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Abstract— We propose a novel strategy to construct optimal
controllers for continuous-time nonlinear systems by means
of linear-like techniques, provided that the optimal value
function is differentiable and quadratic-like. This assumption
covers a wide range of cases and holds locally around an
equilibrium under mild assumptions. The proposed strategy
does not require solving the Hamilton-Jacobi-Bellman equation,
that is a nonlinear partial differential equation, which is known
to be hard or impossible to solve. Instead, the Hamilton-
Jacobi-Bellman equation is replaced with an easy-solvable state-
dependent Lyapunov matrix equation. We exploit a linear-like
factorization of the underlying nonlinear system and a policy-
iteration algorithm to yield a linear-like policy-iteration for
nonlinear systems. The proposed control strategy solves optimal
nonlinear control problems in an asymptotically exact, yet still
linear-like manner. We prove optimality of the resulting solution
and illustrate the results via four examples.

I. INTRODUCTION

The solution of optimal control problems for nonlinear
systems hinges upon the solution of the Hamilton-Jacobi-
Bellman (HJB) partial differential equations (PDE), which
can be extremely difficult or impossible to solve. Many
approximation methods for solving the HJB PDE have been
developed, under a variety of assumptions, at the cost of
some optimality loss [1]. An alternative way for solving
optimal control problems for nonlinear systems is based on
Pontryagin maximum principle, which provides necessary
conditions of optimality. Direct discretization is another
approach for solving optimal control problems; it is often
used for problems over finite horizon and to handle con-
straints. The resulting problem can be efficiently solved due
to the existence of fast and reliable nonlinear programming
solvers, which make this the most widely used and popular
approach. However, the HJB equation gives both necessary
and sufficient conditions for an optimal feedback control
solution and provides the optimal value function over the
entire state space [1]. This makes a solution based on the
HJB approach unique. For this reason, in this paper we study
unconstrained optimal control problems and their solutions
via the HJB equation.
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A first class of techniques used to solve HJB equations is
based on the theory of viscosity solutions [2]. This solution
is proved to be the value function of the underlying optimal
control problem. It is required to be continuous, but not nec-
essarily differentiable, as it is assumed for classical solutions.
To obtain an approximate viscosity solution, finite-difference
and finite-element methods have been used: both require a
discretization of the state space, hence the computational cost
increases exponentially with the dimension of the state space.

A second class of techniques is based on the principle
of model-based reinforcement learning with policy-iteration
(PI) algorithm, which reduces a nonlinear HJB PDE to a
linear PDE [3], [4]. This is used to find the cost associated
to an admissible control. The PI algorithm also provides an
incremental improvement of the control policy and ensures
convergence to the optimal control. In many cases, solving a
linear PDE is still not easy. In [5], Galerkin approximations
have been used to approximately solve optimal control
problems by combining this approximation with the PI
algorithm. Some other approaches developed to approximate
the solution of the HJB PDE, up to a desired degree of
accuracy, have been presented in [12]–[14].

A third class of techniques is based on results obtained
for linear systems and for a cost in quadratic form. For
such systems the HJB PDE reduces to an algebraic Ric-
cati equation (ARE), which is easy to solve. The methods
based on Jacobian linearization of the nonlinear system,
feedback linearization [6], [15], dynamic extensions [16], and
state-dependent Riccati equations (SDRE) [17]–[21], provide
techniques to approximate the optimal control by avoiding
solving nonlinear PDEs. The linearization-based approach
is feasible only in the vicinity of an equilibrium, while
feedback-linearization may cancel "useful" nonlinearities and
may not provide a near-to-optimal control law. The dynamic
extension-based approach relies on a modified cost to avoid
solving the HJB PDE, providing thus a suboptimal control
law. It is worth noting that the dynamic extension-based
control is capable to extract an upper bound of the modified
cost to provide a measure of the sub-optimality level of the
solution. The SDRE-based control approach relies upon a
linear-like factorization of the nonlinear system. Its main
disadvantage is the lack of stability guarantee.

This paper provides a thorough theoretical extension of our
previous work [22]. We propose a control strategy for input-
affine continuous-time nonlinear systems which is based on
the PI paradigm combined with the linear-like factorization
used in the SDRE approach. We use the PI algorithm to en-
sure convergence of the policy to the optimal control. Unlike
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other PI approaches, we use a linear-like factorization of the
nonlinear system to avoid solving any PDE, thus replacing
the PDE with a state-dependent Lyapunov matrix equation
(SDLE). In this way the proposed control strategy solves
the optimal nonlinear control problem in an asymptotically
exact, but still linear-like, manner, provided the optimal cost
has a quadratic-like form. If this is not the case, the obtained
results suggest that the proposed approach has a potential to
find an optimal solution in the vicinity of an equilibrium.

The paper is organized as follows. In Section II we
define the problem and recall a general form of the PI
algorithm. In Section III we recall the SDRE approach with
its associated factorization technique and redefine the optimal
control problem. In Section IV, we define the linear-like PI
which computes the optimal control with a modified cost.
Section V introduces the modified linear-like PI to solve
the considered nonlinear optimal control problem. Section
VI provides an illustration of the results via four examples,
while Section VII concludes the paper.

II. CONTROL BASED ON POLICY ITERATION FOR
CONTINUOUS-TIME SYSTEMS

A. Problem description

Consider a class of continuous-time nonlinear systems
described by an equation of the form

ẋ = f (x)+g(x)u, (1)

with state x(t) ∈ Rn, input u(t) ∈ Rm and f and g Lipschitz
continuous on a compact set Ω̃⊂Rn that contains the origin.
Suppose in addition that the system (1) has an equilibrium
at the origin for u = 0, that is f (0) = 0. Finally, assume that
the system is controllable in Ω̃, that is, it is possible to find
an input signal u which steers the state of the system to the
origin from any initial condition x0 in Ω̃ in some time t̄ ≥ 0.

Consider now the cost function

V (x0,u) =
∫

∞

0
(l(x)+‖u‖2

R)dt, (2)

where the state penalty function l is a positive function
on Ω̃, such that l(0) = 0. Assume that the system (1)
with output y = l(x) is zero-state observable, and R ∈ Rmxm

is a symmetric positive definite matrix. Typically, l(x) is
quadratic, that is l(x) = xT Qx, where Q = QT is a positive
semidefinite matrix.

A feedback control u = u(x) is called an admissible con-
trol, u ∈A (Ω), with respect to l on Ω, if u is continuous on
Ω, u(0)= 0, the zero equilibrium of the closed-loop system is
locally asymptotically stable with basin of attraction Ω⊆ Ω̃,
and the cost (2) is finite for all x0 ∈ Ω. The minimal value
of the cost function V , obtained for an admissible control
u∗ = u∗(x) (the optimal control), is denoted as the optimal
cost V ∗(x), ∀x ∈ Ω. This optimal cost V ∗, called the value
function, is the solution of the HJB equation

∂V ∗(x)
∂x

f (x)− 1
4

∂V ∗(x)
∂x

g(x)R−1g(x)T ∂V ∗(x)T

∂x
+ l(x) = 0,

(3)

provided it is differentiable. Equation (3) is in general hard
to solve even in those cases in which a (unique) solution
is known to exist. The requirement to solve a PDE makes
the optimal control problem virtually impossible to solve in
closed-form. If a solution exists, the optimal control is

u∗ = u∗(x) =−1
2

R−1gT (x)
∂V ∗(x)

∂x

T

. (4)

B. Policy iteration for nonlinear systems

To compute the value of the cost for a given initial
condition x0 and an admissible control û, one has to solve
(1) with u = û, which is not always possible, and compute
the integral (2) along the corresponding solution. Another
way to deal with this problem is to differentiate (2) along
the trajectories of the system yielding the linear PDE

∂V̂ (x)
∂x

( f (x)+g(x)û(x))+ l(x)+‖û‖2
R = 0, (5)

which represents an incremental expression of the cost of
the admissible control û, and it does not depend on the
trajectories of the system (1). If the optimal control (4) is
used, i.e. û = u∗, then (5) transforms into the nonlinear PDE
(3), the solution of which directly provides the optimal cost
V ∗ and the optimal control law u∗. For more detail, see, e.g.
[4] and [5].

The optimal PI for continuous-time nonlinear systems
has been proposed in [4]. The main idea of this iterative
algorithm is to choose an arbitrarily initial admissible control
û = û(x) ∈A (Ω) and solve the linear PDE (5) for V̂ , which
should be easier than solving the nonlinear PDE (3). In order
to improve the performance of the arbitrarily selected control
û, one then defines the policy-update

û∗(x) = argmin
u

∂V̂ (x)
∂x

( f (x)+g(x)û(x))+ l(x)+‖û‖2
R =

− 1
2

R−1gT (x)
∂V̂ (x)T

∂x
,∀x ∈Ω.

(6)
Having a new and improved control û∗ (see e.g. [4] and [5]),
one can again solve (5) to obtain the value function V̂ . By
iteratively updating the value function and the control law
iterating (5) and (6), the optimal PI algorithm ensures, in
principle, the desired convergence, i.e. limk→∞ V̂k(x) =V ∗(x)
and limk→∞ ûk(x) = u∗(x), ∀x ∈ Ω, where k is the index of
the iteration.

Choosing an arbitrarily initial admissible control in an ana-
lytical form as a first step of the policy iteration algorithm can
be difficult for some nonlinear systems. However, different
techniques for constructing such a control law for classes of
nonlinear systems can be found, e.g., in [6]–[11].

Although equation (5) should be easier to solve for V̂
than solving (1) and (2), it is still a PDE. For this reason
different approaches to approximately deal with equation (5)
have been proposed, see, e.g. [4], [5]. The goal of this paper
is to show how PI can be exploited to find the optimal control
solution without the need to solve any PDE on the basis of
a simple linear-like procedure.
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C. Policy iteration for linear systems

In this section we consider linear systems, that is the
system (1) with f (x) = Ax, with A ∈ Rnxn, g(x) = B, with
B ∈ Rnxm and a quadratic cost, that is l(x) = xT Qx, with
Q=QT ≥ 0, in (2). Assume that the pair (A,B) is stabilizable
and the pair (Q1/2,A) is detectable.

Assuming that the optimal value function is of the form

V ∗(x) = xT P∗x, (7)

where P∗ = P∗T is a positive definite matrix, the HJB
equation (3) becomes the ARE

AT P∗+P∗A−P∗BR−1BT P∗+Q = 0, (8)

which is easily solvable and has a unique positive definite
solution P∗. The optimal control action can then be computed
from (4) yielding

u∗(x) =−R−1BT P∗x = Π
∗x, (9)

where Π∗ is the optimal control policy.
Although the solution to the optimal control problem for

continuous-time linear systems can be given in the closed-
form (9), we recall the optimal PI algorithm to understand
how to construct the optimal control in an iterative manner.

In the simplified version of the optimal PI algorithm for
linear systems the cost-update equation (5) becomes the
Lyapunov Matrix Equation (LME)

(A+BΠ̂)T P̂+ P̂(A+BΠ̂)+Q+ Π̂
T RΠ̂ = 0, (10)

which can be easily solved for a positive definite matrix P̂,
provided an admissible control û= Π̂x is given. Additionally,
the policy-update equation (6) for linear systems becomes

û∗ = Π̂
∗x =−R−1BT P̂x, Π̂

∗ =−R−1BT P̂. (11)

The proof of convergence of the PI for the linear case is
provided in [23], where it has also been shown that the
PI is actually Kleiman-Newton’s method, which ensures
convergence to the solution of the ARE whenever the initial
control is admissible.

III. POINTWISE FACTORIZATION OF THE OPTIMAL
CONTROL PROBLEM

Under mild regularity assumptions the nonlinear system
(1) can be rewritten in the form

ẋ = A(x)x+g(x)u, (12)

where A : Rn → Rnxn is a smooth matrix valued function.
The main idea behind the factorizations of the function f
as f (x) = A(x)x is to represent the nonlinear system (1) as
a pointwise linear system by assuming that A and g are
constant matrices for each state x along the trajectories of
the system, see e.g. [19].

In the spirit of the above factorization, similarly to the
linear case, we assume a pointwise quadratic form for the
optimal value function, namely

V ∗(x) = xT P∗(x)x, (13)

where P∗(x) = [P∗(x)]T for all x ∈ Ω is a state-dependent
matrix valued function and it is positive definite for all x∈Ω.

For clarity, we first define the solution to the SDRE [19],
which represents the factorized version of the ARE (8).

Definition 1 [SDRE] A positive definite matrix P̄ is the
pointwise solution to the SDRE for the state x if

A(x)T P̄+ P̄A(x)− P̄g(x)R−1g(x)T P̄+Q = 0. (14)

As in the case of the ARE, the SDRE is easily solvable for
each fixed x ∈ Ω. By mimicking the linear-like procedure
presented in II-C, the control action can be computed in the
pointwise form

u∗(x) =−R−1gT (x)P̄(x)x = Π̄(x)x. (15)

Equations (14) and (15) form the SDRE-based control
method: (14) is solved for each x along the trajectories of
the system and the control law is computed as in (15).

Note that the SDRE-based control does not provide the
optimal solution to the optimal control problem for the
nonlinear system, since (14) has not been derived from the
HJB equation (3). Another issue pertains to the matrix P̄,
for which we do not have a closed form solution, that is
P̄ = P̄(x), but only the pointwise value for each state x along
the trajectories of the system. This prevents V (x) = xT P̄(x)x
from being a Lyapunov function candidate, since its time
derivative along the trajectories of the system, namely

V̇ ∗(x) = ẋT P̄(x)x+ xT P̄(x)ẋ+ xT ˙̄P(x)x, (16)

has the additional term ˙̄P(x), which is impossible to obtain
analytically and to be used for further analysis. To address
this issue consider the following statement.

Lemma 1 [Direct optimal control] Assume that the optimal
value function for the optimal control problem for the non-
linear system (12) is given in the quadratic-like form (13),
where P∗(x) = [P∗(x)]T is a positive definite matrix for all
x ∈Ω. Then P∗(x) is the solution of the HJB equation

xT{A(x)T P∗+P∗A(x)−P∗g(x)R−1g(x)T P∗+Q}x
+uT

corrRucorr + xT Ṗ∗x = 0,
(17)

while the optimal control is given by u∗ = ū+ucorr, where

ū =−R−1gT (x)P∗(x)x = Π̄x, (18)

ucorr =−
1
2

R−1[
n

∑
i=1

n

∑
j=1

xix jgT (x)
∂ pi, j

∂x
], (19)

and pi, j indicates the (i, j)th element of the matrix P∗(x).

Proof: Starting from (5), one obtains (dropping argu-
ments)

(Ax+gu∗)T P∗x+ xT P∗(A+gu∗)+ xT Qx

+u∗T Ru∗+ xT Ṗ∗x = 0,
(20)

where the optimal control u∗ is obtained as the control
that minimizes the left-hand-side of (20), giving the two
components (18) and (19). Note that the last term of (20) is
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the time derivative along the trajectories of the system once
u∗ is used, that is xT Ṗ∗x = xT Ṗ∗|A(x)+g(x)u∗x, which gives the
second term (19) of the minimizing control u∗.

If we replace u∗ in the left-hand-side of (20) with ū+ucorr,
we obtain

(Ax+gū)T P∗x+ xT P∗(A+gū)+(ū+ucorr)
T R(ū+ucorr)

+ xT Qx+(gucorr)
T P∗+P∗gucorr + xT Ṗ∗x = 0,

(21)

which gives

xT [(A+gΠ̄)T P∗+P∗(A+gΠ̄)+Q+ Π̄
T RΠ̄

]
x

+uT
corrRucorr + xT Ṗ∗x = 0.

(22)

By replacing the control policy Π̄ in accordance with (18),
one gets (17) which completes the proof. �

Although Lemma 1 provides the exact solution to the
optimal control problem, the HJB equation (17), which is
itself a PDE, is as hard to solve for P∗ as the initial HJB
equation (3). However, equation (17) allows for a separation
of the optimal control problem into two simpler problems,
one aimed at finding the solution ū, which is the counterpart
of (14), and the second one aimed at finding a correction
term from the last two terms in (17), which are discussed in
Sections IV and V, respectively.

IV. AN APPROXIMATE CONTROL BASED ON LINEAR-LIKE
POLICY ITERATION

A. The State-dependent Lyapunov Equation - SDLE

The main idea behind the linear-like PI is to use the PI
algorithm for nonlinear systems by avoiding using PDEs, i.e.
by using only Lyapunov matrix equations as in the linear
case discussed in Section II-C. To do so, we conduct the PI
by omitting the last two terms in (17) to obtain a Lyapunov
equation instead of the PDE at the cost of optimality loss.
For clarity, we define the State-dependent Lyapunov Equa-
tion (SDLE) which is used as the approximate cost-update
equation in the PI algorithm.

Definition 2 [Approximate cost-update] Consider the admis-
sible control û = Π̂(x)x ∈ A (Ω). A differentiable function
V̂ = xT P̂(x)x : Ω→ R (V̂ (0) = 0), where P̂(x) is a positive
definite matrix for all x∈Ω, is the approximate cost function
of û if P̂(x) satisfies the SDLE

(A(x)+g(x)Π̂)T P̂+ P̂(A(x)+g(x)Π̂)+Q+ Π̂
T RΠ̂ = 0.

(23)
We call (23) the approximate cost-update equation for the
nonlinear system and write P̂(x) = CUSDLE(Π̂(x)), where
the index SDLE indicates that one has to solve the state-
dependent Lyapunov matrix equation (23) to obtain P̂(x).

Note first that this equation is easy solvable as in the linear
case (10). Moreover, unlike the idea behind the SDRE (14),
where P is computed pointwise for each single x along the
trajectories of the system, the SDLE provides an analytical
form of P̂. Having P̂ in closed form, it is then possible to
compute the time derivative ˙̂P along the trajectories of the

system, thus circumventing one of the main limitations of
the SDRE-based approach.

Note also that the SDLE can be derived from (5) as in (20)-
(22), by letting û= ū+ucorr, where the terms equal to the last
two terms in (17) are omitted for simplicity. This would mean
that the SDLE can be considered as the cost-update equation
when taking ucorr(x) = 0, for all x, and by omitting the time
derivative Ṗ. For this reason we call (23) the approximate
cost-update equation, and we write P̂(x) =CUSDLE(Π̂) .

B. The control based on the SDLE

Along with Definition 2, we introduce a new definition
and two results to define the control based on the SDLE.

Definition 3 [Approximate policy-update] Consider the dif-
ferentiable function V̂ (x) = xT P̂(x)x : Ω→ R (V̂ (0) = 0), in
which for each x, P̂(x) is a positive definite matrix obtained
from (23). The control û∗ is said to update the control û (or
the policy Π̂∗ updates the policy Π̂) in accordance with the
approximate policy-update equations for nonlinear systems

û∗ =−R−1g(x)T P̂(x)x, Π̂
∗ =−R−1g(x)T P̂(x), (24)

and we write Π̂∗ = PUSDLE(P̂(x)).

Note that (24) includes only the first term (18) of the
optimal control given by (18)-(19). For this reason, we
also call Π̂∗ = PUSDLE(P̂(x)) the approximate policy-update
equation.

Lemma 2 [Stabilizability of the approximate policy-update]
Consider an admissible control ûk(x) = Π̂kx∈A (Ω) and the
positive definite solution P̂k obtained from (23) in accordance
to Def. 2. Then the updated control ûk+1 = Π̂k+1(x)x =
−R−1g(x)T P̂k(x)x is admissible on Ω as well.

Proof: To prove the statement we need to consider
two different state space regions, R1 ∈ Rn and R2 ∈ Rn, in
which xT ˙̂Pkx ≥ 0 and xT ˙̂Pkx < 0, respectively, and the time
derivative ˙̂P is obtained along the trajectories of the system
(1) in closed-loop with ûk+1.

Let Vk be a candidate control Lyapunov function which is
positive-definite, that is

Vk(x)=


V̂k(x) = xT P̂kx if x ∈R2, xT ˙̂Pkx < 0,

V̂ m
k (x) = V̂k +

∫ p
0 xT ˙̂Pkxdt if x ∈R1, xT ˙̂Pkx≥ 0,

(25)
where p is an arbitrary positive constant. This function
is continuous by definition and differentiable for all x ∈
Ω, including the states x along the switching hypersurface
xT ˙̂Pkx= 0. Namely, lim ˙̂V m

k = lim ˙̂Vk also holds in the limiting
case when xT ˙̂Pkx→ 0±.

In the region R1, the time derivative of Vk along the
trajectories of the system (1) becomes

V̇k =
˙̂V m
k = xT [(A+gΠ̂k+1)

T P̂k + P̂k(A+gΠ̂k+1)]x, (26)
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which can be rewritten in the form
˙̂V m
k = xT [(A+gΠ̂k)

T P̂k + P̂k(A+gΠ̂k)]x

+ xT [(gΠ̂k+1)
T P̂k + P̂kgΠ̂k+1− (gΠ̂k)

T P̂k− P̂kgΠ̂k]x.

Since the pair (Π̂k, P̂k) satisfies (23) and gT P̂k =−RΠ̂k+1, we
have
˙̂V m
k =−xT [Q+ Π̂

T
k RΠ̂k]x−

xT [Π̂T
k+1RΠ̂k+1 + Π̂

T
k+1RΠ̂k+1− Π̂

T
k RΠ̂k+1− Π̂

T
k+1RΠ̂k]x,

hence
˙̂V m
k =−xT [Q+ Π̂

T
k+1RΠ̂k+1 +(Π̂k+1− Π̂k)

T R(Π̂k+1− Π̂k)]x.
(27)

As a result, ˙̂V m
k is negative-definite in the region R1.

In the region R2, the time derivative of Vk along the
trajectories of the system (1) is

V̇k =
˙̂Vk = xT [(A+gΠ̂k+1)

T P̂k + P̂k(A+gΠ̂k+1)]x+ xT ˙̂Pkx,

which can be written in the form
˙̂Vk =− xT [Q+ Π̂

T
k+1RΠ̂k+1 +(Π̂k+1− Π̂k)

T R(Π̂k+1− Π̂k)]x

+ xT ˙̂Pkx.
(28)

This means that ˙̂Vk is negative-definite in R1.
This proves that Vk is a Lyapunov function, the origin is

asymptotically stable and the control law ûk is admissible.�

Lemma 3 [Cost of the approximate policy-update] Consider
an admissible control ûk = Π̂kx ∈A (Ω) and its correspond-
ing positive definite solution P̂k obtained from (23) in accor-
dance to Def. 2. Then the cost of ûk is V m

k = V̂k+
∫

∞

0 xT ˙̂Pkxdt,
where V̂k = xT P̂kx.

Proof: By assumption, we use (23) to construct P̂k as

(A(x)+g(x)Π̂k)
T P̂k + P̂k(A(x)+g(x)Π̂k)+Q+ Π̂

T
k RΠ̂k = 0,

(29)
which can be modified into the form

∂V̂k(x)
∂x

( f (x)+g(x)ûk(x))−xT ˙̂Pkx+xT Qx+ û(x)T
k Rûk(x)= 0.

(30)
For all x∈R2, it is seen from (30) that V̂k can be considered
the cost for ûk which is related to the modified positive
semidefinite state-cost matrix Qm = Q− ˙̂Pk ≥ 0, that is

V̂k =
∫

∞

0
(xT (Q− ˙̂Pk)x+ ûT

k Rûk)dt. (31)

It follows from (31) that

V̂k +
∫

∞

0
xT ˙̂Pkxdt =

∫
∞

0
(xT Qx+ ûT

k Rûk)dt =V m
k ≥ 0, (32)

which is the claim of Lemma 3 for all x∈R2. For all x∈R1,
it is not possible to conduct the same analysis as for x ∈R2,
since Qm might be negative definite for some x ∈R1.

However, for all x ∈R1, xT ˙̂Pkx and ∂V̂k
∂x ( f +gûk) in (30)

can form a new term, ∂V m
k

∂x ( f + gûk), where V m
k = V̂k +∫

∞

0 xT ˙̂Pkx. This modification gives (30) in the form of (5),

that is
∂V m

k (x)
∂x

( f (x)+g(x)ûk(x))+xT Qx+ û(x)T
k Rûk(x) = 0, (33)

which is the incremental expression of the cost of the
admissible control. In addition, since V m

k is positive definite
in R1, it represents the cost of ûk, which completes the proof
of Lemma 3. �

It should be noted that it is possible to conduct the same
analysis for all x ∈R2 as for x ∈R1 since, due to (32), it is
now possible to assume that V m

k is a positive definite solution
of (33) for every x ∈R2, which is required to show, that it
is the cost of the control ûk.

C. The approximate linear-like PI based on the SDLE

The approximate linear-like PI based on the SDLE iter-
atively uses the approximate cost-update (Def. 2) and the
approximate policy-update (Def. 3) in order to construct the
final form of the approximate control. The following result
states that such a procedure is convergent.

Theorem 1 [Convergence of the approximate linear-like PI]
Consider the (k− 1)th iteration of the approximate linear-
like PI based on the SDLE procedure, that is the pair
(P̂k−1, Π̂k). Assume the control is obtained in accordance
to Def. 3, that is ûk = Π̂kx = PUSDLE(P̂k−1), while P̂k−1 is
the positive definite solution of (23) in accordance to Def.
(2), that is P̂k−1 =CUSDLE(Π̂k−1), and the initial control û1
is admissible. If the pair (P̂k, Π̂k+1) is constructed at the kth

iteration step, then the approximate linear-like PI based on
the SDLE procedure converges.

Proof: In accordance to the approximate cost-update
(23), P̂k is the unique and positive definite solution of

xT [(A+gΠ̂k)
T P̂k + P̂k(A+gΠ̂k)+Q+ Π̂

T
k RΠ̂k]x = 0. (34)

If P̂k(ûk) related to the control ûk is considered as an update
of P̂k−1(ûk−1), then it can be replaced in (34) by

P̂k(ûk) = P̂k−1(ûk−1)+∆P̂k(ûk), (35)

where ∆P̂k(ûk) is by definition the variation of the matrix
P̂k−1(ûk−1) once the new control ûk is used. This further
means that the form of the variation of the cost (Lemma 3)
for the control ûk is given as

∆V m
k (ûk) = xT

∆P̂k(ûk)x+
∫

∞

0
xT

∆
˙̂Pk(ûk)xdt, (36)

where
V m

k (ûk) =V m
k−1(ûk−1)+∆V m

k (ûk). (37)

Combining (34) and (35) leads to

xT [(A+gΠ̂k)
T P̂k−1 + P̂k−1(A+gΠ̂k)+Q+ Π̂

T
k RΠ̂k]x+

xT [(A+gΠ̂k)
T

∆P̂k +∆P̂k(A+gΠ̂k)]x = 0.
(38)

In case of a linear system, the first term would represent the
Hamiltonian function. However, for a nonlinear system we
call this term a linear-like Hamiltonian function for the pair
(P̂k−1, Π̂k), that is Hk−1. The second term in (38) represents
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the time derivative of the cost variation (36) when the control
ûk is used, that is

Hk−1 +
d
dt

∆V m
k (ûk) = 0. (39)

Starting again from (34), we write

xT [(A+gΠ̂k+1)
T P̂k + P̂k(A+gΠ̂k+1)+Q+ Π̂

T
k+1RΠ̂k+1]x

+ xT [(gΠ̂k−gΠ̂k+1)
T P̂k + P̂k(gΠ̂k−gΠ̂k+1)

+ Π̂
T
k RΠ̂k− Π̂

T
k+1RΠ̂k+1]x = 0.

Using now gT P̂k =−RΠ̂k+1, which follows from the approx-
imate policy-update Π̂k+1 =−RgT P̂k, we obtain

Hk + xT [−Π̂
T
k RΠ̂k+1 + Π̂

T
k+1RΠ̂k+1− Π̂

T
k+1RΠ̂k

+ Π̂
T
k+1RΠ̂k+1 + Π̂

T
k RΠ̂k− Π̂

T
k+1RΠ̂k+1]x = 0,

that is

Hk =−(Π̂k+1− Π̂k)
T R(Π̂k+1− Π̂k)≤ 0, (40)

which by back-tracking becomes

Hk−1 =−(Π̂k− Π̂k−1)
T R(Π̂k− Π̂k−1)≤ 0. (41)

Combining now (41) with (39), yields

d
dt

∆V m
k (ûk)≥ 0, (42)

which can be integrated over [0,∞) to get

lim
t→∞

∆V m
k (ûk)−∆V m

k (ûk)≥ 0. (43)

Due to Lemma 2 the controls ûk and ûk−1 are admissible,
hence the state of the system is zero as t → ∞ for both
controls. This means that there is no variation in the cost
at the origin between any two admissible controls, that is
limt→∞ ∆V m

k (uk) = 0. From (43) and (37), it now holds that

V m
k ≤V m

k−1. (44)

As a result, the sequence {V m
k }n

k=1 is monotonically decreas-
ing, while being bounded from below by zero due to Lemma
3, that is V m

k ≥ 0, hence it is convergent when n→ ∞.�
We call the solution based on this approach the PI-SDLE

control. One of the main advantages of the proposed PI-
SDLE control is that the linear-like PI can also be com-
puted pointwise using (23), instead of finding a closed form
solution. In such a case, one needs to conduct the whole
PI algorithm for every single x along the trajectories of
the system. Such a procedure is similar to the pointwise
computation of the ARE solution when the SDRE-based
control is used. Unlike the SDRE-based control, the PI-SDLE
based control is proven to be stabilizing in Ω provided the
initial control is admissible.

V. OPTIMAL CONTROL BASED ON LINEAR-LIKE POLICY
ITERATION

We now show how to use the linear-like PI proposed in
Theorem 1 to obtain the optimal solution of optimal control
problems for continuous-time nonlinear systems.

Algorithm 1 PLAIN-PI(A(x), g(x), Q, R, û1
0 = Π̂1

0(x)x ∈
A (Ω))

1: for k← 0 to N1 do . loop with N1 steps
2: P̂1

k ← CUSDLE(A(x), g(x), Q, R, Π̂1
k) . eq. (45)

3: Π̂1
k+1 ← −R−1gT (x)P̂1

k (x)x . eq. (46)
4: end for
5: return ū1 ← Π̂1

k+1x; P̄1 ← P̂1
k

Definition 4 [The plain-PI] Consider the linear-like PI

(A(x)+g(x)Π̂1
k)

T P̂1
k + P̂1

k (A(x)+g(x)Π̂1
k)+Π̂

1T

k RΠ̂
1
k +Q= 0,

(45)
û∗1k+1 =−R−1gT (x)P̂1

k (x)x. (46)

We call (45)-(46) the linear-like plain-PI, the pair
(ū1(x), P̄1(x)) its limit solution, and P1 and P2 the regions
in which xT ˙̄P1(x)x≥ 0 and xT ˙̄P1(x)x < 0, respectively.

The structure for the plain-PI is given in Algorithm 1.

Definition 5 [The P1-PI] Consider for all x∈P1 the linear-
like PI

(A(x)+g(x)Π̂2
k,i)

T P̂2
k,i + P̂2

k,i(A(x)+g(x)Π̂2
k,i)+ Π̂

2T

k,i RΠ̂
2
k,i

+Q+ ˙̄P2
i−1|A(x)x+g(x)ū2

i−1
= 0,

(47)
û∗2k+1,i =−R−1gT (x)P̂2

k,i(x)x, (48)

where the index i indicates the outer iteration (Lines 1-
11 in Algorithm 2) and one completed linear-like PI (47)-
(48) over the index k (Lines 5-8 in Algorithm 2), with k
indicating the inner iteration and one PI step for a fixed
index i. ˙̄P2

i−1|A(x)x+g(x)ū2
i−1

is the time derivative of P̄2
i−1 along

the trajectories of the system when ū2
i−1 = Π̄2

i−1x. Both ˙̄P2
i−1

and ū2
i−1 are obtained from the (i− 1)th PI (47)-(48) as

the respective solutions, meaning that ˙̄P2
i−1|A(x)x+g(x)ū2

i−1
is a

fixed matrix function during the ith PI (47)-(48). The initial
admissible control ū2

0 and the matrix ˙̄P2
0 required for the first

PI (47)-(48) (i = 1, k = 0), are taken from the solutions of
the PI (45)-(46), as ū2

0 = ū1 and ˙̄P2
0 = ˙̄P1. We call (47)-(48)

the linear-like P1-PI and the pair (ū2(x), P̄2(x)) its limit
solution.

The control construction based on the linear-like P1-PI
from Def. 5 can be interpreted for each fixed value i as a
plain-PI from Def. 4 with a modified state-cost, Qm

i = Q+
˙̄P2
i−1|A(x)x+g(x)ū2

i−1
, see (47) and Lines 4 and 6 in Algorithm 2.

Whenever Qm
i is a positive definite matrix, it is then possible

to find a unique and positive definite solution P̂2
k,i from (47)

at each iteration step over the index k. Lemma 4 shows that
this is the case for all x ∈P1 and every k and j.

This means that the linear-like P1-PI aims to find the
solution through the state-cost modification. The underlying
rationale is to see whether convergence can be obtained by
replacing ˙̄P2

i |A(x)x+g(x)ū2
i

in (17) with ˙̄P2
i−1|A(x)x+g(x)ū2

i−1
from

the preceding (i−1)th PI iteration. In the latter case, we still
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Algorithm 2 P1-PI(A(x), g(x), Q, R, ū2
0 = ū1, P̄2

0 = P̄1)

1: for i← 1 to M2 do . outer loop with M2 steps
2: ˙̄P2

i−1|A(x)x+g(x)ū2
i−1
← TIMEDERIVATIVE(P̄2

i−1, ū2
i−1)

3: Π̂2
0,i ← Π̄2

i−1 . policy term from ū2
i−1

4: Qm
i ← Q+ ˙̄P2

i−1 . cost state modification
5: for k← 0 to N2 do . inner loop with N2 +1 steps
6: P̂2

k,i ← CUSDLE(A(x), g(x), Qm
i , R, Π̂2

k,i)
. eq. (47)

7: Π̂2
k+1,i ← −R−1gT (x)P̂2

k,i(x) . eq. (48)
8: end for
9: P̄2

i ← P̂2
k,i

10: ū2
i ← Π̂2

k+1,ix
11: end for
12: return ū2 ← ū2

i ; P̄2 ← P̄2
i

solve the SDLE instead of the HJB equation.
Once convergence is achieved over k (Lines 5-8 in Al-

gorithm 2), that is the new pair (ū2
i , P̄

2
i ) is obtained (Lines

9 and 10 in Algorithm 2), we repeat the procedure until
convergence of the outer PI over the index i is achieved as
well (Lines 1-11 in Algorithm 2). The proof of convergence
is given in Lemma 6.

Definition 6 [The P2-PI] Consider, for all x ∈ P2, the
linear-like PI

(A(x)+g(x)Π̂3
k, j)

T P̂3
k, j + P̂3

k, j(A(x)+g(x)Π̂3
k, j)+ Π̂

3T

k, jRΠ̂
3
k, j

+Q = 0
(49)

û∗3k+1, j = Π̂
3
k+1, jx =−R−1gT (x)P̂3

k, j(x)x+u j,corr , (50)

where u j,corr is the correction component obtained as solu-
tion to the quadratic matrix equation

uT
j,corrRu j,corr + xT ˙̄P3

j−1|A(x)x+g(x)(ū3
j−1+u j,corr)

x = 0. (51)

The index j indicates the outer iteration (Lines 1-11 in
Algorithm 3) and one completed linear-like PI (49)-(50) over
the index k (Lines 5-8 in Algorithm 3), with k indicating
the inner iteration and one PI step for a fixed index j.
˙̄P3
j−1|A(x)x+g(x)(ū3

j−1+u j,corr)
is the time derivative of P̄3

j−1 along

the trajectories of the system when the control ū3
j−1 +u j,corr

is used. Both ˙̄P3
j−1 and ū3

j−1 are obtained from the ( j−1)th

PI (49)-(50) as the respective solutions, hence u j,corr is con-
sequently as well. This means that ˙̄P3

j−1|A(x)x+g(x)(u3
j−1+u j,corr)

is a fixed matrix function during the jth PI (49)-(50). The
initial admissible control ū3

0 and the matrix ˙̄P3
0 required for

the first PI (49) and (50) ( j = 1, k = 0) are taken from the
solutions of the PI (45)-(46), as ū3

0 = ū1 and ˙̄P3
0 = ˙̄P1. We call

(49)-(50) the linear-like P2-PI and the pair (ū3(x), P̄3(x))
its limit solution.

The control construction based on the linear-like P2-PI
from Def. 6 can be interpreted for each fixed value j as a
plain-PI from Def. 4 with a modified control, see (50) and
(51), as well as Lines 4 and 7 in Algorithm 3. We show in

Algorithm 3 P2-PI(A(x), g(x), Q, R, ū3
0 = ū1, P̄3

0 = P̄1)

1: for j← 1 to M3 do . outer loop with M3 steps
2: ˙̄P3

j−1|A(x)x+g(x)ū3
j−1
← TIMEDERIVATIVE(P̄3

j−1, ū3
j−1)

3: Π̂3
0, j ← Π̄3

j−1 . Policy term from ū3
j−1

4: u j,corr ← QUADRATICEQ(R, ˙̄P3
j−1) . eq. (51)

5: for k← 0 to N3 do . inner loop with N3 +1 steps
6: P̂3

k, j ← CUSDLE(A(x), g(x), Q, R, Π̂3
k, j)
. eq. (49)

7: û∗3k+1, j ← −R−1gT (x)P̂3
k, j(x)x+u j,corr

. eq. (50)
8: end for
9: P̄3

j ← P̂3
k, j

10: ū3
j ← û∗3k+1, j

11: end for
12: return ū3 ← ū3

j ; P̄3 ← P̄3
j

Lemma 5 that it is possible to find a real-valued solution
ucorr from (51) for all x ∈P2 and every j.

The algorithm for the P2-PI (49) and (50) is as follows.
For a fixed ˙̄P3

j−1 and u3
j−1 (Lines 2 and 3 in Algorithm 3),

we construct the correction term u j,corr in accordance to (51)
(Line 4 in Algorithm 3). Then, (49) is solved (Line 6 in
Algorithm 3) to construct the modified control û∗3k+1, j (50)
for every k of the inner iteration (Line 7 in Algorithm 3).
The underlying rationale is to see whether convergence can
be obtained by modification of the control with respect to
the plain-PI. The HJB equation (17) indicates that ucorr can
be used to cancel out the last term of the left-hand side of
(17) whenever it is possible to find a real-valued solution
ucorr from uT

corrRucorr + xT Ṗ∗x = 0. In order to simplify the
problem, we use (51) based on the pair (ū3

j−1, P̄
3
i−1) obtained

from the preceding (i− 1)th PI iteration. Since the next k
steps of the inner iterations (Lines 5-8) requires the policy
Π̂3

k+1, j of the modified control û∗3k+1, j obtained in Line (7),
one can easily derive it from (50) and (51).

Once convergence is achieved over k (Lines 5-8 in Al-
gorithm 3), that is the new pair (ū3

j , P̄
3
j ) is obtained (Lines

9 and 10 in Algorithm 3), we repeat the procedure until
convergence of the outer PI over the index j (Lines 1-11 in
Algorithm 3) is achieved as well. The proof of convergence
is given in Lemma 7.

Lemma 4 [Domain of the P1-PI] Consider the P1- PI from
Def. 5. Then,

xT ˙̄P1x≥ 0⇒ xT ˙̄P2
i−1|A(x)x+g(x)ū2

i−1
x≥ 0,∀i. (52)

Proof: In accordance with Def. 5, the initial admissible
control ū2

0 and the matrix ˙̄P2
0 , required by the P1-PI (47) and

(48), are the solutions of the plain-PI from Def. 4. The limit
form of (45) and (46) can be written as

(A+gΠ̄
1)T P̄1 + P̄1(A+gΠ̄

1)+ Π̄
1T

RΠ̄
1 +Q = 0, (53)

from which we select ū2
0 = ū1 and ˙̄P2

0 = ˙̄P1 to form the P1-PI
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for i= 1. By comparing (53) with the form of the incremental
expression of the cost (5) for ū1 = Π̄1x, that is

xT ((A+gΠ̄
1)T P̄1 + P̄1(A+gΠ̄

1)+ Π̄
1T

RΠ̄
1 +Q+ ˙̄P1)x = 0,

(54)
one can see that the optimal cost and the optimal control are
already achieved for all x along the hyperplane xT ˙̄P1x = 0.

For the ith-outer iteration of the P1- PI (47) and (48),
the inner iteration over the index k can also be considered
as a plain-PI, so the convergence can be achieved provided
the initial control is admissible. Starting from the first P1-
PI (i = 1) and the first inner iteration (k = 1), we take Π̄1

for the initial control policy, that is Π̂2
k=1,i=1 = Π̄1, which is

already optimal in the set xT ˙̄P1x = xT ˙̄P2
0 x = 0. Furthermore,

once we complete the iteration over the index k for i = 1,
the optimality in this set is preserved due to the convergence
of the plain-PI.

More generally, once convergence of the ith iteration is
achieved over the index k, the form (55) follows from (47)
and (48) and

(A+gΠ̄
2
i )

T P̄2
i + P̄2

i (A+gΠ̄
2
i )+ Π̄

2T

i RΠ̄
2
i

+Q+ ˙̄P2
i−1|Ax+gū2

i−1
= 0.

(55)

It is therefore possible to conclude from (55) that the optimal
cost and the optimal control are already achieved for all x
in the set xT ˙̄P2

i−1x = 0. On the other hand, any optimal pair
(Π̄2

i , P̄
2
i ) related to the original state-cost xT Qx must satisfy

(A+gΠ̄
2
i )

T P̄2
i + P̄2

i (A+gΠ̄
2
i )+ Π̄

2T

i RΠ̄
2
i +Q+ ˙̄P2

i = 0,
(56)

which holds only for x along xT ˙̄P2
i x = 0. Assuming now that

the convergence is not yet achieved along the index i, this
further means that the optimality is not achieved for all other
x which are outside the set xT ˙̄P2

i x = 0. However, since the
optimality is already achieved for xT ˙̄P2

i−1x = 0, we conclude
that the sets xT ˙̄P2

i−1x = 0 and xT ˙̄P2
i x = 0 represent the same

state-space set. This means that the initial hypersurface
xT ˙̄P1x = 0, along which the optimal control and the optimal
cost are achieved by the plain-PI, is preserved for all i of the
P1-PI. This discussion proves that xT ˙̄P1x = 0⇒ xT ˙̄P2

i x =
0,∀i.

Additionally, one can interpret from (53) and (54) that,
in order to achieve the optimal cost and the optimal control
by a form of linear-like PI, one needs to properly modify
the state-cost xT Qx. It can be seen that, for all x for which
xT ˙̄P1(x)x > 0, the modified state-cost has to be larger than
xT Qx. Assume now that ∃x : xT ˙̄P2

i x < 0 for xT ˙̄P2
i−1x > 0. This

would mean that for such x the modified state-cost has to
be smaller than xT Qx, which is in contradiction with the
indication of the preceding iterations. This conclusion holds
for the initial iteration as well, where xT ˙̄P2

0 x ≥ 0, that is
xT ˙̄P1x≥ 0, which completes the proof.�

Lemma 5 [Domain of the P2-PI] Consider the P2- PI from

Def. 6. Then,

xT ˙̄P1(x)x < 0⇒ ˙̄P3
j−1|A(x)x+g(x)(ū3

j−1+u j,corr)
< 0,∀ j. (57)

Proof: Starting from (50), we can write the preceding
control of the inner iteration in the form

û∗3k, j = Π̂
3
k, jx =−R−1gT P̂3

k−1, jx+u j,corr = Π̂
3′
k, jx+u j,corr.

(58)
If we now plug the term Π̂3′

k, jx+u j,corr into (49) in a similar
manner as in (20)-(22), we obtain

xT ((A+gΠ̂
3′
k, j)

T P̂3
k, j + P̂3

k, j(A+gΠ̂
3′
k, j)+ Π̂

3′T
k, j RΠ̂

3′
k, j +Q)x

+uT
j,corrRu j,corr = 0.

(59)
Using (51), we can replace the last term to obtain

xT ((A+gΠ̂
3′
k, j)

T P̂3
k, j + P̂3

k, j(A+gΠ̂
3′
k, j)+ Π̂

3′T
k, j RΠ̂

3′
k, j +Q)x

− xT ˙̄P3
j−1|A(x)x+g(x)(ū3

j−1+u j,corr)
x = 0.

(60)
This means that (49)-(51) can be replaced with (60) together
with a non-modified control law

û∗3k+1, j =−R−1gT (x)P̂3
k, j(x)x = Π̂

3′
k+1, jx, (61)

and (51) in order to construct the linear-like P2-PI. However,
it is worth noting that the last term of (60) exists only in
case u j,corr 6= 0 due to (51). Observing now (60) and (61),
the proof of Lemma 5 can be completed in a similar manner
as in Lemma 4.�

In the following, we show the convergence of both the P1
and P2 policy-iterations and introduce the proposed optimal
control.

Lemma 6 [Convergence of the P1-PI] The linear-like P1-
PI is convergent for all x ∈P1.

Proof: The ith-outer iteration of the P1-PI can be
considered a plain-PI with a modified state-cost matrix
Q̄ = Q + ˙̄P2

i−1. This means that it is convergent for every
inner iteration over the index k provided the initial control
is admissible (Theorem 1). Since the initial control policy
Π̂2

k=1,i for the ith-outer iteration is taken as the convergent
solution of the preceding (i− 1)th-outer iteration, that is
Π̂2

k=1,i=Π̄2
i−1, we conclude the convergence of each inner-

iteration cycle over the index k. Moreover, by recalling
Lemma 3 and taking into account that the P1-PI uses a
modified state-cost Q̄, the real cost V m

k,i(Q̄) of the control ū2
i

converges to

V m,2
i (Q̄) = xT P̄2

i x+
∫

∞

0
xT ˙̄P2

i xdt (62)

when k→∞ during the ith -outer iteration. This leads to the
real cost of the control ū2

i which is related to the original
state-cost Q, that is

V m,2
i (Q) = xT P̄2

i x+
∫

∞

0
xT ˙̄P2

i xdt−
∫

∞

0
xT ˙̄P2

i−1xdt. (63)
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To complete the proof, we show that the cost V m,2
i (Q) does

at least not increase during the transition from the ith to the
(i+ 1)th-outer iteration. Once convergence of the ith-outer
iteration is achieved over the index k, (47) becomes (55),
where the first expression for k = 1 of the (i+ 1)th-outer
iteration is given as

(A+gΠ̄
2
i )

T P̂2
k=1,i+1 + P̂2

k=1,i+1(A+gΠ̄
2
i )+ Π̄

2T

i RΠ̄
2
i

+Q+ ˙̄P2
i |Ax+gū2

i
= 0,

(64)

The difference between (64) and (55) cab be written in the
form

(A+gΠ̄
2
i )

T
∆P2

i+1 +∆P2
i+1(A+gΠ̄

2
i )

+ ˙̄P2
i |Ax+gū2

i
− ˙̄P2

i−1|Ax+gū2
i−1

= 0,
(65)

where ∆P2
i+1 = P̂2

k=1,i+1− P̄2
i . Observing now the real cost of

the control ū2
i for k = 1 during the ith-outer iteration, which

is

V m,2
k=1,i+1(Q)= xT P̂2

k=1,i+1x+
∫

∞

0
xT ˙̂P2

k=1,i+1xdt−
∫

∞

0
xT ˙̄P2

i xdt,
(66)

it can be seen that (65) can be written in compact form as

d
dt

∆V m,2
i+1 (Q) = 0, (67)

where the first time derivative is taken along the trajectories
of the system when the control policy Π̄2

i is used, and
∆V m,2

i+1 (Q) =V m,2
k=1,i+1(Q)−V m,2

i (Q). Similar to the discussion
provided in Theorem 1, here one obtains V m,2

k=1,i+1(Q) =

V m,2
i (Q).�

Once the overall convergence is achieved, where
limi→∞ ∆V m,2

i+1 (Q) = 0 and limi→∞ ∆P2
i+1 = 0, the modified

cost (63) and the control (48) become

V̄ 2 = lim
i→∞

V m,2
i (Q) = xT P̄2x, (68)

ū2 =−R−1gT (x)P̄2(x)x. (69)

Lemma 7 [Convergence of the P2-PI] The linear-like P2-
PI is convergent for all x ∈P2.

Proof: In Lemma 5, one can see that (49)-(51), which
form the proposed linear-like P2, can be replaced with (60),
(61) and (51). Starting from the latter, one can complete the
proof of Lemma 7 in a similar manner as for the proof of
Lemma 6.�

It is worth noting that here, at the end of the jth−outer
iteration, the cost of the ū3

j which is related to the original
state-cost matrix Q converges to

V m,3
j (Q) = xT P̄3

j x+
∫

∞

0
xT ˙̄P3

j xdt|A(x)x+g(x)ū3
j

+
∫

∞

0
xT ˙̄P3

j−1x|A(x)x+g(x)(ū3
j−1+u j,corr)

dt.
(70)

Once the overall convergence is achieved, the correction term
u j,corr vanishes, that is lim j→∞ u j,corr = 0. If we now recall

(51), one can write

lim
j→∞

u j,corr = 0⇒ lim
j→∞

∫
∞

0
xT ˙̄P3

j−1x|A(x)x+g(x)(ū3
j−1+u j,corr)

=

lim
j→∞

∫
∞

0
xT ˙̄P3

j x|A(x)x+g(x)ū3
j
= lim

j→∞

∫
∞

0
xT ˙̄P3x|A(x)x+g(x)ū3 = 0.

(71)

Accordingly, the last two terms from (70) vanish as well, so
the modified cost (70) and the control (50) become

V̄ 3 = lim
j→∞

V m,3
j (Q) = xT P̄3x, (72)

ū3 =−R−1gT (x)P̄3(x)x. (73)

Theorem 2 [Optimal control] Assume that the optimal value
function is in the form (13). Then the optimal control u∗(x)∈
A (Ω) is given as

u∗(x) =
{

ū2 if x ∈P1
ū3 if x ∈P2,

(74)

where ū2 and ū3 are the final solutions of the linear-like P1
and P2 policy iterations, respectively.

Proof: In accordance with Lemma 6, (63) represents
the cost of the control ū2

i for x ∈P1, which means that the
pair (ū2

i ,V
m,2
i (Q)) satisfies the incremental expression of the

cost (5) which can be written as (55). On the other hand, it
can be seen that the control ū2

i minimizes (55), which means
that it is optimal with respect to the cost V m,2

i (Q). Since in
the limiting case when i→ ∞, (55) converges to

(A+gΠ̄
2)T P̄2 + P̄2(A+gΠ̄

2)+ Π̄
2T

RΠ̄
2

+Q+ ˙̄P2|Ax+gū2 = 0,
(75)

which is the original incremental expression of the cost of
the control ū2 while the cost is given in the quadratic form
(68), this leads to the conclusion that the limit pair (ū2,V̄ 2)
is optimal for x ∈P1.

In accordance with Lemma 7, (70) represents the cost
of the control ū3

j for x ∈ P2, which means that the
pair(ū3

j ,V
m,3
j (Q)) satisfies the incremental expression of the

cost (5) which can be written as

(A+gΠ̄
3
j)

T P̄3
j + P̄3

j (A+gΠ̄
3
j)+ Π̄

3T

j RΠ̄
3
j

+Q− ˙̄P3
j−1|A(x)x+g(x)(ū3

j−1+u j,corr)
= 0.

(76)

In the limiting case when j→ ∞, (76) converges to

(A+gΠ̄
3)T P̄3 + P̄3(A+gΠ̄

3)+ Π̄
3T

RΠ̄
3

+Q = 0,
(77)

and the last two terms of (70) vanish as well. It can be
seen that the control ū3 minimizes (77), while (77) can be
rewritten in the form of the original incremental expression
of the cost of the control ū3 with the quadratic function (72),
that is

(A+gΠ̄
3)T P̄3 + P̄3(A+gΠ̄

3)+ Π̄
3T

RΠ̄
3

+Q+ xT ˙̄P3|A(x)x+g(x)ū3x = 0,
(78)
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since xT ˙̄P3|A(x)x+g(x)ū3x = 0 holds in the limiting case. This
leads to the conclusion that the limit pair (ū3,V̄ 3) is optimal
for x ∈P2 as well.�

VI. ILLUSTRATIVE EXAMPLES

We provide simulation results by considering four non-
linear systems. For the first and the second system the
optimal control and the optimal value function are known,
so it is possible to assess the proposed approach against the
optimal solution. However, the nonlinear system used in the
second example is obtained through nonlinear transformation
of a linear system providing a testing case with a non-
constant matrix Q = Q(x). In the third example we cover
a nonlinear system for which the optimal control and the
optimal value function are also known, however, the value
function is not quadratic-like. In the fourth example we
compare our approach against the control based on the
Galerkin approximation (GAC) by considering a nonlinear
system with an unknown optimal control policy and an
unknown optimal value function. These last two examples
illustrate an additional capability of the proposed approach
to even solve such nonlinear control problems.

In all examples, after the plain-PI (45)-(46) is used, we
complete only one outer iteration of the P1-PI (47)-(48) and
the P2-PI (49)-(50), that is i = 1 and j = 1, and then three
inner iterations of the P1-PI and the P2-PI. The number of
the inner iterations used for the plain-PI will be indicated in
each example.

A. Optimal control of the Van Der Pol oscillator

Consider the Van Der Pol oscillator

ẋ1 = x2, ẋ2 =−x1−µ(1− x2
1)x2 + x1u, (79)

with µ = 0.5, the state cost l(x) = x2
2 and assume R = 1. The

optimal control is u∗ = −x1x2, with optimal value function
V ∗ = x1

2 + x2
2. The system can be easily factorized with

A(x) =

 0 1

−1 −1
2
(1− x2

1)

 , B(x) =

[
0
x1

]
. (80)

The initial admissible control for the linear-like PI can be
selected to be the one that cancels out the nonlinearities
and stabilizes the system, that is u = − 1

2 x1x2 (e.g., Π =
[0 − 1

2 x1]). In such a case, the initial control used for the
PIs is similar to the optimal control, so the convergence is
expected to be achieved quickly. Fig. 1 shows the optimal
value function (left) and the value function obtained by the
proposed approach in three inner iterations of the plain-PI
and three inner iterations of each P1-PI and the P2-PI.

However, in order to illustrate how convergence improves
based on three iterations of the plain-PI without using the
P1-PI and the P2-PI, we start from a different initial control
u = − 1

2 x1x2− 0.1x3
1x2 (e.g., Π = [−0.5x2 − 0.1x3

1]) which
also ensures the asymptotic stability of the feedback system
(79). Fig. 2 illustrates how the associated cumulative cost
(left) converges depending on the number of iterations used
in the plain-PI (45)-(46). In some examples, the plain-PI can

(a) (b)

Fig. 1: The Van Der Pol oscillator: The optimal value func-
tion (left) and the value function obtained by the proposed
approach using only three inner iterations (right) of the plain-
PI.

achieve an optimal solution without modifications based on
the P1-PI and the P2-PI. In any case, the proposed approach
based on the plain-PI with three iterations of the P1-PI and
the P2-PI achieves the optimal cost value (right).
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optimal control

three iterations

two iterations

one iteration

(a)

0 5 10 15 20
0
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4

optimal control

Linear-like PI

(b)

Fig. 2: Cumulative costs obtained for the initial condition
x= [−1;1] using only the plain PI with a different number of
inner iterations (left); and the cumulative cost of the proposed
approach based on three iterations of the P1-PI and the P2-
PI (right).

Fig. 3 provides a comparison between the proposed ap-
proach and the optimal control for the system for x0 = [−1;1]
and three inner iterations of the plain-PI with three inner
iterations of the P1-PI and the P2-PI. From the control
signals, cumulative costs and phase portrait, we conclude
optimality of the proposed solution. In Fig. 3 one can also
see the switching function xT ˙̄P1x along the trajectories of
the system, which is used in (74). This function indicates
the time intervals in which the two different forms of the
optimal control (74) have been used. Another interesting
observation is that this function becomes zero before the
state reaches the origin. This phenomenon has not been
investigated in this work, and it can be a promising direction
for further understanding of the proposed framework. This
means that the system trajectory has approached the hyper-
surface xT ˙̄P1x = 0 (in this example, a curve) and then has
moved along this surface towards the equilibrium. Somewhat
surprisingly, once the system state is on this hyper-surface,
along which the PIs (45)-(46), (47)-(48) and (49)-(50) are
equivalent, one only needs the linear-like PI (45)-(46) to
obtain the remaining part of the optimal control. Fig. (4)
show different shapes of the switching function obtained for
different initial conditions.
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Fig. 3: Comparison between the optimal and the proposed
controls in terms of control signals (a), cumulative costs (b),
and phase portrait (c) obtained along the trajectory from the
initial condition x = [−1;1] and three iterations of the plain-
PI (k = 3). Subfigure (d) shows the values of the boundary
function used in (74), that is xT ˙̄P1x.
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Fig. 4: Switching function for the initial condition x =
[−1;−1] (left) and x = [0.8;0.8] (right).

B. A nonlinear system with a non quadratic cost

Consider the nonlinear system

ẋ =

[
x2−3x2

2−2x1x2 + x3
2

−2x1−3x2 + x2
2

]
+

[
x2

1

]
u, (81)

with the state cost l(x) = (x1− 1
2 x2)

2+x4
2 and assume R = 1.

This system can be obtain by transforming the linear system

˙̄x1 = x̄2, ˙̄x2 =−2x̄1−3x̄2 +u, (82)

with Q̄ being the identity matrix and R̄ = 1, using the
nonlinear transformation x2 = x̄2 and x1 = x̄1 +

1
2 x̄2

2. The
optimal control of the system (81) can be computed through
the same nonlinear transformation starting from the optimal
control of the linear system (82).

The nonlinear system (81) can be easily factorized with

A(x) =

[
−2x2 1−3x2 + x2

2

−2 −3+ x2

]
, B(x) =

[
x2

1

]
, (83)

where the state cost can be rewritten in the state-dependent

quadratic form l(x) = xT Q(x)x with

Q(x) =

[
1 − 1

2 x2

− 1
2 x2

1
4 + x4

2

]
. (84)

In order to illustrate the proposed PI algorithm, the initial
admissible control is obtained through the same nonlinear
transformation starting from the control of the linear sys-
tem (82) which allocates the system poles to (−3, j0) and
(−1, j0), that is

u =−x1− x2 +
1
2

x2
2, Π = [−1 −1+

1
2

x2]. (85)

Fig. 5 shows the optimal value function (left) and the
value function obtained by the proposed approach (right)
using only two inner iterations of the plain-PI indicating the
convergence is locally achieved.

(a) (b)

Fig. 5: The optimal value function (left) and the value
function obtained by the linear-like PI approach using only
two inner iterations of the plain-PI (right) for the nonlinear
system with a state-dependent cost.

C. A nonlinear system without a quadratic-like form of the
optimal value function

Example 1: Consider the nonlinear system

ẋ1 = x2, ẋ2 =−x1 + x2 sinh(x2
1 + x2

2)+u, (86)

with the state cost l(x) = x2
2 and assume R = 1 [24]. The

optimal control of this system

u∗ =−x2ex2
1+x2

2 (87)

has an associated value function which is not quadratic-like,
that is

V ∗ = ex2
1+x2

2 −1. (88)

The nonlinear system (86) can be easily factorized with

A(x) =

[
0 1

−1 sinh(x2
1 + x2

2)

]
, B(x) =

[
0
1

]
, (89)

for which the initial admissible control for the linear-like PI
is selected to be the one that cancels out the nonlinearities
and stabilizes the system, that is u = −x2− x2 sinh(x2

1 + x2
2)

(e.g., Π = [0 −1− sinh(x2
1 + x2

2)]).
Fig. 6 shows the optimal value function (left) and the

value function obtained by the proposed approach (right)
using only two inner iterations of the plain-PI indicating
the convergence is locally achieved. The obtained results
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(a) (b)

Fig. 6: The optimal value function (left) and the value
function obtained by the proposed approach using only two
inner iterations of the plain PI (right) for the system without
quadratic-like form of optimal value function.

also suggests that the proposed PI algorithm has a potential
to construct optimal control even in case an optimal value
function is not a quadratic-like.

D. A nonlinear system with unknown optimal control

Consider the nonlinear system

ẋ =

[
−x3

1− x2

x1 + x2

]
+

[
0
1

]
u, (90)

with the state cost l(x) = x2
1 + x2

2 and assume R = 1. The
system can be easily factorized with

A(x) =

[
−x2

1 −1
1 1

]
, B(x) =

[
0
1

]
. (91)

The initial admissible control for the linear-like PI is selected
to be the control based on feedback linearization (FL) which
is obtained in the form [5]

u(x) = 3x5
1 +3x2

1x2− x2 +0.4142x1−1.3522(x3
1 + x2), (92)

for which one possible control policy is

Π = [3x4
1 +0.4142−1.3522x2

1 +3x1x2 −1−1.3522]. (93)

The solution based on Galerkin approximation (GAC) has
been obtained for different orders of the approximation and
those can be found in [5]. In this example, we use two such
controls obtained for N = {8,15}.

x
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Fig. 7: The cost values for different initial conditions for x1,
where x2 = 0 (a) and x2 = 0.2 (b).

We illustrate the comparison of the GAC, FL and the
proposed approach in terms of their associated costs as in

[5]. Fig. 7 shows the costs that have been obtained for
different initial conditions in x1, while x2 is constant, that
is x2 = 0 (a) and x2 = 0.2 (b). One can observe that the
proposed linear-like policy-iteration generates the minimal
cost, although the GAC with N = 15 is similar. However, we
stress that the GAC requires a number of preconditions for
a valid implementation [5].

(a) (b)

Fig. 8: The optimal value function (left) and the value
function obtained by the linear-like PI approach using only
one inner iteration of the plain PI (right) for the nonlinear
system with an unknown optimal value function.

Fig. 8 shows the optimal value function (left) and the
value function obtained by the proposed approach (right)
using only one inner iteration of the plain-PI indicating the
convergence is locally achieved. The obtained results also
suggests that the proposed PI algorithm has a potential to
construct optimal control even in case an optimal value
function is not known.

VII. CONCLUSIONS

We have developed a method to determine optimal con-
trol strategies for continuous-time nonlinear systems. In
particular, we have defined the approximate linear-like PI
based on the SDLE to compute an approximate control
law. Stabilizability of such an approximate policy-update is
proved with Lemma 2, its cost is derived in Lemma 3, while
convergence of this control law is provided in Theorem 1.
Section V includes the main result in which Definitions 4-6
introduce three slightly different linear-like PIs. Lemmas 4-
7 includes the proofs of their convergence properties, while
Theorem 2 provides the description of the optimal control
law algorithm based on these PIs.

The algorithm has been tested using four different nonlin-
ear systems, including the Van Der Pol oscillator, a nonlinear
system with a non quadratic cost, a nonlinear system without
a quadratic-like optimal value function and a nonlinear sys-
tem with unknown optimal control. From the results obtained
one can observe the optimality of the proposed approach and
the fast local convergence. The results also suggest that the
proposed approach has the potential to be used in cases in
which the optimal value function is not quadratic-like.
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