UNIVERSITYOF
BIRMINGHAM

iversit}/]of iIrmingham
esearch at Birmingham

A framework for constructing Single Secret Leader
Election from MPC

Backes, Michael; Berrang, Pascal; Hanzlik, Lucjan; Pryvalov, lvan

Citation for published version (Harvard):
Backes, M, Berrang, P, Hanzlik, L & Pryvalov, |1 2022, A framework for constructing Single Secret Leader
Election from MPC. in European Symposium on Research in Computer Security.

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

» Users may freely distribute the URL that is used to identify this publication.

» Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

» User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
« Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 16. Feb. 2023


https://birmingham.elsevierpure.com/en/publications/1ec20e3a-08f3-4640-bdfc-1f3148b46823

)

Check for
updates

A Framework for Constructing Single
Secret Leader Election from MPC

Michael Backes!, Pascal Berrang?, Lucjan Hanzlik!, and Ivan Pryvalov!'3(&)
! CISPA Helmholz Center for Information Security, Saarbriicken, Germany
{backes,hanzlik}@cispa.de
2 University of Birmingham, Birmingham, UK
P.P.Berrang@bham.ac.uk
3 University of Luxembourg, Esch-sur-Alzette, Luxembourg
ivan.pryvalov@uni.lu

Abstract. The emergence of distributed digital currencies has raised
the need for a reliable consensus mechanism. In proof-of-stake cryptocur-
rencies, the participants periodically choose a closed set of validators,
who can vote and append transactions to the blockchain. Each valida-
tor can become a leader with the probability proportional to its stake.
Keeping the leader private yet unique until it publishes a new block can
significantly reduce the attack vector of an adversary and improve the
throughput of the network. The problem of Single Secret Leader Election
(SSLE) was first formally defined by Boneh et al. in 2020.

In this work, we propose a novel framework for constructing SSLE
protocols, which relies on secure multi-party computation (MPC) and
satisfies the desired security properties. Our framework does not use any
shuffle or sort operations and has a computational cost for N parties as
low as O(N) of basic MPC operations per party. We improve the state-
of-the-art for SSLE protocols that do not assume a trusted setup. More-
over, our SSLE scheme efficiently handles weighted elections. That is, for
a total weight S of N parties, the associated costs are only increased by
a factor of log S. When the MPC layer is instantiated with techniques
based on Shamir’s secret-sharing, our SSLE has a communication cost of
O(N?) which is spread over O(log N) rounds, can tolerate up to t < N/2
of faulty nodes without restarting the protocol, and its security relies
on DDH in the random oracle model. When the MPC layer is instanti-
ated with more efficient techniques based on garbled circuits, our SSLE
requires all parties to participate, up to N — 1 of which can be malicious,
and its security is based on the random oracle model.

1 Introduction

In 2008, Bitcoin [21] laid the foundation for the increasingly important areas
of cryptocurrencies and distributed ledgers. One of the main advantages of dis-
tributed ledgers is that there is no single central authority that controls the
transaction flow (censorship resistance). Anyone can access the public ledger,
which is a sequence of blocks that contains transactions. For example, in Bit-
coin, participants called “miners” are randomly selected to produce and append
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a new block to the chain. This selection process relies on the “proof-of-work” con-
cept (PoW). To append a block to the chain, the participant has to find a value,
such that a cryptographic hash function is evaluated below some threshold.

To avoid extreme energy consumption induced by PoW protocols [22], an
alternative approach, “proof-of-stake” (PoS), has been proposed. Here, the prob-
ability of being selected for appending the chain depends on the stake (i.e., coins)
a party owns. It does not matter whether the party owns an account with some
stake v, or several accounts whose accumulated stake amounts to v. The protocol
consensus works as long as the majority of all stake is controlled by honest users.

In cryptocurrencies based on proof-of-stake [15,16,19,20], a single party that
produces a block is chosen randomly from a set of participants, called validators
(which is the equivalent to miners in a PoW protocol). In a PoS cryptocurrency
there could be potentially thousands or millions users, who may come and go.
It is up to a PoS protocol to determine and fix a relatively small (typically tens
or hundreds) set of validators [19] from which a validator is selected that can
append a block within a given time frame. To create a consistent picture for all
validators, this selection has to be deterministic, but pseudo-random — properties
often achieved by relying on Verifiable Random Functions (VRF). However, if
an adversary knows in advance which of the validators is selected, it can launch
a targeted attack and cause a denial-of-service.

Previous approaches to solving this issue aim to run the selection process
in private, with the selected participant publishing a proof alongside the block.
Until recently, these approaches failed to guarantee only a single participant to be
chosen [19]. After much interest in a solution that provides such a guarantee [25],
Boneh et al. proposed a formal definition and several instantiations of a Single
Secret Leader Election [4].

The primary motivation of having a single leader is a simple consensus design,
as there are no forks in the blockchain (assuming some reasonable connectivity
between parties). This property encourages the leader to solely perform heavy
computations, which may even exceed the running time of SSLE and/or require
multiple cores. For example, the leader’s task may consist of prover-heavy com-
putations, whereas verification is very fast (SNARKSs). Many protocols (e.g.,
[15,20]) assume uniqueness, and it is easy to update them with a SSLE solution.
They may require a full redesign if the uniqueness assumption no longer holds.

1.1 Our Contribution

1. In this work, we propose a framework for constructing an efficient Single
Secret Leader Election (SSLE), which relies on secure multi-party computa-
tion (MPC). We formulate a simulation-based definition of the SSLE problem.

2. We present two instantiations of our framework, which improve the state-
of-the-art for SSLE protocols that do not require a trusted setup. The first
instantiation a t-threshold SSLE scheme that is based on Shamir’s secret
sharing in the random oracle model. We prove that our construction is secure
in the honest-but-curious and malicious adversary models. For the latter, we
additionally assume DDH. For N parties, the leader election requires O(log N)
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communication rounds and O(N) of basic operations on the underlying prim-
itives. Furthermore, we instantiate our SSLE scheme using the MPC frame-
work by Wang et al. [29], which is secure against any number of malicious
parties and is more scalable, but requires all parties to be online.

3. Our SSLE framework can efficiently handle arbitrary stake distributions. For
N parties and the overall sum of their stake units S, our construction achieves
O(N log S) cost of the election. Compared with a standard multi-registration
technique, in which a party registers multiple times for the election propor-
tionally to her stake, this cost may go up to O(S), which makes our solution
exceptionally efficient if N << §.

4. We implemented and microbenchmarked our solution using two different
MPC frameworks. The performance evaluation indicates that our DDH-based
SSLE protocol can be used in practical scenarios up to 30—40 parties when
instantiated with the textbook O(N?) techniques using the verifiable secret
sharing scheme (VSS). Furthermore, we implemented our SSLE in the MPC
framework based on garbled circuits [29]. The overall time to set up and com-
plete the protocol for 128 parties in a practical scenario is less than 7 min.

Note that, due to space limitations, we refer to the full-version [3] for most
proofs. Only the security analysis can be found in the appendix.

1.2 Background

The idea of proof-of-stake was first discussed on the Bitcoin forum! in 2011.
Kiayaias et al. presented a provably-secure PoS protocol “Ouroboros” at
CRYPTO 2017 [20], in which the participants that produce the blocks are elected
publically. Such a leader election may be public as in Ouroboros or private as in
Algorand [19]. In a private leader election, each node needs to check whether it
will be the next leader using its private information but then can prove to others
using only public information that it is indeed the next leader. Such a design
makes it impossible for others to predict and carry out DoS attacks against the
next leader until it is too late.

Algorand achieves this private leader election using Verifiable Random Func-
tions, for which a participant has to prove the outcome to be below a certain
threshold. This, however, can result in either no participant or multiple partic-
ipants being elected. Another protocol employing a private leader election has
been formalized by Ganesh et al., whose protocol Ouroboros Praos [16] does not
guarantee existence and uniqueness of the leader either.

To mitigate these shortcomings of previous private leader elections, a problem
statement of a single secret leader election was first posed at a GitHub page [25]
in the form of a research proposal in the context of the Filecoin cryptocurrency.
The protocol’s goal is to elect a single leader among a finite set of participants.
Moreover, the protocol should be reasonably efficient, i.e., on-chain O(logn) bits
per block, O(n) communication complexity (per active party).

! https://bitcointalk.org/index.php?topic=27787.0 (accessed 31.01.2022).
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Table 1. Comparison of SSLE protocols, assuming all N users participate in elec-
tion, amortized per one election. On-chain asymptotics include a security parameter A;
PEKS-based on-chain asymptotic is shown assuming the parameter choice suggested
in [7].

Construction Assumptions | Security notion Setup | Rounds Computation/ On-chain
Communication
Obfuscation- iO Game-based Trusted | 0 + beacon | O(N), feasibility result | O(1)
based [4]
TFHE-based [4] | TFHE, weak | Game-based, Trusted | 1 + beacon | Depends on a O(N)
PRF t-threshold particular instance
Shuffle-based [4] | ROM, DDH | Game-based, - 1 + beacon |O(v/N) pub./group el. |O(v/'N)
weak
unpredictability
Shuffle-based [4] |ROM, DDH | Game-based - 1 + beacon |O(N) pub./group el O(N)
PEKS-based [7] | ROM, SXDH | UC, t-threshold | Trusted | <2 + beacon | O(N) pub./group el O(log? N)
Our ROM, DDH | UC, t-threshold O(log N) O(N) MPC op. Oo(1)
Construction 1
Our ROM UuC - O(log N) O(N) MPC op. o(1)
Construction 2

1.3 Related Work

Following this call, Boneh et al. [4] formalized the problem of Single Secret Leader
Election (SSLE) and presented three constructions: 1) a feasibility result based
on indistinguishability obfuscation, 2) a construction based on threshold fully
homomorphic encryption (TFHE), and 3) a construction based on DDH that
achieves a weaker notion of security. Subsequently, Catalano et al. [7] proposed
a UC-secure SSLE based on public key encryption with keyword search (PEKS).

We begin by first comparing how arbitrary stake distributions are handled in
previous and our work. While a scenario with equal stakes is easier to analyze,
in practice one has to also account for arbitrary stake distributions and how
they affect the overall performance of the scheme. Boneh et al. [4] suggest a
multi-registration technique (one registration corresponds to one unit of stake)
to address arbitrary stake distributions, which makes the associated costs grow
linearly with the user’s stake. In contrast, our construction offers a more efficient
tree-based solution to this setting with the associated costs grow logarithmically
in the total stake S of participating parties.

We compare our constructions with Boneh et al. [4] and Catalano et al. [7] in
Table 1. By pub. we denote the number of public key operations such as exponen-
tiation, by MPC op. we denote basic MPC operations such as multiplication. The
most notable differences are that (1) our scheme does require neither a trusted
setup nor a randomness beacon, and (2) requires only a constant amount of data
to be posted on-chain.

In the discussed schemes except for iO- and PEKS-based the leader has to
re-register before next election, since she reveals a secret that was generated and
used for the registration.

Concurrently to our work, Catalano et al. [8] revisit the shuffle-based SSLE
realization from [4] and propose two UC-secure SSLE constructions from DDH.
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Their first construction is secure against static adversaries and their second
achieves adaptive security with erasures.

On the Practicality of Our SSLE Framework. The number of validators
depends on the PoS protocol and can vary from dozens to a few hundred and in
limited cases thousands. It does not necessarily correlate with the total number
of users. Stake disbalances also vary, and therefore they need to be approximated
in our framework by a tree of a sufficient height (Sect. 7.1). Our tree optimization
technique has a better effect when applied to a smaller set of validators.

In our SSLE framework, we rely on existing MPC techniques. If a more
efficient MPC protocol than the ones used in our constructions emerges, it will
help to further improve the running time of the SSLE.

2 Definitions

2.1 Preliminaries

DDH Assumption [13]. Let g be a generator of a group G of a prime order gq.
For any probabilistic polynomial time (PPT) machine A and (z,y, z) < (Z,)?,
|PriA(g,9%,9%,9") = 1] = PrlA(g,9%,9%,9%) = 1]| < negl(}).

Secret Sharing. Secret sharing schemes allow a dealer to share a secret s among
parties such that later a qualified set of parties can jointly reconstruct s, whereas
a non-qualified set of parties learns no information about it. We use Shamir’s
Secret Sharing [27], which is a ¢-threshold scheme. We denote Share a protocol
to share a secret x as [z], and Rec to reconstruct x from [r]. Whereas Shamir’s
Secret Sharing is only secure against passive adversaries, Verifiable Secret Share
(VSS) schemes [23] can protect against active.

Communication and Adversary Models. We assume secure point-to-point com-
munication channels between parties. An adversary is allowed to corrupt up to
t < N parties. We consider two models of adversaries: honest-but-curious and
malicious. In the honest-but-curious model, adversaries follow the protocol hon-
estly and try to learn as much as possible from observed communication by
corrupted parties. In the malicious model, the parties controlled by an adver-
sary can stop communicating or send arbitrary messages to other parties, not
necessarily following the prescribed protocols.

Secure Multi-Party Computation (MPC). MPC allows a set of parties P =
{P, ..., Py} to jointly compute a function on their private inputs in a privacy-
preserving manner [30]. Our SSLE scheme is based on MPC.

We borrow the standard definitions of VIEW and ¢-Privacy from [1].

We instantiate our SSLE scheme using the following underlying protocols:

1. The VSS-based MPC protocols [9,12,17,18,23,24], in which secrets are shared
between the parties using Shamir’s secret sharing scheme:
— Protocols for adding shares, subtracting, and multiplying by a scalar:
[=] + [y], [2] = [y], - =],
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— RndFld to generate a share of a random field element in Z,,
— RndBit to generate a share of a random bit,
— Mul to compute [z - y] given [z] and [y].
2. Garbled circuit based MPC [29] on boolean circuits, where each party can
privately input her input to a computing circuit.

2.2 Single Secret Leader Election

We consider the following problem. Given a set of N parties. The parties do
some interactive pre-computation. Then, each party can run a local function
that takes the transcript as input to determine whether it is the leader or not.
The leader can show a proof that it is the leader.

Game-Based Formulation of the SSLE Problem. Our syntax and security prop-
erties of SSLE are based on that of [4], with a slight difference that we do not
have an external source of randomness (random beacon) and we allow multiple
rounds of communication between the parties during the election, whereas the
definition of SSLE in [4] allows a single round of communication.

Informally, we capture the following security properties:

1. Uniqueness — an adversary wins this experiment if in at least one election
in a series of consecutive elections there is more than one verifiable leader.

2. Unpredictability — the adversary asks for a challenge election after a series
of elections. The challenger does not send to the adversary the outcome of
this election. The adversary has to guess the leader in this challenge election.
If some honest party is the leader, the adversarial chances to correctly guess
the leader should not be significantly greater than pure guessing.

3. Fairness — the adversary asks for a challenge election after a series of elec-
tions. The probability of winning this challenge election by one of the cor-
rupted parties should not be significantly greater than c¢/n, where ¢ is the
number of corrupted parties, and n is the number of parties registered for the
challenge election.

Due to page limits, we postpone the formal game-based definition to the full

version of this paper [3].
Simulation-Based Definition of the SSLE Problem. We now formulate the SSLE
problem as an ideal functionality fsj\g’féc, which is presented in Fig.1. In the
description of the ideal functionality, we denote election id as eid, and registra-
tion numbers as C;. We then show that the simulation-based definition implies
the game-based one.

Our modeling of the ideal functionality ]:s]\éféc for N parties with an adversary
statically corrupting up to ¢ of them is influenced by the corresponding game-
based definition, which defines the registration and verification algorithms that
surround the election itself. We follow the same approach and define messages
in the ideal functionality for registration, election, and their verification.

In fsj\srféc, the parties send messages to the ideal functionality that correspond
to a specific stage of the election. First, the parties register for an election with
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fsj\;’lfl’; for a set of parties P = {Pi,...,Pn}, ¢ of which are corrupted by an adversary,
consists of the following steps:

— Upon receiving a message (eid, register, C') from P;, check if (eid, P;,-) or (eid, elected, -, )
is stored. If so, ignore the message. Otherwise, store (eid, P;, C'). When storing tuples, we
write P; to denote the party’s unique identifier. Send (eid, registered, P;) to all parties
and the environment.

— Upon receiving a message (eid, regVerify) from P;, reply 0 if there exist two stored tuples
(eid, P;,Cj) and (eid, Py, Cy) such that j # k and C; = C}. Otherwise, reply 1.

— Upon receiving a message (eid, elect) from P;, check if there are at least £ registered parties
that have corresponding stored tuples (eid,-, ). If not, ignore the message, otherwise
proceed. Check if (eid,elected, P,,,C,,) is stored. If not, pick one of the stored tuples
(eid, -, -) uniformly at random as (eid, P,,C,), append it as (eid, elected, P,,C,,), and
send (eid, elected, C,) to the environment. Send (eid, elected, C,,) to P;.

— Upon receiving a message (eid, verify, P;, C) from P;, check if (eid,elected, P,,Cy) is
stored. If such a tuple exists, reply 1 if P, = P; and C,, = C. In all other cases, re-
ply 0.

Fig. 1. Ideal functionality fé\sr’féc.

id eid via sending register messages containing the registration number C. They
receive notifications from the ideal functionality for every registered party. To
verify registration, the parties send messages regVerify to the ideal functionality,
which outputs 1 if all registered numbers are distinct, otherwise it outputs 0 and

the execution of ]—"S]\éféc stops. If regVerify returned 1, the parties participate in the

election by sending messages elect to fsj\é’féc, which returns one of the registered
numbers as the elected number. Finally, the parties can verify whether some
party P; is the elected leader by sending a message verify with the identifier for
P; and the elected number.

Next, we discuss some of the design choices that we made in fsl\sf’fécz

1. With the explicit inputs associated to parties, the definition naturally cap-
tures the adversarial ability to register multiple parties using the same private
material and thereby break the uniqueness property.

2. The result of the election is returned to the parties as one of the numbers,
used for the registration. In this way we model the information leakage, which
suggests an efficient way of running multiple elections by the same parties.
To run a subsequent election, the leader has to simply re-register, while other
parties can keep their previously registered numbers.

Intuitively, the security properties from the game-based definitions are cap-
tured in the ideal functionality Few " as follows:
1. Uniqueness — provided by answering regVerify messages, which excludes

the case that two parties register the same number, and elect messages are

answered with exactly one number.

2. Unpredictability— provided by answering elect messages with one of n reg-
istered numbers, which are known only to the respective parties. In the begin-
ning, party P; sends her input C; only to the ideal functionality and never



A Framework for Constructing Single Secret Leader Election from MPC 679

discloses C; to other parties until the election is finished. P; discloses her
registered number only when P; is the elected leader.

3. Fairness — provided by answering elect messages by uniformly at random
selecting one of n registered distinct numbers as the elected value.

We formally prove that the ideal functionality implies the game-based defi-
nitions by showing the non-existence of a simulator given any of the game-based
attackers.

Proposition 1. The ideal functionality fé\g’f&c implies the game-based defini-
tions for uniqueness, unpredictability, and fairness.

Due to space limitations, we refer to the full-version [3] for the proof of Propo-
sition 1 and subsequent theorems. Only the security analysis can be found in the
appendix.

In this work, we only consider SSLE schemes with ezpiring registration. In
such schemes, in a single SSLE instance elections are run sequentially and the
eventual leader has to re-register for subsequent elections. In the remainder of
the paper we will only consider the modified ideal functionality that ensures
sequentiality. To this end, the ideal functionality keeps track of the current elec-
tion id eid*. As soon as it receives a message with eid’ # eid*, it stops responding
to any further messages with eid* and updates the current election id to eid’.
In contrast to the real world, in the ideal world non-leaders have to register for
subsequent elections explicitly using the same registration number C'.

3 (Non-secret) Single Leader Election Constructions

In this section, we start by discussing how naive solutions to the problem of
SSLE fail in keeping the leader secret. We then gradually introduce the basis for
our final SSLE protocol. Note that, while the constructions in this section do
not yet meet our requirements and are considered non-secret, they will form the
basis of the protocol presented in Sect. 4.

Oblivious Select. We begin by defining a two-party Oblivious Select (OSelect)
protocol, whose goal is to secretly select one out of two commitments. Once
the commitment is selected, the parties can open the selected commitment.
Let PSwap be an algorithm that on input commitments Cy and C; computes
(Cf = Com(Ci, 7)), 0,1y and outputs (Cy, C7_,) for a random bit b. Let PSelect
be an algorithm that on input commitments Cy and C; outputs C’ = Com(Cy, r).
It is easy to see that if the commitment scheme is hiding, then an adversary can-
not find the value of b significantly better than pure guessing.

We now describe OSelect between Alice and Bob. The protocol consists of
the select and the opening phases. In the select phase, Alice publishes her com-
mitment C'4 and Bob Cp, then Alice performs PSwap on (C'4, Cp) and sends the
result (Cp,C1) to Bob; Bob now performs PSelect on those values and outputs
C’. In the opening phase, the two parties reveal their randomness so that the
complete transcript of computing C’ could be reconstructed by anyone.
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The protocol can be naturally extended to N parties, where N is a power
of two; let us call the resulting protocol OSelecty . It consists of (log N) rounds;
in the first round N/2 pairs of parties are formed that run OSelect, thereby
reducing two commitments into one. In the following round, N/4 pairs of parties
are formed, etc., until there is a single commitment left. We will use the logical
tree-like structure used in OSelecty as the basis for our final SSLE construction.

Leader Election Based on Oblivious Select. We define LeaderElection, our
intermediate non-secret protocol, which essentially uses OSelecty in a black-box
manner. In the selection phase, each user U; initially holds a distinct number m;
and commits to it as C; = Com(my;r;). Then, the users run OSelecty. Thanks
to the properties of OSelecty, its output C' is a commitment to one of the user’s
inputs. If C' is a commitment to m;, then U; is the elected user. Since there are
in total N — 1 calls to OSelect, we achieve an amortized cost O(1) per party. In
the opening phase, all users broadcast their input message and randomness, so
that the execution of OSelecty could be verified by anyone.

Problem. The resulting protocol is still a non-secret leader election, as the leader
does not learn the output of the protocol exclusively. Moreover, the unpredictabil-
ity property does not hold: an adversary controlling two parties in a single
instance of OSelect can exclude certain parties as potential leaders. Lastly, all
parties are required to participate in the protocol in at least one instance of
OSelect, which makes it impossible to tolerate a single faulty party. In the next
section, we will address these problems and present our secure SSLE protocol.

Upgrading to Secret Leader. We now modify LeaderElection by adding an
intermediate representation layer in order to let the secret leader actually check
whether she is the elected leader. Here, we make use of a distributed key genera-
tion and threshold decryption. The resulting secret leader election protocol does
not satisfy all our requirements to SSLE but serves as an intermediate point
towards our final construction in Sect. 4.

Distributed Key Generation (DKG) [23] allows several parties to agree on a
joint secret key. The corresponding public key is computed and published jointly
by the honest majority of the parties. In a t-out-of-N DKG protocol [17], the
secret key is shared according to Shamir’s secret sharing scheme. The proto-
col can be efficiently simulated against passive and active adversaries, which
can corrupt up to t parties. In threshold cryptography, parties jointly generate a
group public key to encrypt messages and a qualified subset of parties can col-
laboratively decrypt ciphertexts encrypted using that key. We consider Shamir’s
t-out-of- NV threshold ElGamal-based decryption schemes, for which any coalition
of t parties cannot decrypt a given ciphertext or learn any information about
the plaintext, whereas any coalition of ¢ 4+ 1 parties can recover it, even if the
remaining N — ¢ — 1 parties stop communicating.

Let g be a generator of a group G of a prime order Z,,. User U; registers for the
election by generating a registration key k; € Z, and computing a registration
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token as e; « (g", g"") for some random r. The values k; are e; are kept private.
Next, the users generate a temporary shared public key using as t-out-of-N DKG
protocol, pkg = ¢g**9. The corresponding group secret key, skg, is shared between
N parties, such that t + 1 parties have to collaborate to decrypt a ciphertext C'.

Instead of OSelect, we use a new subroutine OSelectD, which is a two-party
verifiable oblivious select protocol in the discrete log setting. Unlike OSelect,
the users can publicly verify that a OSelectD instance was executed correctly
without learning which input was selected. The input to OSelectD is an Elgamal
encryption of two group elements e; := (g”, g*") under a group public key yg for
some user’s registration key k; and randomness r; these two encryptions can be
represented as a tuple (g", (yg)" - 9", (yg)" - g*") € (G)?, for some 7, and we
will call such tuples valid. OSelectD relies on the discrete log variants of PSwap
and PSelect, which we call PSwapD and PSelectD. Let PSwapD be an algorithm
that on input two tuples Cy and Cy computes Cf, = (Cy)™, C7 = (C1)™ and
outputs (C;,C7_,) for a random bit b, accompanied with appropriate NIZK
proofs that computation is done correctly. Let PSelectD be an algorithm that
on input two tuples Cy and Cj outputs ¢/ = (Cp)" and appropriate NIZK
proofs. These proofs are generalizations [5,11] of Schnorr signature [26] and
can be efficiently instantiated in the random oracle model using the Fiat-Shamir
transform [14]. It is straightforward to see that if the inputs to OSelectD are valid
tuples w.r.t. k; and k;, then so is the output of OSelectD w.r.t. k € {k;, k;}.

Expanding OSelectD to N users, we get OSelectDy. Users jointly run
OSelectDy and decrypt its output to obtain C. There will be a unique pair
(e4,€), which forms a valid DDH tuple, for which the elected leader knows an
exponent; all other pairs (ej, ), where j # i, are random tuples. The leader
presents the exponent as proof of leadership. She will have to re-register to get
a fresh k; before participating in another election.

Problem. While the leader can learn the outcome of the election in private,
there remain several problems to address. First, an adversary can run a duplicate
key attack [4], where she obtains multiple registration tokens that correspond
to a single registration key, and thus break fairness. The mitigation measures
proposed in [4] work in our setting, too. Second, a malicious adversary can use
biased coins when computing OSelectD. If both parties are under her control, she
can break the obliviousness of OSelectD and, in turn, the unpredictability and
fairness of the SSLE. Finally, even an honest-but-curious adversary, who controls
both parties in OSelectD and follows the protocol, exactly knows which input
has been selected, thus breaking unpredictability of SSLE. Since our goal is to
satisfy all the three properties (uniqueness, unpredictability, and fairness), we
will need one more modification to our current construction, which we present
in the following section.

4 Our SSLE from DDH

In this section, we define our full SSLE construction; to this end we modify
the secret leader election from Sect. 3 by replacing OSelect with its MPC vari-
ant, OSelectM. Thereby we ensure that no adversary in our model can learn
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OSelectM([Ca], [CE])

[b] + RandBit() [C1]  [C2] [C5]  [C4]
do // run in parallel N
[b . OA] P Mul([b], [CA]) [Ci] < OSeIectM( Cl], CQ
[(1=0) - Cg] + Mul([1 — ], [CB]) [C4] + OSelectM([Cs3], [Ca])
[C']« [b-Ca]l+[(1 —D) - Cg] —
output [C’] [C] + OSelectM([C1], [C%])
Fig. 2. OSelectM: Oblivious Select Fig. 3. OSelectMy: Extension OSelectM
in the MPC setting. to N inputs. Example for N = 4.

the outcome of a OSelectM protocol instance. The extension of OSelectM to
N inputs, which we call OSelectMy;, retains the (binary) tree layout of inputs
and outputs. Each OSelectM instance is now executed by all parties simulta-
neously. This modification incurs additional communication costs compared to
the previous (insecure) version of our SSLE construction. Fortunately, the num-
ber of communication rounds needed for a leader election remains O(log V), as
OSelectM instances on the same level in the tree can run in parallel.

OSelectM is an oblivious select protocol in the MPC setting, which can be
completed as long as at least t+1 parties remain online and honestly execute the
protocol. It takes two secret shares [C4], [Cp] as input and outputs a new secret
share [C'] such that the output secret C’ is either C'y or Cp with equal prob-
ability, depending on the selection bit b. The description of OSelectM protocol
is shown in Fig. 2. OSelectM extension to N inputs, called OSelectMy, follows a
binary-tree structure of inputs and outputs to OSelectM; see Fig. 3.

To prevent duplicate key attacks, we incorporate into our SSLE scheme a
technique used in [4]. The technique works as follow. The registration key k;
is now used to produce a secret part k;; and a public fingerprint k;r using a
cryptographic hash function H, where (k;,k;r) < H(k;). Before the election
starts, each user verifies that there are no duplicate fingerprints in the public
state st. The security properties of the hash function ensure that chances for an
adversary to succeed in a duplicate key attack are negligible.

The election proceeds as follows. For each i € {1,..., N}, the parties jointly
generate [C;], a MPC version of the secret part k;z of the registration key k;,
which is [k;1]. In the MPC setting we do not need to additionally hide the key
using Elgamal encryption, since secret sharing already hides the results of the
computation.

The parties then proceed with OSelectMy and obtain [C], which is a secret
share of one of the secret inputs to OSelectMy. The parties jointly reconstruct
two group elements (€1, &) from [C], which turn out to be a randomization of
the secret part of a party participated in the election, which we denote kr,. If P;
is the elected leader, the following equation will hold k;, = k;z,, i.e. each party
learns the secret key k;;, of the leader, but does not know which one. The leader
P; sends the registration key k; as a proof of leadership. To verify a proof 7, one
recomputes the secret part m;, of the registration key and its fingerprint 7 and
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checks that the computed fingerprint matches the one stored as st;, and that
the equation 7y, = kr holds.

In the malicious adversary model, we can use standard techniques [10,18]
to protect the underlying MPC primitives used in the scheme against active
adversaries.

We now formally define our fully-fledged SSLE construction.

Construction 1 (Single secret leader election (SSLE). Our (N,N,t)-
SSLE scheme is a tuple of PPT algorithms SSLE = (Setup, Register,
RegisterVerify, Elect, Verify) that use a group G of a prime order p. Let g be
a generator of G, let H be a function that maps {0,1}* to Z, x {0,1}"™. The
description of the algorithms is shown in Fig. 4.

Setup(1*,t, N) RegisterVerify(i, k;) Elect(i, k;)
1: p,g <« FindParam(1%) 1: for j; €1..(N —1) 1: foricl.N
2: foriel.N 2 for jo € (j1 +1)..N 2 (Ci] = [kiL]
3: sty < L 3 if sty =stj, # L 3: [C] + OSelectMy([C1],
4: return p,g,sty,...,stn 4 return 0 4 .. [CN])

5: kir,kir < H(k;) 5: kr + Rec([0))
Register() 6: if kg # st; 6: if By # ki
1: ki <7, 7 return 0 7 return L
2: ki, kin «— H(k;) 8 return 1 8 return 7w := k;
3: sty ky
4: [k::L] <—l§hare(kiL) Verify(i’ ﬂ-)
5: return k; 1 L, TR + H(7)

2 if 7, = kr, and 7 = st;

3: return 1

4 return 0

Fig. 4. Single Secret Leader Election construction SSLE instantiated with OSelectMy.

Theorem 1. Assuming the underlying MPC primitives are secure in the honest-
but-curious adversary model, H is a random oracle, then Construction 1 imple-
ments functionality Fssie.

5 OQOur SSLE Based on Garbled Circuits

In this section, we present our SSLE protocol, instantiated in the MPC frame-
work by Wang et al. [29], which can tolerate up to N — 1 corrupted parties.

We use the MPC protocol [29] to instantiate our SSLE in a black-box manner.
The SSLE construction shown in Fig. 4 needs to be updated to account for the
technical details specific to the MPC part in the Elect algorithm.
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To implement the Oblivious Select, we use a part of the input as selection
bits. Each party contributes to these bits, via bitwise-xor; the selection bits
are therefore secret-shared. The modified version of the Elect algorithm and a
pseudocode of OSelectM instantiated in the framework [29] are shown in the full
version [3].

Construction 2 (Single secret leader election (SSLE)). Our SSLE
scheme is a tuple of PPT algorithms SSLE = (Setup, Register, RegisterVerify,
Elect, Verify). Let H be a function that maps {0,1}* to {0, 1} x {0,1}7).
The description of the algorithms is shown in fig.4, and Elect is appropriately
modified.

Theorem 2. Assuming the underlying MPC' primitives are secure in the mali-
ctous adversary model, H is a random oracle, then Construction 2 implements
functionality FssiE.

6 Evaluation

6.1 Experimental Setup

We evaluate our SSLE framework, we implemented Constructions 1 and 2 and
ran two kind of tests: in a local setting (LAN) and in a global setting (WAN).
In the LAN setting, we used machines located in the same Amazon EC2 region.
In the WAN setting, we used machines located in four different regions (Europe,
North America, South America, and Asia). If not specified otherwise, each
machine is a t2.large instance with 2 cores Intel Xeon E5-2686v4 2.3 GHz, 8 Gb
of RAM, and installed Ubuntu 20.04. In some regions t2.large instances are not
available; instead we used t3.large instances with 2 cores Xeon Platinum 8175
2.5 GHz, 8 Gb of RAM.

In our experiments, we evaluate a complete OSelect tree in our SSLE frame-
work, that is the number of users being a power of two, starting from 8 parties,
and each party holding one unit of stake. For each experiment we take average
of 10 runs, except that for lengthy experiments with a running time more than
1min we perform a single run. Next, we present implementation details and the
evaluation results individually for each construction.

6.2 Construction 1 (Sect. 4)

Implementation Details. We implemented our Construction 1 in C++ in the
honest-but-curious and malicious adversary models. We implemented the under-
lying MPC primitives for secret sharing, adding shares, substracting, mul-
tiplying by a scalar: [z] + [y], [x] — [y], [a-x], protocols RndFld, RndBit,
Mul [9,12,17,18,23,24]. In the malicious adversary model, these primitives
are accompanied with verifiable secret sharing (VSS). We set the threshold
t = N/2—1 in all experiments. Our implementation uses the Relic toolkit [2] for
operations on elliptic curves in groups of a prime order of 256 bits, the Boost
and OpenSSL libraries for secure communication.
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Table 2. Experimental results for Construction 1 in the honest-but-curious and mali-
cious adversary models (left), and for Construction 2 in the malicious adversary model
(right).

N t Algorithm HbC time, sec. Mal. time, sec.
8 3 Register <0.01 0.11
RegisterVerify <0.01 <0.01 N I LAN time, WAN time,
Elect 0.1 3.56 sec. sec.
Verify <0.01 <0.01 8 48 2.73 23.42
16 7 Register 0.01 0.56 64 2.76 24.03
RegisterVerify <0.01 <0.01 80 2.80 24.27
Elect 0.34 28.1 16 48 4.28 38.95
Verify <0.01 <0.01 64 4.50 39.92
32 15 Register 0.02 3.83 80 4.86 40.61
RegisterVerify <0.01 <0.01 32 48 8.25 73.34
Elect 1.45 356.6 64 8.35 75.93
Verify <0.01 <0.01 80 8.80 77.81
64 31 Register 0.08 n.a. 64 48 17.64 145.87
RegisterVerify <0.01 64 18.62 153.34
Elect 7.63 80 23.90 150.67
Verify <0.01 128 48 64.33 300.77
128 63 Register 0.21 n.a. 64 74.54 326.09
RegisterVerify <0.01 80 83.54 317.46
Elect 54.4
Verify <0.01

Experimental Results. We performed LAN tests for up to 128 parties in the
honest-but-curious adversary model, and up to 32 parties in the malicious model.
Timings are shown in Table 2.

Analysis. The experimental results show that up to 128 parties can complete
Elect protocol in under a minute. The running time grows rapidly as the number
of parties increases. This is due to expensive public key operations for generat-
ing and reconstructing Shamir’s secret shares. The explosion of running time is
more visible in the malicious adversary model. In order to protect against such
adversaries, we have to use verifiable secret sharing, which requires O(/N?) public
key operations in the textbook implementation. While Elect is the most heavy
algorithm, the rest of the SSLE protocol is essentially for free. We conclude that
Construction 1 offers a practical ¢t-robust solution to the SSLE problem for a
small number of parties (up to 32, according to our evaluation).

6.3 Construction 2 (Sect.5)

Implementation Details. We implemented and evaluated Oblivious Select part of
the Elect algorithm, as it is the most heavy part of the SSLE protocol (see exper-
imental results for Construction 1 in the honest-but-curious adversary model in
Sect. 6.2). Our implementation fully relies on the implementation of the MPC
framework by Wang et at. [29], which is available as [28]. We can trade-off secu-
rity for efficiency by controlling how many bits each party inputs to Oblivious
Select.

Ezxperimental Results. In the MPC framework, the evaluator of the garbled
global circuit requires more RAM than any other party. Therefore, we set up
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Fig. 5. Comparison of timings for Oblivious Select in Construction 2 in the LAN and
WAN settings.

one machine as a mba.4xlarge instance with 16 cores and 64G of RAM, while
the rest of machines remain t2.large or t3.large instances. We run experiments
for each N up to 128. For the trade-off, we choose the length of user inputs to
Oblivious Select, I[(\), as 48, 64, and 80 bits. Additionally, each party provides 8
bits of selection bits, which satisfies the constraint that it should be at least as
big as log(N) in all test cases. Timings the LAN and WAN settings are shown
in Table 2 and in Fig. 5.

Analysis. The experimental results show that the running time of Oblivious
Select algorithm (and in turn, Elect) grows almost linearly as the number of
parties gets increased. As we ran only 1 iteration for long test cases, we can see
some unexpected fluctuations in the running time, which we think are caused by
fluctuations in the network and normally should be eliminated after averaging
multiple iterations.

The LAN and WAN settings have identical computational and communica-
tion cost, as they only differ in the location of machines. We suspect that higher
latency between machines in the WAN settings accounts for the increased run-
ning time. In the LAN setting, 128 parties can compute a leader in under 1.5 min,
where as in the WAN setting, this number approaches 7 min.

7 Practical Considerations

There are several constraints in Constructions 1 and 2 that affect its practicality.
First, the definition of SSLE says that the probability for a party being elected
should be equal among all participants. In practice, the stakeholders may have
different stakes, and the probability for a party to be elected should be pro-
portional to her stake. A straightforward solution to this constraint would be
to adapt our SSLE construction to work with stake units and let each party
control several units. If implemented naively, this approach results in a linear
blow-up in computation and required storage (in the number of stake units). In
the following, we will show an efficient technique to extend Construction 1 to
support arbitrary (non-uniform) probability distributions in the election.
Second, we assumed the number of parties to be a power of two, in order to
construct a complete binary tree in Oblivious Select. However, if the number of
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parties is arbitrary, the tree structure will likely unbalance the tree leaves, as
some inputs will not be matched on the first level with other inputs. Therefore,
such inputs would proceed to the next round without competition, i.e., with
the probability of 1, whereas input C; in a binary tree will proceed with the
probability of 1/2. We will show that the technique from the previous point
addresses this concern, too.

7.1 Non-uniform Distributions

(€] [Ca] [Ca]  [Ca] We observe that it is possible to unbal-
N N ¥ ance almost-for-free the probability of being
[.] [.] selected (among two parties) if the sum of the
- weights is a power of two. To illustrate this
(C] idea, assume that the weights are (1, 3), i.e.,
4 the probabilities for two parties being selected
(€] (el are determined by the ratio 1:3. We can con-
4 struct a tree-structure with the probabilities

[\i [52] 1/4 and 3/4, as shown in Fig. 6.

Basically, we introduce a special case for
OSelectM when handling shares of the same
Fig.6. Tree optimization tech- Secret for free, OSelectM(ShareC, [C]) — [C].
nique. Example OSelectMy for P, The resulting tree can be optimized signifi-
and P, with stakes (1, 3). cantly by dropping the nodes with the same

inputs.

Using this technique, we can handle weights of the form (w,2F — w) with

a logarithmic overhead, for some L > 1 and 1 < w < 2F. However, we cannot
naturally handle arbitrary weight ratios. For example, weights such as (1,2) are
problematic. Nevertheless, we can approximate the probabilities in the election
according to any weights (a,b) by having a tree of sufficient depth.
Arbitrary N and Stakes. Let N be the number of parties participating in the
election with their stakes (s1,...,sn), and let S = Zf\il s; be the sum of par-
ties’ stakes. The multi-registration solution may lead to O(S) complexity of the
election algorithm. We extend our technique to an arbitrary number of users.

We start with a similar idea: each party has a sequence of stake units on the
first level in a OSelectMy tree. If N < S, there will be many pairs of inputs
that represent the same party. We observe that in this case, there is no need to
run OSelectM on such inputs. Instead, we can pick any input and advance it to
the next level in the tree. The worst case complexity (the number of OSelectM
instances) of this technique is O(N log S), since each party P;’s inputs will be
matched in a tree of depth O(logS) at most two times, against P;_; and P;41.
With a tree of depth L we can get the absolute precision up to 27% - S.

[C]

Acknowledgements. We thank anonymous reviewers for their helpful reviews. This
work has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no.
610150-imPACT, was supported by the German Federal Ministry of Education and



688 M. Backes et al.

Research (BMBF) through funding for CISPA and the CISPA-Stanford Center for
Cybersecurity (FKZ: 16KIS0762), and by the Luxembourg National Research Fund
(FNR) under the CORE Junior project FP2 (C20/1S/14698166/FP2/Mueller).

A Security Analysis

Lemma 1. Let [C4] and [Cg] be the inputs to OSelectM protocol, and let [C']
be the output. Then, assuming the underlying secret sharing scheme is linearly
homomorphic and the primitives for multiplication secret shares and generating
a random shared bit are secure, it holds that C' € {Ca,Cp}.

Proof. The underlying RandBit primitive produces shares of a random bit [b].
By homomorphic properties of the secret sharing scheme and security of the
multiplication primitive, it follows that, if b = 0, C’ evaluates to C4, otherwise,
if b=1, C' evaluates to Cp.

Lemma 2. Let [C1],...,[Cn] be the inputs to OSelectMy protocol, and let [C] be
the output. Then, it holds that C € {C4,...,Cn}.

Proof. 1t follows from Lemma 1 and the binary tree structure of OSelectM
instances in OSelectMy.

Lemma 3. Assuming secret sharing is secure, algorithm Register in Construc-
tion 1 called by some party, securely implements sending a (register) message in
the ideal model.

Proof. The party uses the output value from Register as input to the (register)
message in the ideal model. The proof follows from simulatability of the secret
sharing scheme.

Lemma 4. Assuming H is a random oracle, algorithm RegisterVerify in Con-
struction 1 securely implements sending a (regVerify) message in the ideal model.

Proof. By the properties of the random oracle, we have that the probability that
C; # C; in the ideal model and k;r = k;r is 1/2*, which is negligible in .

Lemma 5. Algorithm Elect in Construction 1 securely implements sending a
(elect) message in the ideal model.

Proof. We construct a simulator S for an ideal adversary A. S recovers the
adversarial input from party P; by reconstructing it from the shares available
to the simulator (S controls enough honest parties to reconstruct any shared
secret).

S sends all inputs from honest parties and the recovered adversarial inputs
and receives Cynv from the ideal functionality as the result of the election. It
is the same for all parties, including those controlled by the adversaries, so
the simulator forwards this value to A. In order to let the adversary believe it
interacts with the real protocol, the simulator has to produce a transcript of
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the OSelectMy protocol that will result in a specific value Uy to be chosen and
output. To do that, the simulator fixes the shares of the honest parties for random
bits [b] in OSelectM instances so that the reconstruction would output the specific
fixed b, that will result OSelectMy to select precisely the Upn-th element of the
sequence (stq, ..., sty). The underlying secret sharing scheme allows to simulate
the transcripts for the honest parties that share a simulator-chosen secret.

In the real protocol, it is possible that for some ¢ # j, ki = kj;r, while
kir # kjr and so the parties would pass the registration. However, this only
happens with a low probability that we can control.

Lemma 6. Assuming H is a random oracle, Construction 1 produces a unique
N(N—1)

leader with the probability at least 1 —e™ — 2

Proof. The probability that there exist two parties P; and P; such that k;;, = k;r,
and kir # kjr can be estimated by the birthday paradox. Specifically, this

_ N(N-1)

probability is bounded by e™ "~ 2

Lemma 7. Algorithm Verify in Construction 1 securely implements sending a
(verify) message in the ideal model.

Proof. 1t follows by a similar argument as in the proof of Lemma 4.

Proof (Proof of Theorem 1). Since we only consider sequential execution, we
need to show that the adversarial view in the real and the ideal worlds is indis-
tinguishable for one instance of the protocol, and the security of the whole pro-
tocol will follow by Canetti’s composition theorem [6]. To this end, we construct
a simulator for a real-world adversary as follows.

— For the registration, the real-world adversary and honest users use a call to the
random oracle H for some (random) input and then share a string. Sharing
algorithm can be simulated by a secure secret sharing scheme. Moreover, a
t-private secret sharing scheme for ¢ < N allows S to reconstruct the input
used by the corrupted user. Hence, all the numbers shared by the corrupted
and honest users during registration are known to S.

— To simulate the verification of registration, S verifies that there is no dupli-
cate numbers recorded during registration. If this is the case, it outputs 1,
otherwise 0.

— To simulate the election, S first consults the ideal functionality to elect the
leader and then we use Lemma 5 to simulate the corresponding transcript.

— To simulate the verify algorithm, § compares the elected number with the
number registered by the user (honest or malicious) and outputs 1 if the
numbers are equal, otherwise it outputs 0.

We argue that any PPT environment Z cannot distinguish between the ideal
world and the real world significantly better than negligible probability via a
series or games.

Due to space limits, we complete the proof in the full version.
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Proof (Proof of Theorem 2.). Since both our constructions Construction 1 and
Construction 2 rely on secure MPC primitives and differ only in specifics of the
used MPC frameworks, we simply follow the steps in the proof of Theorem 1 to
prove the theorem.
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