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Abstract

Distributed multi-tier software stacks organise and deploy software components as a hierarchy
of interacting tiers. The components are typically heterogeneous, i.e. each component may be
written in a different language and may interoperate using a variety of protocols. Tiered software
is modular but leads to a range of interoperability challenges including the following. (1) Inter-
operating components in multiple languages and paradigms increases developer cognitive load
since they must simultaneously reason in multiple languages and paradigms. (2) There must be
correct interoperation of components, e.g. adherence to the API or communication protocols be-
tween components. (3) Interoperation between different components can lead to diverse modes
of failure as each component can fail in unique ways. Many of these challenges are the result of
contributing factors like tight coupling or polyglot programmming.

This thesis investigates techniques to improve heterogeneous interoperability in distributed
multi-tier software stacks. Some common approaches include microservices and tierless lan-
guages.

Microservices are perceived to offer better reliability than components in multi-tier software
stacks through the loose coupling of services. The reliability of microservices is investigated
by combining the established properties of dependence and state with reliability. This defines a
new three-dimensional space: the Microservices Dependency State Reliability (MDSR) classi-
fication with six classes. The feasibility of statically identifying MDSR classes is demonstrated
with a prototype analyser that identifies all six classes in Flask microservices web applications.
The reliability implications of the different MDSR classes are evaluated by running three case
study applications (Hipster-Shop, JPyL & WordPress) against a fault injector. Key results are
as follows. (1) All applications fail catastrophically if a critical microservice fails. (2) Appli-
cations survive the failure of individual minor microservice(s). (3) The failure of any chain of
microservices in JPyL & Hipster is catastrophic. (4) Individual microservices do not necessarily
have minor reliability implications.

In a tierless language, the compiler generates the code for each component and ensures
their correct interoperation. They are mainly used to implement web stacks. However, their
use in implementing IoT stacks is less common. This investigation compares interoperation in
tiered and tierless IoT stacks through the systematic evaluation of four implementations of the
prototype UoG smart campus IoT system: two tierless and two Python-based tiered. Key results



of the study are as follows. (1) Tierless languages have the potential to significantly reduce the
development effort for IoT systems, requiring 70% less code than the tiered implementations. (2)
Tierless languages have the potential to significantly improve the reliability of IoT systems. (3)
The first comparison of a tierless codebase for resource-rich sensor nodes and one for resource-
constrained sensor nodes shows that they have very similar functional structure and code sizes -
within 7%.

Tier elimination is a technique that removes a tier/component by integrating two tiers. Specif-
ically, this thesis investigates the implications of eliminating the Apache web server in a 4-tier
web stack: Jupyter Notebook, Apache, Python, Linux (JAPyL) and replacing it with PHP li-
braries in the frontend webpage to get the 3-tier (JPL). The study reveals the following. (1)
The JPL 3-tier web stack requires that the developer uses fewer programming languages and
paradigms than JAPyL, i.e two compared with four languages and two compared with three
paradigms. (2) JPL requires 42% less code than JAPyL. (3) In JPL, some of the functionali-
ties can be automated due to the decreased abstraction levels at the upper layers of the stack.
(4) However, the latency in JPL is two to three times greater than that of JAPyL. So while tier
elimination reduces developer effort and semantic friction the tradeoffs are high performance
overhead & resource consumption and increasing code complexity.
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Chapter 1

Introduction

1.1 Background

1.1.1 Web & IoT Evolution

In less than thirty years, the World Wide Web (WWW) has undergone a rapid evolution. Simple
static web apps developed using languages like XHTML, CSS & JavaScript have now become
more dynamic. Here, data driven apps like social media portals now utilise languages like PHP,
Python, Perl or Java alongside data stores like MySQL, MongoDB or Redis [103].

Now another evolution is taking place where any physical device like coffee makers, wash-
ing machines or watches are connecting to the internet and communicating with one another.
There is now an interaction between the physical and digital worlds commonly referred to as the
Internet of Things (IoT) [41].

Traditionally, applications in both of these domains have been developed and implemented as
tiered distributed software. They comprise several layers of interoperating software components
on different nodes [20].

1.1.2 Web Stacks

Web stacks combine software components to implement a web application. A component may
be defined as an independent, high performance, multi-threaded unit of software with a high
level of abstraction, designed to perform a single functionality [30].

At a minimum, a web stack consists of an operating system, data store, web server and
a client side interface like a web browser shown in Figure 1.1. Early web stacks combined
Linux, Apache, MySQL & PHP (LAMP) shown in Figure 1.2. In 2020, implementation of this
4-tier stack still remains common as 60% of all WordPress applications hosted online utilise
LAMP [64]. However, more modern web stacks have evolved. Examples include MongoDB,
ExpressJS, AngularJS & NodeJS (MEAN) and Jupyter, Apache, Python & Linux (JAPyL) dis-
cussed in Section 2.1.

1
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Figure 1.1: Web Stack Architecture

Figure 1.2: A 4-Tier LAMP Web Stack

1.1.3 IoT Stacks

IoT stacks are even more complex than web stacks. They are not just software based as there
is also interaction with the physical world. They combine a web application with hardware like
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embedded sensors and actuators. This allows the application to collect and aggregate data [87].
One example is the (Micro)Python, Wemos System (PWS) stack shown in Figure 1.3 and dis-
cussed in Sections 2.1.5 & 2.4.

Figure 1.3: PWS Distributed IoT Architecture

1.2 Interoperation in Multi-Tier Software Stacks

A feature of most multi-tier software stacks is heterogeneity. There are multiple different com-
ponents, programming languages and protocols that must interoperate in the stack to achieve
the business function of the application [100]. One example is the JAPyL web stack shown in
Figure 1.4.

The purpose of this stack is to make Jupyter Notebooks web accessible. The Notebook
component is usually embedded into a webpage with an Apache Web Server as a reverse proxy.
Here, Apache is usually interposed between the client and the Jupyter Server, taking requests
from clients and forwarding them to Jupyter using the HTTP protocol [99]. Appendix A.1
provides an example of the sorts of configurations a developer has to implement in both Apache
and the Jupyter Server to allow for communication between the two components.

This creates heterogeneous interoperability as different forms of interoperation like syntactic
and semantic interoperability can occur [5]. Here different components are able to (1) read
and interpret the format of messages being exchanged (2) understand the meaning of data in a
similar way. For example, in the LAMP web stack, the PHP & MySQL components are able to
interoperate because PHP passes messages to the MySQL component as SQL messages. This is
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Figure 1.4: JAPyL Distributed Architecture

a standard format that is understood in relational database systems [161].
However, heterogeneous interoperability creates several challenges in multi-tier software

stacks including the following as discussed in Section 2.3.2. (1) Interoperating components in
multiple languages and paradigms increases developer cognitive load since they must simulta-
neously reason in multiple languages and paradigms. (2) There must be correct interoperation
of components, e.g. adherence to the API or communication protocols between components. (3)
Interoperation between different components can lead to diverse modes of failure as each com-
ponent can fail in unique ways. Many of these challenges are the result of contributing factors
like multi-language integration or tight coupling:

(1) Multi-Language Integration — referred to as polyglot programming, some multi-tier soft-
ware stacks consist of interoperating components in multiple languages and paradigms.
A recent survey of 1150 open source projects on GitHub reveals that on average, it is
quite common for different software systems to be developed using at least five different
languages [94]. This can lead to technical challenges like increased developer effort and
semantic friction/impedance mismatch [87].

(2) Tight Coupling — multi-tier software stacks usually require high levels of communication
and data marshalling among the various tiers [4]. Components are often highly interde-
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pendent on one another. For example, in JAPyL, the Jupyter component is dependent
on the Apache component for HTTP requests to be received as shown in Figure 1.4. If
one component fails, the entire stack ceases to function as a business unit [158]. Each
component is a potential single point of failure (SPOF).

1.3 Techniques for Improving Interoperation

Techniques for improving interoperation in multi-tier software stacks include techniques like
microservices and tierless languages. Based on a survey of over 1000 developers from over
45 technology companies, an IBM 2021 report states that 37% of developers are using mi-
croservices alongside components within their multi-tier systems. Another 17% have replaced
components fully with microservices [66].

These alternatives attempt to solve interoperability challenges through techniques like pro-
viding loose coupling of services or eliminating the boundary between the client and server tiers
discussed in Section 2.4. However, the use of components in multi-tier software stacks remains
common. In 2021, the Apache web server is still utilised in 60% of all WordPress applications
hosted online [104].

1.4 Research Questions & Contributions

This thesis investigates techniques to improve heterogeneous interoperability in multi-tier soft-
ware stacks. The aim is to examine and explore the following research questions:

(1) To what extent do microservices implementations share similar heterogeneous inter-
operability challenges as components in multi-tier software stacks? Some microser-
vices implementations, like chained services, have similar heterogeneous interoperability
characteristics to component-based multi-tier software stacks. To what extent do microser-
vice based stacks face interoperability challenges like catastrophic failure?

(2) How effectively do tierless languages address the challenges of heterogeneous inter-
operability in multi-tier software stacks? Tierless languages have proven effective in
reducing the number of different interoperating languages and paradigms in web stacks.
To what extent can tierless languages reduce the interoperability challenges in IoT stacks?

(3) To what extent can heterogeneous interoperability challenges be reduced in multi-
tier software stacks through tier elimination? Microservices and tierless languages
improve interoperation in multi-tier software stacks to some degree. However, they do
not entirely eliminate all factors responsible for heterogeneous interoperability. To what
extent can reducing the number of tiers in a component based multi-tier software stack
improve interoperation?
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The following are the key contributions of this research.

(1) An investigation into the reliability properties of microservices in multi-tier software
stacks. In the academic and grey literature, microservices are perceived by software ar-
chitects to offer better reliability than components in multi-tier software stacks because of
the loose coupling of services. Chapter 3 investigates the reality of this perceived reliabil-
ity improvements in two ways. (1) It compares the reliability of independent, standalone
microservices in a tiered architecture against a traditional web stack component-based ar-
chitecture. (2) It combines the established microservice classifications of dependence (in-
dividual/chained) and state (stateful/stateless) with reliability (minor/critical): if a minor
microservice fails then the application often continues to operate; if a critical microser-
vice fails, the entire application fails. This defines a new three dimensional space: the
Microservices Dependency State Reliability (MDSR) classification. Using three web ap-
plication case studies (Hipster-Shop, Jupyter and WordPress) microservice instances that
exemplify the 6 points in MDSR are identified.

A prototype static analyser that can statically identify all six classes in Flask web applica-
tions is presented and applied to seven open source applications. It assists in demonstrat-
ing that the case study examples in each MDSR class exhibit either a known reliability
pattern or a bad smell. The prototype static analyser can statically identify three of six
patterns/bad smells in Flask web applications. Hence MDSR provides a structured classi-
fication of microservice software with the potential to improve reliability.

The reliability implications of the different MDSR classes are evaluated by running the
case study applications against a fault injector to show the following. (1) All applications
fail catastrophically if a critical microservice fails. (2) Applications survive the failure of
individual minor microservice(s). (3) The failure of any chain of microservices in JPyL
& Hipster is catastrophic. (4) Individual microservices do not necessarily have minor
reliability implications [123].

(2) Comparing interoperation in tiered and tierless IoT stacks through the systematic
evaluation of four implementations of the UoG smart campus IoT systems. Internet
of Things (IoT) software is notoriously complex, conventionally comprising multiple tiers.
The developer must use multiple programming languages and ensure that the components
interoperate correctly. A novel alternative utilised in web stacks is to use a single tierless

language with a compiler that generates the code for each component that ensures their
correct interoperation. Tierless languages are used in a variety of software stacks, most
commonly for web stacks, however their use for IoT stacks is less common.

Chapter 4 presents the first ever systematic comparison of interoperation in tiered and
tierless IoT stacks. This is achieved through the systematic comparison of the imple-
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mentations of the prototype UoG smart campus IoT system: two tierless (Clean with
iTask/mTask) and two Python-based tiered (Python & MicroPython).

The key results are as follows. (1) Tierless languages have the potential to significantly
reduce the development effort for IoT systems, requiring 70% less code than the tiered
implementations. Careful analysis attributes this code reduction to reduced interoperation
(e.g. two embedded domain-specific languages (DSLs) and one paradigm versus seven
languages and two paradigms), automatically generated distributed communication, and
powerful IoT programming abstractions. (2) Tierless languages have the potential to sig-
nificantly improve the reliability of IoT systems, describing how Clean iTask/mTask main-
tains type safety, provides higher order failure management. (3) The first comparison of a
tierless codebase for resource-rich sensor nodes and one for resource-constrained sensor
nodes. The comparison shows that they have similar code size (within 7%), and functional
structure [87, 88].

(3) An evaluation of the effectiveness of tier elimination for improving heterogeneous in-
teroperability. Web applications are structured as multi-tier stacks of components. Each
component may be written in a different language and interoperate using a variety of pro-
tocols. Such interoperation can lead to a variety of challenges like increased developer
effort or catastrophic failure. Alternative approaches do improve interoperability to some
degree. However, they do not entirely eliminate all the factors responsible for these inter-
operability challenges.

Chapter 5 explores a pragmatic approach to reducing web stack interoperation, namely
eliminating a tier/component through the integration of the Business Logic Layer and
Presentation Layers. That is, the implications of eliminating the Apache web server in a
JAPyL 4-tier web stack: Jupyter Notebook, Apache, Python, Linux, and replacing it with
PHP libraries in the frontend webpage is explored.

This reveals the following. (1) The JPL 3-tier web stack requires that the developer uses
fewer programming languages than JAPyL, i.e two compared with four languages. (2)
JPL requires 42% less code than JAPyL. (3) Some functionalities can be automated at the
upper levels of the statck due to decreased abstraction. (4) However, the latency in JPL
is two to three times greater than that of JAPyL. This shows that the benefits of the tier
elimination technique include less developer effort and reduced semantic friction. How-
ever, its tradeoffs are high performance overhead & resource consumption and increasing
complexity [124].
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Chapter 2

Background

This chapter introduces the related literature covering interoperation in distributed multi-tier
software stacks. Specifically, it outlines the concept of heterogeneous interoperability in dis-
tributed multi-tier software stacks, its challenges and techniques for improving interoperation.
Section 2.1 describes conventional software stacks and introduces examples of these stacks.
Section 2.2 discusses the similarities between web & IoT stacks. Section 2.3 examines different
forms of interoperation in multi-tier software stacks and what factors affect heterogeneous inter-
operability. Section 2.4 examines alternative techniques for improving interoperation. Finally,
Section 2.5 summarises the entire chapter.

2.1 Conventional Web & IoT Stacks

Distributed multi-tier software stacks organise and deploy software components as a hierarchy
of interacting tiers. The components are typically heterogeneous, i.e. each component may be
written in a different language. The required functionality of the stack is achieved by interoper-

ating the components using a variety of protocols.
The following subsections especially Section 2.1.3 and Section 2.1.5 describe distributed

multi-tier software stacks that will be used as running examples in this chapter and throughout
the thesis.

2.1.1 Conventional Web Tiers

Many web stacks are distributed systems, with client browsers interacting with a remote web-
server and data store [92]. For example, in LAMP, the web client consists of the webpage
component that interoperates with Apache, PHP and MySQL that are located server side shown
in Figure 1.2.

This is a result of the n-tier architecture, shown in Figure 2.1 where the functionalities of a
stack are separated into different interacting layers or tiers as follows [93]:

9
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(1) Presentation Layer — the user interface or viewing layer where clients view data or request
services via a webpage component.

(2) Business Logic Layer — handles all request processing and marshalling of data.

(3) Data Access Layer — the backend that handles the retrieval and storage of data.

Figure 2.1: N-Tier Architecture

Each tier can interoperate on different nodes or clusters with shared communication. Another
option is to have all the different tiers interoperate on a single node [106].

2.1.2 Notebook Programming

Programming environments for conventional web stacks have evolved over time. Classical com-
pilers and editors are still present but are further supported by Integrated Development Environ-
ments (IDE) [25]. The next stage of programming evolution is the computation notebook. This
is a programming environment that combines text, code and visualisation [132]. It usually con-
sists of the following. (1) A word processor that formats the text. (2) A shell or kernel that
executes statements in a programming language. (3) A rendering engine that renders HTML to
a user readable format [70]. One example is Jupyter Notebooks.

Jupyter is a distributed system where the client notebook is rendered in a web browser while
the server acts as a web host [141]. The application provides support for over one hundred
programming languages through the use of a kernel framework shown in Figure 2.2.

Multi-language integration is supported through the use of subkernels. This is a specially
created kernel that acts as a proxy or bridge communicator for separate language kernels shown
in Figure 2.3. Each cell in the Jupyter Notebook supports its own language.
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Figure 2.2: Jupyter Kernel Component

A cell is a multi-line input field for source code execution [116]. Once the code is executed,
the subkernel allows the server to route each language to the appropriate kernel and perform the
necessary functionality [141].

Figure 2.3: Jupyter Subkernel Integration

In contrast to software stacks like LAMP, components in the Jupyter application are loosely
coupled to some degree. If programming code is present in the cells of the Jupyter Notebook,
successful code execution can still occur even if the Jupyter server is unavailable. However,
execution performance of entire code blocks can be slower. The Jupyter application is single
threaded and only one cell at a time can be executed in a single notebook [141].
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2.1.3 JAPyL

This is a conventional 4-tier architecture composing Jupyter, Apache, Python and Linux (Fig-
ure 3.2). In this web stack, Apache is usually interposed between the client and the Jupyter
Server as a reverse proxy. It takes requests from clients and forwards them to Jupyter. This is
done in order to create an extra layer of security to protect the Jupyter Server [99]. Appendix A.1
provides an example of the configurations a developer has to implement in both Apache and the
Jupyter Server to allow for communication between the two components.

The stack features a Defense-in-Depth multi-layered approach to security (Figure 2.4). That
is, various security mechanisms are deployed throughout the stack. The intention is that if an
attacker targets the Jupyter Notebook online and is able to penetrate one layer, another layer
may thwart the attack [99].

Figure 2.4: JAPyL Defense-in-Depth Security Model

The Apache web server can be hardened to provide several security mechanisms like security
headers, SSL encryption, URL port spoofing and IP white/black listing. This secures the web
server layer of the JAPyL software stack. The Jupyter Notebook component is secured by the
Jupyter Server. Notebook cells can be made read only while access to the data on the notebook
itself can be limited via password authentication and encryption as well as port spoofing.

Port spoofing is a technique used by threat actors to bypass network perimeter defenses
by sending malicious network traffic through using non standard ports. This attack could go
undetected because packets may be going through a port that is not being monitored [58]. How-
ever, this technique can also be used as a defense technique. A systems administrator may
change standard ports used by an application to send and receive packets through a non stan-
dard port [37]. For example, it is common for the Jupyter Server to send and received packets
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through port 8888 [99]. However, this port can be changed to any nonstandard port like 10237.
A threat actor will not be able to detect or intercept packets from the Jupyter Server if they are
monitoring port 8888.

These security mechanisms are typically declaratively specified in either the Jupyter Server
or Apache [85]. Often security features are implemented as runtime parameters. Appendix B.1
provides examples of some of the declarative security mechanisms used in JAPyL.

Declarative specifications in some domain-specific languages like HTML, XML, or Apache
Configs make things easier for the developer. It raises the level of abstraction [115]. Nonethe-
less, the developer must be able to correctly interoperate several languages, components and
APIs. These include (1) Jupyter Configurations (2) Jupyter Components i.e. Kernel, Subkernel
& Magic Implementations (3) Different languages like JSON, Apache Configs and Python [99].

2.1.4 Conventional IoT Tiers

Tiered IoT stacks are even more complex than web stacks. They combine a web application that
interoperates with a second distributed system of sensor and actuator nodes [87]. This results in
a typical IoT stack consisting of at least four interoperating layers shown in Figure 2.5. These
are as follows [87]:

(1) Presentation Layer — utilises web components as the interface between the human and
devices where application services are provided.

(2) Application Layer — acts as the interface between the Presentation Layer and the Percep-
tion Layer, storing and processing the data.

(3) Network Layer — responsible for the communication between the sensor nodes and the
server through protocols like MQTT 1.

(4) Perception Layer — collects the data, interacts with the environment, and consists of
devices using light, sound, motion, air quality and temperature sensors.

2.1.5 Python Wemos Super Sensor (PWS)

(Micro)Python, Wemos, Super Sensor (PWS) IoT stack is one example of a conventional IoT
Stack. The web application components like the webpage or Apache Server are found in the
Presentation & Application Layers. Components for the sensor nodes and actuators or the Mea-
surements Collector are found in the Perception & Network Layers shown in Figure 2.6. Each
layer can interoperate in its own node.

1Source: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
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Figure 2.5: A Generic 4-Tier IoT Architecture

Figure 2.6: PWS Distributed IoT Architecture
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2.2 Comparing Web & IoT Stacks

2.2.1 Differences between Web & IoT Stacks

Architecture While both web and IoT stacks are tiered, IoT stacks account for a second level
of distribution comprising sensor nodes and actuators that allows the application to collect data
from its physical environment. Hence the need for Perception & Network Layers in the IoT
4-tier architecture shown in Figure 2.5

Data Generation In web applications, the content is usually generated by human interaction.
One has to input data, ask a query, issue a search or send request for a web service. This form
of communication is referred to as human-to-machine communication (h2m) [54].

In contrast, for IoT applications, data is usually generated or pushed through the use of
devices like embedded sensors, actuators, processors, transceivers, etc. This form of commu-
nication is referred to as machine-to-machine (m2m). There is direct communication between
devices using any communication channel that is available especially through wireless means
without human involvement [159].

Protocols Generally, some protocols used in web stacks like HTTP are also found in IoT
stacks especially in the Perception and Application Layers. However, there are some protocols
implemented in IoT stacks that are not usually used in standalone web stacks like MQTT [167].

Figure 2.7 compares the different protocol examples that are utilised in web and IoT stacks
when deployed according to the Open Systems Interconnections (OSI) Model [51]. This is a log-
ical and conceptual model that defines network communication as a layered server architecture
system. Each layer is defined according to its specific function [83].

2.2.2 Similarities between Web & IoT Stacks

Batory and Malley believe that the building block of any hierarchical platform in any domain is
the software component [12]. Many tiered systems are built using similar components no matter
the domain [12]. Web and IoT software stacks are an instance of this. For example, tiered web
stacks like LAMP consist of data storage, web server and front end components. These are also
found in IoT stacks like PWS in both the Perception & Application Layers. There is a backend
storage like MongoDB, a front end web page and a web server like Apache shown in Figure 1.3.

The organisation of these components and how they function together are standardised [12].
For example, users interact with JAPyL and PWS via the webpage component. Similarly, a
web server like Apache is required to host the webpage component as well as to process HTTP
requests shown in Figures 1.3 & 1.4.

2Source: https://www.researchgate.net/figure/

https://www.researchgate.net/figure/
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Figure 2.7: Example Comparison of Protocols in Web vs IoT Stacks 2

As many tiered IoT stacks consist of web components, the n-tier architecture is still present.
For example, in PWS, the Business Logic & Data Access Layers are found in the Application
Layer while the Presentation Layer acts as the frontend for the entire application [87]. Moreover,
the components in both stacks are also usually organised in a client-server architectural style
shown in Figure 1.1. The client provides an interface to allow users to either request services
or display data. The server handles all the workload. Communication between the client and
server usually occurs over a network using standard protocols [86].

Similar components and architectural styles mean that both Web and IoT software stacks
share similar forms of interoperation. This will result in similar interoperability challenges for
both discussed in Section 2.3.2.

2.3 Heterogeneous Interoperability in Distributed Multi-Tier
Software Stacks

2.3.1 Heterogeneous Interoperability

Wegner defines interoperability as the "ability of two or more software components to cooperate
despite differences in language, interface, and execution platform" [163]. Components interop-
erate when they are able to communicate, exchange information or share data in a unified format.
The meaning of the data being exchanged is understood similarly by all components [65]. Soft-
ware components have to be able to interoperate both syntactically and semantically.

Syntactic interoperability involves components being able to correctly read and interpret the



CHAPTER 2. BACKGROUND 17

message structure of marshalled data. This requires the use of standard data exchange formats
that can be interpreted by all components. Examples include JSON, XML or SQL [6].

Semantic interoperability allows components to understand the exchanged data in similar
way without ambiguity or confusion [6]. For example, if the data being marshalled is an integer,
all components must be able to understand this data type as an integer. The encoded value should
not be interpreted as any other type like string or character [50]. This is a challenge for some
IoT applications as some different components may represent their data in different formats that
prevent other components from being able to process the data [91].

Syntactic and semantic interoperability are subcategories of heterogeneous interoperability.
This is a general term used to refer to all forms of interoperation that occur within a distributed
multi-tier software stack [5]. For example, another form of interoperation is technical interop-

erability. This refers to the ability of different components to communicate and exchange data
despite utilising different communication protocols [122].

Heterogeneous interoperability exists because many distributed multi-tier software stacks
require a variety of networking solutions, protocols, middleware and APIs [15]. For example, in
the PWS IoT stack, different components include Python/MicroPython Collectors, MongoDB
and Redis. Interoperation is facilitated through a combination of MQTT, HTTP REST & JSON
shown in Figures 1.3 & 2.12.

2.3.2 Factors Affecting Heterogeneous Interoperability

Distributed software stacks are no longer hosted on just two or three nodes in a single room.
They have grown immensely over time. These stacks can now be hosted on hundreds of nodes
across various data centres in several different countries [25].

Successful interoperation of components in these distributed multi-tier software stacks is
dependent on how well they are able to communicate and coordinate with one another across
the different distributed nodes. Communication refers to software components in different nodes
being able to exchange messages or marshal data with each other over a network. Coordination

refers to software components being aware of their specific functionalities and working in sync
with other components [139].

Many factors can affect the interoperation of components in distributed multi-tier software
stacks. Two of these include coupling and multi-language integration.

Coupling This refers to the degree that software components are interdependent on one an-
other. Different types of coupling exist. Some examples include content coupling, data coupling
and control coupling [107].

The type of coupling between components is determined by the number of different mod-
ules or API being invoked or shared by different components to marshal data. Basically, the
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more modules that have to be shared, the higher the degree of interdependency among compo-
nents [148].

Good architecture design requires that components have loose coupling. Here, the compo-
nents should have low levels of dependency on one another or not have high volumes of data
marshalling. This is ideally achieved when components are either data or stamp coupled. They
only access data elements from other components that are required and the levels of data mar-
shalling is quite low [36]. The main difference between data and stamp coupling is that data

coupling refers to data that is marshalled between components through a parameter value while
stamp coupling involves data being marshalled through a record parameter [107].

However, some component-based software stacks like LAMP, JAPyL or PWS are usually
highly interdependent or tightly coupled. This is due to control coupling as components have
to request and marshal data between each other. Each component requires this data in order to
execute its required functionality and for the entire stack to achieve its overall business function.
The levels of communication, coordination and data marshalling are very high [79].

Furthermore, each component in the stack has to share similar libraries, code bases or even
processes to ensure that the meaning of data being passed is preserved [4]. For example, in
PWS, Redis & MongoDB components share data by accessing the same JSON library in the
Python cache module shown in Listing 2.1.

Listing 2.1: Redis & MongoDB Accessing Similar Python Module
1
2 import r e d i s
3 import j s o n
4 from bson . j s o n _ u t i l import dumps
5 from pymongo import MongoClient
6
7 c l i e n t = MongoClient ( ’ ’ )
8 r e d i s C l i e n t = r e d i s . S t r i c t R e d i s ( h o s t = ’ ’ , p o r t =6379 , db =0)
9

10 d a t a b a s e = c l i e n t [ ’ s u p e r s e n s o r v a l u e s ’ ] # d a t a b a s e name i n mongodb
11
12 s e n s o r d a t a L i s t = d a t a b a s e [ ’ s e n s o r _ d a t a ’ ] . f i n d ( ) # c o l l e c t i o n name i n d a t a b a s e
13
14 s e r i a l i z e d O b j = dumps ( s e n s o r d a t a L i s t ) # s e r i a l i z e o b j e c t f o r t h e s e t r e d i s .
15 r e s u l t = r e d i s C l i e n t . s e t ( ’ s e n s o r d a t a ’ , s e r i a l i z e d O b j ) # s e t s e r i a l i z e d o b j e c t

t o r e d i s s e r v e r .
16
17 p a r s e d s e n s o r d a t a L i s t = j s o n . l o a d s ( r e d i s C l i e n t . g e t ( ’ s e n s o r d a t a ’ ) )
18
19 f o r s e n s o r d a t a in p a r s e d U s e r L i s t :
20 p r i n t ( u s e r [ " s e n s o r _ t y p e " ] )

Interoperating components communicate synchronously in many distributed multi-tier soft-
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ware stacks. They need to know the state of each other in real time before coordination and
sharing of messages occur. Components tend to remain idle until they receive a request or mes-
sage from other components [134]. If a component fails, others will continue to remain idle as
they are not receiving any requests or status updates from the failed component.

Tight coupling can lead to catastrophic failure. This is the complete, sudden and often unex-
pected breakdown in the behaviour of a system. From a systems perspective, catastrophic failure
occurs when there is a critical interruption that causes a component or application to fail [105].
However, if the user cannot access the application frontend due to challenges like the application
being unable to accept HTTPS requests, then the system has also failed catastrophically.

Multi-Language Integration Programming languages are usually categorised into paradigms.
This is a programming language style used to develop an application. Some examples are as fol-
lows. (1) The imperative paradigm is where the programming code describes the steps necessary
to perform a computational task. (2) The object oriented paradigm is where computations are
performed through the passing of messages to objects. (3) The functional paradigm involves
computations being performed through functions. (4) The declarative paradigm involves a com-
putational task defining what needs to be done without describing the control flow [25]. Table 2.1
provides examples of some programming languages and their paradigm classification.

Many programming languages are multi-paradigm. They can be used to develop an applica-
tion using a combination of these different programming styles [168]. One example is the use of
F# and Scala first class functional concepts that have been added to mainstream object-oriented
languages like LINQ extensions to C# [25].

Polyglot programming is part of the evolution of programming languages and software de-
velopment. It refers to the development of software or applications using multiple programming
languages and paradigms. It facilitates language interoperation and allows developers to add
functionalities that may not be readily available in a single language [140]. For example, in
JAPyL, the programmer utilises four languages in the implementation of the stack discussed in
Section 5.4.2. Later, in Section 3.5.1, it will be shown that Hipster-Shop utilises ten program-
ming languages.

Table 2.1: Language Paradigm Classification
Language Paradigm

Python Imperative, Object Oriented
PHP Imperative, Object Oriented
C++ Imperative, Object Oriented
Java Object Oriented, Event Driven

JavaScript Imperative, Event Driven
Go Imperative, Functional

In tiered software stacks, an inverse pyramid classification can be used to categorise the mul-
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tiple languages implemented at three different layers. The Domain Layer classifies languages
that are Domain Specific Languages (DSLs) like HTML or CSS, the Dynamic Layer includes
all dynamically typed languages like Python, Scala or JavaScript and the Stable Layer classifies
languages that are statically typed like Java or C++ [73]. Figure 2.8 provides an example of the
inverse pyramid classification for languages utilised at the different layers in a typical tiered web
application. The pyramid itself represents the amount of time the original code base could pos-
sibly remain unchanged in an application. The longer the code is expected to remain unchanged,
the closer it will be to the bottom of the pyramid [9].

Figure 2.8: Inverse Pyramid Classification3

The integration of different languages especially in distributed multi-tier software stacks can
lead to several interoperation challenges like:

(1) Polyglot Development — the developer must be fluent in all the different languages in the
stack and be knowledgeable in how to make them interoperate together. This person is
referred to as a full stack developer [96].

(2) Correct Interoperation — the developer must be able to correctly use multiple languages
and ensure they adhere to the API or communication protocols between components [67].

(3) Maintaining Type Safety — a key element of semantic friction. This refers to all the
mismatches that can arise from integrating different languages. Ensuring type safety is
crucial for correctness but the diversity of type systems in different languages makes this
difficult [67].

3Source: [73]



CHAPTER 2. BACKGROUND 21

(4) Performance/Resource Overhead — inter-process communication is typically slower than
a function call as data must be marshalled for communication between languages and
components [11]. The reason is that time is either needed for the different languages to
communicate with one another or to translate messages from one language to the next [82].

2.4 Techniques for Improving Interoperation

2.4.1 Reducing the Number of Languages

Some techniques attempt to improve interoperation by focusing on reducing the number of pro-
gramming languages. This can be achieved through stack implementation, creating a runtime,
reducing the number of APIs, combining multiple languages into a single programming lan-
guage and browser compilation.

Single Stack Language Polyglot programming can lead to challenges like increased devel-
oper effort or semantic friction in multi-tier software stacks. The use of a single programming
paradigm consistently throughout the stack reduces some of these challenges. It can eliminate
semantic friction and improve data marshalling [106].

ASP.NET is an example of a web programming language that can be used to develop web
applications without the need for implementing client side languages like HTML or CSS. It is
a server side object oriented language that can manipulate images, shapes, text boxes and even
text as well as perform business logic processes like creating session states [156]. Listing 2.2
provides an example where ASP.NET code is used to define the size, border and color of a table
and image object without having to use HTML or CSS.

Listing 2.2: Example of ASP.NET Code
1
2 < asp : T a b l e C e l l B o r d e r S t y l e =" Groove " B o r d e r C o l o r =" #0000 f f " BorderWidth =" 1px ">
3
4 < asp : HyperLink ID=" HyperLink1 " r u n a t =" s e r v e r " N a v i g a t e U r l =" D e f a u l t . aspx "><

asp : ImageID=" Image1 " r u n a t =" s e r v e r " ImageUrl =" images / l ogo . j p g "
A l t e r n a t e T e x t =" P i c t u r e o f V i s i o n Logo " Width=" 387 px " H e i gh t =" 110 px " / >

5
6 </ asp : HyperLink >
7 </ asp : T a b l e C e l l >

JavaBeans is an example of a stack that utilises a single language in developing web applica-
tions. The stack usually consist of Java based components like Enterprise Java Beans (EJB), an
EJB container and a Java Application Server [48]. When the client is invoked, the EJB container
manages resources for the Java Application Server while the Enterprise Java Beans component
handles client requests shown in Figure 2.9.
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Figure 2.9: Java Beans Architecture

However, a more popular option is the MEAN web stack (Figure 2.10). It uses JavaScript as
the primary programming language and composes MongoDB, ExpressJS, AngularJS & NodeJS [31].
This language is now considered one of the most utilised programming languages on GitHub and
the most tagged in StackOverflow [25].

MEAN typically outperforms Linux, Apache, MySQL & PHP (LAMP) by two times or more
due to the computational inefficiencies of PHP, and the inefficiency of Apache in handling I/O
operations [24]. However, the stack is prone to catastrophic failure due to tight coupling. The
client side is browser dependent [31]. If the JavaScript module is disabled in the web browser,
the client side will not function. The application is rendered unusable to an end user even if the
server components continue to function.

Runtime Environment Runtimes or Virtual Machines (VM) minimise interoperation over-
heads between languages. They are an intermediate concept between a compiler and an inter-
preter. The idea is to write program code in a high level language that is then translated to an
intermediate language referred to as bytecode [49]. This is shown in Figure 2.11.

Java Virtual Machine (JVM) is one example of a runtime. It is available for a variety of
platforms and allows for several programming languages like Clojure, Ruby, Scala and Python to
be converted to Java bytecode. This is beneficial as it allows developers to interoperate different
languages with Java libraries without having to adopt a new language [82].

Another example is the .NET Framework that typically composes WinForms, ADO.NET,
Framework Class Library and the Common Language Runtime (CLR) [49]. Having the CLR
as a common runtime facilitates the interoperation of a number of Microsoft technologies like
ASP.NET, VB.NET, C#, F#, etc. However, .NET is proprietary and only available on the Win-
dows Operating System.

A challenge for runtime environments is performance overhead especially in code execu-
tion. For example, a newer runtime is the Truffle framework. It interoperates JavaScript, Ruby,
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Figure 2.10: 4-Tier Single Language MEAN Architecture

Python, JAVA, Scala, C++, etc. It does so using the GraalVM compiler and an abstract syn-
tax tree interpreter. In order to perform functions like string comparison and pattern matching,
the platform has to perform reference equality checking and arity checking that can slow down
compilation and incur some overhead [50, 157].

Figure 2.11: Virtual Machine Code Translation Process
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Single API The Application Programming Interface (API) is a defined set of rules that allow
different components to communicate with one another. It acts as an intermediary layer that
facilitates the exchange of data in a unified format that is understood by all components in the
application [108].

In some conventional multi-tier software stacks, it not uncommon for several different API
protocols to be utilised. These can take several different forms like SOAP, XML, JSON or
REST [127]. For example, in the PWS IoT stack shown in Figure 2.12, both JSON & HTTP
REST protocols are present in the Application Layer.

Figure 2.12: API Protocols in PWS Application Layer

The issue with integrating too many different APIs is performance. Generally, APIs are
designed to process data quickly. However, if the system does not assign the necessary resources
for processing data like memory or bandwidth, the response time will be slower. Too many
different forms of API can put a further strain on system resources [127].

One example for reducing the number of APIs in IoT stacks is the use of a single language
IoT system based on the RIOT Operating System (OS). Here, both client and server are written
in JavaScript [7]. All communication between the physical components like sensors and the
software components in the cloud is facilitated by a single JavaScript API.

Combining Languages Some programming languages can be composed together to create a
new language. One example is PyHyp where both Python and PHP are fused together. A single
module can consist of code from both languages shown in the example in Listing 2.3. Here, the
elements in the PHP array are passed to Python as an object. HippyVM translates the high level
code to bytecode [11].

Listing 2.3: PyHyp Application Example
1
2 import s y s
3
4 $ s p o r t = a r r a y ( " F o o t b a l l " , " C r i c k e t " , " B a s k e t b a l l " , " V o l l e y b a l l " ) ;
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5 $ r e s u l t = j s o n _ e n c o d e ( $ s p o r t ) ;
6
7 r e s u l t = s y s . a rgv [ 1 ]
8 p r i n t ( r e s u l t )

As both languages are composed together into a single language, semantic friction is re-
duced. However, performance overhead is two times slower compared to its mono-language
constituents [11]. Moreover, PyHyp is a relatively immature technology and is not regularly
updated.

Browser Compilation Here, components are written in a single programming language and
then compiled to another language to be executed in the browser. Two examples include (1)
Google Web Toolkit where Java is used for high level language development but is then com-
piled to JavaScript [34]. (2) Web Assembly where the developer utilises languages like RUST
that is compiled to bytecode and then executed in the browser automatically [55]. Given that the
languages are compiled, execution speeds and interoperation performance will be faster com-
pared to interpreted bytecode.

One of the main issues with this approach is that some functionalities or services are browser
dependent (tight coupling). For example, while web assembly can be a compiler target for
languages like C or C++, it can only interact with its internal environment. External functions
like printing text requires that web assembly call a function that the browser provides [55]. If that
function is disabled in the browser settings or the browser component itself is non functional,
web assembly cannot perform the requested service.

2.4.2 Microservices

Microservices are fine grained code services that are intended to be loosely coupled and inde-
pendently deployable. The architecture involves developing an application as a suite of small
services. Each one runs independently in its own process and communicates with lightweight
mechanisms, usually via RESTful web services or messaging. The idea is to replace components
in a stack with lightweight code services [133].

Loose coupling is usually achieved in microservices through data coupling. The rate of
communication or data marshalling with other services is very low [133]. Moreover, microser-
vices usually express computations at a high level of abstraction because they have their own
in-built runtimes, functionalities and data stores. Functionality can be implemented with just a
few lines of code. There is decreased reliance on third party libraries that can span numerous
modules [57].

There are two options for migrating to a microservices architecture:

(1) Convert a few of the components to microservices — both components and microservices
can interoperate with each other in distributed multi-tier software stacks. For example,
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in the JAPyL web stack, ZMQ messages from the Python kernel component are neces-
sary for the Python language to communicate with the notebook being hosted as shown
in Figure 1.4. However, the use of the kernel component can be eliminated locally in the
stack using a microservices architecture. A Jupyter Kernel Gateway service can be imple-
mented that provides headless access to a Jupyter Python kernel service stored in a remote
location. Communication with the remote kernel service relies on REST calls rather than
ZMQ messaging [99].

(2) Convert all components to microservices — the distributed multi-tier architecture will
consist of tiers of microservices [160]. One example is the Layered Microservices Model
(LMM) shown in Figure 2.13 . Tiered microservices are also utilised in some IoT Stacks
where the software components are fully replaced with tiers of Device or Tenant Microser-
vices [146].

Figure 2.13: Layered Microservices Model

Structuring software using the microservices architecture is a popular trend. Technology
companies like Netflix, Amazon & Spotify have adopted it in the implementation of their appli-
cations & services [150].

Replacing components with microservices in distributed multi-tier software stacks should
improve reliability. As each service is independent or loosely coupled, interoperation challenges
like catastrophic failure should be reduced [133]. However, some types of microservices exhibit
heterogeneous interoperability characteristics like tight coupling. This makes the architecture
prone to catastrophic failure similar to that of components in multi-tier software stacks [123].
This will be discussed in Section 3.9.4.
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2.4.3 Tierless Languages

Tierless languages usually incorporate the use of a single language that synthesises all com-
ponents/tiers in the software stack. The developer usually writes the entire stack as a single
application. The overall objective of this paradigm is to eliminate the boundary between the
client and server tiers [87].

Interest in developing tierless or multi-tier languages has been growing over time. Many
early attempts like PL/I proved fruitless because of the complexity in trying to get a single
high level language to compile or translate into different languages with different programming
paradigms [25]. However, with the improvement in computing resources and language evo-
lution, researchers have developed a number of tierless languages including Links, Hop and
Haskino [27, 33, 135]. These languages are also being incorporated into many industrial tech-
nology applications e.g. [8,14,144]. They offer significant benefits like less development effort,
better maintainability and sound semantics of distributed execution.

Tierless Classification Tierless languages have been developed for a range of distributed
paradigms, including web applications, client-server applications, mobile applications, and generic
distributed systems. These languages can be classified based on a number of criteria like com-
pilation scheme, distribution architecture support or remote communication techniques.

Tierless languages like Hop.js utilise a uniform compilation scheme. This is where the lan-
guage is compiled to the same language on both the client and server side. [164]. In contrast,
languages like Links compile to different languages on both the client and server side. This is
referred to as cross compilation. Table 2.2 provides examples of some tierless languages that
support uniform or cross compilation.

Table 2.2: Examples of Tierless Languages based on Compilation Scheme.4

Language Uniform Compilation Cross Compilation
Fun x -

Koka x -
Hop - x

Links - x
Opa - x

Many tierless languages like Links or Hop support the client-server architectural style for
distribution. However, some of the languages are flexible and provide support for other dis-
tribution architectures. For example, AmbientTalk/R can support both the client-server and
peer-to-peer distribution architectural styles [164].

Tierless languages utilise techniques similar to mainstream programming languages to fa-
cilitate remote communication. These include remote procedures, message passing, publish-

4Source: [164]
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subscribe, reactive programming and shared state. However, in contrast to mainstream program-
ming, tierless languages attempt to abstract these techniques to make these remote communica-
tion implementation easier. Abstraction involves either using syntactic constructs, customised
libraries or emulating data structures [164]. Table 2.3 provides examples of some tierless lan-
guages and the remote communication techniques they support.

Table 2.3: Examples of Tierless Languages based on Remote Communication Techniques.5

Language Remote
Procedures

Message
Passing

Publish
Subscribe

Reactive
Programming

Shared
State

Fun - - - - x
Koka - x - - -
Hop x x x - -

Links x x - - -
Opa x x - - -

Tierless Web Languages The use of tierless languages in web stacks is well established.
Languages like Links [27] or Hop [135] are common examples. Here, the code for different tiers
is simultaneously checked by the compiler and compiled to the required component languages.
For example, Links compiles to HTML & JavaScript for the client side and to SQL on the server
side in order to interact with the database system shown in Listing 2.4.

Listing 2.4: Links Compilation to SQL
1
2 # L i n k s Code
3
4 fun fo rma tDef ( def ) c l i e n t {
5 <span l : o n c l i c k =" { e d i t D e f ( d e f ) } ">
6 { s t r ingToXml ( def . word ) }
7 { s t r ingToXml ( def . meaning ) }
8 </ span >
9 }

10
11 t a k e ( 1 0 , f o r ( v a r def <−− d e f s T a b l e )
12 where ( def . word / s . * / ) o r d e r b y ( def . word )
13 [ def ] )
14
15 # T r a n s l a t e d t o SQL Code
16
17 SELECT def . meaning AS meaning , def . word AS word
18 FROM d e f i n i t i o n s AS def
19 WHERE def . word LIKE { s}%

5Source: [164]
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20 ORDER BY def . word ASC
21 LIMIT 10 OFFSET 0

Another example is Haste. It utilises a tierless web framework and is embedded as a domain
specific language (DSL) in Haskell [35]. Haste programs are compiled multiple times. Here,
the server code is generated by the standard GHC Haskell compiler; JavaScript for the client
is generated by a custom GHC compiler backend. The design leverages Haskell’s high-level
programming abstractions and strong typing, and benefits from GHC: a mature and sophisticated
compiler [56].

Potentially, tierless languages in web applications are beneficial as they improve type safety
and enable automatic communication. However, there are some practical challenges. For exam-
ple, Appendix B.2 shows an instance where Links requires additional developer effort compared
to PHP and MySQL.

Tierless IoT Languages The utilisation of tierless languages in the implementation of IoT
software stacks is more recent. For example, Erlang or Elixir is now being utilised to engineer
IoT systems in production environments. The language is considered tierless because there are
sets of Erlang processes distributed throughout the Perception, Network and Application Layers.
This language is mostly utilised on resource-rich nodes [88]. However, many of these systems
are not referenced in the academic literature with exceptions to [138,142]. Perhaps, this may be
due to the challenges of implementing tierless languages in distributed IoT software stacks [88].

One major challenge is that compilation of the Perception Layer can be slow on resource con-
strained microcontrollers. Memory is usually limited on these devices. For example, Potato [32]
can be implemented as a Functional Reactive Programming (FRP) tierless IoT language on
resource-rich nodes [33]. However, it is a memory intensive language and is not suitable for
resource constrained microcontrollers.

Program splitting requires that tierless languages automatically determine which parts of the
program correspond to the appropriate tier. For example, a tierless web language must be able
to identify the relevant code on both client and server tiers and compile both almost simultane-
ously [88]. This requires the developer to be familiar with many program splitting techniques
like syntactic markers or type translation to implement automatic and accurate compilation [27].
Moreover, many sensor nodes on microcontrollers can only be programmed by writing the code
to flash memory. The developer has to put in extra effort and ensure there is physical access to
the microcontroller to make programming updates [88].

Dynamic provisioning using techniques like over-the-air programming makes maintainabil-
ity of microcontrollers easier. The technique reduces the number of languages needed for devel-
opment of the IoT application. For example, JavaScript alone can be used to program both the
client and server nodes as in the case of the RIOT IoT System discussed in Section 2.4. How-
ever, the RIOT IoT system is not considered tierless as the overall goal of tierless languages is



CHAPTER 2. BACKGROUND 30

to integrate both the client and server tiers [164].
Security is a major issue for IoT systems. All layers of the 4-tier software stack are vul-

nerable to some extent. The Presentation and Application Layers are vulnerable to attacks like
SQL Injection. However, these attack vectors can be eliminated using standard web application
defense techniques. Defending the Network and Perception Layers is even more challenging.
Microcontrollers lack the resources to enable many security mechanisms like encryption. They
are also difficult to patch because the program and operating system are stored in flash mem-
ory [88].

Tierless languages enhance the security of IoT systems by performing type checking at the
time of compilation. This can minimise vulnerabilities like SQL Injection. Some tierless lan-
guages like Swift and Jif/split place components to protect the security of data [26, 169]. How-
ever, many tierless languages like Erlang lack many important security measures that leave IoT
applications vulnerable to threat actors [155].

2.5 Chapter Summary

This chapter outlines the research literature and some technologies related to the work presented
in this thesis. It has reviewed the different forms of interoperability and how they relate to
heterogeneous interoperability in distributed multi-tier software stacks.

The interoperation challenges are similar for both Web & IoT software stacks. Some of these
include catastrophic failure, semantic friction, increased developer effort and type mismatches.
Many problems can be attributed to tight coupling and multi-language integration.

Several attempts have been made to improve interoperation in distributed multi-tier software
stack. These include the utilisation of techniques like reducing the number of languages imple-
mented in distributed software stacks (Section 2.4.1), introducing notebook programming (Sec-
tion 2.1.2), microservices implementation (Section 2.4.2), browser compilation (Section 2.4.1),
combining programming languages (Section 2.4.1) and using tierless languages (Section 2.4.3).

Each technique improves interoperability to some degree but does not solve all the chal-
lenges. Interestingly, some of these techniques like microservices display similar heterogeneous
interoperability challenges as components in distributed multi-tier software stacks. Focus on
this will be investigated in greater detail in Chapter 3.
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Classifying the Reliability of Microservices

Microservices are popular for web applications as they offer better scalability and reliability
than monolithic architectures. Reliability is improved by loose coupling between individual mi-
croservices. However in production systems some microservices are tightly coupled, or chained

together.
This chapter classifies the reliability of microservices: if a minor microservice fails then

the application continues to operate; if a critical microservice fails, the entire application fails.
Combining reliability (minor/critical) with the established classifications of dependence (indi-
vidual/chained) and state (stateful/stateless) defines a new three dimensional space: the Mi-
croservices Dependency State Reliability (MDSR) classification.

Using three web application case studies (Hipster-Shop, Jupyter and WordPress) microser-
vice instances are identified that exemplify the six points in MDSR. A prototype static analyser
is presented that can statically identify all six classes in Flask web applications. It is applied to
seven applications in this study.

The case study microservices implementations exhibit either a known reliability pattern or
a bad smell. The prototype static analyser can identify three of six patterns/bad smells in Flask
web applications. Hence MDSR provides a structured classification of microservice software
with the potential to improve reliability.

Finally, the reliability implications of the different MDSR classes are examined by running
the case study applications against a fault injector. (1) All applications fail catastrophically if
a critical microservice fails. (2) Applications survive the failure of individual minor microser-
vice(s). (3) The failure of any chain of microservices in JPyL & Hipster is catastrophic. (4)
Individual microservices do not necessarily have minor reliability implications.

This chapter is structured as follows. Section 3.1 describes the motivations for this research.
Section 3.2 examines the reasons for failure in component based multi-tier software stacks and
why microservices are perceived to improve reliability. Section 3.3 evaluates whether microser-
vices do improve reliability in component based multi-tier software stacks. Section 3.4 describes
the contributions of this research in examining the reliability properties of microservices. Sec-

31
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tion 3.5 describes the microservices case study applications that are being evaluated. Section 3.6
describes the different properties of microservices. Section 3.7 describes catastrophic failure in
micoservices with different properties. Section 3.8 provides details on the MDSR Classification.
Section 3.9 evaluates the findings of MDSR. Section 3.10 summarises these findings. Finally,
Section 3.11 summarises the entire chapter.

3.1 Motivation

Microservices are a recent and popular software architecture trend. They are available to replace
some or all components in multi-tier software stacks [143]. Some microservices are stateful,
recording data, e.g. participants in a web chat. Others are stateless, i.e. they simply accept
requests and purely process them.

Component-based multi-tier software stacks are prone to catastrophic failure, where user-
visible functionality is suddenly and permanently unavailable as discussed in Section 2.3.2. It
is common for the failure of a single component to cause the entire system to fail (a cascade
failure).

In contrast, the microservices architecture potentially improves interoperation as it provides
improved reliability via the loose coupling of services. If one microservice fails, others will
remain available [69]. A failure may cause a reduction in throughput but will most likely avoid
catastrophic failure. In the worst case scenario, the loose coupling of services enables graceful
failure [143].

This is achieved based on the design principle that microservices are implemented as stan-
dalone, independent services [68]. However, many large scale web applications include chains

of microservices where a set of services are closely dependent, e.g. the Netflix Titus Plat-
form [89].

Chained microservices are tightly coupled, e.g. by high-frequency API-based interaction
sequences. For example, in Figure 3.1, the Reverse Proxy service is dependent on constant
communication with the Port Config service in order to determine what port to use.

Chained microservices make an application far less reliable because if any of the services
fail the entire chain fails, and may induce catastrophic failure [60]. For example, in 2014 BBC
experienced a critical database overload that caused many of its critical microservices to fail one
after another [28]. In 2015, Parse.ly experienced several cascading outages in its analytics data
processing backend due to a microservices message bus overload [101].
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Figure 3.1: A Chained Microservice Example

3.2 Failure in Multi-Tier Software Stacks

3.2.1 Tight Coupling in Component Based Multi-Tier Software Stacks

Conventional multi-tier software stacks like Jupyter, Apache, Python & Linux (JAPyL) comprise
multiple tiers of components shown in Figure 1.4. Each tier fulfils a well defined function [158],
and the architecture is modular as a tier may be replaced with a component with similar func-
tionality, e.g. there are many suitable relational DBMS or web servers. However, components
in multi-tier stacks are tightly coupled as they are highly dependent on one another for the stack
to function.

Tight coupling among components in the stack is caused by control coupling discussed in
Section 2.3.2. Every component becomes a potential single point of failure (SPOF). If one com-
ponent fails, the entire business function of the stack is significantly interrupted and results in
catastrophic failure [105]. For example, in PWS (Figure 1.3), if either of the collector compo-
nents fail, the data collected from the sensor nodes in the Perception Layer cannot be stored in
either the MongoDB or Redis databases in the Application Layer. The webpage component in
the Presentation Layer will not be able to display the data being collected by the sensor nodes.
The application is considered to have failed catastrophically because users cannot view the rel-
evant data.

Similarly, in JAPyL, if either the Jupyter or Apache components fail, both will be unable to
communicate or marshal data between each other. This will result in catastrophic failure as the
entire stack will cease to function as a business unit. The stack will no longer be able accept
HTTP requests or users will not be able to view any data from the Notebook via the webpage
component.

3.2.2 Microservices Reliability

To mitigate against catastrophic failure, Lewis and Fowler propose the following three design
principles for the microservices architecture [81]:

(1) Independent services — each service should run in its own process and be deployed in its
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own container like one service per Docker container.

(2) Single functionality — one business function per service. This is referred to as the Single
Responsbility Principle (SRP).

(3) Communication — should be via a REST API or message brokers.

Others have added other principles like reliability. This principle states that a microservice
should be fault tolerant so that in the case of failure, its impact on other services will be neg-
ligible [119]. This can be achieved using design patterns like database-per-service, timeouts,
bounded retries, circuit breakers and bulkheads to tolerate failures [60].

There are substantial studies of the reliability of microservice software in both the aca-
demic [60, 153, 170] and grey literature [52, 165]. These reveal that reliability in the microser-
vices architecture is not always attained because the reliability design principle is not always
followed.

Developers do not always implement the necessary design patterns to prevent microservices
failure. Even if they do, they often remain unaware whether their microservice can actually
tolerate failures until it actually occurs [60]. Thus, the impact of a microservices failure on an
application is not always readily known beforehand.

3.2.3 Partial Failures in Microservices

Even if the microservices design principles are followed, failure is to be expected for two major
reasons:

(1) Functional Failures — occur due to poor implementation e.g. "A SQL column is missing"
error is returned upon some data request.

(2) Environmental Failures — due to misconfiguration of the infrastructure necessary to run
the microservices effciently e.g. microservices processing of requests is slow due to in-
sufficient memory being made available in the Docker environment.

The literature distinguishes partial and catastrophic failures in microservices. Some partial
failures may be temporary and recovery is usually automatic, e.g. a microservice without a load
balancer may be briefly overloaded [170]. Downtime can often be minimised if replacement mi-
croservice instance(s) are activated automatically [153]. Partial failure is considered acceptable
in the design of microservices applications. It will be shown in Section 3.6.3 that partial failures
should be distinguished from minor failures.
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3.2.4 Identifying Causes & Detecting Failures in Microservices

Failures in microservice-based applications may arise from the microservices, or from the in-
frastructure services like libraries, containers like Docker, development frameworks like Flask,
etc. This study focuses on failures in the microservices, and detecting these failures is often
challenging.

A common approach is to configure a collection of microservices indicators (SLOs) to con-
tinuously monitor for the causes of failure. The SLOs are typically time series, e.g. the response
time of a microservice to requests from other services. The microservice is identified as failing
if it fails to meet the expected SLO [97].

Service Dependency Graphs (SDGs) can be used to dynamically detect microservices bad
smells by mapping their node relationships [89]. However, diagnosing the severity and reason
for a failure in a large system is challenging. The diagnosis usually requires domain and site-
reliability knowledge as well as automated observability support [57]. Not all companies have
such resources.

3.3 Evaluating Failure in Component-Based Multi-Tier Soft-
ware Stacks

3.3.1 Case Studies

To provide some evidence for the reliability claims in Section 3.2, this section explores and com-
pares the reliability properties of microservices and component-based web stacks. Specifically,
a comparison is made of two 4-tier Jupyter web stacks and a 4-tier WordPress application as fol-
lows. (1) JAPyL consists of a Jupyter notebook, an Apache web server, a Jupyter Python [113]
kernel and Linux (2) JPyL is an identical stack but the Apache component has been replaced with
loosely coupled Flask microservices [128]. (3) WordPress consists of Linux, Apache, MySQL
& PHP (LAMP).

JAPyL A common way to make Jupyter Notebooks web accessible is to use the JAPyL web
stack (Figure 3.2) and embed the Notebook into a webpage or site with an Apache Web Server
as a Reverse Proxy [126]. Here, Apache is usually interposed between the client and the Jupyter
Server, taking requests from clients and forwarding them to Jupyter as discussed in Section 2.1.2.

JPyL (Loosely Coupled Microservices) Migrating from a monolithic architecture towards a
full microservices architecture is a gradual process in production environments. It is common
for developers to initially integrate one or more microservice tiers that function alongside mono-
lithic components/tiers as discussed in Section 2.4.2. This hybrid technique is referred to as the
microlith architecture [143].
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Figure 3.2: JAPyL 4-Tier Architecture

Jupyter, Python & Linux (JPyL) is a 4-tier web stack with a microlith architecture. Here the
Apache component is replaced and its core functionalities provided by seven loosely coupled
microservices shown in Figure 3.3. Appendix C.1 provides an example of the reverse proxy and
port configuration functionalities running as a single microservice.

WordPress (Component-Based) WordPress is an open source web development and Content
Management System (CMS) accounting for a significant proportion of online sites. One of the
main reasons for the popularity of WordPress is its wide range of plugins that provide additional
functionality [111]. As a standalone application WordPress has a multi-tier architecture with
core CMS components that communicate with a MySQL database. It is usually hosted with
Apache web server shown in Figure 3.4.

3.3.2 Experiment Design

The experiments run the web stacks against simulated workloads, and inject failures at specified
times in a specified component/microservice. Requests are generated for each application using
wrk 1.2 [46] for 60 seconds with a simulated 100 concurrent users. A five second delay failure
(Appendix C.2) is introduced after 43s in the reverse proxies of the web stacks. To minimise
variability the benchmarks are executed 3 times with a hot start, and the median value is reported.

The case study web stacks execute on a typical server, i.e. one node of the Glasgow Paral-
lelism Group (GPG) cluster. These nodes, at the University of Glasgow, have a 16 core Intel
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Figure 3.3: JPyL 4-Tier Architecture

server with 2TB of RAM running Ubuntu 18.04. JAPyL uses Jupyter Server 6.1 and Apache
2.4, JPyL uses Jupyter Server 6.1, Python 3.6 and Flask 1.1.2. WordPress v5.7.2, PHP 7.2 and
MySQL 5.7. The code for all applications are available1.

3.3.3 Catastrophic Failure in Component-Based JAPyL & WordPress

Catastrophic failure is a major challenge for conventional web stacks. JAPyL & WordPress are
no exceptions. A failure is introduced after 43s. In Apache the failure is in the reverse proxy
mod_proxy.c source file. Similarly, in JPyL, a failure is introduced in the Flask reverse proxy
service shown in Appendix C.2.

Figures 3.5 & 3.6 show that after 43s, the Apache server for both JAPyL & WordPress loses
throughput critically. By 50s, the Apache server is no longer functioning. Both stacks have
suffered catastrophic failure. Data cannot be displayed via the webpage component and HTTP
requests cannot be accepted.

1https://bitbucket.org/latent12/microproject/src/master/microcomp/

https://bitbucket.org/latent12/microproject/src/master/microcomp/
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Figure 3.4: Component Based WordPress Architecture

3.3.4 Failure in Microservices-Based JPyL

To illustrate that microservices provide better reliability than components in multi-tier software
stacks, failure in the component-based JAPyL is compared with failure in micro-service based
JPyL. Again, a five second delay failure is introduced after 43s in the reverse proxies of both
web stacks shown in Appendix C.2.

Figure 3.7 shows that Apache fails and JAPyL is unable to display any content. In contrast,
in JPyL, the Flask reverse proxy and port microservices are independent and so able to switch
to the new port (using portToggle()) and continue serving requests. However, there is some
performance degradation. JPyL plots throughput (Request KB/s) against time. Throughput falls

Figure 3.5: JAPyL Apache Failure at 43s. Figure 3.6: WordPress Failure at 43s.
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from a peak of around 700KB/s to 160KB/s after 45s and only reaches a level of 400KB/s after
60s.

Figure 3.7: JAPyL vs JPyL Reliability Comparison

One possible explanation is that in order for the stack to efficiently handle increasing vol-
umes of requests from users through a particular port, the data requested is initially retrieved
from the server. These initial requests normally increase the workload of the server and cause
performance overhead. The requested data is soon stored in cache, allowing for faster re-
trieval [121].

However, cache is volatile and even a short interruption to the server empties the cache [121].
Thus, during failover in JPyL, this small interruption causes the cache to be emptied. When a
new port for receiving requests is assigned, the entire data retrieval and caching process has to
be restarted.

3.4 Classifying the Reliability of Microservices

These experiments show that microservices do indeed improve the reliability of multi-tier soft-
ware stacks. Partial failure and improved reliability are to be expected in individual microser-
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vices. They are loosely coupled to other microservices, with low dependency. Communication
with other services is usually via infrequent remote API calls. Many individual microservices
express computations at a high level of abstraction, and provide their own built-in runtimes,
functionalities and data stores [133].

This chapter now investigates the reliability properties of microservices. It makes the fol-
lowing contributions [123]:

(1) The reliability (minor/critical) classification is combined with the established classifica-
tions of dependence (individual/chained) and state (stateful/stateless). If a minor microser-
vice fails the application continues to function, although performance or functionality may
be reduced. If a critical microservice fails, the application fails catastrophically. Combin-
ing reliability with state and dependence defines a new three dimensional space: the Mi-
croservices Dependency State Reliability (MDSR) classification. As microservice chains
are necessarily critical [60], only six of the possible eight points in the space are valid.
A prototype static analyser is outlined that can identify all six MDSR classes. Applying
the tool to 30 microservices from seven small Flask web applications reveals interesting
statistics, e.g. the majority of services are chained (70%), and critical (77%) (Section 3.8).

(2) Using three web applications microservices that exemplify each point in MDSR is high-
lighted. The web applications are: (1) Hipster-Shop, a Google demo application; (2) JPyL,
a Jupyter Notebook/Flask web stack; and (3) WordPress, a content management system
(Section 3.5).

(3) It is shown that each of the MDSR critical case study microservices exhibits a known bad
smell [149]. Likewise in each minor MDSR class the case study microservices follow a
design pattern [149]. The prototype static analyser can identify three of six patterns/bad
smells in Flask web applications. The analysis offers the opportunity to focus reliability
engineering efforts early in the development cycle. That is, it is proposed that static MDSR
analysis act as a complement to dynamic Service Dependency Graph (SDG) analysis [89]
(Section 3.8).

(4) The reliability implications of different MDSR microservice classes is explored by run-
ning the three web applications against a simple process level fault injector. Specifically
it is shown: (1) All applications fail catastrophically if a critical microservice fails. (2)
Applications survive the failure of a minor microservice, and successive failures of mi-
nor microservices. (3) The failure of any chain of microservices in JPyL & Hipster is
catastrophic. (4) Individual microservices do not necessarily have minor reliability impli-
cations (Section 3.9).
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3.5 Microservices Classification Case Studies

To illustrate the new findings in this chapter, three realistic microservice web applications are
utilised. Hipster-Shop is a popular Google microservices demonstration web application; JPyL

has been updated with different classes of microservices; WordPress has been updated to fa-
cilitate integration of microservices plugins. These illustrate different aspects of real world mi-
croservice web applications, e.g. Hipster-Shop implements microservices in different languages,
and both JPyL and WordPress combine components and microservices.

3.5.1 Hipster-Shop

Key attractions of microservices are decentralized and polyglot development. Here each ser-
vice can be separately developed utilising some suitable programming language and tools, and
this promotes agile development [171]. Indeed many developers cite this as a reason for their
preference for microservices [66].

The Hipster-Shop case study illustrates polyglot microservice development with services
developed in Python, Go and Java with communication via gRPC remote procedure calls. The
Hipster-Shop is an e-commerce application with ten microservices (Figure 3.8) used by Google
to demonstrate tools like Kubernetes Engine [47]. Users can perform activities like viewing
products, adding items to cart and making purchases 2.

Figure 3.8: Hipster-Shop Architecture 3

2Source: https://github.com/GoogleCloudPlatform/microservices-demo

https://github.com/GoogleCloudPlatform/microservices-demo
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3.5.2 JPyL ver2.0

This version of JPyL has been upgraded to consist of different classes of microservices. Some
are supported by a data store, e.g. current geolocation and IP address information are accessed
via the userdata microservice that extracts the data from a MySQL database [123].

Data is displayed on the webpage via the chained reverse proxy and port configuration mi-
croservices on port 10125. Crucially for reliability a backup URL port can be initiated via a
redirect if the original port service is interrupted. Users will still be able to access the content
and are automatically redirected to a different port [123]. Appendix C.3 provides a code snippet
of this new reverse proxy and port configuration chain implementation in JPyL.

Each service is handled by a specific Flask microservice or set of microservices4. For ex-
ample, security headers are processed by the Python Talisman microservice. It automatically
enforces the use of HTTP security headers by configuring the behaviors within the browser and
server once the web app is running.

Figure 3.9: JPyL with Different Classes of Microservices

4https://bitbucket.org/latent12/microproject/src/master/jpyl/

https://bitbucket.org/latent12/microproject/src/master/jpyl/
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3.5.3 WordPress ver2.0

Microservices can be integrated with WordPress to provide plugins that support additional func-
tionalities. For example to provide facilities to post comments, allow subscription memberships,
to search indexes, or to provide data analytics [18].

In this upgraded version, The application integrates microservices endpoints that allow users
to post comments on a blog5. The service utilises WordPress HTTP REST. The main function
of this service is to facilitate communication between other microservices and the components
shown in Figure 3.10.

Figure 3.10: WordPress Microservices Application

3.6 Microservices Properties

A limitation of [60] and the Lewis and Fowler design principles is that they consider only the
microservices property of dependence [123]. There are other types of properties like state.
Microservices are classified by their properties and some key properties are outlined below and
summarised in Table 3.1.

3.6.1 Dependence

This property classifies a microservice by how tightly coupled it is with other microservices [45,
60,89]. Coupling is the degree of dependence between software components like microservices,

5https://bitbucket.org/latent12/microproject/src/master/wordpress/

https://bitbucket.org/latent12/microproject/src/master/wordpress/
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Table 3.1: Microservices Classification Criteria
Classification Properties Description

Dependence Individual Loosely Coupled. Constant
communication with other mi-
croservices not required.

Chained Tightly Coupled. Constant com-
munication with other microser-
vices required.

State Stateless No data store. Does not maintain
state.

Stateful Utilises data store. Maintains
state.

Reliability Critical Supports core functionality. Ser-
vice failure means application
becomes suddenly and perma-
nently unavailable.

Minor Supports non-essential function-
ality. Application continues to
function despite service failure.
Degradation in performance or
graceful failure over a period of
time.

and there are different types like content, data and control coupling [107]. Software architects
seek loose coupling, and this is often achieved for microservices through data coupling discussed
in Section 2.3.2.

Individual microservices are loosely coupled to other microservices and communication with
other microservices is typically via infrequent remote API calls. Many individual microservices
express computations at a high level of abstraction, and provide their own built-in runtimes,
functionalities and data stores [133]. Examples for JPyL include the SSL and Service Log-
ging services (Figure 3.9) while Hipster-Shop includes Frontend and Adservice microservices
(Figure 3.8).

In contrast chained microservices are tightly coupled with one or more other microservices.
A chained microservice is reliant on some form of constant communication or a chain of calls

with another service to function [60, 130]. This is often due to control coupling where the
chained services must request and marshal data between themselves [107].

3.6.2 State

This property classifies a microservice by whether it preserves state between service requests.
Stateful microservices require data storage, for example to record transactions or current ac-
tors [166]. In JPyL the Service Logging (Figure 3.9) and the UserData/White-Blacklist mi-
croservices are stateful (Figure 3.11). They log or store transactions in the application in a
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MySQL database. Other microservices are Stateless, i.e. they maintain no session state. Such
services typically accept requests, process them in a pure fashion, and respond accordingly. In
JPyL the SSL microservice is stateless: it processes HTTPS requests but maintains no session
data.

Figure 3.11: Stateful Microservices Example

3.6.3 Reliability (Critical vs Minor)

To analyse the reliability of a microservice architecture this study considers a microservice reli-
ability property alongside the established properties of state and dependency.

Critical microservices provide core functionality to the application, and if such a service
fails, the entire application fails catastrophically even if there are several instances of the mi-
croservice. In JPyL, the chained PortConfig to ReverseProxy services are critical because if the
PortConfig service fails, the ReverseProxy service will not be able to determine the port to dis-
play data or access the URL backup port. As with other properties criticality is inherited within
chains, so if any microservice is critical then the entire chain is critical [123].

Minor microservices provide non-essential functionality. The application continues to op-
erate if they fail, although performance and/or functionality may be reduced. In Hipster-Shop,
the Adservice microservice is minor because if it fails, the server returns a 404 status code in-
dicating that the service is not found. However, the rest of the application continues to function
normally [123].

It would also be possible to consider partial failures that eventually affect the operation of
the system [29]. However, given the challenges of distinguishing between partial failures with
different severities a binary minor/critical classification is adopted.

Partial failures are considered as gray failures. They can be subtle at first. However, these
failures can eventually become catastrophic overtime depending on how long they are left unde-
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tected or unresolved [62]. Thus, severe partial failures are classified as critical, and low severity
failures are classified as minor [123].

3.6.4 Combining Microservices Properties

Microservices may have any combination of properties, e.g. individual/stateful or chained/state-
less. Properties may be inherited from other chained microservices, e.g. if any microservice
is stateful then the entire chain is stateful. In Hipster-Shop although both Checkout and Pay-
ment microservices are stateless, their chain with Cart Services is stateful as Cart Services is
stateful [123].

3.7 Catastrophic Failure in Microservices

3.7.1 Chained Failure

Catastrophic failure is considered unacceptable in microservices implementation as it can lead to
long downtimes without manual intervention [105]. In microservices, catastrophic failures are
often termed Interaction Failures [170]. Common causes are incorrect coordination or commu-
nication failure between microservices, e.g. asynchronous message delivery lacking sequence
control or a microservice receiving an unexpected output in its call chain. The errors may be
replicated in several microservice instances [170], so even switching workload from a failed
instance doesn’t help as the new instance fails in the same way.

Chained microservices are especially prone to interaction faults because they violate the
Single Responsibility Principle (SRP) and lead to brittle architectures [60]. Moreover adding
more microservices to the chain increases coupling [39] and the likelihood of catastrophic fail-
ure. If one service in the chain fails, there will be a cascade of failures of all services in the
chain [60, 158].

3.7.2 Patterns and Bad Smells

Some design patterns capture reusable solutions to common microservice design challenges [149].
For example the Database-Per-Service pattern prevents tight coupling by ensuring that multiple
microservices are not dependent on a single data store. Instead, each service accesses its own
private store [150], eliminating the single data store as a single point of failure (SPOF). Some of
the microservices patterns utilised in our evaluation are summarised in Table 3.2

While design patterns like Database-Per-Service help, they are not universal solutions. For
example a single atomic operation often spans multiple microservices, and here additional tech-
niques are required to ensure consistency across the data stores [131].
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Table 3.2: Microservices Patterns [150]

Pattern Description
Database-Per-Design Microservice accesses its

own private data store.
API-Gateway Microservice communi-

cation occurs through an
API gateway.

Single Responsibility Principle Microservice performs a
single functionality

Likewise microservice bad smells identify common designs that may cause issues [149].
Indeed [60] and the Fowler and Lewis design principles consider all chained microservices as
bad smells and prone to catastrophic failure.

The code snippet in Appendix C.3 shows an instance where the Reverse Proxy microservice
is chained to the Port Config microservice in JPyL to receive data. If the Port Config microser-
vice is interrupted or fails, the Reverse Proxy microservice will no longer receive the data it
needs to function. This is an instance of the Inappropriate Service Intimacy bad smell [150].

Some of the microservices bad smells found in the evaluation are summarised in Table 3.3.
Microservices Greedy, Shared Persistency and Cyclic Dependency are listed in [149], Chained
Services is mentioned by [60] and SRP Violation is a well-known microservice bad smell.

Table 3.3: Microservices Bad Smells
Bad Smell Description

SRP Violation Microservice performs more than one func-
tionality.
Reason: Microservice becomes more critical.
Increases the probability of catastrophic fail-
ure in the application.

Microservices Greedy Microservices created for every feature in an
application.
Reason: More microservices could lead to
more points of failure

Shared Persistency Different microservices access the same data
storage.
Reason: Single Point of Failure (SPOF)

Chained Services Microservices that depend on communication
or data marshalling from other microservices
in order to function. Reason: Tight Coupling

Cyclic Dependency Where there are cycles in the call graph, e.g.
A to B, B to C and C to A. A subset of
Chained Services. Reason: Too much depen-
dency.
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Microservice

Individual Chained

Stateful Stateless Stateful/
Critical 

Stateless/
Critical 

Critical MinorMinor Critical

Figure 3.12: MDSR Classification Tree.

3.8 Microservices Dependency State Reliability (MDSR) Clas-
sification

3.8.1 Classification Schema

Combining these properties defines a three-dimensional space: a new Microservices Depen-
dency State Reliability (MDSR) Classification Tree shown in Figure 3.12. The notion is that a
microservice can have any combination of properties e.g. individual/stateful/minor or chained/s-
tateless/critical [123]. It can also be represented in tabular form as in Tables 3.4 and 3.5.

Table 3.4: MDSR Pattern Classification.
Individual Chained

Stateful Stateless Stateful Stateless
Critical Minor Critical Minor Critical Critical

Microservices
JPyL

Service
Logging

Hipster
Adservice

JPyL
Security
Headers

JPyL
User
Data,
Black

Listing

Hipster
Recommend,

Product
Catalog

Failure
Impact

404
Service

Not Found

404
Service

Not Found

404
Service

Not Found

404
Service

Not Found

Pattern
Database

Per
Service

Single
Responsibility

Principle
(SRP)

Database
Per

Service

API
Gateway

In MDSR chained microservices are necessarily critical as argued in [60], and confirmed in
our evaluation (Section 3.9) even for chains that attempt to recover reliability using microservice
patterns. As examples a Database-Per-Service pattern is implemented for the chained/stateful
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Table 3.5: MDSR Bad Smell Classification.
Individual Chained

Stateful Stateless Stateful Stateless
Critical Minor Critical Minor Critical Critical

Microservices
Hipster
Frontend

JPyL
SSL

Hipster
Payment,
Checkout,

Cart
WordPress
Comments,

HTTP
REST

Hipster
Shipping,
Checkout

JPyL
PortConfig,

Reverse
Proxy

Failure
Impact

500
Internal

Server Error

ERR_SSL
Protocol

Failure Error

Database
Connection

Error

500
Internal

Server Error

Bad
Smells

SRP
Violation

Microservices
Greedy

Chained,
Shared

Persistency

Chained,
Cyclic

Dependency

UserData & White/Black Listing service and an API Gateway pattern for the chained/stateless/
Product Catalog & Recommended service. In both cases the application fails catastrophically
despite reporting only a "404 Service Not Found" error [123].

The fourth rows of Tables 3.4 and 3.5 show example microservices from the case study ap-
plications for each of the 6 MDSR classes. For example the individual/stateful/minor exemplar
is JPyL’s Service Logging microservice. The fifth rows of the tables show the error reported if
the service fails [123].

3.8.2 Semi-Automatic MDSR Classification

Static analysis of a set of microservices can automatically propose MDSR classifications for
many microservices in an application. This principle is demonstrated with a prototype analyser
that classifies all Python/Flask microservices in a source project 6. The analyser tokenises the
Python/Flask code, and identifies properties using keyword matches. As examples, the presence
of keywords like "SQL" or "JSON" classifies a service as stateful; the presence of "request",
"requests", "requests.get", "get" Flask keywords, or use of the "POST" or "GET" methods clas-
sifies a service as chained as they indicate a service is pushing data or requesting information
from other microservices. Reliability is determined by the type of type of pattern or bad smell
detected discussed in Sections 3.8.5 & 3.8.6. Figure 3.13 shows a screenshot of the tool’s output
for JPyL.

The analyser performs an initial assessment of all the microservices in the application. If

6https://bitbucket.org/latent12/microproject/src/master/analyser/
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Figure 3.13: JPyL Output From MDSR Analyser

chained microservices are detected, it is automatically flagged as critical as this considered a
bad smell by default. Individual microservices are not assigned a reliability property during the
initial assessment. A second assessment is then performed on all microservices. At this stage,
individual microservices are now assigned a reliability property. Two decision making parame-
ters, i.e Patterns/Bad Smells Analysis and Error Handling Codes, are then used to determine and
provide further information on the reasons why the reliability property is assigned. Patterns/Bad
Smells Analysis takes precedence [123].

The prototype analyser identifies all six MDSR classes. The analyser may, however, pro-
pose an incorrect classification, for example a stateless service may be incorrectly classified as
stateful if a keyword like "SQL" appears in a comment. Similarly, a stateful microservice could
be classified as stateless if it uses a persistent store that is not included in the current set of
keywords [123].

Despite these limitations the analyser is effective in classifying microservices. For example
Tables 3.4 & 3.5 show how it correctly classifies all of the JPyL microservices. The analyser has
been applied to a total of 30 microservices in a further six small Flask web application projects7.
Manual inspection of three of the projects validates the properties identified by the analyser. As
a further example the analyser output for the IBM worklog application is shown in Figure 3.14,

7GitHub Links: https://github.com/IBM/worklog/tree/master/app, https:
//github.com/IBM/Flask-microservice, https://github.com/bakrianoo/
Flask-elastic-microservice, https://github.com/airavata/Blitzkrieg, https:
//github.com/michaellitherland/Flask-microservice-demo, https://github.com/
umermansoor/microservices

https://github.com/IBM/worklog/tree/master/app
https://github.com/IBM/Flask-microservice
https://github.com/IBM/Flask-microservice
https://github.com/bakrianoo/Flask-elastic-microservice
https://github.com/bakrianoo/Flask-elastic-microservice
https://github.com/airavata/Blitzkrieg
https://github.com/michaellitherland/Flask-microservice-demo
https://github.com/michaellitherland/Flask-microservice-demo
https://github.com/umermansoor/microservices
https://github.com/umermansoor/microservices
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Figure 3.14: IBM Worklogs Output From MDSR Analyser

and corresponds to the use case diagram provided by IBM8.
Table 3.6 shows the number and percentage of each MDSR class of microservice that the

analyser detects in the seven web applications, and key observations are as follows. The majority
of services are chained (70%), and most are stateful (73%). 50% of services are from a single
MDSR classification, i.e. chained/stateful/critical. Perhaps most startling is that 77% of services
are critical. It is possible to speculate that this reflects that the designers of these small web
applications have not designed them to be reliable [123].

3.8.3 MDSR Patterns & Bad Smells Analysis

MDSR analysis provides information about the expected reliability of microservices and chains
of microservices in an architecture. In general reliability engineering should focus on the 77% of
critical microservices identified by the analysis in Table 3.6. More specifically the analysis can
help identify design patterns and bad smells in the architecture. To illustrate, the sixth row of the
Patterns and Bad Smell tables (Tables 3.4 & 3.5) identify the microservice pattern or bad smell
associated with each point in the classification space. Of the patterns and bad smells enumerated
in [149] (and summarised in Tables 3.2 & 3.3) the case studies exhibit four out of eight patterns
and three out of eleven bad smells.

Static analysis enables the early identification of patterns and bad smells, allowing develop-
ers to anticipate the types of failures, and their likely impact. Potentially this information allows
developers to troubleshoot problems faster and prevent long application downtimes [123].

8https://github.com/IBM/worklog/blob/master/designs/use_case_diagram.png

https://github.com/IBM/worklog/blob/master/designs/use_case_diagram.png
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Table 3.6: MDSR Classifications of 7 small Flask Applications containing 30 Microservices
Classification No. Services %

Individual 9 30
Chained 21 70
Stateful 22 73
Stateless 8 27
Critical 23 77
Minor 7 23

Individual/Stateful 7 23
Individual/Stateless 2 7

Chained/Stateful 15 50
Chained/Stateless 6 20

Individual/Stateful/Critical 2 7
Individual/Stateless/Critical 1 3

Chained/Stateful/Critical 15 50
Chained/Stateless/Critical 6 20
Individual/Stateful/Minor 5 17
Individual/Stateless/Minor 1 3

3.8.4 MDSR Pattern Instances & Implications

In the MDSR Patterns table (Table 3.4), the sixth row identifies the microservice pattern exhib-
ited by the case study example microservice, or microservice chain. In our case study applica-
tions, individual/stateful microservices and individual/stateless microservices have only minor
reliability implications if they implement a pattern as shown in Table 3.4. For example JPyL
Service Logging is individual/stateful/minor and implements the Database-Per-Service pattern.

3.8.5 MDSR Bad Smells Instances & Implications

In the MDSR Bad Smells table (Table 3.5), the sixth row identifies the microservice bad smell
exhibited by the case study example microservice, or microservice chain. Considering the Pat-
terns and Bad Smells tables together (Tables 3.4 and 3.5) it is shown that the example case study
microservices at each point in the MDSR classification exhibit either a design pattern or a bad
smell. This is expected as microservice best practice applies patterns, while bad smells indicates
places where design principles have not, or cannot be applied [60].

Bad smells identified by MDSR can be considered for refactoring to improve reliability.
That is, most critical microservices are associated with known bad smells as shown in Table 3.5.
For example the individual/stateless/critical SSL microservice in JPyL is an instance of Mi-
croservices Greedy, where there is a proliferation of microservices. Of course SSL need not be
implemented as a microservice [123].

A key element of MDSR is that chained microservices remain critical. For example, the
chained/stateful/critical UserData & White/Black Listing microservices implement the Database-
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Per-Service pattern but still fail catastrophically as shown in Section 3.9.

3.8.6 Semi-Automatic Pattern/Bad Smell Detection

The prototype MDSR analyser can detect the Database-Per-Service pattern, and both chained
microservices and Shared Persistency bad smells. Shared Persistency is detected by determining
whether any microservices share a data store. Currently the user must provide the analyser with
the names of the data stores used in the application, e.g. jpyl_micro in JPyL. An enhanced
analyser could parse the Flask code and extract the data store names from connection statements.
The analyser counts the number of times each data store name appears in the microservices in
the given directory. If the count is greater than one, the microservices have a shared persistency
bad smell. Microservices with a unique persistent store name implement a Database-Per-Service
pattern [123].

There are some bad smells that the analyser is not able to detect. Some of these, like Cyclic
Dependency could be detected dynamically, perhaps using SDGs to examine the connection
between services and the rate of communication [89, 109]. Other bad smells likely require
human analysis, like Microservices Greedy and SRP violation.

The analyser also inspects Flask error handling codes to classify the reliability of a mi-
croservice. For example if a service returns a 404 error indicating that the service is not found
the failure is considered minor. In contrast a code like 415 indicates that there is a SSL Protocol
Violation, and the service is critical because even if other services are available, the application
cannot accept HTTPS requests, and has failed catastrophically [123].

Table 3.7: MDSR Patterns/Bad Smells found in 7 small Flask Applications containing 30 Mi-
croservices

Patterns/Bad Smells No. Services %
Database-Per-Service 5 17

Shared Persistency 2 7
Chained Services 21 70

Other9 2 6

Table 3.7 shows the number and percentage of bad smells and patterns detected by the anal-
yser in the seven web applications; key observations are as follows. 17% of services implement
Database-Per-Service. As 70% of the services are chained (Table 3.6), they are the most com-
mon bad smells. This accords with, and provides evidence for, the claim in [60] that developers
do not always implement reliability patterns [123].
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3.9 Validating MDSR Reliability

3.9.1 Experiment Design

The experiment design to validate the findings of MDSR is similar to the previous experiments
conducted in Section 3.3.2. However, this fault injector is implemented in Python using the
Chaos Monkey Engine 1.1.0 [120] to terminate the process associated with a specific microser-
vice at a specific time. As neither process nor termination time is selected at random, this is not
a Chaos Monkey.

3.9.2 Critical Microservices Failure

Catastrophic failure is a major challenge for web applications and our case study applications
are no exception. To investigate the failure of critical microservices we target the chained/state-
ful/critical HTTP REST microservice in WordPress, the chained/stateless/critical Port Config
microservice in JPyL, the individual/stateless/critical SSL microservice in JPyL & the chained/s-
tateful/critical Cart Service in Hipster [123].

As in Section 3.3.2, throughput is plotted (Request KB/s) against time. The red line in each
box plot is the median throughput from three executions. When the fault injector kills the critical
microservice at 43s the application fails almost instantly: by 50s throughput is 0KB/s as shown
in Figures 3.15, 3.16, 3.17 & 3.18.

Figure 3.15: JPyL PortConfig & Reverse-
Proxy Critical Failure at 43s.

Figure 3.16: JPyL SSL Critical Fail-
ure at 43s.

This catastrophic failure is similar to that exhibited by components in multi-tier software

stacks. For example, in WordPress, once the HTTP REST microservice failed, the application
was unable to accept HTTP requests or display any data on the web page component similar to
that when the Apache component was compromised for WordPress in Section 3.3.2.
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Figure 3.17: WordPress HTTP REST &
Comment Critical Failure at 43s.

Figure 3.18: Hipster Cart & Pay-
ment Services Critical Failure at
43s.

3.9.3 Minor/Individual Microservice Failure

The first investigation of the failure of minor microservices uses an individual microservice.
Specifically the individual/stateful/minor Service Logging microservice in JPyL is targeted. Re-
call that, although stateful, this microservice has a private store following the Database-per-
service design pattern [123].

As before, Figure 3.19 plots JPyL throughput (Request KB/s) against time, and the service
is running at around 600KB/s. Once the fault injector kills the critical microservice at 43s the
application continues to serve pages, but throughput falls dramatically but briefly to around
2KB/s. By 50s the application is able to recover to a throughput of around 520KB/s.

3.9.4 Critical/Chained Microservices Failure

The next investigation involves the failure of critical/chained chained microservices. Specifi-
cally the chained/stateful/critical User Data & White/Black Listing microservices in JPyL and
the chained/stateless/critical Product Catalog & Recommended microservices in Hipster are tar-
geted. Both microservice chains implement patterns that aim to recover reliability (Section 3.7).

As before Figure 3.20 plots JPyL throughput (Request KB/s) against time, and the service
is running at around 600KB/s. Once the fault injector kills the pair of microservices at 43s the
application reports a 404 Service Not Found error and continues to serve pages. However the
throughput has fallen to around 2KB/s. That is the application is barely able to accept client
requests or even load in a browser quickly. A similar failure is reported for Hipster when the
Product Catalog service fails (Figure 3.21).

For realistic workloads the failure of chained/critical microservices, even with pattern im-

plementations, has caused the applications to fail catastrophically.
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Figure 3.19: JPyL Minor/Individual Failure (Service Logging) at 43s.

3.9.5 Multiple Microservices Failure

Even if an application survives the failure of a single minor microservice, how will it cope when
multiple microservices fail successively? To investigate the failure of multiple microservices in
JPyL three microservices i.e. Service Logging, Security Headers & User Data – White/Black
Listing are targeted. Specifically the fault injector kills these microservices in order at approxi-
mately 16s, 32s and 48s into the execution.

Figure 3.22 plots JPyL throughput (Request KB/s) against time, and the service is running at
around 600KB/s. When the fault injector kills the individual/minor microservices the throughput
drops briefly to around 2KB/s, but then recovers to around 600KB/s. As before, when the
chained/critical microservice fails at 48s the application fails catastrophically.

3.10 Evaluation Summary

The key findings from the evaluation are as follows. (1) All case study applications fail catas-
trophically if a critical microservice fails (Figures 3.15, 3.16, 3.17 & 3.18). (2) JPyL survives
the failure of an individual/minor microservice (Figure 3.19), and even the successive failure of
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Figure 3.20: JPyL Chained (UserData &
White/Blacklisting) at 43s.

Figure 3.21: Hipster Chained (Prod-
uct & Recommended) at 43s.

Figure 3.22: JPyL Multiple Minor Failures at 16s, 32s, 48s.

two individual/minor microservices (up to 40s in Figure 3.22) (3) The failure of any chain of mi-
croservices in JPyL & Hipster is catastrophic: throughput being dramatically reduced (by 98%)
(Figures 3.20, 3.21 and after 48s in Figure 3.22). (4) Individual microservices do not necessarily
have minor reliability implications, e.g. the Hipster Frontend is individual/stateful/critical and
the JPyl SSL is individual/stateless/critical (Figure 3.16).



CHAPTER 3. CLASSIFYING THE RELIABILITY OF MICROSERVICES 58

3.11 Chapter Summary

Microservices are perceived to improve interoperation in multi-tier software stacks because they
provide improved reliability. This is due to the loose coupling of services. This may pre-
vent catastrophic failure when compared to component based multi-tier software stacks that are
tightly coupled (Section 3.2). Early experiments show that this notion is accurate. Component
based stacks like JAPyL and WordPress fail catastrophically. In contrast, the JPyL microlith
architecture prevents catastrophic failure (Section 3.3.2).

However, microservices are commonly classified based on their dependence (chained/indi-
vidual) or state (stateful/stateless). A binary reliability classification is added and combined
with the other classifications to define a three dimensional space: the MDSR Classification in
Figure 3.12 and Section 3.8. Microservices tend to exhibit properties based on 6 MDSR classes.

A prototype static analyser is outlined that can statically identify all six classes in Flask web
applications, and it is applied to seven small web applications. Analysing the applications reveal
that the majority of services are chained (70%), stateful (73%) and critical (77%) (Section 3.6).
Across, the seven applications it is revealed that 70% consist of the chained services that are bad
smells by default while only 17% are implemented for resiliency as they consist of the Database-
Per-Service pattern. It is possible that the high percentage of critical services indicates that the
applications are not designed for reliability. Hence MDSR provides a framework to analyse the
properties of microservices and chains of microservices in a system, identifying components to
be considered for refactoring to improve reliability.

Furthermore, the reliability implications of MDSR classes is investigated by running the case
study applications against a simple fault injector under realistic workloads to show the following.
(1) All applications fail catastrophically if a critical microservice fails. (2) Applications survive
the failure of individual minor microservice(s). (3) The failure of any chain of microservices
in JPyL & Hipster is catastrophic. (4) Individual microservices do not necessarily have minor
reliability implications.



Chapter 4

Evaluating Tierless Languages for IoT
Stacks

Internet of Things (IoT) software is notoriously complex, conventionally comprising multiple
tiers [88]. The developer must use multiple programming languages and ensure that the com-
ponents interoperate correctly. A novel alternative is to use a single tierless language with a
compiler that generates the code for each component and ensures their correct interoperation.

This chapter reports a systematic comparative evaluation of two tierless language technolo-
gies for IoT stacks: one for resource-rich sensor nodes (Clean with iTask), and one for resource-
constrained sensor nodes (Clean with iTask and mTask). The evaluation is based on four imple-
mentations of a typical smart campus application: two tierless and two Python-based tiered.

It shows the following. (1) Tierless languages have the potential to significantly reduce
the development effort for IoT systems, requiring 70% less code than the tiered implementa-
tions. Careful analysis attributes this code reduction to reduced interoperation (e.g. two em-
bedded domain-specific languages (DSLs) and one paradigm versus seven languages and two
paradigms), automatically generated distributed communication and powerful IoT programming
abstractions. (2) Tierless languages have the potential to significantly improve the reliability of
IoT systems, describing how Clean iTask/mTask maintains type safety, provides higher order
failure management, and simplifies maintainability. (3) The first comparison of a tierless code-
base is reported for resource-rich and resource-constrained sensor nodes showing that they have
very similar functional structure and code sizes.

This chapter reports collaborative research [87, 88] and Section 4.1 describes my contribu-
tions to the collaboration. Section 4.2 introduces the challenges of interoperation for tiered IoT
stack implementations and why tierless languages seem like a viable alternative. Section 4.3
describes the implementation of the tiered PRS & PWS. Section 4.4 describes the concept of
Task Oriented Programming (TOP) and compares Clean iTask & mTask. Section 4.5 describes
the implementation of the tierless CRS & CWS and shows how both the tiered and tierless IoT
implementations are operationally equivalent. Section 4.6 compares and evaluates the four IoT

59
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stack implementations. Section 4.7 summarises the chapter.

4.1 Detailed Authorship Statement

This chapter reports research undertaken in collaboration with Mart Lubbers and Pieter Koop-
man at the University of Nijmegen [87, 88]. The initial tiered Python/Raspberry Pi Smart Cam-
pus implementation (PRS in Section 4.3.2) was engineered by Christian Hentschel, Dejice Jacob
and Jeremy Singer [59]. I developed and validated the tiered MicroPython/Wemos Smart Cam-
pus implementation (PWS in Section 4.3.3).

I helped design and conduct the experiments that compare interoperation characteristics of
PRS, PWS, CRS and CWS in Section 4.6. The tierless examples in Section 4.5 and the Clean
IoT implementations in Section 4.5 are engineered by Mart Lubbers and Pieter Koopman. I
demonstrated the operational equivalence of PRS and PWS implementations and measured the
memory residency of both in Section 4.5.2.

My PWS implementation together with Mart’s CWS implementation provide the basis for
the Section 4.6.2 comparison of IoT programming for resource-constrained sensor nodes with
programming for resource-rich IoT nodes (as in PRS and CRS). In Sections 4.6.1, 4.6.4 & 4.6.5
while Mart Lubbers measured the CRS and CWS implementations, I measured the PRS and
PWS implementations and contributed to the analysis of the result. In Section 4.6 I contributed
to the analysis of the reliability of tiered and tierless IoT stacks, for example, locating an instance
where type safety is lost in PRS and PWS (Section 4.6.6).

4.2 Motivation

4.2.1 Tiered IoT Stack Complexity

Tiered IoT software stacks are even more complex than tiered web stacks as discussed in Sec-
tion 2.1.4. They comprise two levels of distribution where different web components interop-
erate with physical sensors and aggregators [87]. For example in PWS, the web components
like the webpage and MongoDB in the Presentation & Application Layers have to interoperate
with the Measurement Collector in the Perception Layer shown in Figure 2.6. This is facilitated
through a variety of protocols like HTTP & MQTT. The components are implemented using a
variety of languages like HTML, Python, JSON & PHP shown in Figures 2.12.

The tiered IoT architecture offers significant benefits like:

(1) Modularity — tiers allow a system to be structured as a set of components with clearly
defined functionality. They can be implemented independently, and may be interchanged
with other components that have similar functionality [90]. For example, in PWS, a dif-
ferent NoSQL DBMS could relatively easily be substituted for MongoDB.



CHAPTER 4. EVALUATING TIERLESS LANGUAGES FOR IOT STACKS 61

(2) Abstraction — the hierarchical composition of components in the stack abstracts the view
of the system as a whole. Enough detail is provided to understand the roles of each layer
and how the components relate to one another [13]. Figure 2.6 illustrates the abstraction
of PWS into 4 tiers.

(3) Cohesion — well-defined boundaries ensure each tier contains functionality directly re-
lated to the task of the component [79]. The tiers in PWS contain all the functionality as-
sociated with Perception, Networking, Application and Presentation Layers respectively.

However, increasing complexity creates even more heterogeneity. This presents significant
challenges for interoperation as follows [87, 88]. (1) Polyglot programming increases the cog-
nitive load for developers i.e. they have to be fluent in several different programming languages
and paradigms. (2) Type safety has to be enforced and maintained across a variety of differ-
ent programming languages. (3) Strict adherence to API and communication protocols must be
maintained to ensure correct interoperation among components. (4) Managing different failures
as different components have multiple different failure modes.

These are also evidenced in real world studies. An empirical study conducted on open source
GitHub projects reveal that polyglot programming decreases project quality as it increases the
chances of bug defects [71]. A study of IoT stack developers found that integrating certain
architectures like microservices into tiers can decrease abstraction and that scaling tiered IoT
applications to newer devices can be difficult [102].

4.2.2 Tierless Languages in IoT Software Stacks

Similar to web stacks discussed in Section 2.4.3, tierless languages may be used to address some
of these challenges. This thesis claims that these languages have the potential to reduce devel-
oper effort, improve type safety, improve reliability and automatically generate communication
during compilation [87, 88]. However, their use in the implementation of IoT software stacks is
not as common perhaps due to IoT applications comprising microcontrollers that are resource
constrained. Furthermore, tierless languages may introduce other problems like expressivity and
maintainability [88].

A first ever systematic evaluation of tiered and tierless IoT architectures is reported in
this chapter. Empirical evidence is provided for resource-constrained microcontrollers and
resource-rich super sensors. Four implementations of a typical smart campus IoT stack are com-
pared. Two are tiered Python/MicroPython stacks: Python, RaspberryPi Super Sensor (PRS)
and Python, Wemos Super Sensor (PWS). The other two are the tierless implementations: CRS
(Clean Raspberry Pi System) and CWS (Clean Wemos System).
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Figure 4.1: Exposed views of sensor nodes: the Wemos on the left is used in PWS and CWS;
the Raspberry Pi on the right is used in PRS and CRS.

4.3 Smart Campus Case Study: Tiered Implementations

4.3.1 Sensor Node Hardware

The University of Glasgow has almost completed a ten year campus upgrade programme. A
key goal is to have smart sensing infrastructure embedded into its new fabric. Prototype low-
power and low cost commodity sensors for monitoring indoor environments are being utilised
and evaluated. Currently, there is a small deployment of PRS implementations in 12 rooms for
evaluation shown in Figure 4.1. However, to make the evaluation exercise more representative,
the common ESP8266X Wemos D1 Mini microcontroller is selected for implementation of PWS
shown in Figure 4.1.

Commodity sensors of a similar range are connected to both sensor nodes. The sensors are
connected using a range of standard interfaces e.g. general purpose input/output pins (GPIO),
IIC, SPI and one-wire. The sensors are as follows: Temperature & Humidity: LOLIN SHT30;
Light: LOLIN BH1750; Motion: LOLIN PIR; Sound: SparkFun SEN-12642; CO2: SparkFun
CCS811 [88].

4.3.2 PRS Implementation

Tiered IoT applications are often developed using C/C++ (Section 2.4.3). However, other lan-
guages like Python can be utilised. In fact, Python is now considered one of the top programming
languages of choice in the development of IoT applications [21].

PRS is the first resource rich UoG smart campus IoT prototype that has been engineered and
is Python based. The sensor nodes are connected to a RaspberryPi. This is a mass produced,
portable and low powered computing device that has sold more than eight million devices world-
wide [59].

The motherboard in this device is composed of several interfaces like I2C and USB for
connecting the sensor nodes shown in Figure 4.1. Appendix D.1 provides an example of the



CHAPTER 4. EVALUATING TIERLESS LANGUAGES FOR IOT STACKS 63

code to allow the light sensor node to interface with the RaspberryPi.
Several of the sensors are attached together to create a supersensor. This allows for the

capturing of several types of environmental data in real time on one device. The sensor data is
then periodically flushed to a remote server via the TCP/IP protocol [59].

4.3.3 PWS Implementation

In contrast to PRS that uses resource-rich Raspberry Pis, PWS (Figure 4.1) is a resource con-
strained microcontroller running MicroPython, a dialect of Python specifically designed to run
on small, low powered embedded devices [72]. MicroPython has been developed as a variant of
Python specifically for microcontrollers and embedded devices.

For developers, creating and coding during an interactive session with the hardware is as
simple as using a serial terminal connection or using the WebREPL. However the use of IDEs
like uPyCraft and Thonny MicroPython are also available [154]. It is pragmatic that MicroPy-
thon be utilised for the resource-constrained PWS as it minimises changes to the resource-rich
PRS code base [88]. Appendix D.2 provides an example of the light sensor implementation for
PWS.

4.3.4 Comparing PRS & PWS Implementations

The tiered PRS and PWS IoT stack implementations have been carefully designed to be similar
to facilitate comparison. They both share the same server code shown in the code snippet in
Listing 4.1. Sensor data is collected and stored in two database systems i.e. Redis and MongoDB
as shown in Figures 2.6 & 4.7. Both run on the same server. Redis is used as a caching and
queuing system while MongoDB acts as a persistent data store.

Listing 4.1: Sensor Data Upload from Redis to Webpage

1
2 def main():

3 # Get configuration values

4 config.init(’measurements’)

5 port = (config.get(’Measurements’, ’Host’),

config.getint(’Measurements’, ’Port’))

6
7 mongo_host = config.get(’Mongo’, ’Host’)

8 mongo_port = config.getint(’Mongo’, ’Port’)

9 mongo_database = config.get(’Mongo’, ’Database’)

10
11 redis_host = config.get(’Redis’, ’Host’)

12 redis_port = config.getint(’Redis’, ’Port’)
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13
14 # Start Mongo Sender

15 mongo_sender = MongoMeasurementsSender(mongo_host,

mongo_port, mongo_database)

16 mongo_sender.Start()

17
18 # Start Redis Sender

19 redis_sender = RedisMeasurementsSender(redis_host,

redis_port)

20 redis_sender.Start()

21
22 # Initialize servicer and register received callbacks for

each of the senders

23 servicer = MeasurementsService()

24 servicer.AddReceivedCallback(mongo_sender.ReceivedCallback)

25 servicer.AddReceivedCallback(redis_sender.ReceivedCallback)

26
27 # Start the TCP server

28 server = implementations.create_server(servicer)

29 server.add_insecure_port("%s:%d" % port)

30 server.serve_forever()

Data can be monitored via the webpage component in real time. It is provided through the
websocket server that connects to the Redis database shown in the code snippet in Listing 4.2.
Furthermore, current and historical sensor data can be polled through the HTTP REST API that
connects to the MongoDB database shown in the code snippet in Listing 4.3.

Listing 4.2: Sensor Data Upload from Redis to Webpage

1
2 for message in p.listen():

3
4 if message[’type’] not in [’message’, ’pmessage’]:

5 continue

6
7 try:

8 status =

collector_pb2.SensorStatus.FromString(message[’data’])

9 hostname = status.hostname

10 sensor_type =

sensor_types.sensor_type_name(status.sensor_type)
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11
12 key = "%s/%s" % (hostname, sensor_type)

13
14 sensor_value = str(round(status.float_value, 2) or

status.int_value or status.bool_value)

15 data[key] = "%s,%s" % (status.timestamp, sensor_value)

16 except Exception as e:

17
18 print e

19 continue

20
21 if (time.time() - last_upload > upload_interval):

22
23 signature = sign_data(data, secret_key)

24 url = ’%s/%s’ % (upload_url, signature)

Listing 4.3: Code Snippet showing MongoDB Database Connection

1
2 class MongoMeasurementsSender(MeasurementsSender):

3 db = None

4
5 def __init__(self, mongo_host, mongo_port, mongo_database):

6
7 MeasurementsSender.__init__(self)

8 self.db = pymongo.MongoClient(mongo_host,

mongo_port)[mongo_database]

9
10 def Send(self, hostname, s):

11
12 try:

13 t = collector_pb2.SensorStatus

14 #if it is an occupancy reading insert in the

occupancy collection

15 if s.sensor_type == t.OCCUPANCY:

16 self.db.RoomOccupancy.insert({

17 ’timestamp’: s.timestamp,

18 ’node_name’: hostname,

19 ’value’: s.bool_value,

20 ’predictor_hash’: s.hash
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21 })

22 else:

23
24 self.db.SensorReadingCollection.insert({

25 ’timestamp’: s.timestamp,

26 ’value’: s.int_value or s.float_value or

s.bool_value,

27 ’node_name’: hostname,

28 ’sensor_type’:

sensor_types.sensor_type_name(s.sensor_type)

29 })

30 except Exception as e:

31 print "Failed to send to Mongo, discarding status.

%s" % e.message

Both tiered implementations also share the same object oriented paradigm with similar
classes. For example, in PRS, Listing 4.4 shows a class for accessing the memory area and
returning temperature sensor data. If any problems are encountered, a message is printed out.
PWS has a similar class shown in Listing 4.5. Appendix D.3 provides the full code base for both
implementations of the temperature sensor.

Listing 4.4: Code Snippet for PRS Temperature Sensor

1
2 class TemperatureSensor():

3
4 controller = implementations.create_controller()

5 results = TempConnect.temp_results(self)

6
7 if results != None and len(results.data_read) ==

len(transaction.commands):

8 data = self._swap_word_bytes(results.data_read[0])

9 return (data >> 4) * 0.0625

10 else:

11 print "Problem with response from i2c service: %s"

% results

12 return None

Listing 4.5: Code Snippet for PWS Temperature Sensor

1
2 def get_sensor_value(self):
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3
4 if results != None:

5
6 buf = self.mem1

7 buf[0] = self.reg1

8 buf[1] = self.reg2

9 results.writeto(addr, buf)

10 time.sleep_ms(1000)

11
12 data = self.mem2

13 buf[0] = self.reg3

14 buf[1] = self.reg4

15 results.writeto(addr, buf)

16 data = results.readfrom(addr, 6)

17
18 data2 = self._swap_word_bytes(data)

19 return data2

20
21 else:

22
23 print ("Problem with response from i2c service:

%s" % results)

24 return None

4.4 Understanding Tierless Clean iTasks/mTasks in IoT Pro-
gramming

The following section is based on work conducted by Mart Lubbers and Pieter Koopman at Rad-
boud University Nijmegen in the Netherlands. It forms part of the collaborative work coauthored
and published in [87, 88].

4.4.1 Task Oriented Programming (TOP)

Task Oriented Programming (TOP) is a technique for constructing distributed systems through a
declarative programming paradigm. It utilises the concept of tasks. This represents the building
blocks of everything that needs to be done in order for the system to achieve its overall business
function. For example, a task could involve a user having to complete a form, a database having
to be monitored or another task having to be moderated [110].
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The language implementation from TOP automatically creates an integrated distributed sys-

tem. A single declarative description of tasks can generate all the necessary components like
web servers and client code for browsers. This is accomplished through three key concepts:
tasks, task combinators & Shared Data Stores (SDSs).

Tasks are basic functionalities that are needed for the system to achieve its overall business
function. Examples include tasks for controlling peripherals like a servo motor or reading some
IoT sensor data. Task combinators are for more advanced tasks. They allow task values to be
observed by other tasks and for them to either be executed sequentially or in parallel. Examples
include tasks being returned as a result of a function or tasks being repeated due to recursion
[87, 88].

Shared Data Stores (SDSs) allow tasks to exchange information. This is accomplished
through tasks being able to atomically observe and change the value of the typed SDS. Basi-
cally, there is an abstraction of data shared by different tasks similar to variables and persistent
values.

4.4.2 Task Oriented Programming in Clean

Similar to Haskell, Clean 1is statically typed, pure and non strict [1]. It enables functions to work
on many types. However, in contrast to Haskell, Clean has a unique type system that allows the
single threaded use of stateful objects like files and windows [10,125]. Furthermore, it supports
many models of generic programming. This is heavily utilised in TOP especially in the creation
of web editors and communication protocols that work for any user-defined datatype.

Clean iTask/mTask are two DSLs embedded in Clean. They ensure bidirectional data shar-
ing and automatic communication between the sensor nodes and server. A single declarative
paradigm is utilised across all tiers in an IoT stack.

4.4.3 The iTasks Embedded DSL

Clean iTasks can be deployed on resource-rich sensor nodes. For example, Listing 4.6 provides
a complete program where the room temperature can be repeatedly read from a digital and hu-
midity temperature sensor (DHT). The values are displayed on a webpage shown in Figure 4.2.
However, it only reports instantaneous temperature measurements. There is no state or recording
of data.

This program can be extended to record and store temperatures. The times and the measure-
ments that are taken can also be recorded. This creates a small tierless application displayed in
the code in Listing 4.7.

There is a persistent SDS to store the temperature values recorded and for automatic com-
munication between tasks. The measurementsSDS:measureTask tasks facilitate this everytime a

1Source: https://clean-lang.org/

https://clean-lang.org/
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Listing 4.6: SimpleTempSensor: a CleaniTask program to read a local room temperature sensor
and display it on a web page

1 module simpleTempSensor
2
3 import iTasks
4
5 Start :: *World � *World (#λlabel{lst:iTaskTemp:systemfro}#)
6 Start world = doTasks readTempTask world

(#λlabel{lst:iTaskTemp:systemto}#)
7
8 readTempTask :: Task Real
9 readTempTask =

10 withDHT IIO_TempID λdht �
(#λlabel{lst:iTaskTemp:dhtDef}#)

11 repeatEvery interval (
(#λlabel{lst:iTaskTemp:repeat}#)

12 temperature dht >>∼ λtemp �
(#λlabel{lst:iTaskTemp:readDHT}#)

13 viewInformation [] temp <<@
(#λlabel{lst:iTaskTemp:viewInformation}#)

14 Label "Temperature"
(#λlabel{lst:iTaskTemp:label}#)

15 )

Figure 4.2: iTask SimpleTempSensor: Webpage (left) and Deployment Diagram (right).
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Listing 4.7: TempHistory: A Tierless Clean iTask web application that records and manipulates
timed temperatures

1 module TempHistory
2
3 import iTasks, iTasks.Extensions.DateTime
4
5 :: Measurement = {time :: Time, temp :: Real}

(#λlabel{lst:iTaskTemp:Measurement}#)
6 derive class iTask Measurement (#λlabel{lst:iTaskTemp:derive}#)
7
8 measurementsSDS :: SimpleSDSLens [Measurement]

(#λlabel{lst:iTaskTemp:measurementsSDS}#)
9 measurementsSDS = sharedStore "measurements" []

10
11 measureTask :: Task () (#λlabel{lst:iTaskTemp:measureTask}#)
12 measureTask =
13 withDHT IIO_TempID λdht �
14 let task old =
15 temperature dht >>* (#λlabel{lst:iTaskTemp:step}#)
16 [ OnValue (ifValue ((6=) old) λtemp �

(#λlabel{lst:iTaskTemp:action1}#)
17 get currentTime >>∼ λtime �
18 upd (λlist.[{time=time, temp=temp}:list]) measurementsSDS

@! temp)
19 , OnValue (always (waitForTimer False interval @! old))

(#λlabel{lst:iTaskTemp:action2}#)
20 ] >>∼ task
21 in task initialTemp (#λlabel{lst:iTaskTemp:launch}#)
22
23 controlSDS :: Bool � Task [Measurement]
24 controlSDS byTemp =
25 ((Label "# to take" @>> enterInformation []) -||

(#λlabel{lst:iTaskTemp:enter}#)
26 (Label "Measurements" @>> (#λlabel{lst:iTaskTemp:view}#)
27 viewSharedInformation [ViewAs (if byTemp (sortBy (λx

y� x.temp < y.temp)) id)]controlSDS byTemp))
28 ,OnAction (Action (if byTemp "Sort time" "Sort temp"))

(always (controlSDS (not byTemp)))
29 ] (#λlabel{lst:iTaskTemp:actionend}#)
30
31 mainTask :: Task [Measurement]
32 mainTask = controlSDS False -|| measureTask



CHAPTER 4. EVALUATING TIERLESS LANGUAGES FOR IOT STACKS 71

Figure 4.3: Web pages generated by the TempHistory tierless web application: on the left
sorted by time; on the right sorted by temperature. The Take button is only enabled when the
topmost editor contains a positive number.

Figure 4.4: Deployment diagram of the iTask TempHistory tierless web application from List-
ing 4.7.

temperature change is detected. The controlSDS task allows a webpage to be generated and for
users to control the view of the temperature measurements shown in Figures 4.3 & 4.4.

4.4.4 Engineering Tierless IoT Systems with iTask

Clean iTasks can also be used to support an iTask server on a resource rich device like a Rasp-
berryPi. Listing 4.8 provides an example showing the temperature sensing system with a server
and a single sensor node (CRTS (Clean RaspberryPi Temperature Sensor)).

This application is similar to Listing 4.7. However, the main differences are as follows. (1)
The devTask task executes on the sensor node. (2) The recorded temperatures are timestamped
on the SDS through the dateTimeStampedShare latestTemp task. (3) Temperature measurements
are stored as tuples instead of tailor-made records. Figure 4.5 provides an example of how CRTS
functions and how the temperature values are displayed on the webpage.

4.4.5 The mTask embedded DSL

Many IoT systems consist of sensor nodes that utilise microcontrollers. These devices are
resource-constrained but provide significant advantages as follows when compared to the resource-
rich RaspberryPi [88]. Microcontrollers are (1) far cheaper (2) consume less power (3) allow
the programmer to easily control sensors and actuators through the IO pins of the processor.
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Listing 4.8: CRTS: a tierless temperature sensing IoT system. Written in Clean iTask, it targets
a resource-rich sensor node.

1 tempSDS :: SimpleSDSLens [(DateTime, Real)]
2 tempSDS = sharedStore "temperatures" []
3
4 latestTemp :: SDSLens () (? (DateTime, Real)) (DateTime, Real)
5 latestTemp = mapReadWrite (listToMaybe, λx xs� ?Just [x:xs])

?None tempSDS
6
7 devTask :: Task DateTime
8 devTask = (#λlabel{lst:itaskTempFull:sensorfro}#)
9 withDHT IIO_TempID λdht �

10 forever ((#λlabel{lst:itaskTempFull:forever}#)
11 temperature dht >>∼ λtemp �
12 set temp (dateTimeStampedShare latestTemp) >-|
13 waitForTimer False interval)

(#λlabel{lst:itaskTempFull:waitForTimer}#)
14 (#λlabel{lst:itaskTempFull:sensorto}#)
15
16 mainTask :: Task ()
17 mainTask (#λlabel{lst:itaskTempFull:main}#)
18 = asyncTask deviceInfo.domain deviceInfo.port devTask

(#λlabel{lst:itaskTempFull:startdevtask}#)
19 -|| viewSharedInformation []

(#λlabel{lst:itaskTempFull:displaystart}#)
20 (remoteShare latestTemp deviceInfo)

(#λlabel{lst:itaskTempFull:remoteShare}#)
21 <<@ Title "Latest temperature"

(#λlabel{lst:itaskTempFull:displayend}#)



CHAPTER 4. EVALUATING TIERLESS LANGUAGES FOR IOT STACKS 73

Figure 4.5: Tierless iTask CRTS temperature sensing IoT system: web page (left) and deploy-
ment diagram (right).

Executing Clean iTask on microcontrollers is difficult. Microcontrollers have limited mem-
ory capacity, compute power and communication bandwidth. Furthermore, there is no standard
OS like Windows or Linux to run iTasks. Even if this is possible, execution of the code will be
too slow given the limited processing capacity [88].

Clean mTask overcomes these challenges. It consists of a lightweight domain specific OS
module that runs on microcontrollers. This module provides the following functionalities. (1)
It facilitates the execution of mTask programs by receiving bytecode generated from those pro-
grams. (2) It manages updates to the SDS and the passing of results.

The OS is stored in flash memory and executes tasks in RAM. This slows the degradation of
the microcontroller. For example, programs implemented using C/C++ for microcontrollers are
stored and executed in flash memory. Constant uploading will eventually decrease the lifetime
of the microcontroller as the flash memory will eventually become exhausted [88].

4.4.6 Engineering Tierless IoT Systems with mTasks

Clean mTask programs are normally implemented in the Perception and Network Layers of an
IoT stack. Here, the programmer can select or customise tasks to be dynamically compiled at
runtime. Furthermore, Clean iTasks can be integrated with mTasks as iTasks can be used to
implement the Presentation & Application Layers of the stack. This is shown with the Clean
Wemos Temperaturew Sensor (CWTS) implementation in Listing 4.9.

The mainTask is a simple iTask task that starts the devTask mTask task on the device. It reads
temperature values from the latestTemp SDS that is shared with mTask device. The values are
then displayed on a webpage shown in Figure 4.6.

Figure 4.6: Tierless iTask/mTask CWTS temperature sensing IoT system: web page (left) and
deployment diagram (right).
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Listing 4.9: CWTS: a tierless temperature sensing IoT system. Written in Clean iTask mTask, it
targets a resource-constrained sensor node.

1 module cwts
2
3 import mTask.Language, mTask.Interpret,

mTask.Interpret.Device.TCP
4
5 import iTasks, iTasks.Extensions.DateTime
6
7 deviceInfo = {TCPSettings|host="...", port=8123, pingTimeout=

?None}
(#λlabel{lst:mtasktemp:co0}#) // CO

8 interval = lit 10

(#λlabel{lst:mtasktemp:sn0}#) // SN
9 DHT_pin = DigitalPin D4

(#λlabel{lst:mtasktemp:si0}#) // SI
10
11 Start world = doTasks mainTask world

(#λlabel{lst:mtasktemp:wi0}#) // WI
12
13 tempSDS :: SimpleSDSLens [(DateTime, Real)]
14 tempSDS = sharedStore "temperatures" []

(#λlabel{lst:mtasktemp:di0}#) // DI
15
16 latestTemp :: SDSLens () (? (DateTime, Real)) (DateTime, Real)
17 latestTemp = mapReadWrite (listToMaybe, λx xs� ?Just [x:xs])

?None tempSDS
(#λlabel{lst:mtasktemp:di1}#)// DI

18
19 devTask :: Main (MTask v Real) | mtask, dht, liftsds v

(#λlabel{lst:mtasktemp:devTask}#)
20 devTask =
21 DHT (DHT_DHT DHT_pin DHT11) λdht �

(#λlabel{lst:mtasktemp:DHT}#)(#λlabel{lst:mtasktemp:si1}#)
// SI

22 liftsds λlocalSds =
23
24 mainTask :: Task Real
25 mainTask
26 = withDevice deviceInfo λdev � liftmTask devTask dev
27 -|| viewSharedInformation [] latestTemp
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Figure 4.7: PRS and PWS (left) together with CRS and CWS (right) mapped to the 4-tier IoT
architecture. Every box is the diagram denotes a source file or base. Bold blue text describes the
language or technology used in that source. The Network and Perception Layers are unique to
the specific implementation, where the Application and Presentation Layers are shared between
implementations.

4.5 Smart Campus Case Study: Tierless Implementations

This section demonstrates the operational equivalence of the PRS, PWS, CRS and CWS im-
plementations. CRS & CWS were implemented by Mart Lubbers and Pieter Koopman. We
measured the memory residencies of the four applications. (Section 4.5.4).

4.5.1 Tierless Implementations: CRS & CWS

The second part of the UoG Smart Campus project involves comparing the tiered PRS and PWS
against tierless implementations: CRS & CWS shown in Figure 4.7. Both tierless implementa-
tions are similar in some aspects.

They both share the same iTask server code and use a SQLite backend. Communication
between a sensor node and server is initiated by the server. However, CRS executes Clean
iTasks code as the sensor node is the RaspberryPi. In contrast, CWS integrates both iTask &
mTask as the sensor nodes comprise the Wemos microcontroller [88].

4.5.2 Operational Equivalence

A fair comparison of all four IoT stack implementations require that they meet the functional
requirements specified by the UoG project board. The system should:
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Figure 4.8: Web interfaces for CWS and CRS (left); PWS and PRS (right).

(1) Be able to measure temperature and humidity as well as light intensity,

(2) Scale to no more than ten sensors per sensor node and investigate further sensor options
like measuring sound levels,

(3) Have access to communication channels like WiFi, Bluetooth and even wired networks.

(4) Have a centralised database server,

(5) Have a client interface to access information stored in the database,

(6) Provide some means of security and authentication,

(7) Have some means of managing and monitoring sensor nodes like updating software or
detecting new sensor nodes.

All four smart campus implementations meet these high-level requirements as illustrated in
Figure 4.7.

4.5.3 Functional Equivalence

All four implementations utilise the same inexpensive sensors. It is expected that the sensor data
collected like temperature, humidity, motion, light and sound will be within tolerance levels.
Figure 4.8 shows the web interface that displays the sensor readings for all implementations.

This is validated by comparing PRS and PWS sensor nodes deployed in the same room for
some minutes. The measurements show only small variances, e.g. temperatures recorded dif-
fer by less than 0.4◦C, and light by less than one lux. For this room monitoring application
precise timings are not critical, and we do not compare the timing behaviours of the implemen-
tations [88].
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4.5.4 Memory Consumption

Computational capacity is a key issue for sensor nodes. Limited memory affects processing
capabilities. Supersensors have up to 1 GiB of memory while microcontrollers have just tens of
KiBs. Determining memory efficiency for this evaluation is key because the tierless languages
generate code for the sensor nodes to be executed.

Table 4.1 shows the maximum memory residency after garbage collection of the sensor node
for all four smart campus implementations. The smart campus sensor node programs executing
on the Wemos microcontrollers have low maximum residencies: 20270 bytes for PWS and
880 bytes for CWS. In CWS, the mTask system generates very high level TOP bytecode that
is interpreted by the mTask virtual machine and uses a small and predictable amount of heap
memory [88].

In PWS, the hand-written MicroPython is compiled into bytecode for execution on the virtual
machine. Low residency is achieved with a fixed size heap and efficient memory management.
For example both MicroPython and mTask use fixed size allocation units and mark & sweep
garbage collection to minimise memory usage at the cost of some execution time [117].

Table 4.1: UoG Smart Campus Sensor Nodes: Maximum Memory Residency (Bytes).
PWS PRS CWS CRS

20,270 3,557,806 880 2,726,680

The smart campus sensor node programs executing on the Raspberry Pis have far higher
maximum residencies than those executing on the microcontrollers: 3.5MiB for PRS and 2.7MiB
for CRS. In CRS the sensor node code is a set of iTask executing on a full-fledged iTask server
running in distributed child mode and this consumes far more memory.

In PRS the sensor node program is written in Python, a language far less focused on min-
imising memory usage than MicroPython. For example an object like a string is larger in Python
than in MicroPython and consequently does not support all features such as f-strings [88]. Fur-
thermore, not all advanced Python features regarding classes are available in MicroPython, i.e.
only a subset of the Python specification is supported [162].

In summary, iTask and mTask code are memory efficient for the sensor nodes. Generally,
the maximum residencies for the Clean code is even less than the hand written tiered implemen-
tations. However, hand-written code can be made more memory efficient. One approach is to
use a more memory efficient language like C/C++. However, this may involve more developer
effort and could introduce additional challenges like semantic friction [88].

4.5.5 Power Consumption

Sensor nodes are usually designed for low power consumption. This is crucial especially if
IoT systems are utilising batteries. The Wemos sensor nodes used in CWS and PWS have the



CHAPTER 4. EVALUATING TIERLESS LANGUAGES FOR IOT STACKS 78

low power consumption of a typical embedded device: with all sensors enabled, they consume
around 0.2W. The Raspberry Pi supersensor node used in CRS and PRS use more power as they
have a general purpose ARM processor and run mainstream Linux. With all sensors enabled,
they consume 1–2W, depending on ambient load. So a microcontroller sensor node consumes
an order of magnitude less power than a supersensor node [88].

4.6 Evaluation

In this section, my PWS implementation together with Mart’s CWS implementation provide
the basis for the Section 4.6.2 comparison of IoT programming for resource-constrained sensor
nodes with programming for resource-rich IoT nodes (as in PRS and CRS). In Section 4.6.1
while Mart Lubbers measured the CRS and CWS implementations, I measured the PRS and
PWS implementations and contributed to the analysis of the result. In Section 4.6.6 I contributed
to the analysis of the reliability of tiered and tierless IoT stacks, for example locating an instance
where type safety is lost in PRS and PWS (Section 4.6.6).

4.6.1 Is Tierless IoT Programming Easier Than Tiered?

Code Size is a common metric that is used to measure developer and maintenance effort of a
software system. It is based on the simple premise that the more source lines of code (SLOC)
utilised in developing a program, the greater the developer effort and the more likelihood of
bugs [129]. SLOC involves counting lines of code that are not comments or blank lines.

This metric offers benefits like being a simple measure, not being dependent on some for-
mula and can automatically be computed [136]. However, some drawbacks are that SLOC can
be influenced by programming style, language paradigm and counting methods [3].

Table 4.2 enumerates the SLOC required to implement the UoG smart campus functionalities
in PWS, PRS, CWS and CRS. Both Python and Clean implementations use the same server and
communication code for Raspberry Pi and for Wemos sensor nodes. The Sensor Interface (SI)
refers to code that allows communication between the peripherals and the sensor node software.
Sensor Node (SN) code refers to all code on the sensor node that has not been categorised
like control flow. Manage Nodes (MN) refer to code that facilitates coordination among the
sensor nodes e.g. adding a new sensor to the system. Web Interface (WI) refers to the web
interface from the server, i.e. the Presentation Layer. Database Interface (DI) is code that
ensures communication between the server and the database(s). Communication (CO) code
executes on both sensor node and server in order to facilitate communication between both
devices at the Network Layer [88].

The tierless implementations require less code than the tiered implementations. For example
166/562 SLOC for CWS/PWS, or 70% fewer source lines. This can be attributed to reduced
interoperation, automatic communication, and high level programming abstractions [88].
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Table 4.2: Comparing tiered and tierless smart campus code sizes: SLOC and number of source
files. PWS and CWS execute on resource-constrained sensor nodes, while PRS and CRS execute
on resource-rich sensor nodes.

Tiered Python Tierless Clean
Code Location Functionality PWS PRS CWS CRS
Sensor Node Sensor Interface 52 57 11 11

Sensor Node 178 183 9 4
Server Manage Nodes 76 35 30

Web Interface 56 28
Database Interface 106 78

Communication Communication 94 98 5 4
Total SLOC 562 576 166 155
No. Files 35 38 3 3

Code Proportions Some of the issues of SLOC can be avoided by comparing the percentage
of code required to implement the four IoT stacks. Figure 4.9 shows the percentage of the total
SLOC required to implement the smart campus functionalities in each of the four implementa-
tions, and is computed from the data in Table 4.2.

It shows that there are significant differences between the percentage of code for each func-
tionality between the tiered and tierless implementations. For example 17% of the tiered imple-
mentations specifies communication, whereas this requires only 3% of the tierless implementa-
tions, i.e. six× less. The reasons for this are explored in Section 4.6.4.

Figure 4.9: Comparing the percentage of code required to implement each functionality in
tiered/tierless and resource-rich/constrained smart campus implementations.

The other major difference is the massive percentage of Database Interface code in the tier-
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less implementations: at least 47%. A standard DBMS is required based on the Smart Campus
specification requirements and the Clean iTask SQL interface requires only 78 SLOC. This is
smaller than the 106 SLOC used in Python (Table 4.2). However, when converted to percent-
ages, the tiered implementations value is far higher especially for systems with total codebases
of only around 160 SLOC.

The reason for this is that idiomatic Clean/iTask would use high level abstractions to store
persistent data in an SDS, requiring just a few SLOC. The total size of CWS and CRS could
even be reduced by a factor of two and the percentage of Database Interface code would be even
less than in the tiered Python implementations if more high level abstractions are applied [88].

4.6.2 Comparing Codebases for Resource-Rich/Constrained Sensor Nodes

Before exploring the reasons for the smaller tierless codebase, the implementations for resource-
rich and resource-constrained sensor nodes are compared, again using SLOC and code propor-
tions. Table 4.2 shows that the two tiered implementations are very similar in size: with PWS
for microcontrollers requiring 562 SLOC and PRS for supersensors requiring 576 SLOC. The
two tierless implementations are also similar in size: CWS requiring 166 and CRS 155 SLOC.

There are two main reasons for this similarity. One is that the server-side code, especially
in the the Presentation and Application Layers, is identical for both resource rich/constrained
implementations. This accounts for approximately 40% of the PWS and PRS codebases, and ap-
proximately 85% of the CWS and CRS codebases (Figure 4.9). For the Perception and Network
Layers on the sensor nodes, the Python and MicroPython implementations utilise the same struc-
ture, e.g. a class for each type of sensor and analogous libraries. Indeed, approaches like Cir-
cuitPython [152] allow the same code to execute on both resource-rich and resource-constrained
sensor nodes.

Similarly, like the Python based tiered implementations, iTask and mTask are designed to be
similar, as elaborated in Section 4.4. The similarity is especially observed when comparing the
iTask CRTS and iTask/mTask CWTS room temperature systems in Listings 4.8 and 4.9. Both
implementations use similar SDS data stores and lenses. They have similar devTasks that
execute on the sensor node, and the server-side mainTasks are almost identical: they deploy
the remote devTask before generating the web page to report the readings.

In both Python and Clean the resource-constrained implementations are less than 7% larger
than the resource-rich implementations. This suggests that the development and maintenance

effort of simple IoT systems for resource-constrained and for resource-rich sensor nodes are

similar in tierless technologies, just as it is in tiered technologies. A caveat is that the smart
campus system is relatively simple, and developing more complex Perception and Network code
on bare metal may prove more challenging. It is possible that the lack of OS support, and the
use of both restricted languages and libraries may have greater impact.
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4.6.3 Reduced Interoperation

Table 4.3: Smart Campus implementation languages and paradigm comparison.
Languages Paradigms

Code Location Functionality PWSS PRSS CWSS CRSS Python Clean
Sensor Node Sensor Int. µPython Python mTask iTask imp. decl.

Sensor Node µPython Python mTask iTask imp. decl.
Server Manage Nodes Python, JSON iTask imp. decl.

Web Int. HTML, PHP iTask both decl.
Database Int. Python,JSON,Redis iTask both decl.

Communication Communication µPython Python iTask,mTask iTask imp. decl.
Total 7 6 2 1 2 1

The majority of tiered IoT systems are implemented using a number of different program-
ming languages and paradigms. The components within these systems must have proper imple-
mentation to ensure efficient interoperation. However, tierless IoT implementations are usually
simpler and shorter than the tiered implementations because they use far fewer programming
languages and paradigms. In the Smart Campus Case Study, language is the main factor for
distinguishing embedded DSLs from their host language. As a result, iTask and mTask are con-
sidered distinct from Clean; and to distinguish dialects: so MicroPython is considered distinct
from Python [88].

The tierless implementations use just two conceptually similar DSLs embedded in the same
host language, and a single paradigm (Table 4.3). In contrast, the tiers in PRS and PWS use six
or more very different languages. Both consist of imperative and declarative paradigms.

The use of multiple languages in other typical software systems like web stacks is common.
For example, a recent survey of open source projects reveals that on average at least five dif-
ferent languages are used [94]. However, interoperating components in multiple languages and
paradigms raises a plethora of issues.

Interoperation increases the cognitive load on the developer. The person must simultane-
ously think in multiple languages and paradigms. This is one of the main contributing factors
that can cause semantic friction or impedance mismatch [67]. A simple illustration of this is
that the tiered PRS source code comprises some 38 source and configuration files, whereas the
tierless CRS requires just three files (Table 4.2). The source could be structured as a single file.
However, to enforce separate concerns, there are three modules, one each for SDSs, types, and
control logic [145].

The developer must correctly interoperate the components, e.g. adhere to the API or com-
munication protocols between components. The interoperation often entails additional program-
ming tasks to specify the marshalling or demarshalling data between components. For example,
in the tiered PRS and PWS architectures, JSON is used to serialise and deserialise data strings
from the Python collector component before storing the data in the Redis database (Listing 4.10).
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Listing 4.10: JSON Data marshalling in PRS and PWS: Sensor Node Above, Server Below.

1
2 channel = ’sensor_status.%s.%s’ % (hostname,

3 sensor_types.sensor_type_name(s.sensor_type))

4 self.r.publish(channel, s.SerializeToString())

5
6 (#\dotfill#)

7
8 for message in p.listen():

9 if message[’type’] not in [’message’, ’pmessage’]:

10 continue

11
12 try:

13 status =

collector_pb2.SensorStatus.FromString(message[’data’])

To ensure correctness the developer must maintain type safety across a range of very different
languages and diverse type systems. This is explored further in Section 4.6.6. The developer
must also potentially handle diverse failure modes, not only of each component, but also of their
interoperation. For example, if a value of an unexpected type is passed through an API. This
issue is explored further in Section 4.6.6.

4.6.4 Automatic Communication

In conventional tiered IoT implementations the developer must write and maintain code to com-
municate between tiers. For example PRS and PWS create, send and read MQTT [77] messages
between the Perception and Application Layers. Table 4.2 shows that communication between
these layers require some 94 SLOC in PWS and 98 in PRS, accounting for 17% of the code-
base (bottom bars in Figure 4.9). To demonstrate this, Listing 4.11 shows part of the code to
communicate sensor readings from the PWS sensor node to the Redis store on the server.

In tiered IoT implementations, the developer has to write additional code for communication
because it is an intricate process. For example, in such a distributed system, the sender and
receiver must be correctly configured, correctly follow the communication protocol through all
execution states, and deal with potential failures. For example line 3 of Listing 4.11: redis
host = config.get(’Redis’, ’Host’) will fail if either the host or IP are incorrect.

Listing 4.11: Tiered Communication Example: MQTT Transmission of Sensor Values in PWSS.

1 def main():

2 config.init(’mqtt’)

3 redis_host = config.get(’Redis’, ’Host’)
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4 redis_port = config.getint(’Redis’, ’Port’)

5 r = redis.StrictRedis(host=redis_host, port=redis_port)

6 p = r.pubsub()

7 p.psubscribe("sensor_status.*")

8 for message in p.listen():

9 if message[’type’] not in [’message’, ’pmessage’]:

10 print "Ignoring message %s" % message

11 (#\ldots#)

In contrast, the tierless CWS and CRS communication is both highly automated and au-
tomatically correct because matching sender and receiver code is generated by the compiler.
Table 4.2 shows that communication is specified in just five SLOC in CWS and four in CRS, or
just 3% of the codebase (bottom bars in Figure 4.9).

Listing 4.9 illustrates communication in a tierless IoT language. That is, the CWTS temper-
ature sensor requires just three lines of communication code, and uses just three communication
functions. The withDevice function integrates a sensor node with the server, allowing tasks
to be sent to it. The liftmTask integrates an mTask in the iTask runtime by compiling it and
sending it for interpretation to the sensor node. The liftsds integrates SDSs from iTask into
mTask, allowing mTasks to interact with data from the iTask server. The exchange of data, user
interface, and communication are all automatically generated.

4.6.5 High Level Abstractions

Another reason that the tierless Clean implementations are concise is because powerful higher
order IoT programming abstractions are implemented. To illustrate and provide a better un-
derstanding, the simple temperature sensor from Listing 4.9 is used to compare the expressive
power of Clean and Python-based IoT programming abstractions. There are implementations for
all 4 configurations: PRTS (Python Raspberry Pi Temperature Sensor)2, PWTS (Python Wemos
Temperature Sensor)2 , CRTS3 and CWTS3 but as the programming abstractions are broadly
similar, only the PWTS and CWTS implementations are compared.

Although the temperature sensor applications are small compared to the smart campus ap-
plications, they share some typical IoT stack traits. The architecture consists of a server and a
single sensor node (Figure 4.6). The sensor node measures and reports the temperature every 10
seconds to the server while the server displays the latest temperature via a web interface to the
user.

2Lubbers, M.; Koopman, P.; Ramsingh, A.; Singer, J.; Trinder, P. (2021): Source code, line counts and memory
stats for PRS, PWS, PRT and PWT. Zenodo. 10.5281/zenodo.5081386. NOTE: the dataset will be uploaded, the
DOI is reserved.

3Lubbers, M.; Koopman, P.; Ramsingh, A.; Singer, J.; Trinder, P. (2021): Source code, line counts and memory
stats for CRS, CWS, CRTS and CWTS. Zenodo. 10.5281/zenodo.5040754. NOTE: the dataset will be uploaded,
the DOI is reserved.

https://doi.org/10.5281/zenodo.5081386
https://doi.org/10.5281/zenodo.5040754
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Table 4.4 compares the SLOC required for the MicroPython and CleaniTaskmTask Wemos
temperature sensors: PWTS and CWTS respectively. However, the code sizes for these appli-
cations are not considered in comparing the programming models as implementing such a small
application as a conventional IoT stack requires a significant amount of configuration and other
machinery that would be reused in a larger application. Hence, the ratio between total PWTS
and CWTS code sizes (298:15) is far greater than for realistic applications like PWS and CWS
(471:166).

Table 4.4: Comparing Clean and Python Programming Abstractions Using the PWTS and
CWTS Temperature Sensors (SLOC and Total Number of Files.)

Location Functionality PWTS CWTS
Sensor Node Sensor Interface 14 3

Sensor Node 67 4
Server Web Interface 17 3

Database Interface 106 2
Communication Communication 94 3
Total SLOC 298 15
No. Files 27 1

The multiple tiers in PRS and PWS provide different levels of abstraction and separation of
concerns. However, there are various ways that high-level abstractions make the CWS much
shorter than PRS and PWS implementations.

Firstly, functional programming languages are generally more concise than most other pro-
gramming languages because their powerful abstractions like higher-order and/or polymorphic
functions require less code to describe a computation. Secondly, the TOP paradigm used in
iTask and mTask reduces the code size further by making it easy to specify IoT functional-
ity concisely. As examples, the step combinator >>*. allows the task value on the left-hand
side to be observed until one of the steps is enabled; and the viewSharedInformation
(line 31 of Listing 4.9) part of the UI will be automatically updated when the value of the SDS
changes. Moreover, each SDS provides automatic updates to all coupled SDSs and associated
tasks. Thirdly, the amount of explicit type information is minimised in comparison to other
languages, as much is automatically inferred [63].

4.6.6 Could Tierless IoT Programming Be More Reliable than Tiered?

This section investigates whether tierless languages make IoT programming more reliable. It can
be argued that having a much smaller and simpler code base is inherently more understandable,
and more likely to be correct in order to improve reliability. Here specific language issues are
explored, namely preserving type safety and failure management.
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Type Safety Strong typing is important in the development life cycle of an application because
it identifies errors early, and hence plays a crucial role in improving software quality. As a result,
many modern languages provide strong typing, and encourage static typing to minimise runtime
errors. However, many distributed system components written in languages that primarily use
static typing, like Haskell and Scala, also utilise some dynamic typing, e.g. to ensure that the
data arriving in a message has the anticipated type [38, 53].

In a typical tiered multi-language IoT system the developer must interoperate software in
different languages with very different type systems, and even potentially executing on different
hardware. The challenges of maintaining type safety have long been recognised as a major
component for semantic friction in multi-language systems, e.g. [67].

Even if the different languages used for component interoperation are both strongly typed,
they may attribute, often quite subtly, different types to a value. Type errors like this can lead to
runtime errors, or the application silently reporting erroneous data. Errors such as these can be
hard to troubleshoot. Automatic detection of such errors is sometimes possible, but requires the
use of additional tools like Jinn [42, 75]. This tool is implemented in the Java JVM to check for
any language transition bugs or constraints between Java and C and automatically diagnoses the
problem if any issues are detected [75].

Listing 4.12: PRS loses Type Safety as a Sensor Node sends a double, and the Server stores a
string.

1 message SensorData {

2 enum SensorType { TEMPERATURE = 1; (#\ldots#) }

3 SensorType sensor_type = 1;

4 uint64 timestamp = 2;

5 double float_value = 3;

6 }

7 (#\dotfill#)

8 channel = ’sensor_status.%s.%s’ % (hostname,

9 sensor_types.sensor_type_name(s.sensor_type))

10 self.r.publish(channel, s.SerializeToString())

Analysis of the PRS codebase reveals an instance where it, fairly innocuously, loses type
safety. The fragment in Listing 4.12 first shows a double sensor value being sent from the
sensor node, and then shows the value being stored in Redis as a string on the server. As
PWS consists of similar components, it also suffers from the same loss of type safety.

A tierless language makes guarantees type safety across an entire IoT stack. For example the
Clean compiler guarantees static type safety as the entire CWS software stack is type checked,
and generated, from a single source. Tierless web stack languages like Links [27] and Hop [135]
provide the same guarantee for web stacks.
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Listing 4.13: An mTask Failover Combinator.
1 failover :: [TCPSettings] (Main (MTask BCInterpret a)) � Task

a
2 failover [] _ = throw "Exhausted device pool"
3 failover [d:ds] mtask = try ( withDevice d (liftmTask mtask) )

except
4 where except MTEUnexpectedDisconnect = failover ds mtask
5 except _ = throw e

Failure Management Some IoT applications, including smart campus and other building
monitoring applications, require high sensor uptimes. Hence, if a sensor or sensor node fails
the Application Layer must be notified, so that it can report the failure. In the UoG smart cam-
pus system a building manager is alerted to replace the failed device.

In many IoT architectures, including PRS and PWS, detecting the reason for failure is chal-
lenging because the Application Layer listens to the devices. When a device comes online, it
registered with the application and starts sending data. When a device goes offline again, it could
be because the power was out, the device was broken or the device just paused the connection.

If a sensor node fails in CWS, the iTask/mTask combinator interacting with a sensor node
will throw an iTask exception. The exception is propagated and a handler can respond, e.g.
rescheduling the task on a different device in the room, or requesting that a manager replaces
the device. That is, iTask, uses standard succinct declarative exception handling.

In the UoG smart campus application, this can be done by creating a pool of sensor nodes
for each room and when a sensor node fails, assign another one to the task. Listing 4.13 shows
a failover combinator that executes an mTask on one of a pool of sensor nodes. If a sensor node
unexpectedly disconnects, the next sensor node is tried until there are no sensor nodes left. If
other errors occur they are propagated as usual.

Currently, PRS and PWS both use heartbeats to confirm that the sensor nodes are operational,
and will report failures. However, at the cost of extending the codebase, failover to an alternate
sensor node cannot be provided.

4.6.7 Maintainability

Far more engineering effort is required in maintaining a system, than on the initial development.
Tiered and tierless IoT systems have very different maintainability properties.

The modularity of the tiered stack makes replacing tiers/components easy. For example in
PWS or PRS the MongoDB NoSQL DBMS could readily be replaced by an alternative like
CouchDB. However, this is more difficult for the tierless CWS and CRS. A tierless compiler
must generate code for components and replacing them may not be so easy.

If there are iTask abstractions for the component then replacement is straightforward. For
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example replacing SQLite with some other SQL DBMS simply involves having to recompile the
application. However incorporating a component that does not yet have a task abstraction, like
a NoSQL DBMS, is more involved. That is, a foreign function interface to the new component
must be implemented, along with a suitable iTask abstraction for operations on the component.

However, many maintenance tasks in tierless applications are smaller in scale and occur
within the components or tiers. Consider a simple change, for example if the temperature value
recorded by a sensor changes from integer to real. All tiers of a tiered stack must be correctly
and consistently refactored to reflect the change of temperature data type: so changes at the
Perception, Network, Application and Presentation Layers. A PWS developer works in seven
languages and two paradigms to effect the change (Table 4.2), and must edit many source files.
Many programming errors are either detected at runtime when testing the stack, or worse not
automatically detected and produce erroneous results.

In a tierless language the source code is much smaller and so it is easier to comprehend, i.e.
to understand what refactoring is required. A CWS developer works in only two languages and
a single paradigm to effect the change, and will edit no more than three source files (Table 4.2).
Moreover, the compiler will statically detect many programming errors.

More substantial in-component maintenance raises similar issues as for tiered implementa-
tions. If the maintenance activity requires a new task combinator, this is readily constructed in
iTask, but may require changing the DSL implementation in mTask, i.e. to change the compiler
and the bytecode interpreter. That is, mTask is more brittle than iTask. In summary, while
a tiered approach makes replacing components easy, refactoring within the components is far
harder in a multi-tier multi-language IoT implementations than in a tierless IoT implementation.

4.6.8 Support

Community and tool support are essential for engineering reliable production software. PRS and
PWS are both Python based, and Python/MicroPython are among the most popular program-
ming languages [21]. Python is also a common choice for some tiers of IoT applications [151].
Hence, there are a wide range of development tools like IDEs and debuggers, a thriving com-
munity and a wealth of training material. There are even specialised IoT Boards like PyBoard
& WiPy that are specifically programmed using Python variations like MicroPython.

In contrast, tierless languages are far less mature than the languages used in tiered stacks,
and far less widely adopted. This means that for CWS and CRS there are fewer tools, a far
smaller developer community, and less training material available.

CWS and CRS are both written in DSLs embedded in Clean, a fairly stable industrial-grade
but niche functional programming language. The DSLs are implemented in Clean but require
experimental compiler extensions that are often undocumented. There are few maintainers of
the DSLs and documentation is often sparse. Acquiring information about the systems requires
distilling academic papers and referring to the source code. There is a Clean IDE, but it does not
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contain support for the iTask or mTask DSLs.

4.6.9 Evaluation Summary & Reflection

Summary The key findings from this evaluation are as follows. (1) Tierless developers do
indeed manage less interoperation: CRS uses a single DSL and paradigm, and CWS uses two
DSLs in a single paradigm and three source code files. In contrast, both PRS and PWS use at
least six languages in two paradigms and spread over at least 35 source code files (Tables 4.2
and 4.3). (2) A tierless stack provides improved reliability as it minimises semantic friction.
(3) Tierless developers benefit from automatically generated, and hence correct, communication
(Listing 4.9), and write a sixth of the amount of communication code (Figure 4.9). (4) The
tierless implementations have very similar code sizes (SLOC), as do the tiered implementations:
less than 7% difference in Table 4.2. This suggests that the development and maintenance efforts
of simple tierless IoT systems for resource-constrained and for resource-rich sensor nodes are
similar, as it is for tiered technologies.

Reflection This study has investigated some of the potential benefits of tierless languages for
IoT systems. An IoT system implemented with a single tierless program is amenable to a host
of programming language technologies. For example, if the language has a formal semantics, as
Links, Hop and Clean tasks do, it is possible to prove properties of the system, e.g. [27,117,135].

However, tierless languages do have some challenges. There is a learning curve as program-
mers must master new tierless programming abstractions. Furthermore, the semantics of these
automatic multi-tier behaviours are necessarily relatively complex. For example, in Clean, this
entails becoming proficient with the iTask and mTask DSLs.

Moreover, specifying a behaviour that is not already provided by the tierless language re-
quires either a workaround, or extending a DSL. However, implementing the relatively simple
smart campus application required no such adaption. Above all else, tierless IoT technology is
very new. The tools and community support have yet to mature when compared to mainstream
programming languages used in tiered software stack implementation.

4.7 Chapter Summary

This chapter reports the first comparison of interoperation in tiered and tierless IoT stacks

through the systematic evaluation of four implementations of the prototype UoG smart campus

IoT system: two tierless and two Python-based tiered. The two tiered Python implementations
are (PRS & PWS). The tierless implementations are Clean tierless (CRS & CWS). They are
all operationally equivalent and meet the the UoG smart campus functional requirements (Sec-
tion 4.5.2).
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It is shown that tierless languages have the potential to significantly reduce the development

effort for IoT systems (Section 4.6.1). Analysis of the code reduction reveals the following. (1)
Tierless developers manage less interoperation. (2) Tierless developers benefit from automati-
cally generated, and hence correct, communication. (3) Tierless developers can exploit powerful
high-level declarative and task-oriented IoT programming abstractions.

Furthermore, it is also shown that tierless languages have the potential to significantly im-

prove the reliability of IoT systems (Section 4.6.6). However, maintainability efforts in a tiered
and tierless approach are similar (Section 4.6.7) while there is more community support for
mainstream tier based programming languages (Section 4.6.8).

While offering real benefits for IoT systems development, tierless languages also raise some
challenges. Programmers must master new tierless programming abstractions, and the seman-
tics of these automatic multi-tier behaviours are necessarily relatively complex. In the Clean
context this entails becoming proficient with the iTask and mTask DSLs. Moreover, specifying
a behaviour that is not already provided by the tierless language requires either a workaround,
or extending a DSL. However, implementing the relatively simple smart campus application
required no such adaption. Finally, tierless IoT technology is very new, and both tool and com-
munity support have yet to mature.



Chapter 5

Could Eliminating Tiers Improve
Interoperation?

Web applications are structured as distributed multi-tier stacks of components. Each component
may be written in a different language, hosted in its own node and interoperate using a variety of
protocols. Such interoperation increases developer effort, may reduce performance and requires
additional resources. A range of approaches have been explored to improve interoperation but
challenges still remain.

This chapter explores a pragmatic approach to improve interoperation in distributed multi-
tier software stacks. The technique involves eliminating a component. Specifically, an evalua-
tion is conducted to explore the implications of eliminating the Apache web server tier in a 4-tier
Jupyter Notebook web stack (JAPyL) and replacing it with PHP libraries within the webpage
component. The study systematically investigates the implications for web stack performance,
resource consumption and programming effort.

Section 5.1 justifies why the tier elimination approach is necessary. Section 5.2 describes the
theory of how tier elimination works. Section 5.3 discusses how 3-tier JPL was implemented.
Section 5.4 compares interoperation in 3-tier JPL to 4-tier JAPyL. Section 5.5 summarises the
findings from the evaluations and what generalisations can be made. Finally, Section 5.6 sum-
marises the entire chapter.

5.1 Motivation

A range of approaches have been used to improve interoperation in web stacks. Some stacks
focus on a single language, e.g. MEAN focuses on Javascript (Section 2.4.1). Other stacks use
a common VM to minimise the interoperation overheads between languages, e.g. the .NET
framework uses the Common Language Runtime (CLR) (Section 2.4.1). Sometimes web stack
languages are combined, e.g. PyHyp combines Python and PHP [11]. The most radical ap-
proach is to combine all web stack languages into a single tierless language like Links or Hop

90
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(Section 2.4.3).
However, these techniques do not entirely eliminate all factors responsible for interoperabil-

ity challenges in multi-tier software stacks. For example, alternate solutions like the MEAN web
stack and chained microservices are still prone to tight coupling that causes catastrophic failure
discussed in Sections 2.4.1, 3.9.4 & 2.3.2.

Tierless languages like iTasks and mTasks in Sections 4.4 do indeed improve interoperation.
They reduce the polyglot of languages when compared to tiered implementations like PRS &
PWS. However, they are a new technology. Developers must effectively still use sophisticated
language technologies like Clean iTask and mTask DSLs in order to implement these software
stacks. In addition, there are a few instances where tierless languages require more developer
effort when compared to mainstream programming languages discussed in Section 2.4.3 & Ap-
pendix B.2.

An alternative approach for improving interoperation is to eliminate one of the tiers in a
distributed multi-tier software stack. Here, a component is eliminated and its functionality inte-
grated into another existing component.

5.2 The Theory of Tier Elimination

5.2.1 Component Modularity

Modularity facilitates a top down approach in organising components in a distributed multi-tier
software stack [61]. For example, in JAPyL (Figure 1.4), neither the webpage component nor the
Jupyter Server can directly access each other to make Jupyter Notebooks accessbile online. The
Apache web server is needed to facilitate communication between the components through the
implementation of the reverse proxy shown in Appendix A.1. All components in the stack have
a specific functionality and must work in sync with one another to achieve the overall business
function [93].

However, this leads to tight coupling as discussed in Sections 2.3.2 & 3.2.1. In JAPyL,
both the webpage and Jupyter components are highly dependent on the Apache web server for
communication and marshalling of data to each other. If the operations of the Apache component
is interrupted, communication between the other two components will be interrupted and can
lead to catastrophic failure as discussed in Section 3.1.

5.2.2 Tier Elimination

To improve interoperation in distributed multi-tier software stacks, a proposed solution is to
eliminate a tier and violate the principle of modularity discussed in Section 5.2. The number of
interoperating components and tiers will be reduced and functionality of the eliminated compo-
nent/tier will then be integrated within another existing tier [124].
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Tier elimination leads to some integration of the functionalities between the client and server.
Some of the server functionalities like Business Logic processing are embedded within the client
in the Presentation Layer. However, there is still a distinct server side for functionalities like Data
Access Layer as discussed in Section 5.3. This creates a new variation of the n-tier architecture
shown in Figure 5.1.

Figure 5.1: n-Tier Architecture Variation

Each tier in the new n-tier variation can still be hosted using either a single node (single tier
distributed architecture) or two nodes (two tier distributed architecture) [93]. However, it is not
possible to host each tier in its own node like the n-tier architecture as discussed in Section 1.1.2.
The reason is that the Business Logic Layer is now integrated into the Presentation Layer [124].

5.3 Case Study

5.3.1 Tier Elimination in JPL

To investigate the tier elimination approach, a Jupyter, PHP & Linux (JPL) web stack is im-
plemented shown in Figure 5.2. It eliminates the Apache component and carefully replicates
the web services and security mechanisms of JAPyL within the webpage component using PHP
libraries shown in Figure 5.2. Its architecture is based on the modified version of the n-tier
architecture shown in Figure 5.1 and discussed in Section 5.2.2.

This approach is similar to JPyL where the Apache component is replaced with Flask mi-
croservices shown in Figures 3.2 & 3.3. However, JPL goes one step further. Instead of just
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replacing the Apache component with PHP libraries, the web tier is actually eliminated and
integrated within the webpage component shown in Figure 5.2.

Figure 5.2: 3-Tier JPL Architecture

5.3.2 Implementing Server Requests in the Webpage

Usually in web stacks like JAPyL, the purpose of the webpage component is to act as the client
interface for user interaction. However, in JPL, this component now has multiple functionalities.
It must now display Jupyter Notebook content, accept client side requests, act as a reverse proxy,
process business logic requests and marshall data to and from the Jupyter server [124].

There is a slight blurring of the boundary between the client and server tiers. However,
there is still a distinct server side tier present. The Jupyter Server is still a separate component
processing server side logic [124].

Server request processing in the webpage component occurs through the use of ReactPHP.
This is a low level library that adds features to the PHP programming language like stream
abstractions, async DNS resolver and HTTP/HTTPS client/server interaction processes [124].
Listing 5.1 shows a code snippet of how the webpage component processes HTTPS requests
using ReactPHP.

Listing 5.1: Processing HTTPS Requests via the Webpage Component in JPL

1
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2 <?php

3
4 $socket = new

\React\Socket\Server(’tls://192.168.43.135:10125’, $loop,

array(

5 ’tls’ => array(

6 ’local_cert’ => ’servercert.crt’,

7 ’local_pk’ => ’mykey.key’,

8 ’verify_peer’ => false,

9 ’verify_peer_name’ => false

10 )

11 ));

12
13 $server->listen($socket);

14
15 echo ’Listening on ’ . str_replace(’tls:’, ’https:’,

$socket->getAddress()) . PHP_EOL;

16 $loop->run();

17
18 ?>

5.3.3 Additional Functionalities

There are some functionalities that are not available in the ReactPHP library especially security
features like whitelisting/blacklisting that are provided by the Apache component shown in Fig-
ure 3.2. These features are hand-coded into the webpage component using PHP shown in the
code snippet in Listing 5.2.

Listing 5.2: Blacklisting IPs via the Webpage Component in JPL

1
2 <?php

3
4 $deny = array("192.168.43.20", "192.168.43.60",

"192.168.43.75");

5 if (in array ($_SERVER[’REMOTE_ADDR’], $deny)) {

6 header("location: https://192.168.43.125:10125/");

7 exit();

8
9 }
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10
11 ?>

5.3.4 Why PHP?

The rationale for using PHP to eliminate a web component is twofold. (1) It is one of the
most popular and mature web programming technologies. (2) It offers a range of technical
benefits [23, 147], as follows:

(1) PHP provides simple parsing and marshalling, e.g. parsing JSON and XML with a single
line of code.

(2) PHP supports multiple major databases including MySQL, dBase, IBM DB2, InterBase,
FrontBase, ODBC, PostgreSQL, SQLite, etc.

(3) PHP supports a range of frameworks like CakePHP, CodeIgniter, Zend, Larvarel that not
only make development faster but also provide flexible coding styles and interfaces for
programmers.

(4) PHP performance as a server side scripting language is comparable to C and exceeds Java.

For this study, the most significant benefit of PHP is that it features almost similar syntax
and modules as Python shown in Table 5.1. Both languages have been combined into a new
language called PyHyp as discussed in Section 2.4. Languages that are very similar interoperate
with less semantic friction [11].

Feature PHP Python
Class Creation Yes Yes
Encapsulation Yes Yes
Functions Yes Yes
Immutable Data Yes Yes
Inheritance Yes Yes
Object Creation Yes Yes
Polymorphism Yes Yes
Shared State Yes Yes
Shared Memory Yes Yes

Table 5.1: Feature Similarities Between PHP & Python
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5.4 Evaluation

5.4.1 Experiment Design

To evaluate the impact of tier elimination, the programmability and performance of JPL is com-
pared with that of JAPyL on two platforms: Docker and the native RaspberryPi 3. While Jupyter
stacks are mostly deployed in virtualized environments like Docker [172], it is far easier to ob-
tain accurate core and memory resource measurements on the Raspberry Pi. Where possible, the
components used in the JAPyL and JPL stacks are identical as follows: Docker 18.09, Raspbian
Stretch, Jupyter Server 5.7.8, Ubuntu 16.04. JAPyL uses Apache Server 2.4.34, and JPL Re-
actPHP 0.8.4. Experiments for the Docker platforms are conducted on an Intel Core i3 system,
Windows 10 Operating System with 2.23GHz and 8GB of RAM.

Two existing Jupyter Notebooks not written by the authors are downloaded from GitHub.
They are selected to be well designed [132], i.e. to have a notebook title & introduction, de-
scriptions of the model parameters, and of the data parameters, and to import packages. The
notebooks are simply loaded by the JAPyL and JPL stacks.

To minimise variability, the reported results are the median of three consecutive benchmark
executions.

5.4.2 Programmability

Code Size Code size is widely recognised as a measure of developer effort and of maintainabil-
ity as discussed in Section 4.6.1. Table 5.2 enumerates the lines of code required to implement
the functionalities of the JAPyL and JPL stacks. Implementing the JPL web stack requires 267
fewer lines of code, or 42% less code. This is to be expected because there are fewer tiers and
languages to be implemented (Table 5.3).

Table 5.2: Lines of Code (LOC)
Functionality JAPyL JPL

Embed Notebook 10 36
Host Webpage 29 26
Reverse Proxy 33 23

Security Configs 21 31
Language Processing 527 63

Messaging 11 85
Total 631 364

Language Implementation Many distributed multi-tier software stacks consist of a polyglot
languages as discussed in Sections 2.3.2, 2.4 & 4.6.1. However, the main reason for a smaller
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Table 5.3: Programming Language Implementation
Functionality JAPyL JPL

Embed Notebook HTML HTML
Host Webpage Apache Configs PHP
Reverse Proxy Apache Configs PHP

Security Settings Apache Configs PHP
Language Processing Python PHP

Messaging JSON PHP
Total 4 2

code size in JPL is that it utilises fewer programming languages and paradigms. JAPyL requires
four languages for complete implementation whereas JPL requires only two shown in Table 5.3.

Code Complexity With fewer tiers the JPL developer writes less code, but how complex is
the code? This is dependent on how many paradigms the programmer must use and how many
control flows must be managed [137].

The expectation is that since JPL uses fewer programming languages than JAPyL in imple-
mentation, the code complexity will be less. However, the evaluation reveals that the structural
code complexity needed to interoperate the components and PHP language in JPL is slightly
higher when compared to JAPyL based on Cyclomatic Complexity shown in Table 5.4.

Table 5.4: Cyclomatic Complexity (cc)
Functionality JAPyL JPL

Embed Notebook 1 1
Host Webpage 1 1
Reverse Proxy 1 1

Security Configs 1 5
Language Processing 13 1

Messaging 2 12
Total 19 21

A higher complexity number means that the programmer may have to deal with more con-
trol paths in the JPL code. Higher complexity leads to a decrease in abstraction because more
programming effort is now required to achieve a particular functionality in the system [22].

5.4.3 Abstraction

As discussed in Section 5.3.3, both stacks feature a Defense-in-Depth multi-layered security
approach (Figure 2.4). That is, various security mechanisms are deployed throughout the stack.
The intention is that if an attacker targets the Jupyter Notebook online and is able to penetrate
one layer, another layer may thwart the attack as discussed in Section 2.1.3.
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In JAPyL, the security mechanisms are typically declaratively specified in either the Jupyter
Server or Apache. Often security features are implemented as runtime parameters. Appendix B.1
provides examples of some of the declarative security mechanisms implemented in JAPyL.

It is commonly believed that such declarative specifications in some domain-specific lan-
guage like HTML, XML, or Apache Configs makes things easier for the developer by raising
the level of abstraction [85]. However the developer must be fluent in a range of languages
shown in Table 5.2. In JAPyL these are (1) Jupyter Configurations (2) Jupyter Notebook In-
teroperability Techniques i.e. Kernel, Subkernel & Magic Implementations (3) Several different
languages including JSON, Apache Configs, etc [99].

In contrast, much of the security implementations for JPL are imperative and hand coded as
shown in Table 5.5. That is, only PHP was written to perform the necessary configurations as
demonstrated by the examples in Table 5.5.

Table 5.5: JAPyL vs JPL Security Implementations
Functionality JAPyL JPL

Password Encryption Command Line Command Line
Port Spoofing Hand Coded Hand Coded

SSL Encryption Apache Configs Hand Coded
IP Whitelisting Apache Configs Hand Coded
IP Blacklisting Apache Configs Hand Coded

Security Headers Apache Configs Automated

Using an imperative paradigm means that the level of abstraction has decreased compared
with JAPyL. However the developer has the expressiveness to implement the necessary func-
tionalities, and can potentially implement features not supported by the JAPyL DSLs [40].

5.4.4 Performance: Latency and Throughput

Given the reduced number of tiers in JPL compared with JAPyL and that PHP is similar to
Python as shown in Table 5.1, it is reasonable to expect JPL to outperform JAPyL. However,
this is not the case.

Figures 5.3 & 5.4 show the request latencies of JAPyL and JPL as the number of concurrent
connections varies from 100 to 1000 on all platforms. Contrary to expectations both figures
show that JPL latency is nearly two or three times greater than JAPyL.

Figures 5.5 & 5.6 show the request throughput of JAPyL and JPL for 100 concurrent users.
It confounds expectations by revealing that JPL throughput is at least one to two orders of
magnitude lower than for JAPyL. This is a result of the relatively poor thread management in
the PHP React library.

Realistically, despite the advances made by PHP in terms of concurrency, the language it-
self is still naturally not quite oriented towards multi-threading. The ReactPHP library sup-
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Figure 5.3: JAPyL vs JPL Latency (RaspberryPi)

ports multi-threading to some degree by allowing a limited number of non-blocking I/O oper-
ations [124]. However, this cannot compare to Apache that has several sub-processes running
in parallel one for each request, up to a couple of dozens or hundreds, depending on the con-
figuration [78]. Simply, Apache is built for concurrency, parallelism and to utilise multicore
systems.

5.4.5 Resource Usage: Core Utilization, Memory Overhead

As the JPL stack eliminates Apache and runs fewer components it is reasonable to expect JPL
to consume less resource than JAPyL. Figure 5.7 shows the CPU utilisation of JAPyL and JPL
as they process HTTPS requests with 100 concurrent connections on the Raspberry Pi platform.
Again, contrary to expectation JPL utilisation is typically 20% greater than JAPyL.

A possible explanation for this is memory leaks. This refers to a situation where memory is
not deallocated after program execution [44]. The amount of memory utilised by the application
will continue to slowly increase over time. In PHP, there is some that just cannot be freed up on
a regular basis due to its reliance on reference counting to manage memory [80].

Garbage collection is utilised to pick up the pieces that the reference counter misses. How-
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Figure 5.4: JAPyL vs JPL Latency (Docker)

ever, in PHP, several factors can prevent the efficient freeing up of memory resources. For
example, if an object’s refcount increases and never decreases, then the object is still technically
in use and is not garbage. The garbage collector, therefore, cannot identify it as such and will
not free up the object [147].

5.5 Evaluation Summary & Reflection

Summary This evaluation explores whether reducing the number of tiers/components im-
proves interoperability. This is done by systematically comparing the 4-tier JAPyL and 3-tier
JPL web stacks (Section 5.3). The key findings from our case study are as follows.

Through the elimination of the Apache component, less developer effort is required. JPL
requires 42% less lines of code (Table 5.2) and fewer languages for implementation (Table 5.3).
Furthermore, the level of abstraction at the upper levels of the stack has decreased in JPL but the
developer is able to automate certain functionalities like security headers (5.4.3).

However, the complexity (Table 5.4) for implementation is greater. The primary reason is
that there is more handwritten code in JPL, e.g. for security (Section 5.3). This decreases the
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Figure 5.5: JAPyL vs JPL Throughput (RaspberryPi)

level of abstraction in JPL when compared to JAPyL.
Eliminating the Apache component, and associated interoperation, in JPL and replacing

it with a PHP threaded library increases latency (Figures 5.3 & 5.4) and reduces throughput
(Figure 5.5 & 5.6). This reflects that the Apache thread management is far superior to that
provided by the PHP React library (Section 5.4.4).

Despite replacing Apache, JPL consumes more resources. JPL uses 20% more cpu resources
(Figures 5.7). It is possible that this is a result of memory leaks in PHP.

Generalisation Based on the evaluation, the tier elimination technique in a multi-tier software
stack will improve interoperation to some degree. Similar to the evaluation of tierless iTasks/m-
Tasks in Chapter 4, there will be a reduction in the number of polyglot languages required for
implementation. This can have significant benefits. There will be (1) Reduced developer ef-
fort as less source lines of code (SLOC) are required for implementation of the stack. (2) Less
programming languages and paradigms will lead to less chances of semantic friction occurring
that improves reliability. (3) Programmers have the ability to automate certain functionalities at
the upper levels of the stack due to decreased abstraction. However, the issues or performance,
resource consumption and code complexity are even more profound.
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Figure 5.6: JAPyL vs JPL Throughput (Docker)

Reflection It is possible that substituting Apache with PHP is a poor decision. Using a lan-
guage with better memory management and support for multi-threading, like Erlang or Go,
could possibly better meet these expectations.

Furthermore, just because a system or application has fewer components or layers does not
usually make it simpler or less complex. You still have to take into account the processes and
behaviour interactions that may be impacted as well as the compatibility factor between system
components and languages.

5.6 Chapter Summary

This chapter explores whether eliminating a tier/component improves interoperability in dis-
tributed multi-tier software stacks. This is accomplished through eliminating a tier/component
and integrating its functionality into another existing tier.

To illustrate this technique, the Apache web component in 4-tier JAPyL is eliminated. The
functionalities of this component are then carefully replicated utilising the ReactPHP code li-
brary within the webpage component to form 3-tier JPL. This results in the webpage component
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Figure 5.7: JAPyL vs JPL CPU Resource Utilisation (RaspberryPi)

now having to perform both client side and some server side functionalities.
Evaluations show that eliminating a tier within JPL does improve interoperability to some

degree. There is a reduction in the number of programming languages and paradigms utilised
that results in a smaller code size when compared to JAPyL. This can lead to improved reliability
as there is less semantic friction. However, the issues of performance, resource consumption and
code complexity are increased. These issues may be a result of the poor decision to use PHP
threaded libraries as the programming language of choice.



Chapter 6

Conclusion

The aim of this thesis is to investigate techniques to improve heterogeneous interoperability in
multi-tier software stacks. It investigates common approaches like microservices and tierless
languages. These techniques are shown to improve interoperation to some degree but challenges
still remain. Thus, an alternative approach involving the elimination of a tier/component is
evaluated as a potential solution to solving the challenges of heterogeneous interoperability.

6.1 Summary

Chapter 2 provides background information on the different forms of interoperability and
how they relate to heterogeneous interoperability in distributed multi-tier software stacks (Sec-
tion 2.3). It is shown that the interoperation challenges are similar for both Web & IoT software
stacks and that many of the problems are attributed to tight coupling and multi-language inte-
gration (Section 2.3.2).

These two factors can lead to several interoperability challenges including the following:

(1) Interoperating components in multiple languages and paradigms increases developer cog-
nitive load since they must simultaneously reason in multiple languages and paradigms.

(2) There must be correct interoperation of components, e.g. adherence to the API or com-
munication protocols between components.

(3) Interoperation between different components can lead to diverse modes of failure as each
component can fail in unique ways.

Several attempts have been made to improve interoperation in distributed multi-tier soft-
ware stack. These include the utilisation of techniques like reducing the number of languages
implemented in distributed software stacks (Section 2.4.1), introducing notebook programming
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(Section 2.1.2), browser compilation (Section 2.4.1), combining programming languages (Sec-
tion 2.4.1) microservices implementation (Section 2.4.2) and using tierless languages (Sec-
tion 2.4.3). Each technique improves interoperability to some degree but does not solve all
interoperation challenges.

Chapter 3 investigates whether microservices are able to improve interoperation as they pro-
vide improved reliability due to the loose coupling of services (Section 3.3). Some simple ex-
periments show that this notion is accurate. Component based stacks like JAPyL and WordPress
fail catastrophically. In contrast, the individual microservices in the JPyL microlith architecture
prevents catastrophic failure (Section 3.3.2).

Microservices are commonly classified based on the properties of dependence or state (Sec-
tion 3.6). A binary reliability classification is added and combined with the other classifications
to define a three dimensional space: the MDSR Classification in Figure 3.12 (Section 3.8). Us-
ing three established web applications (Section 3.5), it is shown that microservices exemplify
the six MDSR classes (Tables 3.4 & 3.5). A prototype static analyser that can statically identify
all six classes in Flask web applications is outlined and applied to seven small web applications
(Section 3.8.6). Analysing the applications reveals that the majority of services are chained
(70%), stateful (73%) and critical (77%) (Table 3.6). It is speculated that the high percentage of
critical services indicates that these applications are not designed for reliability.

The reliability implications of the different MDSR classes were evaluated by running the
case study applications against a fault injector to show the following. (1) All applications fail
catastrophically if a critical microservice fails (Section 3.9.2). (2) Applications survive the fail-
ure of individual minor microservice(s) (Section 3.9.3. (3) The failure of any chain of microser-
vices in JPyL & Hipster is catastrophic (Section 3.9.5). (4) Individual microservices do not
necessarily have minor reliability implications (Section 3.9.5).

Chapter 4 reports the first comparison of interoperation in tiered and tierless IoT stacks
through the systematic evaluation of four implementations of the prototype UoG smart cam-
pus IoT system: two tierless (CRS & CWS) and two Python-based tiered (PRS & PWS). It
shows that tierless languages offer real benefits for IoT development.

Analysis of the implemented code base reveals the following (Section 4.6.1). (1) Tierless
developers manage less interoperation. (2) Tierless developers benefit from automatically gen-
erated, and hence correct, communication. (3) Tierless developers can exploit powerful high-
level declarative and task-oriented IoT programming abstractions. Indeed, tierless developers
do manage less interoperation: CRS uses a single DSL and paradigm, and CWS uses 2 DSLs
in a single paradigm and 3 source code files. In contrast, both PRS and PWS use at least 6 lan-
guages in 2 paradigms and spread over at least 35 source code files (Tables 4.2 and 4.3). Also,
developers write a sixth of the amount of communication code (Figure 4.9). The added benefit
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of reduced developer effort, code and paradigms for interoperation is that there is less semantic
friction that will improve reliability (Section 4.6.6).

However, there are some challenges for interoperation with tierless languages especially in
IoT stacks. Maintainability efforts in a tiered and tierless approach are similar (Section 4.6.7)
while there is more community support for mainstream tier based programming languages (Sec-
tion 4.6.8). Furthermore, tierless programmers must master new tierless programming abstrac-
tions, and the semantics of these automatic multi-tier behaviours are necessarily relatively com-
plex.

Chapter 5 explores a pragmatic approach to reducing interoperation in distributed multi-tier
software stacks, namely eliminating a tier/component. It reports the implications of eliminating
the Apache web server in a JAPyL web stack: Jupyter Notebook, Apache, Python, Linux, and
replacing it with PHP libraries to form a new stack referred to as JPL (Section 5.3).

It shows that eliminating the Apache component, and associated interoperation, in JPL and
replacing it with a PHP threaded library increases latency (Figures 5.4 & 5.3) and reduces
throughput (Figures 5.6 & 5.5). This is to be expected since Apache thread management op-
timization is far superior to that provided by the PHP React library (Section 5.4.4). Further-
more, despite replacing Apache, JPL consumes more resources. JPL uses 30% more core cycles
(Figure 5.7).

In terms of programmability, the structural code complexity needed to interoperate the com-
ponents and PHP language in JPL is slightly higher when compared to JAPyL based on Cy-
clomatic Complexity. Table 5.4 shows that JAPyL has a rating of 19 when compared to 21 in
JPL. This means that the code in JPL has more control flows that have to be managed. There is
also a decrease in abstraction at the higher levels of the stack due to the removal of the Apache
component (Section 5.4.3).

However, implementing the JPL web stack requires 267 fewer lines of code, or 42% less code
(Section 5.4.2). This is to be expected because there are fewer languages and paradigms to be
implemented as shown in Table 2.1. JAPyL utilises 3 programming languages compared to 2 in
JPL. Moreover, even though the abstraction levels have decreased in the upper levels of the stack
in JPL, hand-written PHP code in JPL can provide additional capabilities, e.g. automating the
handling of security headers (Section 5.4.3). Thus, interoperation is improved to some degree
because there is less developer effort for stack implementation and there is reduced chances of
semantic friction that improves reliability.
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6.2 Tradeoffs/Limitations

6.2.1 Interoperability

Maintaining correct and secure interoperation in distributed multi-tier software stacks remains a
significant challenge. In 2004, after integrating and upgrading components, PayPal experienced
periodic outages for almost five consecutive days. One of the major reasons for this was a result
of integration errors and incompatibility of some third party components [84].

In 2013, Spotify online platform suffered from a cascade of failures while Twilio billing ser-
vice platform malfunctioned because it kept on repeatedly billing customers for ten consecutive
hours. Even though the service failures for both platforms were different, both were a result of
a malfunctioning chained microservice that affected other services [60].

Telecom company TalkTalk suffered a major breach attack in 2015 that resulted in personal
information of its customers being stolen. The breach was a result of a database component be-
ing vulnerable to a SQL Injection attack that occurred through one of the Webpage components
of the company’s platform [118].

Unfortunately interoperability challenges are only likely to get worse as applications in the
Web & IoT domains are becoming even more complex. There is an ever increasing demand
for more interactive features, collaboration between different clients, communication with cloud
technologies and support for offline functionalities [114]. Developers have to find innovative
techniques to ensure seamless interoperation of the different tiers in these distributed multi-tier
software stacks. For example, uMiddle is a distributed middleware framework that utilises map-
pers, translators and agnostic platform protocols for components from different applications to
communicate with one another [15]. However, this increasing demand is making the challenges
of interoperation in distributed multi-tier software stacks even more complex.

Heterogeneity A key requirement of many distributed multi-tier software stacks is that differ-
ent components must interoperate (Section 1.2). Now, this challenge is being multiplied as the
stacks become even more complex. For example, ensuring that IoT applications can commu-
nicate with cloud technologies typically entails combining different remote method invocation
protocols, messaging protocols and software bridges [16].

Performance Heterogeneity will continue to impact the performance of the stack. Inter-
process communication is typically slower than a function call as data must be marshalled for
communication between languages and components [11,82]. This trend continues even in more
modern techniques for improving interoperability. For example, the Starlink framework gener-
ates runtime interoperability logic to create agnostic protocols to ensure communication between
different components on different platforms [16]. However, there is a performance overhead. It
takes six times longer for data to be marshalled and understood by different components when
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compared to systems that interoperate using similar component specs [16].

Security Exposing APIs for interoperation makes stacks vulnerable to security attacks. For
example, the components in web stacks like LAMP have left web applications vulnerable to
attacks like SQL Injection, Cross Site Scripting (XSS) and Clickjacking. These are usually
result of a combination of unpatched servers, poor coding habits or a lack of proper validation
or sanitization in frontend user components [74].

This makes securing component based IoT stacks even more challenging. The increasing
complexity of the stack multiplies the number of security challenges. Security architects have to
categorise vulnerabilities based on each tier of the stack as well as consider the characteristics
of a particular IoT environment. For example, they may have to consider what type of sensors
are being used or what type of protocols are being implemented for a particular application [76].

Team Development This research focused on how interoperability affects the full stack de-
veloper (Section 2.3.2). However, in large organisations, there are teams of developers that
implement and maintain large scale distributed multi-tier software stacks. Distinct development
teams tend to implement different tiers or components in parallel [98]. There are many studies in
the literature that focus on how team development affects interoperability and influences the use
of certain interoperability techniques. For example, at Netflix, cross functional teams are cre-
ated to implement and maintain each individual microservice in a platform [98]. The tradeoffs
of such an approach is beyond the scope of this research.

6.2.2 Microservices

Microservices architectures are based on the idea of self containment. Every service is loosely
coupled and independently deployable as discussed in Section 2.4.2. However, Chapter 3 shows
that there are different types of microservices like chained microservices and that some are
poorly implemented and prone to catastrophic failure.

Even if the microservices architecture is implemented with the appropriate principles and
patterns the technique has certain limitations. There are some microservices that remain critical
to the core functionality of the system. For example, if a service that handles credit card pay-
ments in an e-commerce fails, the acceptance of payments for the business is not possible. In an
IoT application, if a service that handles the transfer of data from the sensors to the data store
fails, the application cannot collect data. Hence we find that even individual microservices may
be critical as discussed in Section 3.8.5.

Additionally, developers tend to implement an increasing number of microservices in an
application as it expands [2]. This is not always a good practice as it can lead to more critical as
well as chained microservices. There are some studies that suggest that increasing the number
of microservices in an application will make it more fault prone like [95]. Table 3.3 refers
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to this practice as the Microservices Greedy bad smell. However, increasing the number of
microservices in an application does improve scalability.

New instances of a service can be launched to split the load on the system to enhance per-
formance [43]. There are, however, limits. For example, one study by [43] shows that gradually
increasing the number of instances of a microservice in the cloud improves the throughput of
the application over time. However, after over one hundred instances of the microservice has
been implemented, throughput no longer improves. This is referred to as microservices tails-of-
scale [43].

6.2.3 Tierless Languages

Tierless languages are an emerging technique especially in the IoT domain to reduce interopera-
tion complexity. This research extensively shows the benefits and potential of tierless languages
in the IoT domain. There is further evidence with established languages like Erlang or Elixir
being utilised to engineer IoT systems in production environments as discussed in Section 2.4.3.
However, tierless languages are not a panacea.

While offering real benefits for IoT systems development, tierless languages also raise some
challenges. Programmers must master new tierless programming abstractions, and the seman-
tics of these automatic multi-tier behaviours are necessarily relatively complex. In the Clean
context this entails becoming proficient with the iTask and mTask DSLs. Moreover, specifying
a behaviour that is not already provided by the tierless language requires either a workaround,
or extending a DSL. However, implementing the relatively simple smart campus application
required no such adaption. Finally, tierless IoT technology is very new, and both tool and com-
munity support have yet to mature [88].

Tierless languages often require the development of novel and esoteric domain specific
languages (DSLs) and Chapter 4 uses iTasks and mTasks DSLs. They are both written in
DSLs embedded in Clean, a fairly stable industrial-grade but niche functional programming
language [88].

Currently many tierless languages are research languages. In such languages there is lim-
ited documentation, training materials, and a very small team developing/maintaining the lan-
guage [88]. Of the technologies used in Chapter 4, while iTasks is industrial grade and far better
documented and maintained, mTasks is a research DSL, so lacks the necessary documentation
and maintenance [88].

Additionally, tool support for many of these languages is lacking. For example, there is a
Clean IDE tool for debugging Clean programming code. However, the tool does not support
iTasks/mTasks as discussed in Section 4.6.8. Developers of tierless languages usually have
to learn by experience in debugging and testing programs developed with these sophisticated
DSLs [88].

Another major issue is the technical challenge of specifying an application in a tierless lan-
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guage. Developers are required to meticulously annotate code to support tier splitting and this
can become time consuming and error prone. For example, during compilation, tier splitting
requires the tier specific code to be modular [164]. This is not supported by all languages as in
the case of Ur/Web. It does not support separate compilation of modules. The language relies
on whole-program analysis for splitting the application into client and server programs [164].

There is then the significant limitation of tierless languages being applied mostly to systems
with the distributed client server architecture. There is a general lack of support for other generic
distributed architectures like Peer-to-Peer (P2P) or Data Centred architectures [164]. One excep-
tion is the ScalaLoci language that has modules to support the P2P architecture. Future tierless
languages may address this limitation.

6.2.4 Tier Elimination

Tier Elimination remains experimental. A more substantial study could determine how effective
this technique is for improving interoperability. Moreover, tier elimination violates the estab-
lished principle of modularity as discussed in Section 5.2.

This technique also violates the accepted notion of abstraction in distributed multi-tier soft-
ware stacks as discussed in Section 5.4.3. In tiered multi-tier software stacks, it is generally
accepted that the upper layers of the stack will have increased levels of abstraction while the
lower levels of the stack will have decreased levels of abstraction [88].

Clean mTasks goes one step further and attempts to increase the levels of abstraction at the
lower levels of the IoT stack as discussed in Section 4.6.5. However, this is in contrast to Tier
Elimination. This technique decreases the levels of abstraction at the upper levels of the web
stack as discussed in Section 5.4.3.

In the absence of substantial studies it is difficult to make informed speculation as to all of
the tradeoffs of tier elimination. However, decreasing the levels of abstraction does increase the
likelihood of more bugs being introduced into a system.

In using an imperative paradigm to implement the stack like in the case of JPL in Section 5.3,
the developer has to describe all the steps necessary to perform a computational task. Specifying
every task manually rather than using automation through the use of a declarative paradigm is
generally considered unsafe as it can lead to poor coding implementations or the developer
making mistakes that introduces bugs [115].

6.2.5 Research Limitations

Finally, this research suggests that there is no single solution that can solve all the challenges as-
sociated with heterogeneous interoperability in distributed multi-tier software stacks. However,
the evaluations and results presented have certain limitations.
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Small Case Studies Many of the evaluations and results are based on relatively small case
studies. For example, the MDSR work is based on web applications that consist of no more than
ten microservices. In the real world, some web applications are implemented with hundreds of
microservices like the Titus platform from Netflix. Similarly, the work involving the tiered vs
tierless smart campus case studies is based on small IoT systems i.e. 700 SLOC in 33 source
files.

Metrics Some of the results especially in comparing different programming languages are
based on the SLOC metric. SLOC is a common code size metric, and is especially useful for
multi-paradigm systems like IoT systems. It is based on the simple principle that the more
lines of code, the more developer effort and the increased likelihood of bugs [129]. It is a
simple measure, not dependent on some formula, and can be automatically computed [136].
However, SLOC must be used carefully as it is easily influenced by programming style, language
paradigm, and counting method [3].

Another issue is that the SLOC metric only provides data at a particular point in time. For
example, in Table 5.2, it is shown that the JPL web stack requires 267 fewer lines of code, or 42%
less code (Section 5.4.2) when compared to JAPyL. Over time, it is expected that more complex
functionalities will be required from both stacks. Given that JPL utilises an imperative paradigm,
it could be argued that more complex functionalities will eventually lead to JPL requiring more
lines of code when compared to JAPyL that uses a declarative paradigm. There is already some
evidence for this. Table 5.4 already shows that JPL code is more complex when compared to
JAPyL. Thus, the SLOC metric is perhaps not a good metric to determine how much effort is
required by a developer to implement future functionalities in a system.

Programming Languages Each programming language has its advantages and disadvantages
for usage. Selection of a programming language is especially important in the building of any
application. The use of PHP in the tier elimination work to build JPL may not have been the
best decision as it could have possibly contributed to its poor latency, throughput and resource
consumption that may have affected the validity of the results presented in the evaluation.

6.3 Future Outlook & Recommendations

6.3.1 Microservices

There is no doubt that the use of the microservices architecture in large-scale industrial We-
b/IoT applications to improve interoperability will continue. In the IoT domain, microservices
are becoming more popular as a means of integrating tiered IoT applications with cloud based
platforms like IBM Cloud and Siemen’s MindSphere [2]. The loose coupling and independently
deployable nature of microservices are supposed to almost guarantee the continuous publishing
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and retrieval of data from the Perception Layer to the Presentation Layer without catastrophic
failure [17].

This is again based on the assumption that all microservices deployed in multi-tier software
stacks consist of the individual property. This research shows that this is not always the case.
Table 3.6 reveals that over 70% of microservices implemented in open source web applications
consist of the chained/stateful/critical property while only 17% consist of the individual/state-
ful/minor property. It reasonable to speculate that this trend is similar for microservices in IoT
applications.

It is recommended that when implementing microservices in large scale Web/IoT applica-
tions that developers attempt to implement individual/stateful/minor or individual/stateless/mi-
nor services as far as possible. Section 3.7 confirms [60] in showing that any chained microser-
vice is critical.

Moreover, developers must remember that individual microservices implementations may
also be critical. Table 3.6 shows that 7% of microservices implemented are individual/stateful/-
critical and 3% are individual/stateless/critical. Thus, despite the many perceived benefits in the
academic and grey literature, individual microservices can cause catastrophic failure.

6.3.2 Tierless Languages

The future of tierless may involve the use of mainstream programming languages rather than
DSLs especially in developing large scale industrial Web/IoT applications. The idea here is
still to minimise the number of programming languages in a stack. One example is the use
of a tierless JavaScript framework called Slicing Tierless JavaScript Programs (STIP.js). Here,
the developer writes annotated code blocks of JavaScript together in one module to specify the
tiers. The code is then compiled and sliced to automatically form the necessary client/server
tiers [114].

It is recommended that a single mainstream programming language be used and compiled to
synthesise the tiers/components in multi-tier software stacks. The main advantage of this tech-
nique is that the developer will have the benefit of being able to utilise a mainstream language
that is well documented and has tool support especially for testing and debugging code.

This trend is readily becoming adopted in industrial applications. Google Web Toolkit
(GWT) is a framework utilised in many Google applications like Google Adwords & Google
Wallet. It enables developing an entire web application in Java. The GWT compiler facilitates
the translating and splitting of code from Java to JavaScript [112].

6.3.3 Tier Elimination

It is still unclear whether Tier Elimination will become accepted as a technique to improve
interoperability in large-scale Web/IoT industrial applications. However, it might have some
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practical use.
Given that IoT multi-tier software stacks are even more complex than web stacks as dis-

cussed in Section 1.1.3, Tier Elimination has the potential to reduce the number of tiers/compo-
nents at the Presentation & Application Layers. Eliminating a web server or component or even
integrating some components in the Application Layer with the Presentation Layer can simplify
the tiered IoT stack.

This might be especially useful for edge IoT applications. These are applications where
client data is processed at the periphery of the network [19]. By doing this, users should benefit
from faster data processing, analytics and services. However, Section 5.4.4 has shown that
performance overhead remains a significant issue. This may have been the result of the choice
of language. Thus, it is recommended that research using a faster processing language like
Erlang may be necessary to really determine if Tier Elimination has the potential as a large-
scale industrial technique to improve interoperability.

6.4 Future Work

Microservices Reliability A potential plan is to investigate larger microservice-based sys-
tems, e.g. Death Star1, to accumulate evidence for the effectiveness of the MDSR Classification
for identifying reliability bad smells. It would also be interesting to see whether MDSR could
be extended to also classify failures in infrastructure services.

Furthermore, it may be possible to enhance the analyser to make it more comprehensive,
e.g. to automatically detect more persistent stores. Perhaps the analyser could suggest when
some microservice resilience patterns, like bulkhead or load balancer, could reduce criticality?
Finally, it may be worthwhile to investigate the potential of combining static MDSR analysis
with dynamic SDG analysis.

Tierless Languages The metrics reported like code size, numbers of source code files, and of
paradigms are only indirect, although widely accepted, measures of development effort. A more
convincing evaluation of tiered versus tierless technologies could be provided by conducting a
carefully designed and substantial user study, e.g. using N-version programming.

Furthermore, a study that implemented common benchmarks or a case study in multiple
tierless IoT languages would provide additional evidence for the benefits of the tierless approach
over tiered systems in IoT stacks. This would further justify the demonstration and comparison
of alternative design decisions like tierless languages.

Tier Elimination Further investigation may involve replacing stack components with more
appropriate programming language technologies for a variety of stacks and domains. The inten-

1https://github.com/djmgit/DeathStar
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tion is that tier elimination should have minimal impact on an application stack functionality,
but instead seek to explore potential non-functional benefits. To this end, maybe developing an
IoT stack using tier elimination and comparing it against a tierless Clean iTask/mTask imple-
mentation of a smart campus IoT stack could further validate these results.
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Interoperability in JAPyL Web Stack

A.1 Interoperation between Apache & Jupyter Components

In JAPyL (Section 2.1.2), the Jupyter Notebook is embedded in the webpage via HTML using
the IFRAME Tag. However, by default for security reasons, the Jupyter Notebook does not
allow its Notebooks to be embedded externally. This feature is enabled in the Jupyter Server
using Jupyter Configs in the jupyter_notebook_config.py configuration file.

Listing A.1: Jupyter Configuration for Enabling Notebook Embedding

1
2 c.NotebookApp.ip = ’0.0.0.0’

3 c.NotebookApp.tornado_settings = {

4 ’headers’:{

5 ’Content-Security-Policy’: "frame-ancestors

https://192.168.43.100:10125 ’self’ "

6 }

7 }

8 c.NotebookApp.base_url = ’/jupyter/notebooks/’

9 c.NotebookApp.open_browser = False

10 c.NotebookApp.port = 9253

The Apache web server is then configured to act as a reverse proxy. The configuration is
implemented in /etc/apache2/sites-available/default-ssl.conf.

Listing A.2: Reverse Proxy Configuration in Apache

1
2 <IfModule mod_ssl.c>

3 <VirtualHost_default_:10125>

4
5 ServerAdmin email@example.net
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6 ServerName 192.168.43.125

7
8 LoadModule proxy_module modules/mod_proxy.so

9 LoadModule proxy_connect_module modules/mod_proxy_connect.so

10 LoadModule proxy_http_module modules/mod_proxy_http.so

11 LoadModule ssl_module modules/mod_ssl.so

12
13 DocumentRoot /var/www/html

14
15 <Proxy *>

16 Order deny,allow

17 Allow from all

18 </Proxy>

19
20 ErrorLog ${APACHE_LOG_DIR}/error.log

21 CustomLog ${APACHE_LOG_DIR}/access.log combined

22
23 SSLEngine on

24 SSLProxyEngine On

25 SSLProxyCheckPeerCN off

26 SSLProxyCheckPeerName off

27 SSLProxyCheckPeerExpire off

28 SSLCertificateFile /etc/apache2/ssl/certificates/apache.crt

29 SSLCertificateKeyFile /etc/apache2/ssl/certificates/apache.key

30
31 <FilesMatch "\.(cgi|shtml|phtml|php)$">

32 SSLOptions +StdEnvVars

33 </FilesMatch>

34 <Directory /usr/lib/cgi-bin>

35 SSLOptions +StdEnvVars

36 </Directory>

37
38 ProxyPass / https://192.168.43.125:10125/

39 ProxyPassReverse / https://192.168.43.125:10125/

40
41 </VirtualHost>

42 </IfModule>

43
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44 # vim: syntax=apache ts=4 sw=4 sts=4 sr noet
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Declarative Programming in JAPyL

B.1 JAPyL Declarative Security Examples

In JAPyL, the security mechanisms are typically declaratively specified in either the Jupyter
Server or Apache as discussed in Section 2.1.2. Two examples demonstrated below include IP
Whitelisting, Blacklisting and Security Headers implementation.

Listing B.1: Apache IP Whitelisting, Blacklisting

1
2 <Directory>

3
4 Order Allow,Deny

5 Allow from 192.168.43.15

6
7 </Directory>

Listing B.2: Apache Security Headers

1
2 <IfModule mod_headers.c>

3
4 strict-transport-security: max-age=31536000;

includeSubDomains; preload

5 expect-ct: max-age=31536000; enforce

6 referrer-policy: no-referrer

7 referrer-policy: strict-origin-when-cross-origin

8 x-permitted-cross-domain-policies: none

9 x-xss-protection: 1; mode=block

10 x-content-type-options: nosniff

11 x-frame-options: allow
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12
13 </IfModule>

B.2 Developer Effort - Links vs PHP

Although tierless languages generally simplify the development of web applications, there are
some cases that are less than elegant, as discussed in Section 2.4.3. One example is database
update operations in Links where all references to a Table Handle include the fields in the table.
This introduces a large amount of redundancy in the code as it is not often that all columns in a
database are updated simultaneously.

Listing B.3: PHP Code Example

1
2 function markMilestoneComplete ($id) { mysql query("UPDATE

milestone SET completed = 1 WHERE milestoneid = $id")};

Listing B.4: Links Code Example

1
2 fun markMilestoneComplete (milestoneid) {

3 update (var milestone <-- tb milestone)

4 where (milestone.milestoneid == milestoneid)

5 set (

6 milestoneid = milestone.milestoneid,

7 projectid = milestone.projectid,

8 creator = milestone.creator,

9 summary = milestone.summary,

10 priority = milestone.priority,

11 date start = milestone.date start,

12 date end = milestone.date end,

13 completed = 1

14 );

15 }

The one line SQL statement using PHP is easy to comprehend and makes it clear which fields
are being updated, whereas the Links code requires 14 lines to maintain clarity, yet the columns
being updated are far less obvious. Even if only updating a single column, Links requires code
to be written relating to columns in the table definition, increasing developer effort.
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Microservices in JPyL Web Stack

C.1 JPyL Individual Port Config/Reverse Proxy Microservice

In this version of JPyL, all Flask microservices are individual with their own specific function-
alities. This example shows the individual Port Config/Reverse Proxy microservice.

Listing C.1: JPyL Port Redirect

1

2 g l o b a l p o r t

3 p o r t =10125 # c u r r e n t p o r t i n use

4

5 def p o r t T o g g l e ( ) :

6 p o r t =10138 # p o r t r e d i r e c t

7

8 @app . r o u t e ( ’ / ’ , methods =[ ’POST ’ , ’GET ’ ] ,

9 d e f a u l t s ={ ’ p a t h ’ : ’ ’ } )

10

11 @app . r o u t e ( ’ / < p a t h : pa th > ’ )

12 def c a t c h _ a l l ( p a t h ) :

13

14 def p o r t T o g g l e ( )

15 re turn r e d i r e c t ( " h t t p s : / / 1 9 2 . 1 6 8 . 4 3 . 1 0 0 : 1 0 1 3 8 " )

C.2 Reliability Experiment Code Fragments

This section contains listings for key code fragments used in the reliability experiments in Sec-
tions 3.3.3 & 3.3.4.

Listing C.2: Sleep Function in Apache Reverse Proxy Module

1

120



APPENDIX C. MICROSERVICES IN JPYL WEB STACK 121

2 s t a t i c i n t p r o x y _ d e t e c t ( r e q u e s t _ r e c * r )

3 {

4 void * s c o n f = r −> s e r v e r −> modu le_con f ig ;

5 p r o x y _ s e r v e r _ c o n f * con f =

6 ( p r o x y _ s e r v e r _ c o n f * )

7 a p _ g e t _ m o d u l e _ c o n f i g

8 ( sconf , & proxy_module ) ;

9 s l e e p ( 5 ) ;

10

11 r −> p r o x y r e q = PROXYREQ_PROXY;

12 r −> u r i = r −> u n p a r s e d _ u r i ;

13 r −> f i l e n a m e = a p r _ p s t r c a t

14 ( r −>pool , " proxy : " , r −> u r i , NULL) ;

15 r −> h a n d l e r = " proxy − s e r v e r " ;

16

17 re turn OK;

18 }

Listing C.3: Sleep Function in Flask Reverse Proxy Module

1

2 def main ( ) :

3

4 t r y :

5 p r i n t ( ’ Running f l a s k w e b s e r v e r on p o r t ’ + s t r ( p o r t ) )

6 app . run ( h o s t = ’ 0 . 0 . 0 . 0 ’ , p o r t = p o r t )

7 t ime . s l e e p ( 5 )

8 e xc ep t :

9 k i l l P o r t ( )

10 p r i n t ( ’ R e l a u n c h i n g ’ + _name_ + ’ app ’ )

11 t ime . s l e e p ( 8 )

12 main ( )

C.3 JPyL Port Config/Reverse Proxy Microservices Chain

In this version of JPyL, there are different classes of microservices. This example shows the
chained Port Config/Reverse Proxy microservice.

Listing C.4: JPyL Port Redirect

1

2 # proxy . py
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3

4 from f l a s k import Flask , j s o n i f y

5 import u r l l i b

6

7 app = F l a s k ( __name__ )

8

9 g l o b a l p o r t

10 p o r t =10125

11

12 p r i n t ( ’ Running F l a s k Web S e r v e r On P o r t ’ + s t r ( p o r t ) )

13

14 t o g g l e =

u r l l i b . r e q u e s t . u r l o p e n ( ’ h t t p : / / 1 9 2 . 1 6 8 . 4 3 . 1 9 9 : 5 0 0 5 / t o g g l e p o r t / ’ ) . r e a d ( ) . decode ( ’ u t f −8 ’ )

15 p o r t = i n t ( t o g g l e )

16

17 p r i n t ( ’ The F l a s k S e r v e r I s Now Running On ’ + s t r ( p o r t ) )

18

19 i f __name__ == ’ __main__ ’ :

20 app . run ( h o s t = ’ 1 9 2 . 1 6 8 . 4 3 . 1 9 9 ’ , p o r t = p o r t , debug=True )

21

22

23 # p o r t c o n f i g . py

24

25 import s y s

26 from f l a s k import F l a s k

27

28 app = F l a s k ( __name__ )

29

30 @app . r o u t e ( ’ / t o g g l e p o r t / ’ , methods = [ ’GET ’ , ’POST ’ ] )

31

32 def p o r t T o g g l e ( ) :

33

34 p o r t = 10155

35 re turn ( s t r ( p o r t ) )

36

37 i f __name__ == ’ __main__ ’ :

38 app . run ( h o s t = ’ 1 9 2 . 1 6 8 . 4 3 . 1 9 9 ’ , p o r t =5005 , debug=True )
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PRS & PWS Sensor Code

D.1 Light Sensor Code for PRS

The following listing shows the code for the light sensor in PRS.

Listing D.1: PRS Light Sensor Code

1

2 from p r o t o c o l s import i 2c_pb2

3 from common import k rpc as i m p l e m e n t a t i o n s

4 from common import c o n f i g

5 from p o l l i n g _ s e n s o r import P o l l i n g S e n s o r

6 import l i g h t c o n n e c t

7

8 _DEVICE_ADDR = 0x39

9

10 c l a s s L i g h t S e n s o r ( P o l l i n g S e n s o r ) :

11 v a l u e _ t y p e = f l o a t
12 s e n s o r _ t y p e = P o l l i n g S e n s o r . SENSOR_TYPES . LIGHT

13 i 2 c = L i g h t C o n n e c t . l i g h t _ v a r i a b l e s ( )

14

15 def g e t _ s e n s o r _ v a l u e ( s e l f ) :

16 t r a n s a c t i o n = i2c_pb2 . I 2 c T r a n s a c t i o n ( )

17

18 cmd = 0 b10100000

19

20 # Read Channel 0

21 command = t r a n s a c t i o n . commands . add ( )

22 command . a c t i o n = command .READ_WORD_DATA

23 command . add r = _DEVICE_ADDR

24 command . cmd = cmd | 0xC
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25

26 # Read Channel 1

27 command = t r a n s a c t i o n . commands . add ( )

28 command . a c t i o n = command .READ_WORD_DATA

29 command . add r = _DEVICE_ADDR

30 command . cmd = cmd | 0xE

31

32 c o n t r o l l e r = i m p l e m e n t a t i o n s . c r e a t e _ c o n t r o l l e r ( )

33 r e s u l t s = L i g h t C o n n e c t . l i g h t _ r e s u l t s ( s e l f )

34

35 i f r e s u l t s != None and l e n ( r e s u l t s . d a t a _ r e a d ) ==

l e n ( t r a n s a c t i o n . commands ) :

36 ch0 = r e s u l t s . d a t a _ r e a d [ 0 ]

37 ch1 = r e s u l t s . d a t a _ r e a d [ 1 ]

38 re turn s e l f . _ d a t a _ t o _ l u x ( ch0 , ch1 )

39 e l s e :

40 p r i n t " Problem wi th r e s p o n s e from i 2 c s e r v i c e : %s " %

r e s u l t s

41 re turn None

42

43 def _power_up ( s e l f ) :

44 t r a n s a c t i o n = i2c_pb2 . I 2 c T r a n s a c t i o n ( )

45

46 command = t r a n s a c t i o n . commands . add ( )

47 command . a c t i o n = command . WRITE_BYTE_DATA

48 command . add r = _DEVICE_ADDR

49 command . cmd = 0x00

50 command . d a t a = 0x03

51

52 c o n t r o l l e r = i m p l e m e n t a t i o n s . c r e a t e _ c o n t r o l l e r ( )

53 s e l f . i 2 c . T r a n s a c t i o n ( c o n t r o l l e r , t r a n s a c t i o n , None )

54 p r i n t " power up r e q u e s t e d "

55

56 def _ d a t a _ t o _ l u x ( s e l f , ch0 , ch1 ) :

57 # Using da ta f o r T / FN / CL package

58 l u x = 0

59

60 i f ( ch0 == 0) :

61 re turn l u x

62

63 r a t i o = 1 . 0 * ch1 / ch0
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64

65 i f r a t i o < 0 . 5 0 :

66 l u x = 0 .0304 * ch0 − 0 .062 * ch0 * ( r a t i o ** 1 . 4 )

67 e l i f r a t i o < 0 . 6 1 :

68 l u x = 0 .0224 * ch0 − 0 .031 * ch1

69 e l i f r a t i o < 0 . 8 0 :

70 l u x = 0 .0128 * ch0 − 0 .0153 * ch1

71 e l i f r a t i o < 1 . 3 0 :

72 l u x = 0 .00146 * ch0 − 0 .00112 * ch1

73 e l s e : # r a t i o > 1 . 3 0

74 Lux = 0

75 re turn l u x

76

77 def a d d i t i o n a l _ s e t u p ( s e l f ) :

78

79 L i g h t C o n n e c t . l i g h t _ c o n f i g ( s e l f )

80 s e l f . _power_up ( )

81

82 def main ( ) :

83 c o n f i g . i n i t ( ’ s e n s o r _ l i g h t ’ )

84

85 s e n s o r = L i g h t S e n s o r ( )

86 s e n s o r . run ( )

87

88 i f ( __name__ == " __main__ " ) :

89 main ( )

D.2 Light Sensor Code for PWS

The following listing shows the code for the light sensor in PWS.

Listing D.2: PWS Light Sensor Code

1

2 c l a s s L i g h t C o n n e c t :

3

4 @ s t a t i c m e t h o d

5 def l i g h t _ v a r i a b l e s ( ) :

6

7 i 2 c = None

8 i 2 c _ a d d r e s s = 0
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9 i 2 c _ t r a n s a c t i o n _ l e n g t h = 0

10 re turn i2c , i 2 c _ a d d r e s s , i 2 c _ t r a n s a c t i o n _ l e n g t h

11

12 @ s t a t i c m e t h o d

13 def l i g h t _ v a l u e s ( s e l f ) :

14

15 s e l f . i 2 c . w r i t e t o ( s e l f . i 2 c _ a d d r e s s , b " \ x00 " ) # power o f f

16 s e l f . _power_up ( )

17 s e l f . se t_mode ( s e l f . OP_SINGLE_HRES2 ) # h i g h e s t a c c u r a c y

18

19 @ s t a t i c m e t h o d

20 def l i g h t _ r e s u l t s ( s e l f ) :

21

22 r e s u l t s = s e l f . i 2 c . r e a d f r o m ( s e l f . i 2 c _ a d d r e s s ,

s e l f . i 2 c _ t r a n s a c t i o n _ l e n g t h )

23 re turn r e s u l t s

24

25 @ s t a t i c m e t h o d

26 def l i g h t _ p o w e r ( s e l f ) :

27

28 s e l f . i 2 c . w r i t e t o ( s e l f . i 2 c _ a d d r e s s , b " \ x01 " ) # power on

29 s e l f . i 2 c . w r i t e t o ( s e l f . i 2 c _ a d d r e s s , b " \ x07 " ) # r e s e t

30

31 @ s t a t i c m e t h o d

32 def l i g h t _ m o d e ( s e l f , mode ) :

33

34 s e l f . i 2 c . w r i t e t o ( s e l f . i 2 c _ a d d r e s s , b y t e s ( [ s e l f . mode ] ) ) # s e t

measurement mode

D.3 Comparing PRS & PWS Temperature Sensor Code

Both PRS & PWS implementations share similar codebases like objects and classes for equiva-
lent comparison. The example below shows the implementation for the Temperature Sensors.

Listing D.3: PRS Temperature Sensor Implementation

1
2 from protocols import i2c_pb2

3 from common import krpc as implementations

4 from common import config

5 from polling_sensor import PollingSensor
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6 import tempconnect

7
8 _DEVICE_ADDR = 0x48

9 _SCALE_FACTOR = 0.0625

10
11 class TemperatureSensor(PollingSensor):

12 value_type = float

13 sensor_type = PollingSensor.SENSOR_TYPES.TEMPERATURE

14 i2c = TempConnect.temp_variables()

15
16 def get_sensor_value(self):

17 transaction = i2c_pb2.I2cTransaction()

18
19 command = transaction.commands.add()

20 command.action = command.READ_WORD_DATA

21 command.addr = _DEVICE_ADDR

22 command.cmd = 0x00

23
24 controller = implementations.create_controller()

25 results = TempConnect.temp_results(self)

26
27 if results != None and len(results.data_read) ==

len(transaction.commands):

28 data = self._swap_word_bytes(results.data_read[0])

29 return (data >> 4) * 0.0625

30 else:

31 print "Problem with response from i2c service: %s"

% results

32 return None

33
34 def _swap_word_bytes(self, word):

35 lsb = (word & 0xFF00) >> 8

36 msb = word & 0xFF

37 return (msb << 8) | lsb

38
39 def additional_setup(self)

40
41 TempConnect.temp_config(self)
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42
43 def main():

44 config.init(’sensor_temperature’)

45
46 sensor = TemperatureSensor()

47 sensor.run()

48
49 if (__name__ == "__main__"):

50 main()

Listing D.4: PWS Temperature Sensor Implementation

1
2 from machine import Pin, I2C

3 import tempconnect

4 import time

5
6 class TemperatureSensor():

7
8 _DEVICE_ADDR = 0x45 #memory space to activate SHT30 Sensor

9
10 i2c = TempConnect.temp_connect()

11
12 mem1 = bytearray(2)

13 mem2 = bytearray(6)

14
15 #memory spaces accessed by SHT30()

16 reg1 = 0x30

17 reg2 = 0xA2

18 reg3 = 0x2c

19 reg4 = 0x06

20
21 def get_sensor_value(self):

22
23 results = TempConnect.temp_variables(self)

24 addr = self._DEVICE_ADDR

25
26 if results != None:

27
28 buf = self.mem1



APPENDIX D. PRS & PWS SENSOR CODE 129

29 buf[0] = self.reg1

30 buf[1] = self.reg2

31 results.writeto(addr, buf)

32 time.sleep_ms(1000)

33
34 data = self.mem2

35 buf[0] = self.reg3

36 buf[1] = self.reg4

37 results.writeto(addr, buf)

38 data = results.readfrom(addr, 6)

39
40 data2 = self._swap_word_bytes(data)

41 return data2

42
43 else:

44
45 print ("Problem with response from i2c service:

%s" % results)

46 return None

47
48 def _swap_word_bytes(self, data):

49
50 temp_raw = (data[0] << 8) + (data[1])

51 humi_raw = (data[2] << 8) + (data[3])

52 temp = 175 * temp_raw / 65535 - 45 #Formula Taken From

MicroPython SHT30() Driver

53 humi = 100 * humi_raw / 65535 #Formula Taken From

MicroPython SHT30() Driver

54
55 #return "humi = {:.2f}".format(humi)

56
57 #return "temp = {:.2f} humi = {:.2f}".format(temp,

humi)

58
59 return ("temp = {:.2f} humi = {:.2f}".format(temp,

humi))

60
61 #Activate the line of code to test sensor individually
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62
63 #while True:

64 #time.sleep(5)

65 #test = TemperatureSensor()

66 #print (test.get_sensor_value())

67 #time.sleep(5)
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abstraction also referred to as separation of concerns, this is where hierarchical composition
of components in the stack abstracts the view of the system as a whole. Enough detail
is provided to understand the roles of each layer and how the components relate to one
another.. 98

architectural style defines the way of how to organise or structure the components of a system
or platform.. 16

chained microservices a type of microservices implementation where some microservices are
highly dependent or tightly coupled to others in order to function.. 91

Common Language Runtime (CLR) an intermediate concept between a compiler and an in-
terpreter where a high level language is translated to butecode.. 90

Communication refers to software components in different physical machines being able to
exchange messages or marshal data with each other over a network.. 17

component an independent, high performance, multi-threaded unit of software with a high level
of abstraction, designed to perform a single function.. 1, 4, 5, 9, 13, 15–17, 60, 90–94, 99,
102

Coordination refers to software components being aware of their specific functionalities and
working in sync with other components.. 17

CRS Clean, RaspberryPi Super Sensor. 59–61, 75, 77, 78, 80, 81, 83, 86–88, 105

CWS Clean, Wemos Super Sensor. 59–61, 75, 77, 78, 80, 83–88, 105

Defense-in-Depth a term in cybersecurity used to refer to using multiple layers of defense
mechanism in order to protect a system.. 12

domain specific language (DSL) a programming language written to address a particular do-
main or support a specific set of tasks or concerns.. 29

146
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dynamically typed refers to a programming language where the variable type is known only at
run time.. 20

gray failures failures that are subtle at first but can eventually become catastrophic overtime
depending on how long they are left undetected or unresolved.. 45

h2m human-to-computer interaction where data is generated based on human interacting with
an application or system to perform a task. 15

heterogeneous interoperability describes all forms of interoperation in a multi-tier software
stack as there are different components, languages and protocols integrated into a single
platform.. 3, 4, 17

individual microservices a type of microservice that is loosely coupled and independently de-
ployable.. 40

interoperability the ability of different components in an application to communicate, ex-
change information or share data in a unified format.. 16, 17, 100, 102

JAPyL webstack that comprises Jupyter, Apache, Python, Linux.. 3, 7, 15, 18, 33, 90, 91, 93,
96–102

JPL Jupyter, PHP, Linux Web Stack. 7, 92, 93, 96–103

JPyL Jupyter, Python, Linux Web Stack. 36, 92

LAMP Linux, Apache, MySQL, PHP. 1, 3, 9, 18, 22, 35

loose coupling components are detached or independent of one another.. 5

m2m machine-to-machine interaction where data is automatically generated based on machines
or devices communicating with one another.. 15

MEAN MongoDB, Express.js, AngularJS, Node.js. 22, 90, 91

microservices a single application is developed as a suite of small services. Each one runs
independently and communicates with lightweight mechanisms, usually via RESTful web
services or messaging. The idea is to replace monolithic components in a stack with
lightweight code libraries or services.. 5, 32

modularity allows a system to be structured as a set of components with clearly defined func-
tionality. They can be implemented independently, and may be interchanged with other
components that have similar functionality.. 91
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multi-tier software stack organises interoperating components into tiers with specific func-
tionalities and usually consists of a client-server architectural style.. 3–5, 17, 91, 101,
102

n-tier architecture that engineers web stacks into three layers: Presentation, Business Logic &
Data Access.. 9, 92

Open Systems Interconnections (OSI) a logical and conceptual model that defines network
communication as a layered server architecture system.. 15

polyglot programming the practice of writing code in multiple languages to capture additional
functionality and efficiency not available in a single language... 4

programming languages can be seen as general purpose dynamic, scripting tools with a low
level of abstraction necessary to deal with all the semantics, paradigms, libraries, modules,
objects etc. needed in order to create the necessary interfaces to allow users to interact with
the applications and components. 3, 19

PRS Python, RaspberryPi Super Sensor. 59–63, 66, 75–78, 80–82, 84–88, 91, 105

PWS (Micro)Python, Wemos Super Sensor. 3, 13, 15–18, 33, 59–63, 66, 75–78, 80–82, 84–88,
91, 105

semantic friction/impedance mismatch various technical challenges that can arise from inte-
grating different languages and paradigms like type mismatches.. 4

single point of failure (SPOF) if one component fails, the entire application is interrupted even
if the other components continue to operate.. 5

Single Responsbility Principle (SRP) a design principle that holds that each microservice should
perform only one business function per service.. 34

statically typed refers to programming languages where the variable type is known before com-
pile time.. 20

supersensor a device that has several different types of sensors attached to it for the capturing
of several types of environmental data in real time.. 63

Task Oriented Programming (TOP) a declarative programming paradigm for constructing in-
teractive distributed systems. Tasks are the basic blocks of TOP and represent work that
needs to be done.. 67

tierless languages incorporate the use of a single language that synthesises all components/tiers
in the software stack.. 5, 28, 91
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web stack compilation of different software tools that work together to develop or support an
application.. 1, 3
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