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� Development of a-MnO2 nanorods as
a cathode material for potassium-ion
battery.

� The voltage window is optimized for
the prepared cathode.

� a-MnO2 exhibits first discharge
capacity of 142 mAh/g and good rate
performance.

� The intercalation of potassium into
the MnO2 matrix is studied using DFT
studies.

� DFT studies show diffusion barrier of
0.31 eV for K+ through 1D tunnel of a-
MnO2.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 7 September 2022
Revised 8 November 2022
Accepted 12 November 2022
Available online 15 November 2022

Keywords:
Manganese oxide
Nanorods
Cathode
Potassium-ion battery
Density functional theory
a b s t r a c t

Potassium-ion batteries (KIBs) are promising energy storage devices owing to their low cost,
environmental-friendly, and excellent K+ diffusion properties as a consequence of the small Stoke’s
radius. The evaluation of cathode materials for KIBs, which are perhaps the most favorable substitutes
to lithium-ion batteries, is of exceptional importance. Manganese dioxide (a-MnO2) is distinguished by
its tunnel structures and plenty of electroactive sites, which can host cations without causing fundamen-
tal structural breakdown. As a result of the satisfactory redox kinetics and diffusion pathways of K+ in the
structure, a-MnO2 nanorods cathode prepared through hydrothermal method, reversibly stores K+ at a
fast rate with a high capacity and stability. It has a first discharge capacity of 142 mAh/g at C/20, excellent
rate execution up to 5C, and a long cycling performance with a demonstration of moderate capacity
retention up to 100 cycles. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and density
functional theory (DFT) simulations confirm that the K+ intercalation/deintercalation occurs through
0.46 K movement between MnIV/MnIII redox pairs. First-principles density functional theory (DFT)
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calculations predict a diffusion barrier of 0.31 eV for K+ through the 1D tunnel of a-MnO2 electrode,
which is low enough to promote faster electrochemical kinetics. The nanorod structure of a-MnO2 facil-
itates electron conductive connection and provides a strong electrode–electrolyte interface for the cath-
ode, resulting in a very consistent and prevalent execution cathode material for KIBs.

� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Rechargeable batteries as reasonable and practical energy stor-
age systems that can integrate the major energy sources, such as
wind and solar, into the electric grids are critical in today’s
energy-based society [1–3]. Among the various rechargeable ion
batteries (Li [4–6], Na [7–14], Al [15–17], Mg [18–22] etc.),
research groups have opted to move further with the investigation
of potassium-ion batteries (KIBs) [23–29]. Potassium is the second
most abundant base metal after sodium as well [30]. Furthermore,
the KIB advancement can be achieved from the smallest potential
for the K+/K redox pair in various common organic electrolytes
used for ion battery applications [31–38]. The practical as well as
theoretical computations have revealed that the K+/K (-2.88 V)
redox couple can show the least reduction potential in ordinary
solvents such as propylene carbonate (PC) [39,40]. This might
guide towards a much broader voltage window, which would
result in a high energy density for KIBs, as projected. Another
advantage of KIBs is the fundamentally weaker Lewis acidity of K
ion, resulting in small solvated ions. Furthermore, because K ions
have a low desolvation energy, they may diffuse more quickly
through the electrolyte/electrode interface in a coordinated path-
way. Another advantageous feature is that potassium does not
associate with any alloy formation it in contact with aluminum
at relatively lower voltages, which corresponds to reduced cell pro-
duction cost by replacing copper with an aluminum anode.

However, because this advancement is still in the planning
stages, great foresight and planning advances are required to solve
the existing issues. During the charge/discharge process, for exam-
ple, the continuous insertion and extraction of K+ with a greater
radius of 0.138 nm will simply disrupt the structure of used cath-
ode materials, achieving low capacity, reduced rate execution, poor
stability, and even inactivity in electrochemical performance.
Another disadvantage is that electrode materials which are rela-
tively heavier are responsible for achieving low-energy density
performance as well. Along these points, there is a crucial need
to recognize first structural and electrochemical properties of var-
ious electrodes investigated for KIBs, and then develop electro-
chemically advantageous both cathode and anode materials, to
manufacture full cell KIBs. There are reports on the KIBs, neverthe-
less, the total research articles in this field are still limited.

Carbonaceous materials [41], elementary substance materials
(P [42], Sn [43], Sb [44]and Bi [45]), alloys (K-Na [46] and Sn4P3
[47]), organics [48], transition metal (TM) carbides [49], oxides
[50] and sulfides [51] have all been confirmed as potential anodes
for KIBs. Until now, only a few materials (for example, organics,
polyanionic combinations, and Prussian blue analogues) have been
studied as cathodes for KIBs, confirming the feasibility of reversible
K+ deintercalation/intercalation with sufficient mechanism studies.
Furthermore, the development of TM oxides with a high reversible
capacity and stable electrochemical mechanism are effectively
emphasized as cathode materials for Li/Na-ion batteries, which
also add new members to electrode category for KIBs.

Mn-based materials are supposed to be promising cathodes for
rechargeable batteries due to their inexpensive, abundance and
non-toxic qualities [52]. Because of their potential usage as cath-
ode materials for Li/Na-ion batteries, Mn-based compounds have
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been extensively investigated [53]. In addition, Mn-containing
electrode materials for K-ion insertion/extraction have gained a
lot of interest [54]. Manganese dioxide (MnO2), one of the Mn-
containing oxides, has been extensively considered as one of a
potential electrode materials because to its conventional benefits
of high theoretical capacity, low cost and earth-abundance [55].
The crystal structure of MnO2 can be broadly classified into three
types based on the interlinking configurations of the octahedral
MnO6 building blocks: one-dimensional (1D) tunnel structures
(a-MnO2, b-MnO2, and c-MnO2), two-dimensional (2D) layer
structures (d-MnO2), and three-dimensional (3D) mesh structures
(k-MnO2) [56]. The morphology, crystal structure, size, and surface
area of those MnO2 crystal structures directly influence the electro-
chemical properties [57]. Among the several structural polymorphs
of MnO2, the a-MnO2 phase has structural advancement with a
greater interlayer dissipation, which is important for cation diffu-
sion. a-MnO2 structure provides paths for particle intercalation
and deintercalation because to its open structure. In the present
study, we suggest a hydrothermal approach for preparing homoge-
nous a-MnO2 nanorods for high-performance KIBs. The nanorod
structure creates a web network, which enhances conductivity
and allows volume expansion in the active material as well. We
show that KIB with a voltage window of 1–4 V have higher capacity
and rate capability with near to 100 % Coulombic efficiency, which
is much better than the KIB with a voltage window of 1.5–4 V. Elec-
trochemical tests with a voltage window of 1–4 V reveal that MnO2

has an extremely high K-storage capacity (primary discharge
capacity of 142 mAh/g), a high rate capability (C/20 to 5C), and
moderate cycling stability (up to 100 cycles). Because it combines
high capacity and stability with the help of structural advance-
ment, this electrode material is a superior cathode material for
next-generation KIBs.

2. Experimental synthesis and techniques

2.1. a-MnO2 preparation

In alkaline conditions, the oxidation of a manganese (II) acetate
(98 %, Sigma-Aldrich) with ammonium persulfate (98 %, Sigma-
Aldrich) results in MnO2 preparation as illustrated in previously
reported article [58] (Scheme 1). First and foremost, the desired
sodium hydroxide (anhydrous, �98 %, Sigma-Aldrich) (100 ml)
aqueous solution was prepared and divided into two parts: one
for manganese acetate and the other for ammonium persulfate
precursors. Then, the ammonium persulfate-containing mixture
was progressively filled with the manganese-associated precursor
to prepare a complex solution. This complex was placed in a Teflon
lined hydrothermal autoclave and heated at 180 �C for 12 h. The
resulting dispersion was washed with ethanol and water before
drying for 12 h at 60 �C.

Two synthetic reactions are associated in our manganese diox-
ide preparation approach. Manganese hydroxide complex is
acquired by the association of manganese acetate with sodium
hydroxide the in the first step:

CH3COOð Þ2Mnþ 3OH� ¼ Mn OHð Þ�3 þ 2CH3COO
�: ð1Þ

http://creativecommons.org/licenses/by/4.0/


Scheme 1. Scheme of a-MnO2 synthesis.
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In association earlier condition, the next step includes an oxi-
doreduction reaction between manganese hydroxide and persul-
fate anions:
Mn OHð Þ�3 þ S2O
2�
8 þ OH� ¼ MnO2 þ 2SO2�

4 þ 2H2O: ð2Þ
2.2. Characterizations

The Powder XRD analysis was carried out using a Bruker D8
Advance diffractometer (CuKa = 1.54056 nm), which confirmed
the formation of high-quality powders of a-MnO2. The Raman
spectrum for the material was obtained using the Horiba LabRAM
HR spectrometer, and the contrasting spectrum was recorded
between 100 and 1000 cm�1. The X-ray photoelectron spec-
troscopy (XPS) (ESCALAB 250 (ThermoElectron)) was examined
using a monochromatic Al Ka radiation, hv = 1486.6 eV. The mor-
phologies were studied using field emission scanning electron
microscopy (FESEM) and high resolution transmission electron
microscopy (HRTEM) captured by using Hitachi S-4800 and FEI
TECNAI G2 20 Twin instruments, respectively.

The details coin cell fabrication with electrochemical parame-
ters and DFT Computation are illustrated in Supplementary Infor-
mation, Section 1 and 2.
Fig. 1. (a) XRD spectrum of a-M

888
3. Results and discussion

3.1. Structural and morphological analysis

Fig. 1a depicts the standard powder X-ray diffraction, ensuring
the tetragonal structure of a-MnO2 (space group I4/m) with the
reference of JCPDS #44–141. The diffraction peaks at 12.7�, 18.1�,
25.6�, 28.7�, 37.5�, 41.9�, 49.7�, 55.9�, 60.0�, 65.1�, 69.1�, and
72.7� can be assigned to the crystallographic planes of 110, 200,
220, 310, 211, 301, 411, 600, 521, 002, 541, and 312, respectively.
The tetragonal a-MnO2 structure with edge and corner-sharing
MnO6 units, as shown in the inset of Fig. 1b, provides adequate
space for efficient K+ ions diffusion, which is necessary for excel-
lent electrochemical performance. Among all the MnO2 poly-
morphs, this a-MnO2 tunnel structure is particularly interesting
due to the typical 1D structure allowing ions for (de)intercalation
in conjunction with the change of manganese oxidation states dur-
ing redox reactions. The crystallite size is also supported from the
structural analysis [59,60].

Meanwhile, the development of as-prepared a-MnO2 was also
analyzed by using the Raman spectrum for Fig. S1. It shows clear
peaks detected at 179, 581, and 640 cm�1 allocated for as-
synthesized material [61]. The intense peaks at 581 and
640 cm�1 are ascribed to the symmetric vibrations of the Mn-O
and the modes that follow the interstitial space associated tetrag-
onal a-MnO2 structure. Furthermore, the peak at 179 cm�1 is due
nO2. (b) Crystal structure.
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to the MnO6 octahedra related translational vibration for the ions
into the tunnel structure [62].

However, XPS spectrum was engaged to examine the oxidation
states of prepared a-MnO2 (Fig. 2a). The NaOH precursor utilized in
the synthesis of MnO2 is mainly responsible for the existence of
small Na KL1 and Na1 s peaks. The survey spectrum is consistent
with earlier investigations [63–69]. Fig. 2b, c shows the standard
core-level XPS spectra of associated Mn 2p and O1s. As shown in
Fig. 2b, the Mn 2p spectrum is separated into doublet pointing at
642.5 and 654.2 eV, which are associated with 2p3/2 and 2p1/2,
respectively. The binding difference between the above-
mentioned doublet of Mn 2p is about 11.7 eV, implying the forma-
tion of Mn4+. Overall, the O1 s core-level spectrum is presented in
Fig. 2c, which depicts two distinct surface oxygen parts, one at
530 eV which corresponds to lattice oxygen and the other at
531.3 eV which associates with loosely coordinated or defected
oxygen [70].

FESEM and HRTEM were used to study a comprehensive mor-
phological and fundamental assessment of the a-MnO2 nanorods.
The FESEM photos of coordinated a-MnO2 nanorods with homoge-
neous size are clearly demonstrated in Fig. 3a, b. The TEM image in
Fig. 3c, d shows that the as-organized a-MnO2 nanorods associate
with a uniform diameter between 10 and 50 nm. This morphology
further promotes electrical conductivity and more charge transport
channels by virtue of the higher surface area, achieving a good
electrode/electrolyte interface and small ion diffusion length [71–
73]. The electron beam of the SEM was scanned across the sample
along a predetermined line to detect X-rays at certain points along
that line. An examination of the X-ray energy spectrum at each
point show graph of the relative elemental concentration of each
element as a function of position along the line. The data is repre-
Fig. 2. (a) Survey XPS spectrum of as-prepared a-MnO2. (b, c) XPS s
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sented qualitatively by the line scan profile that depicts the
increase or decrease of all elemental elements present at all places
along the line (Fig. 3e). The Mn and O signals exhibit a steady
intensity pattern over the length of the nanorod, indicating a
homogenous distribution of the associated components; nonethe-
less, the presence of Mn and O in a 1:2 ratio suggests the presence
of pure MnO2.

3.2. Electrochemical performance of a-MnO2 electrode

Fig. 4 demonstrates the charge/discharge profiles and cycle exe-
cution of a-MnO2 electrode (active electrode mass loading of 2–
6 mg/cm2) at different voltage windows in K cells linked to KPF6
in ethylene carbonate (EC): Diethyl carbonate (DEC) electrolyte at
current rate of C/20. As shown in Fig. 4a, 0.18 potassium can be
inserted into a-MnO2 by utilizing a C/20 rate up to 1.5 V against
K+/K during the 1st discharge, out of which only 0.13 potassium
can be extracted on the run of subsequent charge process, causing
a moderate reversible capacity of 40 mAh/g. We changed the dis-
charge voltage limit from 1.5 to 1 V and evaluated the electro-
chemical properties of a-MnO2 at 1–4 V since it showed greater
intercalation in this window (Fig. 4c). As a result, there is 0.46
potassiation, leading to the formation of K0.46MnO2. During the pri-
mary charge, an irreversibility of 0.2 K is predicted at the final volt-
age of 4 V. In present case, the a-MnO2 electrode reaches a high
capacity of 142 mAh/g for the primary discharge process, with a
charge capacity of 81 mAh/g and Coulombic efficiency of 57 %, as
illustrated in Fig. 4d. In the two cells, the associated charge and dis-
charge characteristics are almost identical. Even in both cases, an
irreversible limit is seen at the first cycle, which is determined to
be due to significant electrolyte decomposition to form solid elec-
pectra deconvolution of core level spectra for Mn 2p and O 1s.



Fig. 3. (a, b) FESEM images and (c, d) HRTEM images of a-MnO2. (e) EDS line scanning for the a-MnO2; the yellow line refers to manganese (Mn), and the cyan line is assigned
for oxygen (O).
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trolyte interphase (SEI) [74–77]. The associated insertion/extrac-
tion reaction mechanism during the subsequent discharge/charge
process for the MnO2 electrode is described by the following equa-
tion [78,79]:

MnO2 þ xKþ þ xe� $ KxMnO2 ð3Þ
In addition, a reasonable rate capability for KIBs was examined

for the a-MnO2 electrodes. Fig. 5 shows the rate performance of the
a-MnO2 electrode at various current densities ranging from C/20 to
5C. At 1.5–4 V, the a-MnO2 electrode yields moderate reversible
capacities up to C, but not able to achieve any capacity above C
to 5C (Fig. 5a, b). A limited capacity is achieved when the current
rate is again slowed down to C/20. Despite this, a-MnO2 electrode
executes better rate capability studies up to 5C in 1–4 V voltage
range, addressing remarkable stability under all C-rates engaged
in discharge/charge studies (Fig. 5c, d). K+ have a lower Lewis acid-
ity than Li+, resulting in less correspondence with the Lewis-base in
the electrolyte, leading in fast rate execution [80]. The open growth
of a-MnO2 would be advantageous for quick transport and diffu-
sion of K+ as well. Actually, the excellent rate performance appears
to be attributable to MnO0

2s unique nanorod-like structure, which
is responsible for numerous electrochemical sites and the reduc-
tion of the K ion diffusion route while also limiting volume change.
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Because the polarization effect of K metal is more at high rates, the
voltage loss under a high current at the electrode is negligible. Sur-
prisingly, when current density increases, the discharge capacities
decrease in case of two electrodes, owing to the sluggish rate of
K+ diffusion in the presence of high current density [81,82]. Their
exceptional rate presentations without sacrificing high working
voltage can be a valuable addition to any practical energy storage
application.

Furthermore, Fig. 6 depicts the cycling of a-MnO2 electrodes at
C rate under predetermined voltage windows up to 100 cycles. The
electrode at 1.5–4 V window reveals superior cycling dependability
(Fig. 6a) and stable Coulombic efficiency than the 1–4 V window
(Fig. 6c). Surprisingly, in the 1–4 V range, the capacity rapidly
drops as far as feasible to zero. After the initial cycle, the Coulombic
efficiency increases with cycle numbers and reaches 100 % after a
few cycles as seen in both functional voltage windows for MnO2

electrode. Significant difference has been found in terms of capac-
ity retention between the electrodes. However, their charge/dis-
charge profiles are similar in both cases (Fig. 6b and d). It
implies that changing the voltage window might have an influence
on a-MnO0

2s electrochemical properties. Fig. S2 shows the electro-
chemical impedance spectroscopy (EIS) evolutions of the cells
before and after stability with equivalent circuit diagram. While



Fig. 4. Electrochemical charge/discharge curves per K+ ion and cyclic voltage profiles in half potassium cells for a-MnO2 in 1 M KPF6 in EC:DEC at current rate of C/20 with a
voltage window of (a and b) 1.5–4 V, and (c and d) 1–4 V.

Fig. 5. Rate capability studies and charge–discharge curves a-MnO2 at different C-rates between C/20 and 5C with a voltage window of (a and b) 1.5–4 V, and (c and d) 1–4 V.
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Fig. 6. The cycling performance and charge–discharge profiles of a-MnO2 at C rate with a voltage window of (a and b) 1.5–4 V, and (c and d) 1–4 V.
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the charge transfer resistance (RCT) is depicted in the high fre-
quency domain as a semicircular arc, the internal resistance (Rs)
corresponds to an intersection point in the X-axis [83,84]. The dou-
ble layer component inside pores and diffusion in the MnO2 struc-
ture are coupled by the constant phase element (CPE) andWarburg
resistance (W). The RL component is linked to leakage resistance
during electrochemical activities. It is evident that the Nyquist plot
after stability test did not show any observable new semicircles,
despite the semicircle’s considerable increase with cycling. This
reveals that cells cycled at high current undergo a significant rise
in charge-transfer resistance and that the SEI layer formation is
constrained as well [85].

3.3. Theoretical insights

The electronic structure and diffusion barrier of K+ in the a-
MnO2 material are important factors that dictate the electrochem-
ical performance. Considering these properties are not easy to
determine experimentally, first-principles density functional the-
ory (DFT) calculations were employed. The optimized structures
of the pristine and K-intercalated a-MnO2 with the corresponding
charge density isosurface are shown in Fig. 7a, b. The lattice
parameters are predicted at a = b = 9.763 Å, c = 2.872 Å
(volume = 273.75 Å3) for the pristine a-MnO2 and at a = b = 9.71
9 Å and c = 2.850 Å (volume = 269.21 Å3) for the K-intercalated
a-MnO2. This indicates that the incorporation of potassium con-
tracts the unit cell volume of a-MnO2 by 1.67 %. Bader population
analyses reveal an increase in the atomic charge of the O atoms
near to the Na ion in the one-dimensional tunnel, with the 4 near-
est ones gaining extra charges of � 0.13 e� (as indicated on Fig. 7a,
b). The change of atomic charges before and after the insertion of
K+ can be attributed to the release on of one electron which redis-
tributes to the nearest O atoms, increasing their negative charges.
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The reaction of K with a-MnO2 (K + MnO2 ? KMnO2) produced a
voltage of 3.19 V, calculated from the relation

V ¼ � E KMnO2ð Þ�E MnO2ð Þ�E Kð Þ
Nelectrons

� �
; where E KMnO2ð Þ is the energy of the

K-intercalated a-MnO2, E MnO2ð Þ is the energy of the pristine a-
MnO2, E(K) is the energy K atom, and Nelectrons are the number of
electrons transferred with the cation. Similar voltages have been
reported for lithium (3.36 V) [86] and sodium (3.23–3.34 V) [87]
intercalation in a-MnO2. As shown in Fig. 7c, d, compared to the
pristine material, the Fermi level K-intercalated a-MnO2 is shifted
to slightly above the edge conduction band (CB) edge, owing to the
addition of an extra electron from the K+ ion. An analysis of the
projected density of states reveals that the valence band edge of
both the pristine and K-incorporated a-MnO2 is composed mainly
of O-p states, whereas the conduction band edge is dominated by
Mn-d states. Overall, the bandgap remained is not significantly
affected by the incorporation of K+ ion, predicted at 2.42 eV for
the pristine a-MnO2 and 2.30 eV for the K-a-MnO2. This results
are consistent with a previous theoretical investigation of Na incor-
poration in MnO2 [87]. The reduction of the bandgap coupled with
the shift of the Fermi level above the edge conduction band edge
with K incorporation suggests improvement in the electrical con-
ductivity of the K-a-MnO2 compared to the pristine a-MnO2. The
diffusion pathway for K in a-MnO2 and the corresponding calcu-
lated energy profile are shown in Fig. 7e, f. As shown in Fig. 7e,
the K diffusion path in a-MnO2 is investigated along the 1D tunnel
within the 1 � 1 � 2 supercell with the K atom at the hollow site.
The energy barrier for the migration of K+ in the a-MnO2 material
is calculated at 0.31 eV, which is low enough to promote faster
electrochemical kinetics for practical K-MnO2 battery applications.
The calculated migration energy barrier of K (0.31 eV), compared
well with previous theoretical predictions for both Li ions and Na
ions which are less than 0.3 eV [86]. The energy barrier for the



Fig. 7. Charge density distribution for (a) pristine and (b) K-intercalated a-MnO2 and the corresponding partial density of states (c) and (d), respectively. (e) K ion diffusion
pathway and (f) Energy profile of K ion diffusion path through a-MnO2 1 � 1 � 2 supercell.
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migration of Zn2+ in the a-MnO2 structure was predicted to be
0.497 eV [88], whereas Ca through a-MnO2 is predicted to encoun-
ter an energy barrier of 0.19 eV [89].

4. Conclusions

In conclusion, the nanorod morphology of a-MnO2 is effectively
structured using hydrothermal method followed by an annealing
procedure. A good capacity (142 mAh/g as first discharge capacity),
an excellent rate property (up to 5C), superb cycling execution
(over 100 cycles) at room temperature are achieved for the a-
MnO2 cathode by optimizing the voltage window. The fabricated
K-ion battery exhibits such electrochemical performance at high
voltage window of 1–4 V in comparison with literature [90,91]. It
is well acknowledged that remarkable improvement comes from
the structural frameworks. The homogeneous structure provides
more open framework associated with electrolyte–electrode inter-
face, ensuring host ion insertion/extraction, and safeguarding the
893
cathode from electrolyte interactions at high voltage. The redox
reactions are aided by the a-MnO2, which allows for quick charge
movement in the structure as supported by DFT calculations. As a
result, this research presents the strategy to fabricate future cath-
ode materials with suitable proposal for exhibiting an excellent
electrochemical behavior and extended cycle reliability in the
framework of potassium ion batteries.
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