum error Correction I35

be checked easily that our code satisfies the more general conditions we derived in 

eq. (5.11).

So far we have shown that our code can indeed correct a general single error 

without taking into account the conditional time evolution due to spontaneous 

emission. Now we show that the code is able to correct errors due to the conditional 

time evolution perfectly, i.e. to all orders. For our code given in eqs. (5.28)-(5.29) 

the conditional time evolution under the assumption that no spontaneous emission 

has taken place is generated by the effective Hamilton operator

8

He/f =  £  - i î i T a ÿ (5.30)

If the code undergoes a conditional time evolution before it experiences an error like 

e.g. a spontaneous emission, it is obvious that the code eqs. (5.28)-(5.29) will work 

properly, as it is invariant under the conditional time evolution exp(—iHefft/H). 

However, it is not so obvious that the code corrects general single errors that occur 

before or in between the conditional time evolution. As we do not know the time 

at which the general error occurs, this situation will almost certainly occur and has 

to be examined. If the error was a phase error, then no problem will occur, as tins 

error does not change the excitation of the state. However, for amplitude errors or 

a combination of amplitude and phase errors we have to investigate the code more 

closely. The problem is that, for example after an amplitude error in the first qubit, 

we obtain

Ai|0 L) =

110001111) -  11 1 110001) + 111001101) + ¡10110011)

+ 10110100) -  100010110) + 101010100) + ¡00101010) . (5.31)

Now the code words have a different degree of excitation so that their relative 

weights will change during the subsequent conditional time evolution. However, for 

\ifL) =  »¡0/,) +  (3\li) we have the relations
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E rro r E rro r syndrom e S la te  of q u b it 3

None 0000000 o |0 )  +  /9 |l)

Pi 1000000 o |0 )  +  /3 |l)

P 2 0100000 a |0 )  +  /3 |i)

P a 0010000 a |0 )  +  /J |l)

As 0001000 a|O) +  0 | l )

Ac 0000100 a |0 )  +  /3 |l)

A 7 0000010 a |0 )  +/3|1>

A» 0000001 a |0 )  +  /3 |l)

P 3 1010000 a |0 ) - / 3 | l )

A 2 0010010 a |0 )  -  /3 |l)

P b 1010000 - a |0 )  +  /3 |l)

A 2 P 2 0110010 - a |0 )  +  j9 |l)

A 6 Pc 1010100 - a |O )  +  0 | l )

P b 0010000 —a|0> — /3|1)

Pr 0100000 1 Q 0 1

P b 1000000 - a |0 > - / 3 | l >

A 5P s 0011000 - a | 0 ) - / 3 | l )

A 7 P 7 0100010 —a |0 )  — /3 |l)

AgPs 1000001 - a | 0 ) - / ? | l )

A i P x 1110001 j8|0) +  a | l )

A A  P 4 1011000 d |0 )  +  a | l )

a 3 p 3 1110100 /3|0> -  cv|l)

A i 0110001 1 ■C2
> C 1

A 3 0100100 - / i | 0 > - o | l )

A 4 1001000 4>
\

0
 ■ 1 P_
 ;

Table 5 .1 : We obtain an error syndrome, i.e. the state of all qubits except qubit 

3 depending on the error that occurred and the place in which it occurred. 1\  

indicates a sign change of the upper level of qubit i, an amplitude error which 

is given by the transformation |0) f* 11). The product of both applied to the 

same qubit gives the third kind of error. Note that the error syndrome is not able 

to distinguish between i\ and /b_, which leads to global phases in some of the 

corrected states. This table does not take into account that before and after the 

error a conditional time evolution takes place.
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e - i H ef f t /hA . | ^ L ) =

l e “3"  {(1 + e - !n )/ti -  (1 -  e -2r,)APi} l< (5.32)

and

i e- 3r' {_(! _  e~2rt)Ai + (1 4- e-m )AiPi} \ij>L) . (5.33)

Eq. (5.32) shows that after an amplitude error A  on the ith qubit, the conditional 

time evolution transforms the state into a superposition of a state without condi­

tional time evolution after this amplitude error, and a state without conditional 

time evolution obtained after a combined amplitude and phase error A'P« on the 

¿th qubit. Inspecting table 1 we see that both errors A, arid A  7 4 lead to a different 

error syndrome. A measurement of the syndrome will then indicate one or the other 

error, A  or .4, /J, , which can then be corrected. Therefore the code (5.28)-(5.29) 

corrects properly even if the error is followed by a conditional time evolution.

We now briefly point out another desired feature of our code. Namely, this 

code is insensitive to the detuning of the laser used to perform the actual quantum 

computation in the ion trap computer. When the laser is detuned from the |0) - r  

|1 ) transitional frequency, then the excited atomic state gains an additional phase 

factor, so that the state |T(0 )) = a |0) -f 6 |1 ) would freely evolve into the state

|T(Q) = e |0 ) + 5e-,Ai|l) , (5.34)

where A is the detuning. This, of course, is detrimental to the error correction 

capabilities of any code since the decoding procedure might now wrongly interpret 

this phase change as a phase error. However, if the code is constructed in such a 

way that the number of excitations is the same in each word, then this overall phase 

will simply factor out and not affect the calculations in any significant way.
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5.4 Reliable Quantum Com putation from U nre­

liable Components

We have seen how to protect qubits against general error, and in particular how to 

protect an atom against spontaneous emission. However, this protection is rather 

“static”, i.e. our qubits are not evolving while errors occur. Suppose we would 

like to implement a Controlled-NOT between two qubits which can undergo an 

error during this operation. Is there a point to encoding these qubits in the first 

place, since the encoding and decoding procedures are just composed of a num­

ber of CNOTs (and other gates) which themselves can undergo errors? It appears 

that if we ( realistically) allow encoding and decoding to undergo errors then there 

is no point is protecting gates since this action introduces even more errors. The 

conclusion would be that quantum error correction cannot be used in quantum 

computation! The same conclusion was reached in 1930s about classical computa­

tion. Then, however, von Neumann [147] showed this to be completely a erroneous 

conclusion and he proved that a reliable computation (classical of course, as von 

Neumann did not know about quantum computation) is possible from unreliable 

components. IIis argument can directly be translated into quantum computing and 

this gives rise to the fault tolerant quantum computation, i.e., in von Neumann’s 

jargon, reliable quantum computation from unreliable components. We now present 

a sketch of this argument. This is intended only as a qualitative argument that the 

quantum error correction we have studied in this chapter can be applied to quantum 

computing in general, and no details will be given.

The idea of fault tolerant quantum computation [135] is to encode the qubits 

in such a way that the encoding does not introduce more errors than previously 

present. If the error stays at the same level we then keep performing error correction 

until the error has decreased in magnitude [135, 137, 148]. The present state of the 

art requires 5 — 10 qubits to encode a single qubit against a single error. It is the 

iterative application “in depth” of the encoding that will enable us to reduce error
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to an arbitrarily small level providing it is below a certain level to start with. In 

other words we will be encoding the encoding bits. Before we give more details let 

ns just recapitulate the main points about a quantum computer.

An input to a quantum computer is a string of qubits. For this calculation 

a quantum computer is viewed as consisting of two main parts: quantum gates 

and quantum wires. By basic quantum gates we mean any set of quantum gates 

which can perform any desired quantum computation. A universal quantum gate 

is the one whose combination can be used to simulate any other quantum gate. A 

quantum wire is used as a representation of that part of computation of any qubit 

where the evolution is a simple identity operation (i.e. no gate operates on the 

qubit), as well as the time the qubit spends during the gate operation.

For stable quantum computation, obviously, we require that the probability 

of error after the fault-tolerantly encoded basic gate is of higher order (i.e. the 

error is smaller) than the probability of error after the unencoded gate (that is the 

whole point of encoding and fault-tolerant error correction!). From this we derive 

the bound on the size of allowed errors in the wires and in the gates. When we 

encode the encoding bits again, we reduce the error further and can reduce the 

error arbitrarily for an arbitrarily long computation. Therefore given certain initial 

limits on the error rate in the gates and wires we can stabilize any computation to 

a desirably small error rate, given an unlimited amount of time. Consider a two 

input two output quantum gate. The probability of having any of the three basic 

errors in the first as well as in the second wire is »/ giving the overall first order 

wire error of 2tj. The error in the gate itself is e. We assume that the overall error 

of the whole basic gate is < 2// + e. Suppose that the basic gate is now encoded 

fault tolerantly against a single error of any kind, using l qubits. Then the overall 

second order error is at the end of the gate:

»/*(?/,£,/) lJ L A i y ) r t  + lS L J l r , f ( i - i U ) (5.35)

i.e. equal to having error in the wires (this time in second order) and not in the
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gates plus having error in the gates and not in the wires. The term /(/ — 1)/2 comes 

from choosing two out of / wires to err and the factor l4 derives from the use of l2 

gates, so that the error is transformed according to rj —> l2rj and is of second order. 

We require that the fault tolerant error correction reduces the error. Hence:

( l  -  ^ - ^ / V ) / 2c + 1 -U) < 2?? + c . (5.36)

As the RIIS is > rj, we simplify the above without a greater loss in generality to:

i -  !iLzHt>n>)p,  + i Q Q f V ( i  - / ' )  < ,  , (5 .3 7 )

The solutions to the equation derived from the above are:

1 ±,yfi -  2(/8t -  2/UV2)
(/6 -  2l*e)

(5.38)

We require that i] € 1Z (and that 0 < i) < 1/2) so that we have the following two 

regimes of error

1. 0 < i] < ?/+ and e < e_.

2. 0 < ?/ < ?/_ and e > e+.

where c± = (1 ±  \i\ — 2/~6). The output of the first encoded basic gate is fed into

the next one (or part of the output into one next basic gate and the rest into another 

next basic gate). It; is evident that if condition i holds, further encoding can only 

decrease the error. The residual error not taken into account is ~  /3(/2r/)3 =  !

(i.e. the second order error is not corrected by our encoding). In the worst case 

when c = e_ ~  l~8 we get ?/ ~  /~6, which means that the residual uncorrected error 

is ~  l~9. This error can accumulate over time if the computation is sufficiently long. 

However the residual error after n in depth encodings is which can made be

arbitrarily small using sufficiently large n. Therefore if the initial error per gate 

is sufficiently small, these gates can be used to perform arbitrary large quantum 

computations. If we need l — 10 qubits to fault-tolerantly encode one qubit, then 

the tolerant error rate is 10~b which a more careful analysis shows to be correct
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5.5 Conclusions

We have shown how to protect quantum information against any general error. 

We have then applied our formalism to protecting a two level atom against the 

spontaneous emission. We concluded that our code is able to correct a single general 

error and in addition errors due to the conditional time evolution to arbitrary order. 

It is the first code proposed so far that can correct a general error to first order and 

a special kind of error to all orders. This is an interesting result as it shows that it 

is possible to correct special kinds of errors to all orders. As some errors are more 

frequent than others it would be in our interest to correct those errors to higher 

order than less frequently occurring errors. We have adapted our code to correct 

errors due to the conditional time evolution between spontaneous emissions. Other 

applications will require different adoptions. The code presented here (similar to 

the one given in [22]) violates the conditions for quantum codes given in eq. (5.13) 

which shows that these conditions are overly restrictive, as they exclude codes like 

the one presented here that map different errors onto the same error syndromes. 

This can lead to the construction of shorter quantum error correction codes than 

expected from the quantum sphere packing bound. We than concluded that the 

code for correcting for the spontaneous emission would also correct for any existing 

laser detuning in driving the atoms to implement quantum computations. These 

results may become important in different fields such as quantum computation, the 

distribution of entangled particles and in quantum cryptography [150, 151, 152, 

153]. We also presented a heuristic argument for using error correction in quantum 

computing, which might play an important role in building the first actual quantum 

computer.



C h ap te r 6

C avity  QED Im plem entations of 

Purific a t ion P rocedures

6.1 Introduction

In Chapters 3 and 4 we analysed purification procedures, and their efficiency limits. 

Chapter 5 was then devoted to exploring the idea of quantum error correction aiming 

at protecting quantum information in noisy environments. We now look at practical 

realisations of purification procedures and also examine the connections between the 

two (c.f. [100]). We recall that purification procedures are based on Gisin’s original 

proposal [67] described in Chapter 3 using ‘local filters' to increase correlations 

between two entangled quantum subsystems. Following this a number of other 

schemes have been designed for the purpose of local purification [19]. All of these 

have one idea in common: they all rely on some form of classical communication 

on which subsequent post-selection is based. This means that if we start with an 

ensemble of N  pairs of particles'in a mixed state, the final pure state will invariably 

have fewer particles. This was seen in Chapter 4 as a consequence of the fact 

that local operations (i.e. generalised filters) cannot increase quantum correlations. 

We now show that although the increase in correlations cannot be achieved, an



C h a p t e r  C C a v i t y  QED I m p l e m e n t a t io n s  o f  ...

error correction procedure can always be applied locally, which will maintain the 

entanglement.

We introduce the Jaynes-Cummings model in section 6.2 [96, 154]. The cavity 

QED implementation of purification procedures will then be described using this 

model. In section 6.3 we present a simple model of atoms interacting ‘locally’ 

with two entangled cavities and give a number of feedback schemes by which the 

correlations might possibly be increased, without using any classical communication 

and post-selection. We show that each of these schemes fails, and we link this to the 

impossibility of superluminal propagation of any signal. At the end of this section we 

briefly show how non local interactions can easily be used to increase correlations. 

Using the error correcting methods of previous chapter we then present in section 

4 a simple example of how to encode two cavities against a single amplitude error 

on either cavity using four atoms.

6.2 Jaynes-Cum m ings M odel

'I'he .Jaynes-Cummings model (JCM) is a fundamental model widely used in quan­

tum optics [154]. Although at first sight is appears to be very simple, the model 

has been studied for more than thirty years and new, exciting and surprising dis­

coveries are still being made. The JCM is the first fully quantized model of the 

interaction between a two level atom (or indeed any other two level system) and a 

quantized, monochromatic EM field. In order to present this model, we shall first 

briefly describe the process of quantization of EM field.

6.2.1 Q uantization o f EM Field

bet us imagine a one dimensional cavity with perfectly reflecting mirrors, placed 

at 2 =  0 and z =  L, filled with a monochromatic EM field. In order to satisfy the 

imposed boundary conditions, i.e. the electric field has to vanish at the mirrors,
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whereas the magnetic field strength reaches its maximum, we must have:

2u 2Ex{t) = jq(t)s\nkz 

tn l ' 2 u j 2

Hy(t) = j J - ^ m c o s k 2

( 6 . 1)

( 6.2)

where kL = mr, n being an integer. Our choice of writing Ex(t) and Hy(t) in 

this particular form is immediately justified by observing the overall energy in the 

cavity, per frequency, which is given by:

W  = -  jf  (c0El  + noIIy)dz (6.3)

Substituting the expressions for Ex(t) and IIy(t ) and writing p — q we obtain:

W  = ^{p2 + ujq2) (6.4)

where we have used the fact that c = l / v//7o(ro and ui = kc. This is a familiar form 

of the energy of a unit mass harmonic oscillator at frequency to. It strongly suggests 

that the EM field should be quantized via canonically conjugate variables q and p 

(a more rigorous analysis shows that this is a correct way of proceeding). It will, 

therefore, exibit, all the properties of the quantized mechanical harmonic oscillator 

(QMHO). In particular, the energy will be quantized with the eigenvalues having 

the form

En = huj(n -fi | ) ,  n =  0 ,1 ,2 ,... (6.5)

Invoking raising and lowering operators, and a we can write:

h
<I 9

P P

H' All)' ¿to

■ *  - 1 \  • * \ /~ ( a ~  0 )

(6.6)

(6.7)

Therefore, the quantized electric field, in a one dimensional cavity can be written 

using o4 and a as
« / hi

( 6 .8 )Ex(t) = t / —— x(a + (A) sin k:
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where x is a unit vector in the x direction, and y - ^ i s  the so called electric field per 

photon. We note in passing that since q and p obey the Heisenberg commutation 

relations, i.e. [q,p] = —i, so will the quantized E and II. Thus, similar uncertainty 

relations to the ones obeyed by q and p are also obeyed by the quantized E  and 11 

fields. In what follows we deal exclusively with quantum systems, so that we omit 

hats which are superfluous.

6.2.2 Spin-B oson  Interaction Dynam ics

The time development of an isolated quantum system is completely determined 

once we specify the corresponding Hamiltonian. Let us, therefore, represent the 

states of the atom by vectors \g) (ground) and |e) (excited). The field is at the 

same time represented by the energy eigenvectors of a QMHO, i.e. the number 

states |n). Invoking the well-known action of raising and lowering operators:

aT|n) = \/n  + 1 \n +  1) (6.9)

a|n) =  y/n\n — 1) (6.10)

and taking the energy of the ground state to be zero, and that of the excited state 

to be liuJo, we can write the Hamiltonian of the composite atom-field system as:

II — hu)0|e)(e| + a\ifiu> -f V (6.11)

where we omitted the ‘vacuum field’ zero-point energy-term from the field. The 

interacting Hamiltonian, V, is given by the dipole-field interaction energy:

V = - e r E  =  - e x E s (6.12)

where e is the electric unit charge and is not to be confused with the excited state, 

|e). Taking the Rotating Wave Approximation, i.e. ignoring the rapidly varying 

terms we get the following Hamiltonian:

/ /  =  hu!o\e)(e\ ~f a \ih u >  +  fiA(«V_ +  acr+) (6.13)
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known as the Jaynes-Cummings Hamiltonian. Here

A =  - h
(6.14)

Note that the interacting term has a very simple and natural interpretation: the 

first interaction term indicates that the atom is de-excited and the field receives 

this quantum of excitation, while the second term is the exact reverse. In general, 

after some time t, the atom and the field are in an entangled state of the form:

OO

W ) )  = ]C (a»(0L<7} ® |n) + bn(t) |e) ® \n)) . (6.15)
n—0

Solving Schrodinger’s equation we obtain

tin(t) = acn cos \ s /n t  -  ibcn_x sin \y /n t  (6.16)

bn(t) — bcn cos Av/m +lt — iacn+i sin X y n + l t  (6.17)

where the atom and the field are initially in a disentangled state of the form
OO

\\l)(t =  ())) =  (a\g) + b\e)) ® cn\n ) • (6.18)
n=0

We will use the evolution equations eq. (6.17) in the following section. We now 

turn to describing atom-cavity models used to implement the local concentration 

of entanglement.

6.3 A tom -C avity  M odels

We present here a simple model which aims to increase the amount of entanglement 

between two entangled subsystems. The model we present employs a technique of 

performing ‘local’ complete measurements. By this, we mean that when the two 

quantum systems are entangled we perform complete measurements on either sub­

system separately, while not interacting directly with the other subsystem. We may 

regard this result to be counter-intuitive — it does not seem at first sight possible 

that purely local operations could increase the non-local quantum features. There
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have been many schemes devised whereby correlations can be increased by local 

measurements on an ensemble of systems combined with classical communication, 

followed by a procedure of post-selection. Indeed, the model presented here can 

also be adapted readily to represent such a scheme. However, we verify that by 

local measurement alone, and without post-selection based upon classical commu­

nication, the correlations do not increase. This, in fact, verifies general results 

presented in Chapters 2,3 and 4.

The models used to demonstrate this are of the cavity QED type, and are both 

easy to understand physically and simple to analyse analytically. Our model is also 

easier to implement physically than the ones based on EPR-photon pairs [19], since 

it only requires a single pair of entangled cavities. A good outline of cavity QED 

is given in [155]. We consider two optical cavities, the field states of which are 

entangled number states (for simplicity)

where the subscripts ‘A’ and ‘B’ refer to the two cavities, and without loss of 

generality, we assume that |a | > |/3|. This is a pure state but it is not maximally 

entangled. The aim is to produce the state:

i.e. we have made a=/3=^«, which is maximally entangled.

Two-level atoms are sent, one at a time, through cavity A  and interact with 

that individual cavity field, via the Jaynes-Cummings Hamiltonian [154], for a pre­

determined time period. After each atom passes through the cavity, a measurement 

is made which projects the atomic state into either the ground state or the excited 

state. Due to the entanglement developed between the atom and the field in cavity A 

during the interaction, this measurement also collapses the joint cavity A cavity 

B  field state into a different superposition, one with either the same number of 

photons in cavity A, or with one extra photon respectively. By successively sending

W ab = a'ln>Jm>fl + /V)J™%, (6.19)
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atoms through the cavity for interaction periods determined from the state of the 

previously measured atom, a feedback mechanism can be set up whereby one might 

expect to optimise the probability of achieving the state defined in eq. (6.20). 

Similar schemes have been used on single cavities for quantum state-engineering 

[1561.

We also consider extensions to this procedure. Firstly, we mention procedures 

for interacting locally with both cavities, the qualitative results of which are the 

same. And secondly, we give two examples of non-local interactions, which give 

quite different results to the above local procedures.

6.3.1 Cavity M odels W ith Local Feedback

The first model involves sending atoms through cavity A only, a schematic of which 

is given in Fig. 6.1; we assume the initial joint cavity field state is given by (6.19). 

The first atom is in the excited state, and so the initial atom-field state is

I'Jh) = +  PW )A\m!)B) ® |e)_4. (6.21)

After interaction for a time 6 , determined from the atomic time of flight, the joint 

atom-field state becomes

I'l'/) =  {otan{ti)\n)A\m)B +  (3an'(ti)\ri)A\m')B) <g> \e)A

+ {abn(tx)\n + l )A\m)B + (3bn'(tx)\ri +  1) J m % )  ® \g)A (6.22)

where the coefficients are given by an(t¡) = cos (—j^-), ani(t\) = cos 

6n(h) = — ¿sin ( ^ k ), K'(i\)  =  -¿sin  ( ^ ±), and II, = 2Ay/i +  1 — R0\fT+T.

We now arrange that the velocity of the atom, and hence the interaction time 

with the field, is such that

««n(6) =  /i«n'(D i (6.23)
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in which case the joint atom-field state becomes

= aan(tl )(\n )A\m)B + |n ') J m % ) ® le)^

+ (abn(ti) |n + l )A\m)B + /3bnl(ti)\n' +  1)^1»™%) ® \g)A . (6.24)

From this we see that if we measure the atom in the excited state, the resulting 

cavity field state is maximally entangled. The probability of measuring the excited 

atomic state is

Tj(e) = 2\aan( ti)\2 . (6.25)

If we were to prepare a whole ensemble of cavities in precisely the same initial 

state in eq. (6.21), then after measurement on all of the ensemble members, we 

would have prepared approximately (100 x P\{e))% of the cavities in the maximally 

entangled state in eq. (6.20). We can discard all the cavities for which we measured 

the atom in the ground state, and we will have a whole sub-ensemble of cavities 

for which the entanglement has increased. This is the post-selection procedure 

mentioned earlier, and always requires that measurements on the whole ensemble 

be ‘thrown away’ in order to increase the entanglement of a sub-ensemble.

What we wish to do here is to increase the entanglement on an individual pair 

of entangled cavities. Instead of performing one measurement on an ensemble of 

cavities, we keep performing a. number of measurements on this single pair until we 

achieve our aim. When the atom is measured in the excited state, we are there. If 

the outcome of the atomic state measurement was \g)A, the final cavity field state 

would be the corresponding field state in eq. (6.24), which is still entangled, but 

not maximally so. We can now use this field state as a new initial entangled cavity 

field. In this way, we would hope that it is just a matter of sending through ‘enough’ 

atoms until the desired state is reached.

Since the field state corresponding to a ground state measurement involves the 

(n + 1) Fock state, sending through another excited atom allows the possibility of
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B

Figure 6.1: The experimental setup for local interactions: two cavities are initially 

entangled in a state of the form =  ct\n)A\m)B + ¡3\n')A\m>) and atoms are

sent through cavity A only.

generating an (n + 2) Fock state, which takes us further away from the initial state 

in eq. (6.21). We thus send through a ground-state atom, which can remove the 

extra photon.

Using, therefore, this as the starting field-state, we define the ‘new1 a and ft as

oibn( t x) , ftbnfttx)
a ft' (6.26)

U “ 6» ( O )2 +  +  UiK'(U)]‘
and the joint atom-field state after sending through a ground state atom for time 

/2, such that 6n(i2)«' = bnt(ti)ft\ becomes

Ilh/) =  M h )® '\n  + 1) J m ) fl + an>{t2)ft'\ri + ® |g)A

+  bn( t 2)a '  (\n)A \m)B +  |« /) -A|m ') B ) ®  |e ) -4 .

As before, if the atom is measured in the excited state, then the cavities are left in 

the maximally entangled field state, once normalised, as desired. The probability
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for this measurement is

P2(e) = 2\bn(t2)a '\ \  (6.28)

It, is worth noting at this point that the state of the field, after measuring a ground 

state of the atom, is in itself less entangled than the initial state in eq. (6.19). This 

is a direct consequence of the concave property of entropy when applied to either 

reduced density matrix. Namely, the fact that in one case, when registering an 

excited atom, the field becomes more entangled than previously (i.e. the entropy of 

either reduced system is greater after the interaction), implies that the entanglement 

of the other field state, when we register a ground atom, is ‘smaller’ than previously 

(i.e. the entropy is smaller than before the interaction). This can be quantified as 

follows. Let the reduced field state after the interaction be

p'a = PPa\ +  i 1 * P)PA2 (6.29)

where p'A is the reduced density matrix for cavity A  formed from eq. (6.24), and 

p'Al, p'A2 are the parts of p'A corresponding to the measurement of an excited or 

ground state atom respectively. Now using the concave property eq. (3.19) we see 

that

s(M  = s(p'A)>  Ps<j>'M) + ( i  -  P ((¡.so)

where pA is the reduced density matrix for cavity /I before the interaction. The 

first equality follows from the fact that the reduced density matrix does not change 

during this interaction, which can readily be derived for this example, and is shown 

generally in the next section. It follows that

S(pa) > p(S(pa) + A) + (1 - p)S{pA2) (6.31)

where A is the amount by which the entropy (and hence entanglement) of the 

reduced subsystem is constructed to increase upon measurement of |e), by arranging 

atomic interaction times. So,

I |)
(6.32)



C h a p t e r  6 C a v i t y  QED I m p l e m e n t a t io n s  o f  ... 152

Hence, it is immediately seen that

S(pa) > S(p'A-2) (6.33)

and the result is proven.

A small amount of simple algebra applied to eq. (6.23) shows that whatever the 

initial values of a  and /?, the ratio

min(a, /3)
(6.34)max(a, (3)

always decreases unless n = »/, i.e. the cavities are not entangled in the first 

place (a ratio equal to unity implies maximal entanglement). We thus have that 

|cv'| > |cv| and j/Tj < \/3\. It is readily seen from this, and the fact that |«,(/)| < 1 

and |6,(i)| < 1, that

E2(e)max — 2|/T|2 < Pi(e)max =  2|/?|2 . (6.35)

Thus, there are two effects each time an atom is sent through the cavity ..  the

first is that the probability of detecting an atom in the excited state, and hence 

collapsing the field state to the maximally entangled form, on average decreases 

with each atom that goes through; and the second is that the field-state if the 

atom is measured in the ground state becomes successively more disentangled. The 

effect is to make it successively more likely that the field will become completely 

disentangled, rather than completely entangled, which was the original aim. This 

can be seen mathematically by adding up the probabilities of detecting an atom 

in the excited state after sending through exactly N  atoms. If the probability of 

detection in state |e) after the i-th atom is a,-, and the corresponding probability 

for |g) is 5,', then the probability of detection in |e) after A'-atoms is

da +  ho«i +  h()5]a > +  606162113 -f 606,62630,1 +  ... +  6()...6;v -in ,v  

— (1 — 60) + 60( I — 61) + 606 ] (1  — 62) + 606162(1 — 63) T ... + 60—6tv—i(i -  6iV)
N

= 1 -  I ]  *>i- (6.36)
1=0
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The above product term is always less than unity since each and every bt is indi­

vidually less than unity, and similarly is always positive since all b{ are individually 

positive, so the probability of detection of |e) after A'-atoms is less than unity. In 

the limit of N  —> oo, it can be verified by a computer program that the above prod­

uct always tends to the value of 2\f3\2. This result has the following consequence. 

In the limit N  —> oo we either register a maximally entangled state or a completely 

disentangled state. However we could arrange the atom-cavity interaction time to 

be such that this happens when the first atom goes through the cavity. In this 

case it can be easily shown that the probability for the maximally entangled state 

to be registered (i.e. measuring the excited atomic state) is exactly 2|/3|2. Thus, 

no matter how many atoms we send through the cavity (one or infinitely many), 

the highest probability of reaching the maximally entangled state is always less 

than unity. We thus see that this scheme cannot increase correlations between two 

entangled systems. We also note that the efficiency of 2\f3\2 is much greater than 

the one given in [19]. In fact, if we confine ourselves to operation on single pairs 

at a time, then the scheme presented here is the optimal one, in the sense that it 

achieves the highest possible entanglement at the end [157].

We note also that we do not have to aim to achieve maximum entanglement 

for the particular initial state given by eq. (6.21). We could continue to send, for 

example, excited atoms and simply hope to achieve increased entanglement for any 

state. However, the same arguments given above also show that we cannot increase 

the entanglement of both field states corresponding to the two atomic measurement 

outcomes, as eq. (6.33) shows.

We should note that if it was possible to increase entanglement by the above 

local scheme, we would have a means of superluminal communication. Namely, the 

sender of the message could change the entanglement by operating locally on his 

cavity which could then be detected on the other end by the receiver in possession 

of the other cavity. The communication would then proceed as follows; two partic­

ipants would initially share a number of not maximally entangled cavities. Then,
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if the sender does nothing on one of his cavities, this could represent ‘logical zero’, 

whereas if the sender maximally entangled the cavities this would represent ‘logical 

one’. After sharing the entangled sets of cavities, the two participants could travel 

spatially as far away from each other as desired. In this way, they would be able to 

communicate, through the above binary code, at a speed effectively instantaneously 

(only governed by the time to actually prepare the binary states, and to measure 

them at the other end). Therefore, we see that the impossibility of locally increas­

ing the correlations is closely related to Einstein’s principle of causality. This is 

a curious consequence of quantum mechanics, the postulates of which contain no 

reference to special relativity. Indeed, this could be turned upside down, and viewed 

as one reason why the above (or any similar) scheme would not work.

We thus find that the above scheme cannot increase correlations by local actions 

on one cavity alone. We might expect to compensate for this by sending indepen­

dent atoms through both cavities, and arranging a feedback mechanism based upon 

classically communicating the knowledge of each state to the other side. In this 

way, we approach more closely the scheme of classical communication with post 

selection [67], but hope to replace the post-selection procedure with that of sending 

through multiple atoms until we achieve success. We would also expect to avoid 

superluminal communications since the method inherently involves classical com­

munication between the two observers. The analysis for this problem is very similar 

to that given above for the one-atom model, except that there is much more free­

dom to choose which state to measure and how to optimise it. Following through 

a similar reasoning as in the single atom model, it is readily deduced that there is 

no way in this scheme to increase correlations. There are numerous variations on 

this above scheme: maximising the probability of detection in |e)4 |e)B, minimising 

the rate of change of a  and /3, and so on, but the basic fact that the probability is 

never identically unity for any number of atoms remains the same. These results 

are in complete agreement with our condition E3 in Chapter 4, that the amount 

of entanglement (or, more precisely the average amount of entanglement) cannot
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increase under local measurements aided by classical communications. It should 

also be clear that “feedback” schemes are of no help here. This is because if Al­

ice and Bob perform local general measurements and then, upon communicating, 

perform another set of local general measurements, the combination of the two is 

yet another local general measurement and hence cannot increase the amount of 

entanglement. Namely,

£  c i® Di{£  Ai ® B, .4! ® } Cj ® =

=  Y . i C j A i )  ®  ( D j B i )  p a b  { C j A i ) '  ®  ( D j B i ) '  . (6 .3 7 )
ij

So, now we confirmed that entanglement cannot be increased locally. This means 

that if Alice and Bob start with a completely disentangled (separable) state, they 

cannot create entanglement locally. To create entanglement we need some no-local 

action, which is what we present next.

6.3.2 Increasing Entanglem ent Non-Locally

We now present two simple examples showing how a nonlocal operation can increase 

and, in fact, create correlations and entanglement. The procedures described here 

can be used to prepare initially entangled states.

6.3.2.1 M ethod  1

Suppose that the two cavities, A and B, start disentangled in the state:

\(t)cav)^B ~  ~7|l0),ll0)fl • (6.38)

Let us send an entangled atomic pair through the cavities, each atom going through 

one cavity only, with the initial atomic state:

\4>atom)AB ~  y=j(\€)A I#)b d* |e)̂ |) • (6.39)
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After the interaction for the same time t the joint state will be:

Therefore, by simply setting b0(t) = 0 we end up with certainty in the maximally 

entangled field state. Hence nonlocal interactions can, as expected, increase and 

create correlations and entanglement. The difference between this scheme and the 

previous two is that entanglement is being transferred to the cavities, from the 

atoms. This allows the cavity entanglement to ‘increase’, but at the expense of the 

entanglement of the atoms.

6.3.2.2 Method 2

This method involves only one atom, first interacting with one cavity and then with 

the other. This type of “entanglement generation” has been analysed in a number 

of other places [158]. Let the initial state of ‘atom-ffields’ be:

The atom now interacts with the cavity B for time t2 after which the final state is

lc ) l^),4 1^) B 1

After interaction between the atom and the cavity A for time t\ the state is

(M 2)

Choosing a0(t2) =  0 and aQ(tx) =  50(C) =  the above reduces to:

(6.44)

which is the desired, maximally entangled state of the field, 'rims, the method 

achieves an entangled cavity state by creating an entangled atom-cavity state, and
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6.4 Local Error Correction Preserves Correlations

We now show that although entanglement cannot be increased or created locally, 

still local error correction can be used to preserve an initially present amount of 

entanglement. We first describe a general method and then implement it using 

cavity QED techniques.

6.4.1 Theoretical Considerations

Imagine two initially entangled quantum systems A  and B distributed between two 

spatially separated parties. Let, for the sake of simplicity, both /I and B  be two 

sp in -| particles in the initial EPR-like state

\*A+B) = ct\0)A\l)B + p \l)A\0)B (6.45)

where the first ket describes the system A and the second the system B. Let both 

A's particles be encoded locally (i.e. adding locally a certain number of auxiliary 

qubits and performing local unitary transformations to encode) in order to protect 

their own qubit against a desired number of errors. We suppose that they both 

use the same coding, with the code-words denoted by |C°) and 1C’1). After the 

encoding, the state is therefore

| ^ +B) = a | C ^ ) |C %  +  / ? |C ' ) J C %  . (6.46)

Notice that the entanglement between the systems /I and B is not changed by the 

encoding procedure, since local unitary operations do not change the spectrum of 

the reduced density matrices.

Let this state now be corrupted by errors, B, which are local in nature, after 

which we perform the projections in eq. (5.4) of chapter 5 to obtain

’ A + B >' =  "  f t  I c ° A  f t  I c %  +  0 f t | c p  f t  |c °> B (6.47)

We wish to show that the error does not change the value of the entanglement. For
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this we compute /Fs reduced density matrix:

Pa  = Trs  ( | a + b  ) ' ( 0

=  ( C %  È i \ C ° ) B {  M 2É ,  IC ° ) A ( C X  È,  +  |/3|2 È, \ C ' ) A ( C \  Ê,  }  ( 6 .4 8 )

which obviously has the same entropy as the original state in eqs. (6.45,6.46) and 

eq. (6.47). In the above derivation we used the relations in eq. (5.11) such that

(C % £ :,E j|C‘% =  ( C l \B Ei E j \ C l ) B (6.49)

= ü . (6.50)

Thus the entropy of the reduced density matrices of the initial pair of encoded 

systems, and of the systems after undergoing errors are both the same, indicating 

that the correlations and thus the entanglement do not change during the above 

described process. By a process of introducing more local degrees of freedom into 

the problem, we are able to maintain non-local quantum correlations. So, in fact, 

this process does also involve discarding information, but is different to the post 

selection previously described. This is so because all the error correcting particles 

are introduced locally, and do not form a part of the original ensemble.

6.4.2 Exam ple W ith Cavities

We now present a simple example of how to locally preserve entanglement between 

two cavities in the state

q I^)/i I0.b T /5|l)^|0)jg (6.51)

against a single amplitude error (action of ax Pauli operator) on either cavity. For 

this purpose we locally introduce a pair of atoms to each cavity, all of which are 

in the ground state. These atoms interact identically with their respective cavities. 

We also allow errors to happen to the atoms, as long as there is no more than one 

error on either side, A or /i. We would like to implement the following interaction
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A

|g>

|g>

l«>|i> +  |i> |o>

-e -

-e-

- p  B
- e - |g >

—  |g>

Figure 6.2: The encoding network for protecting against amplitude errors is shown 

in the upper diagram: the encircled cross denotes a NOT operation while a dot 

denotes a control bit, together making a CNOT operation. The atoms are initially 

in their ground states, and the order in which the gates are executed is irrelevant. 

The lower diagram gives a truth table for the CNOT operation; here, ‘O’ and ‘T ’ 

represent control and target bits respectively.

in order to encode the state against an amplitude error [21] (four additional atoms 

for each cavity are needed to correct against a general type of single error [131])

|0>ls)ib)2 —* |0 )|^ )jb )2 (6.52)

|l>li?)ili?>2 —* l1)le)ile)2- (6-53)

This is, in fact, an action of two CNOTs, with the control bit being the state of the 

cavity and the target bits being the atoms 1 and 2. We therefore perform identical 

interactions on both cavities and their atoms. This is shown schematically in Fig. 

6.2. The state of the whole system (‘2 cavities + 4 atoms’) will be after the encoding
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procedure,

((¡.54)

So all we need to know is how to implement a CNOT operation between the cavity 

and one atom. This is done in the following way [159]. Let the atom be sent 

through the cavity, which in our case contains either one or no photons, interacting 

resonantly with the field. Let us in addition have a ‘classical’ light source (a laser) 

resonant with the dressed atom-field transition 11)|c/) — > |l)|e). Due to the vacuum 

Rabi splitting this will not be resonant with |0) |<gr) — y |0)|e) which is precisely what 

we need. In this way the initial ‘cavity-f atom’ state undergoes evolution of the 

form

which is a CNOT gate. By repeated action of this gate we can create the state in eq. 

(6.54). Then if a single amplitude error occurs on either side (e.g. a spontaneous 

decay of the field) we can correct it by applying a unitary operation to the cavities 

to restore the original state, depending on the state of the four atoms [21].

Let us give a simple example of how this would work. Suppose that only the 

cavity A, after encoding, undergoes an amplitude error resulting in, after a small 

rearrangement, the joint ‘cavities -f atomsTenvironment’ state of the form (eq.

To recover the original state we first have to decode the above state. This is just

(cv|0) + /?|l))|i/) — > «|0)|flf) + /? |l)|e ) (6.55)

(5.2))

( q ' | 0 ) a I1 ) ì3 +  P \ 1 ) a \g ) b ) \ 9 , 9 ) a  \ 9 , 9 ) b ) \ R o )

+  M O a IOb +  /2|0).4 |0)fi)|e> e)/t 9)b )\R') ■ (6.57)
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That decoding is the inverse transformation of encoding can be seen from the fact 

that if there was no error than we would just obtain the original state at the 

end, where both the atoms would be in the ground state. Otherwise we would 

obtain one of the other three possibilities for the state of the two atoms (ground- 

excited, excited-ground or excited-excited). In this second step we can make a 

measurement on the atoms and depending on the outcome apply an appropriate 

unitary transformation to the cavities. In this case we only have to consider cavity 

A: if both of the atoms are in the ground state then we do nothing because the 

joint-cavity state remains unchanged, whereas if both of the atoms are excited we 

apply a NOT operation to cavity A. This we do in a fashion similar to performing 

CNOT. We could, for example, send an excited atom through the cavity and tune 

the external laser to the dressed transition |0)|e) <— > |l)|e). In this way we recover 

the state in eq. (6.51). We emphasise that the form in eq. (6.57) is incomplete since 

the terms arising from all the other amplitude errors are missing (corresponding to 

the cavity B  and the atoms); however, it can easily be checked that the above 

scheme would also accommodate for this.

6.5 Conclusion

In this chapter we presented simple models to demonstrate that correlations cannot 

be increased by any form of local complete measurement. The consequence of this 

is that any purification procedure has to represent a post-selection of the original 

ensemble to be purified. Classical communication is an essential precursor to the 

post-selection procedure — we cannot post-select without classical communication, 

but the post-selection procedure is necessary to prepare the maximally entangled 

subset. We then showed that we can locally ‘protect’ the entanglement by standard 

quantum error correction schemes, such that the correlations (and therefore the 

entanglement) are preserved under any type of complete measurement, which can 

be viewed as an error in this context. We presented a simple example of how to
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encode two cavities against a single amplitude error. Thus, local error correction can 

protect nonlocal features of entangled quantum systems, which otherwise cannot 

be increased by any type of local actions which exclude classical communication 

and post-selection. We would like to stress that as far as the implementations of 

quantum gates are concerned apart from cavity QED there are other possibilities, 

most notably a linear ion trap described before. However, the formalism describing 

the linear ion trap quantum computation is exactly that of the Jaynes-Cummings 

model used throughout this chapter. Therefore all the practical schemes that we 

have presented regarding purification procedures and error correction have a more 

general character and can immediately “translated” into a linear ion-trap quantum 

computer.



C h ap te r 7

Conclusions

In the last chapter we present a very brief summary of the main results of this 

thesis. We also introduce a number of open questions in quantum information 

theory related to this work, which will be investigated in the future.

7.1 Summary of the Thesis

In this thesis we presented basis of entanglement quantification in two or more 

entangled quantum subsystems. The central idea involves quantifying the amount 

of entanglement in a given state by calculating its distance to the set of disentangled 

states, i.e. to a closest disentangled state. There are two quantities to be specified 

in this definition. One is the distance measure to be used, and the other one is 

the form of a disentangled state in other words, what we mean by “disentangled” . 

We have seen that the distance measure very much depends on the physical way of 

distinguishing quantum states. We have presented three conditions E1-E3 that are 

based on physical reasoning and which any measure of entanglement has to obey. 

We have seen that there is an infinite number of measures of entanglement satisfying 

these conditions. However, if measurements are performed on an ensemble in a given
w©

quantum state, au<7vwish to distinguish it from another state, then asymptotically 

the quantum relative entropy will be the “right” quantity to use. In this ease we
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saw that the amount of entanglement is defined as

E(cr) = mmS(a\ \p)  , (7.1)p€V

where D is a set of all disentangled states. Otherwise S  can be replaced by any 

other distance measure such that E satisfies E1-E3. For two subsystems we define 

this to be composed of all p of the form

Pu = YlPiPi®P2 • (7 -2)

This definition is intuitively attractive and indeed these states are the only ones 

from which we cannot distill any entanglement by local operations and classical 

communication. Moreover, for pure entangled states we recover the von Neumann 

entropy of the reduced subsystems, which is a good measure of entanglement for 

pure states from the Schmidt decomposition procedure and classical data and quan­

tum entanglement compression point of view. For more than two subsystems there 

is an ambiguity in what we call a disentangled state. We have suggested two basic 

forms, but we believe that there is no unique way of doing this and the definition 

should depend on operational procedure used for quantification. We also presented 

an argument for using the above measure as the ultimate efficiency of purification 

procedures for two qubits. We saw that if entanglement as defined above is additive, 

i.e.

E{?\ ® er2) =  jF(ctj) + E{a2) , (7.3)

then from an initial ensemble of N  pairs in state a, we can distill M  singlets such 

that

NE(cr) > M in 2 . (7.4)

We have found no counter example to additivity using numerical methods for min­

imizing the von Neumann relative entropy. We hope that future work will find a 

purification protocol which will asymptotically achieve the equality in the above in­

equality in eq. (7.4). For pure states Bennett et al [110] have already presented such 

an asymptotic protocol, which, we reviewed in Chapter 4. One of the most attractive
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features of this way of quantifying entanglement is that it can directly be gener­

alized to any number of subsystems of any dimensionality. The real impediment 

to progress here is the fact that any concrete calculation becomes exponentially 

more difficult with the increase in dimensions or number of systems in spite of the 

Caratheodory theorem.

We have then explained the basics of quantum error correction. We have derived 

the condition that code-words \Ck) have to satisfy in the presence of errors. The 

conditions derived are very simple and read

(Ck\Pl}AaA 1 Ps\Cl) =  ya^ % ,  , (7.5)

where P's are phase errors / l ’s are amplitude errors, whose subscripts indicate the 

position of the error and is any complex number. The physical intuition behind 

them is clear: different codewords should be transformed into mutually orthogonal 

states after errors have happened, since then we can distinguish them with certainty 

and correct the errors. Curiously, the same code-words do not have to go into 

orthogonal states after error, and can be corrected as long as all the code-words have 

the same overlap with the errors. This feature is a purely “quantum effect” and does 

not exist in classical error correction. We then applied this formalism to protecting 

information written into an atom against spontaneous emission into vacuum. We 

have shown that when spontaneous emission is viewed as a combination of two 

basic errors-jump and no-jump error, then the no jump part can be corrected to all 

orders of magnitude. Correcting for the spontaneous emission is very important in 

the ion-trap quantum computation, since spontaneous emission will be the ultimate 

obstacle to successful information processing if information is encoded into atoms.

We have then used a cavity QED example to show how two entangled cavities 

can be manipulated in order to create, and distill entanglement. This also provided 

a tool for encoding each of the two entangled cavities with atoms to protect entan­

glement locally. This is an interesting result: although entanglement (non-locality) 

cannot be increased by local operations and classical communication, nevertheless,
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local encoding can preserve entanglement (i.e. non-locality).

7.2 Further Work

We have uncovered the number of interesting questions during the course of this 

research. It fact, it could be said that a number of questions initiated by this work 

by far outstrips the number of problems solved. We feel that in order to put the 

results of this thesis into the right perspective it is necessary to summarize future 

research prospects in quantum information theory.

• Uniqueness of the entanglement measure. The conditions E1-E3 presented 

in Chapter 4 do not lead to a single measure of entanglement as shown by 

presenting a number of examples of measures which satisfy them. An open 

question is what conditions should be added to E1-E3 in order to single out 

the relative entropy of entanglement as a unique measure of the amount of 

entanglement. It is reasonable to ask for the following additional properties:

1. E(a) reduces to the von Neumann entropy for pure states.

2. E[a) is continuous.

3. E(a) is additive, i.e. E{o{ ® a2) =  E(ai) -f E(a2).

We proved condition 1 in Chapter 4, and Donald has proven condition 2 

[160]. Condition 3 has only been confirmed by numerical calculations and 

no counter-example has been found. We conjecture that the only measure 

of entanglement that satisfies E1-E3 and together with the above conditions 

1 — 3 is given by

E(a) minS((r\\p) (7.6)

where 8 (a\\p) is the quantum relative entropy.

• Closed form of entanglement. At present, calculating the Relative Entropy of 

entanglement involves minimization of the von Neumann relative eutropy. We
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would like to find a closed form for this expression so that given a bipartite 

qubit state we can calculate its entanglement without need for computation 

minimization methods.

• Channel Capacities. We have explained in Chapter 3 that there are two dif­

ferent aspects of a quantum channel: it can either be used for classical com­

munication, in which case the Holevo bound provides the value of its capacity, 

or it can be used for transmitting an unknown quantum state from Alice to 

Bob. This second aspect is directly related to distributing entanglement and 

teleporting quantum states and can be introduced as follows. Aiice and Bob 

wish to share a certain number of entangled pairs in order to ensure a perfect 

teleportation of an unknown state. Initially, Alice prepares an entangled state 

of two subsystems | VI/ 4jg) and sends the subsystem B  to Bob through a noisy 

quantum channel described by a complete measurement

where B indicates that the domain of action is the subsystem B only. Let 

the state of A +  B after the action of the channel be given by Pa b - Then the 

quantum capacity of this channel will be understood as the largest amount of 

entanglement left after the transaction. It would follow that if 1 . the above 

was the best way of transmitting an unknown state, and 2 . the relative en­

tropy of entanglement is indeed an achievable upper bound for purification, 

then the relative entropy of entanglement maximized over all the entangled 

input states would indeed be the quantum capacity of a quantum communi­

cation channel. This question is of a general importance and needs further 

investigation.

• Local extraction of information. In Chapter 4 we linked the idea of distin- 

guishability of quantum states to the amount of entanglement. We empha­

sised that the asymptotic distinguishability is governed by the von Neumann 

relative entropy. It is known that this result is achieved by performing, in 

general, a non-local measurement. An open question is whether the same can
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be achieved locally.

• Purification of more than 2 particles. We have shown that our way of quan­

tifying entanglement can naturally be extended to more than two entangled 

subsystems. Further investigation into this area would help us understand 

the notion of a disentangled state and might be useful in practical quantum 

cryptographic protocols.

• Efficient Purification procedures. At present there exists no purification pro­

cedure for mixed bipartite states that achieves the upper bound given by the 

relative entropy of entanglement. Search into this question would be worth­

while because of possible benefits in efficient quantum cryptography and com­

munication in general.

There is a number of other interesting and related questions to investigate, and 

the above are only the immediate next possibilities. Throughout t his thesis we have 

emphasised the relationship between quantum mechanics and information theory. 

We have seen the implications that physics has for information theory in the sense 

that the information processing efficiency depends on whether the processing is 

based on classical or quantum laws. On the other hand, the ideas from informa­

tion theory have been very useful in understanding the concept of correlations in 

quantum theory, and, in particular in this thesis, have directly provided a basis for 

understanding purely quantum correlations, i.e. entanglement. In the long run, we 

might hope to put quantum mechanics entirely on information theoretic footing. 

This implies writing down axioms of information processing whose consequences 

would result in quantum mechanical laws. This information-theoretic way of in­

terpreting physics might elucidate further the structure and character of quantum 

mechanical laws and perhaps resolve the current mysteries encompassing t he mea­

surement problem and the arrow of time. This is a good task for the next century, 

and a positive note on which to end this thesis.
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