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Abstract: In this meta-analysis, we aimed to estimate the diagnostic accuracy of machine learning
models on digital mammograms and tomosynthesis in breast cancer classification and to assess the
factors affecting its diagnostic accuracy. We searched for related studies in Web of Science, Scopus,
PubMed, Google Scholar and Embase. The studies were screened in two stages to exclude the
unrelated studies and duplicates. Finally, 36 studies containing 68 machine learning models were
included in this meta-analysis. The area under the curve (AUC), hierarchical summary receiver
operating characteristics (HSROC) curve, pooled sensitivity and pooled specificity were estimated
using a bivariate Reitsma model. Overall AUC, pooled sensitivity and pooled specificity were 0.90
(95% CI: 0.85–0.90), 0.83 (95% CI: 0.78–0.87) and 0.84 (95% CI: 0.81–0.87), respectively. Additionally,
the three significant covariates identified in this study were country (p = 0.003), source (p = 0.002)
and classifier (p = 0.016). The type of data covariate was not statistically significant (p = 0.121).
Additionally, Deeks’ linear regression test indicated that there exists a publication bias in the included
studies (p = 0.002). Thus, the results should be interpreted with caution.

Keywords: machine learning; diagnostic accuracy; mammography; meta-analysis; breast cancer

1. Introduction

Breast cancer is the most commonly diagnosed cancer overall and among women
worldwide; in fact, it has been identified as the fifth leading cause of cancer-related mor-
tality globally in 2020 [1]. It is considered the most prevalent cancer worldwide [2]. The
screening and diagnosis of breast cancer are carried out using multiple assessments, such
as breast examination, mammography and biopsy. Different imaging modalities, such as
mammography, ultrasound (US), magnetic resonance imaging (MRI), histological images
and infrared thermography, have been used in breast cancer detection. Mammography
is more commonly used for breast cancer screening. For example, women aged 40 years
old and above are recommended to undergo a mammographic screening [3,4]. Mammog-
raphy mainly consists of a digital mammogram and digital breast tomosynthesis (DBT).
The digital mammogram is more commonly used for breast cancer detection; however,
it is found to be less effective in patients with dense breasts and less sensitive to small
tumors (tumors with a volume of less than 1 mm [5]). On the other hand, DBT or the
three-dimensional mammogram, which is a more advanced technology of mammography,
overcomes these disadvantages. Overall, it provides higher diagnostic accuracy than the
two-dimensional mammogram [6]. However, no significant difference was noted between
these two technologies when used for screening purposes [7].

Machine learning is expected to improve the area of health care, especially in medical
specializations, such as diagnostic radiology, cardiology, ophthalmology and pathology [8].
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Factors such as the availability of big medical data and advances in computing technology
will help accelerate the use of machine learning in these medical areas. However, in spite
of these positive developments, the practical implementation of machine learning in a
clinical setting remains debatable [9–11]. Issues such as privacy concerns, lack of trust in
the technology, machine learning interpretability and unintended bias of the technology
are yet to be fully explored [8,12–14]. Machine learning had been researched to be used in
the field of breast cancer in various ways, such as predicting and screening the disease [15],
predicting the cancer recurrence [16], predicting survival of the patients [17], predicting the
breast density and guiding treatments and management of the disease [18,19]. Different
data sources, such as sociodemographic and clinical data, genomic data and imaging data,
coupled with various machine learning techniques have been explored to be used in various
clinical settings related to breast cancer. Thus, in brief, the use of machine learning in this
research area can be categorized mainly into three roles, either as a screening, diagnostic or
prognostic tool. These different roles of machine learning will affect how the model is built
and deployed; however, most studies do not clearly emphasize the role of their machine
learning model with regard to the clinical context and its practical application.

The use of machine learning on digital mammograms and tomosynthesis mainly aims
to be a screening tool or at most, a supplemental diagnostic tool to a radiologist. Previous
studies of machine learning on medical images associated with breast cancer mostly used
digital mammograms [20], while the use of tomosynthesis was not very common. A wide
variety of machine learning techniques has been used on these medical images, resulting in
a wide range of diagnostic accuracy. Thus, the performance difference in all the techniques
makes it difficult to evaluate the benefit of these machine learning tools on mammography.
Subsequently, the wide range of performance of the machine learning techniques may
reduce the confidence of the clinicians in the tools. Therefore, this meta-analysis aims
to establish the overall diagnostic accuracy of the machine learning model on digital
mammograms and tomosynthesis. This study also aims to assess the factors affecting the
diagnostic accuracy of the machine learning model and further perform subgroup analysis.

2. Materials and Methods
2.1. Overview

This study was conducted according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses of diagnostic test accuracy studies (PRISMA-DTA) [21] and
Synthesising Evidence from Diagnostic Accuracy Tests (SEDATE) [22] guidelines and
recommendations. Both checklists are presented in the Supplementary File.

2.2. Search Strategy

We searched the online databases of Scopus, PubMed, Google Scholar, Embase and
Web of Science using predetermined search terms. The search was carried out on 17 August
2020 for Scopus, PubMed and Google Scholar databases. The search for Embase and Web
of Science databases was conducted on 25 August 2020. All search terms for each database
are presented in Supplementary Table S1.

All the results were imported into Mendeley. Duplicate papers were automatically
screened and deleted. Subsequently, a researcher (TMH) manually screened the results
again and deleted the remaining duplicates that were not identified using Mendeley. We
then divided the screening process into two phases. In the first phase, we applied more
lenient selection criteria to screen out the more obvious articles that were not related to
our study. A full text of all the articles that passed the first phase of the selection criteria
was downloaded. Additionally, in the second phase, we applied more stringent selection
criteria to the articles to fit our study’s objectives. Any inconsistency during the selection
and extraction process was resolved by discussion and consensus among the researchers.
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2.3. Selection Criteria

We divided the screening process into two phases. We mainly screened the titles and
abstracts and, if needed, the full text in the first phase. We searched for the following groups
of articles in the first phase: (1) articles related to breast cancer prediction or classification;
(2) articles that used machine learning models or algorithms; (3) articles written in English;
(4) articles that used digital mammogram or tomosynthesis data; and (5) articles that at least
reported an accuracy value as a performance metrics; (6) peer-reviewed research articles,
proceedings and theses were excluded.

We screened all the articles using the full text in the second phase of the selection
process. We selected the articles based on the following criteria: (1) articles that focused
only on breast cancer classification models. Articles that compared feature extraction and
segmentation methods were excluded. (2) Articles that reported a confusion matrix or
at least had reported sufficient data. (3) Articles that had ensembles or hybrid machine
learning models as classifiers were excluded. (4) Three-class prediction models were
excluded unless a 2 × 2 confusion matrix was reported.

2.4. Data Extraction

We collectively extracted data from the included articles into a Microsoft Excel spread-
sheet. The extracted variables were as follows: (1) title; (2) first author’s last name;
(3) year of publication; (4) source of data; (5) country of the data used; (6) size of dataset;
(7) number of data in the training, validation and testing split; (8) type of data; (9) sample
size used; (10) classifier; (11) prediction class; (12) accuracy; (13) sensitivity; (14) specificity;
and (15) confusion matrix. Additionally, more than one model was extracted from an article
if the models used different data, classifiers or prediction classes. However, the model with
the highest accuracy was extracted in the case of articles with relatively similar models.

2.5. Quality Assessment

We used the QUADAS-2 [23] tool to assess the quality of the studies that were included
in the meta-analysis. The tool consisted of four domains, that is, patient selection, index
test, reference standard, and flow and timing. All four domains were assessed regarding
the risk of bias and only the first three domains were assessed regarding the applicability
concerns. The risk of bias for each domain was determined using the signalling questions
as entailed in the QUADAS-2 tool. Each signalling question was rated as ‘no’, ‘unclear’
or ‘yes’. The domains were considered a low risk of bias if all the signalling questions
were rated ‘yes’. However, the domains were considered at a high risk of bias if one of
the signalling questions was rated ‘no’ and none of the remaining signalling questions
were rated ‘yes’. The domains, except for the previous two conditions, were considered an
unclear risk of bias. Additionally, we added the overall rating to the QUADAS-2 assessment.
We assigned the values of 1, 0 and −1, to low, unclear and high, respectively. Thus, the sum
of the overall rating could range from −7 to 7. The overall quality was classified as very
poor (−7 to −4), poor (−3 to 0), moderate (1 to 4) and good (5 to 7).

2.6. Outcomes

The primary outcomes were the overall diagnostic accuracy of the machine learning
model in the form of the AUC and the hierarchical summary receiver operating character-
istics (HSROC) curve. The secondary outcomes were the result of a likelihood ratio test
for variables’ classifier, country of the data, source of data and type of the data. Variables
with a p-value < 0.05 were considered statistically significant and followed up by a post
hoc subgroup analysis.

2.7. Statistical Analysis

The statistical analysis was carried out using R version 4.1.0 [24]. The full R code
is available on the GitHub website [25]. The main R packages used were mada and
metafor [26,27]. A continuity correction of 0.5 was applied to the data if there were zero
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cells in the confusion matrix to avoid statistical artefacts. This approach is the default
setting in the mada package. Each machine learning model was summarized by the pooled
diagnostic odds ratio (DOR), sensitivity and specificity. The DOR represents the odds of
a positive test result in diseased individuals compared to the odds of a positive result in
healthy individuals. Thus, the DOR simply denotes the discriminant ability of the diag-
nostic test. Additionally, sensitivity represents the ability of the test to correctly identify
affected individuals, while specificity reflects the ability of the test to correctly identify
healthy individuals among the tested individuals. The pooled sensitivity, pooled specificity,
AUC and HSROC curve parameters were estimated using the bivariate model of Reitsma
et al. [28] through the mada package. The bivariate approach provides a better estimate,
especially if a different cut-off threshold was used by each machine learning model to
classify the positive and negative cases [22]. The 95% confidence interval of the AUC
was estimated using a bootstrap method from the dmetatools package [29]. Heterogeneity
assessment was conducted through visual inspection of the HSROC plot and the correlation
between sensitivity and specificity. Inconsistency was suspected if the individual studies
largely deviated from the HSROC line and the coefficient correlation of sensitivity and
specificity was larger than zero [22,30]. The Cochran’s Q test and Higgins’ I2 statistics were
not presented, as they were not suitable for heterogeneity assessments in diagnostic test
accuracy studies [31].

A likelihood ratio test between the bivariate meta-regression models was carried out
to compare a null model and a model with a covariate. Five bivariate meta-regression
models were built, including the null model and models with a covariate of country, source,
type of data and classifier. The country covariate indicated the country of origin of the data,
while source covariate indicated whether the data were from a local database (primary
data) or an online secondary database. The type of data covariate reflected the type of
mammogram image and the classifier covariate reflected the different machine learning
models included in this study. The likelihood ratio test with a p-value < 0.05 indicated
that the model with a variable was better; thus, the variable was statistically significant.
Subsequently, a post hoc subgroup analysis was performed for each significant variable.
Pairwise comparisons of the AUC between each model of the subgroups were performed
using a bootstrap method in the dmetatools package, and p-values were adjusted using the
Bonferroni correction. A p-value below a threshold of 0.05 divided by the number of groups
in each subgroup analysis indicated a significant comparison. A non-convergent result
indicated that the model did not converge, even after 10,000 bootstrap resampling. Any
subgroup model with a small number of studies was dropped from the subgroup analysis,
as the estimates of the AUC and HSROC parameters were not reliable.

An influential diagnostic analysis was performed to assess the overall diagnostic accu-
racy of the machine learning model using the dmetatools package. The influential diagnostic
analysis was carried out using a leave-one-out approach to estimate the difference in the
AUC. Publication bias was evaluated using Deeks’ regression test [32]. The approach
of Deeks et al., had been considered the most appropriate one to assess the publication
bias in a diagnostic test accuracy study [33]. p-values < 0.10 may indicate the presence of
publication bias.

3. Results
3.1. Eligible Studies

In total, 2897 research articles were identified in the 5 databases, as presented in
Figure 1. After the removal of 1115 duplicates, the remaining 1782 articles were included in
the screening process. A total of 1346 articles were excluded during the whole screening
process. The first screening process excluded 1157 articles, while the second screening
process excluded another 189 papers. Finally, 36 studies containing 68 machine learning
models were included in this study.
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Figure 1. Flow diagram of the study selection process.

3.2. Study Characteristics

The main characteristics of the included studies are presented in Table 1. The years
of publication of the 36 included studies ranged from 2006 to 2020. Eleven studies
used primary data from their respective countries, while most studies used secondary
databases, such as the Mammographic Image Analysis Society (MIAS), mini-MIAS and
Digital Database for Screening Mammography (DDSM). Only one study used tomosynthe-
sis images, while the remaining thirty-five used digital mammogram images. The three
most common classifiers were neural network (23.5%), support vector machine (22.1%) and
deep learning (20.6%).
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Table 1. Characteristics of included studies.

Study ID Country Source Size of
Dataset Train/Validation/Test Split Type of

Data Classifier Prediction Class TP TN FP FN Accuracy

Abdolmaleki 2006 [34] 1 Iran Primary
data 122 cases 82/-/40 DM NN Benign-Malignant 16 14 8 2 0.75

Acharyau 2008 [35]
2 USA DDSM 360 images 270/-/90 DM NN Normal-Benign-

Malignant 55 28 2 5 0.97

3 USA DDSM 360 images 270/-/90 DM GMM Normal-Benign-
Malignant 57 29 1 3 0.98

Al-antari 2020 [36]
4 USA DDSM 600 images 420/60/120 DM DL Benign-Malignant 59 59 1 1 0.98

5 Portugal INbreast 410 images 78/12/22 DM DL Benign-Malignant 14 6 2 0 0.95

Alfifi 2020 [37]

6 UK MIAS 200 images NE DM DL Normal-Benign-
Malignant 124 66 7 3 0.95

7 UK MIAS 200 images NE DM Tree-
based

Normal-Benign-
Malignant 102 54 29 15 0.78

8 UK MIAS 200 images NE DM KNN Normal-Benign-
Malignant 99 50 32 19 0.74

Al-hiary 2012 [38] 9 Jordan Primary
data NE NE DM NN Normal-Cancer 14 15 1 2 0.91

Al-masni 2018 [39] 10 USA DDSM 2400 images 1920/-/480 DM NN Benign-Malignant 240 226 14 0 0.97

Bandeira-diniz 2018 [40]
11 USA DDSM 2482 images 1990/-/492 DM DL Non-mass-Mass 2418 4306 442 225 0.91

12 USA DDSM 2482 images 1990/-/492 DM DL Non-mass-Mass 1774 5615 210 188 0.95

Barkana 2017 [41]
13 USA DDSM 2173 images 1451/-/722 DM NN Benign-Malignant 325 270 70 57 0.82

14 USA DDSM 2173 images 1451/-/722 DM SVM Benign-Malignant 318 278 62 64 0.83

Biswas 2019 [42] 15 UK MIAS 322 images 226/48/48 DM NN Normal-Abnormal 32 12 3 1 0.92

Cai 2019 [43] 16 China Primary
data 990 images 891/-/99 DM SVM Benign-Malignant 48 39 6 6 0.89

Chen 2019a [44] 17 China Primary
data 81 cases NE DM Tree-

based Benign-Malignant 31 30 11 9 0.75

Chen 2019b [45]
18 USA Primary

data 275 cases 10-folds cross validation DM SVM Benign-Malignant 102 104 37 32 0.75

19 USA Primary
data 275 cases 10-folds cross validation DM SVM Benign-Malignant 103 114 27 31 0.79
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Table 1. Cont.

Study ID Country Source Size of
Dataset Train/Validation/Test Split Type of

Data Classifier Prediction Class TP TN FP FN Accuracy

Danala 2018 [46]
20 USA Primary

data 111 cases LOO-CV DM DL Benign-Malignant 63 24 9 15 0.78

21 USA Primary
data 111 cases LOO-CV DM DL Benign-Malignant 55 21 12 23 0.68

Daniellopez-cabrera
2020 [47]

22 UK mini-MIAS 322 images NE DM DL Normal-Abnormal 31 101 2 4 0.97

23 UK mini-MIAS 322 images NE DM DL Benign-Malignant 14 28 3 1 0.91

Fathy 2019 [48] 24 USA DDSM 3932 images 2517/629/786 DM DL Normal-Abnormal 389 325 71 1 0.91

Girija 2019 [49]
25 UK mini-MIAS 322 images NE DM Tree-

based Normal-Abnormal 266 48 4 4 0.98

26 UK mini-MIAS 322 images NE DM Tree-
based Benign-Malignant 200 55 6 9 0.94

Jebamony 2020 [50]
27 UK mini-MIAS 294 images 203/-/91 DM NN Benign-Malignant 33 41 12 5 0.85

28 UK mini-MIAS 294 images 203/-/91 DM SVM Benign-Malignant 37 49 4 1 0.96

Junior 2010 [51]
29 UK mini-MIAS 428 ROIs 320/-/108 DM NN Normal-Abnormal 16 69 5 18 0.79

30 UK mini-MIAS 428 ROIs 320/-/108 DM SVM Normal-Abnormal 20 80 1 7 0.93

Kanchanamani 2016 [52]

31 UK MIAS 322 images NE DM SVM Normal-Abnormal 46 120 24 0 0.87

32 UK MIAS 322 images NE DM Bayes-
based Normal-Abnormal 30 94 50 16 0.65

33 UK MIAS 322 images NE DM DL Normal-Abnormal 23 101 43 23 0.65

34 UK MIAS 322 images NE DM KNN Normal-Abnormal 28 112 32 18 0.74

35 UK MIAS 322 images NE DM LDA Normal-Abnormal 28 112 32 18 0.74

36 UK MIAS 322 images NE DM SVM Benign-Malignant 58 53 2 7 0.93

37 UK MIAS 322 images NE DM Bayes-
based Benign-Malignant 50 20 35 15 0.58

38 UK MIAS 322 images NE DM DL Benign-Malignant 29 29 26 36 0.48

39 UK MIAS 322 images NE DM KNN Benign-Malignant 41 25 30 24 0.55

40 UK MIAS 322 images NE DM LDA Benign-Malignant 38 33 22 27 0.59

Kim 2018 [53] 41 Korea Primary
data

29,107
images 26631/1238/1238 DM DL Normal-Abnormal 471 548 71 148 0.82
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Table 1. Cont.

Study ID Country Source Size of
Dataset Train/Validation/Test Split Type of

Data Classifier Prediction Class TP TN FP FN Accuracy

Mao 2019 [54]

42 China Primary
data 173 cases 138/-/35 DM SVM Benign-Malignant 13 14 1 7 0.80

43 China Primary
data 173 cases 138/-/35 DM Logistic Benign-Malignant 17 14 1 3 0.89

44 China Primary
data 173 cases 138/-/35 DM KNN Benign-Malignant 8 14 1 12 0.83

45 China Primary
data 173 cases 138/-/35 DM Bayes-

based Benign-Malignant 9 13 2 11 0.78

Miao 2015 [55] 46 USA MMD 830 cases 10-folds cross validation DM SVM Benign-Malignant 381 399 28 22 0.94

Miao 2013 [56] 47 USA MMD 830 cases NE DM NN Benign-Malignant 360 384 43 43 0.90

Milosevic 2015 [57]

48 UK MIAS 300 images 5-folds cross validation DM SVM Normal-Abnormal 23 163 24 90 0.62

49 UK MIAS 300 images 5-folds cross validation DM KNN Normal-Abnormal 44 138 49 69 0.61

50 UK MIAS 300 images 5-folds cross validation DM Bayes-
based Normal-Abnormal 53 113 74 60 0.55

51 Serbia Primary
data 300 images 5-folds cross validation DM SVM Normal-Abnormal 121 130 20 29 0.84

52 Serbia Primary
data 300 images 5-folds cross validation DM KNN Normal-Abnormal 84 79 71 66 0.54

53 Serbia Primary
data 300 images 5-folds cross validation DM Bayes-

based Normal-Abnormal 114 118 32 36 0.77

Nithya 2012 [58] 54 USA DDSM 250 images 200/-/50 DM NN Normal-Abnormal 23 24 2 1 0.94

Nusantara 2016 [59] 55 UK MIAS 322 images 291/-/31 DM KNN Normal-Abnormal 10 20 0 1 0.97

Palantei 2017 [60] 56 UK MIAS NE NE DM SVM Normal-Abnormal 9 21 4 0 0.88

Paramkusham 2018 [61] 57 USA DDSM 148 images 126/-/22 DM SVM Benign-Malignant 10 10 1 1 0.91

Roseline 2018 [62] 58 UK MIAS NE NE DM KNN Benign-Malignant 49 60 4 2 0.95

Shah 2015 [63]
59 UK MIAS 320 images NE DM NN Normal-Abnormal 54 49 2 3 0.95

60 UK MIAS 320 images NE DM NN Benign-Malignant 24 22 2 6 0.85
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Table 1. Cont.

Study ID Country Source Size of
Dataset Train/Validation/Test Split Type of

Data Classifier Prediction Class TP TN FP FN Accuracy

Shivhare 2020 [64]

61 USA, UK DDSM,
MIAS NE NE DM NN Benign-Malignant 12 16 2 3 0.85

62 USA, UK DDSM,
MIAS NE NE DM DL Benign-Malignant 1 17 1 14 0.55

63 USA, UK DDSM,
MIAS NE NE DM SVM Benign-Malignant 0 18 0 15 0.55

Singh 2018 [65] 64 UK MIAS 139 ROIs 69/28/42 DM NN Benign-Malignant 25 14 1 2 0.93

Venkata 2019 [66] 65 NA NA 110 images 80/-/30 DM
Logistic
regres-

sion
Benign-Malignant 14 14 1 1 0.93

Wang 2017 [67] 66 UK mini-MIAS 200 images 10-folds cross validation DM NN Normal-Abnormal 92 92 8 8 0.92

Wutsqa 2017 [68] 67 UK MIAS 120 cases 96/-/24 DM NN Normal-Abnormal 14 8 0 2 0.92

Yousefi 2018 [69] 68 USA Primary
data 87 images NE Tomosynthesis Tree-

based Benign-Malignant 11 13 2 2 0.87

DM = digital mammogram; NN = neural network; GMM = Gaussian mixture model; DL = deep learning; KNN = k-nearest neighbor; SVM = support vector machine; LDA = linear
discriminant analysis; ROIs = region of interests; LOO-CV = leave-one-out cross validation; NE = not clearly explained; NA = not available; TP = true positive; TN = true negative;
FP = false positive; FN = false negative; DDSM = database for screening mammography; MIAS = mammographic image analysis society; MMD = mammographic mass database.
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3.3. Descriptive Statistics

The study with the highest accuracy was the study carried out by Acharya U et al.,
in 2008 (98.3%), while that performed by Kanchanamani et al., in 2016 had the lowest
accuracy (48.3%). The specificity and sensitivity values of each machine learning model
are presented in Figure 2. Sensitivity values for machine learning models in this study
ranged between 0.03 (95% CI: 0.00–0.24) and 1.00 (95% CI: 0.98–1.00), while specificity
values ranged between 0.37 (95% CI: 0.25–0.50) and 0.98 (95% CI: 0.93–1.00). In this
study, significant differences were observed between the sensitivity values (p < 0.001) and
specificity values (p < 0.001) of machine learning models. The pooled DOR of the machine
learning models was 28.34 (95% CI: 17.67–45.45), with the DOR value of each model ranging
from 0.90 (95% CI: 0.44–1.84) to 7513.55 (95% CI: 445.61–126,689.03). Figure 3 presents the
DOR values for each machine learning model in this study.
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3.4. Overall Model

The pooled area under the curve (AUC) estimated using the bivariate model of Reitsma
et al. [28] for the overall machine learning models in this study was 0.90 (95% CI: 0.85–0.90).
The HSROC curve plot is presented in Figure 4. Additionally, the pooled sensitivity and
pooled specificity values estimated through the same model were 0.83 (95% CI: 0.78–0.87)
and 0.84 (95% CI: 0.81–0.87), respectively.

3.5. Test for Heterogeneity and Influential Diagnostics

Based on the HSROC curve plot (Figure 4), there was a moderate deviation of the indi-
vidual models from the curve. The correlation coefficient of the sensitivity and specificity
was 0.33. Thus, there was an indication of slight-to-moderate heterogeneity in this study.
However, the influential diagnostics indicated that there was no influential model in the
study. The result of the influential diagnostics is presented in Supplementary Table S2.
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3.6. Subgroup Analysis

As per our findings, three out of four covariates were found to be significant via
a likelihood ratio test; these were country (p = 0.003), source (p = 0.002) and classifier
(p = 0.016), while the type of data was not significant (p = 0.121). The detailed result of the
likelihood test is presented in Table 2. Thus, the country, source and classifier explained
some of the heterogeneity that can be observed in the study. A further subgroup analysis
was performed on the three significant covariates. All countries other than the USA and
the UK were combined into one group, due to the small number of available studies.
Subsequently, the studies that used data from both the USA and UK were excluded due
to a small number of available studies, and those studies did not fit into any other group.
Pairwise post hoc comparison of the country subgroup revealed that machine learning
models that used data from the USA performed better than models that used data from
the other countries in terms of AUC (dAUC = 0.10, 95% CI: 0.04–0.19). Additionally, for
the subgroup analysis of the classifier covariate, three classifiers that were dropped due to
a small number of studies were the Gaussian mixture model (GMM), linear discriminant
analysis (LDA) and logistic regression. The three significant pairwise comparisons for this
subgroup analysis were the neural network and Bayes-based model (dAUC = 0.25, 95% CI:
0.12–0.38), tree-based model and Bayes-based model (dAUC = 0.25, 95% CI: 0.07–0.40)
and support vector machine and Bayes-based model (dAUC = 0.22, 95% CI: 0.09–0.35).
Lastly, for the subgroup analysis of the source covariate, we dropped studies that used
the INbreast database and the mammographic mass database (MMD). We also dropped
studies that used both DDSM and MIAS databases and studies with unknown sources of
data. Studies that used the MIAS and mini-MIAS databases were further classified into a
single group. All pairwise comparisons of the AUC were determined to be not significant
in this subgroup analysis. All the aforementioned pairwise comparisons were significant
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after the Bonferroni correction, and there were six non-convergent pairwise comparisons.
The results of the complete pairwise comparisons for all the three subgroups are presented
in Table 3, while Figure 5 delineates the HSROC for the subgroups. The highest AUCs in
each subgroup were models with the US data (AUC = 0.94), models that used the DDSM
database (AUC = 0.97) and the neural network model (0.94). As shown in Figure 5, models
that used the DDSM database performed significantly better than models that used primary
data, while the other model comparisons were relatively similar to those in Table 3.

Table 2. A likelihood ratio test for bivariate meta-regression models with the null model.

Model Covariate X2-Statistic (df) p-Value

Model 1 Country 19.55 (6) 0.003 *
Model 2 Source 31.10 (12) 0.002 *
Model 3 Type of data 4.23 (2) 0.121
Model 4 Classifier 30.32 (16) 0.016 *

* Significance at p < 0.05.

Table 3. A post hoc pairwise comparison for covariates country, source of data and classifier.

Comparisons dAUC (95% CI) p-Value

Country
USA vs. UK 0.051 (0.006, 0.127) 0.035 *

USA vs. others 1 0.095 (0.044, 0.191) 0.001 **
UK vs. others 1 0.044 (−0.034, 0.131) 0.241
Source of data

Primary data vs. DDSM — † — †

Primary data vs. MIAS 2 −0.062 (−0.127, 0.023) 0.152
DDSM vs. MIAS 2 — † — †

Classifier
NN vs. DL — † — †

NN vs. Tree-based 0.003 (−0.071, 0.138) 0.946
NN vs. KNN 0.157 (0.026, 0.325) 0.010
NN vs. SVM 0.033 (−0.034, 0.074) 0.337

NN vs. Bayes-based 0.252 (0.119, 0.379) <0.001 **
DL vs. Tree-based −0.016 (−0.122, 0.117) 0.690

DL vs. KNN — † — †

DL vs. SVM — † — †

DL vs. Bayes-based — † — †

Tree-based vs. KNN 0.153 (−0.023, 0.333) 0.082
Tree-based vs. SVM 0.030 (−0.101, 0.099) 0.578

Tree-based vs. Bayes-based 0.249 (0.073, 0.395) 0.007 **
KNN vs. SVM −0.123 (−0.300, −0.004) 0.044 *

KNN vs. Bayes-based 0.096 (−0.121, 0.265) 0.404
SVM vs. Bayes-based 0.219 (0.094, 0.350) <0.001 **

* Significance at p < 0.05; ** significance after Bonferroni correction; † non-convergence; 1 others: Iran, Por-
tugal, Jordan, China, Korea and Serbia; 2 mini-MIAS and MIAS databases were combined into a group;
dAUC = difference of the area under the curve; DDSM = database for screening mammography; MIAS =
mammographic image analysis society; NN = neural network; DL = deep learning; KNN = k-nearest neighbor;
SVM = support vector machine.
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3.7. Publication Bias

Deeks’ regression test was performed on the overall models that included all the
68 models from the 36 studies. The test indicated the possibility of publication bias in this
study (p = 0.002). Figure 6 shows that Deeks’ funnel plot was asymmetrical.
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3.8. Quality Assessment

Table 4 shows the quality assessment of the 36 included studies using the updated
Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Generally, the
majority of studies had an unclear risk of bias and low applicability concerns. Additionally,
several studies with a high risk of bias were observed under the subdomains of ‘patient
selection’ and ‘flow and timing’ of the risk of bias domain. Most studies used secondary
databases and did not explain in detail the data selection process and flow of their studies.
Items such as the consecutive or random sampling approach, inappropriate exclusion of
the data and the proper interval between the index test and the reference standard were not
clearly addressed in most of the included studies. Overall, out of the 36 studies included in
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the meta-analysis, 2 studies were found to be of poor quality, 9 studies of good quality and
25 studies of moderate quality.

Table 4. Quality assessment of the included studies according to the QUADAS-2 tool.

Study
Risk of Bias Applicability

OverallPatient
Selection Index Test Reference

Standard
Flow and
Timing

Patient
Selection IndexTest Reference

Standard

Abdolmaleki 2006 Low Unclear Low Low Low Low Low Good
Acharyau 2008 High Unclear Low Unclear Low Low Low Good
Al-antari 2020 Low Unclear Unclear Low Unclear Low Unclear Moderate

Alfifi 2020 Unclear Unclear Unclear Unclear Low Low Unclear Moderate
Al-hiary 2012 High Low Unclear Unclear Unclear Low Unclear Moderate
Al-masni 2018 Low Unclear Low Unclear Low Low Low Moderate

Bandeira-diniz 2018 High Low Low Unclear Low Low Low Good
Barkana 2017 Unclear Unclear Low Unclear Unclear Low Low Moderate
Biswas 2019 Unclear Unclear Unclear Unclear Unclear Low Unclear Moderate

Cai 2019 Low Low Low Low Low Low Low Moderate
Chen 2019a Low Unclear Low Low Low Low Low Moderate
Chen 2019b Low Low Low Low Low Low Low Good
Danala 2018 Low Low Low Low Low Low Low Good

Daniellopez-cabrera
2020 Unclear Unclear Unclear Unclear Low Low Unclear Good

Fathy 2019 High Low Low Unclear Low Low Low Poor
Girija 2019 Unclear Low Unclear Unclear Low Low Low Good

Jebamony 2020 Unclear Unclear Unclear High Low Low Unclear Moderate
Junior 2010 High Unclear Unclear High Low Low Unclear Moderate

Kanchanamani 2016 Unclear Unclear Unclear Unclear Low Low Unclear Moderate
Kim 2018 Unclear Low Low Low Low Low Low Moderate
Mao 2019 Low Unclear Low Low Low Low Low Moderate
Miao 2015 Unclear Unclear Unclear High Low Low Unclear Moderate
Miao 2013 Low Low Unclear High Low Low Unclear Moderate

Milosevic 2015 Low Unclear Unclear Unclear Low Low Unclear Moderate
Nithya 2012 Unclear Unclear Low Unclear Low Low Low Moderate

Nusantara 2016 Unclear Low Unclear Unclear Low Low Low Moderate
Palantei 2017 High Unclear Unclear Unclear Low Low Unclear Poor

Paramkusham 2018 Unclear Unclear Low Unclear Low Low Low Moderate
Roseline 2018 Unclear Unclear Unclear High Low Low Unclear Moderate

Shah 2015 Unclear Unclear Unclear Unclear Low Low Unclear Good
Shivhare 2020 Unclear Unclear Unclear High Low Low Unclear Good

Singh 2018 Unclear Unclear Low Low Low Low Low Moderate
Venkata 2019 Unclear Unclear Unclear Unclear Unclear Low Unclear Moderate

Wang 2017 High Unclear Unclear Unclear Low Low Unclear Moderate
Wutsqa 2017 High Unclear Unclear Unclear Low Low Unclear Moderate
Yousefi 2018 Unclear Unclear Low Unclear Low Low Low Moderate

4. Discussion

This study presents the efficacy of machine learning models on digital mammograms
and tomosynthesis. According to our findings, machine learning models had good perfor-
mance in breast cancer classification using digital mammograms and tomosynthesis, with
pooled AUC of 0.90. A previous meta-analysis that analyzed different machine learning
algorithms to estimate breast cancer risk was published in 2018 [70]. However, this study
did not include deep learning methods and presented a summarized result for the over-
all machine learning methods. Another meta-analysis study focusing on deep learning
reported good diagnostic accuracy for breast cancer detection using a mammogram, US,
MRI and DBT with pooled AUCs of 0.87, 0.91, 0.87 and 0.91, respectively [71]. However,
several meta-analysis studies that assessed the diagnostic accuracy of machine learning
models on MRI in gliomas, prostate cancer and meningioma reported slightly lower AUCs
of 0.88, 0.86 and 0.75, respectively [72–74]. This study included all previous studies that
used any machine learning algorithms on mammography for breast cancer detection. In
brief, the findings of our study support the promising potential use of machine learning on
mammographic data for breast cancer detection in clinical settings, especially as a screening
tool and a supplementary diagnostic tool to a radiologist.
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Inconsistency among the diagnostic accuracy studies is to be expected [22]. In this
meta-analysis, the three covariates that may explain the inconsistency among the studies
were country, source and classifier. In terms of country, studies that used data from the USA
and the UK had higher AUCs compared to the other countries (others group); however, only
a pairwise comparison of the USA and other countries revealed a statistically significant
result. This significant result may indicate a difference in characteristics between patients
with breast cancer across countries. For example, breast cancer presentation and breast
density had been reported to vary across populations [75,76], which, in turn, could affect
the diagnostic accuracy of machine learning models. Additionally, this study found that
studies that used primary data had lower AUCs compared to studies that used secondary
databases. The studies that used primary data may reflect the actual diagnostic accuracy
of machine models in real practice, as the data were collected specifically for the studies
in question. Lastly, this study found that the classifier with the best AUC was the neural
network, followed by the tree-based classifier and deep learning. However, the confidence
regions of all these three models overlapped with each other (Figure 5), which indicated
that none of the machine learning models significantly outperformed the other in terms
of breast cancer classification. It is worth noting that one of the findings of this study was
that the Bayes-based machine learning model had the lowest AUC (0.69) and performed
significantly worse than the neural network, tree-based model and support vector machine.
Nevertheless, a few studies were dropped in each subgroup analysis due to a small number
of studies in that particular group, which limited the pairwise comparison that could
be performed in each subgroup analysis. In brief, the subgroup analysis in this study
showed that most machine learning models, such as the neural network (AUC = 0.938),
deep learning (AUC = 0.918), tree-based models (0.934) and SVM (AUC = 0.904), perform
well with mammographic data for breast cancer detection. Additionally, future studies
should note that the characteristics and the quality of the mammographic data influence
the performance of machine learning for breast cancer detection.

Despite the good performance of machine learning on mammography to be utilized
for breast cancer detection, several considerations should be noted. Only 31% of the studies
included in this meta-analysis used primary data collected by the researchers themselves,
while the remaining 69% of the studies used publicly available datasets, such as MIAS,
mini-MIAS and DDSM. Thus, future studies should focus on using high-quality data
collected from the hospitals or research centers with a wide range of women with varying
clinical symptoms of breast cancer. Furthermore, future studies should explicitly elucidate
the role of machine learning tools that they develop either as screening, diagnostic or
prognostic tools. Different roles of machine learning tools have different clinical impacts in
the implementation of the tools. For example, machine learning screening tools should aim
to reduce false-negative cases. Misdiagnosing a case with a high probability of breast cancer
to a normal case is a fatal error. However, machine learning diagnostic tools should aim to
reduce false-positive cases. Misdiagnosing a normal case as a breast cancer case will lead
to unnecessary procedures, especially if it is an invasive procedure, such as a biopsy. Being
transparent about where the machine learning tools can be implemented in the context of
the clinical pathway of the disease increases the confidence of the clinicians in its utilization
in the clinical setting. Nonetheless, there are many opportunities and benefits for the
implementation of machine learning in breast cancer detection using mammographic data.
The utilization of machine learning in breast cancer detection will reduce the workload of
clinicians and accelerate the diagnosis workflow of the disease. Thus, breast cancer patients
will receive early treatment, which further reduces the mortality rate of the disease.

In this study, we established the good performance of machine learning models
on mammography in the classification of breast cancer. We used the bivariate model
to estimate the AUC and further applied a bootstrap method to estimate its confidence
interval. Furthermore, our meta-analysis included a reasonable number of studies to
provide a relatively reliable result on the primary outcome and secondary outcomes.
However, our study had several limitations. Firstly, we found that our study had a
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potential publication bias. One of the probable causes was the unpublished studies with
a low-performance model. Additionally, the overall model in this study had a moderate
amount of heterogeneity, and this study included a considerable number of studies that
may contribute to both the occurrence of publication bias and the high statistical power of
the asymmetry test. As shown in Figure 6, model 10 had a much higher DOR compared to
the other models on the right side of the figure; however, removing this model did not have
a significant impact on the AUC (Supplementary Table S2). Nonetheless, the mechanism of
publication bias in diagnostic accuracy studies remains unclear, and a robust assessment
of this bias is yet to be proposed [33]. Future meta-analyses may consider including the
preprint articles that may be able to reduce the publication bias. Secondly, we only had
one study with tomosynthesis, while the rest of the studies used digital mammograms.
Thus, the findings of our study were more inclined toward digital mammograms than
tomosynthesis, although both are considered mammography technology. In addition, we
limited the language of the included studies to English, which may have increased the risk
of bias in our findings. Lastly, there are a wide variety of machine learning models with
different variants and parameters available. Thus, our study was not able to compare each
of the model variants, due to the lack of sample size of that particular model.

5. Conclusions

In conclusion, the performance of machine learning on mammography in breast
cancer classification showed promising results, with good sensitivity and specificity values.
However, the role of any machine learning technique in the diagnostic pathway should
be clearly explained in a diagnostic accuracy study to be efficiently incorporated into the
clinical setting. Thus, the limitation of each machine learning model will be apparent to
clinicians and other health personnel.
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