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A B S T R A C T

The objective of the present work is to develop a machine learning tabulation methodology for thermochem-
istry that accounts for fuel blends. The approach is based on the hybrid flamelet/random data and multiple
multilayer perceptrons (HFRD-MMLP) methodology (Ding et al., 2021), the essence of which is to train a set
of artificial neural networks (ANNs) using random data so as to anticipate the composition space encountered
in turbulent flame simulations. As such, it is applicable to any combustion modelling approach that involves
direct coupling of chemistry and flow, such as transported probability density function (PDF) methods, direct
numerical simulation (DNS), conditional moment closure (CMC), unsteady flamelet, multiple mapping closure
(MMC), thickened flame model, linear eddy model (LEM), partially stirred reactor (PaSR) as in OpenFOAM and
laminar flame computation. In this paper, the HFRD approach is further developed to generate data of varying
fuel ratios. Furthermore, radiative heat losses are included and it is shown that the ANN-based simulations are
able to account for it. The ANNs generated are first tested on 1-D laminar flame simulations and then applied
to two turbulent flames with different fuel compositions: a pure methane flame, Sandia flame D, and Sydney
flame HM1, which is a methane/hydrogen flame. The results of species mass fraction and temperature are
compared between ANN and direct integration, and excellent agreement are achieved. These results indicate
that the methodology has great capacity for generalisation and is applicable to a range of blended fuels.
Furthermore, a speed-up ratio of 14 to 17 is attained for the reaction step compared with direct integration,
which greatly reduces the computational cost of turbulent combustion simulations.
1. Introduction

In order to attain accurate predictions of emissions in turbulent
combustion simulations, detailed multi-species chemical kinetic mech-
anisms are required. These kinetic mechanisms often involve a large
number of reactions and chemical species and a correspondingly large
system of differential equations must be solved to determine the evo-
lution of the chemical species. In certain methods, such as the steady
flamelet and the Flamelet Generated Manifold (FGM), the chemistry is
decoupled from the flow and real-time integration of chemical kinetics
is not required. Other methods, however, such as transported prob-
ability density function (PDF) methods, direct numerical simulation
(DNS), conditional moment closure (CMC), unsteady flamelet, multiple
mapping closure (MMC), thickened flame model, linear eddy model
(LEM), partially stirred reactor (PaSR) as in OpenFOAM and laminar
flame computation, the integration of chemical kinetics must be per-
formed in real time and is usually the bottleneck in the computational
performance of such simulations. The direct integration (DI) of the
chemical kinetics ODEs, which are often stiff, must be carried out at
every grid node and at each time step. If the mechanisms employed
involves hundreds of or even thousands of reactions, the DI of the ODEs
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will take up most of the simulation time, making it computationally
intensive or even prohibitive.

One solution for speeding up the computation of chemical kinetics
is to employ artificial neural networks (ANN) for chemistry tabulation.
ANNs are machine learning models capable of non-linear function
approximation and can be trained to approximate the functions deter-
mined implicitly by the numerical integration of the chemical kinetics.
The resulting CPU gain is due to the fact that the ANNs perform much
simpler operations than those involved in the solution of ODEs with
implicit methods. Furthermore, no convergence issue is involved, i.e. all
composition states are integrated in the same time, while the numerical
integration of ODEs can be very slow for composition states that give
rise to a stiff system.

Machine learning has recently found many applications in com-
bustion, and a general review can be found in Ihme et al. [1]. The
following survey will focus on works related to ANN tabulation of
thermochemistry.

In early research including the works of Christo et al. [2–4] and
Blasco et al. [5], the ANNs were employed to tabulate simple mecha-
nisms involving only a few species and reactions steps. However, when
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it comes to complex mechanisms involving dozens of species, it is
difficult to tabulate the chemistry using a single simple ANN, due to the
high dimensionality of the composition space. Several methods were
developed to solve this problem, including composition partitioning
or clustering [6–10], using individual ANNs to predict each reactive
calar [11–13] and using deep neural networks [14,15]. In the work of
ing et al. [16], a method employing multiple multilayer perceptrons

MMLPs) to predict each single species was proposed and shown to
ubstantially improve the ANN prediction accuracy.

The ANNs must first be trained with appropriate data. The gener-
tion of the training data is the most challenging problem for ANN
hemistry tabulation. If data from the problem to be simulated is
mployed, agreement can be easily obtained, but the tabulation will not
e applicable to other problems. For the ANN tabulation methodology
o be of practical use, the data should endow the resulting ANNs with
he ability to generalise and be applicable to a range of turbulent
ombustion problems. Several efforts have been made in this direction.
en et al. [17,18] generated the training data via stand-alone linear
ddy mixing (LEM) simulations. Chatzopoulos et al. [8] proposed a
ethod of training data generation via unsteady laminar flamelet sim-
lations, which was also the basis of the approach in Franke et al. [9].
an et al. [14] employed a canonical stochastic micromixing problem

o generate the training dataset. An et al. [10] performed a RANS
imulation to collect the training data.

In the recent works of Ding et al. [16] and Readshaw et al. [13],
hybrid flamelet/random data (HFRD) sampling method was pro-

osed, where the flamelet sampling of the Chatzopoulos et al. approach
as used as a basis for generating a new random dataset. While the

lamelet dataset ensured that the starting data were valid and physically
eaningful thermochemical states, the random data generation process
roduced a training dataset that was not limited to the composition
egions covered by flamelet solutions and could thus be applied to
ny combustion modelling approach, including the transported PDF
imulations shown in Refs. [13,16]. The ANNs were subsequently ap-
lied to the simulation of different methane–air non-premixed flames
n the context of the Large Eddy Simulation (LES) — transported
robability density function (PDF) approach and excellent agreement
ith results obtained via direct integration of chemical kinetics was
chieved. Notably, in Ref. [16] the Sandia flames D, E and F were all
imulated with the same ANNs, thus showing that the HFRD method
ndows the ANNs with great capacity for generalisation.

Although great progress has been made on ANN chemistry tabula-
ion, so far (to the authors’ knowledge) ANNs have only been applied
o combustion problems with fixed fuel compositions. However, many
orks have shown the potential of using blended fuels to improve

he efficiency and reduce pollutant emissions of industrial combus-
ion devices. For example, experiments have showed that, by using
ydrogen-enriched natural gas, automotive engines can have better
erformance and reduced emissions at lean conditions [19,20]. As
he mixing ratios of the blended fuel varies in different cases, it is
mpractical to train new ANNs every time a new combustion problem
ith a different mixing ratios is encountered, especially when one

s particularly interested in the influence of fuel mixing ratio. While
revious works have shown that the HFRD approach yields ANNs that
an generalise to be applied to different flames [13,16], it is desired to
evelop a set of ANNs applicable to blended fuels with different mixing
atios. Furthermore, in these works the flames were adiabatic, hence
ne further question pertains to the ability of the ANNs to account for
eat losses.

The aim of the present work is to further develop the HFRD method
n order to produce ANNs able to account for blended fuels with varying
ixing ratios. Furthermore, radiative heat losses are included in order

o assess the applicability of the ANNs to non-adiabatic problems.
he MMLP method [16] is also applied in order to improve the ANN
rediction accuracy. Methane flames with hydrogen enrichment are
2

Fig. 1. MLP structure.

chosen as the target flames and the complete GRI-1.2 mechanism [21]
is employed for ANN tabulation.

The paper is structured as follows. Section 2 describes the method-
ology, with emphasis on the new elements in the present paper. Sec-
tion 3 evaluates the performance of the ANNs on one-dimensional
problems, while in Section 4 the target turbulent flames are simulated
and discussed, followed by the conclusions.

2. Machine learning tabulation methodology

2.1. Overview

For a given chemistry mechanism, the species concentrations after
a simulation time step 𝛿𝑡 can be calculated given their initial states by
numerically integrating the ODEs that describe the time evolution of
the reaction system. For reactions under a fixed pressure, the initial
states can be fully described by the species concentrations 𝑦𝑖 and the
specific enthalpy ℎ, and the species concentration change 𝛿𝑦𝑖 during
the reaction time step 𝛿𝑡 can be expressed as a function of 𝑦𝑖 and ℎ:

𝛿𝑦𝑖 = 𝐹 (𝑦𝑖, ℎ) (1)

where 𝐹 is a function that is implicitly determined by the solution of
the chemical kinetics ODEs. Note that the specific enthalpy includes the
enthalpy of formation and does not change due to chemical reaction.

ANNs have the ability to approximate highly nonlinear functions.
Therefore, the function 𝐹 can be represented by ANNs so that the time-
consuming direct integration of chemical kinetics can be replaced by
ANN chemistry tabulation. The ANN model employed in this work is
the multilayer perceptron (MLP), a widely used model for nonlinear
function fitting. An MLP consists of several layers of neurons and a
schematic of the MLP employed in this work for predicting a single
species is shown in Fig. 1, using two hidden layers containing 40
neurons each. The target chemistry mechanism to tabulate in this work
is the GRI-1.2 mechanism, involving 31 species (if Ar is not considered).
The concentration of N2 does not change during the reaction and its
influence on other species is negligible, so N2 is not used as an input
to MLP. Therefore, the MLP has a total of 31 inputs (30 species +
enthalpy). The hyperbolic tangent function is used as the activation
function of the hidden layers, while a linear function is used for output
layer. All MLPs use the same structure, which is shown in Fig. 1.

The ANNs must first be trained with a training dataset. During the
training process, the parameters of the ANNs are adjusted to fit a set
of input and output data. In the present work, all ANNs are trained
using the MATLAB neural network toolbox and the training algorithm
employed is Bayesian Regularisation. The MLP structure and training
algorithm settings are the same as those in our previous work [16].

The most important aspect of the methodology is the generation
of training data, as the objective is to generate them in an abstract
manner that anticipates the composition space encountered in turbulent
flame simulations. For this reason, in our previous works [13,16] we
proposed an approach where the data were generated via a random
procedure, using data from laminar flamelets as a starting point. The



Applications in Energy and Combustion Science 12 (2022) 100086T. Ding et al.

r
e

𝜒

t
t
s
d
s

a
(
f

ℎ
f
v
a
f
c
v
T
s
a
E
s
r
c
t

a
b
m
e
m
a
r
T
o
r
s
r
f
t
f

E
t
a

role of the flamelet data was to provide a robust basis for creating
data with valid compositions, but they were subsequently discarded
and only the random data were employed, as they cover a much wider
composition space and have a generalisation capacity that is not limited
by the states encountered in flamelet simulations. Nevertheless, the
data were still limited by the fuel composition of the initial flamelet
data. In the present work, this approach is augmented to generate data
suitable for a much wider range of flames that feature variable fuel
ratios.

2.2. A random data generation method for fuel blends

The basics of our hybrid flamelet/random data (HFRD) generation
approach will be described here succinctly, and only the new develop-
ments will be described in detail. More basic details of HFRD method
can be found in Refs. [13,16].

The training data are generated in two steps: sampling via flamelet
simulations and random data generation. For the first step, 1-D laminar
counterflow diffusion flamelet simulations are performed to collect
data samples. This canonical combustion problem is governed by the
following equation [22]:

𝜌
𝜕𝑦𝑖
𝜕𝑡

= 𝜌
𝜒(𝑧)
2

𝜕2𝑦𝑖
𝜕𝑧2

+ �̇�𝑖 (2)

Here 𝑧 is the mixture fraction, 𝑦𝑖 is the species concentration, �̇�𝑖 is the
eaction rate and 𝜒 is the scalar dissipation rate given by the following
quation:

(𝑧) = 𝑆
𝜋
exp

[

−2(erfc−1(2𝑧))2
]

(3)

where 𝑆 is the strain rate.
Following our previous works [13,16], the initial fuel and oxidant

emperatures use random values for each flamelet simulation. However,
hese works were targeting methane flames only. In order to collect
amples corresponding to methane flame with different levels of hy-
rogen enriched, the fuel of the flamelet simulation in this work is
et as a mixture of CH4 and H2, and the molar ratio of H2/CH4 is

randomly chosen between 0 and 2 for each flamelet simulation. The
strain rate is also randomly chosen between 1/s and a value higher than
the extinction strain rate. Flamelet simulations using very low strain
rates will produce samples close to equilibrium states, while flamelets
with very high strain rates can produce samples representing extinction
states. In our previous works [13,16], the maximum strain rate is set
to a fixed value. However, in the case of methane/hydrogen blended
fuels, the extinction strain rate is highly influenced by fuel mixing ratio.
With increasing H2/CH4 ratio from 0 to 2, the extinction strain will
also increase from about 600/s to 2000/s. Therefore, the maximum
strain rate should be set as a function of mixing ratio. In this work,
the following equation is used for determine the maximum strain rate:

𝑆𝑚𝑎𝑥 = 800 + 800𝑚 (4)

where 𝑚 is the H2/CH4 ratio. There is no need to know the precise
values of extinction strain rate for different mixing ratios. The only
requirement is that the 𝑆𝑚𝑎𝑥 is reasonably higher than the extinction
strain rate, hence a simple linear equation is sufficient for choosing the
maximum strain rate.

Table 1 lists the minimum and maximum values for several flamelet
simulation parameters. In this work, a total of 200 flamelet simulations
are performed, with different random strain rates, initial tempera-
tures and H2/CH4 molar ratios. The data are collected within the
mixture fraction flammability range, which is defined as the total
element mass fraction of C and H in this work. Although the upper and
lower flammability limits of CH4 vary if different concentrations of H2
re introduced, the mixture fraction range employed in this work is
0.01,0.14) and is wide enough to cover the actual flammability range
or CH /H fuel if the fuel molar ratio of H /CH is not larger than 2.
3

4 2 2 4
Table 1
Initial conditions of flamelet simulations.

Variables Minimum Maximum

Initial temperature of fuel (𝑇𝑓 ) 150 K 350 K
Initial temperature of oxidant (𝑇𝑜) 150 K 350 K
H2∕CH4 fuel mixing ratio (𝑚) 0 2
Strain rate (𝑆) 1/s 800 + 800 m

Table 2
Constraints for random data generation.

Variables Minimum Maximum

H/C ratio 3.9 8.1
O/N ratio 0.26 0.27
Temperature 500 K –
Mixture fraction 0.01 0.14

After the flamelet simulations, the flamelet dataset is used as a
basis to generate the random dataset. For each data state (ℎ and 𝑦𝑗)
of the flamelet dataset, a new random state can be generated using the
following equations:

ℎ𝑟𝑛𝑑 = ℎ + 𝑐
𝑎
(ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛) (5)

𝑦′𝑗 = 𝑦(1+𝑐∕𝑏)𝑗 (𝑗 ≠ 𝑗𝑁2) (6)

𝑦′𝑁2
= 𝑦𝑁2

+ 𝑐
𝑎
(𝑦𝑁2 ,𝑚𝑎𝑥 − 𝑦𝑁2 ,𝑚𝑖𝑛) (7)

𝑦𝑗,𝑟𝑛𝑑 =
𝑦′𝑗
∑

𝑦′
(8)

The new enthalpy value ℎ𝑟𝑛𝑑 is generated based on the origin enthalpy
, the minimum enthalpy ℎ𝑚𝑖𝑛 and the maximum enthalpy ℎ𝑚𝑎𝑥 of the
lamelet dataset. It should be noted that, by allowing enthalpy to take
alues from a range, the approach allows the resulting ANNs to be
pplicable to cases with heat losses, and this feature will be discussed
urther in Section 2.3. For all species except N2, the new species
oncentration value 𝑦′𝑗 is generated based on its initial value 𝑦𝑗 . The
ariable 𝑐 is a random value uniformly distributed in the range (−1,1).
he choice of parameters 𝑎 and 𝑏 will be discussed later in the present
ection. The concentration of N2 does not change during the reaction
nd has similar order of magnitude for all flamelet states. Therefore,
q. (7) is used to generate the random N2 concentration, and has the
ame form as the equation for random enthalpy generation. After a new
andom state is generated, Eq. (8) is introduced to normalise the species
oncentrations, in order to ensure that the species mass fractions sum
o unity.

In additional to mass conservation, the new random state should
lso satisfy element ratio constraints. Assuming equal Schmidt num-
ers, the fuel ratio of H2/CH4 is between 0 and 2, hence the element
olar ratio of H/C is between 4 and 8. The oxidant is air, hence the

lement molar ratio of O/N should be the same as that of air. In order to
ake the random data more generalised, the element ratio constraints

re relaxed to reasonable ranges. In this work, the H/C and O/N ratio
ange for random data is set to (3.9,8.1) and (0.26,0.27) respectively.
he states with temperature below 500 K or mixture fraction outside
f the range (0.01,0.14) will also not be considered due to their low
eactivity. All the constraints that the random data must satisfy are
hown in Table 2. However, there is no guarantee that the generated
andom state will automatically satisfy all these constraints. Therefore,
or each flamelet state, the random state is generated using Eqs. (5)
o (8) repeatedly until all constraints in Table 2 are satisfied, or the
lamelet state is abandoned after 100 unsuccessful iterations.

To generate appropriate random dataset, the values of 𝑎 and 𝑏 in
qs. (5) and (6) should be chosen properly. Small values of 𝑏 will make
he random state difficult to satisfy all of the constraints in Table 2
nd also generate states too far from the initial flamelet-sampled states,
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Fig. 2. Mixture fraction versus enthalpy comparison between flamelet dataset and random dataset.
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which are likely to be non-physical. On the other hand, large values
will lead to states too close to the flamelet-sampled ones, thus making
the random data less capable for generalisation. A simple way to check
whether the random data is appropriate is to compare it with the
flamelet dataset. Scatter plots of major species, mixture fraction or
enthalpy can be drawn. An ideal random dataset should eliminate all
patterns caused by the flamelet sampling procedure and cover a similar
or a slightly wider composition space, as compared with the flamelet
dataset. In the present work, the values of 𝑎 and 𝑏 are set to 10, and
the specific enthalpies in both the flamelet and the random dataset
are plotted against mixture fraction values in Fig. 2. It can be seen
that, in Fig. 2(a), the flamelet samples are concentrated along several
lines, except for data with numerical errors. Overall, compared with
the flamelet dataset, the random dataset is more general and covers
better the composition space of the blended CH4/H2 flames. It should
also be emphasised that the flamelet data is used merely as guidance
for generating new composition states via the random process and are
then discarded. The role of the flamelets is merely for generating valid
composition states to be used as starting points; neither the states nor
the diffusion–reaction structure of the flamelets are employed in the
method.

The fuel mixing ratio and initial temperatures are randomly set
for the flamelet simulations. Once set, a linear relationship between
enthalpy and mixture fraction is determined and therefore the samples
collected from a specific flamelet simulation are located on the same
line in the 2-D mixture fraction-enthalpy space. The whole flamelet
dataset runs along several such lines, with each line corresponding
to a individual flamelet simulation. The linear relationship between
enthalpy and mixture fraction will significantly influence the generali-
sation capacity of the resulting ANNs. Directly applying the flamelet
dataset to training is likely to cause biased ANNs, especially when
heat losses are considered, where the enthalpy and mixture fraction are
not linearly related. By applying the random data generation method,
the linear relations caused by the flamelet sampling method can be
eliminated, as shown in Fig. 2(b). Therefore, the ANNs trained using
the random data can have much greater capacity for generalisation
compared with those trained with the flamelet dataset. The enthalpy
range of the random data is also slightly further expanded, making the
data more suitable for combustion problems with heat loss. The overall
composition space covered by the random dataset is quite similar to
that of the flamelet dataset, which means that the values chosen for
the coefficients 𝑎 and 𝑏 in Eqs. (5) and (6) are appropriate.

In the present work, a total of about 1,000,000 flamelet samples are
collected and about 950,000 random data are generated. The random
4

state will then undergo a single reaction step using direct integration,
and the resulting concentration change will be used as the target output
for ANN training. The time step employed in this work is 10−6 s
nd the direct integration was performed with the VODE solver [23].

Note that, if dynamic time stepping is desired, the ANNs trained for a
minimum fixed time step can be called in succession; it is also possible
to train more than one set of ANNs with different time steps and
use combinations of them. The same solver and time step were also
employed for the laminar flame simulations and turbulent combustion
simulations that will be shown in the following sections.

2.3. Non-adiabatic flames

Due to the wide range of initial temperature employed for the
flamelet simulations, the dataset collected will have a wide range of
enthalpies, hence the states encountered in non-adiabatic flames can
be properly covered. This is shown in Fig. 3, using data from the
imulation of Sandia flame D that will be described in Section 4.1. The
imulation includes radiative heat loss and the enthalpy of the sampled
andia D thermochemical states is plotted against the mixture frac-
ion. The lines shown represent the methane/air mixtures at different
emperatures. These lines also correspond to flamelet simulations with
ifferent initial temperatures, as the relationship between enthalpy and
ixture fraction will not change during the flamelet simulation if no
eat loss is considered. It can be seen that most of the Sandia flame
tates are located between the yellow and orange lines. Therefore, to
over the composition space of Sandia flame D, the initial temperature
f the methane flamelet simulation should cover the range from 200 K
o 300 K. If the flamelet simulations are only performed with room
emperature or with a small initial temperature range, the states with
ow enthalpy will not be covered, hence the dataset collected will not be
uitable for non-adiabatic problems. For methane flames with hydrogen
nrichment, the slope of the enthalpy-mixture fraction line will slightly
hanged, but the enthalpy range covered are still similar, as can be
een in Fig. 2(a). Therefore, for methane/hydrogen blended fuels, it is
till necessary to employ a wide range of initial temperature for the
lamelet simulations. The temperature range employed in this work is
rom 150 K to 350 K, completely covering the composition states of
andia flame D, as well as many other non-adiabatic turbulent flames.

.4. Multiple MLPs method

In the present work, the Multiple multilayer perceptrons (MMLP)
pproach proposed in our previous work [16] is applied. This method
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Fig. 3. Enthalpy versus mixture fraction for a methane/air mixture at different
temperatures and for the Sandia D flame. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

can greatly improve the ANN prediction accuracy, especially for the
species with small concentration changes during reaction. The main
idea of the MMLP approach is briefly described here, while one may
refer to our previous work [16] for more details.

Most of the ANN training algorithms aim to minimise the sum
f squares errors between ANN predictions and target outputs. When
pplying the entire random dataset for MLP training, the MLP outputs
ill have similar absolute errors, regardless of their target output value.
ven if the absolute errors are very small, the relative errors can still be
ery large for outputs with small values, especially when the outputs
re of the same of even smaller magnitude as the absolute errors. For
xample, if the output range of a target species is (−𝑘, 𝑘), the MLP error
ay be of the order of 𝑘∕100. For large output values of order 𝑘, both

he relative and absolute error are small. However, if the output value
s within the range (−𝑘∕10, 𝑘∕10), then the relative error is about 10%.
n our previous work [16], it was found to be difficult for an MLP to
chieve both low absolute errors for data with large output magnitudes
nd low relative errors for data with small output magnitudes, as these
ata usually correspond to states with different dynamical behaviour.

The MMLP method can be employed to improve the prediction
ccuracy for data with small output magnitudes. For example, for data
ith output range (−𝑘∕10, 𝑘∕10), a separate MLP can be trained using

he random data whose outputs are within the given range. The new
LP will only learn from the data within the corresponding range, so

ts performance on these data will be greatly improved as compared
ith the MLP trained using the entire random dataset. However, even

or the new MLP, the prediction errors may still be large for data with
maller output values (e.g. data with output range (−𝑘∕100, 𝑘∕100)).

The prediction accuracy of such data can be further improved by
training another new MLP focussing only on these data. However, it is
found that the improvement on prediction accuracy reduces with each
new iteration. Therefore, when a new MLP with a smaller output range
is trained, it is tested and accepted only if its performance on the data
with this target output range is improved. Finally, for each species,
multiple MLPs are trained, with each predicting states with different
magnitudes of species concentration changes.

The root mean square errors (RMSE) of multiple MLPs for several
major species, tested on flamelet dataset, are shown in Fig. 4. In the
ase of CH4, the prediction error of the target outputs within the range
−10−5, 10−5) is reduced by about 50% by the second MLP (orange
5

ar), while the third MLP (yellow bar) further improves the prediction d
ccuracy for outputs within range (−2 × 10−6, 2 × 10−6). Similarly,
he prediction error for O2 is reduced when applying multiple MLPs.
owever, in the case of CO and H2, only the second MLP reduces

he prediction error while the third MLP fails to further improve
ccuracy, which means that 2 MLPs are enough and there is no need
o introducing new MLPs for H2 and CO.

When applying the multiple MLPs, the input data will start with
he last MLP which has the narrowest output range. If its prediction
alls within the corresponding output range, then the prediction will
e accepted. Otherwise, the data will go to previous MLP with a wider
utput range, and the above process will be repeated until the data
oes to the first MLP with the widest output range, in which case the
rediction of the first MLP will be the final output.

In the present work, 2 to 3 MLPs are trained for each species,
esulting a total of 71 MLPs. Each ANN is trained for 1500 epochs
sing 100,000 training data, and the training time for a single MLP
s about 20 h using a single Xeon 6132 2.6 GHz core. All the ANN
raining can be carried out on a workstation with about 30 to 40 cores
n parallel and takes a couple of days in such a configuration. The
raining time is negligible when compared with the simulation time
eeded for direct integration — for the flames in the present work,
undreds of cores must be employed for several weeks. Furthermore,
he ANNs can be trained once and used for several different turbulent
lames, as will be demonstrated later. The storage required for storing
he MLP parameters is also extremely small (about 5.5 MB in this case).

. Application to one-dimensional laminar flames

Before applying the ANNs to turbulent combustion simulations, they
ill first be tested on 1-D laminar flamelets and 1-D laminar premixed

lames, with both pure and blended fuels. For the laminar flamelet
imulation, the mixture fraction space is discretised with 200 nodes
nd grid refinement around the stoichiometric mixture fraction. For
-D premixed flames, the simulation domain is set to 0.01 m and
mploys 200 nodes with refinement around the flame front. Differential
iffusion is also employed for the premixed flames, thus putting to test
he ability of the HFRD method to deal with variable element ratios. For
ach individual flame, the simulations are carried out with both ANNs
nd direct integration, and their results are compared to evaluate the
erformance of the ANNs.

.1. Methane flames

The ANN chemistry tabulation method in the present work is devel-
ped for blended methane/hydrogen fuels with H2/CH4 ratio varying
rom 0 to 2, which means that the ANNs should also work on pure
ethane–air flames. Therefore, before the application to blended fuels,

t is important to ensure that no significant loss of accuracy is incurred
hen the method is applied to pure methane flames, due to the exten-

ion to blended fuels. Therefore, it is necessary to test the ANNs on pure
ethane–air flames first and compare the results with those obtained

n our previous works [16], where the ANNs were trained for methane
lames only.

A flamelet simulation with strain rate equal to 100/s and initial
emperature of 300 K, and a 1-D premixed flame with an equivalence
atio of 1 and an initial temperature of 300 K are employed to evaluate
he performance of the ANNs on methane–air flames. The simulation
esults for the laminar flamelet are shown in Fig. 5, where the species
ass fraction and temperature (𝑇 ) profiles around the mixture fraction

lammability range (0 < 𝑧 < 0.15) are plotted. The results for the
-D laminar premixed flame are shown in Fig. 6, with the species
ass fractions and temperature (𝑇 ) shown along the simulation domain
0 < 𝑥 < 10 mm). In both cases, it can be clearly seen that the ANN
esults are in very good agreement with the DI results. The ANN and
I profiles are virtually coincident and the errors are too small to be

istinguishable.
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Fig. 4. RMSE comparison of multiple MLPs for several major species. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 5. Species mass fractions and temperature profiles in the methane–air flamelet simulation. The DI results are plotted in black solid lines, while the ANN results are shown
using red circle symbols. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Species mass fractions and temperature profiles in the 1-D premixed methane flame simulation. The DI results are plotted in black solid lines, while the ANN results are
shown using red circle symbols. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Error comparison of the laminar flamelet simulation results using different ANNs. The blue bars show the ANN errors in the present work, while the red bars represent
the ANN errors in Ref. [16] where the ANNs were trained for pure methane flames. (For interpretation of the references to colour in this figure legend, the reader is referred to
he web version of this article.)
Fig. 8. Error comparison of the 1-D premixed flame simulation results using different ANNs. The blue bars show the ANN errors in the present work, while the red bars represent
he ANN errors in Ref. [16] where the ANNs were trained for pure methane flames. (For interpretation of the references to colour in this figure legend, the reader is referred to
he web version of this article.)
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To quantitatively analyse the ANN performance, the maximum
bsolute errors between ANN results and DI results for the target species
are calculated using the following equation:

bsolute error = max
[

abs(𝑛𝐴𝑁𝑁
𝑖 − 𝑛𝐷𝐼

𝑖 )
]

(9)

where 𝑛𝐴𝑁𝑁
𝑖 and 𝑛𝐷𝐼

𝑖 are the simulation results (species mass fraction or
temperature) of ANN and DI respectively. The absolute errors are also
normalised by the maximum value obtained via DI in order to calculate
the relative error:

relative error =
max

[

abs(𝑛𝐴𝑁𝑁
𝑖 − 𝑛𝐷𝐼

𝑖 )
]

max(𝑛𝐷𝐼
𝑖 )

(10)

For comparison, the ANN errors in our previous work [16], which
argeted methane flames only, are also calculated. The errors are shown
n Figs. 7 and 8, and both absolute errors and relative errors are
alculated. In the case of the flamelet simulation, it can be seen that the
rrors in both works have a similar order of magnitude. The maximum
elative error is only about 1%, which occurs on OH. In the case of
he premixed flame, the ANN error for the blended fuel ANNs is 1.5
o 5 times higher than that of the ANNs trained for pure methane.
espite this increase, the overall errors are still very small compared
ith the mass fraction of the species and are hardly distinguishable.
he maximum relative error shown in Fig. 8b is only about 3%, which
ccurs on H2. It can thus be concluded that the ANNs developed for
lended fuels still perform very well on pure methane flames.

.2. Blended methane/hydrogen flames

After the test on pure methane flames, the ANNs are now tested
n methane/hydrogen flames, which is the main focus of the present
ork. In order to extent the enthalpy range, low-temperature flames
re also used for testing. Strain rate (in the case of laminar flamelets)
7

nd equivalence ratio (in the case of laminar premixed flames) are also g
et to different values for different cases, in order to better demonstrate
he generalisation capacity of the ANNs.

Three flamelet simulations and three 1-D laminar premixed flames
re first performed, with their parameters listed in Tables 3 and 4
espectively. For each case of the same type of flame, all three flame
arameters are set to be different from other two cases. Case 1 and
ase A feature low level hydrogen enrichment, while Case 3 and Case
feature high level of hydrogen enrichment. Case 1 features low strain

ate while case 3 features high strain rate. Case A uses high initial
emperature while Case 2, 3 and C uses low initial temperature. The
imulation results of laminar flamelet cases are shown in Fig. 9, where
he profiles of temperature, several major species and several minor
pecies are plotted over mixture fraction around flammability range.
t can be clearly seen that the ANN results are in excellent agreement
ith the DI results in all three cases and even the minor species can
e accurately predicted by the ANNs. The simulation results of three
-D premixed laminar flames are shown in Fig. 10. Most species and
emperature are plotted over the whole domain (0 < 𝑥 < 10 mm)
hile some minor species are plotted around the flame front (4 mm
𝑥 < 6 mm) in order to clearly show the profile. Overall, excellent

NN prediction accuracy is obtained in all 3 cases. In case A, the ANN
nd DI profiles virtually coincide for all species and temperature. In
ase B, only C2H6 is slightly underpredicted. The ANN predictions of
ther species are highly accurate. In case C, the ANN results of H, O and
H are slightly underpredicted in the fully burnt side, but the errors
re small and overall the profiles are in good agreement with those
btained via DI. The simulated flame speeds for the premixed flames
re listed in Table 5, and very good agreement is achieved between
NN and DI. The relative error of the ANN prediction is also calculated
nd its maximum is 2.3%, which occurs in case C.

It is worth noting that, while the laminar flamelet is the problem
sed to collect the initial data that was used for the random data

eneration, the 1-D laminar premixed flame is a different problem and
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Table 3
Flamelet test cases.

Case H2∕CH4 ratio Initial temperature Strain rate

1 0.5 300 K 50/s
2 1.0 275 K 500/s
3 2.0 250 K 1500/s

Table 4
1-D premixed flame test cases.

Case H2∕CH4 ratio Initial temperature Equivalence ratio

A 0.2 320 K 0.8
B 1.0 300 K 1.0
C 1.8 280 K 1.2

Table 5
Flame speed of 1-D premixed flames as calculated by ANN and DI simulations.

Flame case Flame speed simulated
via DI (m/s)

Flame speed simulated
via ANN (m/s)

Relative error

A 0.3557 0.3631 2.08%
B 0.6380 0.6361 0.30%
C 0.7732 0.7554 2.30%

no data from it was involved in the training data generation. This may
explain the minor discrepancies found in the premixed flame, but the
accuracy there is still remarkably high and indicates that the ANNs have
a good capacity for generalisation.

4. Applications to turbulent flames

In order to validate the ANN methodology, two turbulent flames
with different fuel compositions were chosen as test cases in this work.
The first case is the Sandia piloted jet flame D, the fuel of which
is methane and air. The second test case is the Sydney bluff body
flame HM1, which is a methane/hydrogen flame. These two flames
are well studied and the detailed experiment data are available on
the ‘‘International Workshop on Measurement and Computation of
Turbulent Nonpremixed Flames’’ (TNF Workshop) [24]. The Sandia
flame was also simulated successfully in our previous work [16], where
the methodology targeted methane flames only. Although the ANNs are
successfully applied to 1-D laminar methane flames, their performance
on turbulent methane flames is still unknown. It is therefore necessary
to simulate the Sandia flame D again with the extended methodology
in order to ascertain that no loss of accuracy is incurred by the varying
fuel ratio data. Afterwards, the simulation of the Sydney HM1 flame
is performed, which has a more complicated flame structure than the
Sandia flames, in order to put the new features of the approach to test.

In the present work, the turbulent flames are simulated with the
LES stochastic field method, the implementation of which is almost
identical to that described in the work of Jones et al. [25], with
the addition of radiative heat loss. The simulations employed eight
stochastic fields and the dynamic Smagorinsky model of Piomelli and
Liu [26]. Equal diffusivities were also assumed, with a Schmidt number
of 𝜎𝑠𝑔𝑠 = 0.7. The simulations were performed with our in-house CFD
code BOFFIN [27]. A semi-implicit scheme was employed for temporal
discretisation, while the central difference scheme was employed for
spatial discretisation, except for the convective terms of the scalar
equations, which were discretised using a total variation diminishing
(TVD) scheme. More numeric details about the BOFFIN code can be
found in Ref. [25] and the thesis of Prasad [28]. The radiative heat
loss is considered in our simulations using the optically thin radiation
model, with radiative properties based on the RADCAL model [29].
CH4, CO, CO2 and H2O are considered for radiation and the detailed
escription of the model is documented in Ref. [30]. For each flame,
wo simulations were carried out, one using DI and another one using
he ANNs for the reaction source term computations. Once the flame
8

Table 6
Average CPU time for the Sandia flame D simulation.

Method Reaction time (𝑡𝑅) Total time (𝑡𝑇 ) 𝑡𝑅∕𝑡𝑇
DI 1 1.27 78%
ANN 0.057 0.41 14%

had become fully developed, the statistical quantities (mean and RMS)
were collected for a period of more than 5 flowthrough times (based
on bulk velocity of the jet). After that, the collected statistics were
compared between DI and ANN.

4.1. Sandia flame D

The Sandia flames are piloted partially premixed jet flames, studied
experimentally by Barlow et al. [31] and Schneider et al. [32]. This
flame series, especially flame D, has been widely used to validate com-
bustion models. The burner of Sandia flames has a main jet diameter
(𝐷) of 7.2 mm and a pilot diameter of 18.2 mm. The jet composition
is 25% CH4 and 75% air by volume. The annular pilot burnt compo-
sition has the same specific enthalpy and equilibrium composition as
a CH4/air mixture at equivalence ratio 𝜙 = 0.77. For flame D, the
bulk velocities of the jet, pilot and coflow are 49.6 m/s, 11.4 m/s
and 0.9 m/s respectively. The simulation domain has dimensions 36
(axial) × 7.5 × 7.5 cm and a Cartesian grid with three million cells
is employed. The grid cells are evenly distributed in the downstream
direction. In the radial direction, the cell size is about 0.5 mm in
the central jet region and then expands smoothly towards the outside
boundary. Using a time step of 10−6 s, the maximum CFL number is
less than 0.1.

Figs. 11 and 12 show the radial profiles of species mass fraction
and temperature at 4 axial locations: Z = 7.5D, 15D, 30D and 45D. The
DI results and ANN results are compared, while the experimental data
are also shown. It can be seen that the ANN results are in excellent
agreement with the DI results. For most major species and temperature
in Fig. 11, the ANN profiles and DI profiles are highly coincident for
both mean value and RMS value, and the differences are too small to
be distinguishable in the figure. For minor species shown in Fig. 12, the
ANN profiles and DI profiles are almost identical at location Z = 7.5D
and 15D, while small discrepancies can be found near the centreline at
location Z = 30D and 45D. However, the errors are very small and the
overall ANN results are still in very good agreement with DI results.

The mean temperature field and CH4 mass fraction contours are
plotted in Fig. 13. Both ANN results and DI results are shown for
comparison. It can be seen that the distribution of these two scalar
fields between ANN and DI are highly consistent, which means that
the ANNs can reproduce the flame structure with high accuracy.

The CPU time comparison of the Sandia flame D simulation using
ANNs and DI is shown in Table 6, taken after the flame has been
fully developed (note that the time is normalised with the reaction
time using DI). Great savings in computational cost are achieved using
ANNs, with the CPU time taken for the reaction step reduced by 94%
corresponding to a speed-up ratio of 17.5% (see Table 6).

4.2. Sydney HM1 flame

The burner of the Sydney bluff body flame consists of a fuel jet
of diameter 3.6 mm, surrounded by a solid cylindrical bluff body of
diameter 50 mm. The fuel consists of 50% methane and 50% hydrogen
(volume percentage). The experimental study of a series of Sydney bluff
body flames, with different inflow velocities, were conducted by Dally
et al. [33]. In the present work, the HM1 flame is used to validate
the ANN thermochemistry tabulation methodology. The bulk velocities
of the jet and coflow air are 118 m/s and 40 m/s respectively. The
simulation domain has cylindrical dimensions 25 (axial) × 7.5 (radial)
cm, resolved by and a grid with about two million cells. The grid is
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Fig. 9. Species mass fractions and temperature profiles in the laminar CH4/H2 flamelet simulations. The DI results are plotted in black solid lines, while the ANN results are
shown using red circle symbols. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
uniform in the axial direction, with a cell size of 1 mm. In the radial
direction, the cell size is about 0.6 mm in the central jet and bluff body
region and then expands smoothly in the coflow region. The maximum
CFL number is less than 0.2 using a time step of 10−6 s.

The mean and RMS values for several species mass fractions and
temperature are collected at 5 axial locations: Z = 13, 30, 65, 90 and
120 mm. Fig. 14 shows the radial profiles of several major species mass
9

fraction and temperature. It can be clearly seen that the ANN profiles
are almost identical with DI profiles for both mean value and RMS
value. The profiles of several minor species are shown in Fig. 15, where
the ANN profiles and DI profiles nearly coincide in most plots. Some
errors can be seen for CH3 and CH2O at low axial locations, where the
ANNs overpredict the peak value. However, these errors are acceptable
and the overall ANN profiles match the DI results very well.
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Fig. 10. Species mass fractions and temperature profiles in the 1-D laminar premixed CH4/H2 flame simulations. The DI results are plotted in black solid lines, while the ANN
results are shown using red circle symbols. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Some discrepancies between the simulation results and experiment
results are also evident in Fig. 14. Several factors will influence the sim-
lation results of bluff body flames, including the grid resolution, the
echanism employed, the introduction of immersed boundaries [34]

nd so on. Since the present work aims at the ANN tabulation method-
logy, so the main focus is the generalisation and accuracy of the
NNs on chemistry tabulation. Although there are some differences
10

etween simulation results and experimental data, the agreement is f
verall reasonable and further improvement to match the experiment
ata is out of the scope of this work.

The mean temperature field and CH4 mass fraction field of the cross
ection are plotted in Fig. 16. It can be seen that the flame structure is
ccurately produced by ANN simulation. The flame structure of HM1
s quite different from that of Sandia flames. One main feature of the

lame structure is the large recirculation zone, which is induced by
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Fig. 11. Major species mass fractions and temperature of Sandia D. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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the solid bluff body. This recirculation zone extends about one bluff-
body diameter downstream of the face of the burner [33]. The peak
emperature of this zone locates near the outer edge of the bluff-body,
hich can also be observed from the temperature radial profiles at

ocation Z = 30 and 65 mm in Fig. 14. Downstream of the recirculation
one, the width of the flame becomes narrow and a neck zone is
ormed, where the temperature slightly decreases. Downstream of the
eck zone, the rest of the flame shows a jet-like propagation. The mean
11

emperature field in Fig. 16 clearly shows the location and distribution o
f these three regions, with very good agreement between ANN results
nd DI results.

Different from the Sandia flame simulation results, where the max-
mum errors are likely to occur at high axial locations, the ANN errors
or the HM1 flame occur at low axial locations. This is mainly because
f the accumulation of ANN errors. In the case of Sandia flame D, the
ata points at high axial locations go through more ANN reaction steps
han those at low axial locations, so the ANN prediction error near the

utlet is higher than those near the inlet. However, in the case of the
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Fig. 12. Minor species mass fractions of Sandia D. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
M1 flame, a large recirculation zone occurs near the bluffy body, and
he data points in this area will also go through many ANN reaction
teps, resulting in greater accumulation of errors. Fig. 17 shows the 2-

D streamlines of the mean velocity and the mean axial velocity field of
both ANN and DI simulation results. Both streamline plots clearly show
two large vortices, with one being close to the air side and another one
close to the central fuel jet. The axial velocity in the recirculation zone
is very low compared with the jet or coflow velocity. Data points in
this area are likely to go through more time steps. Nevertheless, the
12
accumulation of errors is still small and occurs mainly in minor species.
For major species, the errors are negligible and the ANN predictions are
accurate at all axial locations.

The CPU time comparison of the HM1 flame simulation is shown
in Table 7. Compared with DI, the time taken by the reaction step is
reduced by 93% using the ANNs, corresponding to a speed-up ratio of
13.7. The percentage of reaction time to total time is reduced from
84% to 27%, meaning that the computation of the chemical kinetics
no longer poses a bottleneck.
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Fig. 13. Reactive scalar fields of Sandia flame D.
Table 7
Average CPU time for the HM1 flame simulation.

Method Reaction time (𝑡𝑅) Total time (𝑡𝑇 ) 𝑡𝑅∕𝑡𝑇
DI 1 1.19 84%
ANN 0.073 0.27 27%

5. Conclusions

In the present work, the HFRD-MMLP thermochemistry tabulation
method was extended to account for flames with fuel blends. The
random data generation method endows the method with a generali-
sation capability, while the multiple MLPs improve the ANN predictive
accuracy. An approach for generating random data so as to account
for variable fuel ratio was developed and demonstrated on different
laminar and turbulent flames. Furthermore, the applicability of the
method to non-adiabatic problems was evaluated by simulating flames
with radiative heat loss.

The ANNs were first tested on 1-D laminar premixed and diffusion
flames. Methane flames and a series of methane/hydrogen flames with
different fuel mixing ratios were employed and excellent agreement
between ANN and DI results were obtained for all cases, indicating
the applicability of the ANNs to both methane and methane/hydrogen
flames. Subsequently, the ANNs were further evaluated in two tur-
bulent flames: Sandia flame D and Sydney HM1 flame. These two
flames have different fuel mixtures and flame structures. Sandia D
flame is a piloted methane jet flame, while HM1 is a bluff body
methane/hydrogen flame featuring a large recirculation zone. The ANN
simulation results were in excellent agreement with those obtained via
DI, and the flame structures were also captured with high accuracy.
Radiation heat losses were considered, demonstrating the applicability
of the method to non-adiabatic problems. Furthermore, a speed-up ratio
of 13.7 (HM1)–17.4 (Sandia) in the reaction step as compared with DI
was obtained.
13
The accurate simulations of 1-D laminar premixed flames indicate
that the methodology can account for combustion simulations including
differential diffusion. The introduction of direct differential diffusion
into the transported PDF/stochastic field solution method [35] is rela-
tively straightforward. However, the formulation of a sgs mixing model
including differential diffusion effects remains problematic. If a suitable
model can be devised then there is no reason to doubt that the ANN
tabulation methodology presented here will be applicable.

The successful application of the augmented HFRD-MMLP method-
ology to different combustion problems including pure fuels, fuel
blends and non-adiabatic problems indicates the generalisation capac-
ity of the approach. Future work will be conducted in order to extend
the methodology to more complex mechanisms and NOx prediction.
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Fig. 14. Major species mass fractions and temperature of flame HM1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 15. Minor species mass fractions of flame HM1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Reactive scalar fields of flame HM1.
Fig. 17. Streamlines of 2-D mean velocity and mean axial velocity field.
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