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Root reinforcement: continuum framework for constitutive

modelling

G. J. Meijer* D. Muir Wood� J. A. Knappett� A. G. Bengough�

T. Liang�

Abstract

The mechanical contribution of plant roots to soil strength has typically been studied at

the ultimate limit state only. Since many geotechnical problems are related to serviceability,

such as deformation of infrastructure, a new constitutive modelling framework is introduced.

The rooted soil is treated as a composite material with separate constitutive relationships

for soil and roots, and a comprehensive stress-strain relationship for the root constituent is

presented.

The model is compared to direct shear experiments on field soil reinforced with gorse, grass

and willow roots, as well as an existing root reinforcement model based on Winkler-spring

supported beam theory.

The results show that both the newly developed model and the beam-type model yield

good predictions for the evolution of root-reinforced shear strength as a function of increasing

shear displacements. Both successfully capture the large deformations required to reach

peak reinforcement, the reduction in reinforcement due to root breakage and the presence of

significant reinforcement even after very large deformations, associated with root slippage.

Since both fibre and beam models only require physically meaningful input parameters,

they can be useful tools to study the mobilisation of rooted soil strength and simulate the

response of rooted soil in continuum-based numerical simulations.

Keywords: Vegetation, constitutive modelling, shear strength, fibre-reinforcement, root

reinforcement

1 Introduction

The mechanical reinforcement of soil by plant roots can improve the resistance against land-

slides or erosion processes (e.g. Stokes et al., 2009). This contribution has typically only

been studied at the ultimate limit state, often in the context of slope stability, focussing

on the maximum reinforcement the roots may contribute. This peak reinforcement is com-
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monly expressed in the form of an additional cohesion component cr in the Mohr-Coulomb

framework.

It is however difficult to predict the maximum root reinforcement due to the complicated

interaction between roots and soil. In addition, root properties such as orientations, archi-

tecture, strength or stiffness can vary widely. In practice, the maximum root reinforcement

is often linked to the product of root tensile strength (tr,u), root area ratio (Rra, the fraction

of soil cross-sectional area occupied by roots) and a multiplication constant k′ accounting for

the root orientations, as suggested by Waldron (1977) and Wu et al. (1979):

cr = k′
∑
i

tr,u,iRra,i (1)

where i indicate different root diameter classes. The discrepancy between this model (WWM

model) and field measurements is generally accounted for by a empirical multiplication factor

k′′, often attributed to sequential mobilisation of roots and quantified using a fibre bundle

model, ranging from k′′ = 0.3–1.0 (e.g. Mao et al., 2012; Pollen and Simon, 2005; Bischetti

et al., 2009)

Although this approach has its practical merits for everyday slope stability calculations,

it does not advance our understanding of the underlying dynamics of reinforcement. The

focus on the ultimate limit state furthermore overlooks that significant deformations might

be required to mobilise root strength. For structures with tight deformation tolerances, for

example rooted railway embankments or cuttings (Briggs et al., 2016), these deformations

might exceed the serviceability limit state. To investigate the contribution of roots in such

cases, greater insight is required into the mobilisation of rooted soil strength. Appropriate

constitutive models, linking stresses and strains in rooted soils, are required if numerical

simulations are to be conducted for assessing performance at the serviceability limit state.

Several constitutive modelling approaches can be distinguished. In the first approach,

rooted soil is modelled using a single constitutive relationship. Świta la and Wu (2018) (val-

idated by Świta la et al., 2018), incorporated the reinforcing effect of roots in a Modified

Cam-Clay framework through an adaptation of the hardening law. Two additional empirical

parameters are required that must be calibrated by means of element testing. Due to the

small number of parameters this model might be useful for practical problems when sat-

isfactorily calibrated, but is less suitable for providing further insight into the underlying

reinforcement mobilisation mechanism.

Alternatively, constitutive models for soil reinforced with fibres might provide inspiration.

Michalowski and Zhao (1996) proposed a model for fibre-reinforced sand, assuming uniformly

distributed, rigid–perfectly plastic fibres that can either slip through the surrounding soil

or break. Using a homogenisation technique based on the amount of dissipated energy, the

increase in the yield criterion could be expressed in terms of fibre properties. Comparison with

experimental tests yielded satisfactory results Michalowski and C̆ermák (2003). However,

while assuming rigid fibres might be a reasonable assumption for the polyamide fibres used, a

material with a typical Young’s modulus of 5–12 GPa (Jia and Kagan, 2001), roots typically

have much lower Young’s moduli (in the order of magnitude of 100 MPa, e.g. see Meijer

et al., 2018b,a). Therefore the gradual mobilisation of root strength will not be captured well

by this model.

Alternative fibre-reinforced soil modelling treated the rooted soil as a composite material,

where soil and fibres each behave according to their own constitutive behaviour. The stress
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in the composite is often calculated using the volumetrically weighted sum of stresses in the

components of the composite (upper-bound form of the rule of mixtures, e.g. Sawicki, 1983; Di

Prisco and Nova, 1993; Diambra et al., 2013). Most fibre–reinforced soil models assume that

fibres only reinforce through tensile action and not through compression, shear or bending

(Di Prisco and Nova, 1993; Michalowski and Zhao, 1996; Zornberg, 2002; Diambra et al.,

2013), an assumption that is valid for thin, fibrous roots but not for thick, woody roots.

Muir Wood et al. (2016) suggested it might be possible to model root–reinforcement

through similar techniques as developed for fibre–reinforced soil and provided a conceptual

approach. Such composite modelling framework requires the following components:

1. A constitutive model for the soil constituent. This can be chosen based on specific

soil conditions required, e.g. accounting for partial saturation, hardening/softening

behaviour as required.

2. A model accounting for the change in pore water pressures resulting from root water

uptake. A detailed model was recently presented by Woodman et al. (2020). This

model component will not be further addressed in the current study.

3. A constitutive model describing the mobilisation of the mechanical strength of roots.

After introducing this framework in more detail, the current study primarily focusses on

developing the third (mechanical root) part. Compared to models for artificial fibres, specific

elements that should be addressed for plant roots are:

� Reorientation of roots during soil deformation: In the model by Diambra et al. (2013),

fibres add reinforcement aligned with their non-displaced orientation, and the stress in

the fibre is calculated using the macroscopic strain vector in the non-displaced fibre

direction. This will be problematic when modelling a simple shear element containing

mostly sub-vertical roots. In this case the model will predict hardly any reinforce-

ment due to the unfavourable initial orientation. In reality however, soil strains will

change the orientation of roots, therefore affecting their reinforcement contributions.

For example, in the case of a simple shear element, roots that originally are loaded in

compression (and therefore add no contribution) might eventually mobilise in tension

when shear strains are sufficiently large. Since real roots require large tensile strains

before peak stress is reached (typically 15–20%), significant reorientation will occur.

� Root length: Fibre-reinforcement studies have often used relative short fibres, resulting

in relatively straightforward homogenisation of stresses in the fibre to the composite

stress. In contrast, roots can be up to several meters long, hence the length scale of

soil deformation might be much shorter than the length or the roots, necessitating a

different homogenisation procedure.

� Incorporation of root breakage. Fibre-reinforcement studies typically have used short

(≤ 50 mm), strong fibres, resulting in the tendency to continually slip through the soil

rather than break. In contrast, roots are much better anchored in the soil due to their

length and branching and have lower strengths, and experimental shear testing often

shows many roots breaking.
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� Natural variation in root biomechanical properties: Roots are a natural biological mate-

rial with highly variable material characteristics that vary within and between sections

of root.

The underlying modelling philosophy is to develop a constitutive model that is based on

individually measurable root, root–soil interface and soil characteristics. Such a model will

have stronger predictive capabilities compared to existing, more empirical models and will

provide a better insight into what is happening within each part of the rooted soil in terms

of stresses and strains.

The mechanical root reinforcement part of the model will be compared to direct shear

box tests conducted by Liang et al. (2017). In addition, the resulting shear displacement–

reinforcement traces will be compared to those predicted using the large deformation Winkler

beam–spring model recently developed for roots by Meijer et al. (2019a,b).

2 Direct shear testing on rooted soil

Throughout this paper, the solid mechanics sign convention was used for stresses (tension

positive) and strains (extension positive). Volumetric strain εv is taken positive for expanding

soil. Isotropic pressure invariants in the soil (p′), water (pw) and air (pa) are positive in

compression.

2.1 Test details

Liang et al. (2017) conducted direct shear tests on 150 mm diameter PVC cores filled with

(rooted) soil to quantify mechanical root reinforcements. In all cores, soil was compacted to

an initial dry bulk density of ρd,i = 1.4 Mgm−3 to a height of 500 mm. Four sets of tubes

were prepared. One set (2 replicate cores) was planted with Salix viminalis (willow, variety

Tora) and tested after 2 months of growth. Another set (3 cores) was planted with Lolium

perenne × Festuca pratensis (grass hybrid) and sheared after 2 months of growth. A third

set (2 cores) was planted with Ulex europaeus L. (gorse) and tested after three months. A

final, unrooted (‘fallow’) set of 3 cores were prepared to act as a control. All plants were

grown under controlled climatic conditions.

Plant shoots were removed prior to shear testing. This removed any effects of plant

transpiration and associated hydrological reinforcements on the test results, to focus on me-

chanical reinforcements only. Cores were subsequently fully saturated and then drained by

lowering the water table to 500 mm depth for 48 hours to achieve pore pressure equilibrium.

All cores were sheared at zsh = 100, 200, 300 and 400 mm depths at a rate of 1 mm

min−1 to a final shear displacement of ush = 100 mm. No additional overburden pressure

was applied.

After shearing, roots crossing each shear plane were manually counted per 0.1 mm diam-

eter root class (Figure 1). The root area ratio (Rra, fraction of the area of a plane occupied

by roots) decreased with depth in all cores. Gorse and willow cores contained thicker roots

(root diameter dr > 1 mm) near the surface while for tests at larger depths and all grass

tests the roots were mainly thin (dr ≤ 1 mm).
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Figure 1: Cumulative root area ratio (Rra) for each direct shear test.

2.2 Soil

Bullionfield soil, a silty sand (71% sand, 19% silt and 10% clay), was used for all experiments

(Mickovski et al., 2007; Meijer et al., 2016; Liang et al., 2017). All soil was sieved to 2 mm

prior to compaction. The soil behaviour of recompacted, fully saturated samples (ρd,i = 1.4

Mgm−3) was analysed both in oedometeric compression and drained, constant p′ triaxial

compression testing (isotropic consolidation pressure p′c = 25, 50, 100 and 150 kPa). Measured

oedometer virgin and unloading-reloading coefficients were Cc = 0.1158 and Cs = 0.0206

respectively.

The soil behaviour was fitted using the Modified Cam Clay (MCC) soil model. Because

triaxial tests on overconsolidated samples did not show distinct peaks in deviatoric stress, a

Hvorslev surface was introduced on the dry side of critical with a gradient MH = M . The

full MCC yield surface was used as the plastic potential function, resulting in non-associated

flow on the dry side of critical. The best fit for triaxial shearing, isotropic compression

and oedometric compression resulted in MCC parameters Γ = 2.08, λ = 0.115, κ = 0.015,

M = 1.35 and ν = 0.4 (Figure 2). This M value corresponds with a critical state friction

angle of φ′cv ≈ 33.4◦. Apart from overestimating the amount of dilation in overconsolidated

triaxial tests, the fit was satisfactory.

Samples tested by Liang et al. (2017) were conducted on samples with very low levels

of matric suction (1 to 4 kPa, depending on the depth of shearing), and were therefore

incorporated into the soil constitutive model using Bishop’s effective stress framework.

2.3 Initial stress conditions

The exact value of vertical stress acting on each shear plane in tests by Liang et al. (2017) was

difficult to predict due to 1) the soil being partially saturated, and 2) unknown side friction

along the core walls. Using this critical state friction angle measured previously, the effective

stress level acting on each plane in each core was back-calculated from the measured shear

resistance in fallow core shear tests, resulting in an effective stress profile with depth z:

− σ′s,zz(z) ≈ 3.4 kPa (2)
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Figure 2: Element test results (solid lines) and predictions using the Modified Cam Clay with

the added Hvorslev surface (dashed lines). p′0 is the effective isotropic pressure at the start

of the shearing phase.
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with σ′s,zz the vertical effective stress in the soil. The increase in effective stress with depth

due to the self-weight of the soil was counteracted by a reduction in effective stress due to a

reduction in suction with depth and friction along the sides of the tube.

Assuming the compaction procedure by Liang et al. (2017) could be modelled as oedo-

metric compression, the MCC (with Hvorslev surface) soil model was used to estimate the

initial horizontal effective stress in the soil σ′s,xx in the soil and therefore the coefficient of

lateral earth pressure at rest (K0), resulting in K0 = 0.44.

2.4 Root biomechanical properties

The biomechanical behaviour of the three root species was measured in uniaxial tension tests.

Peak tensile strength and Young’s moduli were previously reported by Liang et al. (2017).

However, because the current study is concerned with the mobilisation of root strength, the

full tensile stress–strain behaviour needs to be characterised. These are described in terms of

engineering stresses (tr) and strains (εr), as is common practice in root biomechanics research.

Root tensile strengths (tr,u) may vary as a function of root diameter. This is commonly

fitted using a power-law relation (e.g. Mao et al., 2012):

tr,u,fit = tr,u,0

(
dr
dr,0

)βt
(3)

where dr is the root diameter and dr,0 = 1 mm (a reference diameter). For the tensile strength

of gorse and willow roots, no clear diameter trends were detected (Figure 3), so βt = 0 was

assumed. Similar curves were used to fit the root tensile strain to peak εr,u:

εr,u,fit = εr,u,0

(
dr
dr,0

)βε
(4)

Because no diameter trends were observed, for all species βε = 0 (Figure 3) was assumed.

Both the tensile strength and strain to peak showed considerable scatter. This was cap-

tured by fitting probability distribution functions to normalised tensile strengths (t̂r,u =

tr,u/tr,u,fit) and normalised strains to peak (ε̂r,u = εr,u/εr,u,fit). Uniform distributions (char-

acterised by a minimum and maximum value) could be fitted satisfactorily, see Figure 3.

Therefore, the probability of root occurrence pr, given normalised strength and strain to

peak:

pr =


1

(t̂r,u,max−t̂r,u,min)(ε̂r,u,max−ε̂r,u,min)
when both

{
t̂r,u,min ≤ t̂r,u ≤ t̂r,u,max
ε̂r,u,min ≤ ε̂r,u ≤ ε̂r,u,max

0 else

(5)

Despite the large variation in measured strength and strain to peak, tensile stress–strain

curves all had similar shapes (Figure 4). Roots were modelled as linear elastic to simplify the

development of the constitutive model. Tensile stiffness Er was defined as the secant stiffness

at peak strength, rather than the Young’s modulus, as it was considered more important to

approximate the root tensile stress accurately at relative large deformations:

Er =
tr,u
εr,u

(6)
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In summary, the mechanical behaviour of a bundle of roots can be characterised using

tensile strength–diameter parameters (tr,u,0 and βt), tensile strain to peak–diameter fit pa-

rameters (εr,u,0 and βε) and probability densities of the normalised strength/strain. All of

these parameters have a clear physical meaning and can be simply obtained from a series of

uniaxial tensile tests.

3 Constitutive model development

Rooted soil might require large deformations to reach peak capacity because of the low stiff-

ness in the root. Deformations of the composite material are therefore described using the

deformation gradient tensor F , which enables integration into finite-deformation framework.

J indicates the Jacobian determinant (J = detF ), a measure for the volumetric expan-

sion/contraction of the material (J ≈ 1 + εv)

3.1 Phase relationships

The rooted soil was treated as a four-phase material, consisting of soil grains (volume fraction

φg), water (φw), air (φa) and roots (φr), see Figure 5. The volume balance satisfies:

φg + φr + φw + φa = 1 (7)

For the purpose of defining phase relationships, both solid phases (soil grains and roots) are

considered incompressible, therefore:

φr =
φr,i
J

, φg =
φg,i
J

(8)

where φr,i and φg,i are the root and soil grain volume fractions in the initial state, respectively.

Assuming the mass of roots is negligible compared to the mass of soil particles:

φg,i =
ρd,i
ρg

(9)

where ρd,i is the initial dry bulk density of the soil material and ρg the density of the soil

grains.

The four-phase material was modelled as a composite consisting of two constituents: (a)

‘soil’ (subscript ‘s’), i.e. the mixture of air, water and soil grains, and (b) roots (subscript

‘r’). The presence of roots makes some void space inaccessible to the volumetric behaviour

of the soil through two mechanisms: (a) roots take up void space, and (b) roots may prevent

nearby void space from being used by the soil (‘stolen voids’, as hypothesised by Muir Wood

et al., 2016). The volume fraction of voids belonging to the root phase φvr (‘stolen voids’) is

expressed as a fraction ξr of the root volume fraction:

φvr = ξrφr (10)

Thus it follows that only the voids that are ‘available’ to the soil (φvs) are considered com-

pressible. The void ratio of the soil (es) is therefore defined as the fraction of the ‘available’

pore space over the volume of soil grains (Figure 5):

es =
φvs
φg

=
1− φr (1 + ξr)− φg

φg
=
J − φr,i (1 + ξr)

φg,i
− 1 (11)

The presence of roots reduces the specific volume vs (vs = 1 + es) of the soil, and therefore

makes the soil behave ‘more densely’.
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3.2 Soil–root composite stresses

Each of the two constituents (‘soil’ and ’root’) in the composite material followed its own

constitutive law (Figure 5). The rule of mixtures (e.g. Sawicki, 1983) was used to calculate

the total (Cauchy) stress σ in the composite material:

σ = φsσs + φrσr (12)

Where σs and σr are the (total) stresses in the soil and root constituent respectively, and

φs = 1− φr the volume fraction of the soil constituent.

The major advantage of the composite modelling approach is its flexibility. For example,

the soil constitutive model can be interchanged to suit specific soil conditions, without having

to alter or recalibrate the model used to calculate the root reinforcement effect.

3.3 Soil stresses

Any description for the total stress in the soil can be used, for example Bishop’s effective

stress formulation:

σs = σ′s − paI + χ (pa − pw) I (13)

where σ′s is the effective stress in the soil, I indicates the second order unit tensor, pw and pa
are the pressures in the water and air phases respectively (positive in compression), and χ is

the Bishop parameter, often assumed to be related to the saturation ratio Sw. (Unsaturated)

pore fluid flow models can be used to describe the evolution of air and water pressures pa
and pw, see Woodman et al. (2020).

Subsequently in this paper, the effective stress in the soil is calculated using the Modified

Cam-Clay type model described in Section 2.2, which was calibrated appropriately to mea-

sured soil behaviour for the test conditions considered. The MCC model inherently assumes

parity between increments in specific volume and increments in volumetric strain multiplied

by the initial specific volume (v̇ = viε̇v), which becomes invalid when using the updated

definition for specific volume accounting for root space (Equation 11). Small changes are

therefore required in the definition of (a) soil elastic bulk stiffness K, linking changes in

elastic volumetric strain εev and isotropic effective stress p′, and (b) the volumetric hardening

behaviour, linking plastic volumetric strains (εpv) and pre-consolidation pressure (p′c):

K =
∂p′

∂εev
=
∂p′

∂vs

∂vs
∂εev

=
p′vs,i
κ

[
1

1− φr,i (1 + ξr)

]
(14)

∂p′c
∂εpv

=
∂p′c
∂vs

∂vs
∂εpv

=
vs,i
λ− κ

[
1

1− φr,i (1 + ξr)

]
(15)

where bracketed terms are additions to the original model formulations. This demonstrates

that the presence of root volume and stolen voids increase the soil bulk stiffness. Conveniently,

this effect can be incorporated using an unmodified version of the MCC model that uses

the standard (unrooted) definition of specific volume (v = 1/φg) using modified stiffness

parameters κ∗ and λ∗:

κ∗ = κ [1− φr,i (1 + ξr)] (16)

λ∗ = λ [1− φr,i (1 + ξr)] (17)
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This also necessitates a change in the critical state line intercept in v–ln p′ space:

Γ∗ = Γ− (Γ− vi)φr,i (1 + ξr) (18)

where vi is the initial specific volume of the soil according to standard (unrooted) definition.

3.4 Root stresses

Key differences between previous modelling of fibre-reinforced soil and modelling of rooted

soil that were addressed:

1. Roots are typically much more flexible than polypropylene fibres modelled previously

(Er ≈ 102 MPa instead of 104 MPa), necessitating modelling of the mobilisation of their

strength. Because large deformations might be required to mobilise the full potential

of the roots, finite deformations and root reorientation need to be considered;

2. Roots are typically much longer than polypropylene fibres, calling for a different ho-

mogenisation procedure of root strength into continuum behaviour at a single integra-

tion point;

3. Roots may break as well as slip through the soil when not sufficiently anchored;

4. Root biomechanical properties typically show large variability.

It was assumed that roots behave like long fibres, and therefore only reinforce in tension

(i.e. zero bending stiffness). Roots were assumed to be cylindrical, straight and unconnected

to other roots, with diameter dr, cross-sectional area Ar and length Lr. Roots were modelled

as linear elastic (Er = tr,u/εr,u) with tensile strength tr,u.

3.4.1 Single root: elastic

Consider a single root whose initial orientation is described by unit vector nr and its ini-

tial volume fraction by φr,i. The stretch in the composite material in the direction of the

(deformed) root (Λs):

Λs = |F · nr| = 1 + εs (19)

where εs is the (engineering) strain in the soil in the direction of the displaced root. Since

roots are only assumed to reinforce in tension, their reinforcing effect is only taken into

account when εs > 0. The unit vector mr describing the orientation of the deformed root:

mr =
F · nr

Λs
(20)

Previous stress homogenisation techniques for fibres relied on the assumption that the

deformations in the soil around the fibre are homogeneous along the entire fibre length. This

is unlikely to be the case for the roots, which can be up to several meters long. Here, it

is therefore assumed that soil deformations are only present along part of the root length,

henceforth called the soil-loaded root length Ls = ζrLr. The coefficient ζr (0 < ζr ≤ 1)

accounts for the fact that the typical length scale of the deformation in the composite (e.g.

a shear band within a slope) might be (much) smaller than the length of the roots. Near the

middle of the root, soil strain in the direction of the root is assumed to be εs, and outside
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stretched root.

this region it is assumed zero. In the case of very short roots or fibres, or when modelling an

element test, it follows that ζr ≈ 1.

The matter at hand is now to find the root stresses in the middle of the root. Roots

mobilise tensile stresses by mobilising soil–root interface shear resistance τi. The interaction

between soil and root in the rhizosphere is complicated and may vary depending on soil and

root conditions. τi is difficult to quantify, for example by an axial pulling test, as roots may

be tortuous and branched. It was therefore incorporated in the model by means of a generic

(and therefore flexible) cohesive-frictional approach. The interface friction τi (defined per

unit area of undeformed root) is assumed to fully mobilise as soon as there is differential

soil–root displacement (rigid–perfectly plastic behaviour):

τi = ai − σ′s,n tan δ′i (21)

where ai is the interface adhesion, δ′i the interface friction angle and σ′s,n the the average

normal effective soil stress acting on the deformed root:

σ′s,n =
1

2
(I −mr ⊗mr) : σ′s (22)

Mobilisation of root–soil interface friction changes the tensile stress and strains along root

axis s:
∂tr
∂s

= Er
∂εr
∂s

= −4τi
dr

(23)

Solving this differential equation using the assumed interface behaviour and zero strain bound-

ary conditions at both root ends, the profiles of root tensile stress tr, root tensile strain εr
and relative soil–root displacement (us − ur) along the root can be determined (Figure 6).

Depending on soil conditions and root properties, a root will respond in one of three ways:

� ‘Anchored’: The root is sufficiently well-anchored in the soil so that it closely follows

soil deformations. No relative soil–root displacement occurs at either root end or near

the middle of the root (Figure 6a);
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� ‘Partially slipping’: The root slips within the soil near the middle of the roots (slip is

defined as finite relative soil–root displacement), but not near either root end (Figure

6b);

� ‘Fully slipping’: Root–soil interface friction is mobilised along the entire root length,

and tensile stresses can therefore not increase any further. Slipping occurs at both root

ends (Figure 6c).

The maximum tensile stress in the root (tr,m), occurring in the middle of the root, and

the criteria to determine the type of response are (Figure 7b):

tr,m =


Erεs Anchored roots: Erεs ≤ ζrtr,s√
ζrErεstr,s Partially slipping roots: ζrtr,s < Erεs <

tr,s
ζr

tr,s Fully slipping roots:
tr,s
ζr
≤ Erεs

(24)

Where tr,s is the tensile stress that would develop in the middle of the root in case soil–root

interface friction is mobilised along the entire root length:

tr,s = 2τi
Lr
dr

(25)

Soil deformations will also change the number of roots present on a cross-section normal

to the deformed root orientation (Figure 8). Taking this into account, the Cauchy root stress

tensor for a single root, defined in the deformed state, can be written as:

φrσr = φr,i
Λs
J
tmmr ⊗mr (26)

And after substituting Equation 8:

σr = Λstmmr ⊗mr (27)

3.4.2 Single root: Root breakage and variation in root biomechanical properties

Roots will break when the tensile stress tr,m exceeds the tensile strength tr,u. Alterna-

tively expressed, ‘anchored’ roots break when εs ≥ εr,u, ‘partially slipping’ roots break when

ζrεstr,s ≥ εr,utr,u, and ‘fully slipping’ roots break when tr,s ≥ tr,u,. Once roots are broken,

they are assumed to lose all reinforcement potential.

Since roots cannot ‘unbreak’ during unloading of the soil, it will be necessary when mod-

elling stress and/or strain cycles to keep track of the largest soil strain (εs,y = max εs(t)) and

root slippage stress (tr,s,y = max tr,s(t)) experienced by the root thus far.

A root breakage parameter fbreak is defined (Figure 7c) such that:

fbreak =


1 when


εs,y < εr,u and/or

ζrεs,ytr,s,y < εr,utr,u and/or

tr,s,y < tr,u

0 else

(28)

14



p � 0

p � 0

tr,u,min

tr,u,max

�r,u,min �r,u,max

Root strain to failure: �r,u

R
o

o
t

te
n

si
le

st
re

n
g

th
:

t r
,u

a) Probability of occurrence

Fully

slipping Partially

slipping

Anchored

� rtr,s

tr,s

� r�s
�s

Root strain to failure: �r,u

b) Tensile stress in elastic root

Intact

fbreak � 1

Broken

fbreak � 0

� rtr,s,y

tr,s,y

� r�s,y
�s,y

Root strain to failure: �r,u

c) Roots currently intact

tr,u,min

� rtr,s,y

tr,s,y

tr,u,max

�r,u,min � r�s,y
�s,y �r,u,max

Root strain to failure: �r,u

d) Tensile stress in root

Fully

slipping

Partially

slipping

Anchored

Average stress
(no root breakage)

Average stress

Multiply a), b) & c)

0.00

0.25

0.50

0.75

1.00

0

Soil strain: �s

A
v
er

ag
e

ro
o
t

st
re

ss
:

t r
,m

t r
,s

e) Average tensile stress

Integrate to

obtain

average

tensile

stress: t
r,m

(�s)

Figure 7: Calculating the average tensile stress in a root as function of soil strain in the direc-

tion of the root εs, accounting for (a) statistical variation in root biomechanical behaviour,

(b) different root response types and (c) root breakage. This results in (d) tensile stresses in

roots at different strains, from which the (e) average tensile stress in roots can be expressed

as a function of soil strain.

A0=1

A=J/ s

1

1

1
s

FUndeformed
configuration

Deformed
configuration

nr
mr

Figure 8: Soil element containing root (left) undergoes deformation F (right), resulting in

modified root area ratio.

15



The average tensile stress in the root tr,m can by found by integrating the product of (a)

probability of root occurrence pr, (b) elastic tensile stress in the root tr,m, and (c) the root

breakage parameter fbreak, over the domain of root tensile strength and root tensile strain to

failure (Figure 7):

tr,m =

∫ εr,u,max

εr,u=εr,u,min

∫ tr,u,max

tr,u=tr,u,min

prfbreaktr,mdtr,udεr,u (29)

Although the double integral in Equation 29 appears complex, due to the simple (piece-

wise) nature of the expressions of pr, fbreak and tr,m, this integral and its derivatives can be

expressed analytically, enabling rapid computation.

An example of how tr,m might develop with increased soil strain εs is presented in Figure

7e. At zero strain, all roots will behave as ‘anchored’, but with increasing levels of strain roots

will start to break and/or slip. Even at large deformations, a ‘residual’ root reinforcement

might be present due to a fraction of roots continuing to slip through the soil.

The (averaged) root stress tensor for a single root thus equals:

σr = Λstr,mmr ⊗mr (30)

3.4.3 Multiple roots

The rule of mixtures (Equation 12) can be easily expanded to include multiple roots:

σ = φsσs +
∑

φrσr (31)

Conceptually, it would be elegant to express the total root stress tensor as an integral over all

orientation, volume fractions, root properties etc. This approach was for example followed

by Diambra et al. (2010) in triaxial conditions, aided by the fact that in such conditions the

orientations of principal stresses and strains are known. Here, due the the inclusion of large

deformations and defining the root stress tensor in a generalised, three-dimensional stress

and strain state, such an integral cannot be expressed analytically, and therefore has to be

approximated by summation (Equation 31). Lebedev quadrature can be used to approxi-

mate the (three-dimensional) distribution of root orientations, and a finite number of root

classes (each with their own length, diameter, biomechanical properties etc.) can be used to

approximate the natural variation in root properties.

4 Numerical simulation of direct shear - Input

4.1 Fibre-based model (this paper)

The developed constitutive model was tested against direct shear tests performed by Liang

et al. (2017).

Several assumptions were required. All roots were considered vertically oriented initially.

This is justified by the fact they were grown in the cores, promoting vertical growth. Every

root diameter class (see Figure 1) and their corresponding root volume were included in the

model. Lacking exact measurements of root length for each root, every root was assumed to

have grown all the way to the bottom of the core (root length Lr = 500 mm). Although the

model allows for inclusion of ‘stolen’ voids, these were not included in simulations (ξr = 0)
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as suitable values for ξr have not yet been determined by means of systematic experimental

studies. The root–soil interface was assumed perfectly rough (δi = φ′cv) with no adhesion

(ai = 0). The statistical variation in both root peak tensile strength (tr,u) and strain to peak

strength (εr,u) was taken into account (data from Figure 3).

The behaviour in the direct shear tests was approximated by modelling a drained, simple

shear element at the shear plane, similar to Muir Wood et al. (2016), see Figure 9. The

two displacement directions free to move are the vertical deformation (Fzz) and the simple

shear displacement Fzx (x-axis points in the direction of shearing, z axis points in the normal

direction). Normal total stress σzz and pore pressures were kept constant during shearing.

A key parameter required is the height of the simple shear element, which was assumed

as hsh = 30 mm, based on the thickness of the shear zone as observed by Bull et al. (2019)

for the same soil during direct shear tests conducted in a X-Ray CT scanner. Direct shear

displacements (ush) were directly linked to simple shear deformations Fzx (Figure 9):

ush = hshFzx (32)

The soil-loaded root length Ls (i.e. the length of root along which soil strains are assumed

non-zero) was initially assumed equal to the shear zone thickness (Ls = hsh). The influence

of this parameter is investigated later.

The constitutive behaviour of the rooted soil was solved incrementally, solving increments

in total stress in the composite σ̇ as a function of increments in the deformation gradient

tensor Ḟ . The rule of mixtures in incremental form:

σ̇ = φsσ̇s + φ̇sσs +
∑

φrσ̇r +
∑

φ̇rσr (33)

A small strain formulation of the soil model was used. To account for the significant

rotations that might occur when shear strains were large, the Jaumann objective stress rate

was used to calculate an increment in Cauchy soil effective stress σ̇′s:

σ̇′s = Deps : D + σ′s ·W −W · σ′s (34)

Where Deps is the incremental MCC elasto-plastic soil stiffness matrix, spin matrix W =(
L−LT

)
/2, rate of deformation tensor D =

(
L+LT

)
/2, and velocity tensor L = Ḟ ·F−1.

The amount of root stress mobilised is a function of both the deformations in the composite

material (F ) as well as the amount of confinement pressure the soil applies on the root (since

17



the root–soil interface friction depends on the effective stresses in the soil). Therefore, the

incremental root stress tensor σ̇r:

σ̇r = DFr : Ḟ + Dσ
′
s
r : σ̇′ (35)

where DFr and Dσ
′
s
r are the incremental ‘stiffness’ matrices linking increments in the deforma-

tion gradient tensor (Ḟ ) and effective stress in the soil (σ̇′s) receptively to increments in the

root stress tensor.

4.2 Root beam model

The predictions of the fibre model were compared to the ‘beam model’ recently developed

by Meijer et al. (2019a), This model assumes that roots act as beam elements with a finite

bending and axial stiffness, that can move independently from the soil, and allows for large

beam deformations and rotations. The displacements of the soil are an input parameter in

the model, and the same simple shear mechanism as used for the fibre model was assumed.

The same assumptions for root quantity, root diameters, root–soil interface friction and

root biomechanical behaviour as used in the fibre model were assumed. One exception is that

the average root tensile strength tr,u,fit and tensile strain to peak εr,u,fit were used for every

root, rather than statistical distributions, as the root beam model does require root stiffness

to be given as a scalar value rather than a statistical distribution.

The model used for calculating transverse and axial soil–root interface resistances was the

same as used by Meijer et al. (2019a). Equation 2 was used as the required profile of vertical

effective stress input, and the soil angle of internal friction required for calculation of both

resistances was taken as φ′cv.

Roots were assumed to have broken once their tensile capacity was exceeded. Once

broken, their contribution to root reinforcement was set to zero. The reinforcement response

of all individual roots was summed to acquire the total root reinforcement. The calculated

reinforcements were added to the measured average fallow soil resistance to obtain predictions

for the root-reinforced strength.

For more details about this model and its assumptions, see Meijer et al. (2019a).

5 Results

The fallow soil behaviour in direct shear could be fitted well with the MCC+Hvorslev surface

soil model previously calibrated against triaxial and oedometer tests. Similar to element tests

results, no clear peaks in shear strength were observed although there are many fine-scale

sharp-peaks corresponding to small scale variation (Figure 10).

The direct shear tests on rooted soil showed that significant shear displacements, often of

the order of 50 mm, were required to reach peak root-reinforced shear strength (Figure 11).

Some tests showed subsequent softening behaviour, associated with root breakage.

Both the fibre model and the beam model yielded generally good predictions for the

stress-strain behaviour of the rooted soil (Figure 11). In most cases, both models predict

(a) the peak strength of the rooted soil, (b) the gradual mobilisation of root reinforcement

and (c) the presence of significant reinforcement even at the end of the shear test (shear

displacement ush > 90 mm) reasonably well.
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Figure 10: Experimentally measured fallow (unrooted) direct shear resistance (average of two

replicates at each depth) and numerical soil model predictions for every shear plane depth.

Note that the predicted traces are the same for each depth because of the assumed initial

stress conditions.

Varying the length of root along which soil strains exceed zero (soil-loaded root length

Ls) in the fibre model shows that reducing this size has little effect on the magnitude of

peak root reinforcement, but ‘delays’ mobilisation of root reinforcement, resulting in larger

displacements to peak and larger predicted root reinforcements at the end of the shear tests

(Figure 12). This highlights the importance of assumptions made during the homogenisation

of (long) roots into continuum behaviour. When choosing a length scale similar to the

experimentally observed shear zone thickness (Ls ≈ hsh) good predictions were achieved,

supporting the hypothesised link between soil-loaded root length and the typical length scale

of the soil displacement mechanism.

Comparing the observed peak strength to model predictions shows that both the beam

and fibre model yield good predictions (Figure 13). Reduction factors k′′ required to match

the WWM predictions (Equation 1) to the experimentally measured results varied between

species and was 0.3 ≤ k′′ ≤ 0.6. The largest deviations in predicted peaks strengths occurred

for gorse roots. It was hypothesised that this is due to the presence of a few thick roots, for

which little biomechanical test data was available. For example, in the gorse tests at 100 mm

depth, two individual roots with diameters exceeding 2 mm account for more than half of the

root volume (Figure 1). There is a realistic chance these roots may have been weaker than

the assumed average, given the large observed variation in root tensile strength (coefficient

of variation: 50%, Figure 3). This highlights the importance of sufficient replication, both in

root biomechanical testing as well as shear testing.

The predicted stress–strain behaviour in a single test was investigated further to highlight

the complicated interaction between the soil and root components, see Figure 14. Initially,

strains are low and root reinforcement therefore negligible. The overconsolidated soil therefore

dilates. With increased shear strains, roots start to mobilise their tensile strength. The shear

resistance of the composite now increases due to two effects: (a) resistance in the roots, and

(b) soil hardening, as the roots pull the top and bottom of the simple shear element closer
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Figure 12: Effect of the length scale of soil loading along the root (Ls) on the shear resistance

predictions by the constitutive model. Dark grey shaded area indicates the experimentally

measured average fallow resistance, and the light grey shaded area the experimentally mea-

sured root-reinforces resistance (All experimental data used taken from zsh = 200 mm depth;

Gorse replicate 2; grass replicate 3; willow replicate 1).

together, explaining the predicted soil contraction (5 → �). At some point, roots begin

to gradually break, resulting in a reduction of reinforcement. The soil is now free to dilate

as it naturally tends to (softening: � → ×). Because some roots will continue to slip, the

root-reinforced shear resistance remains higher than the unrooted resistance even at large

shear strains. This example showcases the complex interaction between soil and roots, but

also the power of the composite modelling approach.

6 Discussion

Both experimental and model results showed both hardening behaviour (associated with

root reinforcement mobilisation), softening behaviour (associated with root failure), as well as

significant root reinforcement at large shear displacements near the end of the test, indicating

that a significant large fraction of roots slipped through the soil rather than broke. This

demonstrates the importance of incorporating both breakage and slippage mechanisms, in

contrast to previous fibre-reinforced soil models that did not include breakage (e.g. Świta la

and Wu, 2018; Diambra et al., 2013).

The increase in shear deformations required to reach peak shear stress in root-reinforcemed

soil are in line with previous direct shear studies, e.g. 75–84 mm in soil reinforced by willow

and 32–35 in fallow soil (Mickovski et al., 2009), or field tests performed by Ekanayake

et al. (1997) on Kanuka trees (22–52 / 6–20 mm) or Monterey pine (22–52 / 6–20 mm),

and Docker and Hubble (2008) on rooted riverbanks (50–100 mm in rooted soil). This

shows the importance of including large rotations/deformations in the constitutive model, and

emphasises the importance of accounting for the serviceability limit state calculations when

for example designing root-reinforced embankments with tight tolerances. Incorporating root

reinforcement into finite element analyses by adapting the soil yield criterion (e.g. through an
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increase in soil cohesion) is unable to capture this ‘delayed reinforcement’ effect, and is also

unable to account the observed soil softening due to root breakage. However, such approaches

may be sufficient if only the ultimate limit state is of interest.

The results also show the importance of assumptions made during homogenisation of

(long) roots into a continuum response. The hypothesis that the assumed length of root

loaded by soil (Ls) is related to the characteristic length scale of the deformations in the soil

was confirmed by the direct shear tests. However, this length scale is not known in a typical

boundary value problem. Previous work on direct shear testing on fibrous and rooted soil

have indicated that fibres/roots may increase the thickness of the shear zone, but this effect

has not been studied quantitatively (Jewell and Wroth, 1987; Shewbridge and Sitar, 1989;

Abernethy and Rutherfurd, 2001; Fan and Su, 2008). There is a need for further studies

investigating the failure mechanism in rooted soil without applying such rigid displacement

boundary conditions as in the direct shear test. Field investigations of failures in rooted

slopes, or physical model testing of rooted slope stability, for example using a geotechnical

centrifuge (Askarinejad and Springman, 2015; Liang et al., 2017), will be able to provide such

data.

The fibre-based model predicts similar reinforcements compared to the beam model by

Meijer et al. (2019a) for the shear experiments considered. While the latter accounts for

potential bending and shear effects in roots, these were negligible for most roots in the shear

experiments because of their relatively small diameters (Figure 1).

Comparison of the peak root reinforcement results to popular Wu/Waldron type models

(WWM) confirms the necessity of an additional reduction factor k′′ in these models, as

previously found by many authors. Required values for the tests conducted were different for

each species, and varied between k′′ = 0.3 and k′′ = 0.6, in line with previous studies (e.g.

Mao et al., 2012; Pollen and Simon, 2005; Bischetti et al., 2009).

The fibre model shows that roots and soil interact in a complex fashion. Not only will

soil displacement affect root reinforcement, but root reinforcement will in turn also affect

the behaviour of the soil (Figure 14). This root–soil–root interaction may in part explain

the current persisting difficulties in predicting root reinforcement when using a WWM-type

framework, incorporating root properties only in reinforcement predictions (e.g. Wu et al.,

1979; Pollen and Simon, 2005).

The developed root-reinforced constitutive modelling framework allows incorporating root

reinforcement into finite element analyses. Its generic formulation allows for straightforward

implementation of the coupling between mechanical and hydrological effects in the soil, for

example additional suction pressures introduced by roots (Woodman et al., 2020). A major

advantage of the adopted composite framework is that it can be used with any existing

effective stress-based soil model. This is important for practical applications as soils may

vary widely, and varying climatic conditions and ongoing plant transpiration may, in specific

applications, result in larger matric suctions compared to the experiments by Liang et al.

(2017).

The constitutive model for the root constituent requires a sizeable amount of input data

(root quantities, root geometry, root biomechanical properties, interface properties), contrary

to the approach developed by Świta la and Wu (2018). However, all parameter have a clear,

physical meaning, and can be measured in the lab or predicted using existing data.

The proposed framework opens up a clear pathway to untangle some of the complexity of
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the mechanical behaviour of rooted soil. Further experiments to verify the model are required.

Triaxial tests on large samples (their size carefully chosen to allow for sufficient root lengths)

would be extremely valuable as they would allow simultaneous investigation of stress and

volumetric behaviour. Such testing will help to verify key assumptions (for example those

surrounding ‘stolen voids’) and help to identify where model simplifications and assumptions

can be made safely without losing accuracy, systematically working towards a model which

is both accurate and more practical (requiring fewer input parameters) for rooted soils.

7 Conclusions

� A constitutive framework was developed for root-reinforced soil, adopting a four-phase

composite modelling approach using separate constitutive models for the root and soil

phases;

� A formulation for the stress in the root phase was developed following concepts previ-

ously developed for fibre-reinforcement, accounting for the gradual mobilisation of root

reinforcement, large rotations and deformations, and both root breakage and slippage

effects;

� The model showed good comparison with experimentally measured direct shear displacement-

shear stress data measured for rooted soils. It matched both the magnitude and the

gradual mobilisation of root reinforcement, as well as the significant ‘residual’ root re-

inforcement at large deformations associated with slipping roots, making it suitable for

both serviceability and ultimate limit state analyses within finite element calculations;

� A previously developed beam model, modelling roots as spring-supported beams with

both axial and bending stiffness, matched both experimental results and fibre model

results well;

� Exploration of the model revealed a complex two-way interaction between soil and root

behaviour. The model provides a suitable framework for future investigations into the

key mechanisms governing the hydro-mechanical behaviour of rooted soil.
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List of symbols

Greek symbols:

� βε: Root diameter–tensile strain to failure power law coefficient

� βt: Root diameter–tensile strength power law coefficient

� Γ: Critical state line intercept in v–ln p′ space in Modified Cam Clay model

� δi: Interface friction angle

� εr: Root tensile (engineering) strain

� εr,u: Root tensile (engineering) strain to failure

� εr,u,0: Tensile strain to failure for root with diameter dr = dr,0

� ε̂r: Root tensile (engineering) strain, normalised by tensile strain to failure

� εs: Soil tensile (engineering) strain

� εv: Volumetric strain

� ζr: Ratio of length scale of soil deformation Ls and root length Lr

� κ: Modified Cam Clay model parameter

� Λ: Stretch parameter

� λ: Modified Cam Clay model parameter

� M : Modified Cam Clay model parameter

� MH : Hvorslev yield surface parameter

� ν: Poisson’s ratio

� ξr: Fraction of ‘stolen’ voids with respect to root volume fraction

� ρd: Dry density

� σ: Cauchy stress tensor

� σ′: Cauchy effective stress tensor

� τi: Interface shear stress

� φ: Volume fraction

� φ′cv: Soil critical state friction angle

Latin symbols:

� ai: Interface adhesion

� Cc: Oedometer primary compression parameter

� Cs: Oedometer unload-reload parameter

� cr: Root reinforcement

� dr: Root diameter

� dr,0: Root reference diameter

� Er: Root tensile stiffness

� e: Void ratio

� F : Deformation gradient tensor

� fbreak: Fraction of root currently unbroken

� I: Unit tensor

� J : Jacobian determinant

� K: Bulk stiffness parameter

� K0: Coefficient of lateral earth pressure at rest
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� k′: Wu/Waldron multiplication factor

� k′′: Sequential root mobilisation reduction factor

� Lr: Root length

� Ls: Length scale of soil deformation

� mr: Root orientation unit vector in displaced state

� nr: Root orientation unit vector in initial state

� p′: Isotropic pressure

� p′c: Isotropic preconsolidation pressure

� pr: Probability of root occurance

� q: Deviatoric stress

� Rra: Root area ratio

� tr: Toot tensile stress

� t̂r: Root tensile stress, normalised by root tensile strength

� tr,s: Root tensile stress in slipping roots

� tr,m: Root tensile stress in the middle of a root

� tr,u: Root tensile strength

� tr,u,0: Tensile strength of root with diameter dr = dr,0

� ush: Direct shear displacement

� v: Specific volume

� zsh: Shear plane depth

Commonly used subscripts:

� a: Air

� g: Soil grains

� i: Initial

� r: Root

� s: ‘Soil’, i.e. the mixture of soil grains, water and air

� v: Voids / volumetric

� y: Yield
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37(1), 53–68.

Jia, N. and Kagan, V. A. (2001), Plastics Failure Analysis and Prevention, William An-

drew Inc., chapter Mechanical performance of polyamides with influence of moisture and

temperature - accurate evaluation and better understanding, pp. 95–104.

Liang, T., Bengough, A. G., Knappett, J., Muir Wood, D., Loades, K. W., Hallett, P. D.,

Boldrin, D., Leung, A. K. and Meijer, G. J. (2017), ‘Scaling of the reinforcement of soil

slopes by living plants in a geotechnical centrifuge’, Ecological Engineering 109, 207–227.

Mao, Z., Saint-Andre, L., Genet, M., Mine, F.-X., Jourdan, C., Rey, H., Courbaud, B. and

Stokes, A. (2012), ‘Engineering ecological protection against landslides in diverse mountain

forests: Choosing cohesion models’, Ecological Engineering 45, 55–69.

Meijer, G. J., Bengough, A. G., Knappett, J. A., Loades, K. W. and Nicoll, B. C. (2016),

‘New in-site techniques for measuring the properties of root-reinforced soil – laboratory
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