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The COVID-19 pandemic and resulting government-enforced lockdown affected the travel behavior and lives of people
worldwide. In this research, hierarchical cluster analysis (HCA) is used to quantify the impact on daily flow profiles of cyclists due
to the public’s response to different levels of restrictions during a 6-month period of the COVID-19 pandemic in 2020. An
inductive loop network in Tyne and Wear, the UK provided cycle flow data from 25 sites. A paired sample ¢-test was carried out
between the “Pre-COVID-19” baseline year and 2020 to determine how cycling volumes changed at each site. The HCA was then
performed on the diurnal hourly flow profiles to observe how they changed within the same time period. Finally, the relationship
between diurnal flow profile and volume was assessed. Overall cycling volume in the study area increased by 38% during the
lockdown. The highest increases were found at coastal sites, with more modest increases in suburban areas and reduced volumes at
city center locations. The HCA of the diurnal flow profiles revealed that locations associated with noncommuting-shaped flows
witnessed the largest increases while commuting profiles saw a decrease. As lockdown restrictions eased, flow profiles began to
revert back to the prepandemic norm but never fully returned to prepandemic levels. The adoption of working from home
postpandemic will change commuting behavior. The conclusions drawn from this study suggest consideration of noncommuting
trips should be made when planning the design and location of future cycling schemes, and the HCA of flow profiles can assist in

this decision-making process as a method to quantify changes in daily flow profiles of cycling.

1. Introduction

Despite eagerness for society to return to normal following the
COVID-19 pandemic, there is a growing consensus that what
existed before was not sustainable given the global environ-
mental issues. This has resulted in calls to “build back better”
through investment in a green recovery plan [1]. Climate change
existed before COVID-19 and will persist without action. Na-
tions across the world have pledged net zero greenhouse gas
emissions by 2050 as part of the Paris agreement in 2015.
Countries are being urged to come forward with more ambitious
reductions by 2030. The UK has already committed to a re-
duction of 68% of 1990 levels by 2030 and 78% by 2035 [2].
Active travel modes such as walking and cycling remain a strong
solution to removing carbon emissions from our transport
network while providing a host of other benefits such as to
health, improved urban environment, and social inclusivity.

Prior to the COVID-19 pandemic, the UK was expected
to fail to achieve the target set out in the Walking and
Cycling Investment Strategy to “double cycling, where cy-
cling activity is measured as the estimated total number of
cycle stages (where a “stage” is a trip, or part of a longer trip,
that also involves another form of transport) made each year,
from 0.8 billion stages in 2013 to 1.6 billion stages in 2025
[3, 4]. This can be attributed to many overarching factors.
Historically, cycling has been grouped with walking as a
“slow mode.” There is a limited budget and level of expertise
available to implement cycling schemes, leading to political
barriers. These are particularly notable at a local level, where
decision-makers fear that cycle infrastructure plans, which
may impact motorized vehicles, will reduce the chance of re-
election due to their controversy [5]. Additionally, those that
are less confident or feel under-represented within the cy-
cling community including women, disabled people, and
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ethnic minority groups need greater support and encour-
agement to switch to cycling [6, 7] and have been shown to
prefer more segregation from cars, which must be accounted
for in the analysis of cycle design preferences [8]. Similarly,
the level of confidence of the cyclist [9] and the purpose of
the journey [10] also influence infrastructure preference.
Such issues as these must be addressed in order to increase
cycling numbers, promote a green recovery, and thus work
toward net zero along with achieving a fairer society. Pro-
viding as many tools and evidence as possible to decision-
makers faced with delivering schemes to increase cycling will
facilitate this.

Amid the global COVID-19 pandemic, the UK gov-
ernment announced its first lockdown on March 26, 2020,
with a ban on nonessential travel. The general public had
already been advised to work from home (WFH) if possible,
but the lockdown meant that schools, pubs, restaurants, and
nonessential retail among others closed. It was not until the
11th of May that people were encouraged to return to work.
Schools began to reopen on the Ist of June, and pubs and
restaurants were allowed to open under restricted conditions
on the 4th of July. The easing of restrictions was short-lived
because throughout the second half of 2020, there were
localized lockdowns, which culminated in a full national
lockdown at the end of 2020. This was gradually eased
between March 8, 2021, and June 21, 2021. However, on
December 13, 2021, the UK government reinstated the
advice to WFH if possible due to the spread of the COVID-
19 Omicron variant. It may be some time before society is
completely free from COVID-19 restrictions.

The initial lockdown of society resulted in a substantial
fall in motorized traffic to a volume that was incompre-
hensible at the start of 2020. During April, the month with
the most severe bans on travel, road traffic was 63% lower
than during April 2019 [11]. At the same time, there were
“unprecedented levels of walking and cycling” [12] as cy-
cling during the COVID-19 pandemic became a much
more popular choice of mode across the UK [13, 14] and in
other parts of the world [15-17]. Moreover, the shift in
office culture toward WFH and flexible working, which had
begun prior to the pandemic, has been accelerated because
of lockdown restrictions. Its prevalence in postpandemic
and its effect on travel demand, particularly the daily
commute, are not yet clear. Developing a methodology to
analyze and quantify the shift and investigating the char-
acteristics of cycle trips, in terms of location (geospatial)
and time of day (temporal), deepens the understanding of
the demand for cycling. Also, the methodology is useful to
monitor the changes as society begins to move on from the
pandemic.

Therefore, the aim of this study is to analyze the in-
fluence of geospatial and temporal factors on the changing
volumes of cycle trips during the COVID-19 pandemic. This
will be achieved by completing the five objectives as follows:

(1) To capture cycle flow data from detectors over a pre-
COVID-19 period, compare it to volumes during the
COVID-19 lockdown, and process and manipulate it
into formats for the analysis,
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(2) To perform a high-level analysis to establish the
statistical significance of the weekly changes in cycle
flows across the region during COVID-19 compared
with pre-COVID-19,

(3) To carry out a more advanced and in-depth ana-
lytical analysis to cluster the diurnal hourly cycle
flows to understand the changes in the daily flow
profile of cycle trips before and during COVID-19,

(4) To explore whether the magnitude of the changes in
cycle volumes before and during COVID-19 is re-
lated to the prevalence of certain flow profiles at a
given counter, and

(5) To integrate the outputs to investigate the implica-
tions for policy.

Upon completing these five objectives, this study makes
an original contribution by presenting:

(1) A methodological approach for performing cluster
analysis on unclassified diurnal cycle flow profiles
across a network;

(2) A procedure to determine relationships between di-
urnal cycle flow profiles and total flow volumes; and

(3) The application of the procedure to cycle flow
profiles for analyzing the effect of the COVID-19
pandemic on flow volumes.

L.1. Review of Literature Related to Cycling during COVID-19
Pandemic. Nikitas et al. [18] provide an extensive review of
the lessons learnt during the pandemic with regard to cy-
cling. It is identified that the pandemic has highlighted
problems with a car-centric urban environment inhibiting
active transportation. Research into road user views suggests
that cycling levels after the pandemic will remain higher than
they were before. While some were hugely successful, other
temporary cycle infrastructure introduced during the pan-
demic failed and was heavily criticized. One reason cited was
its inability to appeal to the majority of users of the infra-
structure (e.g., commuters, retail, and recreational). Dun-
ning and Nurse [19] argue that as a result of COVID-19,
cities have discovered that their cycling networks can be
rapidly expanded at low cost by reallocating space from
motorized vehicles to cycles on already constructed roads.
They state what is less clear is whether these interventions
have occurred in the right places. While one key strength of
temporary infrastructure is that it can be modified or re-
moved, Dunning and Nurse agree with Nikitas et al. that
poor experimentation may result in a negative reaction in
terms of both behavior and attitudes toward future cycling
infrastructure, as has been identified with schemes that
predate the pandemic [5]. Planning new cycle infrastructure
postpandemic will remain a “complex process” [18], and
therefore, a greater understanding of the characteristics of
cycling flows associated with a location on a route is a
valuable input to the planning process. For example, in-
vestigating the diurnal cycle flow profiles (number of cycles
measured depending on each hour of the day) reflects the



Journal of Advanced Transportation

trip purpose—whether they are mostly commuting or
noncommuting.

Hong et al. [14] go some way to address this uncertainty.
Cycle volumes were analyzed from Strava data as the UK
government-enforced policies restricting movement in the
early stages of the COVID-19 pandemic in Glasgow, UK.
The study found that in the early stages of the lockdown (up
to April 20, 2020) cycling levels considerably increased due
to noncommuting trips. Infrastructure type also influenced
cycling volume. Interestingly, it was recreational cycle routes
that were already segregated from traffic that saw the biggest
increase; however, while flows did increase, it might have
been expected that on-road cycling would have benefited the
most because road traffic substantially reduced. It was found
that the expensive city center-segregated infrastructure,
which was a focus of policy pre-COVID-19, did not see a
significant increase in cycling volumes, possibly attributed to
restriction on commuting affecting these locations most.
This suggests that the prevalence of commuting and non-
commuting flows had a significant effect on the volumes of
cyclists using a specific route during the pandemic. Given
that the times of the day most people commute as opposed to
shop or engage in leisure activity, studying the total flows
over the day is rather limiting. Further research is required to
explore whether similar or different responses are spatially
and temporally found over the day and how these changes
differ beyond the first lockdown of 2020 as different levels of
restriction were introduced.

It was not only transport researchers that were interested
in the upsurge in cycling during the pandemic but also the
medical professionals due to the potential health benefits of
active travel, which has gained further recognition. Brooks
et al. [20] suggest that COVID-19 has helped strengthen the
social narrative that cycling is healthy not only just from a
social distancing context but also from reducing comor-
bidities that have increased the mortality rate within
COVID-19 sufferers, this is applicable also, to other diseases.
Laverty et al. [21] conclude that transport has a profound
impact on health and support of active travel following the
end of lockdown will be crucial to ensure that the beneficial
shift is maintained into the future.

The previous research outlined above states the im-
portance of maintaining the increased cycling levels after the
pandemic and the need for evidence-seeking methods to
better inform decision-makers. Therefore, developing a
methodology that provides additional support to those
implementing policies that promote cycling may help to
avoid some of the negative consequences identified in the
academic literature and popular press [22, 23]. The research
presented in this study demonstrates how data clustering, an
underutilized analysis tool in cycle flow analysis, can be such
a resource given that it is highly transferable to any location
and scenario. By using this methodology, additional detail
within the daily flows, such as the prevalence of commuting
in the morning and evening and noncommuting trips, which
take place at different times of the day, can be revealed that
would otherwise be lost in total daily flow counts. The
methodology will be demonstrated by comparing cycle flows
before and during the UK lockdown and restricted periods

across Tyne and Wear, a metropolitan region in the
northeast of England.

1.2. Review of Previous Research Using Clustering of Traffic
Flow Profiles. There is a robust body of research on daily
flow profiles of motorized traffic prior to the COVID-19
pandemic, which informs better policy decisions such as
public transport provision, congestion zone timings, and
improving transport models. Crawford et al. [24] explain
that some of these models treat day-to-day fluctuations in
flow profiles as random; however, models will be improved
by predicting, to some degree, flows based on factors such as
the day of the week, season, or a specific bank holiday. The
choice of clustering approach is a vital aspect of traffic data
mining. There are various clustering algorithms, including
Bayesian, hierarchical, and K-means. Among them, hier-
archical clustering has been used by researchers in the past
for analyzing traffic flows [25, 26].

Weijermars and van Berkum [25]’s study is an example
of a study that uses hierarchical cluster analysis to analyze
preclassified flow patterns to better predict traffic flows for
testing out macroscopic traffic model scenarios. The research
found that analyzing the flow profile throughout the day
enabled data to be more accurately classified than using the
total flow for the entire day. Caceres et al. [26] applied
hierarchical cluster analysis to historical hourly traffic flow
data. However, the clustering is performed to categorize
roads by their “attractiveness factor” using a simple distance
and population size gravity model. The average flow profiles
of each cluster were then calculated and found to be rep-
resentative of roads with specific characteristics. The shape
of the diurnal flow profile could then be applied to roads
without flow counters but that shared the characteristics
consistent with a specific cluster, useful in transport mod-
eling. Given the changes in peoples’ travel behavior due to
COVID-19, categorization of counters based on prepan-
demic attractiveness factors may not produce a reliable
gravity model, such as the one in Caceres et al. [26],
postpandemic. Moreover, if captured postpandemic, the
flow profiles at each counter are likely to be different than the
prepandemic flows assigned to clusters in that study. A
greater understanding of how, due to the pandemic, travel
demand has changed cycle flows over the day and depending
on location is required.

Weijermars and van Berkum [25] found that pre-
classifying days into workdays and nonworkdays produced
better clustering results, suggesting that the prevalence of
commuting influences the shape of the diurnal flow profile.
However, again because the COVID-19 pandemic has had
such a profound effect on many aspects of life for the entire
population it is not possible to precategorize flow profiles by
day of the week in the same way.

More recently, other transport studies have used cluster
analysis on data collected during the COVID-19 pandemic
[27-29]; however, no previous research has explored the
features of the daily hour by hour temporal changes in
cycling flows (diurnal profiles) spatially across a region. The
COVID-19 lockdown and restrictions have presented an



opportunity to monitor and analyze the influence of travel
demand by cycle when people were unable to work, children
were not attending school, when restaurants and pubs
reopened, etc. As such, this study makes a unique contri-
bution to the ever-increasing number of studies providing
evidence of the growing demand for cycling during the
COVID-19 pandemic [14, 30, 31].

2. Research Methods

The data for the study were obtained from the inductive loop
network in Tyne and Wear, UK, operated by the Traffic and
Accident Data Unit (TADU) within Gateshead Council.
TADU manages a dataset containing traffic accident, cycle,
and traffic flow data for Tyne and Wear, a metropolitan
county situated in the northeast region of England. The data
provide a wealth of information to the local authorities to
design, plan, and implement appropriate transport schemes
across the county and enable academic institutions to carry
out research. Tyne and Wear has a population of approxi-
mately 1.14m people [32] across five local authorities:
Gateshead, Newcastle upon Tyne, North Tyneside, South
Tyneside, and Sunderland. Overall, it is a mix of urban,
suburban, and rural environments, with Newcastle and
Sunderland as the two cities within the county.

Despite having the highest proportion of households not
owning a car in the UK outside of London (28%), the North
East has significant road congestion problems. Moreover,
road transport contributes to 37% of the total carbon
emissions within the region, which is more than any other
sector [33]. Cars are the dominant mode for commuting in
Tyne and Wear, accounting for 70% of the journeys.
Conversely, cycling accounts for only 3.5% of total trips.
These figures are comparable with the rest of England, which
stands at 67% and 3.5%, respectively [34]. As with the rest of
the UK, the ownership and use of cars in the North East are
growing, which will exacerbate the problems with conges-
tion and hinder progress toward net zero [33].

As a response, the North East has made the improve-
ment of active travel facilities a key policy area within the
local transport plan (2021-2035), with greater segregation of
cyclists from motorized traffic cited as an important in-
tervention [33]. While there have been some high-profile
active travel infrastructure projects within the region, such
as the reallocation of city center road space from motorized
traffic to cyclists on John Dobson Street in Newcastle City
Centre, a typical trip by bicycle in Tyne and Wear requires
some on-road cycling alongside motorized traffic. In the
past, bike share schemes have been introduced in the region
on two occasions, with Scratch Bikes operating in Newcastle
and Sunderland (2011-2013), and Mobike in Newcastle and
Gateshead (2017-2019). While there was no bike-share
scheme operating during the 2020 lockdown, the Neuron
e-scooter share scheme has been operating since the be-
ginning of 2021 in Newcastle and Sunderland.

With reduced car use, the COVID-19 pandemic lock-
downs of 2020 gave the region “cleaner and quieter towns,
cities, and neighborhoods” [33]. Due to the reduced levels in
motorized traffic, this window in time offers local authorities
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a unique insight into how cycling behaviors may change if
future interventions were to replicate these conditions on a
permanent basis, such as through the creation of segregated
cycle routes and low traffic neighborhoods.

2.1. Data Collection and Preparation Stage. Cycling data were
available from 25 counters, which were screened to ensure
they were sufficiently operating during the lockdown period.
The location of each cycle counter site is marked in Figure 1.

The locations are color-coded based on general location,
and although not limited to the trip purposes described,
anticipated trips are suggested in Table 1.

Cycle flow data captured from the database at the 25 sites
were screened once more for any missing data during 2019.
Data missing in 2019 were substituted with 2018, equivalent
to 5.64% of the total. DfT statistics reveal that there was a
0.5% decrease in total distance cycled between 2018 and 2019
in North East England [31], for the purpose of this initial
study, this minor difference is considered acceptable, and
substituting 2018 for 2019 data is deemed appropriate. The
2018/19 data will be referred to as the “Pre-COVID-19” year
in this study. The cycle flow data can be treated as con-
tinuous because they come from 24-hr automatic cycle
counters.

2.2. Key Dates of the COVID-19 Lockdown Restrictions in
England. Tt is important to look at cycling flows in the
context of the restrictions placed on society to curb the
spread of COVID-19 at that given time. Below are the key
dates during the study period.

(i) March 26, 2020: “Stay at home” lockdown measures
legally enforced,

(ii) May 10, 2020: Return to the workplace if cannot
work from home,

(iif) June 1, 2020: Phased reopening of schools in
England,

(iv) June 15, 2020: Nonessential shops reopen in
England,

(v) July 4, 2020: Reopening of pubs, restaurants, and
hairdressers, and

(vi) August 14, 2020: Reopening of indoor theatres,
bowling alleys, and soft play.

*Source-Institute for Government [35].

2.3. High-Level Analysis—t-test of Flows before and during
COVID-19. Paired sample t-tests were carried out between
the pre-COVID-19 year and 2020, to compare cycling
volumes between the periods at each of the 25 sites. This
determined whether there has been a statistically significant
change in cycle flow volume during the lockdown and
whether there is a pattern in terms of location. The null
hypothesis is to assume no difference in the mean value at
each site. Weekly flows between 1st March and 31st August
during the pre-COVID-19 year and 2020 were loaded into
SPSS software for the paired-sample ¢-test.
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2.4. Main Analysis—Hierarchical Cluster Analysis of Daily
Flow Profiles. The main analysis focuses on data clustering
of daily flows to identify how the time of day and where
people cycled changed during the lockdown and as gradually
restrictions were lifted. This is achieved by establishing
similar and dissimilar characteristics in the shape of the
hourly cycle flows throughout the day between 1st March
and 31st August during the pre-COVID-19 year and 2020,
combined in one dataset with a total of 8,741 diurnal flow
profiles amounting to 209,784 hourly flows.

While the #-test analysis is concerned with flow volumes,
the primary objective of the clustering process is to group
daily flows according to the shape of their daily flow profile.
A factor that has to be considered when performing a single
cluster analysis on the flows of 25 different sites is that the
total flow volumes will differ across sites, as some will be

inevitably used more than others. As a result, the formation
of the clusters would be dominated by the total volume.

Therefore, a preprocessing exercise was performed to
ensure the shape of the daily flow profiles drives the cluster
memberships and not the total volume. The hourly flow
volumes were converted into new values determined by their
relation to the mean of the hourly flow for that given day at
that specific site. This was calculated by dividing each hourly
flow by the mean, after zero-centering by subtracting the
mean.

Mathematically, the normalized count for each hour ¢
over the day becomes the following:

N, = ‘It_ %) (1)
9

where

N, = normalised cycle count for each consecutive hour ¢, separately for each of the 24 hours across a day,

q, = actual measured cycle count for each consecutive hour t, separately for each of the 24 hours across a day,

g, = mean hourly count averaged over the 24 hours acrossaday = g, =

By definition, it follows that Y% N, = 0.

This maintains the 24-hour time series diurnal structure
of the data while neutralizing the effect of largely different
flow volumes, therefore, allowing the shape of the flow
profiles to be the determining factor in the clustering process.

As the cycle flow data are treated as a continuous var-
iable, the hierarchical cluster analysis (HCA) approach was
applied using SPSS software. The HCA is particularly
suitable for analyzing traffic flow profiles [25, 26] However,
unlike Weijermars and van Berkum, due to the unprece-
dented effect that the lockdown had on travel in 2020, the
data were not preclassified. Instead, the proposed approach
allows the patterns in the hourly cycle flows to drive the
clustering seamlessly across COVID-19 lockdown days and
historical flow profiles.

The HCA is a form of “bottom-up” agglomerative
clustering technique where each of the 8,741 diurnal flows is
treated as a separate cluster at the beginning of the ag-
glomeration process, combining the most similar clusters
one step at a time, creating new ones until the data are
categorized into the desired number of clusters. The simi-
larity between flow profiles was determined by the Euclidean
distance across each normalized hourly flow. Ward’s linkage
was the method chosen to cluster the data, which minimizes
the variance of the merged clusters and seeks to avoid
clusters with a small membership.

Determining the number of clusters to categorize the
data is a subjective process. Generally, a “gap” is identified
where an increase in a number of clusters produces only a
small reduction in the variation among clusters [36]. This
can be identified through plotting the agglomeration

(2)

24
_ Zt=14:

24

coefficients at each stage of the clustering process to produce
a scree plot for interpretation. Due to the subjective nature of
this step, the three authors decided together on the number
of clusters to categorize the data, the results of which are
shown in the next section. Once each daily flow has been
assigned a cluster membership, a more detailed investigation
into characterizing the shift in cycling patterns as a result of
the pandemic could begin.

2.5. Research Outcomes. The outcomes were compared and
contrasted with previous studies to benchmark this research
with the wider literature. The outputs from each step in the
data analysis were collated together and through a discus-
sion, and connections and consistencies in the outputs were
identified. In this way, evidence that supports future policy
and informs decision-making with regard to the imple-
mentation of future cycling schemes was articulated.

3. Results

In this section, the results are presented in three stages. First,
the t-test was used to explore the changes in the weekly flow
levels generally across Tyne and Wear. This is followed by
the more technical HCA. Finally, by integrating the HCA
outputs with the t-test results, any relationships between the
change in flows and the prevalence of a particular shape of
the diurnal cycling flow profile were determined. This is
analyzed with reference to geospatial and temporal factors,
including investigating the impacts of the different levels of
government restrictions during the lockdown.
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FiGure 1: Location of the 25 sites. “Base map and data from OpenStreetMap and OpenStreetMap Foundation.
TasLE 1: Cycling induction loop counter location types.
Colour Counter location Description Anticipated trips
type
Coastal counters are segregated from motorized traffic and .
Blue Coastal directly fronting the North Sea Recreational
Gray City Segregated counters within or on the edge of the city center =~ Commute, studying, and shopping
Brown Bridge crossing Segregate.d counters on brlqges or in their immediate Commute, shopping, and recreational
vicinity, over the River Tyne or Wear
Green Suburban A segregated cycle path in a suburban area. Commute, school trips, re'creatlonal, and
cycleway grocery shopping
Yellow Suburban main Main road shared with motorized traffic in a suburban area Commute and grocery shopping

3.1. The t-test—Change in Total Volume. Figure 2 shows the
average change in weekly cycle flows from 1st March to 31st
August from the pre-COVID-19 year to 2020 at the 25
detector sites.

The distribution of points about the Y=X line demon-
strates that cycle flows have increased at more locations (61%)
than have decreased (26%) in 2020, while 13% of detectors
remained relatively unchanged. A t-test was carried out to
establish statistical differences in the weekly flows between
pre-COVID-19 and 2020. The +95% about the difference in
mean for each detector is plotted in Figure 3, expressed as a
percentage. The counters exhibiting increases were mainly
coastal sites, and those experiencing a decrease were in the
city areas and those showing a moderate increase were the
suburban cycleways and alongside suburban main roads.

3.2. Hierarchical Cluster Analysis Results

3.2.1. Determining the Number of Clusters. Using the scree
plot technique described earlier in this study suggested that
the optimal number of clusters for the data lies between 2 and
8. In order to identify the optimal number of clusters, the
HCA was systematically performed from 2 up to 8 clustering
groups. Five clusters were found to be most appropriate
considering a trade-off between reducing the variation in flow
profiles within each cluster but avoiding smaller, more niche
clusters that would make interpretation of the results difficult.
The results of the scree plot can be seen in Figure 4.

The daily flow profiles are categorized into a marginally
decreasing number of clusters, the final six stages of which
can be followed starting at the bottom of Figure 5 and
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FIGURE 3: t-test change in average weekly flow pre/during COVID-19.

working upward. Clusters are highlighted in red that join
together in the next agglomeration step. While the clustering
process works from the bottom up, it can be easier to think of
the next step in reverse of the agglomeration schedule, i.e.,
from the top of Figure 5 downward. By doing this, it can be
seen that by increasing the number of clusters from five to
six the cluster of 2,674 flows splits into two: one cluster of
2,445 flows and the other with 229. It is at this point the
authors judged that the separation of less than 3% of the total
number of diurnal profiles into a cluster was not justified

when other cluster memberships were in excess of 10% and
up to 28%; therefore, five clusters were adopted.

3.2.2. Characterizing the Clusters. Once the number of
clusters for the analysis and the membership has been de-
termined, they must be given an identity in order for
meaningful interpretation. Cycle use is governed by the
purpose of the trip, which in turn influences the time of day
when trips are made. As each cluster is defined by the
dominance of the shape of the diurnal profile, the trip purpose
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Figure 5: Cluster membership for 1-6 clusters.

will be influencing cluster membership, i.e., whether com-
muting or noncommuting. In this section, the characteristics
of daily flows within each cluster are explored.

3.2.3. Diurnal Profiles. With reference to Figure 6, Cluster 1
exhibits a monotonic increase to a peak at 17:00h and a
rapid fall while Cluster 2 shows a gradual rise in the morning
up to noon and then a flattening before gradually falling after
16:00 h. Cluster 3 is typical of a commute profile with a
morning peak period from 06:00 h—-09:00 h and evening peak
15:00 h-18:00 h. Cluster 4 exhibits a rise to a peak at 10:
00h-12:00h and a gradual monotonic fall while Cluster 5
rapidly rises peaking at 10:00h and falls monotonically
reaching zero at midnight.

The clusters have been given titles according to these
characteristics, and Clusters 1, 2, 3, 4, and 5 are named,
respectively, evening-only peak; mid-day steady; traditional
commute; late morning peak; and mid-morning peak. Ta-
ble 2 provides an overview of the characteristics of the di-
urnal flows associated with each cluster, which will be
discussed in the remainder of this section.

3.2.4. Cluster Membership across Pre-COVID-19 Year and
2020. The number of daily profiles categorized in each
cluster was established, with most falling in the mid-day
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steady (31%) and traditional commute (26%) followed by
evening-only peak (21%). Mid-morning peak (11%) and
mid-day steady (12%) had been substantially fewer. But
generally, the clusters are of similar magnitude, a trait of
Ward’s method.

Table 2 shows that two of the five flow profile clusters are
less evenly distributed across the pre-COVID-19 year and 2020
than the other three profiles. About 39% of the mid-day steady
cluster flows occurred in the pre-COVID-19 year with the
other 61% in 2020. The traditional commute cluster saw the
reverse of this trend, with 59% in the pre-COVID-19 year and
41% in 2020. The clusters defined by the evening-only peak, late
morning peak, and mid-morning peak are represented by a
more even split of pre-COVID-19 and 2020 days. This suggests
that the characteristics of the journeys made by bicycle changed
rather than just the overall volume of trips changing between
the two time periods endorsing the value of the further
temporal disaggregation.

3.2.5. Days of the Week. Table 2 shows that each cluster
comprises of different proportions of days of the week, so as
to gain a richer understanding, the data were plotted in
Figure 7 to show the number of days that fall into each
cluster (a) during pre-COVID-19 year and (b) during 2020.
While the “mid-day steady” and “late morning peak” profiles
have slightly more weekend days clustered within them
compared to weekdays, it is the cluster characterized by the
mid-morning peak’s profile that influenced the strongest by
weekends, suggesting it is the least associated with a typical
weekday commute. Conversely, the traditional commute
cluster is strongly influenced by the weekday flow profiles,
with a higher number of pre-COVID-19 compared to 2020
during COVID-19, as expected as people WFH. “Evening-
only peak” shows a slight fall during COVID-19 compared
to pre-COVID-19.

3.2.6. Location of Counter. The next step was to investigate
how the composition of the cluster changes with the location
of the cycle detector site as shown in Figure 8. The traditional
commute and evening-only peak clusters contained diurnal
flows from mostly city center or bridge locations, while mid-
day steady, late morning peak, and mid-morning peak were
predominantly coastal. Worthy of note is the substantial lack
of city locations in the late morning peak and mid-morning
peak. The descriptive statistics in Table 2 indicate that the
characteristics of the city locations are different from those at
the coast, which is consistent with the differences found in
the shape of the diurnal hourly cycle flows.

The data were disaggregated according to the stage of
lockdown, characterized by what particular activities were
forbidden or allowed in that time period. The impact the
gradual easing of restrictions had on the prevalence of each
daily flow profile could then be investigated, as shown in
Figure 9.

The mid-day steady cluster approximately doubled in
prevalence from 24% of total pre-COVID-19 flows to 49%
during COVID-19 time. As people return to work, shops,
schools, and hospitality opens, the proportion declines,
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TaBLE 2: Overview of the characteristics of each cluster.

6 9 12 15 18 21 24

Value Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Defining shape Evening-only Mid-day Traditional Late morning Mid-morning
peak steady commute peak peak
Total no. of daily counts 1797 2674 2273 1063 934
% of all counts (nearest 1%) 21% 31% 26% 12% 11%
Year
Pre-COVID-19 year 52% 39% 59% 54% 48%
2020 48% 61% 41% 46% 52%
Total 100% 100% 100% 100% 100%
Day of week
Monday 16% 15% 17% 10% 8%
Tuesday 15% 11% 21% 14% 6%
Wednesday 15% 12% 19% 14% 5%
Thursday 15% 12% 19% 14% 9%
Friday 10% 14% 17% 17% 13%
Saturday 15% 19% 4% 16% 24%
Sunday 14% 17% 3% 15% 35%
Total 100% 100% 100% 100% 100%
Counter location
Coastal 16% 32% 4% 33% 50%
City 29% 15% 36% 5% 5%
Bridge crossing 28% 19% 31% 24% 18%
Suburban cycleway 17% 24% 9% 9% 13%
Suburban main road 10% 10% 20% 29% 14%
Total 100% 100% 100% 100% 100%
Notable periods of lockdown restriction and
easing
Pre-COVID-19 lockdown 57% 45% 67% 60% 61%

Pre-March 26, 2020
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TaBLE 2: Continued.
Value Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Full lockdown o o o o N
March 26-May 10, 2020 9% 2% 8% 9% 16%
Return to work o o o o o
May 11-May 31, 2020 5% 8% 4% % 6%
Partial school reopening o o o o N
June 1-July 3, 2020 10% 10% 9% 8% 4%
Hospitality reopening o N o o o
July 4-Aug 31, 2020 19% 16% 13% 18% 12%
Total 100% 100% 100% 100% 100%
1000 - : : : : Clusters
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FiGure 7: Cluster composition by day of week.
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FIGURE 9: Changing flow profiles during each stage of lockdown.

although still higher than prelockdown levels at 31% of the
total between the 4th of July and the end of August. This
suggests that it is not solely due to the lack of alternative
recreational activities that resorted to people choosing to
cycle proportionately more at these times, as almost every
recreational activity was available once more, and people
were still choosing to cycle. This could either be a purely
recreational cycle ride, or people may have discovered cy-
cling during the lockdown as a viable mode that they wish to
cycle to the reopened cafes, theatres, and other reopened
services.

The opposite occurs in the traditional commute cycle
flow profile cluster. Pre-COVID-19, it is the dominant flow
profile, representing 31% of the daily flows before dropping
to 16% during the full lockdown. It gradually increases in
prevalence as life returns to the “new-normal” but never
reaches prelockdown levels as people continue to WFH,
peaking at 25% of total flows before slightly dipping in
August. In the UK, August typically experiences lower
volumes of commuting traffic due to the school summer
holidays [37], which explains the reduction in the traditional
commuting flow profiles during this time despite hospitality
opening up. A similar pattern of changes occurs for the
evening-only cluster. Diurnal flows associated with these
clusters fall from 21% of the total before lockdown measures
to 14% during the lockdown and gradually increase as re-
strictions are eased. However, where it differs from the
traditional commute is that it continues to increase
throughout August, even reaching higher proportions
compared to prelockdown at 25% of the total flows. These
flows could be a result of recreational rides returning to
evenings as people return to conventional working practices
and commutes into work.

The late morning peak cluster sees a similar pattern to
the evening-only peak, and one suggestion is that both flow
profiles are associated with new commuting practices

postlockdown. The evening-only peak shows a steady flow of
cyclists throughout the day, which could be people adopting
new working practices, where it is not essential to get to the
office by 9 am; however, they still wish to return at a con-
ventional commute time in the evening for dinner with
family. The changes in the late morning peak could theo-
retically be this in the reverse order, coming in for a morning
meeting, again without the urgency of a 9 am start but then
disappearing before the traditional 5 pm finish.

Finally, the prevalence of mid-morning peak flows
maintained relatively stable between 11 and 13% of the total
flows up until the partial reopening of schools, where it
dropped to 5%. One possible explanation for this drop could
be the integration of the school run with a traditional
morning commute time, as a rise in the prevalence of the
traditional commute during the partial school reopening
phase coincides with the reduction in mid-morning peak
flow profiles. Some individuals may have been reluctant to
return to work for the usual 9am start, but once it was
necessary to be out of the house for the school run at that
time it made more sense to link trips.

3.3. Integration of Outputs. The final step in the analysis links
the prevalence of each clustered flow profile with a change in
total flow volumes during COVID-19, disaggregated by
location. Each graph within Figure 10 represents one of the
five clustered flow profiles. The percentage change in flow is
plotted against the prevalence of each flow profile at each of
the counters, calculated as the percentage each cluster ap-
pears within the total number of days recorded at each site.

Sites with a higher prevalence of mid-morning peak flow
profile tended to experience the greatest increase in flow
volume, with late morning peak and mid-day steady also
associated with substantial increases. The positive trend lines
in the respective graphs within Figure 10 demonstrate this. It
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can be seen that the counters at coastal sites tended to have
the highest prevalence of these flow profiles and the highest
increases in overall flows during COVID-19 lockdown. In
stark contrast, counters with a higher prevalence of the
traditional commute and evening-only flow profiles, such as
the city center locations, were associated with a decrease in
flow, as seen within the bottom two graphs within Figure 10.

Suburban cycleways and suburban main roads with
middle levels of penetration in all clusters all exhibited
moderate levels of increase in during COVID-19. This is
consistent with Figures 2 and 3 that show that there was
generally an overall increase in cycling volumes.

The bridge crossings are associated with all levels of flow
change, and further scrutiny shows that the bridge crossings
that tend to group with the coastal counters cross the River
Wear (99750, 99850, and 99050 in Figures 1 and 3). The
Wear crossing is closer to the coast and a riverside cycleway,
suggesting it could be recreational routes driving their de-
mand. In contrast, the bridge crossings over the River Tyne
(97930 and 98590 in Figures 1 and 3) display similar qualities
to the city locations, with substantial reductions in cycle
flows, being much closer to the Newcastle City Centre and
historically cater more to commuters.

The graphs in Figure 10 suggest that the prevalence of each
cluster is related to the change in flows during COVID-19
compared to pre-COVID-19; therefore, a linear relationship
was fitted. Using Pearson’s coefficient, it is clear at the 95%

TaBLE 3: Correlation between cluster prevalence and change in
flows from pre-COVID baseline (Mar-Aug) compared to 2020
(Mar-Aug).

Cluster Pearson’s correlation P value
Mid-morning peak 0.754 P<0.001
Late morning peak 0.578 0.002
Mid-day steady 0.439 0.028
Evening-only peak -0.508 0.010
Traditional commute -0.82 P <0.001

confidence level that linear relationships exist within all five
clusters, as illustrated in Table 3. It further demonstrates that
the mid-day steady (0.754) and the traditional commute are the
two flow profiles that provide the largest contrast in the data,
with the former possessing the strongest positive (0.754) and
the latter the strongest negative (-0.820) correlation with the
change in flow during lockdown restrictions.

4. Discussion

4.1. Suitability of Hierarchical Cluster Analysis of Cycle Flow
Profiles. While previous use of HCA has focused on flow
profiles of motorized vehicles, this research has demon-
strated by studying the impact of COVID-19 on bicycle flows
that HCA is a flexible tool that can be utilized in a wide range
of flow types and locations, to quantify the impact of new
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situations of which we had no previous experience. By
obtaining valuable results without preclassifying the data as
per previous studies [25, 26], the flexibility of this meth-
odology is demonstrated further. This paves the way for
testing the methodology on subsequent datasets. Though
this study looked at the impact of COVID-19, future uses
could assess the impact on both cycle and motorized vehicle
flows with the introduction of policy measures aimed at
achieving a “Green Recovery” or net zero, such as low-traffic
neighborhoods, clean air zones, or active travel infrastruc-
ture investment. The more evidence decision-makers have
available to them, the more understanding they possess
when making key decisions regarding controversial schemes
[5].

The HCA proved to be effective in predicting whether a
flow profile was strongly associated with commuting or
noncommuting purposes. The assignment of Cluster 3 as the
“traditional commute” profile was validated when the results
revealed that this shape was most prevalent mid-week, in the
city center closest to the region’s CBD and experienced the
greatest reduction as society was instructed to WFH. Even
with further disaggregation of the data, it was not possible to
definitively say what trip purposes were defining the other
shapes, although it is considered they are recreational or
noncommuting in nature. Further research is required be-
yond this to determine HCA’s suitability to infer more detail
of a noncommuting trip by flow profile alone.

While basic descriptive statistics, such as the paired
sample t-test of change in flow volume, give some insight
into patterns of cycling flows within large datasets, HCA of
hourly flows can complement this by also interpreting di-
urnal flow profiles. With this methodology, practitioners
have an additional tool to monitor and characterize cycling
flows during the transition into a postpandemic era.
Moreover, the impact of any future lockdowns, which look
increasingly likely in light of the Omicron variant outbreak
in December 2021, can be analyzed in a consistent way.

4.2. Changing Cycling Flow Patterns during COVID-19.
The results from this research align with the UK govern-
ment’s position that the pandemic resulted in “unprece-
dented” levels of cycling. Notably, flow profiles associated
with noncommuting trips across Tyne and Wear increased
throughout the period of COVID-19 restrictions, especially
those near coastal and suburban areas. This is consistent with
the Glaswegian study into the early stages of lockdown
conducted by Hong et al. [14]. In terms of policy implication,
these trips significantly contribute to the target set out in the
UK Cycling and Walking Investment Strategy to double
cycling trips from 2013 levels by 2025 [4]. As the target does
not discriminate according to journey purpose, these trips
will remain important after the pandemic, especially if the
shift in culture to WFH becomes permanent. Any trips, once
carried out by car that is replaced by bicycle, will be a positive
contribution to achieving the wider sustainability goals such
as achieving net zero.

13

Throughout the duration of the COVID-19 restrictions,
substantial increases in cycling were seen in flows grouped in
the mid-day steady peak, reaching its highest in the full
lockdown period, consistent with noncommuting trips such
as recreation or visiting shops. By disaggregating the data by
notable periods of lockdown restriction and easing, it reveals
the mid-morning peak, late morning peak, and evening-only
clusters increased when hospitality reopened, which we can
speculate is consistent with noncommuting activities such as
morning coffee or lunch and socializing in the evening.
Weekends in pre-COVID-19 days and days after the hos-
pitality sector reopening in 2020 were dominant in the mid-
morning peak, which suggests it may be associated with
shopping and socializing during the day in cafes, bars, and
restaurants.

Suburban cycleways consistently fall in the medium
prevalence of all the clusters with a medium increase in flows
during COVID-19 relative to pre-COVID-19. This suggests
that suburban cycleways are used for a range of trip purposes
and, therefore, less likely to see reductions in flows than their
city center counterparts as people WFH more and commute
less. This potentially makes their flow volumes more resilient
to future change and a safer investment when locating in-
frastructure or implementing schemes.

It should be noted that there were factors other than
reduced motorized traffic associated with the lockdown that
is reasonable to assume affected cycling volumes, such as
cycling becoming one of the few recreational activities
available to people at the time. However, the increase in
noncommuting flows during this time, when traffic volumes
were up to 63% lower than in the previous year, suggests the
possibility of suppressed demand for cycling within the case
study area that was only realized once the perception of
danger associated with cycling among other traffic was
decreased. These findings are consistent with a key inter-
vention outlined in the North East’s local transport plan; the
creation of safe and segregated routes for cycling formed is
in line with national government guidance.

Finally, the city center counters, which were dominant in
the traditional commute and evening peak profiles, showed
the highest reductions in cycle flows during COVID-19,
most significantly during the full lockdown period. This
substantial reduction in commute trips is also consistent
with Hong et al. [14]. As a further four months (May-August
2020) were included when compared to the Hong et al.
study, this study is able to expand on the initial findings and
observed cycle flows beyond the full lockdown period. This
enabled the finding that commuting trips did show signs of
returning to pre-COVID-19 levels as the lockdown was
gradually eased in the subsequent months in the UK, that is,
results consistent with commuter activity within the na-
tionwide bike-sharing market reported in Nikitas et al. [18].
This section has touched upon the implications for policy in
terms of noncommuting cycling; however, in a region such
as North East England with a modest cycling culture, policies
that target any growth or exposure to cycling will have a
positive effect on it being a mode of choice of the commuter
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in the future. While prior to the pandemic local authorities
believed political barriers, namely, the fear that their core,
car-driving voters will be disillusioned by procycling
schemes [5], this study contributes to the growing evidence,
made possible by the pandemic, that there is a desire to cycle
more when given the right conditions. Moving beyond the
pandemic, the new-founded cycling advocacy will generate
political will for further investment in cycling infrastructure
that, if realized, will be inclusive in that all types of cyclists
will benefit to some extent.

4.3. Opportunities for Further Study. Relating these findings
back to Nikitas et al. [18], many temporary schemes failed
due to a lack of understanding of the needs of the users,
possessing this additional information regarding flow profile
enables transport planners to decide whether to prioritize
direct, faster routes (i.e., for regular commuters), or safety
and segregation for attracting less confident, noncommuters
from a wider sociodemographic background [6-10]. Future
research of a qualitative nature could be conducted con-
sidering the findings presented in this manuscript. Surveys
and focus groups could identify the people, the specific trip
purposes, and the cycling conditions that contributed to the
increased cycling volumes experienced during the 2020
lockdown, particularly during the mid-morning peak pe-
riod, which was revealed in this study to experience the
greatest increase in cyclist flows. Given this number of new
cyclists, it would be useful to understand motivation and to
cocreate interventions that would encourage them to con-
tinue to cycle postpandemic. Identifying future cycling in-
frastructure projects in this way maximizes the benefits of
local authority investment at a time of budget constraints.
Furthermore, the HCA will be periodically performed
with cycle flows to gain an understanding of how the flow
profiles change in the postpandemic near future. That being
said, like many countries in the world, the UK is not free of
COVID-19, as evident from the reinstatement of WFH
guidance in the UK as recent as of December 13, 2021, due to
the impact of the Omicron variant. Monitoring of cycling
volumes and transport patterns in relation to lockdowns and
changes in restrictions will continue beyond 2022, providing
an opportunity to apply the methodology presented in this
manuscript, and continue to enrich the knowledge base.

4.4. Limitations. Within the data preparation stage of the
research, it was necessary to substitute 2019 flows with 2018
where inductive loop counters had not sufficiently recorded
data. This represented 5.64% of the total dataset. Given the
slow uptake of cycling in the UK, the difference in flows
between 2018 and 2019 is small (0.5% decrease in North East
England); therefore, dealing with missing values in this way
was considered acceptable, especially when considering the
substantial differences witnessed during 2020 compared to
any other previous year in recent history.

While it has been demonstrated that this methodology is
able to quantify the changes in the shape of diurnal flow
profiles, the causation remains unknown. A traditional daily
commuting flow profile is instantly identifiable by morning
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and evening peaks; however, it is not possible to infer the trip
purpose beyond commuting/noncommuting with flow
profiles alone. While the changes to lockdown restrictions
provided some insight into how the trip profiles changed as
different sectors reopened, without specifically asking a
cyclist the purpose of their trip it is not possible to know. The
dataset consisted of 25 counters recording hourly cycling
flows, 24 hours a day, across two eight-month periods;
therefore, collecting trip purpose information is clearly
outside the scope of this high-level study. However, carrying
out a survey over a limited number of days would make for
an interesting study into how trip purpose changes across
weekdays and nonweekdays, as would the qualitative re-
search, described in the previous section.

5. Conclusions

The green recovery from the COVID-19 pandemic will
require bold, significant interventions in order to achieve net
zero. Cycling will play a part in decarbonizing transport;
however, previous literature states that there is a risk of
public backlash from ill- thought-out schemes designed to
improve cycling, both before the pandemic and during it.
This study provides a methodology to quantify changes to
flow profiles in large datasets that can be used as an addi-
tional tool to complement standard descriptive statistics and
aid the decision-making process. The following conclusions
can be drawn from this research:

(i) HCA is a flexible tool that can be transferred to any
location with appropriate flow data and utilized to
quantify the impact on cycle flows of relatively
unknown situations, the example presented in this
research being the COVID-19 pandemic lockdown;

(ii) The overall volume of cycling substantially in-
creased as a result of UK government-implemented
lockdown restrictions within the case study area of
Tyne and Wear, as experienced in previous studies;

(iii) HCA of daily flow profiles and subsequent disag-
gregation of the data provides additional insight to
decision-makers into changes in cycling patterns
beyond looking only at changes in flow volume,
with it a better understanding of the composition of
journey types on a route that can be taken into
consideration when implementing new schemes;

(iv) Noncommuting flow profiles saw the largest increase
during the lockdown, in locations closer to suburban
or recreational opportunities; therefore, planners
should consider catering to cyclists making such trips
in these locations in order to maintain cycling levels
after the pandemic. This can be achieved by valuing
safety through segregation from vehicular traffic over
the fastest, shortest, and safest route;

(v) As lockdown restrictions eased, flow profiles began
to revert back to the prepandemic norm, although
they never returned even with all restrictions eased.
Planners will need to pay close attention to whether
the shift to WFH is maintained after the COVID-19
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pandemic is behind us and the associated cycling
flows remain;

(vi) This study demonstrates that substantial increases
in cycling flows can be achieved given the right
conditions. While the increased popularity of cy-
cling during the pandemic had short-term benefits,
the consequential increased cycling advocacy and
political will potentially contribute to longer-term
cycling policy aims, paving the way for more am-
bitious investment in cycling infrastructure that will
benefit all cyclists and trip purposes.
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