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EXTENDING CSR DECOMPOSITION TO TROPICAL INHOMOGENEOUS1

MATRIX PRODUCTS∗2

ARTHUR KENNEDY-COCHRAN-PATRICK† AND SERGĔı SERGEEV‡3

Abstract. This article presents an attempt to extend the CSR decomposition, previously introduced for tropical4
matrix powers, to tropical inhomogeneous matrix products. The CSR terms for inhomogeneous matrix products are5
introduced, then a case is described where an inhomogeneous product admits such CSR decomposition after some6
length and give a bound on this length. In the last part of the paper a number of counterexamples are presented to7
show that inhomogeneous products do not admit CSR decomposition under more general conditions.8

Key words. max-plus algebra, matrix product, factor-rank, walk, matrix decompositions9

AMS subject classifications. 15A80, 68R99, 16Y60, 05C20, 05C22, 05C2510

1. Introduction. Tropical (max-plus) linear algebra is the linear algebra developed over the set11

Rmax = R ∪ {−∞} equipped with the additive operator ⊕ : a⊕ b = max(a, b) and the multiplicative12

operator ⊗ : a⊗ b = a+ b. For brevity we denote ε = −∞: this element of the semiring is neutral13

with respect to addition, thus playing the role of semiring zero. In turn, the usual zero 0 plays the14

role of semiring unity, being neutral with respect to multiplication. Note that for any a ∈ R there is15

a multiplicative inverse: element a− = a such that a− ⊗ a = a⊗ a− = 0.16

We will be working with the max-plus multiplication of matrices A⊗B defined by the operation17

(A⊗B)i,j =
⊕

1≤k≤n

ai,k ⊗ bk,j = max
1≤k≤n

(ai,k + bk,j)18

19

using two matrices A = (ai,j) and B = (bi,j) of appropriate sizes.20

Consider the tropical dynamical system of equations given by21

x(0) = x022

x(k) = x(k − 1)⊗Ak for k ≥ 123

x(k) = x0 ⊗A1 ⊗ . . .⊗Ak = x0 ⊗ Γ(k).2425

Here the matrices Ai are taken in some unspecified order from a possibly infinite set of matrices X .26

In practical terms, this represents a dynamical system where some accidental changes may occur27

over time. This has useful applications in modelling scheduling systems that are subject to change.28

Much work has been done for the case where the matrix Ai is the same at each step. Cohen29

et al. [8, 7] were the first to observe that, under some mild conditions, the tropical powers {At}t≥130

become periodic after a big enough time. A number of bounds on the transient of such periodicity31

were then obtained, in particular, by Hartmann and Arguelles [9], Akian et al. [2], and Merlet et32

al. [17, 16]. In particular, Merlet et al. [17] offer an approach based on the CSR decompositions33

and CSR expansions of tropical matrix powers introduced by Sergeev and Schneider [20, 22]. Let34

us note that a preliminary version of such decompositions was introduced and studied before by35

Nachtigall [19] and Molnárová [18], and that similar decompositions appear in Akian et al. [2].36

It is difficult to speak of ultimate periodicity in the case of inhomogeneous products. However, one37

can observe that CSR decompositions are an algebraic expression of turnpike phenomena occurring in38
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2 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

tropical dynamical systems driven by one matrix. Namely, they express the fact that in such systems39

there are optimal trajectories (or walks) with a special structure: after a finite number of steps they40

arrive to a well-defined group of nodes called critical nodes, then dwell within that group of nodes,41

and then use a finite number of steps to reach the destination. The same phenomena will likely occur42

in inhomogeneous products as well, but only under certain restrictive conditions. In particular, we43

can agree that all matrices constituting these inhomogeneous products have the same sets of critical44

nodes, and for a starter, we can consider the case where all these matrices have just one critical node.45

Under this and some other assumptions, Shue et al. [24] found that products Γ(k) become tropical46

rank-1 matrices (i.e., tropical outer products) when k is sufficiently big. Kennedy-Cochran-Patrick et47

al. [13] improved this result by giving a lower bound for k to guarantee that Γ(k) becomes a rank-148

matrix (i.e., a tropical outer product). In the present paper we show that the above results of [13, 24]49

can be generalised further by introducing the factor rank transient: the length of the product after50

which the product is guaranteed to have a tropical factor rank not exceeding certain number. Rather51

than directly proving the factor rank property from an inhomogeneous product, a CSR analogue is52

used, which changes the aim to develop bounds on CSR transients rather than factor rank transients.53

Upon showing that the analogue definition of CSR exhibits similar properties to the original CSR54

(see the apper by Sergeev and Schneider [22]) then we can use similar proof methods and results55

from Merlet, Nowak, Schneider and Sergeev [16] as well as Brualdi and Ryser [5] to develop the56

key result, which is Theorem 5.8, together with Corollary 5.9, which gives an explicit bound on the57

length of the product after which it becomes CSR. However there are limitations to this approach,58

namely, where it can be shown for other cases that no bound exists for the CSR transient, and then59

we cannot guarantee a factor rank property. Three cases where CSR does not work are given along60

with the counterexamples that demonstrate this. In all these counterexamples we present families of61

words of infinite length, in which the product made using such a word is not CSR.62

Recall that tropical factor rank of a matrix A, studied together with many other concepts of63

rank in Akian et al. [1], can be defined as follows: for a matrix A ∈ Rn×mmax , the tropical factor rank r64

of A is the smallest r ∈ N such that A = U ⊗ L where U ∈ Rn×rmax and L ∈ Rr×mmax for some n,m ∈ N.65

Note that the factor rank of A is also equal to the minimum number of factor rank-1 matrices whose66

sum is equal to A, see [1][Definition 7.1].67

For wider reading, Hook [11] shows that, by approximating the rank of the product in a min-plus68

setting, one can find and express the predominant structure in the associated digraph of the matrices69

forming the product. Hook has also looked at turnpike theory with respect to the max-plus linear70

systems in [12]. In this paper he studies infinite length products, then uses a turnpike property to71

develop a factorisation of said matrix product. In terms of turnpikes, many results were obtained for72

them in the context of dynamic programming, in both discrete and continuous settings. Specifically,73

Kontorer and Yakovenko [15] used turnpike theory and Bellman equations to work with discrete74

optimal control problems. Following his work, Kolokoltsov and Maslov [14] developed turnpike theory75

for discrete optimal control problems in the context of idempotent analysis and tropical mathematics.76

The paper will proceed as follows. The first section will cover the necessary definitions and77

notation as well as a brief overview of [13] to give a more concrete background for the ensuing work.78

In section 5 we generalise the work from [13] to a general case. For section 6 we look at the cases79

where no bound can exist using counterexamples.80

2. Definitions and Notation.81

2.1. Weighted digraphs and tropical matrices. This subsection presents some concepts and82

notation expressing the connection between tropical matrices and weighted digraphs. Monographs [6,83

10] are our basic references for such definitions.84

Definition 2.1 (Weighted digraphs). A directed graph (digraph) is a pair (N,E) where N is85
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EXTENDING CSR DECOMPOSITION TO TROPICAL INHOMOGENEOUS MATRIX PRODUCTS 3

a finite set of nodes and E ⊆ N ×N = {(i, j) : i, j ∈ N} is the set of edges, where (i, j) is a directed86

edge from node i to node j.87

A weighted digraph is a digraph with associated weights wi,j ∈ Rmax for each edge (i, j) in88

the digraph.89

A digraph associated with a square matrix A is a weighted digraph D(A) = (NA, EA) where90

the set NA has the same number of elements as the number of rows or columns in the matrix A.91

The set EA ⊆ NA×NA is the set of edges in D(A), where (i, j) is an edge if and only if ai,j 6= ε, and92

in this case the weight of (i, j) equals the corresponding entry in the matrix A, i. e. wi,j = ai,j ∈ Rmax.93

Definition 2.2 (Walks, paths and weights). A sequence of nodes W = (i0, . . . , il) is called94

a walk on a weighted digraph D = (N,E) if (is−1, is) ∈ E for each s : 1 ≤ s ≤ l. This walk is a cycle95

if the start node i0 and the end node il are the same. It is a path if no two nodes in i0, . . . , il are96

the same. The length of W is l(W ) = l.97

The weight of W is defined as the max-plus product (i. e., the usual arithmetic sum) of the weights of98

each edge (is−1, is) traversed throughout the walk, and it is denoted by pD(W ). Note that a sequence99

W = (i0) is also a walk (without edges), and we assume that it has weight and length 0.100

The mean weight of W is defined as the ratio pD(W )/l(W ).101

For a digraph, being strongly connected is a particularly useful property.102

Definition 2.3 (Strongly connected, irreducible, completely reducible). A digraph is strongly103

connected, if for any two nodes i and j there exists a walk connecting i to j. A square matrix is104

irreducible if the graph associated with it in the sense of Definition 2.1 is strongly connected.105

A digraph is called completely reducible, if it consists of a number of strongly connected compo-106

nents, such that no two nodes of any two different components can be connected to each other by a107

walk.108

Note that, trivially, any strongly connected digraph is completely reducible.109

The following more refined notions are crucial in the study of ultimate periodicity of tropical110

matrix powers, and also for the present paper.111

Definition 2.4 (Cyclicity and cyclic classes). Suppose that a digraph is completely reducible.112

Then the cyclicity of that digraph is the lowest common multiple of the greatest common divisors of113

the lengths of cycles within each strongly connected component. It will be denoted by γ.114

Suppose now that a digraph with set of nodes N and cyclicity γ is strongly connected. For two115

nodes i, j ∈ N we say that i and j are in the same cyclic class if there exists a walk of length modulo116

γ connecting i to j or j to i. This splits the set of nodes into γ cyclic classes: C0, . . . , Cγ−1. The117

notation Cl →k Cm means that some (and hence all) walks connecting nodes of Cl to nodes of Cm118

have lengths congruent to k modulo γ. The cyclic class containing i will be also denoted by [i].119

The correctness of the above definition of cyclic classes follows, for example, from [5, Lemma120

3.4.1]: in fact, every walk from i to j on D has the same length modulo γ.121

In tropical algebra, we often have to deal with two digraphs: 1) the digraph associated with A122

and 2) the critical digraph of A. The latter digraph (being a subdigraph of the first) is defined below.123

Definition 2.5 (Maximum cycle mean and critical digraph). For a square matrix A, the max-124

imum cycle mean of D(A) denoted as λ(A) (equivalently, the maximum cycle mean of A) is the125

biggest mean weight of all cycles of D(A).126

A cycle in D(A) is called critical if its mean weight is equal to the maximum cycle mean (i.e., is127

maximal).128

The critical digraph of A, denoted by C(A), is the subdigraph of D(A) whose node set Nc and129

edge set Ec consist of all nodes and edges that belong to the critical cycles (i.e., that are critical).130

This manuscript is for review purposes only.



4 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

Note that any critical digraph is completely reducible. As shown already in [8, 7], the cyclicity of131

critical digraph of A is the ultimate period of the tropical matrix powers sequence {At}t≥1, provided132

that A is irreducible and λ(A) = 0. See also Butkovič [6] and Sergeev [20] for more detailed analysis133

of the ultimate periodicity of this sequence.134

Below we will use notation for walk sets and their maximal weights that is similar to that of135

Merlet et al. [17].136

Definition 2.6 (Sets of walks). Let D = (N,E) be a weighted digraph and let i, j ∈ N . The137

three sets WD(i→ j), Wk
D(i→ j) and WD(i

N−→ j), where N ⊆ N is a subset of nodes, are defined138

as follows:139

WD(i→ j) is the set of walks over D connecting i to j;140

Wk
D(i→ j) is the set of walks over D of length k connecting i to j;141

WD(i
N−→ j) is the set of walks over D connecting i to j that traverse at least one node of N .142

The supremum of the weights of walks in these sets will be denoted by p(W).143

2.2. Main assumptions. In this subsection, we set out the main assumptions about X and144

the matrices Aα that are drawn from this set and give some relevant definitions.145

Definition 2.7 (Geometrical equivalence). Let the matrices A and B have their respective146

digraphs D(A) = (NA, EA) and D(B) = (NB , EB). We say that A and B are weakly geometrically147

equivalent if NA = NB and EA = EB, and they are strongly geometrically equivalent if they are148

weakly geometrically equivalent and C(A) = C(B).149

We cannot assume that the maximum cycle mean of each Aα ∈ X is zero therefore we normalise150

each matrix to give the new set of matrices Y, where151

Y = {A′α : A′α = λ−(Aα)⊗Aα ∀Aα ∈ X}.152153

Here λ−(Aα) = −λ(Aα). From Assumption A stated below it follows that λ(Aα) ∈ R, thus the154

inverse λ−(Aα) is well defined.155

Notation 2.8 (Asup and Ainf).156

Asup: entrywise supremum of all matrices in Y. In formula, Asup =
⊕

α : Aα∈Y Aα.157

Ainf : entrywise infimum of all matrices in Y.158

Note that the concept of Asup has been used before for various purposes. In [4], Gursoy, Mason159

and Sergeev use the same definition to develop a common subeigenvector for the entire semigroup of160

matrices used to create Asup, which is a technique we will use later on. In [3], Gursoy and Mason use161

Asup, and λ(Asup) to develop bounds for the max-eigenvalues over a set of matrices.162

We now state the main assumptions to be used in the paper.163

Assumption A. Any matrix Aα ∈ X is irreducible.164

Assumption B. Any two matrices Aα, Aβ ∈ X are strongly geometrically equivalent to each165

other and to Asup, which has all entries in Rmax.166

The following notation is defined under assumptions A and B.167

Notation 2.9. The common associated digraph of the matrices from X will be denoted by168

D(X ) = (N,E), and the common critical digraph by C(X ) = (Nc, Ec). In general, this critical169

digraph has m ≥ 1 strongly connected components, denoted by Cν , for ν = 1, . . . ,m.170

Assumption C. Any matrix Aα ∈ X is weakly geometrically equivalent to Ainf . In other words,171

for each (i, j) ∈ E, we have (Ainf)ij 6= −∞.172

Assumption D1. For the matrix Asup, we have λ(Asup) = 0.173

This manuscript is for review purposes only.
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The first three assumptions come from the previous works by Shue et al. [24] and Kennedy-174

Cochran-Patrick et al. [13]: however, we will no longer assume that the critical graph consists just of175

one loop.176

The final assumption below is inspired by the visualisation scaling studied in Sergeev et al [23],177

see also [21] and references therein for more background on this scaling.178

Definition 2.10 (Visualisation). Matrix B is called a visualisation of A if there exists a diagonal179

matrix X = diag(x), with entries Xii = xi on the diagonal and Xij = ε off the diagonal (i.e., if180

i 6= j), such that B = X−1AX and B satisfies the following conditions: Bij = λ(B) for (i, j) ∈ Ec(B)181

and Bij ≤ λ(B) for (i, j) /∈ Ec(B).182

Once λ(A) 6= ε, a visualisation of A always exists and, moreover, vectors x providing a visualisation183

by means of diagonal matrix scaling A 7→ X−1AX are precisely the tropical subeigenvectors of A,184

i.e., vectors satisfying Ax ≤ λ(A)x. Using this information we have the following lemma.185

Lemma 2.11. Suppose that the vector x satisfies Asupx ≤ x. Then x provides a simultaneous186

visualisation for all matrices of X (and Y).187

Proof. Let x be the vector that satisfies Asupx ≤ x. By construction, Asup is the supremum matrix188

of all the normalised generators in X . Therefore for these normalised generators Aα, Aα ≤ Asup.189

Hence the vector x also satisfies Aαx ≤ x and it can be used to visualise Aα. As this applies for all190

α then they can be simultaneously visualised. As Y is the set of normalised matrices from X then191

the same applies to any matrix from Y as well.192

This is referred to as the set of matrices having a common visualisation, therefore, in what follows193

we assume that we have performed this common visualisation on all of the matrices in X (and Y) to194

give the final core assumption.195

Assumption D2. For all Aα ∈ Y, we have (Aα)ij = 0 and (Asup)ij = 0 for (i, j) ∈ Ec, and196

(Aα)ij ≤ 0 and (Asup)ij ≤ 0 for (i, j) /∈ Ec.197

From now on we will use Assumption D2 instead of Assumption D1. Note however, if the theory198

developed in this paper is applied to a set of matrices satisfying Assumption D1, then the parameters199

appearing in the bounds are computed using the entries of their visualised counterparts.200

2.3. Extension to inhomogeneous products. Recall now that we have a set of matrices Y ,201

from which we can select matrices in arbitrary sequence.202

Definition 2.12. The word associated with the matrix product Γ(k) is the string of characters203

(subscript) i from Ai ∈ Y that make up said Γ(k).204

Let us also introduce the trellis digraph associated with a matrix product Γ(k) = A1⊗A2⊗. . .⊗Ak205

(as in [13], inspired by Viterbi algorithm).206

Definition 2.13. The trellis digraph T (P ) = (N , E) associated with the product Γ(k) = A1 ⊗207

A2 ⊗ . . .⊗Ak made from the word P is the digraph with the set of nodes N and the set of edges E,208

where:209

(1) N consists of k + 1 copies of N which are denoted N0, . . . , Nk, and the nodes in Nl for each210

0 ≤ l ≤ k are denoted by 1 : l, . . . , n : l;211

(2) E is defined by the following rules:212

a) there are edges only between Nl and Nl+1 for each l,213

b) we have (i : (l − 1), j : l) ∈ E if and only if (i, j) is an edge of D(Y), and the weight of214

that edge is (Al)i,j.215

The weight of a walk W on T (P ) is denoted by pT (W ).216
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6 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

Below we will need to use 1) walks that start at one side of the trellis and end at an intermediate217

node, 2) walks that start at an intermediate node and end at the other side of the trellis, 3) walks218

that connect one side of the trellis to the other. More formally, we give the following definition.219

Definition 2.14. Consider a trellis digraph T (P ).220

By an initial walk connecting i to j on T (P ) we mean a walk on T (P ) connecting node i : 0 to221

j : m, where 0 ≤ m ≤ k.222

By a final walk connecting i to j on T (P ) we mean a walk on T (P ) connecting node i : l to223

j : k, where 0 ≤ l ≤ k.224

A full walk connecting i to j on T (P ) is a walk on T (P ) connecting node i : 0 to j : k.225

We will mostly work with the following sets of walks on T .226

Notation 2.15 (Walk sets on T (P )).227

Wk
T ,full(i→ j), W l

T ,init(i→ j) and W l
T ,final(i→ j) : set of full walks (of length k), and sets228

of initial and final walks of length l on T connecting i to j.229

Wk
T ,full(i

Nc−−→ j), W l
T ,init(i

Nc−−→ j) and W l
T ,final(i

Nc−−→ j) : set of full walks (of length k), and230

sets of initial and final walks of length l on T traversing a critical node and connecting i to j;231

WT ,init(i→ Nc‖): set of initial walks connecting i to a node in Nc so that this node of Nc232

is the only node of Nc that is visited by the walk and it is visited only once;233

WT ,final(‖Nc → j): set of final walks connecting a node in Nc to j so that this node of Nc is234

the only node of Nc that is visited by the walk and it is visited only once.235

i→T j : this denotes the situation where i : 0 can be connected to j : k on T by a full walk.236

Recall that p(W) denotes the optimal weight of a walk in a set of walks W. The optimal walk237

interpretation of entries of Γ(k) in terms of walks on T = T (P ) is now apparent:238

(1) Γ(k)i,j = p
(
Wk
T ,full(i→ j)

)
.239

We will also need special notation for the optimal weights of walks in the sets WT ,init(i→ Nc‖)240

and WT ,final(‖Nc → j) introduced above.241

Notation 2.16 (Optimal weights of walks on T (P )).242

w∗i,Nc = p(WT ,init(i→ Nc‖)) : the maximal weight of walks in WT ,init(i→ Nc‖),243

v∗Nc,j = p(WT ,final(‖Nc → j)) : the maximal weight of walks in WT ,final(‖Nc → j).244

The following notation is for optimal values of various optimisation problems involving paths245

and walks on D(Asup), D(Ainf), which will be used in our factor rank bounds.246

Notation 2.17 (Optimal weights of walks on D(Asup) and D(Ainf)).247

αi,Nc : the weight of an optimal path on D(Asup) connecting node i to a node in Nc;248

βNc,j : the weight of an optimal path on D(Asup) connecting a node in Nc to node j;249

γi,j : the weight of an optimal path on D(Asup) connecting node i to node j without traversing250

any node in Nc.251

wi,Nc : the weight of an optimal path on D(Ainf) connecting node i to a node in Nc;252

vNc,j : the weight of an optimal path on D(Ainf) connecting a node in Nc to node j;253

uki,j : the weight of an optimal walk on D(Ainf) of length k connecting node i to node j.254

We remark by saying that the Kleene star, which is explored in [6] and is defined as (A)∗ =255

I ⊕A⊕A2 ⊕ . . ., of Asup can be used to find the values of αi,Nc and βNc,j . Similarly the Kleene star256

of Ainf can be used to find wi,Nc and vNc,j . Let us end this section with the following observation,257

which follows from the geometric equivalence (Assumptions B and C)258

Lemma 2.18. The following are equivalent: (i) i→T j; (ii) (Γ(k))i,j > ε; (iii) uki,j > ε.259
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EXTENDING CSR DECOMPOSITION TO TROPICAL INHOMOGENEOUS MATRIX PRODUCTS 7

3. CSR products. In this section we introduce CSR decomposition of inhomogeneous products260

and study its properties. It should be noted that in this section we will use Assumptions A, B and D2261

for every proof presented. We will give the two definitions of the CSR decomposition of Γ(k) and262

prove their equivalence. However in order to do that we require another definition.263

Definition 3.1. Let the matrix A have cyclicity γ. The threshold of ultimate periodicity of264

powers of A, is a bound T (A) such that ∀k ≥ T (A), Ak = Ak+γ .265

This threshold is required to develop the CSR decomposition for Γ(k) as seen in the following266

definitions.267

Definition 3.2 (CSR-1). Let Γ(k) = A1⊗ . . .⊗Ak be a matrix product of length k made using268

the word P . Define C, S and R as follows:269

S is the matrix associated with the critical graph, i.e.270

(2) S = (si,j) =

{
0 if (i, j) ∈ Ec
ε otherwise.

271

Let γ be the cyclicity of critical graph, and t be a big enough number, such that tγ ≥ T (S),272

where T (S) is the threshold of ultimate periodicity of (the powers of) S.273

C and R are defined by the following formulae:274

C = Γ(k)⊗ S(t+1)γ−k(mod γ), R = S(t+1)γ−k(mod γ) ⊗ Γ(k).275

The product of C, Sk(mod γ) and R will be denoted by CSk(mod γ)R[Γ(k)]. We say that Γ(k)276

is CSR if CSk(mod γ)R[Γ(k)] is equal to Γ(k).277

For completeness we must also state that for any matrix in A ∈ Rn×nmax , A0 = I, where I is the278

tropical identity matrix, i.e. I = diag(0). In the next definition, we prefer to define CSR terms279

corresponding to the components of the critical graph.280

Definition 3.3 (CSR-2). Let Γ(k) = A1 ⊗ . . . ⊗ Ak be a matrix product of length k, and let281

Cν , for ν = 1, . . . ,m be the components of C(Y). For each ν = 1, . . . ,m define Cν , Sν and Rν as282

follows:283

Sν ∈ Rn×nmax is the matrix associated with the s.c.c. Cν of the critical graph, i.e.,284

(3) Sν = (si,j) =

{
0 if (i, j) ∈ Cν ,

ε otherwise.
285

Let γν be the cyclicity of critical component, and tν be a big enough number, such that286

tνγν ≥ T (Sν), where T (Sν) is the threshold of ultimate periodicity of (the powers of) Sν .287

Cν and Rν are defined by the following formulae:288

Cν = Γ(k)⊗ S(tν+1)γν−k(mod γν)
ν , Rν = S(tν+1)γν−k(mod γν)

ν ⊗ Γ(k).289

The product of Cν , S
k(mod γν)
ν and Rν will be denoted by CνS

k(mod γν)
ν Rν [Γ(k)]. We say that

Γ(k) is CSR if

Γ(k) =

m⊕
ν=1

CνS
k(mod γν)
ν Rν [Γ(k)].
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Using the definitions given above, we can write out the CSR terms more explicitly:290

CSk(mod γ)R[Γ(k)] = Γ(k)⊗ S(t+1)γ−k(mod γ) ⊗ Sk(mod γ) ⊗ S(t+1)γ−k(mod γ) ⊗ Γ(k)

= Γ(k)⊗ S2(t+1)γ−k(mod γ) ⊗ Γ(k),

CνS
k(mod γν)
ν Rν [Γ(k)] = Γ(k)⊗ S2(tν+1)γν−k(mod γν)

ν ⊗ Γ(k),

291

Since the powers of S are ultimately periodic with period γ and the powers of Sν are ultimately292

periodic with period γν , and since also we have tγ ≥ T (S) and tνγν ≥ T (Sν), we can reduce the293

exponents of S and Sν to (t+ 1)γ − k(mod γ) and (tν + 1)γν − k(mod γν), respectively, and thus294

CSk(mod γ)R[Γ(k)] = Γ(k)⊗ Sv ⊗ Γ(k), CνS
k(mod γν)
ν Rν [Γ(k)] = Γ(k)⊗ Svνν ⊗ Γ(k),

for v = (t+ 1)γ − k(mod γ), vν = (tν + 1)γν − k(mod γν), tγ ≥ T (S), tνγν ≥ T (Sν).
(4)295

Below we will also need the following elementary observation.296

Lemma 3.4. Let v = (t + 1)γ − k(mod γ), where tγ ≥ T (S). Then, for any ν, we can find tν297

such that v = (tν + 1)γν − k(mod γν) and tνγν ≥ T (Sν).298

Proof. The existence of tν such that v = (tν + 1)γν − k(mod γν) follows since γ is a multiple of299

γν , and then we also have tνγν ≥ tγ ≥ T (S) ≥ T (Sν).300

This lemma allows us to also write301

(5) CνS
k(mod γν)
ν Rν [Γ(k)] = Γ(k)⊗ Svν ⊗ Γ(k),302

with v as in (4).303

Proposition 3.5. Γ(k) is CSR by Definition 3.2 if and only if it is CSR by Definition 3.3.304

Proof. We need to show that305

(6) CSk(mod γ)R[Γ(k)] =

m⊕
ν=1

CνS
k(mod γν)
ν Rν [Γ(k)]306

for arbitrary k. Using (4) and (5) we can rewrite this equivalently as307

(7) Γ(k)⊗ S(t+1)γ−k(mod γ) ⊗ Γ(k) = Γ(k)⊗

(
m⊕
ν=1

S(t+1)γ−k(mod γ)
ν

)
⊗ Γ(k)308

with tγ ≥ T (S). To obtain this equality, observe that S =
⊕m

ν=1 Sν , and as Sν1 ⊗ Sν2 = −∞ for309

any ν1 and ν2 we can raise both sides to the same power to give us St =
⊕m

ν=1 S
t
ν for any t. This310

shows (7), and the claim follows.311

For a similar reason, we also have the following identities:312

C =

m⊕
ν=1

Cν , R =

m⊕
ν=1

Rν ,

C ⊗ Sk(mod γ) =

m⊕
ν=1

Cν ⊗ Sk(mod γν)
ν , Sk(mod γ) ⊗R =

m⊕
ν=1

Sk(mod γν)
ν ⊗Rν .

(8)313

To give an optimal walk interpretation of CSR, we will need to define the trellis graph corre-314

sponding to these terms, by modifying Definition 2.13.315
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Definition 3.6 (Symmetric extension of the trellis graph). Let v = (t+ 1)γ − k(mod γ), where316

t is a large enough number such that tγ ≥ T (S).317

Define T ′(Γ(k)) as the digraph T ′ = (N ′, E ′) with the set of nodes N ′ and edges E ′, such that:318

(1) N ′ consists of 2k+ v+ 1 copies of N which are denoted N0, . . . , N2k+v and the nodes for Nl319

for each 0 ≤ l ≤ 2k + v are denoted by 1 : l, . . . , n : l;320

(2) E ′ is defined by the following rules:321

a) there are edges only between Nl and Nl+1,322

b) for 1 ≤ l ≤ k we have (i : l − 1, j : l) ∈ E ′ if and only if (i, j) ∈ E(Y) and the weight of323

the edge is (Al)i,j,324

c) for k + v + 1 ≤ l ≤ 2k + v we have (i : l − 1, j : l) ∈ E ′ if and only if (i, j) ∈ E(Y) and325

the weight of the edge is (Al−k−v)i,j,326

d) for k < l < k + v + 1 we have (i : l − 1, j : l) ∈ E ′ if and only if (i, j) ∈ C(Y) and the327

weight of the edge is 0.328

The weight of a walk on T ′(Γ(k)) is denoted by pT ′(W ).329

If we consider the walks in W2k+v
T ′,full(i→ j) then, in the middle of the walk for l satisfying k < l <330

k + v + 1, the walk is confined in one of the components of C(Y). The set of walks confined in the331

νth component of C(Y) in the middle of the walk for l satisfying k < l < k + v + 1, is denoted by332

W2k+v
T ′,full(i

[Nνc ]−−−→ j). The following optimal walk interpretation of CSR terms on T ′ is now obvious.333

Lemma 3.7 (CSR and optimal walks). The following identities hold for all i, j334

(CSk(mod γ)R[Γ(k)])i,j = p
(
W2k+v
T ′,full(i→ j)

)
,

(CνS
k(mod γν)
ν Rν [Γ(k)])i,j = p

(
W2k+v
T ′,full(i

[Nνc ]−−−→ j)

)
,

(9)335

where v = (t+ 1)γ − k(mod γ), with tγ ≥ T (S).336

Proof. With (4), the first identity follows from the optimal walk interpretation of Γ(k)⊗Sv⊗Γ(k),337

and the second identity follows from (5) and the optimal walk interpretation of Γ(k)⊗ Svν ⊗ Γ(k).338

In what follows, we mostly work with Definition 3.3, but we can switch between the equivalent339

definitions if we find it convenient.340

We now present a useful lemma that shows equality for columns of Cν and rows of Rν with341

indices in the same cyclic class.342

Lemma 3.8. For any i and for any two nodes x and y in the same cyclic class of the critical343

component Cν we have344

(10) (Cν)i,x = (Cν)i,y and (Rν)x,i = (Rν)y,i345

Proof. We prove the lemma for columns, as the case of the rows is similar.346

For any i, x, denote (Cν)i,x by ci,x. From the definition of Cν , it follows that ci,x is the weight347

of an optimal walk in Wk+(tν+1)γν−k(mod γν)
T ′,init (i

Nνc−−→ j) where tνγν ≥ T (Sν), and such walk consists of348

two parts. The first part is a full walk on T connecting i to the critical subgraph at some node s.349

The second part is a walk over the critical subgraph of length (tν + 1)γν − k(mod γν) connecting s to350

x with weight zero. As the length of the second walk is greater than T (Sν), a walk connecting s351

to x exists if and only if [s]→−k(mod γν) [x]. If a full walk connecting i to [s] on T exists then, for352

arbitrary x, y in the same cyclic class, ci,x and ci,y are both equal to the optimal weight of all walks353

connecting i to [s] on T , where [s] →−k(mod γν) [x], otherwise both ci,x and ci,y are equal to −∞.354

This shows that ci,x = ci,y.355
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The case of rows of Rν is considered similarly, but instead of initial walks one has to use final356

walks on T ′.357

We can use this to prove the same property for C and R of Definition 3.2.358

Corollary 3.9. For any i and for any two nodes x and y in the same critical component and359

the same cyclic class of said critical component, we have360

(11) Ci,x = Ci,y and Rx,i = Ry,i361

Proof. We will prove only the first identity, as the proof of the second identity is similar. Let362

x, y belong to the same component Cµ of C(Y), and let them belong to the same cyclic class of that363

component. By Lemma 3.8 we have (Cµ)i,x = (Cµ)i,y, and we also have (Cν)i,x = (Cν)i,y = ε for364

any ν 6= µ. Using these identities and (8), we have365

Ci,x =

(
m⊕
ν=1

Cν

)
i,x

= (Cµ)i,x = (Cµ)i,y =

(
m⊕
ν=1

Cν

)
i,y

= Ci,y.366

367

The next theorem explains why CSR is useful for inhomogeneous products. Note that in the368

proof of it we use the CSR structure rather than the Γ(k)⊗ Sv ⊗ Γ(k) representation that was used369

above.370

Theorem 3.10. The factor rank of each CνS
k(mod γν)
ν Rν [Γ(k)] is no more than γν , for ν =371

1, . . . ,m, and the factor rank of CSk(mod γ)R[Γ(k)] is no more than
∑m
ν=1 γν .372

Proof. For each ν = 1, . . . ,m, take all the nodes from Gν and order them into cyclic classes373

Cν0 , . . . , Cνγν−1. Take two columns with indices x, y ∈ Cνi from the matrix Cν . As they are in the same374

cyclic class, by Lemma 3.8 the columns are equal to each other. This means that we can take a375

column representing a single node from each cyclic class and since there are γν distinct classes then376

there will be γν distinct columns of Cν . The same also holds for any two rows of Rν : if the row377

indices are in the same cyclic class, then the rows are equal, so that we have γν distinct rows.378

Let us now check that the same holds for S
k(mod γν)
ν ⊗Rν . By the construction of S

k(mod γν)
ν we

know that if (S
k(mod γν)
ν )ij 6= 0 then [i]→k(mod γν) [j]. Therefore

(Sk(mod γν)
ν ⊗Rν)i,· =

⊕
j∈Nc

(Sk(mod γν)
ν )ij ⊗ (Rν)j,· =

⊕
j : [i]→k(mod γν )[j]

(Sk(mod γν)
ν )ij ⊗ (Rν)j,· = (Rν)j,·.

This means that for a row i such that [i]→k(mod γν) [j] we have (S
k(mod γν)
ν ⊗Rν)i,· = (Rν)j,· and all379

such rows of S
k(mod γν)
ν ⊗Rν are equal to each other.380

Our next aim is to define, for each ν, matrices C ′ν and R′ν with γν rows and γν columns, such381

that CνS
k(mod γν)
ν Rν [Γ(k)] = C ′ν ⊗R′ν . To form matrix C ′ν , we select a node of Cν from each cyclic382

class Cν0 , . . . , Cνγν−1 and define the column of C ′ν whose index is the number of this node to be the383

column of Cν with the same index. The rest of the columns of C ′ν are set to −∞. To form matrix384

R′ν , we use the same selected nodes, but this time (instead of taking columns of Cν and making them385

columns of C ′ν) we take the rows from S
k(mod γν)
ν ⊗ Rν whose indices are the numbers of selected386

nodes and make them rows of R′ν . The rest of the rows of R′ν are set to −∞. Since the rows of Cν387

with indices in the same cyclic class are equal to each other and the same is true about the rows388

of S
k(mod γν)
ν ⊗ Rν , we have CνS

k(mod γν)
ν Rν [Γ(k)] = C ′ν ⊗ R′ν , thus the factor rank of any of these389

terms is no more than γν .390
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We next form the matrices C ′ =
⊕m

ν=1 C
′
ν and R′ =

⊕m
ν=1R

′
ν . Obviously, C ′ν1 ⊗R

′
ν2 = −∞ for391

ν1 6= ν2 and therefore392

C ′ ⊗R′ =

m⊕
ν=1

C ′ν ⊗R′ν =

m⊕
ν=1

CνS
k(mod γν)
ν Rν [Γ(k)] = CSk(mod γ)R[Γ(k)].393

394

Finally, as C ′ and, respectively, R′ have
∑m
ν=1 γν columns with finite entries and, respectively, rows395

with finite entries with the same indices, CSk(mod γ)R[Γ(k)] = C ′ ⊗ R′ has factor rank at most396 ∑m
ν=1 γν .397

Corollary 3.11. If Γ(k) is CSR, then its rank is no more than
∑m
ν=1 γν .398

Let us also prove the following results that are similar to [22, Corollary 3.7].399

Proposition 3.12. For each ν = 1, . . . ,m400

(Cν ⊗ Sk(mod γν)
ν ⊗Rν)·,j = (Cν ⊗ Sk(mod γν)

ν )·,j for j ∈ N ν
c401

(Cν ⊗ Sk(mod γν)
ν ⊗Rν)i,· = (Sk(mod γν)

ν ⊗Rν)i,· for i ∈ N ν
c .402403

Proof. As the proofs are very similar for both statements we will only prove the first and omit
the proof for the second statement. We begin by observing that

(Cν ⊗ Sk(mod γν)
ν )i,j = p

(
Wk+tνγν
T ′,init (i→ j)

)
,

where we used the definitions of Cν and Sν and the identity S
(tν+1)γν
ν = Stνγνν (since tνγν ≥ T (Sν)).404

Here it is convenient to choose tν that satisfies (tν + 1)γν − k(mod γν) = (t+ 1)γ − k(mod γ), with t405

used in the definition of T ′. With this choice tνγν ≤ tγ.406

Using (9), all we need to show is that p

(
W2k+v
T ′,full(i

[Nνc ]−−−→ j)

)
= p

(
Wk+tνγν
T ′,init (i→ j)

)
, where407

v = (t+ 1)γ − k(mod γ). We will achieve this by proving these two inequalities:408

p

(
W2k+v
T ′,full(i

[Nνc ]−−−→ j)

)
≥ p

(
Wk+tνγν
T ′,init (i→ j)

)
,

p

(
W2k+v
T ′,full(i

[Nνc ]−−−→ j)

)
≤ p

(
Wk+tνγν
T ′,init (i→ j)

)(12)409

To prove the first inequality of (12) we first consider Wk+tνγν
T ′,init (i→ j′), where j′ ∈ [j]. Optimal walk410

in any of these sets can be decomposed into 1) an optimal full walk on T connecting i to a node411

of [j], and 2) a walk of weight 0 and length tνγν on Cν connecting that node of [j] to j′, whose412

existence follows since tνγν ≥ T (Sν). This decomposition implies that the weights of all these optimal413

walks are equal. One of them, denote it by W1 can be concatenated with a walk W2 on Cν of length414

k − k(mod γν) + γ and ending in j. We see that p(W1W2) = p(W1) and W1W2 ∈ W2k+v
T ′,full(i

[Nνc ]−−−→ j).415

To prove the second inequality of (12) we take a walk in W2k+v
T ′,full(i

[Nνc ]−−−→ j) and decompose it416

into 1) a walk in Wk+tνγν
T ′,init (i→ j′), where j′ ∈ [j], 2) a walk in Wk−k(mod γν)+γν

T ′,final (j′ → j). The weight417

of the first walk is bounded by p
(
Wk+tνγν
T ′,init (i→ j)

)
, and the weight of the second walk is bounded418

by 0, thus the second inequality also holds.419

Corollary 3.13. For CSR as defined in Definition 3.2 we have,420

(C ⊗ Sk(mod γ) ⊗R)·,j = (C ⊗ Sk(mod γ))·,j for j ∈ Nc421

(C ⊗ Sk(mod γ) ⊗R)i,· = (Sk(mod γ) ⊗R)i,· for i ∈ Nc.422423
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Proof. The proofs for both statements are similar so we will only prove the first one.424

Let j ∈ Nc. As all nodes from Nc can be sorted into N ν
c for some ν = 1, . . . ,m, assume without425

loss of generality that j ∈ N µ
c .426

Taking the right-hand side of the first statement and using (8), we have427

(C ⊗ Sk(mod γ))·,j =

(
m⊕
ν=1

Cν ⊗ Sk(mod γν)
ν

)
·,j

.428

By Definition 3.3, if j ∈ N µ
c then for all ν 6= µ, (Cν ⊗ Sk(mod γν)

ν )·,j = −∞. Therefore, for every ν,429

(Cν ⊗ Sk(mod γν)
ν )·,j will be dominated by (Cµ ⊗ S

k(mod γµ)
µ )·,j . Hence,430

(13)

(
m⊕
ν=1

Cν ⊗ Sk(mod γν)
ν

)
·,j

= (Cµ ⊗ Sk(mod γµ)
µ )·,j .431

Turning our attention to the left-hand side of the first statement, by (8) we get432

(C ⊗ Sk(mod γ) ⊗R)·,j =

(
m⊕
ν=1

Cν ⊗ Sk(mod γν)
ν ⊗Rν

)
·,j

.433

Now we must show that, for j ∈ N µ
c and for all ν, (Cν⊗Sk(mod γν)

ν ⊗Rν)·,j ≤ (Cµ⊗S
k(mod γµ)
µ ⊗Rµ)·,j .434

By (9) this is the same as saying435

p

(
W2k+v
T ′,full(i

[Nνc ]−−−→ j)

)
≤ p

(
W2k+v
T ′,full(i

Nµc−−→ j)

)
436
437

for some arbitrary node i. Let W be the walk of length 2k + v connecting i to j that traverses438

N ν
c , such that p(W ) = p

(
W2k+v
T ′,full(i

[Nνc ]−−−→ j)

)
. As j ∈ N µ

c then W is also a walk of length 2k + v439

connecting i to j that traverses N µ
c , hence W ∈ W2k+v

T ′,full(i
Nµc−−→ j) and the inequality holds.440

Therefore, as with the right-hand side, we have441

(14)

(
m⊕
ν=1

Cν ⊗ Sk(mod γν)
ν ⊗Rν

)
·,j

= (Cµ ⊗ Sk(mod γµ)
µ ⊗Rµ)·,j .442

Finally the first statement of Proposition 3.12 gives us equality between (13) and (14). As j was443

chosen arbitrarily, this holds for any j ∈ Nc and the result follows.444

4. General results. This section presents some results that hold for general inhomogeneous445

products satisfying Assumptions A, B and D2. Before we proceed, let us introduce the following446

piece of notation, inspired by the weak CSR expansion of Merlet et al. [17]:447

Notation 4.1 (Bsup and λ∗). Denote448

(Bsup)i,j =

{
ε, if i ∈ Nc or j ∈ Nc,
(Asup)i,j , otherwise

449

and by λ∗ the maximum cycle mean of Bsup.450
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We remark that the the metric matrix, given in [6] and defined as A+ = A⊕A2 ⊕ . . ., of Bsup is451

useful in calculating all the entries of γi,j simultaneously.452

Notation 4.2 (q). We will denote by q the number of critical nodes, i.e., q = |Nc|.453

The following results generalize [13, Lemmas 3.1-3.2] for initial and final walks to the case of454

a general critical subgraph. Observe that, under Assumptions B and D2, we have λ∗ < 0, so that455

the bounds in the following lemmas make sense. Recall the sets of walks WT ,init(i → Nc‖) and456

WT ,final(‖Nc → j) introduced in Notation 2.15.457

Lemma 4.3. Let Wi,Nc be an optimal walk in WT ,init(i→ Nc‖), so that p(Wi,Nc) = w∗i,Nc . Then458

we have the following bound on the length of Wi,Nc :459

(15) l(Wi,Nc) ≤

{
n− q, if λ∗ = ε,
w∗i,Nc−αi,Nc

λ∗
+ (n− q), if λ∗ > ε

460

Proof. If λ∗ = ε, then any walk in WT ,init(i→ Nc‖) has to be a path, and its length is bounded461

by n− q. Now let λ∗ > ε. As λ∗ < 0, the weight of the walk Wi,Nc connecting i to a node in Nc is462

less than or equal to that of a path Pi,Nc on D(Asup) connecting i to a node in Nc plus the remaining463

length multiplied by λ∗. The remaining length is bounded from above by n− q, since all intermediate464

nodes in Wi,Nc are non-critical. Hence465

pT (Wi,Nc) ≤ psup(Pi,Nc) + (l(Wi,Nc)− (n− q))λ∗.466

We can bound psup(Pi,Nc) ≤ αi,Nc , so467

(16) pT (Wi,Nc) ≤ αi,Nc + (l(Wi,Nc)− (n− q))λ∗.468

Now assuming for contradiction that l(Wi,Nc) >
w∗i,Nc−αi,Nc

λ∗
+ (n− q) . This is equivalent to469

(17) αi,Nc + (l(Wi,Nc)− (n− q))λ∗ < w∗i,Nc .470

In combining (16) and (17) we get pT (Wi,Nc) < w∗i,Nc meaning that Wi,Nc is not optimal, a471

contradiction. So we know that for for any l ∈ Nc472

l(Wi,Nc) ≤
w∗i,Nc − αi,Nc

λ∗
+ (n− q).473

The proof is complete.474

Lemma 4.4. Let WNc,j be an optimal walk in WT ,final(‖Nc → j), so that p(WNc,j) = v∗Nc,j.475

Then we have the following bound on the length of WNc,j:476

(18) l(WNc,j) ≤

{
n− q, if λ∗ = ε,
v∗Nc,j−βNc,j

λ∗
+ (n− q), if λ∗ > ε.

477

As the proof of this lemma is analogous to the proof of Lemma 4.3 it is omitted. Also, we can478

observe that n− q is the limit of the expressions on the right-hand side of (15) and (18) as λ∗ → ε,479

hence we will not consider this case separately in the rest of the paper.480

The following result is a generalised form of [13, Lemma 3.4] which uses a nominal weight ω.481
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Lemma 4.5. If γi,j = ε, then any full walk connecting i to j on T (P ) traverses a node in Nc.482

If γi,j > ε, let483

(19) k >
ω − γi,j
λ∗

+ (n− q)484

for some ω ∈ R. Then any full walk W connecting i to j on T (P ) that does not go through any node485

l ∈ Nc has weight smaller than ω.486

Proof. In the case when γi,j = ε, the claim follows by the definition of γi,j and by the geometric487

equivalence between Asup and the matrices from Y. So we assume that γi,j > ε. Any walk W that488

does not traverse any node in Nc can be decomposed into a path P connecting i to j avoiding Nc489

and a number of cycles. Hence we have the following bound:490

pT (W ) ≤ psup(P ) + (k − (n− q))λ∗.491

We can further bound psup(P ) ≤ γi,j so492

(20) pT (W ) ≤ γi,j + (k − (n− q))λ∗.493

Now (19) can be rewritten as494

(21) γi,j + (k − (n− q))λ∗ < ω.495

By combining (20) with (21) we have pT (W ) < ω, which completes the proof.496

Using this bound we can obtain a condition under which the CSR term is (non-strictly) above497

Γ(k).498

Theorem 4.6. If γi,j = ε then Γ(k) ≤ CSk(mod γ)R[Γ(k)].499

If γi,j > ε, let500

(22) k > max
i,j : i→T j,γi,j>ε

(
Γ(k)i,j − γi,j

λ∗
+ (n− q)

)
.501

Then Γ(k) ≤ CSk(mod γ)R[Γ(k)].502

Proof. If i 6→T j, then (Γ(k))i,j = −∞. In this case, obviously, Γ(k)i,j ≤ (CSk(mod γ)R[Γ(k)])i,j .503

If i→T j, then (Γ(k))i,j 6= ε. Let W ∗ be the optimal walk of length k on T (P ) connecting i to504

j with weight Γ(k)i,j . If k is greater than the bound (22) then, by Lemma 4.5, for the walk to have505

weight equal to Γ(k)i,j , it must traverse at least one node in Nc, and the same is true when γi,j = ε.506

Hence this walk belongs to the set Wk
T (i

Nc−−→ j) and further Γ(k)i,j = p(W ∗) ≤ p
(
Wk
T (i

Nc−−→ j)
)

.507

Let f ∈ Nc be the first critical node in the first critical s.c.c Cν , with cyclicity γν , that W ∗508

traverses. We can split the walk into W ∗ = W1W3 where W1 is a walk connecting i to f of length r509

and W3 is a walk connecting f to j of length k − r. We have p(W ∗) = p(W1) + p(W3).510

Let T ′ be the trellis extension for the matrix product CSk(mod γ)R[Γ(k)] with length 2k + v511

where v = (t+ 1)γ − k(mod γ) as described in Definition 3.6.512

We now introduce the new walk W ′ = W1W2W3 on T ′. Here W1 and W3 are the subwalks513

from W ∗ introduced before, where W1 is viewed as an initial walk on T ′ and W3 as a final walk514

on T ′, and W2 is a closed walk of length k + v that starts and ends at f . Since k + v ≡ 0(mod γν)515

and k + v ≥ T (S) ≥ T (Sν), this closed walk exists and can be entirely made up of edges from516

Cν . This means the walk W ′ is of length 2k + v and it traverses the set of nodes N ν
c therefore517

W ′ ∈ W2k+v
T ′ (i

Nνc−−→ j).518
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As W2 is made entirely from critical edges, we have p(W2) = 0 and p(W ∗) = p(W ′) ≤519

p

(
W2k+v
T ′ (i

Nνc−−→ j)

)
, and using (31) gives us520

Γ(k)i,j = p(W ∗) ≤ (CνS
k(mod γν)
ν Rν [Γ(k)])i,j ≤ (CSk(mod γ)R[Γ(k)])i,j ,521

where the last inequality is due to Proposition 3.5. The claim follows.522

This condition looks like a bound for Γ(k) to become equal to the corresponding CSR product,523

but it is implicit since it requires Γ(k) to be calculated in order to generate the bound. However, we524

can develop a condition that does not depend on Γ(k). This following result requires Assumption C.525

Corollary 4.7. Let526

(23) k > max
i,j : i→T j,γi,j>ε

(
uki,j − γi,j

λ∗
+ (n− q)

)
.527

Then Γ(k) ≤ CSk(mod γ)R[Γ(k)].528

Proof. By Lemma 2.18, i→T j is equivalent to uki,j > ε, so maximum in (23) is taken over i, j529

for which uki,j and γi,j are finite. We also have uki,j ≤ (Γ(k))i,j by the definition of Ainf .530

Further, as λ∗ < 0, then any k that satisfies (23) will also satisfy (22). The claim now follows531

from Theorem 4.6.532

5. The case where CSR works. In the case when C(X ) is just one loop, Kennedy-Cochran-533

Patrick et al. [13] established a bound on the lengths of inhomogeneous products, after which these534

products are of tropical factor rank 1. In this section we extend this result to the case when D(X )535

and C(X ) satisfy the following assumption, in addition to Assumptions A, B and D2.536

Assumption P0. C(X ) is strongly connected and its cyclicity γ is equal to the cyclicity of537

D(X ).538

The equality between cyclicities means that the associated digraph D(X ) has the same number539

of cyclic classes γ as C(X ).540

Notation 5.1. The cyclic classes of D(X ) are denoted by C′0, . . . , C′γ−1.541

For a node i ∈ N, the cyclic class of this node with respect to D(X ) will be denoted by [i]′.542

For a node i ∈ Nc, we will use both [i] (the cyclic class with respect to C(X )) and [i]′ (the cyclic543

class with respect to D(X )), and an obvious inclusion relation between them: [i] ⊆ [i]′.544

One of the ideas is to combine Lemmas 4.3 and 4.4 together with Schwarz’s bound. To define545

this bound, following [17], we first introduce Wielandt’s number546

Wi(n) =

{
(n− 1)2 + 1 if n ≥ 1,

0 if n = 0,
547

548

and then Schwarz’s number549

Sch(γ, n) = γWi

(⌊
n

γ

⌋)
+ n(mod γ).550

Let us now prove the following lemma.551
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16 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

Lemma 5.2. Let552

(24) k ≥
w∗i,Nc − αi,Nc

λq∗
+ (n− q) + Sch(γ, q) +

v∗Nc,j − βNc,j
λq∗

+ (n− q).553

Then554

(i) If [i]′ 6 →k[j]′ then there are no full walks connecting i to j on T (P ) (i.e., i 6→T j).555

(ii) If [i]′ →k [j]′, then there is a full walk W connecting i to j on T (P ) and going through a556

critical node, and we have pT (W ) = w∗i,Nc + v∗Nc,j if W is optimal.557

Proof. The property [i]′ 6→k [j]′ implies that there is no full walk W connecting i to j on T (P ).558

In the case [i]′ →k [j]′, we construct a walk W ′ = Wi,NcWcWNc,j of length k, where Wi,Nc be an559

optimal walk in WT ,init(i→ Nc‖) (see Lemma 4.3) , WNc,j be an optimal walk in WT ,final(‖Nc → j)560

(see Lemma 4.4), and Wc is a walk that connects the end of Wi,Nc to the beginning of WNc,j and561

such that all edges of Wc are critical (the existence of such Wc is yet to be proved). Without loss of562

generality set [i]′ = C′0 and [j]′ = C′p3 : the cyclic classes of D(X ) to which i and j belong. Let x be563

the final node of Wi,Nc and let y be the first node of WNc,j . Set [x]′ = C′p1 and [y]′ = C′p2 .564

By [5, Lemma 3.4.1.iv] l(Wi,Nc) ≡ p1(mod γ), l(WNc,j) ≡ (p3−p2)(mod γ). Hence the congruence565

of the walk Wc to be inserted is (p3 − p1 − (p3 − p2))(mod γ) ≡ (p2 − p1)(mod γ). As the cyclicity of566

the critical subgraph is the same as that of the digraph, the cyclic classes of the critical subgraph are567

C0, . . . , Cγ−1 and we can assume that the numbering is such that C0 ⊆ C′0,. . . , Cγ−1 ⊆ C′γ−1. Then568

x ∈ Cp1 and y ∈ Cp2 and by [5, Lemma 3.4.1.iv] there exists a walk on the critical subgraph of569

length congruent to (p2 − p1)(mod γ). Moreover, all walks connecting x to y have such length and570

by Schwarz’s bound if k − l(Wi,Nc) − l(WNc,j) ≥ Sch(γ, q) then there is a walk of length equal to571

l(W ′)− l(Wi,Nc)− l(WNc,j). According to Lemmas 4.3 and 4.4 l(Wi,Nc) ≤
w∗i,Nc−αi,Nc

λ∗
+ (n− q) ,572

l(WNc,j) ≤
v∗Nc,j−βNc,j

λ∗
+(n−q), therefore k is a sufficient length for k− l(Wi,Nc)− l(WNc,j) to satisfy573

Schwarz’s bound, so a walk of the form W ′ = Wi,NcWcWNc,j exists and p(W ′) = w∗i,Nc + v∗Nc,j .574

Let now W be an optimal full walk connecting i to j on T that passes through Nc at least once.575

As it passes through the critical nodes then the walk can be decomposed into W = W̃i,NcW̃cW̃Nc,j576

where W̃i,Nc is a walk in WT ,init(i → Nc‖), and W̃Nc,j is a walk in WT ,final(‖Nc → j), and W̃c577

connects the end of W̃i,Nc to the beginning of W̃Nc,j on T (P ). We then have pT (W̃i,Nc) ≤ pT (Wi,Nc)578

and pT (W̃Nc,j) ≤ pT (WNc,j) and also pT (W̃c) ≤ p(Wc) = 0. Since W is optimal then all of these579

inequalities hold with equality, and pT (W ) = w∗i,Nc + v∗Nc,j , as claimed.580

Remark 5.3. It follows from the proof that, under the conditions of this lemma and in the case581

[i]→k [j], there is an optimal full walk connecting i to j on TΓ(k) and traversing a critical node that582

can be decomposed as W = Wi,NcWcWNc,j, where Wi,Nc is an optimal walk in WT ,init(i → Nc‖)583

and WNc,j is an optimal walk in WT ,final(‖Nc → j), and Wc consists of edges solely in the critical584

subgraph. If the elements of Y are also strictly visualised in the sense of [23], then any such optimal585

full walk has to be of this form.586

Lemma 5.2 gives us the first part of the final bound for the case. In order to be able to use this587

lemma we must ensure that the walk must traverse Nc hence we can use Lemma 4.5 in conjunction588

with Lemma 5.2 to give us the following theorem.589

Theorem 5.4. Denote u∗i,Nc,j = w∗iNc + v∗Nc,j. Let590

k ≥ max

(
u∗i,Nc,j − αi,Nc − βNc,j

λ∗
+ 2(n− q) + Sch(γ, q),

u∗i,Nc,j − γi,j
λ∗

+ (n− q + 1)

)
(25)591

592
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if γi,j > ε or just593

k ≥
u∗i,Nc,j − αi,Nc − βNc,j

λ∗
+ 2(n− q) + Sch(γ, q),(26)594

595

if γi,j = ε, for some i, j ∈ N . Then596

(i) If [i]′ 6→k [j]′ then Γ(k)i,j = −∞,597

(ii) If [i]′ →k [j]′ then Γ(k)i,j = u∗i,Nc,j = w∗i,Nc + v∗Nc,j.598

Proof. We only need to prove the second part. By Lemma 4.5 and taking ω = w∗i,Nc + v∗Nc,j , if599

k >
w∗i,Nc + v∗Nc,j − γi,j

λq∗
+ (n− q)600

then any walk on T (P ) that does not traverse the nodes in Nc will have weight smaller than601

w∗i,Nc + v∗Nc,j , or such walk will not exist if γi,j = ε. Using Lemma 5.2, if602

k ≥
w∗i,Nc − αi,Nc

λq∗
+ (n− q) + Sch(γ, q) +

v∗Nc,j − βNc,j
λq∗

+ (n− q)603
604

and [i]′ →k [j]′ then the weight of any optimal full walk on T (P ) connecting i to j and traversing a605

critical node will be equal to w∗i,Nc + v∗Nc,j . If γi,j = ε, [i]′ →k [j]′ and the above inequality holds, or606

if γi,j > ε, k satisfies both inequalities and [i]→k [j], then any optimal full walk traverses nodes in607

Nc and has weight608

Γ(k)i,j = w∗i,Nc + v∗Nc,j .609610

Our next aim is to rewrite Theorem 5.4 in a CSR form, and we first want to look at the optimal611

walk representation of w∗i,Nc and v∗Nc,j . This leads to the following lemma.612

Lemma 5.5. We have613

(27) w∗i,Nc = p(Wk
T ,full(i→ Nc)), v∗Nc,j = p(Wk

T ,full(Nc → j)).614

Proof. We will prove only the first of these two equalities, as the second one can be proved in a615

similar way.616

Let Wi,Nc be an optimal walk in WT ,init(i→ Nc‖), with weight w∗i,Nc . We are required to prove617

that618

(28) p (WT ,init(i→ Nc‖)) = p
(
Wk
T ,full(i→ Nc)

)
,619

where on the right we have the set of full walks connecting i to a critical node on T (P ). We split (28)620

into two inequalities,621

(29) p (WT ,init(i→ Nc‖)) ≤ p
(
Wk
T ,full(i→ Nc)

)
, p (WT ,init(i→ Nc‖)) ≥ p

(
Wk
T ,full(i→ Nc)

)
622

For the first inequality in (29), observe that we can concatenate Wi,Nc with a walk V on623

the critical graph which has length l(V ) = k − l(Wi,Nc). The resulting walk Wi,NcV belongs to624

Wk
T ,full(i→ Nc) and has weight w∗i,Nc , which proves the first inequality. For the second inequality,625

take an optimal walk W ∗ ∈ Wk
T ,full(i→ Nc), whose weight is p(Wk

T ,full(i→ Nc)). By observing the626

first occurrence of a critical node in this walk, we represent W ∗ = WV , where W ∈ WT ,init(i→ Nc‖).627

We then have p(W ∗) = p(W ) + p(V ) ≤ p(W ) ≤ w∗i,Nc proving the second inequality. Combining628

both inequalities gives the equality (28) and finishes the proof of w∗i,Nc = p(Wk
T ,full(i→ Nc)). The629

second part of the claim is proved similarly.630
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Remark 5.6. In the previous lemma, the length of the walks on the right-hand side does not631

have to be restricted to k. We can obtain the following results:632

w∗i,Nc = p(W l
T ,init(i→ Nc)) for any l ≥ min

(
w∗i,Nc − αi,Nc

λq∗
+ (n− q), k

)
v∗Nc,j = p(Wm

T ,final(Nc → j)) for any m ≥ min

(
v∗Nc,j − βNc,j

λq∗
+ (n− q), k

)
.

(30)633

We now establish the connection between the previous Lemma and CSR.634

Lemma 5.7. We have one of the following cases:635

(i) (CSk(mod γ)R[Γ(k)])i,j = ε if [i]′ 6→k [j]′,636

(ii) (CSk(mod γ)R[Γ(k)])i,j = w∗i,Nc + v∗Nc,j if [i]′ →k [j]′.637

Proof. By Lemma 3.7 we have p
(
W2k+v
T ′,full(i→ j)

)
= (CSk(mod γ)R[Γ(k)])i,j , where v = (t +638

1)γ − k(mod γ) and tγ ≥ T (S), and let W ∈ W2k+v
T ′,full(i→ j) be optimal. W can be decomposed as639

W1W2W3 where W1 is a full walk (of length k) connecting i to some l ∈ Nc on T , W3 is a (full)640

walk of length k connecting some m ∈ Nc to j and W2 is a walk on the critical graph of length v641

connecting the end of W1 to the beginning of W3. In formula,642

(CSk(mod γ)R[Γ(k)])i,j = max{p(W1) + p(W2) + p(W3) :

W1 ∈ Wk
T ,full(i→ l), W2 ∈ Wv

C(l→ m), W3 ∈ Wk
T ,full(m→ j), l,m ∈ Nc}

(31)

643

If the weights of W1, W2 and W3 in (31) are finite then [i]′ →k [l]′, [l]′ →v [m]′ and [m]′ →k [j]′,644

hence [i]′ →k [j]′. Thus (CStR[Γ(k)]i,j) > ε implies [i]′ →k [j]′ proving (i).645

As the cyclicity of the associated graph is the same as the cyclicity of the critical graph, Lemma 5.5646

implies that647

(32) w∗i,Nc = p(Wk
T (i→ Ci,k)), v∗Nc,j = p(Wk

T (Ck,j → j)),648

where Ci,k = C′i,k ∩Nc is the cyclic class of C(X ) that can be found by intersecting with critical nodes649

Nc the cyclic class C′i,k of D defined by [i]′ →k C′i,k. Similarly, Ck,j = C′k,j ∩Nc is the cyclic class of650

C(X ) that can be found by intersecting with critical nodes Nc the cyclic class C′k,j of D defined by651

C′k,j →k [j]′.652

Now note that in (31) we can similarly restrict l to Ci,k and m to Ck,j , which transforms it to653

(CSk(mod γ)R[Γ(k)])i,j = max{p(W1) + p(W2) + p(W3) :

W1 ∈ Wk
T (i→ l), W2 ∈ Wv

C(l→ m), W3 ∈ Wk
T (m→ j), l ∈ Ci,k, m ∈ Ck,j}

(33)

654

Note that if a walk W2 exists between any l ∈ Ci,k and m ∈ Ck,j then using (32) we immediately655

obtain (CSk(mod γ)R[Γ(k)])i,j = w∗i,Nc +v∗Nc,j . Thus it remains to show existence of W2 ∈ Wv
C(l→ m)656

between any l ∈ Ci,k and m ∈ Ck,j . For this note that since v = (t+ 1)γ − k(mod γ) ≥ T (S), either657

Ci,k →(γ−k(mod γ)) Ck,j and a walk on C(X ) of length v exists between each pair of nodes in Ci,k658

and Ck,j , or Ci,k 6→(γ−k(mod γ)) Ck,j and then no such walk exists. We thus have to check that659

Ci,k →(γ−k(mod γ)) Ck,j on D. But this follows since we have [i]′ →k [j]′, and since in the sequence660

[i]′ →k C′i,k →l C′k,j →k [j]′ we then must have l ≡γ γ − k(mod γ).661

Combining Theorem 5.4 and Lemma 5.7 we obtain the following result.662
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Theorem 5.8. Denote u∗i,Nc,j = w∗iNc + v∗Nc,j. Let k be greater than or equal to663

max

(
max
i,j

u∗i,Nc,j − αi,Nc − βNc,j
λ∗

+ 2(n− q) + Sch(γ, q), max
i,j : γi,j>ε

u∗i,Nc,j − γi,j
λ∗

+ n− q + 1

)
664
665

Then Γ(k) = CSk(mod γ)R[Γ(k)].666

As with Theorem 4.6 this bound requires Γ(k) in order to calculate the bound, which makes it667

implicit, but as with Corollary 4.7 we can use wi,Nc ≤ w∗i,Nc and vNc,j ≤ v∗Nc,j to give us an explicit668

bound. The following result requires Assumption C on Ainf .669

Corollary 5.9. Denote ui,Nc,j = wiNc + vNc,j. Let k be greater than or equal to670

max

(
max
i,j

ui,Nc,j − αi,Nc − βNc,j
λ∗

+ 2(n− q) + Sch(γ, q), max
i,j : γi,j>ε

ui,Nc,j − γi,j
λ∗

+ n− q + 1

)
671
672

Then Γ(k) = CSk(mod γ)R[Γ(k)].673

We will now present an example of this bound in action.674

Let D(G) be the eight node digraph with the following structure:675

a

(1)

a

(2)

a

(3)

a

(4)

a

(5)

a

(6)

a

(7)

a

(8)

676

along with the associated weight matrix.677

A =



ε 0 ε 0 ε ε ε ε
ε ε 0 ε ε ε A2,7 ε
ε 0 ε 0 ε ε ε ε
0 ε ε ε ε A4,6 ε ε

A5,1 ε ε ε ε ε A5,7 ε
ε ε ε ε A6,5 ε ε ε
ε ε ε ε ε ε ε A7,8

ε ε A8,3 ε ε A8,6 ε ε


678

679

There are three critical cycles in this digraph, one cycle of length 4 traversing 1→ 2→ 3→ 4, and680

two cycles of length 2 traversing 1 → 4 → 1 and 2 → 3 → 2 respectively. There are also cycles of681

length 4, 6 and 8 which means that the cyclicity of the whole digraph is 2, which is the same cyclicity682

of the critical subgraph. Therefore Assumption P0 is satisfied and we can continue.683
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The semigroup of matrices X used by this example will be generated by these five matrices:684

A1 =



ε 0 ε 0 ε ε ε ε
ε ε 0 ε ε ε −16 ε
ε 0 ε 0 ε ε ε ε
0 ε ε ε ε −6 ε ε

−11 ε ε ε ε ε −14 ε
ε ε ε ε −18 ε ε ε
ε ε ε ε ε ε ε −20
ε ε −11 ε ε −3 ε ε


, A2 =



ε 0 ε 0 ε ε ε ε
ε ε 0 ε ε ε −3 ε
ε 0 ε 0 ε ε ε ε
0 ε ε ε ε −6 ε ε

−17 ε ε ε ε ε −6 ε
ε ε ε ε −17 ε ε ε
ε ε ε ε ε ε ε −5
ε ε −19 ε ε −7 ε ε


,685

A3 =



ε 0 ε 0 ε ε ε ε
ε ε 0 ε ε ε −4 ε
ε 0 ε 0 ε ε ε ε
0 ε ε ε ε −6 ε ε

−13 ε ε ε ε ε −10 ε
ε ε ε ε −8 ε ε ε
ε ε ε ε ε ε ε −17
ε ε −12 ε ε −11 ε ε


, A4 =



ε 0 ε 0 ε ε ε ε
ε ε 0 ε ε ε −19 ε
ε 0 ε 0 ε ε ε ε
0 ε ε ε ε −6 ε ε

−16 ε ε ε ε ε −16 ε
ε ε ε ε −8 ε ε ε
ε ε ε ε ε ε ε −12
ε ε −2 ε ε −2 ε ε


,686

A5 =



ε 0 ε 0 ε ε ε ε
ε ε 0 ε ε ε −11 ε
ε 0 ε 0 ε ε ε ε
0 ε ε ε ε −16 ε ε

−19 ε ε ε ε ε −3 ε
ε ε ε ε −12 ε ε ε
ε ε ε ε ε ε ε −10
ε ε −1 ε ε −7 ε ε


.687

688

Using these matrices we can calculate Asup and Ainf ,689

Asup =



ε 0 ε 0 ε ε ε ε
ε ε 0 ε ε ε −3 ε
ε 0 ε 0 ε ε ε ε
0 ε ε ε ε −6 ε ε

−11 ε ε ε ε ε −3 ε
ε ε ε ε −8 ε ε ε
ε ε ε ε ε ε ε −5
ε ε −1 ε ε −2 ε ε


, Ainf =



ε 0 ε 0 ε ε ε ε
ε ε 0 ε ε ε −19 ε
ε 0 ε 0 ε ε ε ε
0 ε ε ε ε −16 ε ε

−19 ε ε ε ε ε −16 ε
ε ε ε ε −18 ε ε ε
ε ε ε ε ε ε ε −20
ε ε −19 ε ε −11 ε ε


690

691

as well as αi,Nc , βNc,j , γi,j , wi,Nc and vNc,j :692

αi,Nc =



0
0
0
0
−9
−17
−6
−1


, βTNc,j =



0
0
0
0
−14
−6
−3
−8


, γi,j =



ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε −18 −10 −3 −8
ε ε ε ε −18 −10 −3 −8
ε ε ε ε −15 −7 −18 −5
ε ε ε ε −10 −2 −13 −18


693

wTi,Nc =
(
0 0 0 0 −19 −37 −39 −19

)
, vNc,j =

(
0 0 0 0 −34 −16 −19 −39

)
.694695
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With all the pieces ready we can now form the bound of Corollary 5.9,696

k ≥max





12 12 12 12 16.4 14.2 15.6 18.9
12 12 12 12 16.4 14.2 15.6 18.9
12 12 12 12 16.4 14.2 15.6 18.9
12 12 12 12 16.4 14.2 15.6 18.9

14.2 14.2 14.2 14.2 18.7 16.4 17.8 21.1
16.4 16.4 16.4 16.4 20.9 18.7 20 23.3
19.3 19.3 19.3 19.3 23.8 21.6 22.9 26.2
16 16 16 16 20.4 18.22 19.6 22.9


,



ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε 12.8 10.6 12.8 16.1
ε ε ε ε 19 12.8 15 18.3
ε ε ε ε 17.9 15.7 13.9 21.2
ε ε ε ε 14.6 12.3 10.6 13.9




⇒ k ≥ 23.8.

697

698

Therefore by Corollary 5.9 if the length of a product using the matrices from X is greater than or699

equal to 24 then the resulting product will be CSR. We will show such a product. Let Γ(24) be the700

inhomogeneous matrix product made using the word P = 551541235515535135454155 which gives us:701

Γ(24) =



0 ε 0 ε ε −16 −11 ε
ε 0 ε 0 −28 ε ε −21
0 ε 0 ε ε −16 −11 ε
ε 0 ε 0 −28 ε ε −21
ε −19 ε −19 −47 ε ε −40

−31 ε −31 ε ε −47 −42 ε
−11 ε −11 ε ε −27 −22 ε
ε −1 ε −1 −29 ε ε −22


.702

703

This matrix product is indeed CSR and by Definition 3.2 we have,704

Γ(24) =



0 ε 0 ε
ε 0 ε 0
0 ε 0 ε
ε 0 ε 0
ε −19 ε −19

−31 ε −31 ε
−11 ε −11 ε
ε −1 ε −1


⊗


0 ε ε ε
ε 0 ε ε
ε ε 0 ε
ε ε ε 0

⊗


0 ε 0 ε ε −16 −11 ε
ε 0 ε 0 −28 ε ε −21
0 ε 0 ε ε −16 −11 ε
ε 0 ε 0 −28 ε ε −21

705

Γ(24) =



0 ε
ε 0
0 ε
ε 0
ε −19

−31 ε
−11 ε
ε −1


⊗
(

0 ε
ε 0

)
⊗
(

0 ε 0 ε ε −16 −11 ε
ε 0 ε 0 −28 ε ε −21

)
.706

707

We can see that, for the C matrix, columns 3 and 4 are copies of columns 1 and 2 respectively. The708

same is also true for the rows of the R matrix so they can be deleted. As 24(mod 2) = 0 we replace709

the S matrix with the tropical identity matrix which shows us that the matrix product Γ(24) using710

the word P is indeed CSR and it has factor rank-2.711

6. Counterexamples. Here we present a number of counterexamples for the different cases of712

digraph structure. These counterexamples present families of products which are not CSR, and we713

construct them in such a way that they have no upper bound on their length.714

6.1. The ambient graph is primitive but the critical graph is not. We will now look at715

two cases where we are unable to create a bound for matrix products to become CSR. For the first716
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case we will be looking at digraphs that are primitive but have a critical subgraph with a non-trivial717

cylicity. Therefore we have the following assumption:718

Assumption P1. D(X ) is primitive (i.e., γ(D(X )) = 1) and the critical subgraph C(X ), which719

is a single strongly connected component, has cyclicity γ(C(X )) = γ > 1.720

We now present a counterexample which shows that under this assumption, in general, no bound721

for k in terms of Asup and Ainf can exist that ensures that Γ(k) is equal to the corresponding CSR722

product.723

Let D(G) be the five node digraph with the following structure:724

a

(1)

a

(2)

a

(3)

a

(4)

a

(5)

a

(6)

725

This digraph will have the following associated weight matrix.726

A =


ε 0 A1,3 ε ε ε
0 ε ε ε A2,5 ε
ε ε ε A3,4 ε A3,6

A4,1 ε ε ε ε ε
ε ε ε ε ε A5,6

ε A6,2 A6,3 ε ε ε

727

728

There is a critical subgraph consisting of the cycle between nodes 1 and 2. There also exist two729

cycles, 1→ 3→ 4→ 1 and 2→ 5→ 6→ 2, both of length 3 which makes D(A) primitive. We aim730

to present a family of words with infinite length such that the products made up using these words731

are not CSR. Since the cyclicity of the critical subgraph is 2 then we will have to create two classes732

of words, one of even length and one of odd length to define the family.733

The semigroup of matrices we will use is generated by the two matrices:734

A1 =


ε 0 −100 ε ε ε
0 ε ε ε −100 ε
ε ε ε −100 ε ε

−100 ε ε ε ε ε
ε ε ε ε ε −100
ε −100 ε ε ε ε

 , A2 =


ε 0 −100 ε ε ε
0 ε ε ε −1 ε
ε ε ε −100 ε ε
−1 ε ε ε ε ε
ε ε ε ε ε −100
ε −100 ε ε ε ε

735

736

Let us first consider the class of words (1)2t2 where t ≥ 2, and let U = (A1)2tA2 for arbitrary737

such t. We will first examine entries U6,1, U2,5, U6,2 and U1,5.738
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The entry U6,1 can be obtained as the weight of the walk 6 (21)(21) . . . (21)︸ ︷︷ ︸
t−1

341, which is −301.739

For this observe that the walk 621 has an even length and therefore we need to use one of the740

three-cycles to make it odd, and using the southern three-cycle in the end of the walk is the most741

profitable way to do so. The entry U25 is equal to −1, as there is a walk that mostly rests on the742

critical cycle and only in the end jumps to node 5. We also have U6,2 = −100 (go to node 2 and743

remain on the critical cycle) and U1,5 = −301 (use the southern triangle once, then dwell on the744

critical cycle and in the end jump to node 5). Note that in the case of U1,5 we again need to use one745

of the triangles to create a walk of an odd length.746

We then compute

(CSR)[U ]6,5 = (US3U)6,5 = max(U6,1 + U2,5, U6,2 + U1,5) = −301− 1 = −302.

However, U6,5 results from the walk 6 (21)(21) . . . (21)︸ ︷︷ ︸
t−1

2562, with weight −401, needing to use747

the northern triangle to make a walk of odd length.748

The following an example of U and CS2t+1R[U ] for t = 10:749

U =


−201 0 −100 −500 −301 −200

0 −300 −400 −200 −1 −500
−401 −200 −300 −700 −501 −400
−100 −400 −500 −300 −101 −600
−200 −500 −600 −400 −201 −700
−301 −100 −200 −600 −401 −300

750

CS21(mod 2)R[U ] =


−201 0 −100 −401 −202 −200

0 −300 −400 −200 −1 −500
−401 −200 −300 −601 −402 −400
−100 −400 −500 −300 −101 −600
−200 −500 −600 −400 −201 −700
−301 −100 −200 −501 −302 −300

751

752

We now consider the class of words (1)2t+12 where t ≥ 1, and let V = (A1)2t+1A2 for arbitrary753

such t. We will first examine entries V2,1, V1,5, V2,2 and V2,5.754

The entry V2,1 = −201 is obtained as the weight of the walk 2 (12)(12) . . . (12)︸ ︷︷ ︸
t−1

341: it is necessary755

to use one of the triangles to create a walk of even length, and using the southern triangle once in756

the end of the walk is the most profitable way to do so. The walk 125 already has an even length,757

and we only have to augment it with enough copies of the critical cycle and use the arc 2→ 5 in the758

end of the walk, thus getting V1,5 = −1. Obviously, V2,2 = 0 : we just stay on the critical cycle. The759

entry V2,5 = −301 is obtained as the weight of the walk (21)(21) . . . (21)︸ ︷︷ ︸
t−1

5625, where we have to use760

the northern triangle in the end of the walk to create a walk of even walk and minimise the loss.761

We then find

(CS2R[V ])2,5 = (V S2V )2,5 = max(V2,1 + V1,5, V2,2 + V2,5) = V2,1 + V1,5 = −202,

which is bigger than V2,5 = −301.762

The case for V2,5 is one for connecting a critical node to a non critical node. For completeness we
should also look at a walk connecting two non critical nodes, namely the walk representing V4,5. To
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do this we will need to also look at the entries V4,1 and V4,2. For V4,1 = −301 the entry is obtained
as the weight of the walk 4 (12)(12) . . . (12)︸ ︷︷ ︸

t−1

341. As the walk 41 has odd length, one of the triangles

is required to make the walk even so choosing the southern triangle is the most profitable way to
achieve an even length walk. The walk 412 already has an even length so we can augment it with
enough copies of the critical cycle to give us the desired length for the walk representing the entry
V4,2 = −100. Using V1,5 and V2,5 discussed earlier we calculate

(CS2R[V ])4,5 = (V S2V )4,5 = max(V4,1 + V1,5, V4,2 + V2,5) = V4,1 + V1,5 = −302,

which is bigger than V4,5 = −401.763

We now show an example of V for t = 10:764

V =


0 −300 −400 −200 −1 −500
−201 0 −100 −500 −301 −200
−200 −500 −600 −400 −201 −700
−301 −100 −200 −600 −401 −300
−401 −200 −300 −700 −501 −400
−100 −400 −500 −300 −101 −600

765

CS22(mod 2)R[V ] =


0 −300 −400 −200 −1 −500
−201 0 −100 −401 −202 −200
−200 −500 −600 −400 −201 −700
−301 −100 −200 −501 −302 −300
−401 −200 −300 −601 −402 −400
−100 −400 −500 −300 −101 −600

766

767

Combining both classes we have a family of words covering all lengths greater than 29 such that768

any product made using these words will not be equal to the corresponding CSR product. Therefore769

there cannot be a transient for this case as there is no upper limit to the lengths of these words.770

We now also construct a counterexample where all nodes of D(G) are critical. Let D(G) be the771

three node digraph with the following structure:772

a

(1)

a

(2)

a

(3)

773
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The digraph has the following associated weight matrix.774

A =

ε 0 ε
ε A2,2 0
0 A3,2 A3,3

 .775

For this example there is a single critical cycle of length 3 traversing all of the nodes. There also776

exists two loops 2→ 2 and 3→ 3 and a cycle 2→ 3→ 2 of length 2. Like the previous example this777

digraph is primitive but the critical subgraph has cyclicity 3. As the cyclicity is greater than one we778

need to present three different classes of words making up a family of words such that any product779

Γ(k) made using these words will not be CSR.780

The semigroup of matrices that we will use is again generated only by two matrices:781

A1 =

ε 0 ε
ε −100 0
0 −100 −100

 A2 =

ε 0 ε
ε −1 0
0 −100 −1

782

Let the first class of words be (1)3t+22 for t ≥ 0, and let M = (A1)3t+2A2 for any arbitrary t.783

We will now examine the entries M1,1, M1,2, M2,2 M1,3 and M3,2.784

Since all the walks are of length 0 modulo 3 then any walk connecting i to i will have weight785

zero as we can simply use the critical cycle. This gives M1,1 = M2,2 = 0. The entry M1,2 can be786

obtained as the weight of the walk (123)t+12 which is −100. In this entry observe that the walk 12787

is of length 1 modulo 3 therefore we need to use the two cycle 2→ 3→ 2 to give us a walk of the788

desired length. The entry M1,3 is equal to the weight of the walk (123)t+13 and the entry M3,2 is789

equal to the weight of the walk (312)t+12. For these entries observe that the walks 123 and 312 are790

both of length 2 modulo 3 therefore we require a loop for both walks to give us the required length.791

The most profitable time to use these loops are right at the end of the walk.792

We then compute

(CSR)[M ]1,2 = (MS3M)1,2 = max(M1,1 +M1,2,M1,2 +M2,2,M1,3 +M3,2) = −1− 1 = −2.

However, as seen earlier the entry M12 has weight −100 which is less than the CSR suggestion.793

The following is an example of M and CS3t+3R[M ] for t = 10:794

M =

 0 −100 −1
−100 0 −100
−100 −1 0

 CS33(mod 3)R[M ] =

 0 −2 −1
−100 0 −100
−100 −1 0

795

For efficiency we will simply present the final two classes and omit the in-depth analysis of them:796

For walks of length 1 modulo 3 we have the class of words (1)3t+32 for t ≥ 0.797

For walks of length 2 modulo 3 we have the class of words (1)3t+42 for t ≥ 0.798

We will also present examples of products and their CSR counterparts made using these words for799

t = 10 where N = (A1)3t+3A2 and P = (A1)3t+4A2.800

N =

−100 0 −100
−100 −1 0

0 −100 −1

 CS34(mod 3)R[N ] =

−100 0 −100
−100 −1 0

0 −2 −1

801

P =

−100 −1 0
0 −100 −1
−100 0 −100

 CS35(mod 3)R[P ] =

−100 −1 0
0 −2 −1
−100 0 −100

 .802

803
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The combination of these three classes create a family of words such that any product Γ(k) made804

using these words is not equal to the corresponding CSR product.805

We now extend these counterexamples to a more general form where we consider digraphs with806

non-trivial cyclicity r along with critical subgraphs with cyclicity γ which is greater than r. This807

leads to the following assumptions.808

6.2. More general case.809

Assumption P2. D(X ) has cyclicity r and the critical subgraph C(X ), which is strongly con-810

nected, has cyclicity γ > r.811

In a similar method to the primitive example above, using the new assumptions, we can now812

describe a counterexample that shows that no bound for k in terms of Asup and Ainf can exist that813

ensures Γ(k) is equal to the corresponding CSR product.814

Let D(X ) be a six node digraph with the following structure:815

a

(1)

a

(2)

a

(3)

a

(4)

a

(5)

a

(6)

816

along with the following associated weight matrix,817

A =


ε 0 ε ε ε ε
ε ε 0 ε ε ε
ε ε ε 0 A3,5 ε
0 ε ε ε ε ε
ε ε ε ε ε A5,6

ε ε ε A6,4 ε ε

818

819

Here the critical cycle traverses nodes 1 → 2 → 3 → 4 → 1 however there also exists another820

non-critical cycle of length six traversing 1 → 2 → 3 → 5 → 6 → 4 → 1. This means that while821

the cyclicity of the critical subgraph is 4 the cyclicity of D(G) is 2. Therefore the digraph structure822

satisfies the assumptions and we can develop a family of words with infinite length such that any823

Γ(k) made using these words will not be equal to the corresponding CSR product. As the cyclicity824

of the critical subgraph is 4 then we will require four classes of words to fully define the family.825

The semigroup of matrices that will be used is generated by two matrices:826

A1 =


ε 0 ε ε ε ε
ε ε 0 ε ε ε
ε ε ε 0 −100 ε
0 ε ε ε ε ε
ε ε ε ε ε −100
ε ε ε −100 ε ε

 A2 =


ε 0 ε ε ε ε
ε ε 0 ε ε ε
ε ε ε 0 −1 ε
0 ε ε ε ε ε
ε ε ε ε ε −100
ε ε ε −1 ε ε

827
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Let us begin with the first class of words (1)4t2 where t ≥ 2, and let L = (A1)4tA2 for arbitrary such828

t. We will begin by examining the entries L1,2, L1,5, L1,4 and L3,5.829

The entry L1,2 can be obtained as the weight of the walk (1234)︸ ︷︷ ︸
t

12, which is 0. As the walk 12830

has length congruent to 1(mod 4) then a walk exists on the critical cycle connecting these nodes. The831

entry L1,5 is obtained from the weight of the walk (1234)︸ ︷︷ ︸
t−2

1235641235, which is −301. As the walk832

1235 has length congruent to 3(mod 4) then we need to add on the six cycle with weight −300 to833

give us a walk of length congruent to 1(mod 4) and finally the last step of the walk is to go from 3 to834

5 with weight −1. For the entry L1,4 = −201 which is the weight of the walk (1234)︸ ︷︷ ︸
t−1

123564 and the835

entry L35 = −1 comes from the weight of the walk (3412)︸ ︷︷ ︸
t

35. Note that in the case of L1,4 we used836

the six cycle to give us the desired length of walk.837

We then compute838

(CSR)[L]1,5 = (L⊗ S3 ⊗ L)1,5 = max(L1,2 + L1,5, L1,4 + L3,5) = −201− 1 = −202.839

However L15, as explained earlier, results from a walk with weight −301.840

The following is an example of L and CS4t+1R[L] for t = 10841

L =


ε 0 ε −201 −301 ε
−300 ε 0 ε ε −401
ε −300 ε 0 −1 ε
0 ε −300 ε ε −101
−500 ε −200 ε ε −601
ε −400 ε −100 −101 ε

842

CS41(mod 4)R[L] =


ε 0 ε −201 −202 ε
−300 ε 0 ε ε −401
ε −300 ε 0 −1 ε
0 ε −300 ε ε −101
−500 ε −200 ε ε −601
ε −400 ε −100 −101 ε

843

844

The other classes behave in a similar way so we omit the in depth explanation of them. We845

present the words used for each class:846

For walks of length congruent to 2(mod 4) we have the words (1)4t+12 for t ≥ 2;847

For walks of length congruent to 3(mod 4) we have the words (1)4t+22 for t ≥ 2;848

For walks of length congruent to 0(mod 4) we have the words (1)4t+32 for t ≥ 2.849
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For example, if t = 10 then for the first of these classes850

F = (A1)41 ⊗A2 =


−300 ε 0 ε ε −401
ε −300 ε 0 −1 ε
0 ε −300 ε ε −101
ε 0 ε −201 −301 ε
ε −500 ε −200 −201 ε
−100 ε −400 ε ε −201

 ,851

CS42(mod 4)R[F ] =


−300 ε 0 ε ε −401
ε −300 ε 0 −1 ε
0 ε −300 ε ε −101
ε 0 ε −201 −202 ε
ε −500 ε −200 −201 ε
−100 ε −400 ε ε −201

852

853

Combining all classes gives us a family of words covering all lengths greater than 9 such that any854

product made using these words will not be equal to the corresponding CSR product.855

6.3. Critical graph is not connected. For this counterexample we now consider a digraph856

with multiple critical components C1, . . . ,Cm which are each strongly connected components with857

respective cyclicities γ1, . . . , γm.858

Assumption P3. C(X ) is composed of multiple strongly connected components C1, . . . ,Cm859

where the component Ci has cyclicity γi. The cyclicity of D(X ) is lcmi(γi), which is the same as the860

cyclicity of C(X ).861

Let us now show a counterexample, which demonstrates that, for the case of several critical862

components, we cannot have any bounds after which the product becomes CSR in terms of Asup and863

Ainf . The reason is that the non-critical parts of optimal walks whose weights are the entries of C864

and R cannot be separated in time: in general, they will use the same letters, and such walks on the865

symmetric extension of T (P ) cannot be transformed back to the walks on T (P ).866

Let D(X ) be the four node digraph with the following structure:867

a

(1)

a

(2)

a

(3)

a (4)

868
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along with the following associated weight matrix869

A =


0 A12 ε ε
ε 0 A23 ε
ε ε 0 A34

A41 ε ε ε

 .870

For this digraph we have a the critical subgraph comprised of three separate loops at nodes 1,2871

and 3. There is also a cycle of length 4 which means the cyclicity of the digraph is 1. We are going872

to present a class of words of infinite length such that the matrix generated by this class of words is873

not CSR.874

We introduce a semigroup of tropical matrices with two generators X = {A1, A2} where A1 to875

A2 are876

A1 =


0 −100 ε ε
ε 0 −100 ε
ε ε 0 −100
−100 ε ε ε

 , A2 =


0 −1 ε ε
ε 0 −1 ε
ε ε 0 −100
−100 ε ε ε

877

and the class of the words that we will consider is (1)t2, where t ≥ 2. In other words we will consider878

a set of matrices of the form U = (A1)tA2 (the actual value of t ≥ 2 will not matter to us).879

We have: U1,2 = −1 (as the weight of the walk 11 . . . 1︸ ︷︷ ︸
t+1

2), U2,3 = −1 (as the weight of the walk880

22 . . . 2︸ ︷︷ ︸
t+1

3),and therefore (CSt+1R[U ])1,3 = U2
1,3 = U1,2 ⊗ U2,3 = −2, but U1,3 = −101 (as the weight881

of the walk 1 22 . . . 2︸ ︷︷ ︸
t

3).882

Similarly, we can also look at the entry U4,3. Then we have U4,2 = −101 (as the weight of883

the walk 4 11 . . . 1︸ ︷︷ ︸
t

2), U2,3 = −1 and hence (CSt+1R)4,3 = (USU)4,3 = U4,2 ⊗ U2,3 = −102, but884

U4,3 = −201 (as the weight of the walk 41 22 . . . 2︸ ︷︷ ︸
t−1

3).885

Here is an example of the word from the class for t = 10 and the corresponding CSR886

W =


0 −1 −101 −300
−300 0 −1 −200
−200 −201 0 −100
−100 −101 −201 −400

 , CS11(mod 1)R[W ] =


0 −1 −2 −201
−201 0 −1 −101
−200 −201 0 −100
−100 −101 −102 −301

 .887

Therefore any matrix product of length greater than 3 which has been made following this word888

will not be CSR. Hence there can be no upper bound to guarantee the CSR decomposition in this889

case.890

Acknowledgments. The authors are grateful to Oliver Mason, Glenn Merlet, Thomas Nowak891

and Stephane Gaubert with whom the ideas of this paper were discussed.892

REFERENCES893

[1] M. Akian, S. Gaubert, and A. Guterman, Linear independence over tropical semirings and beyond, in Tropical894
and Idempotent Mathematics, G. Litvinov and S. Sergeev, eds., vol. 495, American Mathematical Society,895
Providence, RI, 2009, p. 1–38.896

This manuscript is for review purposes only.



30 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

[2] M. Akian, S. Gaubert, and C. Walsh, Discrete max-plus spectral theory, in Idempotent Mathematics and897
Mathematical Physics, G. Litvinov and V. Maslov, eds., vol. 377, American Mathematical Society, Providence,898
RI, 2005, pp. 53–77.899

[3] B. Benek Gursoy and O. Mason, Spectral properties of matrix polynomials in the max algebra, Linear Algebra900
and its Applications, 435 (2011), pp. 1626––1636.901

[4] B. Benek Gursoy, O. Mason, and S. Sergeev, The analytic hierarchy process, max algebra and multi-objective902
optimisation, Linear Algebra and its Applications, 438 (2013), pp. 2911–2928.903

[5] R. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.904
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