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KYBERNET IKA — MANUSCR IPT PREV IEW

MINIMIZING MAXIMUM LATENESS IN

TWO-STAGE PROJECTS BY TROPICAL OPTIMIZATION

Nikolai Krivulin and Sergĕı Sergeev

We are considering a two-stage optimal scheduling problem, which involves two similar
projects with the same starting times for workers and the same deadlines for tasks. It is
required that the starting times for workers and deadlines for tasks should be optimal for the
first-stage project and, under this condition, also for the second-stage project. Optimality is
measured with respect to the maximal lateness (or maximal delay) of tasks, which has to be
minimized. We represent this problem as a problem of tropical pseudoquadratic optimization
and show how the existing methods of tropical optimization and tropical linear algebra yield a
full and explicit solution for this problem.

Keywords: tropical optimization, tropical linear algebra, minimax optimization problem,
project scheduling, maximum lateness

Classification: 90C24, 15A80, 90C47, 90B50, 90B35

1. INTRODUCTION

As an important component of project management, project scheduling is concerned
with the development of optimal schedules of activities that comprise a project, subject
to various constraints [10, 28, 30]. The scheduling objectives are normally formulated in
terms of time-oriented criteria to optimize such as makespan, lateness and tardiness. In
multicriteria and multilevel scheduling, further objectives can be added, which take into
account the project cost, profit, resource allocation or consumption, etc. The scheduling
constraints may include temporal constraints (time bounds for and relationships between
activities) as well as material and manpower resource requirements, budget limitations
and others.

In the general case, the project scheduling problems with constraints of different
types may be rather complicated and even known to be NP -hard to solve. The solution
approaches used to handle these problems involve methods and computational schemes
of linear, integer and mixed integer linear programming, combinatorial and discrete op-
timization, which offer algorithmic technique to obtain exact or approximate numerical
solutions [10, 30].

The project scheduling problems, which have only time-oriented objectives and tem-
poral constraints, can normally be formulated and solved as linear programs using com-
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2 N. KRIVULIN AND S. SERGEEV

putational algorithms of linear programming. This approach typically offers a quite
efficient numerical technique to find a solution or determine that no solution exists, but
does not allow to derive all solutions analytically.

Another approach to solve temporal scheduling problems is based on models and
methods of tropical (idempotent) algebra which is concerned with the theory and appli-
cations of semirings with idempotent addition [2, 20, 15, 18, 16, 4]. Project scheduling
problems served to motivate early research [7, 14] and still presents an important appli-
cation domain for tropical mathematics [3, 17, 4].

In the framework of tropical algebra, many temporal project scheduling problems can
be represented as optimization problems and then analytically solved using methods and
techniques of tropical optimization in explicit form. Examples of the solution includes
results on both single-criterion problems [22, 24, 25, 26] and multicriteria problems [27].

A more theoretical motivation for this work comes from a general idea to develop
the theory and practice of multi-criteria and multi-level tropical optimization problems.
In view of the above mentioned development of tropical optimization problems applied
to project scheduling, as well as successful development of algorithms to solve some
other types of tropical optimization problems such as tropical linear programming and
tropical linear-fractional programming [1, 13], it seems to be a promising research di-
rection. Note, however, that except for a some tropical bi-objective [27] and bi-level
[29] optimization problem, we are not aware of any other tropical bi-objective or bi-level
optimization problems considered in the existing literature.

In this paper, a two-stage project scheduling problem under temporal objectives and
constraints is considered. This problem can be considered as a lexicographic bi-objective
optimization problem [11], where the objectives are taken into account in a hierarchical
order. We show how this problem can be represented in terms of tropical algebra as
a multidimensional two-stage tropical optimization problem. We completely solve this
problem, that is, we derive an analytical solution in compact vector form and evaluate
the computational complexity of the solution.

The rest of our paper is organized as follows. In Section 2 we give some background
on project scheduling problems and formulate the problem, which we are going to solve
in the present paper. In Section 3, we recall some basic operations of tropical linear
algebra, in particular, tropical traces and Kleene stars. While most of the material
given there is well-known (see the references in the text), the method that we use in
computation of tropical traces in Subsection 3.4 was developed only very recently and
here we give a more detailed analysis of its computational complexity. The solution of
the scheduling problem is given in Section 4, see Theorem 4.2 for the main result.

2. PROJECT SCHEDULING PROBLEMS

In this section, we describe one- and two-stage project scheduling problems that motivate
the research and illustrate the application of the results. As a real-world example that
provides an appropriate applied context for the study, one can consider a problem of
optimal scheduling health care activities in a hospital, where each patient is assigned to
one or more courses of treatment (medications, therapeutic procedures, diagnostic tests,
etc.), and each course is carried out individually on one or together on more patients.
The patient is discharged from the hospital as soon as all prescribed treatments are
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completed.
Each course involves a basic component (primary treatment) and auxiliary compo-

nent (secondary treatment), which run simultaneously. In accordance to medical, tech-
nological, regulatory, managerial or other requirements, a set of temporal constraints is
imposed on the start time of the courses and the discharge date of the patients. For
each pair of a patient and a course, the prescribed duration of the course of the primary
and secondary treatments is specified. Furthermore, the maximum time lag between the
start time of the components of the course and the discharge due date of the patient is
also given. Finally, lower and upper bounds (box constraints) are imposed on the start
date for both components of each course and on the due date for each patient.

The primary treatment components of the courses are scheduled first to obtain op-
timal sets of the start dates for courses and the corresponding discharge due dates for
patients. The schedule has to minimize the maximum lateness of the course completion
dates with respect to due dates over all patients, subject to the temporal constraints
described above. Next, the optimal solution obtained are taken as feasible sets to solve
the scheduling problem for the the secondary treatment components under the same
minimum lateness criterion.

In the rest of the section, we show how this scheduling problem can be represented
as a minimax two-stage optimization problem. To provide a general description of the
scheduling model, we use the terms tasks and workers instead of patients and treatments
appeared in the above application example.

2.1. One-stage project scheduling problems

Consider a project (a treatment plan in the hospital setting) that involves m tasks
(patients) to be performed (treated) in parallel by n workers (courses of treatment),
subject to temporal constraints in the form of start-finish and due date-start precedence
relationships, time boundaries on the start times of workers and the due dates of tasks.
The start-finish constraints specify the minimum allowed time lag for each pair worker-
task between the start of the worker (the beginning of the course) and the finish of the
task (the discharge of the patient). Each task is assumed to finish immediately after all
start-finish constraints for its finish time are satisfied.

The due date-start constraints specify the minimum allowed time lag for each pair
task-worker between the due date of the task (the due date of the patient’s discharge)
and the start of the worker (the beginning of the course). The boundary constraints
include the release times and release deadlines for the workers to start (for the courses
to begin), and the earliest allowed time and deadlines for the tasks to finish (for the
patients to discharge). The above constraints are considered as hard restrictions, which
cannot be violated.

In contrast to the above constraints, the due time constraints indicate the desirable
times for tasks to finish, and are not set in advance. The project scheduling problems of
interest are to determine the start time for each worker and the due time for each task
to meet the minimum lateness objective, which is to minimize the maximum difference
between the finish time and the due time over all tasks.

In the hospital context, the objective aims at the development of a schedule of the
treatment plan for all patients to minimize the maximum lateness of courses with respect
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to discharge due dates of patients.
For each task i = 1, . . . ,m, we denote its finish time by fi, and for each worker

j = 1, . . . , n, we denote his or her start time by xj . Let aij be the minimum allowed
time lag between the start of worker j and the finish of task i. Then, the start-finish
constraints for task i take the form of inequalities aij + xj ≤ fi for all j = 1, . . . , n, one
of which is an equality. Combining all inequalities for each j yields the equalities

max
1≤j≤n

(aij + xj) = fi, i = 1, . . . ,m.

For each task i = 1, . . . ,m, we denote its due time by yi. Furthermore, let −bji
denote the minimum (negative) allowed time lag between the due time of task i and
the start time of worker j. The due date-start constraints are given by the inequalities
−bji + yi ≤ xj for all i = 1, . . . ,m. Equivalently, they can be written as yi ≤ bji + xj :
the constraints that do not allow the due dates to be too lax with respect to workers’
starting times. These constraints can be combined into the inequalities

max
1≤i≤m

(−bji + yi) ≤ xj , j = 1, . . . , n.

Let qi and ri be the earliest allowed time to finish and deadline for task i = 1, . . . ,m,
and gj and hj be the release time and release deadline for worker j = 1, . . . , n. The due
time of tasks and start time of workers must satisfy the box constraints

qi ≤ yi ≤ ri, i = 1, . . . ,m; gj ≤ xj ≤ hj , j = 1, . . . , n.

Finally, the maximum lateness over all tasks is defined as follows:

max
1≤i≤m

(fi − yi) = max
1≤i≤m

(

max
1≤j≤n

(aij + xj)− yi

)

.

Given the parameters aij , bij , qi, ri, gj and hj for all i = 1, . . . ,m, and j = 1, . . . , n,
the project scheduling problem can be formulated to find the unknown vectors of the
start time of workers x = (x1, . . . , xn)

T , and of the due time for tasks y = (y1, . . . , ym)T ,
for which the maximum lateness is minimal:

min
x,y

max
1≤i≤m

(

max
1≤j≤n

(aij + xj)− yi

)

;

s.t. max
1≤i≤m

(−bji + yi) ≤ xj , gj ≤ xj ≤ hj , j = 1, . . . , n;

qi ≤ yi ≤ ri, i = 1, . . . ,m.

(1)

We now assume that there is another project with the same numbers m and n of
tasks and workers, and with the same box constraints for start times of workers and
due dates for tasks. For each task i = 1, . . . ,m in this project, we denote its due date
by vi, and for each worker j = 1, . . . , n, we denote the start time by uj . Let cij be the
minimum time lag between the start time of worker j and the finish time of task i, and
let −dij be the minimum (negative) time lag between the due date for task j and the
start time of worker i.
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Suppose that the parameters cij , dij , qi, ri, gj and hj are given for all i = 1, . . . ,m,
and j = 1, . . . , n, and consider the problem of finding vectors of start times u =
(u1, . . . , un)

T and of due dates v = (v1, . . . , vm)T that minimize the maximum late-
ness in the project:

min
u,v

max
1≤i≤m

(

max
1≤j≤n

(cij + uj)− vi

)

;

s.t. max
1≤i≤m

(−dji + vi) ≤ uj , gj ≤ uj ≤ hj , j = 1, . . . , n;

qi ≤ vi ≤ ri, i = 1, . . . ,m.

(2)

Note that problems (1) and (2) can be readily rewritten as linear programs, and
solved by appropriate computational techniques of linear programming. However, in
the general case, this approach implements numerical iterative procedures and does not
offer direct exact solutions in an explicit form, which we are going to use.

2.2. Two-stage project scheduling problem

Suppose that both projects described above have common start times for workers and
due dates for tasks. Moreover, assume one of the projects to be a first-stage project,
for which the start times and due dates must be optimal to minimize the maximum
lateness. The other project is a second-stage project such that its start times and due
dates must be optimal for the first-stage project and, only under this condition, for the
second-stage project itself.

We then represent the overall problem as a two-stage optimization problem with the
second-stage problem formulated as (1), and the first-stage problem as (2):

min
x,y

max
1≤i≤m

(

max
1≤j≤n

(aij + xj)− yi

)

;

s.t. max
1≤i≤m

(−bji + yi) ≤ xj , j = 1, . . . , n;

(x,y) ∈ argmin
u,v

{

max
1≤i≤m

(

max
1≤j≤n

(cij + uj)− vi

)

:

max
1≤i≤m

(−dji + vi) ≤ uj , gj ≤ uj ≤ hj , j = 1, . . . , n;

qi ≤ vi ≤ ri, i = 1, . . . ,m

}

.

(3)

In the hospital setting, the two-stage problem is to minimize the maximum lateness
of courses with respect to the discharge due dates of patients in a two-stage treatment
plan, subject to a set of given temporal constraints.

This is the main problem which we are going to solve in this paper. In the next
sections, we will reformulate it in terms of tropical algebra. Its explicit analytical solution
will be then presented in Section 4.
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3. TROPICAL ALGEBRA

3.1. Idempotent semirings

Max-plus semiring Rmax,+ is the set R ∪ {−∞} equipped with the associative and com-
mutative operations of addition a ⊕ b = max(a, b) and multiplication a ⊗ b = a + b,
where 1 = 0 is the unit element (i.e., such that 1 ⊗ a = a for all a ∈ R) and 0 = −∞ is
the zero element (i.e., neutral with respect to addition and such that 0 ⊗ a = 0 for all
a ∈ Rmax,+). Observe that the addition is idempotent: a⊕a = a, and the multiplication
is distributive over addition and invertible: a−1 = −a for any a ∈ R.

Max-plus semiring is an example of idempotent semifield (X,⊕,⊗,0,1) which is de-
fined as a set X closed under the associative and commutative operations: idempotent
addition ⊕ and invertible multiplication ⊗ (the multiplication sign ⊗ is normally omit-
ted in written expressions). This semifield is assumed algebraically closed meaning that,
for any a ∈ X and natural m, the equation xm = a has a solution, where xm denotes the
m-fold tropical product of x with itself. It is also assumed linearly ordered meaning that
the canonical order a ≤ b given by the equality a ⊕ b = b is total: either the condition
a ≤ b or the condition b ≤ a holds for any a, b ∈ X.

Both addition and multiplication are monotone with respect to each argument (i.e.,
the inequality a ≤ b, where a, b ∈ X results in the inequalities a⊕ c ≤ b⊕ c and ac ≤ bc
for any c ∈ X), whereas inversion is antitone (i.e., the inequality a ≤ b, where a, b 6= 0,
yields a−1 ≥ b−1). Furthermore, addition possesses the extremal property (the majority
low) meaning that a ≤ a⊕ b and b ≤ a⊕ b. Finally, the inequality a⊕ b ≤ c is equivalent
to the pair of inequalities a ≤ c and b ≤ c.

For the sake of our practical application, we only need X = Rmax,+. However, all our
theoretical results are also true over any algebraically closed linearly ordered idempotent
semifield X and will be formulated in terms of such semifield.

3.2. Algebra of matrices

Scalar operations can be extended to matrices and vectors in the usual way. In particular,
let A = (aij) and B = (bij) be two matrices and x be a scalar over X. Provided that
they have appropriate dimensions, one defines

(A⊕B)ij = aij ⊕ bij , (A⊗B)ij =
⊕

k

aik ⊗ bkj , (x⊗A)ij = x⊗ aij .

The matrix multiplication operation gives rise to matrix powers for square matrices
over X, defined as

Ak = A⊗ · · · ⊗A
︸ ︷︷ ︸

k

.

Below the product sign ⊗, as in the scalar case, will be systematically omitted.

A matrix A of arbitrary dimension (in particular, a vector) is the zero matrix if it
has all entries equal to 0. A vector x is called regular if it has no zero entries. A matrix
is called column-regular (row-regular) if all its columns (rows) are regular, which means
that the matrix has no column (raw) that consists entirely of zeros.
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For a nonzero matrix A = (aij), we define the multiplicative inverse transpose (the
conjugate) A− = (a−ij) as the matrix for which a−ij = a−1

ji if aji 6= 0, and a−ij = 0

otherwise. When applied to nonzero column vectors x = (xi) ∈ X
n, this operation

results in the row vector x− = (x−
i ) with the entries x−

i = x−1
i if xi 6= 0, and x−

i = 0

otherwise.
For any square matrix A = (aij) ∈ X

n×n, the trace is given by

trA =
n⊕

i=1

aii.

For any matrices A, B and C of appropriate size, and a scalar x, the following
identities hold:

tr(A⊕B) = trA⊕ trB, tr(AC) = tr(CA), tr(xA) = x trA.

In order to formulate the solutions of vector inequalities in what follows, we need
to introduce the following notion. For any matrix A ∈ X

n×n, we define the following
tropical trace function:

Tr(A) =
n⊕

k=1

trAk,

and then the asterisk operator or the Kleene star of A as the series

A∗ =

∞⊕

k=0

Ak. (4)

The following fact is well-known (see, e.g., [31, 5, 6]).

Proposition 3.1. Let A ∈ X
n×n. Series (4) converges if and only if Tr(A) ≤ 1, and in

this case

A∗ =

n−1⊕

k=0

Ak.

Note that the condition Tr(A) ≤ 1 is equivalent to the condition that the inequality
trAk ≤ 1 is valid for each k = 1, . . . , n.

Corollary 3.2. If Tr(A) ≤ 1, then for any r ≥ n, the following equalities hold

A∗ =
r−1⊕

k=0

Ak, Tr(A) =
r⊕

k=1

trAk.

To verify the statement, assume that the condition Tr(A) ≤ 1 is valid. It follows
from Proposition 3.1 that the inequality

Ar ≤ A∗

holds for all integer r ≥ 0, which yields the first equality.
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The second equality is obtained as follows:

r⊕

k=1

trAk = tr

(

A

r−1⊕

k=0

Ak

)

= tr(AA∗) = Tr(A).

The notion of the trace function is closely related to the concept of the max-plus
algebra spectrum. The the max-plus algebra spectral radius of a square matrix A ∈
X
n×n is given by

ρ(A) =

n⊕

k=1

tr1/k(Ak).

This is the largest tropical eigenvalue of A (assuming that the order relation a ≤ b
is given by a⊕ b = b), i.e., the largest λ such that there exists a nonzero vector x ∈ X

n

to satisfy the equality Ax = λx.
It is easy to see that Tr(A) ≤ 1 if and only if ρ(A) ≤ 1.
For any matrices A and B of appropriate size, the following equality holds:

ρ(AB) = ρ(BA).

To verify this equality, it is sufficient to note that each eigenvalue of the matrix AB

is an eigenvalue of BA and vice versa. Therefore, both the matrices AB and BA have
a common spectrum, and thus their spectral radii coincide.

3.3. Vector inequalities

Given a matrix A ∈ X
m×n and vector d ∈ X

m, consider the problem to find vectors
x ∈ X

n to satisfy the inequality
Ax ≤ d (5)

Solutions of the problem are known under various assumptions and in different forms
(see, e.g., [2, 8]). Below, we use the solution [22] offered by the next statement.

Proposition 3.3. For any column-regular matrix A and regular vector d, all solutions
to inequality (5) are given by

x ≤ (d−A)−.

Given a matrix A ∈ X
n×n and vectors b,d ∈ X

n, consider the problem of finding
regular vectors x ∈ X

n that satisfy the double inequality

Ax⊕ b ≤ x ≤ d (6)

The next statement offers a complete solution to the problem [21].

Proposition 3.4. For any matrixA, vector b and regular vector d, denote ∆ = Tr(A)⊕
d−A∗b. Then, the following statements hold.

(i) If ∆ ≤ 1, then all regular solutions of inequality (6) are given by

x = A∗u, b ≤ u ≤ (d−A∗)−.

(ii) If ∆ > 1, then there is no regular solution.
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3.4. Binomial identities for traces

We now present identities for powers of matrix binomials and their traces, which are
used in algebraic manipulations in what follows. First note that, for any square matrices
A,B ∈ X

n×n and positive integer k, the following equality is valid (see also [21, 23, 22,
24]):

(A⊕B)k =
k⊕

l=1

⊕

i0+i1+···+il=k−l

Bi0(ABi1 · · ·ABil)⊕Bk.

By summing over all k = 1, . . . , p, where p ≥ 1, and rearranging terms, we obtain

p
⊕

k=1

(A⊕B)k =

p
⊕

k=1

⊕

0≤i0+i1+···+ik≤p−k

Bi0(ABi1 · · ·ABik)⊕

p
⊕

k=1

Bk. (7)

Similarly, summing over all k = 0, . . . , n− 1 yields

(A⊕B)∗ =

n−1⊕

k=0

⊕

0≤i0+i1+···+ik≤n−k−1

Bi0(ABi1 · · ·ABik)⊕B∗.

After taking trace of both sides of equality (7), we have the identity

p
⊕

k=1

tr(A ⊕ B)k =

p
⊕

k=1

⊕

0≤i0+i1+···+ik≤p−k

tr(Bi0(ABi1 · · ·ABik)) ⊕

p
⊕

k=1

trBk. (8)

Specifically, if p = n, then the identity takes the form

Tr(A⊕B) =
n⊕

k=1

⊕

0≤i0+i1+···+ik≤n−k

tr(Bi0(ABi1 · · ·ABik))⊕ Tr(B).

We conclude this section with the estimation of the computational complexity asso-
ciated with the calculation of the sum at (7) (see also [24, 25]). First, we introduce the
notation

Tkl =
⊕

0≤i0+i1+···+ik≤l

Bi0(ABi1 · · ·ABik), k, l ≥ 0,

and note that
p
⊕

k=1

(A⊕B)k =

p
⊕

k=1

Tk,p−k ⊕

p
⊕

k=1

Bk.

We prove the following statement.

Proposition 3.5. The matrices Tkl satisfy the recurrence relations

Tkl = ATk−1,l ⊕BTk,l−1, Tk0 = Ak, T0l = Bl, T00 = I, k, l ≥ 0.
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P r o o f . To verify the first relation (the others are obvious), we write

ATk−1,l =
⊕

0≤i0+i1+···+ik−1≤l

B0ABi0(ABi1 · · ·ABik−1)

=
⊕

0≤i1+···+ik≤l

B0(ABi1 · · ·ABik).

Furthermore, we have

BTk,l−1 =
⊕

0≤i0+i1+···+ik≤l−1

Bi0+1(ABi1 · · ·ABik)

=
⊕

0≤(i0+1)+i1+···+ik≤l

Bi0+1(ABi1 · · ·ABik).

By combining both expressions, we obtain the desired recurrence relation. �

It follows from the recurrence relation, that each matrix Tkl can be calculated with one
matrix addition and two matrix multiplications, which requires O(n3) scalar operations.
Observing that the number of matrices Tkl needed to evaluate the sum at (7) is 1+ · · ·+
p = p(p + 1)/2, the overall computational complexity is of order O(n3p2). Specifically,
with p = n, we have the order O(n5).

Finally note that the calculation of the sum of traces at (8) has the same order of
complexity O(n3p2), which becomes O(n5) if p = n.

3.5. Skew block diagonal matrices

Given matrices B ∈ X
n×m and C ∈ X

m×n, we consider a square matrix of order m+ n
in the skew block diagonal form

A =

(
0 B

C 0

)

.

Here we are going to consider tropical trace functions and Kleene stars of skew block
diagonal matrices. The results presented further extend the technique developed in [5]
to compute Kleene stars of block matrices.

Proposition 3.6. If Tr(A) ≤ 1, then the following equalities hold:

Tr(A) = Tr(BC) = Tr(CB) =

min(m,n)
⊕

k=1

tr(BC) =

min(m,n)
⊕

k=1

tr(CB).

P r o o f . First assume that m ≤ n. Since Tr(A) ≤ 1, the inequality Ak ≤ A∗ holds for
any integer k ≥ 0. Observing that m+ n ≤ 2n, we have

A∗ =

m+n−1⊕

k=0

Ak =

2n−1⊕

k=0

Ak,

m+n⊕

k=1

Ak = AA∗ =

2n⊕

k=1

Ak.
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Next, we calculate

Tr(A) =

m+n⊕

k=1

trAk =

2n⊕

k=1

trAk =

n⊕

k=1

trA2k.

For any k = 0, 1, 2, . . ., we obtain

A2k =

(
(BC)k 0

0 (CB)k

)

, A2k+1 =

(
0 B(CB)k

C(BC)k 0

)

,

and hence trA2k = tr(BC)k = tr(CB)k and trA2k+1 = 0.
We now can write

Tr(A) =
n⊕

k=1

tr(CB)k =
n⊕

k=1

tr(BC)k = Tr(BC).

At the same time, we have

Tr(CB) =

m⊕

k=1

tr(CB)k ≤ Tr(A).

Since Tr(CB) ≤ Tr(A) ≤ 1, we obtain

m⊕

k=1

(CB)k = (CB)(CB)∗ =
n⊕

k=1

(CB)k.

Turning to traces yields

Tr(CB) =

n⊕

k=1

tr(CB)k =

n⊕

k=1

tr(BC)k = Tr(BC) = Tr(A).

The case when m > n is examined in the same way. �

Proposition 3.7. If Tr(A) ≤ 1, then the following equalities hold:

A∗ =

(
(BC)∗ B(CB)∗

C(BC)∗ (CB)∗

)

=

min(m,n)
⊕

k=0

(
(BC)k B(CB)k

C(BC)k (CB)k

)

.

P r o o f . Consider the matrix A∗ under assumption that m ≤ n, and represent this
matrix as

A∗ =

m+n−1⊕

k=0

Ak =

2n−1⊕

k=0

Ak =

n−1⊕

k=0

A2k ⊕

n−1⊕

k=0

A2k+1.

Substitution of the even and odd powers of the matrix A yields

A∗ =

n−1⊕

k=0

(
(BC)k B(CB)k

C(BC)k (CB)k

)

.
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Note that, under the condition that m = n, we immediately have

A∗ =

(
(BC)∗ B(CB)∗

C(BC)∗ (CB)∗

)

.

We now assume that m < n and consider the blocks in the matrix A∗. First, we note
that the inequalities (BC)k ≤ (BC)∗ and (CB)k ≤ (CB)∗ hold for all integer k ≥ 0
since Tr(BC) = Tr(CB) = Tr(A) ≤ 1.

Observing that m− 1 ≤ n− 2, we represent the upper left block as

n−1⊕

k=0

(BC)k = I ⊕B

n−2⊕

k=0

(CB)kC = I ⊕B(CB)∗C =
m⊕

k=0

(BC)k.

Furthermore, for the upper right block, we have

n−1⊕

k=0

B(CB)k = B(CB)∗ =

m⊕

k=0

B(CB)k.

Similarly, we calculate the rest two blocks to obtain

n−1⊕

k=0

C(BC)k =
m⊕

k=0

C(BC)k,
n−1⊕

k=0

(CB)k =
m⊕

k=0

(CB)k.

Under the condition that m > n, the proof follows the same argument. �

Corollary 3.8. If Tr(A) ≤ 1 and m = n, then

A∗ =

n−1⊕

k=0

(
(BC)k B(CB)k

C(BC)k (CB)k

)

.

4. SOLUTION OF TWO-STAGE SCHEDULING PROBLEM

Let us now formulate the two-stage problem at (3) in terms of tropical algebra. Using
operations of max-plus algebra, we rewrite the problem as

min
x,y regular

⊕

1≤i≤m

y−1
i




⊕

1≤j≤n

aijxj



 ;

s.t.
⊕

1≤i≤m

b−1
ji yi ≤ xj , j = 1, . . . , n;

(x,y) ∈ arg min
u,v regular

{
⊕

1≤i≤m

v−1
i

(
⊕

1≤j≤n

cijuj

)

:

⊕

1≤i≤m

d−1
ji vi ≤ uj , gj ≤ uj ≤ hj , j = 1, . . . , n;

qi ≤ vi ≤ ri, i = 1, . . . ,m

}

.
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In addition to the vectors y = (yi), x = (xj), v = (vi) and u = (uj), we introduce
the (m× n)-matrices A = (aij), B = (bij), C = (cij) and D = (dij). Furthermore, we
introduce the m-vectors q = (qi) and r = (ri), and n-vectors g = (gj) and h = (hj).

With this notation, the two-stage problem takes the vector form

min
x,y regular

y−Ax;

s.t. B−y ≤ x;

(x,y) ∈ argmin
u,v

{

v−Cu :

D−v ≤ u, g ≤ u ≤ h, q ≤ v ≤ r

}

.

(9)

To solve both first-stage and second-stage problems, we apply a solution technique
that involves introducing a parameter to represent the value of the objective function in
the problem, followed by reducing the problem to a parametrized inequality [21, 23, 22].
Then, the existence conditions for solutions of the inequality are used to derive the
minimal value of the parameter. A complete solution of the minimization problem is
obtained as the solution of the inequality, which corresponds to the minimum value.

4.1. Solution of first-stage problem

Consider the first-stage problem at (9) in the vector form

min
u,v regular

v−Cu;

s.t. D−v ≤ u, g ≤ u ≤ h, q ≤ v ≤ r.
(10)

The next result provides the minimum value of the objective function, and offers a
system of inequalities that define the solution set of the problem.

Lemma 4.1. Problem (10) with regular vectors h and r and a nonzero matrix C is
feasible if and only if h−g ⊕ (h−D− ⊕ r−)q ≤ 1.

Under these conditions the optimal value of (10) is greater than 0 and equal to

µ = ρ(CD−)⊕

min(m,n)
⊕

k=1

(
h−(D−C)kg ⊕ (h−D− ⊕ r−)(CD−)kq

)1/k

⊕

min(m,n)
⊕

k=0

(r−C(D−C)kg)1/(k+1). (11)

Regular vectors u and v are solutions of (10) if and only if they satisfy the following
system of inequalities:

µ−1Cu⊕ q ≤ v ≤ r,

D−v ⊕ g ≤ u ≤ h.
(12)
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P r o o f . To solve the problem obtained, we first define an auxiliary parameter θ to
represent the problem as follows:

min
u,v regular

θ;

s.t. v−Cu ≤ θ,

D−v ≤ u, g ≤ u ≤ h, q ≤ v ≤ r.

If the vectors r and h are regular and C 6= 0, then the function v−Cu with regular
v and u is bounded from below, and the optimal value of θ is greater than 0.

Furthermore, we rearrange the inequality constraints in the problem. We apply
Proposition 3.3 to solve the first inequality with respect to Cu, and then rewrite the
result as θ−1Cu ≤ v. Next, by coupling the inequality obtained with the last inequality
constraint, and the second inequality with the third, we represent the problem in the
form

min
u,v regular

θ;

s.t. θ−1Cu⊕ q ≤ v ≤ r,

D−v ⊕ g ≤ u ≤ h.

(13)

We define the following skew block diagonal matrix and vectors:

Fθ =

(
0 D−

θ−1C 0

)

, s =

(
g

q

)

, t =

(
h

r

)

, z =

(
u

v

)

,

and note that the matrix Fθ is of order m + n, and the vectors s, t and z are of order
m+ n. With this notation, the problem becomes

min
z regular

θ;

s.t. Fθz ⊕ s ≤ z ≤ t.
(14)

We now use the existence condition for regular solutions from Proposition 3.4 to
define the feasible set for the parameter θ in problem (14). The condition takes the form
of the inequality Tr(Fθ) ⊕ t−F ∗

θ s ≤ 1, and thus problem (14) reduces to finding the
minimum value of the parameter θ, over all θ that satisfy this inequality.

To solve this inequality, we note that it is equivalent to two inequalities

Tr(Fθ) ≤ 1, t−F ∗
θ s ≤ 1.

Consider the first inequality, and assume that m ≤ n. Observing that the matrix
CD− is of order m, we apply Proposition 3.6 to write

Tr(Fθ) =

m⊕

k=1

θ−k tr(CD−)k ≤ 1.

This inequality is equivalent to the system of inequalities

θ−k tr(CD−)k ≤ 1, k = 1, . . . ,m,
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which can be solved for θ as follows:

tr1/k((CD−)k) ≤ θ, k = 1, . . . ,m.

Combining the inequalities into one yields the inequality

θ ≥

m⊕

k=1

tr1/k((CD−)k) = ρ(CD−) = ρ(D−C),

which does not change if the condition m ≤ n is replaced by m > n.
To examine the second inequality t−F ∗

θ s ≤ 1, we first use Proposition 3.7 to obtain
the matrix

F ∗
θ =

min(m,n)
⊕

k=0

(
(θ−1D−C)k D−(θ−1CD−)k

θ−1C(θ−1D−C)k (θ−1CD−)k

)

.

After substitution of the matrix F ∗
θ and vectors t and s, the inequality becomes

min(m,n)
⊕

k=0

θ−k
(
h−(D−C)kg ⊕ (h−D− ⊕ r−)(CD−)kq

)

⊕

min(m,n)
⊕

k=0

θ−k−1r−C(D−C)kg ≤ 1,

which can be represented as the system of inequalities

h−g ⊕ (h−D− ⊕ r−)q ≤ 1,

min(m,n)
⊕

k=1

θ−k
(
h−(D−C)kg ⊕ (h−D− ⊕ r−)(CD−)kq

)
≤ 1,

min(m,n)
⊕

k=0

θ−(k+1)r−C(D−C)kg ≤ 1.

The first inequality in the system are valid by the assumption of the lemma. By
solving the last two inequalities with respect to θ in the same way as above, we obtain

θ ≥

min(m,n)
⊕

k=1

(
h−(D−C)kg ⊕ (h−D− ⊕ r−)(CD−)kq

)1/k
,

θ ≥

min(m,n)
⊕

k=0

(r−C(D−C)kg)1/(k+1).

By combining all lower bounds for θ, we have

θ ≥ ρ(CD−)⊕

min(m,n)
⊕

k=1

(
h−(D−C)kg ⊕ (h−D− ⊕ r−)(CD−)kq

)1/k

⊕

min(m,n)
⊕

k=0

(r−C(D−C)kg)1/(k+1).
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Setting the minimum µ in the problem to be equal to the combined bound yields
(11). Finally, by replacing θ by µ in the system of inequality constraints of (13), we
obtain the system of inequalities at (12). �

4.2. Solution of second-stage problem

Consider the second-stage problem, and adjust the description of the feasible solution
set by adding the constraints elevated from the solution of the first-stage problem. With
the new constraints obtained by replacing u and v by x and y in the system at (12),
we have the problem

min
x,y regular

y−Ax;

s.t. B−y ≤ x,

µ−1Cx⊕ q ≤ y ≤ r,

D−y ⊕ g ≤ x ≤ h.

(15)

where µ is given by (11).
To describe a solution of this problem, we define the matrices

D−
1 = B− ⊕D−, C1 = µ−1C, (16)

and then introduce the notation

P = AD−
1
, Q = C1D

−
1 , R = D−

1 A, S = D−
1 C1. (17)

Theorem 4.2. Suppose that h and r are regular vectors and A is a nonzero matrix.
Then, problem (15) is feasible if and only if

Tr(Q)⊕ (h−D−
1 ⊕ r−)Q∗q ⊕ (r−C1 ⊕ h−)S∗g ≤ 1. (18)

In this case, the optimal value of (15) is greater than 0 and equal to

η =

min(m,n)
⊕

k=1

⊕

0≤i0+i1+···+ik≤min(m,n)−k

tr1/k(Qi0(PQi1 · · ·PQik))

⊕

min(m,n)
⊕

k=1

⊕

0≤i0+i1+···+ik≤min(m,n)−k

((r−C1 ⊕ h−)Si0(RSi1 · · ·RSik)g)1/k

⊕

min(m,n)
⊕

k=1

⊕

0≤i0+i1+···+ik≤min(m,n)−k

((h−D−
1 ⊕ r−)Qi0(PQi1 · · ·PQik)q)1/k

⊕

min(m,n)
⊕

k=0

⊕

0≤i0+i1+···+ik≤min(m,n)−k

(r−ASi0(RSi1 · · ·RSik)g)1/(k+1). (19)

All regular solutions of the problem are given by

x = (η−1R⊕ S)∗(u⊕D−
1 v),

y = (η−1P ⊕Q)∗((η−1A⊕C1)u⊕ v), (20)
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where u and v are any regular vectors that satisfy the conditions

g ≤ u ≤ ((h− ⊕ r−(η−1A⊕C1))(η
−1R⊕ S)∗)−,

q ≤ v ≤ ((h−D−
1 ⊕ r−)(η−1P ⊕Q)∗)−. (21)

P r o o f . As in the proof of the previous lemma, we use an additional parameter θ and
combine inequality constraints to replace (15) by the problem

min
x,y regular

θ;

s.t. (θ−1A⊕ µ−1C)x⊕ q ≤ y ≤ r,

(B− ⊕D−)y ⊕ g ≤ x ≤ h.

Furthermore, we introduce the notation

Cθ = θ−1A⊕ µ−1C = θ−1A⊕C1,

and note that, with D−
1 = B− ⊕D−, we have

D−
1 Cθ = θ−1R⊕ S, CθD

−
1 = θ−1P ⊕Q.

The problem now becomes

min
x,y regular

θ;

s.t. Cθx⊕ q ≤ y ≤ r,

D−
1 y ⊕ g ≤ x ≤ h.

With the matrix-vector notation

Gθ =

(
0 D−

1

Cθ 0

)

, s =

(
g

q

)

, t =

(
h

r

)

, z =

(
x

y

)

, w =

(
u

v

)

,

the problem can be rewritten in the form

min
z regular

θ;

s.t. Gθz ⊕ s ≤ z ≤ t.

It follows from Proposition 3.4 that the inequality constraint has regular solutions if
and only if the condition Tr(Gθ)⊕ t−G∗

θs ≤ 1 holds, and for any feasible values of the
parameter θ, all solutions are given by

z = G∗
θw, s ≤ w ≤ (t−G∗

θ)
−. (22)

We solve the inequality Tr(Gθ)⊕ t−G∗
θs ≤ 1 for the parameter θ, and then find the

minimum of θ. We replace the inequality by the equivalent pair of two inequalities

Tr(Gθ) ≤ 1, t−G∗
θs ≤ 1.
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Consider the first inequality and apply Proposition 3.6 to obtain

Tr(Gθ) = Tr(CθD
−
1 ) = Tr(θ−1P ⊕Q) =

min(m,n)
⊕

k=1

tr(θ−1P ⊕Q)k ≤ 1.

Furthermore, we use identity (8) to rewrite the inequality as

min(m,n)
⊕

k=1

⊕

0≤i0+i1+···+ik≤min(m,n)−k

θ−l tr(Qi0(PQi1 · · ·PQik))⊕ Tr(Q) ≤ 1.

Since Tr(Q) ≤ 1 by assumption, we need to solve for θ the inequality

min(m,n)
⊕

k=1

⊕

0≤i0+i1+···+ik≤min(m,n)−k

θ−k tr(Qi0(PQi1 · · ·PQik)) ≤ 1.

The solution takes the form

θ ≥

min(m,n)
⊕

k=1

⊕

0≤i0+i1+···+ik≤min(m,n)−k

tr1/k(Qi0(PQi1 · · ·PQik)).

To solve the inequality t−G∗
θs ≤ 1, we apply Proposition 3.7 to write

G∗
θ =

min(m,n)
⊕

k=0

(
(D−

1 Cθ)
k D−

1 (CθD
−
1 )

k

Cθ(D
−
1 Cθ)

k (CθD
−
1 )

k

)

.

Observing that Cθ(D
−
1 Cθ)

k = θ−1A(D−
1 Cθ)

k ⊕C1(D
−
1 Cθ)

k, we obtain

t−G∗
θs =

min(m,n)
⊕

k=0

(r−C1 ⊕ h−)(D−
1 Cθ)

kg

⊕

min(m,n)
⊕

k=0

(h−D−
1 ⊕ r−)(CθD

−
1 )

kq ⊕

min(m,n)
⊕

k=0

θ−1r−A(D−
1 Cθ)

kg.

By using the identities D−
1 Cθ = θ−1R ⊕ S and CθD

−
1 = θ−1P ⊕ Q, we represent

the inequality as

min(m,n)
⊕

k=0

(r−C1 ⊕ h−)(θ−1R⊕ S)kg

⊕

min(m,n)
⊕

k=0

(h−D−
1 ⊕ r−)(θ−1P ⊕Q)kq ⊕

min(m,n)
⊕

k=0

θ−1r−A(θ−1R⊕ S)kg ≤ 1,
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which is equivalent to the system

(r−C1 ⊕ h−)g ⊕ (h−D−
1 ⊕ r−)q ≤ 1,

min(m,n)
⊕

k=1

(r−C1 ⊕ h−)(θ−1R⊕ S)kg ≤ 1,

min(m,n)
⊕

k=1

(h−D−
1 ⊕ r−)(θ−1P ⊕Q)kq ≤ 1,

min(m,n)
⊕

k=0

θ−1r−A(θ−1R⊕ S)kg ≤ 1.

(23)

The first inequality in the system is valid by the assumption of the theorem. We
examine the second inequality and apply identity (7) to rewrite this inequality as

min(m,n)
⊕

k=1

⊕

0≤i0+i1+···+ik≤min(m,n)−k

θ−k(r−C1 ⊕ h−)Si0(RSi1 · · ·RSik)g

⊕

min(m,n)
⊕

k=1

(r−C1 ⊕ h−)Skg ≤ 1,

which is equivalent to the system of inequalities

min(m,n)
⊕

k=1

⊕

0≤i0+i1+···+ik≤min(m,n)−k

θ−k(r−C1 ⊕ h−)Si0(RSi1 · · ·RSik)g ≤ 1,

min(m,n)
⊕

k=1

(r−C1 ⊕ h−)Skg ≤ 1.

The second inequality is valid by the assumption of the theorem. The solution of the
first with respect to θ is given by

θ ≥

min(m,n)
⊕

k=1

⊕

0≤i0+i1+···+ik≤min(m,n)−k

((r−C1 ⊕ h−)Si0(RSi1 · · ·RSik)g)1/k.

In the same way, we solve the third and fourth inequalities at (23) to obtain

θ ≥

min(m,n)
⊕

k=1

⊕

0≤i0+i1+···+ik≤min(m,n)−k

((h−D−
1 ⊕ r−)Qi0(PQi1 · · ·PQik)q)1/k,

θ ≥

min(m,n)
⊕

k=0

⊕

0≤i0+i1+···+ik≤min(m,n)−k

(r−ASi0(RSi1 · · ·RSik)g)1/(k+1).
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By combining all lower bounds derived for θ, we obtain the minimum η in the problem
given by (19).

Let us now consider the solution given by (22), where we replace θ by η. Specifically,
with Cη = η−1A⊕C1, we write

G∗
η =

(
(D−

1 Cη)
∗ (D−

1 Cη)
∗D−

1

(CηD
−
1 )

∗Cη (CηD
−
1 )

∗

)

=

(
(D−

1 Cη)
∗ D−

1 (CηD
−
1 )

∗

Cη(D
−
1 Cη)

∗ (CηD
−
1 )

∗

)

.

With D−
1 Cη = η−1R⊕ S and CηD

−
1 = η−1P ⊕Q, we finally have

x = (η−1R⊕ S)∗(u⊕D−
1 v),

y = (η−1P ⊕Q)∗((η−1A⊕C1)u⊕ v).

The conditions on the vectors of parameters u and v take the form

g ≤ u ≤ ((h− ⊕ r−(η−1A⊕C1))(η
−1R⊕ S)∗)−,

q ≤ v ≤ ((h−D−
1 ⊕ r−)(η−1P ⊕Q)∗)−,

which completes the proof. �

5. COMPUTATIONAL COMPLEXITY OF SOLUTION

In this section, we evaluate the computational complexity of the solution offered by
Lemma 4.1 and Theorem 4.2.

5.1. First-stage problem

We start with estimating the complexity of the calculation of the minimum in the first-
stage problem µ given by (11). First, we consider the first term which is given by the
spectral radius ρ(CD−) = ρ(D−C). The calculation of the radius takes O(min(m,n)3)
operations using Karp’s algorithm.

Let us verify that the complexity of calculating the other three terms has the same
order. To examine the complexity for these terms, it is sufficient to consider the only
one of them, say the sum

min(m,n)
⊕

k=1

(
h−(D−C)kg

)1/k
,

since the other two sums require the same order of operations. Consider the term
under summation and suppose that m ≤ n. In this case, the calculation of the term
h−(D−C)kg for k > 1 involves a series of left multiplication of m-vectors by (m×m)-
matrices

h−(D−C), (h−D−C)(D−C), . . . ,

each taking O(m2) operations. As a result, calculating the entire sum takes O(m3)
operations.

Under the condition m > n, the calculation of this term can be arranged as the series
of multiplications

(h−D−)(CD−), (h−D−CD−)(CD−), . . . ,
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which leads to the complexity of order O(n3) for the sum.
We combine the complexity for both cases as O(min(m,n)3), which also represents

the overall order of complexity for µ.

5.2. Second-stage problem

We now evaluate the computational complexity of the solution of the second-stage prob-
lem. First, we consider the condition at (18). The most computationally demanding
part of the condition is the calculation of the function Tr(Q) and the Kleene star ma-
trices Q∗ and S∗. We can represent the function as Tr(Q) = tr(QQ∗) and thus the
calculation of the function reduces to the calculation of a Kleene star matrix.

Since the calculation of the Kleene star matrix using Floyd-Warshall algorithm has
the polynomial computational complexity of the third degree, the condition at (18)
requires O(min(m,n)3) operations.

To evaluate the computational complexity of formula (19), we first consider the first
term that is given by a sum of traces. We apply Proposition 3.5 to obtain the order of
complexity O(min(m,n)5) for this term.

Proposition 3.5 offers the same order of computational complexity for the other terms.
Note, however, that the actual complexity for these terms may be reduced by using
vector-matrix multiplications as in the computations for the first-stage problem.

The remarks above refer to finding the optimal value of the problem. As for the
set of optimal solutions, we note that it is a closed and bounded tropically convex set,
which is also convex in the usual sense and thus an alcoved polyhedron [9]. In particular,
the description that we give in (20) and (21) enables one to write out extremal points
of that tropical convex set, see e.g., [12] and [19], for definitions and more background
on tropical convexity and tropical extremal points. The extremal points of solution set
described by (20) and (21) are determined by the upper and lower bounds of the box
described by (21) and their number does not exceed m+ n+ 1.

6. DISCUSSION

Theorem 4.2 provides an explicit solution to (9). The same technique can be used to solve
some extended versions of (9): note that we can add constraints in the form Ex ≤ y or
Eu ≤ v, where E is a matrix of appropriate dimensions, or consider a number of similar
projects on the first stage instead of just one project. Since the techniques that would be
applied and the results of such application are very similar to what is presented above,
we are not giving further details of such extensions here.

Unlike the problem that we considered, the two-stage optimization problems consid-
ered in the literature usually have a parametric optimization problem on the first stage,
where some of the parameters are second-stage decision variables. The problems of this
kind, with the objective functions as in the present paper and possibly more elaborate
constraints, offer a promising direction for research.

Furthemore, the problem solved in the present paper could be rather easily reduced
to a one-stage optimization problem, since the solution set of the first-stage problem
could be concisely and explicitly written out. In the two-stage optimization, the reduc-
tion of two-stage problem to a one-stage problem (if it exists) is often due to duality
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and complementary slackness conditions, which are lacking in tropical mathematics.
Also, such reduction often introduces non-linear constraints, which was the case for
the tropical bi-level optimization problems considered in [29], and this will very likely
present a formidable challenge for the future development of two-stage and multi-stage
optimization problems in tropical mathematics.
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