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Abstract. Apart from the actual CPU, modern server motherboards contain other
auxiliary components, for example voltage regulators for power management. Those
are connected to the CPU and the separate Baseboard Management Controller
(BMC) via the I2C-based PMBus. In this paper, using the case study of the widely
used Supermicro X11SSL motherboard, we show how remotely exploitable software
weaknesses in the BMC (or other processors with PMBus access) can be used to access
the PMBus and then perform hardware-based fault injection attacks on the main
CPU. The underlying weaknesses include insecure firmware encryption and signing
mechanisms, a lack of authentication for the firmware upgrade process and the IPMI
KCS control interface, as well as the motherboard design (with the PMBus connected
to the BMC and SMBus by default). First, we show that undervolting through the
PMBus allows breaking the integrity guarantees of SGX enclaves, bypassing Intel’s
countermeasures against previous undervolting attacks like Plundervolt/V0ltPwn.
Second, we experimentally show that overvolting outside the specified range has the
potential of permanently damaging Intel Xeon CPUs, rendering the server inoperable.
We assess the impact of our findings on other server motherboards made by Supermicro
and ASRock. Our attacks, dubbed PMFault, can be carried out by a privileged
software adversary and do not require physical access to the server motherboard or
knowledge of the BMC login credentials. We responsibly disclosed the issues reported
in this paper to Supermicro and discuss possible countermeasures at different levels.
To the best of our knowledge, the 12th generation of Supermicro motherboards, which
was designed before we reported PMFault to Supermicro, is not vulnerable.
Keywords: fault injection · software-based faults · Intel SGX · under/overvolting

1 Introduction
In recent years, the security implications of software-exposed power and clock manage-
ment features have received substantial attention by the research community. Several
attacks including CLKSCREW [TSS17], Plundervolt [MOG+20], V0ltPwn [KFG+20],
and VoltJockey [QWLQ19] showed that undervolting or overclocking from software can
be used to inject faults (e.g., bitflips) into computations and break Trusted Execution
Environments (TEEs) like Intel Software Guard Extensions (SGX) and ARM TrustZone.
Subsequent attacks like VoltPillager [CVM+21] and the work by Buhren et al. [BJKS21]
showed that similar attacks can be mounted with direct access to the computer hardware,
physically connecting to the control interface of the Voltage Regulator (VR).

In particular, Chen et al. targeted the Serial Voltage Identification (SVID) interface
used by Intel CPUs to set the desired supply voltage. However, apart from SVID, many
systems, in particular servers, support a second interface, the so-called Power Management
Bus (PMBus), to control the Voltage Regulator Module (VRM). PMBus is an open
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standard for digital power management [pmb] and has been adopted by more than 40
companies. It is based on the Inter-Integrated Circuit (I2C) bus and offers monitoring
features apart from voltage and current control.

Another component usually presents on server motherboards is the Baseboard Manage-
ment Controller (BMC). This chip, intended to remotely manage the server even if e.g.,
the main CPU has crashed or is powered down, has connections to several buses and chips
on the motherboard, including the I2C bus on which the VRM resides.

Previous research on x86 platforms has focused on the software-hardware interface
provided by the Central Processing Unit (CPU) itself and on the security within the
perimeter of each individual component, e.g., the BMC [PGC18] or Intel Management
Engine (Intel ME) [TW09, MIT17, GE17]. There is a lack of board-level security analysis
that reviews the system and motherboard design and interactions between the different
components: even if an individual part of the system is secure within its individual threat
model, the combination of it with other parts can cause security risks. In our PMFault
attacks, the privileged position of the BMC, combined with its large attack surface, makes
it interesting from an adversary’s perspective to exploit vulnerabilities of the system via
power management features.

1.1 Our Contribution
Our main contributions in this paper are:

PMBus-based under/overvolting against server platforms: We first analyse the VRM
management interface at the hardware level. We discovered that the semi-standardised
PMBus can be used to control the CPU voltage. Using the case study of a widely-used
server motherboard, the Supermicro X11SSL-CF, we explore this attack surface and
show that software vulnerabilities in the BMC (or another programmable chip connected
to the PMBus) can have severe consequences for the security and safety of the server
platform. To determine if the vulnerabilities can affect other server motherboards, we
also investigated the PMBus connections and usage on an ASRock E3C246D4I-2T and a
Supermicro X12DPi-NT6.

PMBus access through BMC exploits: We then study the BMC firmware and—based
on prior work in [Ecl18, Rak15, Nie20]—found that it can indeed be exploited to send
arbitrary PMBus commands to control the voltage of the CPU. More precisely, several
software vulnerabilities in the BMC, including incorrect firmware encryption and signing
mechanisms, a lack of authentication for firmware upgrades and control interfaces, an
attacker can manipulate the CPU voltage remotely because the PMBus is connected to
the BMC and the System Management Bus (SMBus) by default.

PMBus-based undervolting against SGX enclaves: With this, we observed the same
faults as with Plundervolt/V0ltPwn (CVE-2019-11157), including for code running inside
an SGX enclave. As the BMC has an independent, external flash chip for its firmware,
SGX attestation currently does not have the ability to verify its status. Crucially, because
the software voltage-control interface in Model Specific Register (MSR) 0x150 is not used,
Intel’s fix for CVE-2019-11157 does not address this attack.

Permanent denial-of-service through overvolting: We also discovered a novel overvolting
attack: by sending a certain sequence of PMBus commands, we can set the CPU voltage
outside the specification (as high as 2.84 V) and permanently brick the Xeon CPU used in
our experiments.

Countermeasures and mitigations: Finally, we develop the PMBusDetect tool for
detecting if the VRM is connected to the PMBus, and then discuss countermeasures and
challenges in securing server platforms. Importantly, we point out that TEEs like SGX
must not only rely on the security of the CPU itself, but also of that of management
components the hardware design of the platform.
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The details of our experiments and source code can be found at: https://github.com/
zt-chen/PMFault. CVE number CVE-2022-43309 has been reserved for PMFault.

1.2 Adversary Model
In this paper, we assume a privileged software attacker, i.e., who has obtained root on the
host CPU. This is the standard adversary model in the case of TEEs like SGX, and is also
realistic in the case of overvolting to permanently destroy the CPU, which could be e.g.,
exploited by ransomware with root rights. Notably, our attacks do not require physical
access (for additional hardware to be added to the system) and can thus be conducted
remotely e.g., over SSH.

1.3 Responsible Disclosure
We have responsibly disclosed our findings to Intel and Supermicro in April 2022. We
discussed the details of our methods in several calls with Supermicro, and they acknowledge
the existence of the issue and are looking into deploying fixes for their 11th generation
products like the Supermicro X11SSL-CF. Supermicro highlighted that the attacks do
not replicate on their 12th generation, which e.g., include secure boot and update for
the BMC and filtering on PMBus commands. Both of these features break the attack
chains described in the paper. Intel considered the issue in the context of their own server
motherboards and did not find them vulnerable. Intel did not comment on the impact on
SGX.

1.4 Related Work
Since Boneh et al.’s seminal work on fault injection [BDL97], the research community
has devoted substantial efforts to investigating fault attacks and developing according
countermeasures (cf. e.g., [BECN+06] for an overview).

Software-based Fault Injection Often, fault injection was considered a technique limited
to attacks with physical access to the target. However, with the discovery of the Rowhammer
effect [KDK+14], it was shown that faults can also be injected from software (through
specific memory access patterns in the case of Rowhammer). Then, in 2017, Tang et al.
showed that the clock management features of ARM processors can be exploited to inject
faults into computations shielded inside a TEE like ARM TrustZone [TSS17]. Similarly,
Plundervolt, V0ltPwn, and VoltJockey [MOG+20, KFG+20, QWLQ19] (all tracked via
CVE-2019-11157) use the software-exposed voltage control MSR in Intel processors to
break the integrity guarantees of SGX enclaves. In response, Intel deployed a microcode
update that disables the undervolting interface in MSR 0x150 and allows remote parties to
verify correct configuration through SGX’s remote attestation. Thus, purely software-based
undervolting attacks against Intel processors were considered no longer possible.

Hardware-based Fault Injection on TEEs The second generation of undervolting attacks
on TEEs like SGX and AMD Secure Encrypted Virtualization (SEV) require physical
access to the target motherboard. In the case of VoltPillager [CVM+21], the adversary
attaches two wires to the data and clock lines of the SVID bus and can then control the
VRM external to the CPU, enabling undervolting even if Intel’s microcode fixes for CVE-
2019-11157 are installed. For AMD SEV, the adversary does not glitch the actual CPU,
but the separate security co-processor, the AMD Secure Processor (SP) [BJKS21]. The
adversary then proceeds to upload custom firmware to the SP to leak memory encryption
keys and also endorsement secrets, which ultimately enable attacks without permanent
physical access.

https://github.com/zt-chen/PMFault
https://github.com/zt-chen/PMFault
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Security of servers and BMCs Independent of hardware-based attacks, the security of
server platforms has received attention in the research community and wider society. In
2018, Bloomberg published a—since widely disproven—article that incorrectly claimed
the inclusion of small backdoor chips on Supermicro motherboards [RR18]. However, at
the same time, researchers at Eclypsium showed that it is indeed possible to maliciously
manipulate the BMC firmware of Supermicro motherboards from 8th to 11th genera-
tion [Ecl18], without the need to add a hardware implant. They also demonstrated how
flashing corrupted BMC firmware can “brick” the server system by preventing it to boot.

Niewöhner [Nie20] subsequently published a tool to exploit the (weak) firmware en-
cryption of Supermicro BMCs. Other work, for example by Waisman et al. [WS18] and
Périgaud et al. [PGC18], has shown that software weaknesses in BMCs are not limited to
Supermicro motherboards, but also applied to Dell, HP, and Lenovo systems.

However, the implications of direct access to the PMBus from a compromised BMC
have not been deeply studied to our knowledge.

1.5 Paper Outline
The remainder of this paper is structured as follows: in Section 2, we review the PMBus
protocol and analyse its specific implementation and usage on Supermicro motherboards.
Then, in Section 3, we describe Supermicro’s BMC implementation and methods to modify
the firmware. In Section 4, we experimentally investigate how a compromised BMC can
interact with the VRM through the PMBus. We then use this to develop over/undervolting
attacks in Section 5, before concluding in Section 7.

2 Analysis of Power Management Bus
We started our work by analysing how the PMBus is used on practical server mother-
boards. PMBus is an interface that is used to control the VRM, supplying the power
to the CPU. The most recent public available specification is version 1.3 [pmb]. This
specification standardises the physical interface, packet structure, and command set of
the PMBus. However, some commands are left as “manufacturer specified”, so that each
VRM manufacturer can have a slightly different implementation of the command set. This
matches what we found during our investigation of the MP2955 VRM on the Supermicro
X11SSL-CF platform described in the following.

2.1 Experimental Setup
We carried out initial experiments with an Intel Xeon E3-1220 v6 (CPU family: 6, model:
158, microcode version: 0xea) on a Supermicro X11SSL-CF Rev 1.01 motherboard (BMC
microcontroller ASPEED AST2400, firmware revision 01.63, BIOS version: 2.4).We used 64-
bit Ubuntu 18.04.3 LTS with a stock 5.4.0-107-generic kernel, Intel SGX driver V2.11.0, and
Intel SGX-SDK V2.15.100.3. We refer to this system as E3-1220V6-X11SSL-CF throughout
the paper. An overview of the server motherboard representative for Supermicro’s 11th
generation products is shown in Figure 1. The target of the PMFault attack is an Intel CPU
with SGX technology. As mentioned, our actual attacks do not require additional hardware
or physical access to the system, though we soldered some wires to the motherboard during
the analysis phase.

On Intel platforms, the voltage of the CPU is controlled by an external VRM Integrated
Circuit (IC). The CPU connects to the VRM via the SVID bus to control the voltage
supplied by it. This interface for CPU voltage control is present on all desktop and server
motherboards.
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Figure 1: Overview of the connections on the server motherboard.

However, server VRMs—including the Supermicro X11SSL-CF—often have an ad-
ditional I2C-based communication interface called PMBus. This interface allows e.g.,
overclocking or fine-tuning of the CPU voltage. One of the crucial steps in the PMFault
is to get access to this interface and understand the communication protocol, so that we
gain full control of the CPU voltage.

One of the design issues we found on our server motherboard is that the PMBus can
be directly connected to the more general SMBus. There are various components on the
system on that bus, including the CPU, BMC, and other I2C devices. A compromise of
any of these components leads to the takeover of PMBus and thus control of the CPU
voltage.

In this paper, we use the BMC as the starting point of the attack, as it commonly
exists on server platforms. In order to analyse the attack surface of the BMC, we further
investigated its connection and hardware design on the Supermicro X11SSL-CF. First, we
found that its firmware is stored in a Serial Peripheral Interface (SPI) flash chip, separate
from the BIOS flash. We also found there are two Ethernet ports on the system for
communication with the BMC: one is called “Management Ethernet” and is dedicated
for server management. The other port can be shared between CPU and BMC so that
devices on this Ethernet port can communicate with both CPU and BMC. Finally, the
BMC also has a Keyboard Controller Style (KCS) interface that enables direct access from
the Operating System (OS) running on the CPU. These management interfaces open a
large attack surface on the BMC, and make remote attacks possible.

2.2 Protocol Structure
To be able to eavesdrop and forge PMBus commands, knowledge of the protocol structure
shown in Figure 2 is necessary. The PMBus is an I2C-based protocol (with clock speed
of 100 kHz–1 MHz and an open-drain data pin) and uses a master-slave communication
mechanism. The master device can query or change the setting of the slave device. Each
slave device is assigned a unique 7-bit device address.

The master device first sends a starting bit to initiate a transmission. During transmis-
sion, every group of 9 bits forms a segment, with the 9th bit indicating ACK (0) or NACK
(1) for every 8 bits received. The starting bit and the (N)ACK mechanism are handled at
hardware level and do not need to be handled manually.

The first segment is always sent by the master. The first 7 bits are the address of the
target slave, and the 8th bit indicates whether this transmission is a read (1) or write (0).
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Figure 2: PMBus protocol structure

The second segment is the register address to operate on. In the PMBus specification, this
segment is called the PMBus command. The segments after the second one contain the
data read from or written to the register.

Interaction between PMBus and SVID Although the functionality of the PMBus
protocol is similar to SVID, they have different specifications for the digital signal interface
and command sets. A VRM can have both SVID and PMBus interfaces, with the SVID
interface directly connected to the CPU and the PMBus interface connected to the SMBus.
Both interfaces can be used to control the voltage of the CPU, and some implementations
of the PMBus specification also have commands to override the voltages set through the
SVID interface.

2.3 PMBus Commands
For an adversary to communicate with the VRM and e.g., configure voltage levels, they
also need to know the specific PMBus commands. As mentioned, the PMBus specification
allows manufacturers to have custom implementations of PMBus commands. The E3-
1220V6-X11SSL-CF motherboard features an Monolithic Power MP2955 voltage regulator.
To understand the PMBus implementation of this VRM, we first started looking for its
datasheet, but unfortunately, found that it is not publicly available. However, on the
Monolithic Power website1, we found the datasheet of an alternative VRM (MP2965) [Mon].
As both chips are manufactured by the same company, we used this datasheet as a reference
and starting point to discover the available PMBus commands by analysing the PMBus
traffic on the Supermicro X11SSL-CF.

We found the relevant PMBus commands by reading and analysing the response
(ACK or NACK) of the registers, and validating found commands according to the PMBus
specification and the MP2965 datasheet : Table 1 gives the command name, command code,
and description of each commands. The first three commands in the table are implemented
according to the PMBus 1.3 specification [pmb], while the rest are manufacturer-specific.

Table 1: Discovered PMBus commands on E3-1220V6-X11SSL-CF.

Command name Command code Usage
CMD_PAGE 0x00 Switch between different voltage rails
CMD_OPERATION 0x01 PMBus override
VOUT_COMMAND 0x21 Output voltage settings
READ_VOUT 0x8B Voltage reading from sensor
MFR_VR_CONFIG 0xE4 Enable overclock mode
MFR_OCP_TOTAL_SET 0xEE Over-current protection configuration

1https://www.monolithicpower.com/

https://www.monolithicpower.com/
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With CMD_OPERATION, we can configure the operation mode of the VRM. By setting
bit 1 of this register, we can enable the PMBus override mode. In this mode, the voltage
configured in the VOUT_COMMAND register will override the voltage configuration from the
SVID bus. Another command that is useful for PMFault is READ_VOUT, as it allows
us to read the current voltage of the CPU and establish a baseline for undervolting.
The MFR_VR_CONFIG register is manufacturer-specific. By setting bit 3 or bit 10 and
configuring CMD_OPERATION, we could enable the tracking or fixed voltage overclocking
mode, respectively. Bit 8 VID_STEP_SEL of MFR_VR_CONFIG also allow us to use an
alternative mode of SVID. In this mode, the VRM uses 10 mV Voltage Identifier (VID)
steps instead of the default of 5 mV. This makes overvolting up to 3 V possible, which is well
beyond the operating voltage range of the E3-1220 V6 Intel CPU, with a maximum voltage
of 1.52 V [Cor18]. We also discovered that the VRM has an Over Current Protection (OCP)
circuit, which can be configured or disabled by another manufacturer-specific register
(MFR_OCP_TOTAL_SET). Some VRM also support multiple voltage output rails. CMD_PAGE
command is used to select the target rail to send the commands to.

With these discovered commands, we can now control the CPU voltage through the
PMBus. In Section 4.1, we detail how this interface is used as part of attack chains for
undervolting and overvolting attacks.

2.4 Jumper Settings
On the Supermicro X11SSL-CF motherboard, there are several jumpers that control
different functionalities, including the connection of the VRM to other parts of the system.
We kept all jumpers in the default status as delivered by the vendor. To avoid confusion,
we still list the jumper settings in Table 2. During inspection of the jumper settings, we
discovered that the SMBDAT_VRM and SMBCLK_VRM jumpers are neither mentioned in the user
manual [Supb] nor in the quick reference guide [Supa]. Using an oscilloscope while sending
PMBus commands, we found that these two jumpers can be used for (dis)connecting
the VRM from/to the PMBus. The experiments and attacks described in this paper are
conducted under the “connected” setting of both jumpers, which according to Supermicro
is the default.

We also found server motherboard without such jumpers, e.g., Supermicro X11SPG-TF
and ASRock E3C246D4I-2T. For those, the VRM is always connected to the BMC. We
detail our finding on other motherboards in Section 6. It is worth mentioning that to the
best of our knowledge, SGX attestation does not have the functionality to include the
configuration of these (external) jumpers.

Table 2: Jumper settings on Supermicro X11SSL-CF.

Jumper name Description
JPME2 Manufacturer mode normal (Default)
JPB1 BMC enabled (Default)

SMBDAT_VRM Connect VRM data line to PMBus
SMBCLK_VRM Connect VRM clock line to PMBus

3 Supermicro’s BMC and Server Management Interface
Having understood the basic PMBus protocol and commands, we next look at different
ways to gain access to the PMBus and send commands to the VRM. To achieve that, an
attacker needs access to the SMBus. As described in Section 2.1, on E3-1220V6-X11SSL-
CF, one of the devices on the SMBus is the ASPEED AST2400 BMC controller. In this
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section, we introduce the functionalities and vulnerabilities in these management interfaces
that allow us to achieve our main goal—to take control of the SMBus.

During the initial investigation of the BMC, we found there are mainly three services
available: there is a web service running on port 80 (HTTP) and 443 (HTTPS), an
Intelligent Platform Management Interface (IPMI) over LAN service on port 623, and the
SSH service on port 22. Besides, we also found that the IPMI service can be accessed
through the KCS interface from the CPU.

Some of these interfaces require authentication: to use HTTP, HTTPS, SSH, and IPMI
-over-LAN, all exposed through Ethernet, one has to authenticate to the BMC. The used
credentials in this authentication process are individual for each Supermicro motherboard.
However, the IPMI-over-KCS interface does not require any authentication to the BMC.
Instead, having root privileges on the host OS running on the CPU is sufficient to access
this interface. One can also use the IPMI-over-KCS interface to add/remove/modify BMC
credentials to subsequently login to the Ethernet-exposed interfaces.

3.1 SSH Shell
Since SSH is one of the most common interfaces that allows us to get a shell and possibly
take over the system, we first started our investigation with it. However, the SSH service
on E3-1220V6-X11SSL-CF provides a custom shell called “ATEN SMASH-CLP System
Management Shell”. It only provides limited commands that enable server monitoring
and basic management. Previously, a vulnerability was reported in [Vaz13]: the command
shell sh allows gaining root access from this shell, however, this command was not
available on our system-under-investigation.

3.2 BMC Firmware Analysis
To further investigate the services running on the BMC and check if it is possible to
enable an SSH root shell, we dumped the firmware of the BMC with a CH341A SPI flash
programmer as shown in Figure 3. This procedure is only used once to assist our analysis,
and is not necessary to execute the actual attack.

Figure 3: Dumping BMC firmware with a flash programmer.

We found that the firmware stored in the SPI flash is neither encrypted nor signed.
There are five partitions in the firmware, where the second one contains a Linux operating
system. The SMASH shell is provided by /SMASH/msh and it is possible to change it to a
different shell by replacing this file.

The Linux operating system also has an I2C kernel module installed, which provides an
interface to communicate with the SMBus. However, during our testing in Section 4.1, we
found that the API provided by this kernel module is not compatible with the commonly
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used libi2c in i2c-tool2. As the result, in Section 4.1, we opted to write a custom
library to use the I2C interface of the BMC and communicate with the VRM.

3.3 Firmware Upgrade
After analysing the firmware, we conclude that it is possible to enable an SSH shell by
modifying the firmware. We then started to look for software methods to re-flash the BMC
SPI flash chip. We found that the firmware upgrade functionality of the BMC provides a
way to do this. There are two interfaces for firmware upgrade: one is through the web
interface, the other through the KCS interface.

Through Web Interface The web interface has a firmware upgrade page that can switch
the BMC into upgrade mode and allows the user to upload a BMC firmware update
package. To prevents unauthorised user from upgrading the firmware, there is a login
portal. The user is authenticated by the BMC. As the BMC is a system independent from
the OS running on the CPU, users do not need to have privileged access to the OS to be
able to use this method. Besides, this web interface can be accessed remotely through
Ethernet. The remote BMC firmware upgrade attack chain described in Section 4.3 uses
this method to upgrade the firmware.

Through IPMI-over-KCS Interface Crucially, the BMC firmware can also be updated
through the KCS interface, using the following command: AlUpdate -f firmware.bin
-i kcs -r y. As mentioned, the KCS interface can be accessed from the OS running on
the CPU, only requiring root access to the OS, but not the BMC credentials.

Firmware Upgrade Package After finding the firmware upgrade interface, the next step
is to produce an upgrade package that can be uploaded to the BMC. We started with the
analysis of the structure of the upgrade package. Figure 4 shows the layout of a firmware
upgrade package. Previous work by [Ecl18] founds that in the firmware upgrade package,
there is a region that contains a magic value (ATENs_FW), a half-length CRC checksum,
and the length of each section. We call this part the firmware footer. There is also a
region containing metadata of the firmware image, including the name of each region and
their length and CRC, starting with “[img]”. We refer to this region as firmware table.
In the X11 series, the firmware table, the file system header of the root file system and the
website files system header are AES-CBC encrypted. However, the files in these regions
are not encrypted, but only LZMA compressed. As a result, the key of the AES-CBC
encryption can be recovered from the ipmi.so file on the root file system.

With this information, we can modify the firmware and construct a valid firmware up-
grade package for the web interface. We discuss firmware repacking in detail in Section 4.2.

3.4 IPMI I2C functionality
When exploring the functionalities of IPMI, we also found that the interface also allows
direct sending I2C packets with the ipmitool i2c command. This can be used either
through the Ethernet or KCS IPMI channel. The authentication requirement for using
IPMI-controlled I2C is the same as those described in Section 3.3. As shown in Section 4.3,
we can use this functionality for direct access to the SMBus/PMBus without modifying
BMC firmware.

2https://git.kernel.org/pub/scm/utils/i2c-tools/i2c-tools.git/

https://git.kernel.org/pub/scm/utils/i2c-tools/i2c-tools.git/
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Figure 4: Layout of the BMC firmware upgrade package. The NVRAM region stores the current
configuration of the BMC, the rootFS is a LZMA-compressed cramFS file system with only its header
encrypted. The kernel region stores a Linux kernel image, while the BMC website FS is another compressed
file system with only the file system header encrypted. The FW Footer starts with a magic value ATENs_FW
and contain information about the firmware version, checksum, etc. The FW Table is an encrypted region
and stores a table of the image layout. All encrypted region of the firmware can be decrypted with a key
extracted from ipmi.so on the rootFS.

4 Practical Experiments
Finally, using the results from the previous sections, we explain how to construct practical
Proof-of-Concept (PoC) attacks for PMFault. Some of our experiments require physical
access to the system to understand the hardware configuration (with an overview shown
in Figure 5). Note however that physical access is not required when performing PMFault
attacks on a real-world system, as the hardware components and connections are identical
for a given motherboard model.

Oscilloscope
connected to

PMBus

Oscilloscope
to monitor

CPU voltage

BMC flash chip
soldered out

PMBus connection
for Raspberry Pi

Management
Ethernet

Connection

BMC
micro-controller

Power Button

Figure 5: Setup of the E3-1220V6-X11SSL-CF for practical experiments. These connections are for
experiments only; physical access is not required in the actual attack.

4.1 PMBus-based Voltage Control
To understand the configuration and capabilities of using the PMBus to control the CPU
voltage, we conducted two experiments. Firstly, we used the “probe and verify” method to
find the I2C address of the VRM. Then we tried different ways of sending commands to
VRM to change the voltage.
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Discovering the VRM Address Finding the I2C address of the VRM is the first step
of PMFault. The easiest way to explore the I2C buses is to use the interface provided
by the OS. There are two I2C buses that can be used from the OS running on the CPU:
i2c-0 is shown by default, while i2c-1 requires the i2c_i801 kernel module to be loaded.
To find all available devices on both I2C buses, we ran the i2cdetect tool on them. We
found that there are 12 devices in total connected to the I2C bus. The full list of device
addresses can be found in Appendix A.

To then determine which device is a VRM, we use the result of the standard PMBus
command, READ_VOUT, as an indicator. The Plundervolt [MOG+20] attack showed that
the normal operating voltage of the CPU should be greater than 0.55 V, thus, if the
voltage read by READ_VOUT is within this range, it may be a VRM. Of the 12 devices
detected, only one device with address 0x20 on I2C bus 1 responded with a value in this
voltage range. We hence suspect this device is the VRM. To verify the result, we also
used MFR_ADDR_PMBUS (0xE1) command found in the MP2965 datasheet [Mon] to read the
PMBus address of the device. The result is 0x20, which confirms our finding.

Changing CPU Voltage with PMBus Commands Having identified the VRM, one can
next attempt to send commands to change the CPU voltage.

Set target voltage to
VOUT_COMMAND

Configure VOUT_OPERATION
with PMBus Override Mode Set Bit 3 of MFR_VR_CONFIG

Figure 6: Command sequence to change the voltage via PMBus.

In the datasheet of the MP2965 [Mon], we found an “overclocking” procedure that can
be used for this purpose. There are two overclocking modes, tracking mode and fix mode.
In PMFault, we mainly use the fix mode to set a defined voltage.

In the fix overclocking mode, the VRM uses the VID configured with the PMBus
command VOUT_COMMAND and ignores the configuration from the SVID bus. Figure 6 shows
the steps of using this mode to change voltage. First, we need to configure two registers:
The first one is VOUT_OPERATION; by setting the first bit of this register, we enable PMBus
override mode. We also have to set bit 3 of MFR_VR_CONFIG to make the VRM act on
these changes. After this, the voltage supplied to the CPU will be changed according to
the configuration in VOUT_COMMAND. To send this PMBus command sequence and change
the CPU voltage, we wrote a PoC with the libi2c. This PoC can be compiled and run
under Linux.

“Stalls” caused by PMBus Commands The experiments in Section 4.1 also show that
the VRM responds to the PMBus commands sent from the CPU. One may thus assume
that it would then be straightforward to directly send PMBus commands to change the
CPU voltage with this method. However, we found that the CPU stalls after sending the
MFR_VR_CONFIG command to actually configure the VRM to use the new voltage. This
will make the CPU voltage being kept at the changed value with no way to change it back.
This phenomenon raised two questions: Is the CPU stall caused by a crash or a recoverable
halt? If it is caused by a recoverable halt, will this protect against targeted undervolting
fault injection?

To answer this, we connected a Raspberry Pi to the PMBus to directly control the
VRM. The I2C interface to the VRM is exposed with two pins, SDA and SCL. As shown in
Figure 5, we connected the I2C interface of the Raspberry Pi to these pins.

In the first experiment, we sent a command to disable overclocking after the stall
happens. It appears that with the VRM reconfigured to normal mode, the CPU recovers
from the stall situation if the undervolting value is not too low. This shows that the stall is
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caused by a recoverable halt and not a crash. The second experiment is used to find out if
the halt will prevent the fault from happening. In this experiment, we used the CRT-RSA
PoC of the Plundervolt attack. With the CPU running this PoC, we used Raspberry Pi
to send PMBus commands to produce voltage glitches. We found that with glitches with
gradually lower voltage, an exploitable fault happens with the CRT-RSA calculation.

Hence, in summary, the “stall” phenomenon will prevent the PMBus attack from being
conducted by the CPU-VRM I2C interface, but it does not prevent the fault caused by
undervolting from having an impact on CPU calculations.

Voltage Control with BMC Because our attempt of voltage glitching failed with the PoC
running on the CPU, we started to look into the BMC-VRM I2C interface. In the BMC
firmware dumped in Section 3.1, we found the i2c.ko kernel module, which provides a
driver for the I2C interface. However, this module does not implement a standard ioctl()
for I2C devices, which is required for using libi2c. This means that the above PoC, which
uses this standard I2C library, cannot be used to communicate with this kernel module.

As the kernel module in the firmware did not implement the standard I2C API, we
had to find another way to utilize the BMC’s I2C interface. With the help of the I2C
driver in the latest Linux kernel [astb, asta], we found that there are 14 I2C interfaces
on the AST2400 BMC controller. Each has a set of memory-mapped registers to control
the interface. We also found the setup and message sending/receiving sequence of the
I2C interface. We then created a small library to directly write these registers and send
I2C bus commands from the BMC CPU to the address of the VRM. By monitoring
the I2C activity with an oscilloscope (this was only required for debugging and during
development), we found that the I2C bus 2 (counted from bus 0) of the BMC has the
VRM connected.

4.2 Enabling SSH Access and Firmware Repacking
Modification of the firmware can be used to obtain a root shell on the BMC. With the
“Supermicro BMC firmware image decryptor” [Nie20] and a modified version of the “ipmi
firmware tool” [Rak15] with added support for X11 images, we were able to extract the
firmware encryption key and decrypt the file system header. With these, we can unpack
and modify the full root file system.

As described in Section 3.2, /SMASH/msh provides the shell for SSH service. To enable
full root shell access, we replaced this file with a shell script with a single line to execute
/bin/sh. Besides, as the SSH service is running with root privileges, with the shell
redirected to sh, we could obtain a root shell once connected to the SSH.

To repack the image, we modified the “Supermicro BMC firmware image decryptor”
tool to add firmware encryption support and constructed a firmware package with a valid
footer and firmware table. We successfully tested and installed this modified firmware
package both with the web firmware upgrade interface and the IPMI firmware upgrade
interface via the AlUpdate tool.

4.3 Attack Chains for PMBus Access
In this section, we discuss three possible attack chains to take over the PMBus with the
techniques shown in the previous sections. The attacker can use any of these attack chains
and change the CPU voltage to perform PMFault attacks, i.e., to over/undervolt the CPU.

Remote BMC Firmware Upgrade The first attack chain assumes a malicious insider
threat model. This attack chain makes use of the web or IPMI interface through the BMC
Ethernet connection. To use this interface, the attacker needs to have access to the BMC
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management Ethernet port or the shared management Ethernet port eth0 on the system.
Besides, the attacker needs to obtain valid credentials to login to the BMC.

In detail, the attacker can first use the method described in Section 4.2 to repack
the SMT_X11_163 firmware upgrade package from [bmc] to enable SSH root access to
the BMC. Then, they can upload the firmware with the web management interface or
the IPMI management interface over Ethernet. With the SSH interface enabled, the
attacker can cross-compile the voltage-changing PoC described in Section 4.1 for the
BMC, and then upload and execute it to send PMBus commands. We used base64 -d >
/tmp/i2c-pmbus-send to upload our exploit code due to the unavailability of the SCP
service on the BMC OS.

Local BMC Firmware Upgrade Similar to the first, this attack chain also involves a
firmware upgrade for code execution on the BMC. However, we use the KCS interface
discussed in Section 3.3 to upgrade the firmware. The attacker does not require access to
the management Ethernet plane, instead, only root privileges on the OS running on the
CPU is required. This is e.g., relevant for data centers that host bare metal machines for
customers or for malware/ransomware that has obtained root through other exploits.

IPMI Interface The third attack chain uses the IPMI I2C functionality. An attacker
with root access on the CPU OS or access to the management port of the BMC can use
this interface to send commands to any I2C device that is connected to the BMC. The
command used for sending the raw I2C packets is shown in Listing 1. The I2C mapping
of this interface is the same as found during the initial investigation in Section 4.1. The
VRM is at address 0x20 on bus 2. However, since the last bit of the first packet of I2C
indicates the type of operation (read or write), we need to shift the device address left by
one bit and set the last bit accordingly when using this interface to control PMBus.

ipmitool i2c bus =2 0x40 <PMBus Command > <PMBus Data >

Listing 1: IPMI command for sending I2C packets.

5 Undervolting and Overvolting Attacks
In this section, we show how under/overvolting through the PMBus leads to attacks on
SGX and also permanent physical damage to the CPU. The attack requires any flaw that
gives a software attacker access to the PMBus. As mentioned in Section 4.3, this can
e.g., be a malicious firmware upgrade or the use of the IPMI-to-I2C functionality. The
attack is generic in the sense that various flaws can lead to the same outcome: remote
fault injection attacks on SGX and bricking the CPU. Figure 7 shows an overview of the
attacks.

5.1 Undervolting Attack against Intel SGX
Adversary Model As mentioned in Section 1.2, we assume a threat model where an
attacker (including a malicious insider) has full software access to the system but no
(or limited) physical access. More precisely, the attacker has root access to the OS and
software access to the BMC via the KCS interface or Ethernet. All attack chains described
in Section 4.3 can generally be used under this threat model. It is worth mentioning that
the attack that uses ipmitool through the KCS interface does not require knowledge of
the BMC credentials. A privileged local user on a compromised host CPU can thus use
ipmitool to inject fault into SGX purely from software.
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BMC PMBus

Overvolting
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Figure 7: Overview of the PMFault attack. With root access to the OS or access to the BMC via Ethernet
or KCS, the attacker can perform a malicious firmware upgrade of the BMC and then takeover the PMBus.
The attacker can also use the ipmi i2c command to directly control the PMBus via BMC. With control
over the CPU voltage, the attacker can overvolt to brick the CPU or undervolt to inject faults into SGX.

Proof of Concept We used the same PoC code as Plundervolt/VoltPillager [MOG+20].
Before injecting the voltage glitch, we use the attack chain described in Section 4.3 to gain
control of the PMBus.

To start with, we used the multiply operation as the first target, as it is a simple target
to fault. By gradually lowering the CPU voltage with the PMBus commands sent by
the BMC while running the Plundervolt/VoltPillager PoC on the CPU, we successfully
injected faults into the multiply operation (in our experiments at voltage 0.845 V with the
CPU running at 2 GHz.

To verify the fault injection also works for encryption operations running in SGX, we
ran the CRT-RSA signature PoC from Plundervolt/VoltPillager, with an RSA signature
computed inside an enclave using the Intel Integrated Performance Primitives (Intel IPP)
cryptography library functions [Cor]. Again, we could obtain faulty signatures as shown
in Listing 2. Furthermore, we confirmed that these faulty values could be used to factor
the RSA modulus and recover the private RSA key using the Lenstra attack [BDL97].

// Faulty calculation 1
0x3f , 0xe0 , 0xb8 , 0x74 , 0x04 , 0x18 , 0x9c , 0xed , 0x91 , 0x1a , 0x02 , 0x12 , 0x2a ,
0xce , 0x89 , 0xf8 , 0x32 , 0x00 , 0xdc , 0x05 , 0x15 , 0x53 , 0x72 , 0x8d , 0x84 , 0x00 ,
0xd3 , 0x67 , 0xbe , 0xa1 , 0xc2 , 0x40 , 0x76 , 0xbc , 0x8c , 0xd8 , 0xfe , 0xb1 , 0x00 ,
0xd7 , 0x9e , 0x0e , 0xb6 , 0xac , 0x61 , 0xc0 , 0xec , 0x9c , 0xf7 , 0x7e , 0xbc , 0x4b ,
0xde , 0x18 , 0xa5 , 0xa4 , 0x1c , 0x74 , 0xc4 , 0xb5 , 0x6a , 0x8d , 0xd3 , 0xb1 , 0x35 ,
0xf9 , 0xad , 0x0b , 0xe3 , 0x4a , 0x01 , 0x52 , 0xd4 , 0xc6 , 0xb2 , 0x95 , 0xbc , 0xdc ,
0xad , 0x61 , 0x8e , 0x07 , 0x84 , 0x4d , 0xe3 , 0xa7 , 0xff , 0xf0 , 0xd1 , 0xa0 , 0xd4 ,
0x58 , 0x9f , 0xbc , 0x37 , 0x0b , 0xa8 , 0x91 , 0x83 , 0x15 , 0x7b , 0xee , 0x28 , 0x83 ,
0x12 , 0x4a , 0x89 , 0x61 , 0x1e , 0x2c , 0xe1 , 0x02 , 0x2f , 0x08 , 0x4d , 0x5b , 0x04 ,
0x92 , 0x5e , 0x31 , 0xd0 , 0x7e , 0x94 , 0x85 , 0xd0 , 0xce , 0x75 , 0x4a , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
[... zeroes left out ...]
Incorrect result !

Listing 2: Faulty CRT-RSA decryptions/signatures generated by the respective ipps functions.

Reproducibility of CRT-RSA Fault Injection To further evaluate the reproducibility of
the attack, we setup an automated testing environment by connecting a Raspberry Pi to
an Ethernet port (eth0) and the power button of the motherboard. We ran a Python
script to repeat the following steps numerous times:
1. Upload the exploit for controlling the CPU voltage to BMC via an SSH connection.
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2. SSH into the OS running on the host CPU and trigger CRT-RSA signing in an SGX
enclave.

3. Run the PMFault exploit on the BMC to gradually lower the CPU voltage while the
signature is computed in the SGX enclave.

4. Stop lowering the CPU voltage when a fault occurs.
5. Record the result and cleanup.
6. If no faulty result is output, the system may have crashed due to too low voltage. In

this case, we use the connection to the motherboard power button to reboot the system
and wait to allow the system to boot into a stable status.
In total, we conducted 253 tests within 545 min. Of those, faults occurred in 194 tests.

66 of these faulty results could be used to successfully recover the correct RSA private key
using the Lenstra attack, which translates to a success rate of 26%. On average, a useful
fault could be obtained within 9 minutes.

5.2 Overvolting to Permanently Brick a CPU
Apart from the undervolting attack to extract keys from an SGX enclave, we also discovered
another attack, which is an overvolting attack that can permanently destroy the CPU.

Adversary Model In this attack, as described in Section 1.2, we assume an attacker
who has root privilege on the host CPU. For example, this could be in the case that an
attacker has placed ransomware on a system and threatens to damage the CPU unless a
ransom is paid. Clearly, root should have full control of all software running on the CPU,
but should not be able to cause any physical damage to the system. The attack chain
described in Section 4.3 using ipmitool with KCS can be used within this threat model.

Proof of Concept To overvolt the CPU, we firstly configure the MFR_VR_CONFIG register
of the VRM to use the 10 mV SVID table. This allows changing the CPU voltage up to
3 V. We also disabled the over-current protection by reconfiguring the MFR_OCP_TOTAL_SET
register. Then we used the voltage changing procedure to change the CPU voltage to a
value much higher than the normal operating voltage.

We found that this procedure allows changing the CPU voltage up to ∼2.84 V for
∼1 ms, which is outside the typical operating range of Intel CPUs. By increasing the
voltage beyond the specified operating voltage range (0.55 V–1.52 V) [Cor18] of a 7th Gen
Intel E3-1220V6 CPU two times, we permanently destroyed the CPU and left the system
in an unbootable state within a few seconds. We successfully repeated the experiment
with a second, identical CPU. An example of overvolting is shown in Figure 8.

For environmental and financial reasons, we were satisfied after successfully destroying
two CPUs and decided to not perform further experiments in that regard.

6 Evaluation of other Server Motherboards
As we found the PMBus to be a common interface present on server motherboard, we
decided to investigate other manufacturers as well. To facilitate larger-scale testing of
this, we wrote a tool called PMBusDetect. With this tool, we scan the system for a
PMBus connection and try to detect the VRM address. We applied this tool to several
other systems, including an ASRock rack motherboard (ASRock E3C246D4I-2T) and a
Supermicro X12DPi-NT6 motherboard (kindly provided by Supermicro for testing). We
then conducted further analysis of these systems to check if they are vulnerable to any
PMBus-related attack.
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Figure 8: Oscillocope capture of voltage change during overvolting, VOUT_COMMAND set to 0xFF (with 10 mV
VID table). Yellow: PMBus clock, blue: Vcpu. Vcpu shoots up to 2.84 V during overvolting.

PMBusDetect Tool for VRM Detection Based on the VRM detection process mentioned
in Section 4.1, we built the PMBusDetect tool to automatically scan all addresses of a
specified I2C bus for VRMs. During testing, we found that the implementation of PMBus
and usage of the VRM is different between motherboard, and the most stable command to
identify a VRM is READ_TEMPERATURE (0x8d). We use the response to this command as
an initial indicator to identify whether a VRM is present, and then use the VRM detection
process from Section 4.1 to verify the result.

Moreover, as the capabilities and voltage changing sequence can differ between VRM
vendor, we added an additional procedure to detect the vendor of the VRM. For this, we
use the result of reading ISL_DEVICE_ID (0xad) as an indicator for Intersil VRMs and
SVID_VENDOR_PRODUCT_ID (0xbf) for MPS, respectively. Detection based on ipmi i2c is
also implemented for detecting the connection between VRM and the BMC as mentioned
in Section 4.3. An example output of PMBusDetect with Supermicro X11SSL-CF is shown
in Appendix B, while Table 3 shows a summary of the motherboard tested and the scan
result for VRMs with PMBusDetect. We are aware that our testing—restricted by (lack
of) access to server hardware— only gives a very limited picture of the use of PMBus and
VRMs on server hardware. We hence decided to open-source PMBusDetect and build on
community efforts in the future to obtain a better view of the PMBus landscape.

Table 3: Tested motherboards and their VRM detection result.

Name BMC Chipset VRM Address PMBus Connects to
Supermicro X11SSL-CF AST2400 C232 0x20 BMC & CPU

Supermicro X12DPi-NT6 AST2600 C621A 0x30 & 0x34 —
ASRock E3C246D4I-2T AST2500 C246 0x60 BMC & CPU

6.1 ASRock Power-Down Attack
The ASRock E3C246D4I-2T motherboard uses an Intel Xeon E-2124 CPU with an
Intel C246 Chipset and ASPEED AST2500 BMC with login credentials defaulting to
ADMIN:ADMIN. We used the PMBusDetect tool together with manual probing and found
that the VRM of this motherboard is connected to both the BMC and I2C bus of the
CPU. In the following attack, we assume that the attacker is a user on a baremetal server
with root access in the OS.

The VRM used on this motherboard is an ISL69138. Because it is made by a different
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manufacture compared to the MP2955, the voltage changing PMBus command sequence
used for the MP2955 does not work with this VRM. Due to lack of documentation of this
procedure, we at the moment could not precisely overvolt or undervolt the CPU via the
PMBus. Yet, we discovered a new attack to disable the VRM and force power-down the
CPU, leaving the system in a (temporary) inoperable state.

PMBusDetect shows that the VRM is at address 0x60 on I2C bus 2 of the host CPU.
Different to the findings for the Supermicro X11SSL-CF, this VRM uses PMBus registers
on page 0x1 instead of the default 0x0. We then issue the ON_OFF_CONFIG (0x02) and
OPERATION (0x01) commands: We configure the OPERATION to “Immediate Off” and set
the “source of enable” only to ON_OFF_CONFIG. This results in a immediate power-off of
the VRM and crashes the system.

During testing, we found the PMBus is only writable from the CPU with IPMI over
KCS interface, but not from the BMC with ipmi i2c commands. As the result, it is not
possible for the administrator of the system to remotely configure the VRM back to a
normal state. Simply issuing the ipmi powercycle command with IPMI over LAN will
leave the system in a infinite boot loop. To recover from this attack, the administrator
has to physically power-cycle the system, which might increase downtime in a Denial-of-
Service (DoS) scenario.

This shows that PMBus as an attack vector does not only affect Supermicro X11SSL-
CF, but also can have impact on servers from other manufacturers. Besides we believe that
it might also be possible to conduct CPU bricking attacks if the PMBus voltage changing
sequence of Intersil VRM is known. We leave this for future work.

6.2 Other Supermicro X11 Motherboards

We also ran the PMBusDetect tool on X11SPG-TF and X11SSE-F Supermicro server
motherboards—in both cases, the VRM was reachable in the default configuration. To
test if they are vulnerable to PMFault, we sent PMBus commands through ipmi i2c
commands and successfully undervolted them to crash the system. This shows that the
attack chain through the IPMI interface is valid on these systems. As the systems were
provided by a third party for remote testing, we were not able to attempt overvolting and
similar, destructive experiments, but believe these motherboards to be equally affected.

6.3 Supermicro X12 Motherboards

We disclosed the vulnerability to Supermicro in May 2022. They confirmed the issue
and also provided a X12 generation Server for further testing. This system, Supermicro
X12DPi-NT6, features a dual Intel Xeon Gold 6330 CPU, Intel C621A Chipset, and
AST2600 BMC. Our investigation shows that mitigations has already been implemented
on this motherboard to break the attack chain of PMFault before we reported the attack
to Supermicro. Firstly, the firmware upgrade package is properly signed with RSA and
verified during the firmware upgrade process, which prevents malicious firmware uploads to
the BMC via IPMI. This breaks the attack chain though firmware upgrade. Secondly, I2C
packet filtering has been implemented in the BMC, which prevents IPMI commands to
directly send packets to the PMBus. Moreover, our PMBusDetect tool shows that the VR
is not connected to the CPU, which prevents an attack directly from the operating system.
In conclusion, to the best of our knowledge, we believe that Supermicro X12DPi-NT6
is not directly vulnerable to the attacks described in this paper. However, we note that
as-of-yet unknown vulnerabilities might remain in the firmware update process and the
complex software stack running on the BMC, which warrants further investigation.
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7 Conclusions and Countermeasures
In this paper, we demonstrated two remote attacks that use the PMBus interface to control
the CPU voltage. An undervolting attack can be used to inject fault to the SGX enclave of
the CPU and e.g., recover a secret key used in cryptography algorithms. The overvolting
attack causes permanent damage to the CPU.

The attack affects, to our knowledge, all 11th generation Supermicro systems. It also
impacts ASRock (tested with ASRock E3C246D4I-2T), though as described the VRM
behaves differently to Supermicro. We suspect that the attack might also affect other
vendors (given that BMCs are often similar), but could not further investigate this and
thus leave it for future work.

7.1 Server Platform Security and Embedded System Security

We first discuss the security considerations for server platforms. Previous security research
on computer platforms were mainly focused on the security of the software (either running
on the CPU or the management controller). However, each subsystem on a server platform
does not act in isolation. Instead, they may interact with each other via the physical
connections on the motherboard. In our attacks, we show that the hardware design of
the system with a correctly implemented ipmitool can lead to severe security issues and
damage to the system.

Apart from the components on the motherboard, one should also take “plugin” devices
into consideration when analysing the security of server platforms. During our investigation
of the system, we found that when a Peripheral Component Interconnect Express (PCI-E)
device is plugged onto the motherboard, it is also connected to the I2C bus of the
motherboard. However, if the firmware of a PCI-E device is compromised, it can gain
access to the PMBus to perform the same attacks described in this paper. On E3-1220V6-
X11SSL-CF, this connection can be configured with a jumper named JI2C. Although this
jumper is disconnected by default, the user may not be aware of the security implications
of connecting this jumper.

In summary, the server platform is a system that has multiple components and mi-
crocontrollers. The security of the platforms is not only down to ensuring the security of
the software running on it, but the overall design of the hardware and embedded systems
on the motherboard should also go through a thorough security review. Securing such a
system needs collaborative effort of both software developers and hardware engineers.

7.2 SGX Security

Our attack on SGX enclaves shows that a privileged local attacker can inject a fault to the
enclave and recover secret information with the server management interface, effectively
reviving Plundervolt-like software undervolting attacks on Supermicro X11 motherboards.
We also demonstrate that a malicious service provider (e.g., cloud hoster) can use the
attack chains described in the paper to break the security guarantee provided by SGX.
Moreover, the vulnerability currently cannot be detected/mitigated by SGX attestation,
because the BMC and its firmware are not within the scope of SGX attestation.

A supply chain attack is also possible: as the firmware is not securely verified, it is
possible for a third party to implant malware into the BMC and later launch remote
attacks on SGX and/or damage the CPU. Such a firmware modification is also conceivable
while the device is being shipped to the end user. Detecting such attack would be hard, as
the firmware of the BMC is stored in a separate flash chip. The software running on the
BMC is thus usually out-of-scope of traditional malware detection methods.
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7.3 Countermeasures
Overvolting Attack According to our experiments, PMBus-based overvolting can lead to
permanent damage to the CPU and thus permanent DoS of the system.

The fundamental issue that leads to this attack is the lack of a hardcoded voltage
limit of the VRM. Simply adding signature verification of the BMC firmware or using
secure boot to break the attack chain might not be sufficient to prevent overvolting, as
other, future attacks might also yield PMBus access. Besides, configuring software-based
PMBus read/write limitations of the VRM through the MFR_PWD_USER command is also
insufficient to stop the attack. This is because this features only sets a 16-bit passcode,
which is prone to brute force attack. We suggest the following mitigations be implemented
for this attack to break the attack chain:
1. In the short term, the user manual of the relevant system(s) should be updated to

describe the usage and suggested configuration of the SMBDAT_VRM and SMBCLK_VRM
jumpers, if they are present on a specific model.

2. In the long term, an alternative VRM with a hardwired voltage safety limit should be
used to replace the current VRM.

3. Another mitigation would be implementing an I2C filter to detect and block malicious
PMBus packets. MFR_VR_CONFIG, which can be used to set a 10 mV VID table, is one
of the main commands that need to be blocked. Optionally, other commands that
involved in the overclocking procedure could be blocked, however, this may affect users
who actually want to use this feature. Such a filter could be implemented in a small
microcontroller that listens to the I2C bus and “jams” malicious commands by actively
pulling the bus low once the command has been detected but before its transmission
has been completed.

PMBus-based SGX Undervolting To the best of our knowledge, PMFault represents
the first attack that directly breaches integrity guarantees in the Intel SGX security
architecture through the PMBus interface. We believe that the fix currently deployed by
Intel against Plundervolt/V0ltPwn (CVE-2019-11157)—disabling the SVID undervolting
interface—is insufficient when a remote attacker can get access to the PMBus through
the BMC or I2C interface of the CPU, as is the case for Supermicro X11 motherboards.
We note that there might be many other devices connected to the bus, including PCI-E
devices like graphic cards. It is thus also possible for a compromised PCI-E device to send
malicious commands to control the CPU voltage.

Given the potential impact of our findings regarding fault injection into SGX enclaves,
in the short term, we recommend inserting software-based fault injection countermeasures
into cryptographic computations in enclaves (e.g., the quoting enclave). However, we note
that such fixes can only serve as mitigations, but not fully eliminate this attack vector.

We would like to highlight that in our opinion, this attack surface cannot be easily
addressed by jumpers to disconnect the VRM from the SMBus or adding signature
verification of the BMC firmware, as we believe that SGX attestation cannot independently
verify the relevant system configurations:
1. The existence of a PMBus/SMBus interface to the VRM and whether it can be controlled

through the I2C interface of the CPU;
2. The existence of an external microcontroller on the motherboard and if it has the

functionality to control the VRM (e.g., BMC or other PCI-E devices);
3. The firmware security status of the BMC and other devices on the PMBus.
This will make it impossible to give SGX assurance of the trust status of the system.
We believe that in the long term, appropriate hardware countermeasures inside the
CPU package is required: this could on the one hand include continuous monitoring
of the received supply voltage, as recently presented by Intel for critical parts of their
systems [NT22], and on the other the use of fully-integrated voltage regulators.
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A i2cdetect Result for Supermicro X11SSL-CF

~$ sudo i2cdetect 0
0 1 2 3 4 5 6 7 8 9 a b c d e f

[00 -20]: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- 37 -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: 50 -- -- -- -- -- -- -- 58 -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

~$ sudo i2cdetect 1
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- 08 -- -- -- -- -- -- --
10: 10 -- -- -- -- -- -- -- -- 19 -- -- -- -- -- --
20: 20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: 30 -- -- -- -- 35 36 -- -- -- -- -- -- -- -- --
40: -- -- -- -- 44 -- -- -- -- -- -- -- -- -- -- --
50: -- 51 -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

B PMBusDetect Result for Supermicro X11SSL-CF

$ sudo modprobe i2c_i801
$ sudo ./ pmbusdetect -d /dev/i2c -1
Device 0x20 READ_TEMPERATURE success : 0019
!!!!!!!!!!! Detected ! Device addr: 20 !!!!!!!!!!!
Device 0x20 SVID_VENDOR_PRODUCT_ID success ,
data: 2555 This device is likely to be a MPS VRM
# Save the page
Device 0x20 : 00 READ_PAGE success

Page: 00
Device 0x20 : 00 WRITE_PAGE success
Device 0x20 : 00 READ_VOUT success : 00D8

Page: 01
Device 0x20 : 01 WRITE_PAGE success
Device 0x20 : 01 READ_VOUT success : 0001
# Restore the page
Device 0x20 : 00 WRITE_PAGE success
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