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Abstract

To meet the 2050 net zero emission targets, energy systems around the globe

are being revisited to achieve multi-vector decarbonisation in terms of electricity,

transport, heating and cooling. As energy systems become more decentralised and

digitised, local energy systems will have greater potential to self-sustain and hence,

decrease reliance on fossil-fuelled central generation. While the uptake of electric vehi-

cles, heat pumps, solar and battery systems offer a solution, the increase in electricity

demand poses challenges in terms of higher peak demand, imbalance and overload-

ing. Additionally, the current energy market structure prevents these assets in the

distribution network from reaching their true techno-economic potential in flexibility

services and energy trading. Peer-to-peer energy trading and community-level con-

trol algorithms achieve better matching of local demand and supply through the use

of transactive energy markets, load shifting and peak shaving techniques. Existing

research addresses the challenges of local energy markets and others investigate the

effect of increased distributed assets on the network. However, the combined techno-

economic effect requires the co-simulation of both market and network levels, coupled

with simultaneous system balance, cost and carbon intensity considerations.

Using bottom-up coordination and user-centric optimisation, this project investi-

gated the potential of network-aware peer-to-peer trading and community-level con-

trol to increase self-sufficiency and self-consumption in energy communities. The

techno-economic effects of these strategies are modelled while maintaining user com-

fort levels and healthy operation of the network and assets. The proposed strategies

are evaluated according to their economic benefit, environmental impact and network

stress. A case study in Scotland was employed to demonstrate the benefits of peer-

to-peer trading and community self-consumption using future projections of demand,

generation and storage. Additionally, the concept of energy smart contracts, embed-

ded in blockchains, are proposed and demonstrated to overcome the major challenges

of monitoring and contracting.

The results indicate benefits for various energy systems stakeholders. Distribu-

tion system end-users benefit from lower energy costs while system operators obtain
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better visibility of the local-level flexibility along with the associated technical chal-

lenges in terms of losses, imbalance and loading. From a commercial perspective,

community energy companies may utilise this study to inform investment decisions

regarding storage, distributed generation and transactive market solutions. Addi-

tionally, the insights about the energy smart contracts allow blockchain and relevant

technology sectors to recognise the opportunities and challenges of smart contracts

and distributed ledger technologies that are specific to the energy sector. On the

broader scale, energy system operators, regulators and high-level decision-makers can

compare the simulated impact of community-led energy transition on the net zero

goals with large-scale top-down initiatives.
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Lay Summary

Many countries around the globe set targets to become carbon neutral by 2050 which

initiated the decarbonisation process of electricity, transport, heating and cooling sys-

tems. One approach is to digitise and decentralise the electricity systems by installing

smart metering and incentivising the installation of distributed renewable generation

such as rooftop solar panels. This way, local energy systems would have greater po-

tential to self-sustain and hence, decrease reliance on fossil-fuelled central generation.

While the domestic uptake of electric vehicles, heat pumps, solar and battery systems

offer a solution, the increase in electricity demand poses challenges in terms of higher

peak demand, imbalance and overloading. Additionally, the current energy market

structure prevents these assets in the distribution network from reaching their true

techno-economic potential in flexibility services and energy trading.

The notion of peer-to-peer energy sharing is a transactive local market structure

that allows prosumers (i.e. consumers who can produce energy or are proactive in

changing their consumption) to sell their excess generation to their neighbours. Using

local energy markets and community-level control algorithms, this work achieved

higher levels of community self-sufficiency and self-sufficiency.

This work investigated the potential of network-aware and carbon-aware peer-to-

peer trading and community-level control to increase self-sufficiency and local con-

sumption of locally generated renewable energy in energy communities. For this,

community-level optimisation algorithms were used to minimise the overall carbon

emissions and costs of the community by shifting their energy consumption to hours

of renewable energy generation. The techno-economic effects of these strategies were

modelled while maintaining user comfort levels and healthy operation of the network

and assets. The proposed strategies were evaluated according to their economic ben-

efit, environmental impact and network stress. A case study in Scotland was used

to demonstrate the benefits of peer-to-peer trading and community self-consumption

using future projections of demand, generation and storage.

The implementation of peer-to-peer energy sharing and community control meth-

ods require monitoring of local demand and generation and also a legally binding
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contract between the parties involved in energy trading and flexibility services. This

work proposed and demonstrated the concept of energy smart contracts, embedded

in blockchains, to overcome these major challenges.

The results indicate benefits for various energy systems stakeholders. Domestic

energy consumers would benefit from lower energy costs while system operators obtain

better visibility of the local-level flexibility. From a commercial perspective, commu-

nity energy companies may use this study to inform investment decision. Additionally,

the insights about the energy smart contracts allow blockchain and relevant technol-

ogy sectors to recognise the opportunities and challenges in the energy sector. On a

broader scale, energy system operators (e.g. National Grid), regulators (e.g. Ofgem)

and high-level decision-makers can compare the simulated impact of community-led

energy transition on the net zero goals with large-scale top-down initiatives.
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Chapter 1

Introduction

1.1 Background to the research

In response to the 2050 net zero emission targets, energy systems around the globe

have been undergoing major changes. In specific, electricity networks and market de-

signs are revisited in order to accommodate the increasing amount of renewable energy

sources (RES), as well as new types of loads, such as those from the electrification of

heating and transportation systems. The penetration of distributed renewable energy

production, in particular wind and solar generation, have advanced in recent years in

response to supportive energy policies, economic incentives and changes in the sector,

such as the establishment of energy communities and microgrids [19]. Through the

active participation of consumers, energy communities were created in the UK and

the rest of Europe which sometimes involve engagement in energy trading, investment

in renewables or taking part in initiatives for energy autonomy and self-sufficiency

[20]. In 2020, RES such as solar, wind, hydro and biogas contributed 43% of the

annual electricity demand of Great Britain (GB) [21]. However, as shown in Fig-

ure 1.1, the carbon intensity of GB electricity consumption is still relatively high

(334gCO2eq/kWh) in comparison to other European countries such as France and

Sweden where the former has a high penetration of nuclear energy production and

the latter has a high share of hydropower in its generation mix [1]. Around 75%

of GB’s carbon emissions from electricity production are contributed by gas power

plants. Therefore, maximising contribution from decentralised renewable energy gen-

erators is key to reducing the dependency on centralised generation, carbon emissions

and meeting the 2050 net zero goals.

1
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Figure 1.1: Carbon intensity of electricity consumption in Europe where
red to green colour scale show highest to lowest levels. (Great Britain (in
orange) has 334gCO2eq per kWh) [1].

Despite the increasing volume of small-scale decentralised generation, their poten-

tial is often overlooked as these distributed assets are not coordinated by the system

operator for balancing the grid and are too small to participate in energy or ancillary

service markets. While the uptake of electric vehicles, heat pumps, solar and battery

systems offer a solution, the increase in electricity demand poses challenges in terms

of higher peak demand, imbalance and overloading [11, 22]. Often in literature, their

participation is enabled by an aggregator or a community manager [22]. Local-level

energy management and distribution methods are needed in order to leverage the flex-

ibility present in the decentralised load, generation and storage assets. Unlocking this

potential could accelerate the path to carbon neutrality, increase energy security and

decrease costs as it would delay the need for infrastructural upgrades and installation

of new centralised generators. In other words, coordination of local energy systems,

including energy sharing and trading amongst peers, offers a bottom-up approach for

tackling the energy trilemma [23].
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1.2 Significance of local energy systems

Local energy systems play an important role in the path to achieving carbon neutrality

as highlighted by the bottom-up decarbonisation strategy Community Renewables,

published by the GB’s electricity system operator National Grid [24]. This strategy

has a focus on increasing penetrations of distributed energy resources (DERs) and

flexible loads such as electric vehicles (EVs) in order to decrease the distribution

system demand during hours of high consumption (e.g. the evening peak demand

hours). The Association of Decentralised Energy in the UK [25] estimated that 16%

of the peak electricity demand could be shaved by shifting load to off-peak periods

and optimising the use of on-site generation. Through active management of flexible

loads and DERs, they estimated that coordinating local energy systems could yield

savings up to £600 million by 2020 and £2.3 billion by 2035.

Nevertheless, the current system operation paradigm is unable to monitor and

control the large portfolio of small-scale distributed assets [12]. Additionally, the

use of a centralised energy management technique is of concern as the renewable

generation and load forecasts would be required for all users in the distribution sys-

tem [26, 27]. To address this, decentralised energy management methods have been

proposed in literature along with distributed ledger technologies such as blockchain

[28, 29]. Following the recent trends of decentralisation and democratisation in many

sectors, various local energy market designs have emerged which enable small dis-

tributed suppliers to compete with the conventional suppliers of energy [30, 31]. Such

local energy markets enable prosumers to trade electricity with their peers through

the notion of peer-to-peer (P2P) energy trading. P2P energy markets could offer the

grid the flexibility needed while producing economic benefits for the domestic users

of energy and contributing to the decarbonisation of energy systems.

1.3 Research problem and hypothesis

Local energy systems coupled with P2P trading and flexibility coordination offer a

solution to the challenges associated with the increased penetration of DER and high-

consumption low-carbon loads such as EVs. Future projections of EV and heat pump

installations estimate penetrations levels as high as 45% by 2032 [32]. The uptake

of these smart assets is encouraged to meet net zero goals, however, this would also
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amplify the foreseen increase in system imbalance volumes and peak energy demand.

Therefore, these solutions should be simulated in detail in order to evaluate their

impact on the distribution network but also on the user comfort as these strategies

often include load shifting.

To address these problems, this work investigates the feasibility of P2P trading

and local flexibility coordination in the near future using a use-case based in Scotland.

A network and comfort-aware simulation approach is implemented and the results are

evaluated from various perspectives which include economic benefit, carbon emission

savings, user comfort levels and grid signals.

To summarise, the hypothesis of this research is that P2P energy trading and

coordinated local flexibility can provide economic benefits to the participants and

also contribute to the decarbonisation of energy systems whilst maintaining a healthy

operation of the network in the next decade.

1.4 Research approach

The research approach in this work has a community outlook with a focus on max-

imising the benefit to the local energy system users while decreasing the community

carbon footprint. This research modelled energy communities using future pene-

trations of DER, EVs, heat pumps and storage. Following this, it compared vari-

ous local energy management techniques such as cost-minimal and carbon-minimal

community-level optimisation. From an energy market perspective, it implemented

three different forms of community-based P2P trading methods and compared these

against the optimisation scenarios.

Additionally, as the local energy systems are located on the distribution network

of electricity systems, a network-aware approach was implemented in this work where

the simulation of optimisation and P2P markets were coupled with a power flow

analysis. Using this approach, the impact on the network was analysed to ensure a

healthy operation of the system.

Following this, it should be mentioned that the control approach in this work

assumed access to the users’ assets which could result in a lower comfort level and

quality of life for the participants. To minimize this effect, a user-aware approach was

utilised where the user comfort was expressed through delay-based penalty matrices

embedded in the optimisation function and the thermal comfort levels were monitored.
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Figure 1.2: The three levels of co-simulation in this work that include
blockchain, energy algorithms and grid simulations.

Various challenges, including privacy and security, were identified in relevance to

the real-life adoption of community optimisation and P2P methods introduced in this

work. Therefore, the research approach included an investigation of distributed ledger

technologies which offer a decentralised secure method for transactions. In specific,

blockchain-based smart contracts were simulated and analysed as a solution to the

concerns related to the scalability of local energy management techniques.

Due to the different aspects of local energy systems researched in this work,

a multi-layer simulation methodology was developed. These three layers include

blockchain implementation, simulation of local energy management algorithms (in-

cluding P2P markets and optimisation) and power flow analysis of the distribution

network. This multi-layer simulation structure is illustrated in Figure 1.2.
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1.5 Highlights of research methodology

The highlights of the research approach employed in this work include:

• A real use-case based in Scotland was used to prove the benefits of community-

level optimisation and P2P trading. The results yielded better matching of local

demand and generation and proved the feasibility of these methods without

significant effects on network operation and user comfort levels. The simulation

of this use case involved collaboration with the industry and network operator.

Three neighbourhoods with up to 238 residential and 43 small commercial loads

were simulated.

• A comparison of inter-neighbourhood and intra-neighbourhood trading was per-

formed. Additionally, differing penetrations of small commercial loads (e.g.

bakery, hospital, bank, etc.) in neighbourhoods led to an analysis of the impact

this has on the local energy pricing.

• Participation in P2P trading was shown to defer the installation of distributed

batteries. A sensitivity analysis was performed to examine the relationship

between distributed storage penetration and P2P energy trading participation

to evaluate the effect on the community self-sufficiency and self-consumption

levels.

• A novel P2P market design was proposed for the first time in this thesis which

incorporated carbon-informed pricing of electricity in local energy systems. This

approach used the dynamic grid carbon intensity to evaluate the carbon savings

achieved through the use of local solar generation. This new method, namely

carbon-aware P2P trading, was shown to yield significantly lower carbon emis-

sions while retaining most of the economic value in the community.

• The use of blockchain-based smart contracts was demonstrated as an enabling

technology for the scalable implementation of smart local energy management

techniques proposed in this thesis.

• In addition to the technical outputs, the most extensive systematic review of

energy-related smart contracting was provided along with a detailed critical

discussion on the future of energy smart contracts. The information from this
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review was used to output a novel six-layer taxonomy of smart contracting in

energy systems.

• Additionally, the opportunities and challenges associated with the adoption of

P2P markets and community-level optimisation were discussed. The operation

of P2P markets under the recent disruptive conditions, such as the COVID-19

lockdown and 2020-2021 winter gas scarcity pricing, were qualitatively analysed.

Lastly, this thesis also evaluates the implications for various stakeholders in the

energy systems which range from end-users to the electricity system operator.

1.6 Key findings

The key findings from this work are summarised below:

• P2P trading increases energy sharing in the community by 14%, reaching 70%

self-consumption and 32% self-sufficiency levels in the simulated case study.

• The impact on the network signals such as voltage stability and power losses

are negligible when P2P sharing is coupled with peak shaving implementation.

• Inter-community P2P trading yields the highest cost savings worth £210 per

household annually. This is 7% more profitable than community-level cost op-

timisation.

• Carbon-aware P2P trading saves 35tCO2 in a year. It achieves 7.2% carbon

reduction if 4% of the cost savings is sacrificed.

• Blockchain and smart contract implementation outweigh the benefits now. By

2032, the more efficient consensus mechanism Proof-of-Stake will enable wide-

scale implementation. However, the associated energy use and computational

expense will decrease cost and carbon savings by 18.0 and 11.2%.

1.7 Structure

The thesis is structured into a total of seven chapters where Chapters 3, 4, 5 and 6

contribute most of the technical knowledge. The relationship between the chapters is

shown in Figure 1.3 where the literature survey in Chapter 2 feeds into the technical
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chapters. While Chapters 3, 4 and 5 focus on the modelling and simulation of the

smart local energy systems and markets, Chapter 6 proposes the use of blockchain-

based smart contracts for the implementation of peer-to-peer energy trading and

distributed control to overcome the challenges of security and privacy. Lastly, Chapter

7 concludes the research and summarises the main findings from the previous chapters.

The direct and wider impacts of the work are presented along with its limitations and

lastly, a scope for future work is provided.

Each chapter is summarised below. Chapter 2 reviews the literature in local

energy system modelling, surveying the motivation, methodologies and contributions

of existing work. The challenges, limitations and opportunities associated with the

design and simulation approaches are also discussed. It is divided into sections such

as co-simulation and optimisation, local energy markets and smart contracting which

directly relate to the next chapters.

Chapter 3 describes the bottom-up demand and generation modelling starting

with assets such as electric vehicles, rooftop solar panels and batteries. It features

cost-minimal community-level optimisation with considerations of user comfort and

network operation. It investigates the value of local-level flexibility offered in residen-

tial demand-side response services.

Chapter 4 develops the co-simulation structure consisting of local energy mar-

kets and distribution network models. The chapter also compares different local

energy market initiatives such as community and auction-based peer-to-peer trading

methods. It analyses the relationship between storage and peer-to-peer trading. Ad-

ditionally, it proposes a new local energy trading mechanism that is aware of the grid

carbon intensity, namely carbon-aware peer-to-peer trading.

Chapter 5 focuses on the coordination and control of smart local energy systems. It

compares different strategies and the resultant impact on user profit, carbon emissions

and imbalance on the grid. In specific, it compares community-level optimisation

with minimum cost and carbon objectives and three different local energy trading

mechanisms which are namely intra-community, inter-community and carbon-aware

peer-to-peer market methods. The implications for various stakeholders including

system and network operators are also discussed in detail in this chapter. As a

highlight, it features use-cases from Huntly, Aberdeenshire, Scotland.

Chapter 6 explores the implementation of the optimisation and P2P method-

ologies presented in the previous chapters and proposes the use of a tamper-proof

8
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1 Introduction

2 Literature Review

4 Local Energy
Markets and  
Co-simulation

3 Flexibility modelling
and Transactive

Control

5 Transactive control
and P2P Trading

Case studies

6 Blockchain and
Smart Contracts 

7 Discussion and
Conclusions

Figure 1.3: Relationship between the thesis chapters.
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decentralised ledger technology in the form of blockchain-based smart contracting.

It demonstrates the design and execution of smart contracts for peer-to-peer trading

applications and evaluates the associated computational expense against the bene-

fits. Using the trends in the existing work, it discusses and makes recommendations

with regards to the future of smart contracting and blockchain applications in energy

systems.

Lastly, Chapter 7 concludes the research and summarises the main findings from

the previous chapters. The direct and wider impacts of the work are presented along

with its limitations and lastly, a scope for future work is provided.

1.8 Dissemination and code outputs

During the course of this PhD project, there have been 8 publications which include

4 journals and 4 conference papers.

1. M Zerai, D Kirli, J Calautut, T Morstyn, A Kiprakis. “Cost-effectiveness of

virtual power plants based on residential aggregators”. IET Renewable Power

Generation. 2022

2. DKirli, B Couraud, V Robu, M Salgado-Bravo, S Norbu, M Andoni, I Antonopou-

los, M Negrete-Pincetic, D Flynn, A Kiprakis. “Smart Contracts in Energy Sys-

tems: A Systematic Review of Fundamental Approaches and Implementations”.

Elsevier Renewable and Sustainable Energy Reviews (RSER). 2022.

3. D Kirli, J Hampp, K van Greevenbroek, R Grant, M Mahmood, M Parzen, A

Kiprakis. “PyPSA meets Africa: Developing an open-source electricity network

model of the African continent”. IEEE AFRICON. 2021

4. D Kirli, M Parzen, A Kiprakis. “Impact of the COVID-19 Lockdown on the

Electricity System of Great Britain: A Study on Energy Demand, Generation,

Pricing and Grid Stability”. Energies. 2021

5. R Gilmour, D Kirli, S Michalski, J O’Donnell. “Towards bottom-up modelling

of the electricity demand of Huntly in 2030”. uSIM2020 - Building to Buildings:

Urban and Community Energy Modelling. 2020
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6. Y Gao, D Kirli, M Zeinali, S Mukherjee, A Birzhanova, J Thompson, N Pin-

doriya, A Kiprakis. “Development of a hardware in-the-loop co-simulation plat-

form for smart distribution networks”. IEEE 15th International Conference on

Ecological Vehicles and Renewable Energies (EVER). 2020.

7. I Antonopoulos, V Robu, B Couraud, D Kirli, S Norbu, A Kiprakis, D Flynn,

S Elizondo-Gonzalez, S Wattam. “Artificial Intelligence and Machine Learning

Approaches to Energy Demand-Side Response: A Systematic Review”. Renew-

able and Sustainable Energy Reviews. 2020.

8. D Kirli, A Kiprakis. “Techno–economic Potential of Battery Energy Stor-

age Systems in Frequency Response and Balancing Mechanism Actions”. The

Journal of Engineering. 2020.

In addition to the code and scripts produced to achieve the methodology of this

thesis, the work and skills developed during this doctoral research contributed to the

following repositories:

1. Zonal Use of Systems simulation platform (private repository owned by Scene

Connect)

The simulation modules for asset control for reduced carbon emissions which in-

cluded network, demand, and smart asset modelling. Partially published in [11].

Python (Pyomo, Scikit-learn, PVlib, etc.), MySQL, HELICS, API, GridLAB-D

2. Electricity Data Pipeline (public repository owned by Desen Kirli)

A tool for extraction, cleaning and visualisation of the GB electricity system

data including system demand, frequency and wholesale electricity pricing.

Published in [33].

Python and API

https://github.com/desenk/Electricity-Data-Pipeline

3. Energy Smart Contract (public repository owned by Desen Kirli)

Smart contract code sample designed for the purposes of distributed control

and energy & flexibility trading to serve as a starting point for energy systems

researchers to implement smart contracting. Published in [12].

Ganache, Solidity, Python, Matlab

https://github.com/desenk/energy-smart-contract
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4. UKGDS2DSS (public repository owned by Centre for Sustainable Electricity

and Distributed Generation)

A script for automated conversion of the UK Generic Distribution System

(UKGDS) network models to the dss format for use in the distribution sys-

tem simulator, OpenDSS. The output includes various typical rural and urban

distribution network models which are potentially useful for other researchers.

OpenDSS and Python

https://github.com/sedg/ukgds2dss
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Chapter 2

Literature Review

This chapter surveys the key literature in the field of local energy systems modelling.

It reviews the motivation, methods and contributions of existing work. It is divided

into three sections which are local energy system coordination and optimisation (Sec-

tion 2.2), decentralised energy markets (Section 2.3) and smart contracting (Section

2.4). These sections provide a discussion of the research gaps which directly relate to

the next chapters - as previously shown in Figure 1.3. Lastly, the chapter concludes

with a summary of the identified research gaps in the literature that this thesis was

set out to address. Section 2.4 of this chapter was published in [12].

2.1 Introduction

The proliferation of small-scale renewable energy generators has significantly altered

the way energy is generated, distributed, and consumed [34]. The rapid increase

in the number of prosumers (who are pro-active agents with generation or storage

resources) provides an opportunity for a more decentralised electrical system opera-

tion [35]. Despite the increase in DER and flexible loads on the distribution network,

their techno-economic potential is hindered by the current method of system opera-

tion which overlooks the flexibility offered by domestic-scale distributed assets [22].

The ongoing transition from centralised to decentralised energy provision and coor-

dination is illustrated in Figure 2.1. This figure shows that the decentralised method

involves bi-directional energy sharing between the peers (shown in green). This decen-

tralised set-up enables the integration of consumer-centric local energy markets [36]

and bottom-up flexibility provision [37]. P2P energy markets and neighbourhood-
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Figure 2.1: Illustration of a centralised (left) and a decentralised method
of energy provision (right).

level energy coordination were shown to be capable of delivering flexibility to the grid

while producing economic benefits for end-users [14, 26, 38, 39, 40].

Recognising the value of local energy systems, the European Commission pro-

posed a novel regulatory structure for the concept of energy communities [41]. This

legally enabled peer-to-peer energy trading where peers located in the same energy

community. Through the spread of energy communities, European Commission an-

ticipates more decentralised and market-oriented coordination of local supply and

demand where the community members act in a collective manner to accelerate the

net zero transition. As an added benefit, this regulatory framework is expected to

increase the public acceptance of renewable energy technologies and neighbourhood

coordination methods. The pro-active and autonomous nature of energy communities

separates it from previous examples of coordinated microgrid response [42, 43].

It should be noted that a peer in this thesis refers to a residential end-user rather

than a commercial/industrial user. Hence, peer-to-peer trading is solely used for

trading between residential end-users on the distribution network. Additionally, com-

munity refers to the energy community consisting of peers in a neighbourhood (i.e.

with geographical proximity). Community-level actions are performed in a coordi-

nated manner to achieve a common goal. For instance, community-level optimisation

harmonises the efforts in the whole neighbourhood at once rather than individually

minimising costs at each node.
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2.2 Coordination and optimisation in local energy

systems

2.2.1 Motivation

The distributed generators and energy storage are often coordinated by an aggregator

or a community manager in order to enable their participation in energy and flexibility

markets [22, 44, 45, 46]. Using local energy management techniques, the existing

flexibility from the decentralised load, generation and storage assets can be leveraged.

Coordination in this context refers to the control and synchronisation of smart

homes and assets to reach a common objective. In particular, this concept can be

used in energy communities and/or neighbourhoods in favour of the grid. Balancing

services such as load shifting and peak shaving can be delivered through the resi-

dential aggregation of loads and generation [22]. When coordination is coupled with

optimisation, load shifting can be employed for minimising bills [47].

Figure 2.2: Aggregated neighbourhood demand profiles associated with
the no-control, selfish HEMS and coordinated neighbourhood cases in red,
grey and green respectively. The coordinated control case is shown to
result in the lowest morning and evening peak demand [2].

Safdarian et al. [2] showed that high volumes of selfish household optimisation re-

sult in adverse aggregated effects such as rebound peaks in demand and unfavourable

operation conditions in different parts of the distribution grid. The aggregated load

profiles, shown in Figure 2.2, demonstrate that the coordinated response from home

energy management systems (HEMS) (in green) provides a relatively flatter demand
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curve when compared to the no-control and selfish operation cases. Additionally, it

reduces the peak demand value by approximately 20%. To achieve these effects and

also decrease the stress on the network, the concept of community energy coordina-

tion, in the form of coordinated HEMS optimisation, has been proposed by various

researchers including [26, 45, 48].

2.2.2 Coordination methods

There are multiple methods and topologies of coordination proposed in the literature

and so far, there is no consensus on the number of existing coordination topologies

which range from four to seven [26, 48, 49, 50]. Therefore, the most common and

relevant coordination topologies were chosen to be studied in this section. These four

topologies were illustrated in Figure 2.3 which are (a) centralised, (b) distributed with

a coordinator (also referred to as “coordinated”), (c) fully distributed and (d) hybrid

design.

Figure 2.3: Four types of neighbourhood coordination topologies where C
denotes the coordinator.

The centralised topology, shown in Figure 2.3(a), represents a solution that is

most similar to the business-as-usual operation of the network. It employs a central

entity such as the utility or network operator which communicates information to the

end-users as shown in [51, 52]. In this topology, the end-users often communicate

little to no information to the central entity. Therefore, this method has a high level

of privacy. However, this also means that the network operator has no visibility

regarding the load and generation forecasts of the individual users.

On the other hand, Figure 2.3(b) offers a distributed approach with a local energy

coordinator similar to research in [53, 54, 55]. The coordinator role can be played

by a peer, aggregator or distribution system operator. The coordinator receives in-

formation about the load and generations profiles of its local peers. Peers share this

16



2.2. COORDINATION AND OPTIMISATION IN LOCAL ENERGY SYSTEMS

information with the coordinator but do not communicate with each other directly.

Visibility of local energy demand and supply allows the coordinator to aggregate the

local flexibility for participation in balancing services. As this information is shared

with the coordinator, the privacy level is lower from the end-user’s perspective. Yet,

it reduces the communication and computation burden in comparison to the cen-

tralised topology. In addition to flexibility provision, this topology can also facilitate

community-based P2P trading. The coordinator allows the formation of energy com-

munities as the optimisation in this topology takes place at this level. Therefore, this

technique would allow coordination of the peers to meet a communal objective such

as reducing the collective carbon footprint [26]. As shown in [11], this coordination

method is used for bottom-up network control scenarios as well as for reducing costs

and carbon emissions.

The fully decentralised method in Figure 2.3(c) allows each household to become

its own decision maker as it offers higher levels of autonomy than the central and

coordinated approaches - as shown in [56, 57, 58]. This method has higher levels of

privacy as the information is shared with individual peers rather than the coordina-

tor. This method allows fully decentralised implementation of local energy markets

which include auction-based P2P trading. This method requires negotiations between

peers and hence, iterations in order to clear the energy and flexibility markets. This

method further decreases the computational and communication load as optimisa-

tion is performed at each node and communication only takes place between trading

parties [48].

Lastly, Figure 2.3(d) shows a hybrid approach which is also sometimes referred to

as nested coordination method [30]. This may either serve as a transition topology

between options (b) and (c) or as a hybrid solution. It also allows the co-existence of

auction-based local energy trades and coordinated flexibility provision.

In this thesis, the distributed coordination topology was used as the research

has a community outlook where the individual effort of the peers are controlled and

harmonised to achieve benefits for the users, environment and the local energy system.

This is discussed in more detail in Chapter 5.

2.2.3 Optimisation methods

There are various optimisation methods presented in the current literature but in

this section, only the methods used in similar coordination topology were considered.
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Hence, heuristic and meta-heuristic optimisation techniques were not considered as

the most prominent method in literature was convex optimisation (e.g. mixed integer

linear programming) [59].

The different convex optimisation problems found in previous work can be cate-

gorised into two groups: plain mathematical optimisation methods and decomposition

methods. Examples of mathematical optimisation methods include linear program-

ming and mixed integer programming [40, 50, 60]. Decomposition in this context

refers to the division of large-scale optimisation problems into multiple sub-problems.

Decomposition algorithms (e.g. ALADIN and alternating direction method of multi-

pliers (ADMM)) are often used to solve computationally intractable problems. One

of the key driver for using ADMM is the consideration of multiply agents/decision-

makers, whereas mixed integer linear programming (MILP) method is more efficient

when working with a single decision maker [48]. To summarise, the most dominant

factors for choosing an optimisation algorithm are the specific coordination topology

and the computational complexity of the problem [26].

For the coordinated control of neighbourhoods, reviewing the literature revealed

that (non-decomposition) mathematical optimisation algorithms were most commonly

used due to their robust nature [2, 48]. In particular, MILP was found to be suitable

for coordinated neighbourhoods, as shown in [60, 61]. The advantage of MILP is that

it is capable of solving a simultaneous sizing and scheduling optimisation problem,

where the objective is to minimise costs and/or environmental impact, and where the

system to be optimised is represented by a number of nodes and various equality and

inequality constraints. In [61], a smart community energy management method was

used to coordinate batteries and solar systems in order to simulate “user-dominated

demand-side response” and P2P trading. This study along with [60] showed that

MILP can significantly decrease the computational time and complexity for such

problems. Therefore, as the formulated problem was computationally achievable,

MILP was chosen as the optimisation algorithm in this thesis.

Several other works used MILP for optimising local energy systems with hot water

systems, residential batteries and EVs. In addition to electrical systems, MILP also

has been used for multi-vector optimisation. For instance, Kauko et al. [62] used MILP

to optimise thermal storage in local energy systems in Norway and Ata et al. [63]

demonstrated its use for a multi-vector system which considered gas and heating

systems. Meanwhile, [64] adapted the single-objective MILP formulation to include
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multiple objectives using an urban network as a case study. The main shortcoming

of MILP is that the optimisation model is evaluated at each time interval. This

increases the computational expense in comparison to the meta-heuristic methods.

On the other hand, this method achieves more accurate optimisation results.

Further details are provided in Chapters 3 and 5.

2.2.4 Modelling user comfort

Research presented in [45, 50, 65] focus on the benefits of transactive control and

neglect the impact on the users. The most recent review articles, including [26, 49]

highlight the research gap with respect to integrated user comfort modelling. In stud-

ies such as [11], the user set-point and the resultant indoor temperature are compared

to estimate and quantify the change in user comfort due to transactive control ac-

tions. While most of the research in this area considers thermal comfort limits related

to heating and cooling, there is a lack of consideration for the inconvenience caused

by delaying the user-scheduled EV charging actions. Lotfi et al. [49] stated only one

publication that considered and quantified this as “discomfort index” [66]. However,

this study is limited to home energy management system (HEMS) optimisation rather

than neighbourhood-level coordination.

2.2.5 Discussion of research gaps

This section reviewed the literature relevant to neighbourhood coordination and

community-level optimisation. This subsection discusses the three major research

gaps that were identified.

First, to increase the social acceptance of neighbourhood coordination, the mod-

elling and optimisation methods have to integrate an understanding of user satisfac-

tion rather than just evaluating it as a performance indicator. Despite the advantages

of transactive control, it might incur inconvenience to the users, comprising their qual-

ity of life. Almost all of the research focused only on thermal comfort limits, however,

there is also disutility caused by delaying EV charging sessions and other asset op-

erations. Hence, there is a need to improve user-centric optimisation methods in the

modelling framework of local energy systems. To address this, this work proposed a

user-centric optimisation method. This method has an integrated user comfort com-

ponent in the optimisation step. It takes into account the increased risk of lowering
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user satisfaction when rescheduling the user-set actions to achieve minimum costs or

carbon emissions.

Second, most of the literature did not consider a real case study in terms of asset

penetration levels and network topology. Thus, the cost savings and network benefits

require validation through the use of a pilot study. In addition to neighbourhood

control, this also applies to P2P energy trading. In this thesis, penetrations of flexible

loads including heat pumps, EVs and batteries along with solar PV generation were

considered. A pilot study located in the north of Scotland was chosen as a use-case

where the local DNO provided a dataset of asset penetration levels for the near future.

This dataset in combination with the local network topology was used to simulate

and validate the impacts of P2P energy trading and user-centric and network-aware

optimisation in the near future.

Lastly, from the perspective of the DNO, losses, transformer usage and voltage

levels are also significant indicators in addition to the energy imbalance. However,

most research work seem to focus on the economic effect and peak load rather than

evaluating the technical impact of community coordination on the network. In re-

sponse to this, this thesis modelled the digital twin of a real LV distribution network

in the north of Scotland using line data obtained from a British DNO. It analysed

various grid operation indicators which include peak load, imbalance volumes, losses,

transformer usage, voltage levels, etc. Presenting these technical results clarifies the

technical impact of such coordination methods which increases the likelihood of their

adoption.

2.3 Local energy markets and co-simulation of mar-

ket and grid

2.3.1 Motivation

The current top-down energy market operation neglects the residential consumers

and inhibits them from directly participating in energy trades or balancing markets

due to their low consumption and generation capacities. The majority of end-users

are only allowed to buy electricity from the grid and sell electricity to the grid, of-

ten using a fixed tariff. On the other hand, local energy markets are designed to be

consumer-centric and aim to provide economic benefit to the participants [67]. The
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term local energy market (LEM) refers to a small-scale economic system that coordi-

nates consumption, generation, storage and additionally other energy vectors, such as

transport and heating, in an energy community and/or microgrid. In this thesis, P2P

trading is considered to be a subset of local energy markets which indicates that the

users live in the same neighbourhood. This means that they are located on the same

electricity network, often behind the same primary or secondary substation. Men-

gelkamp et al. [68] defined P2P energy trading as a “marketplace platform for trading

locally generated (renewable) energy among residential customers within a geograph-

ically and socially close community”. Similarly, this work only considers residential

users as peers when demonstrating the benefits and drawbacks of participation in

LEMs.

According to [29, 69], P2P trading is vital for moving towards fairer energy systems

as it offers more choice to the sellers and buyers, and increases the transparency of the

energy trading process. Additionally, it complies with the three pillars of the energy

revolution which are namely digitisation, democratisation and decentralisation. LEMs

also aim to increase the resilience of the grid in a cost-effectively by unlocking the

export potential of the distributed generation surplus. The use of P2P platforms to

offer grid services, in addition to local energy trading, is illustrated in Figure 2.4. In

this figure, the P2P platform coordinates energy transactions within the distribution

network and additionally provides flexibility services through the coordination of users

which is perceived as a federated virtual power plant by the grid operator. According

to the World Energy Council [23], this would accelerate the inclusion of smaller and

more diverse assets and present the consumers and producers with more freedom

and control regarding their energy preferences. This method would also aid with

increasing awareness about fuel poverty, highlighting the social impact of this P2P

model that enables electricity to be donated and discounted [27, 70, 71].

2.3.2 Enabling technologies

The enabling technologies can be divided into two categories depending on whether

they operate on a virtual or a physical layer. The physical layer enablers include smart

metering and communication infrastructure. On the other hand, the virtual layer

has contributors such as distributed ledger technologies and new market negotiation

technologies.
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Figure 2.4: The P2P platform coordinates energy transactions within the
distribution network. This platform is also capable of providing flexibility
services through the coordination of user which is presented as a federated
power plants [3].

In recent years, blockchain-enabled P2P trading and community-centric energy

sharing applications have received an increased research interest as demonstrated by

[40, 72, 73, 74]. There is also an increasing focus on the LV microgrids and local

distribution networks for the application of blockchain technologies in P2P energy

trading [36, 75, 76]. Nevertheless, while these technologies are mentioned in the

literature, only a few studies actually implement the energy management algorithms

in smart contracts or demonstrate the steps of smart contracting in a repeatable

format. The more detailed review of enabling technologies, focusing on blockchains

and smart contracting, is presented in Section 2.4.

2.3.3 Types of consumer-centric local energy markets

Various reviews [14, 26, 30, 67, 77, 78, 79] and research work [57, 80] primarily divided

local energy markets into two categories. While Sousa et al. [30] refer to these as “full

P2P” and “community-based P2P” methods, others call them “auction-based” and

“distributed”. In this thesis, these two types were often referred to as “auction-based”

and “community-based” LEMs.

The auction-based market utilises multiple bi-lateral contracts between the users

and often involves negotiations and iterations. The price of the energy exchange is
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Figure 2.5: Categorisation of P2P-based energy and flexibility markets
according to their targeted system (e.g. distribution or transmission) and
beneficiaries (e.g. prosumers or operators) - from [4].
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derived from the bids and offers of only the participating users. The advantage of this

method is that a heterogeneous user group can be simulated as shown in [80]. Some

peers can express their preference to buy energy from low-carbon DERs and others

may donate energy to low-income participants. Nevertheless, this market heavily

depends on communication and trust between the parties involved. Thus, it has a

high computational demand and communication burden [26].

In addition, the auction-based approach might result in conflicts and market coali-

tion formation, the community-based approach has a more naive outlook in the sense

that it uses a coordinated approach. Hence, this method does not require the di-

rect communication between peers and collectively determines the price. In [81], this

method computes the community energy buy and sell prices through evaluations of

the energy surplus or deficit in the local network. This approach is more suited for

achieving community goals. The downside of this method is that the task of coor-

dination is often handled by a community manager who can be a peer, aggregator,

DSO or a centralised algorithm which has access to the user information [82].

Additionally, there is a hybrid approach which is a combination of the two previous

approaches [30]. For instance, some studies incorporate bi-lateral trading between

microgrids that have nested community-based P2P markets. In this thesis, both of

the traditional approaches were simulated and compared along with inter and intra-

community trading scenarios. More information is presented in Chapter 4.

The review work in [82] categorised the research work according to the product

differentiation and key performance indicators (KPI). This was the only work that

considered user preferences and customer satisfaction - in terms of “quality of ser-

vice” and “quality of experience”. But, both KPIs were financial calculations related

to the distribution of benefits amongst the peers rather than the inconvenience of

implementing profiting P2P market actions via distributed control of user assets. For

instance, the “quality of experience” KPI evaluated the price points of each consumer

(i.e. in auction-based markets) to measure the fairness of the local energy exchanges.

This means that if they all trade at the same price (similar to community-based en-

ergy markets), the fairness of the community would be the highest. Nevertheless,

the KPIs presented by this work revealed that user comfort is not modelled in the

majority of the P2P-related literature. Thus, this thesis applied the consumer-centric

optimisation technique developed for the neighbourhood coordination simulations in
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LEM simulations in order to ensure that the life quality of the users was not compro-

mised.

In a separate set of work, Morstyn and McCulloch [4] showed that P2P energy

trading platforms offer benefits to the prosumers and systems operators by providing

services on distribution or transmission levels [4]. Rather than purely trading energy

amongst the peers on the distribution system, these platforms can be used to provide

value to the network and system operators through local flexibility and federated

power plants. These approaches were categorised according to their targeted system

(e.g. distribution or transmission) and beneficiaries (e.g. prosumers or operators) in

Figure 2.5. This thesis focused on the distribution end of the scale as it is concerned

with LV microgrids. Hence, the types of local markets reviewed in this section are

limited to local energy trading and local energy flexibility.

2.3.4 Co-simulation of energy markets and grid models

This literature survey identified that there is a need for a holistic approach toward

local energy systems in addition to the two dominant streams of research which focus

on the either efficient and fair design of local energy markets or achieving more bal-

anced networks via distributed control and virtual power plants. There is relatively

recent work that explores the impact of P2P markets on LV distribution networks

[83, 84, 85]. For instance, Hayes et al. [83] took into account physical constraints

of the grid whilst allocating local supply to the households and analysed per-unit

voltage drops caused by individual market actions. This work was part of an Irish

project called EnerPort that has various industry partners which demonstrates the

increasing interest in this field.

Studies such as [67] anticipate that local energy markets will lead to lower grid

stress and enhanced operation of distribution networks in the future. Therefore, co-

simulation of the market and grid is necessary to simulate the technical impact of the

local energy exchanges. Previous work has shown that the use of LEM algorithms can

accelerate the integration of flexible assets and also improve local network balancing

due to better managed allocation of local energy resources [44, 86, 87, 88]. However,

these simulations validate the impact of LEM algorithms under certain conditions

and there is no comparison between different algorithms. Another perspective is that

the optimal market actions decided by the market module may result in higher peak

loads and higher/low voltage levels. This would threaten the adoption of local energy
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markets in real life as they would increase the burden on the distribution system

operator.

While most co-simulation research used the IEEE LV European case study [27, 83],

others such as [89] and [82] used the 39-bus and 37-bus radial systems. Following the

most prestigious publications, the IEEE LV European case study was employed in

the initial chapters of this thesis (in Chapter 3). Nevertheless, the use-cases from

the pilot project in Scotland used real network data to construct LV case studies to

validate the impact on the network - these are presented in Chapter 5.

2.3.5 Review of research and pilot projects

In addition to the trends in research, the use of P2P technologies in the energy sector

also attracted attention from the industry in the UK (Electron [90] and Emergent

[91]), USA (TransActive Grid by LO3 Energy [92]), Netherlands and France. In

the UK, Open Utility has a local energy transaction platform, called Piclo, where

commercial users of electricity can digitally buy and sell units for the next half-

hourly period [93]. As some generators, especially the community energy assets, have

discounts for local users, P2P trading presented an economic benefit to the consumers.

A good example is the Delabole Local Tariff which provides electricity to the users

within a 2-kilometre radius at a tariff that is at least 20% cheaper than their standard

rate [93].

18 different research and pilot projects, in the field of peer-to-peer trading, are

summarised in Table 2.1, noting the countries they operate in and the start year

of the project. The first initiative of local energy markets was launched in 2010

by the German renewable electricity and gas supplier LichtBlick [94]. While one to

two projects were launched every year till 2015, seven projects started within the

year 2015. Most notably in that year, TransActive Grid deployed a pilot microgrid

in Brooklyn which is probably the most famous example of P2P electricity trading

[95] cited by many studies [68, 96]. All of the listed projects enable the users to

participate in a local energy market and trade with their neighbours. While some

focus on consumer-centric market design (e.g. Energy Collective), others also consider

implementation in terms of hardware and communications (e.g. P2P-SmarTest).
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2.3.6 Carbon savings of local energy markets

In order to assess the carbon saving potential of local energy markets, the avoided

mass of carbon dioxide emissions has to be calculated. In most cases, the local

generation is supplied by solar energy which is assumed to be carbon neutral [11].

Previous work and projects mostly used a simplified conversion method to calculate

carbon savings achieved by multiplying the energy savings with a constant per-unit

carbon emission value [97, 98]. The assumption of a constant carbon intensity value

misrepresents the varying pattern of carbon intensity throughout the day due to

the periodical nature of RES. Thus, this indicates a knowledge gap in analysing the

variable carbon-saving nature of local energy trading in the literature.

Studies including [80, 98] have shown up to 18% reduction of carbon emissions, as-

suming a constant rate of 0.55kgCO2/kWh based on the assumption that the central

generation is completely gas powered. However, the average carbon intensity of elec-

tricity in the UK is 0.233kg of carbon dioxide equivalent per kWh [5] which highlights

the need for a more detailed analysis of the carbon saving potential of P2P energy

markets. On average, the carbon emission levels are significantly decreased during

the middle of the day and overnight, due to solar and wind generation. Addition-

ally, electricity price and carbon intensity do not always have a directly proportional

relationship. Hence, minimum cost scenarios do not reflect the full decarbonisation

potential of P2P markets.

The assumptions of the previous work regarding constantly high grid carbon in-

tensity do not provide correct information to the optimiser which leads to results

which are inadequate for estimating the carbon savings resulting from cost-minimal

load shifting. This is because, as shown in Figure 2.6, the morning surge sometimes

results in the highest per-unit carbon emission value of the day. In addition to diurnal

changes, there is also seasonal variation due to lower energy demand and higher solar

contributions during the summer months, however, this cannot be generalised as it is

volatile to the wind energy output in the winter.

Therefore, in order to assess the potential of P2P markets as a bottom-up decar-

bonisation tool, there is a need for an in-depth carbon avoidance study. The research

work addressed this and also developed a P2P pricing mechanism that takes into ac-

count carbon dioxide emissions. The novel concept of carbon-aware P2P pricing along

with the methodology of carbon intensity computations is provided in Chapter 4.
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Figure 2.6: 2019 winter and summer carbon intensity of electricity im-
ported from the grid - data from [5].

2.3.7 Discussion of research gaps

To summarise, this section reviewed the developments in the local energy market

research and co-simulation methods. This part presents the identified research gaps

and explains how this thesis addressed them.

First and most significantly, while most of the previous work provided detailed

economic results, the considerations of carbon emissions were found to be inaccurate

and rudimentary. Often, a single average value of carbon emissions was used for

a whole year of simulation [97, 98]. However, carbon intensity is highly variable

with seasonal and diurnal patterns (See Figure 2.6) which indicates a major research

gap in this area. In response to this, this thesis evaluated the carbon emissions

from all of the simulated cases using the half-hourly measurements of grid carbon

intensity. This resulted in more accurate representations of carbon savings achieved

by participation in P2P markets. Additionally, this thesis proposed a carbon-aware

P2P energy trading method for the first time. This method introduced the integration

of a carbon incentive in the P2P market price which rewards sharing of energy when

the carbon intensity of the grid energy is high.

Second, this section examined the co-simulation of the grid and market models
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and evaluated that the current research trends either focus on the market design

or network operation. Therefore, more research in the area of network and market

co-simulation is required and hence, a network-aware P2P trading method was used

in this thesis. Additionally, a very small portion of the P2P-related research took

user comfort into account. Whereas, this work employed a user-centric optimisation

method with integrated consideration of user satisfaction.

Third, almost all publications to date use the standard IEEE LV European net-

work for their simulations [4, 7, 83]. A real use-case is required to study the realistic

network effects of P2P energy trading in order to increase the acceptance of LEMs

by the network and system operators. As previous work [4, 83] did not simulate any

small commercial loads in their networks, these results do not provide an accurate

representation of a real LV network in GB. Therefore, research using real use-cases

should validate the findings. As mentioned previously, to address this, this thesis

simulated a real part of the GB distribution network located in the north of Scotland

using line data from the local network operator. Additionally, the small commercial

and industrial (C&I) loads were also modelled but excluded from P2P participation

(in order to avoid market distortion). Hence, this work also addressed the knowledge

gap regarding the effect of small C&I loads on the P2P prices and network operation.

Lastly, [99] evaluated that decentralised storage is more beneficial than centralised

for P2P applications, however, the benefits of P2P trading vary in different research

works as they use different penetrations of solar PV, batteries, etc. This may create

uncertainty about the actual benefit of P2P and it is more difficult for local energy

companies and operators to estimate the benefit of such systems. Hence, the rela-

tionship between normalised storage penetration (using the local demand as a basis)

and normalised P2P participation was presented in this work. In addition, when

simulating the real use-cases, the predictions of the local network operator were used

to determine the rate of EV, solar PV and storage uptake.

The details about the carbon-aware and other variations of P2P trading meth-

ods are provided in Chapter 4 and the results from the use-cases are presented in

Chapter 5.
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2.4 Blockchain-based smart contracting in energy

systems

This section reviews the literature about the enabling technology called smart con-

tracting which is key for the implementation of transactive markets and control. Using

a database of 178 papers, it specifically focuses on the use of smart contracting in

energy systems. This work has been published in [12].

2.4.1 Introduction

Smart contracting, along with distributed ledger technologies (DLTs) may offer a

solution to the scalability challenges of neighbourhood coordination methods and

P2P energy markets, as highlighted by the systematic review of Andoni et al. [29].

Blockchain technology or distributed ledgers represent a base layer technology that

provides a secure and immutable ledger of digital transactions and value transfers in

a network. Smart contracts are codified using an underlying blockchain architecture

and therefore intrinsically inherit many of its desired properties, such as automation,

decentralisation, immutability and security. In fact, it can be argued that smart con-

tracts are the aspect of blockchains that is the most relevant for the energy application

layer. While blockchain architectures are concerned with data storage, involving as-

pects such as cryptographic security or reaching consensus on the information to be

written on the blockchain, the contractual operations and transactions to be executed

on the blockchain (whether they concern money, energy or flexibility commitments)

is a concern of the smart contracting layer.

Smart contracts are self-executable programs that are able to monitor and change

the ledger according to user-defined rules. They can be triggered when certain condi-

tions are met and can automatically execute and control energy trading events. They

use computer hardware to process data, verify conditions, deal with negotiations and

validate a contract. The records are append-only (i.e. irreversible) and transparent.

Hence, the requirement for an intermediary or a system operator is eliminated. As

a result, this holds the potential to automate and accelerate automated negotiations

and contracting between the parties [100]. Smart contracts offer a virtual means of

reaching and enforcing a credible agreement and/or transaction [101]. In turn, this

can enable the development of new forms of social organisations, such as Decentralised
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Social Organisations (DAOs), in the energy space, self-organising energy communi-

ties or microgrids. On the regulatory side, a report on distributed ledger technologies

published by the United Kingdom government chief scientific advisor [102] identifies

smart contracts as a crucial factor that can unlock the full potential of blockchain

technology.

Finally, despite its significant potential, smart contracting is still a developing

technology and has several open challenges associated with its implementation, such

as privacy concerns, the risk of cyber-attacks (such as hacking) and the energy re-

quired for computation and blockchain deployment of the contracts. So far, smart

contract applications in energy systems have been mostly focused on research, proof-

of-concept and demonstration projects (such as P2P demonstration projects run in

a local community or microgrid). However, as the technology scales up, security

vulnerabilities and threats, implementation and communication issues, as well as fi-

nancial and environmental costs of deploying smart contracts will become increasingly

important to consider. This is already the case in areas where smart contracts are

already deployed on a large commercial scale such as Decentralised Finance (DeFi)

and non-fungible tokens (NFTs).

To conduct this analysis, a systematic search and review method was employed to

evaluate how smart contracts are used in the field of energy systems. To obtain the

literature of interest, the phrase “smart contract” was queried along with “energy”

or “electricity”. The literature is that feature the aforementioned keywords in their

title, abstract and list of keywords, using Scopus which is one of the most compre-

hensive indexes of peer-reviewed scientific publications, comprising of both journals

and conference proceedings. After filtering for relevance, this resulted in a corpus of

178 peer-reviewed publications, on which this study is based.

2.4.2 Fundamental principles of smart contracts

This section presents the background information and fundamental principles regard-

ing the definition of a smart contract, including an example of a generic energy smart

contract.

2.4.2.1 Blockchain technology overview

Blockchain and other distributed ledger technologies are a key underpinning technol-

ogy for smart contracts.
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Intuitively defined, a blockchain is a chain of information blocks (usually, contain-

ing information about crypto-currency transactions or smart contract specifications),

linked together through cryptographic methods. It has alternatively been described

as an append-only log, or a distributed ledger of transactions [103]. Unlike a cen-

tralised database, this ledger is distributed, meaning no single party has control over

writing information to the blockchain. In fact, a number of nodes or peers all have

a copy of the whole blockchain (or the key information of the chain), and mutually

agree on how the information can be written or added through a consensus protocol.

A key feature of blockchains is that it is tamper-proof : information written in

previously accepted blocks cannot be changed, a property assured through crypto-

graphic hashing. In more detail, all the transaction information contained in each

block is efficiently hashed through a so-called Merkle tree in the header, while each

block contains a hash of the header information of the preceding block. In practical

terms, these cryptographic links created through hashing means that any unautho-

rised change (i.e. tamper) with the information in a previous block is immediately

detectable by all nodes. Typically, in blockchain systems, if a transaction in a pre-

viously accepted (or “mined”) block needs to be changed or reversed, this can only

be achieved by recording the reverse transaction in a future block, accepted by all

parties.

A key issue in blockchain systems is the method of reaching consensus among the

nodes on each information block to be stored, i.e. the consensus protocol. There are

many variants of consensus protocols deployed or proposed (see [29, 103]), but the

main ones are:

1. Proof of Work (POW): This is the form of consensus in most open blockchain

systems, supporting their own cryptocurrency, such as bitcoin [104]. In POW

consensus, the node that has the right to add the next block to the chain is

determined by solving a cryptographic puzzle (technically, through a so-called

“zero-knowledge proof”), i.e. a puzzle that is hard to solve, but easy to ver-

ify. Adding a new block is often referred to as “mining”, and the nodes that

perform this activity as miners, which are rewarded a certain amount of native

cryptocurrency (or sub-unit of it) for each new block they successfully mine.

In the Bitcoin system, the puzzle consists of computing a number of leading

zeros, with the difficulty of the puzzle can be adjusted by increasing/decreasing
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the number of zeros required to be computed. In practice, the puzzle has be-

come exponentially harder to solve over time, currently requiring specialised

hardware (called ASICs, application-specific integrated circuits), pooling com-

putation resources into so-called “mining pools”, and especially, a large amount

of energy consumption. This large energy required to undertake POW compu-

tations is, popularly, one of the most well-known and striking features of POW

blockchains, as it currently exceeds the energy consumption of several countries

(with Ireland, Denmark or Argentina alternatively mentioned1). The sustain-

ability of the high energy use has been questioned, with most mining pools being

established in places with very cheap energy. While this often happens in areas

with excess generation from renewables, in many cases it utilises questionable

sourcing of cheap energy in some countries/regions (which are often based on

coal or other fossil fuels).

2. Proof of Stake (POS): This alternative consensus mechanism relies on giving

more weight (and hence a greater chance to mine the next block) to nodes that

have a greater “stake” in the system” (e.g. own more of the cryptocurrency).

This eliminates the need for energy-consuming PoW-style mining to establish

trustworthiness, and can also make generating blocks much faster. Currently,

the Ethereum network is actively exploring transitioning to a PoS-type model,

partially due to much lower energy costs to assure consensus.

3. Proof-of-Authority (POA): This consensus mechanism can be seen as a variant

of Proof-of-Stake, where the stake is the identity of the validator. POA relies on

a (relatively small) number of pre-approved validator accounts or “authorities”,

that have the right to validate transactions and add new blocks. Authority

nodes are required to go through a pre-selection process, disclose their identity

and register with a public notary database and comply with a series of rules to

remain trustworthy. Since they are rewarded for doing this and receive energy

in the network, they have an incentive to remain trustworthy, and avoid being

compromised by attacks. POA protocols have proved especially popular in

private (enterprise) blockchains, including energy applications (e.g. the Energy

Web Foundation blockchain system). This is due to the high transaction rate

that is achievable in POA-based systems, and much lower overheads and energy

1Readers can consult https://cbeci.org/ for the latest figures.
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costs than, e.g. PoW systems. However, having a small number of authority

nodes can be seen as going against the decentralisation principles underlying

blockchains, hence this is a less suitable alternative for public, permissionless

blockchains.

4. Other protocols : A number of other protocols have been proposed, including:

proof of elapsed time, proof of activity, consensus mechanisms relying on Byzan-

tine Fault Tolerance etc. The reader can consult Andoni et al. [29] or the NIST

overview [103] for detailed discussions.

Different types of consensus protocols are appropriate for different types of blockchain

systems. The main types of blockchain systems are:

1. Permissionless blockchain systems. This includes most of the blockchain sys-

tems supporting known cryptocurrencies, such as Bitcoin, Ethereum etc. In

this type of blockchain there is no central authority granting access to the

blockchain. In fact, in many cryptocurrency systems (e.g. Bitcoin), the users

or holders of cryptocurrency wallets remain completely anonymous, identified

only by their public key and cryptographic signature. Some wallets may be sus-

pected of belonging to criminal activity or hacking, but until the users behind

them attempt to exchange their cryptocurrency in “fiat” (regular) currency, it

is extremely hard to establish their real identity.

2. Permissioned blockchains (also known as “private” or “enterprise” blockchains).

In this type of blockchain, not any party can join, there is a central author-

ity granting access according to pre-agreed rules. Such blockchains often refer

to a specific system of application (e.g. prosumers in a microgrid P2P en-

ergy trading scheme, parties trading energy given a specified protocol etc.).

Permissioned blockchains can (and have) sometimes come under criticism for

not following what some authors see as the “truly decentralised” ethos at the

core of blockchain technology. Yet, it is worth pointing out that permissioned

blockchains are still very different in implementation to centralised databases:

while there is a process of verification and granting access, information is still

stored and written in a decentralised fashion among nodes, on a distributed

ledger.
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There are advantages and disadvantages associated with each type. Permissionless

blockchains are described in some sources as the only ones that are “truly” open or

decentralised: it is impossible for any party to change the stored information or rules,

unless they gain control of 51% of the computing power, which is unlikely in a large

system like Bitcoin (although some authors have raised concerns about the increasing

concentration of mining pools).

Most energy applications reported in the literature fall (implicitly or explicitly)

in the “permissioned blockchain” category. This is because in energy trading, the

identity of the parties trading will be generally known at least to some actors in

the system (unlike cryptocurency transactions, where wallet owners can remain com-

pletely anonymous). For example, smart meters points, where energy is imported or

exported, have a physical, identifiable location on the power grid. On the flip side,

however, this may also hold the promise of using forms of consensus that are quicker

and much less energy-intensive than Proof-of-Work mining, which would lead to a

more environmentally sustainable proposition, from an energy use perspective.

2.4.2.2 Relation between blockchains and smart contracts

Most well-known blockchain systems (e.g. Bitcoin, Ethereum) were set up around a

so-called “native” cryptocurrency, and the main aim of the blockchain is to record

the transaction in that crypto-currency, between users who store such currency in a

digital wallet. This digital wallet is protected and accessed by users through a system

of public-key (or asymmetric) cryptography, and allows transactions to be digitally

signed.

In addition to cryptocurrency transactions, a blockchain can also store software

code, called smart contracts, that is executed when the pre-defined conditions are met.

A smart contract is embedded on the blockchain, in a similar way to a cryptocurrency

transaction (which is the most common use case of blockchain). Specifically, the

compiled code and specific pieces of information, such as the list of functions to

be executed are sent from a wallet to the blockchain. This code and information

must then be included in a block that is added to the ledger (though the consensus

mechanism), at which point the smart contract code will execute to establish the

initial state of the smart contract. Similar to currency transactions, cryptographic

hashing secures the smart contract in a decentralised way from attempts to change

or tamper with it. Once its code is stored on the blockchain, a smart contract can be
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compared to a software process that will be run when specific conditions arise (e.g.

a certain amount of energy consumption or production). Practically, the execution

of the code embedded in a smart contract is deployed in a virtual environment that

is physically hosted by all the nodes that constitute the blockchain, as if they were a

single computer.

As a result, once a smart contract is deployed, it cannot be updated - if an attack

occurs due to some fault or vulnerability in the contract code, it is not easy to fix,

due to the decentralised nature of blockchains. This is true in open, permissionless

blockchains, for example, the DAO attack on the Ethereum blockchain in June 2016

– in which the Ethereum community decided to hard fork the blockchain, result-

ing in a different cryptocurrency. It is possible that in a permissioned (enterprise)

blockchain which most energy applications are likely to use, fixing attacks by restor-

ing the blockchain could, arguably, be easier to do, as a central party controls the

access to the system.

2.4.2.3 Definition and lifecycle of a smart contract

Smart contracts were first introduced by computer scientist Nick Szabo in 1996, with

the vision of using computer code in order to automate legal contracts while using

cryptography to make them secure and tamper-proof [105]. Szabo defines smart

contracts as “a set of promises, specified in digital form, including protocols within

which the parties perform on these promises” [106].

Another research line in the community [107] has focused on defining “smart legal

contracts” (or “Ricardian contracts”), that aim to capture the defining elements of

a legal agreement in a format that can be expressed and executed in software code.

Many smart contracts presented in the literature do not place the same weight on the

formal legal aspects as the Ricardian approach.

Their “smart” nature is related to their ability to self-enforce using a specified

set of rules once the pre-defined criteria are met. When deployed on a blockchain,

smart contracts can automatically reach and enforce agreements which result in a

faster process and reduced costs. This is especially beneficial for recurring trust-free

agreements/transactions with a low financial value such as half-hourly peer-to-peer

energy trading. The core principle of a smart contract is based on the “if-then” logic

which requires to program the desired outcome/action and the condition(s). For

instance, the outcome of a smart contract can be an action such as the discharge of
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(1) Agreement

(2) Smart Contract Established

(3) Criteria Reached

(4) Execution of Value Transfer

4 Steps of Smart Contracting

Figure 2.7: Four fundamental steps for execution of value transfer using
smart contracts.

a battery whereas the condition for this action to be triggered can be the electricity

export price going over a threshold value or the successful transfer of the required

funds from a buyer.

Since they are secure and tamper-proof, smart contracts are used in other sectors

with confidence. One example is the financial smart contract template developed by

the British multinational investment bank and financial services company Barclays

[108]. One of the key advantages of smart contracts over regular contracts is the

cryptography techniques used. This is highly valued by utility businesses as it creates

an encrypted and secure ledger of contracting actions. In addition to the recognition

of this in literature, Makmur et al. [109] presents the case study of Persero, an

Indonesian state-owned utility company with a reach of over 72 million customers,

highlighting the role of smart contracting in billing due to its tamper-proof and secure

nature.

To summarise, a smart contract is a sort of agreement between parties that is

automated, enforceable and self-executing. Even though it is mostly computed dig-

itally, some parts of the smart contract can be programmed to have human input

and control. Figure 2.7 concisely depicts the lifecycle of a smart contract in four

fundamental steps which are (1) agreement amongst the parties, (2) establishment

of smart contract, (3) verification that the criteria are fulfilled and (4) execution of
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value transfer (e.g. money and energy exchange). Step (3), namely verification of

criteria reached, provides a novel advantage for the energy systems and especially

local electricity markets. Indeed, smart contracts can enable automated peer-to-peer

energy trading:

Smart meter data can be used to verify energy transactions and trigger the billing

process of a smart contract. This would result in a fairer and faster settlement,

increasing the benefit to both the consumer and producer. The main goal of smart

contracts is to provide more secure transactions in comparison to the traditional

contracting methods and to decrease processing and verification costs and time.

Although these characteristics make smart contracts very suitable for financial

transactions using cryptocurrencies [110], the use of smart contracts energy sector

is still in its development phase as there are multiple concerns related to security,

privacy, scalability and billing [28, 111].

2.4.3 Application areas

In this subsection, an analysis of smart contract applications in energy systems are

presented with a focus on peer-to-peer trading and transactive control in line with

the previous chapters. Smart contracts are used in many applications, ranging from

energy trading to the coordination of distributed assets. The type of applications of

smart contracts can be categorised into two main categories: energy and flexibility

trading on the left-hand side, and distributed control on the right-hand side. In this

subsection, the two main themes and all the different areas of energy applications

illustrated in the figure are presented.

2.4.3.1 Energy and flexibility trading

As smart contracts run on a blockchain that has been initially designed to store

financial transactions, the most intuitive application of smart contracts corresponds

to trading and payment between two entities. As a result, in research, smart contracts

are mostly used in the context of energy or flexibility trading applications. In these

applications, the main objective of the smart contract is to facilitate the matching

between consumers and prosumers (providing micro-generation and/or storage), but

also to propose a secured and trusted payment or settlement mechanism. Smart

contracts have been used for the following specific applications:
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P2P trading Smart contracts are often employed for P2P trading applications.

The smart contracts first receive the bids and offers from the different stakeholders

(producers, prosumers and consumers), which usually also requires a deposit from

the buyers. Different approaches are then used by smart contracts to match the

buyers (consumers) with the sellers (producers). Approaches range from heuristic

methods to more complex approaches that include double auctions and power flow

validations [112]. In terms of heuristic methods, the smart contract usually matches

buyers and sellers and validates a trade as the bids come. This matching can be

performed by comparing the amount of energy and the price of incoming bids and

offers [110]. Once the smart contract has validated a trade, which consists of a price,

an amount of energy and a time of delivery, the smart contract for P2P trading can

then be used to analyse the monitoring of actual consumption and production coming

from the smart metering infrastructure [113]. This analysis can then automatically

trigger the settlement within the smart contract in order to distribute rewards and

penalties according to the contract condition. When P2P trades do not cover all

the needs of consumers or the generation from producers, smart contracts can then

facilitate transactions between the peers and the grid. Troncia et al. [114] uses a

smart contract-based ancillary service peer-to-peer energy exchange platform which

acts as a “virtual decentralised market authority”, negating the need for the presence

of a physical central operator. This is tested with 50 nodes and prove the potential

application in local ancillary services. In order to minimise the computation costs

of their Ethereum platform, the proposed smart contract uses a continuous double

auction (CDA) model. Liu et al. [115] uses the flexibility of EVs for P2P trading using

a novel Proof-of-Benefit (PoB) consensus to remove the need for an intermediary.

They also achieve demand response and lower power fluctuations by providing the

right incentives. Finally, smart contracts can also be used as a support for P2P

trading, i.e. the trading process is not implemented in the smart contract, but a

smart contract can be called to process a specific function. For example, [116] uses a

smart contract to allow consumers to request energy, but also to validate eligibility,

and process the financial transaction. However, the trading process that consists in

matching consumers energy requests with available energy in the microgrid, is done

outside the blockchain, at run time.
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Peer-to-grid Although the P2P area corresponds to the vast majority of smart

contracts applications reported in published research, some works also use smart

contracts for P2G transactions, as it is explained by Khalid et al. [117]. Indeed, after

local P2P trades have been validated by a smart contract, remaining energy needs

can be traded between the consumers and the grid. In this case, the smart contract

is used for billing purposes, but also to store and sign energy transactions between

the prosumers and the grid [110, 118], similar to the situation in the retail market

category. When Peer-to-Grid transactions are required to compensate for energy

shortage or surplus, the smart contract uses the grid electricity prices at the current

hour in order to determine the amount of money required for the financial transaction.

The P2G also considers vehicle-to-grid (V2G) examples such as [119, 120, 121].

For example, in [119] Proof of Authority is used to validate transactions and

synchronise the data which are authenticated by authorised aggregators. Moreover,

the recent work of [122] studies a setting where residential batteries are aggregated

through a smart contract to provide forward bids on the wholesale energy market.

Retail market Smart contracts can also be used for retail market applications, to

allow consumers to choose a supplier, to sign a contract with the supplier, but also

to securely store time series from the energy monitoring infrastructure and provide

associated billing services [123, 124, 125, 126, 127]. This is achieved by first allowing

the DSO to register every smart meter to the smart contract. Then, suppliers can

broadcast their offers for energy through the smart contract, which will authenticate

interested customers by using the smart meter address and by requiring a money

deposit. Payment is then executed by the smart contract after the monitoring and

settlement period are validated [125]. Hu et al. [128] use a trading mechanism em-

bedded in smart contracts which uses the market prices in China as a case study.

A method called encourage-real-quotation (ERQ) is employed for determining the

clearing price. The proposed method allows the generator to enter their offer after

the consumers bid on their required energy amount. On the other hand, Lu et al.

[126] use smart contracts to create a contract between households and suppliers (once

households have declared energy quantities and prices they accept to pay), to mon-

itor the energy consumption and production of the household, and to process the

settlement.
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Similarly, smart contracts can be used jointly with smart meters to measure in real-

time the amount of energy generated or consumed and automatically adjust demand

and supply. Smart contracts can also help to implement automated activities such as

defining electricity costs for a period, payment policies, times for buying and selling

electricity. Indeed, by leveraging the features of smart contracts, the speed, reliability,

scalability, and security of the energy markets can be improved. [129, 130].

Demand-side response In the current wholesale market settings, balance respon-

sible parties and aggregators can contract ancillary services, in the form of flexibility

from end-users to achieve equilibrium between energy supply and demand. For a de-

mand reduction or increase, the aggregator requires the registered end-users to meet

a given load profile. This process is called Demand Response (DR). Smart contracts

can be used at different stages of this process. First, in the case of DR events, smart

contracts can compute and store the forecasted baseline profile and the required pro-

file for buildings that are registered to the DR event [131], or they can periodically

define the available flexibility, prosumer energy profile and calculate the grid energy

balance [132]. Then, similar to the use of smart contracts in P2P transactions, smart

contracts can be used to set up a specific contract between interested consumers and

the aggregator, in which case the smart contract specifies the acceptance of the DR

request, with the required load profile [133]. Then, smart contracts can analyse the

demand reduction provided by the buildings, by comparing the measured load profile

with the forecasted profile. Smart contract design, from a game-theoretic perspec-

tive, has also been proposed for incentivising participation in demand-side response

schemes [134, 135]. Moreover, appropriate billing and payment can also be automat-

ically generated by a smart contract in order to reward or penalise consumers who

met the targeted load profile or not respectively [136, 137].

Market design Finally, in the energy trading area, smart contracts can be used

to clear a market in order to determine the prices of energy trades. Unlike the peer-

to-peer category that corresponds to full peer-to-peer trades, in which a buyer buys

energy from a specific seller, in this category, the application corresponds to hybrid

peer-to-peer, as defined in [30], in which a buyer does not know which producer pro-

vides the energy procured. Hence, this category regroups applications such as double

auctions [96, 117, 138, 139, 140, 141, 142, 143, 144], but also more complex market
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design approaches that directly includes a validation of the trade from power flow

computations, as it can be carried out using Distributed Locational Marginal Pricing

(DLMP) and AC Optimal Power Flow (AC OPF) [112, 140, 145, 146]. Also, [147] uses

smart contracts to implement a modified Vickrey auction. In this application, the

available energy from prosumers is computed by a specific smart contract and sent

to a trading smart contract. The trading smart contract also receives consumers’

valid bids, and determines the winning consumer bid as the highest bid, whereas

the price is the second highest price. The smart contract iterates until all bids have

been satisfied or no energy is left. P2P energy trading was also proposed in [148] for

electric vehicles. Indeed, [148] implements a contrary auction mechanism in which

discharging electric vehicles offering the lowest price are chosen to supply a local set

of charging EVs.

Unlike auctions that can efficiently be implemented within smart contracts [149],

optimisations such as AC OPF are too complex algorithms to be implemented in

current smart contracts languages. Indeed, as an example, Solidity language does

not support complex numbers computation. However, researchers proposed different

ways to use smart contracts for these applications, as an offline optimisation from

which the solution is stored in a smart contract [140], or by using the alternating

direction method of multipliers (ADMM) algorithm, which allows a smart contract

to coordinate other nodes that process offline more complex computations as required

by the optimisation problem [112, 146].

Also, hybrid peer-to-peer trading through smart contracts has been implemented

in [150] by using mathematical formulas for the matching of consumers and producers

and dynamic pricing. Therefore, in [150], all consumers pay electricity at the same

price, which varies in time depending on the ratio and difference between the total

demand and the total supply of the community.

Finally, [70] uses a smart contract design to determine the right level of subsidies

for solar panel electricity production in a community. Indeed, in [70], smart contracts

are used as an instrument to compute automatically the linear Bayesian-Nash equi-

librium that aims to compute the right level of subsidy a government should allow

to solar PV production. In this case, smart contracts are used to gather the moni-

toring of solar PV production, to determine the subsidy level using Cournot quantity

models, to automatically contractualise the agreement between households and the
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government, and finally to transfer money from the government to households that

produced electricity from their solar panels.

2.4.3.2 Distributed control

EV management In the field of EV charging systems, smart contracts can be used

for different purposes. First, smart contracts can implement lighter optimisation algo-

rithms such as limited neighbourhood search with memory to balance the distribution

of EV users among parking spaces while achieving fair profits distribution among the

owners of EV charging places [121, 127, 151].

One of the most popular application areas of smart contracting is smart charging

for EVs [152]. Smart contracts are also used for peak load shifting and shaving by

leveraging the flexibility of EV loads [153]. Similar to [154, 155] which deal with

smart energy communities, [156] implements an energy trading platform amongst

EVs in smart campus parking lots using local controllers. In [148], a smart contract

was designed to allow P2P energy trading between Vehicle-to-grid-capable electric

vehicles (producers) and all EVs (consumers). Finally, [157, 158] focus their research

on autonomous vehicles where they both use smart contracts for smart charging

purposes.

Battery management Smart contracts are also a powerful tool that can be used to

securely coordinate assets that are distributed [159]. In the case of batteries control,

a smart contract can be used to store the information of distributed batteries, such as

the state of charge or state of health, and automatically send control recommendations

to all batteries in order to synchronise or prioritise the charge or discharge of the

distributed instances, as it is shown in [159, 160]. Decentralised control of batteries

has also been proposed in [122] where a smart contract facilitates the control of

residential batteries to participate in wholesale markets.

Grid management The development of the Internet of Things allows grid opera-

tors to have better monitoring, understanding, and control of their network and the

power systems as a whole. In this context, smart contracts can be used to securely

and synchronously store data from Phasor Measurement Units when a fault happens

on the grid [161]. Smart contracts can also be used to automatically coordinate actu-

ators or take control decisions between contradictory set point requests from different
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assets of the grid [80, 162]. Finally, due to the security characteristics inherent to

smart contracts, they can also be used to grant access to grid data, such as market

data for example in [163].

Virtual power plants The concept of Virtual Power Plants (VPP) involves the

operator that monitors the production or consumption of different assets in order to

better coordinate and optimise the aggregated production [122, 164, 165] or reduce

curtailment [166, 167]. In this context, some authors [168] have proposed smart

contracts to store and read data from distributed assets, in order to help for better

synchronisation of the production.

Audit and certification of supply-chain Smart contracts can also be used to

establish a transparent supply chain. Both [169, 170] take advantage of the self-

executing and tamper-proof nature of smart contracts. The former, employ the chain

of custody method in order to calculate and assign renewable energy and carbon cred-

its. Ashley and Johnson[169] observed significant reductions in time and cost as smart

contracts eliminate the need for external auditing. This also immediately allowed the

energy producers to monetise the credits. The latter uses a similar approach. How-

ever, the focus is more on issuing guarantees of origin and green certification. Pajic et

al. [171] also acknowledge the auditable quality of smart contracts in the scheduling

services of EV charging.

Internet of Things Another suggested application for smart contracts in energy is

IoT applications. In more detail, as Internet-of-Things concepts (IoT) become more

widely used in the energy sector for smart cities and remote assets monitoring and

control, there is more concern about the control and security of the data gathered by

IoT devices, especially when it is managed centrally by a single system. To address

this issue, “PrivySharing” provides a secure alternative with an encrypted private

blockchain-based framework for smart cities [100, 172]. “PrivySharing” enables data

sharing with external parties via the use of a digital token called “PrivyCoin”. As

the authors show, in an IoT context, privacy is a key concern for smart contracts, as

data can be transferred and shared between different parties for monitoring, bidding

or other purposes. These data can include the geographical location of a prosumer, or
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other personal information, that should be protected. Therefore, it is essential to pro-

vide anonymisation through encryption, hash function or other means of anonymising

so that other parties do not access the data transmitted between the owner and the

receiver of a communication [100, 172]. In a similar approach to “PrivySharing”, Tan

et al. [173] performs privacy-preserving energy scheduling for energy services compa-

nies. Unterweger et al. [174] summarises lessons learned regarding privacy-preserving

Ethereum-based smart contracts.

Smart homes and energy management systems Lately, smart contracts have

also been employed for home energy management systems (HEMS) in order to coordi-

nate flexible loads and assets such as scheduling home heating and cooling. The secure

nature of smart contracts plays an important role in the coordination of home appli-

ances in order to minimise bills or decrease the user’s carbon footprint. For Smart

Home applications, smart contracts are used to coordinate assets, to automatically

take control decisions (switch appliances on or off) depending on the state of some

variables because they ensure the communication channel is secure [175, 176, 177, 178].

For instance, [179] proposes a “smart-home-based IoT-Blockchain” that employs three

different sorts of smart contracts which allow access control, judging misbehaviour of

the assets and registration of new policies to the access control. They demonstrate the

application of the three contracts using Ganache, Remix, and web3.js. Rather than

smart contract design, other publications focus on increasing the reliability of existing

IoT services using the tamper-proof nature of the smart contracts [180]. The scale

within this application may vary from a single household to an energy community.

Afzal et al. [181, 182] manage the scheduling of appliances within the community to

offer DR services and [136] coordinates a group of smart buildings using a network of

smart contracts on the blockchain.

2.4.4 Objectives of energy smart contracts

This subsection presents the capability of smart contracts and the objectives of their

use in energy. Smart contracts can be programmed to reach an agreement and verify

the transfer of value between parties. It analyses the range of functions embedded

in energy smart contracts in the literature. These functions can be triggered by

external events or by the contract itself. The main objectives implemented in energy

smart contracts were classified as functions for managing a portfolio of participants
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or contracts, market clearing, storing data, optimising a problem or running complex

computations. The main characteristics of each of these functions are analysed below.

2.4.4.1 User and asset management

As most of the smart contracts in the energy sector are used to facilitate energy

trades, an important set of functions implemented within smart contracts focus on

the management of the users and the assets. Hence, one basic function of smart

contracts corresponds to the registration of the different users (prosumers, consumers,

producers) [183, 184] or assets [125]. The registration allows the users or assets to

define their profile (e.g. prosumer, consumer, etc.), but also to link a monitoring

device to their profile [124]. This allows end-users to then authenticate themselves,

using their smart meter address [117, 125]. Furthermore, the registration functions

can also require a money deposit in order to validate the participation of an end-

user in a smart contract. Smart contracts can also be used to grant access to data

streams, as it is proposed in a function implemented in [163]. Then, the management

of end-users involves functions that update the list of end-users [117], but also that

record statistics related to each agent, such as the quality of the electricity provided

by prosumers in [123]. Han et al. [110] proposes to store the type of producers (e.g.

renewable energy generator) in order to allow buyers to access energy that follows

their preference.

Similar to user management, some smart contracts implement functions for asset

management, in order to sort and categorise assets, such as charging or discharging

energy storage systems as proposed in [101, 119].

2.4.4.2 Contracting operations

Smart contracts can be used to set up an agreement between two entities (e.g. agents,

equipment, etc.) [123]. Indeed, in smart contracts such as those described in [123], a

smart contract broadcasts the list of available suppliers to every end-users, in order

to help them find an adequate supplier. After the matching is completed between a

producer and a consumer, the smart contract automatically sets up a signed contract

between them, either for the retail market application [123] or for Demand Response

events. This contract between two entities can include the amount of energy reduc-

tion/increase required, along with the time window within which the effort must be

provided by the consumer [133]. Finally, billing functions have also been implemented
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in smart contracts in order to automatically determine the daily or monthly bill be-

tween end-users or buildings and the energy provider [117, 136, 185]. For example, in

the context of a cooperative energy community, the smart contract in [136] provides

a function embedded within the smart contract to compute the bill of individuals

based on the total electricity price of the community.

2.4.4.3 Management of energy bids and offers

One of the main interactions of end-users with smart contracts is the submission of

energy offers. Hence, most of the smart contracts for P2P energy trading implement

a function that receives and saves the bids or requirements of end-users, as it was

implemented in [96, 110, 112, 147, 181, 183, 184, 186, 187, 188, 189]. Bids can

include the amount of energy, the time at which the energy is needed or available, the

price that is desired to buy or sell the proposed quantity of energy, and finally, also

the power [188]. The bids can be specific and limited to particular assets, such as

distributed batteries, as it is proposed in [189]. Finally, smart contracts are also often

used to validate a bid or to determine the eligibility of an agent given his/her deposit

for example [147, 184]. Once bids and offers are received, some studies implement

a broadcast function that aims to communicate the received offers to the registered

end-users [125, 188], or to specific trading partners [112]. Other smart contracts allow

agents to get access to a ledger so they can read offers, as proposed in [188].

Therefore, smart contracts can update the bids and offers that are received and

stored. A function updates the remaining quantities of energy [181, 188]. Finally,

when receiving a bid or offer, the smart contract can also ensure the feasibility of the

bid, by making sure the end-user has made a deposit that is high enough to afford

the requested energy quantity [188], or by ensuring that the offer from a prosumer

can be honoured given the remaining energy in a battery [187].

In the context of smart contracts for demand response, a smart contract can also

implement a function to allow an aggregator or an end-user to automatically accept

or reject a flexibility offer [133].

2.4.4.4 Monitoring

As they provide inherent security in the communication between an end-point and

the blockchain, smart contracts have also been used for monitoring purposes in the

energy domain. Indeed, smart contracts can be used to gather measurement data
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from pre-registered monitoring assets, such as smart meters, by ensuring that the

data is generated by a trusted asset. In the energy domain, smart contracts can

implement functions to gather the monitoring of actual production and demand which

are callable by the system operator only [118, 123, 124, 133, 136, 137, 168, 186].

These measurements can then be used in the settlement and billing processes [71].

Hence, it is necessary that prior to the measurement, the system operator registers

the monitoring devices such as smart meters, as explained in subsection 2.4.4.1 and

in [125]. Furthermore, system operators can also use smart contracts to synchronise

monitoring systems such as Phasor Measurement Units (PMU) in order to store and

facilitate access to the state of the network when a fault arises [161].

2.4.4.5 Market mechanism and market clearing

In energy trading applications, smart contracts are often used to clear a market,

which consists of determining a single price for all trades by matching demand and

production. In the context of smart contracts used in market mechanisms, they are

initialised by a constructor function, called by the system operator, to set up the

marketplace and start the state machine [96, 190].

Following this, a function is implemented that automatically determines the trad-

ing price. There are different methods to achieve this. First, it can be determined

through a double auction that maximises social welfare. In this case, the function

ranks the offers in ascending order and the bids in decreasing order, selecting the

intersubsection point as the global clearing price [96, 110, 186]. Other methods used

to determine the trading price can vary. In [117] and [181], the trading price for the

whole community is the lowest price proposed by the sellers, whereas in [124] the

trading price is based on a planned grid price, which is increased or decreased after-

wards in the settlement phase through compensation formulas based on the quantity

of energy that was produced or consumed. In [183], the price is determined as a

mathematical function that depends on the total amount of energy surplus and de-

mand, whereas [147] implements a Vickrey auction in which the buying price is the

second highest price among consumers bids. A distinct approach is taken by Son et

al. [190], who propose a privacy-preserving algorithm to determine the price of energy

between two peers. The price is calculated as the average of the proposed prices from

the seller and the buyer. This raises the concern that the market operator could take

advantage of his position to be an intermediary who buys electricity at a cheaper
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price than the seller and sells it at a higher price to the buyer. To resolve this issue,

an encryption of the bids is proposed to maintain privacy.

Along with the computation of the trading price, smart contracts include a match-

ing function that allocates generation to meet demand, especially in the case of P2P

contracts. Meng et al. [186] and Han et al. [110] propose to first categorise the energy

offers between renewable-based and non-renewable-based in order to match the buy-

ers’ preferences [110] or to give advantage to the sellers providing renewable energy

[186]. Then, energy matching can be based on the output from the double auction

where the bids and offers are ordered in opposite price evolution [96, 110, 186]. In

[183], the matching of buyers and sellers is completed by awarding the same per-

centage of energy to each energy request. If there is enough energy available, all the

energy requests are awarded. If not, only a percentage of each request is awarded.

In [190], the buyer with the highest price bid is matched with the seller with

the lowest price offer, which is made possible by managing two arrays-based data

structures. A similar principle is used in [101], where the smart contract ranges the

assets (energy storage systems) by priority. Hence, the assets that require energy with

the highest priority are matched with the assets that need to discharge (produce) with

the highest priority. In [181], the smart contract implements immutable predefined

negotiation rules in order to match buyers and sellers. After the matching of P2P

buyers was completed, most smart contracts implement a balancing function that

ensures that energy requirements that were not awarded met by the grid at the grid

price [110, 186], as explained in 2.4.3.1. There is also work done investigating the

interaction of different nodes, a margin of error and impact of competition and/or

cooperation [142, 143].

In the current centralised energy markets, smart contracts implement a settlement

function in order to adjust the financial transaction to the actual energy transaction

that occurred, as it is verified by monitors such as smart meters. The interest of using

smart contracts for settlement resides in the potential reduction in the time for the

settlement, as a smart contract could potentially automatise the monitoring of actual

demand and production, and thus could quickly compute the balancing costs used in

the classic settlement process. In smart contracts, the settlement phase also includes

a redistribution of the remaining deposit money that users transferred to the smart

contract.
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In [186], the smart contract rewards prosumers if they meet the energy bid they

submitted in the first place, and it penalises them if they produced less or more

than what was agreed in the contract. In [191], the settlement includes additional

grid prices fees to include the cost of balancing services. For demand response ap-

plications, the settlement function includes a verification that the realised demand

reduction corresponds to the requested effort (with respect to a baseline estimation

corresponding to the hourly average load over one month of data) [131, 133]. In

[110], the settlement function uses the system imbalance prices from the transmission

system operator in order to settle the difference between the actual and the agreed

energy consumption/production, and provides rewards if the forecast used for the bids

was accurate. [192] proposes an energy internet market in which electricity charges

are automatically collected by the settlement function of a smart contract, and are

then distributed to beneficiaries. For Electric Vehicle (EV) charging applications,

settlement functions consist of updating the agreed price of the energy trade if the

energy quantity overpasses what was agreed in the contract between the EV and the

owner of the charging station [193]. In control applications, the settlement function

can require payment from control assets when the actual operation differs from the

agreed contractual setpoint [80].

[194] propose two novel settlement mechanisms embedded into smart contracts

which are namely splitting and global balancing settlement. The former splits the

sellers and buyers into two categories with a coefficient that denotes their contribu-

tion to the imbalance. The latter performs settlement actions for each responsible

party individually. Other examples of advanced settlement methods used with smart

contracts include P2P multi-settlement markets by Nakayama et al. [130] and multi-

layered imbalance settlement by Danzi et al. [195].

2.4.4.6 Financial transactions

One of the most popular applications of blockchain is cryptocurrencies. Hence, most

of the smart contracts used in the energy sector implement a function to process

financial transactions between two entities. When smart contracts involve financial

transactions between two peers or assets, it is good practice to add a payable function

that requires money deposit when users or assets register or submit bids and offers

to the smart contract [80, 125]. Then, the payment function can be triggered after

the settlement phase in order to proceed for payment between a buyer and a seller
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[101, 110, 124, 125, 184, 188, 191, 192, 193, 196]. Payment functions for energy

applications are functions that are usually called by the operator only, that use the

two parties account addresses (the buyer and seller, whose address must be payable)

and the amount of money required from the settlement function, and that involves

the pre-defined transfer function to transfer actual money from the buyer’s account

address to the seller’s account address, as stored in the corresponding blockchain.

Then, operators can call a close function to proceed with the transfer of remaining

money from the deposit to each entity [80, 133].

2.4.4.7 Data storage

As they are based on blockchains, smart contracts can be used to store specific data

that are accessible only within the smart contract. In the energy sector, smart con-

tracts are used to store the record of energy transactions or agreed-to contractual com-

mitments, such as the energy quantities to be traded, price, parties involved in the case

of P2P transactions, the amount of power and the time of delivery [117, 140, 187, 193].

Smart contracts store the actual production and consumption [186] even though

it is good practice to limit the quantity of information stored in the smart contracts.

As mentioned previously, most contracts store information about buyers, sellers that

submit bids and offers or assets that participate to control applications [117, 124, 125].

This is usually achieved using hash tables such as mapping in the Solidity language.

That is generated when the smart contract of a marketplace is created through the

construct function.

For control applications, smart contracts store information about the current asset

state, such as batteries state of charge and state of health [159] or the grid state from

PMU measurements when a fault occurs [161], but also achieved operating points

[80]. In demand response applications, historic and baseline profiles are used in the

settlement phase to assess the quality of the response which may be load increase or

decrease [131, 137].

2.4.4.8 Complex computations

Although contracting languages and the associated computational cost inhibit com-

plex computations within the implemented functions, some studies prove the feasibil-

ity of consequent calculations within the smart contracts. For example, the demand

response contract in [131] computes a baseline load profile for every user, based on
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the average of hourly load data over one month. For control applications, a simplified

automated negotiation is implemented in [80] to allow control assets to decide on the

competitive control setpoint. For P2P applications, [150] used a complex formula to

determine dynamic pricing for energy transactions within a community, using tangent

and exponential functions.

Lastly, optimisation can also be executed in a contract to achieve the optimal

operation of power systems. AlSkaif and van Leeuwen [146] propose a contract that

coordinates the AC optimal power flow (AC-OPF) computation-based on the gen-

eral consensus optimisation form of the alternating direction method of multipliers

(ADMM). The ADMM is used to solve a relaxed convex formulation of the AC-OPF

problem by breaking it into smaller optimisation problems that can be solved locally

outside the blockchain by every participating node with limited information. In this

application, the smart contract is used to break the optimisation problem into smaller

pieces, to keep track of participating nodes, to realise the consensus step from the

ADMM algorithm and to distribute the required information to all the other nodes.

Another example of optimisation in smart contracts is for battery control, presented

by Baza et al. [160], where a Knapsack algorithm is implemented. This is solved in

a polynomial time in order to find the charging schedules of the distributed storage

units that are the most efficient in terms of energy use.

Additionally, [121] optimises the distribution of EVs among charging stations

by solving a bi-objective mixed integer programming problem (MILP) by using a

limited neighbourhood search algorithm with memory. [197] implements an open-

source automated energy trading algorithm, written in the Solidity language, in their

microgrid smart contract which was tested on an Ethereum blockchain platform.

2.4.4.9 Synchronisation and coordination

In the context of distributed control applications, smart contracts are used to coor-

dinate and manage distributed assets. Hence, they can implement synchronisation

functions such as in [159] where the smart contract synchronises different batter-

ies from a close to real-time monitoring of their state of charge (SoC) and state of

health (SoH). Then, smart contracts can act as a coordinator and aggregator for

decentralised optimisation algorithms such as the ADMM algorithm for AC OPF res-

olution in [112, 146]. In [161], the proposed smart contract is used to retrieve the

state of the grid from PMU measurements when a fault is detected by one PMU. In
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this case, the communication security and trust characteristics from smart contracts

are highlighted to gather measurements of the monitoring assets. Although synchro-

nisation is difficult to be achieved due to the time required for PMU measurements

to be added to the blockchain, synchronisation could be performed afterwards if mea-

surements include a time tag. In demand response applications, smart contracts such

as those proposed in [96, 181] implement control functions that securely send control

signals to end users appliances in a coordinated way. As presented in [179, 180], home

energy monitors such as sensors and actuators can communicate securely with each

other by using the require method from solidity language. Finally, smart contracts

can also coordinate the execution of specific tasks by local endpoints by using the

emit method, as it is presented in [136] to execute the optimisation of batteries and

controllable loads schedules at the building level. Lastly, some smart contract ap-

plications adopt a state machine model in order to manage the transition between

different tasks, functions or even other smart contracts, as presented in [117, 186].
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Table 2.1: Overview of P2P research and industrial projects [13, 14, 15].

Project Name Country of operation Year
Allgau microgrid Germany 2017
American PowerNet HQ USA 2018
BCPG Apartment Microgrid Thailand 2018
Brixton Energy United Kingdom 2019
Brooklyn microgrid United States 2015
BSES Rajdhani P2P project India 2019
Community First Village United States 2015
Electron United Kingdom 2016
EMPOWER Norway, Switzerland, Spain and Germany 2015
Enerchain Europe 2017
Energy Collective Denmark 2016
EnerPort Ireland 2018
EPC Solar Group Australia 2019
Lichtblick Swarm Energy Germany 2010
NGRcoin Belgium and Spain 2013
NOBEL Germany, Spain, Greece and Sweden 2012
P2P-SmartTest Finland, UK, Spain and Belgium 2015
P2P3M United Kingdom and South Korea 2016
PeerEnergyCloud Germany 2012
Piclo United Kingdom 2014
Smart Watts Germany 2011
SonnenCommunity Germany 2015
TransActive Grid United States 2015
Vandebron Netherland 2014
Wongan-Ballidu P2P Australia 2019
Yeloha, Mosaic United States 2015
Micro-Grid Sandbox United States 2016
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2.4.5 Review of innovative industrial and academic projects

The possibility of automatic processing in a decentralised and secure way using smart

contracts has motivated the creation of a large number of projects related to power

systems in different areas, such as energy markets, data storage, energy billing and

CO2 traceability. These projects use public and private blockchains with different

consensus mechanisms, according to the requirements of each implementation, where

the permissioned blockchains are gaining popularity due to the capacity to control

access to the chain, even though - unlike open blockchains, perfect anonymity of

participants is not always guaranteed. In order to show the trends in the adoption

of smart contracts in the energy industry, a list of implementations and demonstra-

tors are compiled. The following is an indicative list of projects that have created

an impact in the smart contract industry and research community and presented

innovations or novel implementation of smart contracts in the wider energy industry.

• Energy web foundation (EWF): A non-profit organisation founded by Grid Sin-

gularity and the Rocky Mountain institute. EWF’s mission is to accelerate a

customer-centric electricity system view using blockchain to facilitate the de-

ployment of decentralised apps and technologies. In 2019 the EWF launched

the Energy Web Chain (EWC) [198], based on Ethereum using a public and

permissioned Proof-of-Authority (PoA) consensus mechanism, promising an in-

crease in the transaction capacity by 30x and a decrease in energy consumption

in 2-3 orders of magnitude in comparison with Ethereum.

• Grid Singularity: A German Start-up focused on a decentralised energy ex-

change platform for local communities. In 2018 presents the Decentralised Au-

tonomous Area Agent (D3A) Market Model [199], an open energy exchange

engine to model, simulate and operate energy trading markets in local com-

munities. The energy exchange can be operated by a unique DSO or multiple

agents, using smart contracts to define the energy trading and matching between

the customers.

• Power Ledger: Australian company founded in 2016, focused on peer-to-peer

energy trading. Power Ledger deploys a dual-token ecosystem [76] with a PoA

consensus mechanism to decrease energy consumption, limit double-spend to-

kens and control the access to the chain. The Power Ledger platform allows
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the DSO or prosumers to manage a microgrid with a real-time energy mar-

ket, traceable renewable energy certificates, manage energy peaks using ESS or

choose the type and quality of the energy.

• LO3 Energy: founded in 2012, LO3 Energy wants to improve the community-

based local generation and energy exchange. The Brooklyn Microgrid [68] was

developed by LO3 Energy as a proof-of-concept peer-to-peer energy trading

using existing grid infrastructure. The gained experience in the Brooklyn Mi-

crogrid helps to develop an energy exchange platform called Exergy [200] as a

permissioned data platform for peer-to-peer tradings, and the Pando platform

[201] that can be used by the DSO to pool local resources and establish an en-

ergy marketplace, based on bidding auctions between business and prosumers.

In December 2019, L03 Energy along with Green Mountain Power deploys a

pilot energy marketplace called Vermont Green [202] as the first US authorised

marketplace.

• Prosume.io: founded in 2016, prosume.io [203] proposes a platform based on

smart contracts, IoT devices and the Prosume token with multiple applications,

including peer-to-peer energy trading, smart billing, grid balancing and trading

processes optimisation for electricity and gas, according to local laws in each

country.

• IBM: In October 2016, IBM launched Hyperledger Fabric [204], an open-source,

modular and permissioned blockchain focused on business. Hyperledger includes

modular consensus protocols, whereas Chaincode is the equivalent of Ethereum

smart contracts. In association with IBM, Energy Blockchain Lab [205] creates

a decentralised carbon credit management platform in China that expect to

cut between 20% - 50% the average 10-month carbon asset development cycle.

Another relevant energy applications based in the Hyperledger are Car eWallet

[206], Sunchain [207], and Tennet [208].

• Share&charge: A German foundation focused on e-mobility. Share&charge [209]

promotes the Open Charging Network (OCN) as a decentralised solution for EV

charging services. Different services for charging stations are included, such as

Green certificates, instant payment and eRoaming contracts. These services are
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provided by external companies using the OCN implementation with the Open

Charge Point Protocol (OCPP).

2.4.6 Results of the systematic literature review

This section presents the results from the systematic literature review undertaken in

this thesis. As shown in Figure 2.8, while the research trend for the use of smart

contracting for energy applications started in 2011, it remained low key for 6 years.

It is worth noting that much of this early, pre-2017 literature concerns smart legal

contracts (also called Ricardian contracts), a rather different concept. Ricardian con-

tracts are often very complex to define and crucially they are not implemented on a

blockchain and often not even necessarily web-based. While they attracted research

interest, they saw limited practical applicability. The research outputs rapidly in-

creased after 2017, as the use of blockchain and DLT-based smart contracts were

introduced and started to grow in popularity. The number of publications per year

reached a pre-COVID peak in 2019 with 88 publications. This trend is likely to

continue as smart contracting in energy attracts increasing interest as a means of

distributed control and also aids the deployment of emerging local energy markets.

Based on the systematic review (published in [12], 178 papers are divided into

11 key application areas which are discussed in detail in Section 2.4.3. The most

prominent research area for the use of smart contracts identified are P2P energy

transactions, which are the main topic of almost a quarter of the literature works

reviewed. Following this, 17% of the works propose smart contract-based solutions

for energy markets such as market clearing and settlement, while 14% employ smart

contracts for EV management which includes smart charging and coordination.

The eleven areas are grouped into two main themes which are namely (1) Energy

and Flexibility Trading and (2) Distributed Control ; these are presented with blue and

green shades in Figure 2.9. Around 60% of the reviewed literature works feature the

theme of energy and/or flexibility trading (which includes P2P, market design, DR,

retail market and peer-to-grid). On the other hand, the theme of distributed control

is dealt with in 35% of the works reviewed. Nevertheless, the applications areas are

more diverse including assets such as batteries, EVs, smart homes, VPPs, etc. More

than half of the distributed control papers focus on the coordination and scheduling

of EV charging, as they are foreseen as a critical challenge for the power systems. The

remaining papers address the challenge of grid management, whether this concerns the
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Figure 2.8: The research trend in energy smart contracts.

control of voltage control in the distribution grid or allocating control tasks amongst

system operators. Another highlight is that 3% of the reviewed literature uses smart

contracts for carbon audits and certification. This is anticipated to be a powerful

method of carbon monitoring for meeting the net zero-emission goals.

Similarly, Figure 2.10 shows the contribution and explicit use of smart contracts

functions (as presented in Section 2.4.4) by energy researchers. It is important to

note that implicit use of functions (such as financial transactions for example) was

not captured in this graph, that only displays functions or capabilities explicitly used

and mentioned by researchers. The most used capability of smart contracts has been

their ability to clear a market, either using auctions or other custom algorithms. This

capability of smart contracts is tightly linked to another functionality embedded in

smart contracts that is the management of bids and offers before clearing a market.

This management corresponds to all the functions aiming to receive and store the

bids and offers from the different buyers and sellers of energy. The high proportion

of implementation of these functionalities shows that smart contracts in the energy

domain have mostly been used for market applications. Then, other functionalities of

smart contracts are equally represented in the literature, including the synchronisation

of assets for distributed control, but also storage of energy related data, financial

transactions and monitoring.
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Distributed Control 35% Energy and Flexibility Trading 65%

Figure 2.9: Classification of the literature in different categories of energy
applications.
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Figure 2.10: Classification of research contributions on smart contracts
functions.
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2.4.7 Discussion of research gaps

This section presented the findings from a systematic review of the literature con-

cerned with smart contracting in energy systems. While a more detailed discussion of

limitations along with future research directions is provided in Chapter 6, the research

gaps identified are summarised here.

The most significant knowledge gaps are regarding the financial and environmental

costs of executing smart contracts. While the research in energy systems proposes

the use of smart contracts concentrating on its enabling aspects, there are only a

few articles which evaluate the economic and/or environmental impact. The smart

contract execution takes place on a blockchain and this ledger process has a very high

energy consumption. If the computation takes place during peak demand hours, this

might yield high costs and carbon emissions which in return might negate the benefits

achieved by P2P market implementations. Therefore, this thesis designs and executes

a smart contract for P2P trading applications and evaluates its environmental and

economic implications against the benefits of using consumer-centric markets. Further

details are provided in Chapter 6.

2.5 Key findings

This chapter provided a review of the key literature in three separate sections which

relate directly to the next chapters. The identified research gaps were presented at

the end of each section in detail.

First, local energy system modelling techniques were discussed in Section 2.2,

focusing on the community energy coordination and optimisation techniques. Ad-

ditionally, the limited consideration of user comfort and network operation in the

literature was identified as a research gap.

Following this, the concept of consumer-centric energy markets was introduced and

different types of P2P market mechanisms were classified in Section 2.3. In addition

to the peer-reviewed literature, a survey of the pilot projects was provided to reflect

the efforts related to the implementation of local energy markets. The technologies

that enable the implementation of P2P markets were discussed which included smart

metering and blockchain-based smart contracting. In addition, the research gaps were

identified with regards to the under-explored carbon saving benefits of local energy

markets.
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Furthering the discussion on enabling technologies, Section 2.4 presented blockchain-

based smart contracting. This part of the review summarised the applications and

objectives of smart contracting in energy systems, using a systematic review method-

ology. The results from this extensive analysis revealed that P2P energy trading was

the most common application area. This is inline with the existing industrial and

academic projects which utilise smart contracting mostly for local energy trading.

Following this, the research gaps were identified which included lack of environmen-

tal and economic cost considerations when implementing smart contracting in local

energy systems.
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Chapter 3

Bottom-up Modelling and
Optimisation of Local Flexibility

This chapter introduces the local flexibility modelling and optimisation techniques

used in this thesis for the simulations of local energy systems. Using a bottom-up

approach, the flexibility offered by smart assets (including EVs and battery systems)

is simulated individually rather than in an aggregated manner. Following the mod-

elling methodology, the process of user-centric optimisation is explained which lever-

ages the flexibility and programmable nature of the smart assets to minimise bills.

The optimisation algorithm was designed such that it maximises self-consumption in

the community without compromising user satisfaction. Additionally, this chapter

presents a modified version of the optimisation function which allowed the implemen-

tation of distributed curtailment in order to model the participation of residential

users in demand-side response (DSR).

It should be noted that this chapter describes the modelling and optimisation

methodology in order to provide the background for the work and results presented

in the next chapters, in specific Chapter 5 which focuses on the simulation of the

use-cases.

3.1 Introduction

Currently, almost 40% of the UK’s carbon emissions are contributed by households

[210]. Hence, a bottom-up approach is required to tackle this issue to realise the

potential of carbon and cost savings in local energy systems. The uptake of domestic-

scale smart assets such as EVs and batteries, coupled with the advancements in smart
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home and IoT technologies, enable the implementation of transactive control in local

energy networks. This means that the passive energy consumers can now become

service providers for the network and/or shift their load in order to minimise their

bills. In the field of smart local energy systems, various studies [38, 211, 212] highlight

the significance of bottom-up modelling and neighbourhood coordination to enable

the participation of residential users in balancing services. This provides benefits for

network operation and contributes towards the decarbonisation of the energy systems.

Hence, in this thesis, bottom-up modelling techniques were employed with the

addition of user satisfaction considerations which are often overlooked in literature.

Following this, community-level mixed integer linear programming (MILP) optimisa-

tion and peak shaving simulation methods were utilised to simulate and evaluate the

value of local flexibility. The methods demonstrated in this chapter are taken further

in Chapter 5 (with the addition of heat pump and thermal building models) and ap-

plied to two use-cases. While this chapter focuses more on the simulation methods,

Chapter 5 provides detailed results and analysis of findings.

3.2 Bottom-up modelling methods

This section describes the different smart and flexible assets simulated. In this chap-

ter, battery, EV and rooftop solar PV models are explained (heat pump and building

models are in Section 5.2).

3.2.1 Distributed energy storage

As this thesis focuses on the distributed flexible assets, only domestic-scale batteries

were simulated. For the simulation inputs, the specifications of Tesla Powerwall were

used as a reference [213]. The capacity of the assets was varied between 5.0 and

13.5kWh. The roundtrip efficiency was assumed to be 90%.

The equations below outline the battery modelling methodology. Equation 3.1

shows the calculation of stored energy in the battery. This simply requires the stored

energy level from the previous time step and the combined effect of the scheduled

charge and/or discharge actions in this period. As shown in Equation 3.1, if no

charge or discharge actions are realised, Ei
B,t (i.e. kWh of stored energy) is equal

to the energy stored in the previous time step, Ei
B,t−∆t minus the amount of energy

lost through idle self-discharging (denoted by ωt). However, if the battery is charged
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or discharged then the combined effect of the power import and export actions is

multiplied by the corresponding charging and discharging efficiencies. The input

and output power are limited by the constraints - shown in Equations 3.2 and 3.3.

Lastly, to convert power values into energy usage during the time interval, they are

multiplied by ∆t. The efficiencies related to charging and discharging of the battery

were assumed to be constant (i.e. both equal to 90%), disregarding the dependence

on the charging/discharging power, temperature and battery age.

Ei
B,t = Ei

B,t−∆t ×
(
1− ωi

t

)
+

(
ηiBC,tP

i
BC,t −

P i
BD,t

ηiBD,t

)
×∆t (3.1)

0 ⩽ P i
BC,t ⩽ P i

BC,max (3.2)

0 ⩽ P i
BD,t ⩽ P i

BD,max (3.3)

The state of charge (SoC) of the batteries is calculated by dividing the current

level of stored energy by the battery capacity. This is shown in Equation 3.4 where

the battery capacity is denoted by Ei
B,N . Additionally, as demonstrated in Equation

3.5, the SoC of the individual batteries is restricted to a range which yielded a depth

of discharge of 60%. The minimum and maximum SoC levels were 20 and 80%.

SOCi
t =

Ei
B,t

Ei
B,N

× 100% (3.4)

SOCi
min ⩽ SOCi

t ⩽ SOCi
max, (3.5)

3.2.2 Solar energy generation from PV panels

Solar PV generation is one of the most prominent distributed generation types in the

UK due to the previously available highly favourable economic incentives known as

Feed-in-Tariffs [214]. This is expected to reach as high as 14% by 2032 [32]. For this

study, an open-source Python-based module called Global Solar Energy Estimator

(GSEE) [215, 216] was used to calculate the generation output from the PV solar

panels. Using the weather data from 2019 for the use-case location in Scotland (i.e.

latitude=57.4459, longitude=2.7878), timeseries of PV power flows were obtained.

The peak power values ranged from 2 to 10 kWp and the overall efficiency was
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assumed to be 20%. The simulated PV panels did not have a tracking feature in

terms of a single or double axis. The total PV output from the community was

aggregated to enable energy sharing as shown in Equation 3.6.

PPV,t = ΣN
1 P

i
PV,t i ∈ [1, 2, . . . , N ] (3.6)

3.2.3 Electric vehicle

The local DNO forecasts 45% EV penetration by 2032 in the north of Scotland [32].

The predicted increase in EV adoption poses a threat to the system in terms of

potential imbalance and overloading. Hence, it is important to model the flexibility

that can be offered by EVs which can be coordinated through methods of transactive

control to mitigate their negative impact on the grid. A data-driven approach was

used for the implementation of EVs in the simulation. For this, real data from the

Energy Systems Catapult’s Consumer Vehicle and Energy Integration (CVEI) pilot

study was used. Only the home charging events were taken into account as this thesis

has a local network outlook. This dataset included features such as the duration

between charging events, start and end SoC and charge duration.

In order to identify different EV charging patterns in the dataset, clustering was

employed using the open-source Scikit-learn library on Python [217]. Studies [218,

219, 220, 221] demonstrate the use of k-means for large energy datasets with timeseries

and iterate that it is the most prominent approach in literature. This is because k-

means allows clustering of large datasets with multiple attributes at relatively lower

computations cost. When compared to gaussian mixture models [220] and k-medoids

[221] methods, performance of k-means was better in the context of distribution net

work load modelling and load profile characterisation due to its fast convergence and

higher validity indices. Hence, k-means clustering method is adopted in this study as

well.

To summarise, the k-means clustering method was chosen as it was proven to cope

well with large datasets such as the one used in this section which consists of 200 users

and 15,700 charging sessions. The number of clusters (i.e. k) was determined through

experimentation for a range of k values between 1 and 10. For each k value, the

distortion score was obtained which reflects how well the cluster centroid represents

the data points in that cluster. It is computed as the total squared distance between

each data point and the cluster centroid. Then, these distortion values were plotted
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against the corresponding k values. Using a visual evaluation method called “the

elbow method”, the point of infliction was determined [222]. This is not necessarily

the point with the lowest distortion score but it is the point when the slope of the

line abruptly changes creating an elbow in the plot. In this case, the k value of 2

corresponded to the point of infliction.

Therefore, using the k-means clustering method, two dominant user behaviours

were identified as the shorter weekday commuter charging and the weekend charging

behaviour which involves travelling longer distances and requires a longer charge

period. For the clustering process, six attributes were evaluated which are shown in

Figure 3.1. This figure shows the scaled outputs for the two identified groups. The

red line represents the first set of charging events which are classified as the weekend

charging sessions. This group had a longer time between the charges, a lower SoC

at the start and hence, required higher energy from the charger and the session took

longer. It should be noted that the end-of-session SoC for both groups were almost

the same which was around 100%. The blue line represents the charging sessions

due to everyday shorter distance driving (e.g. commuting). This group starts the

session with a higher SoC and hence, it has a lower energy consumption and shorter

charge duration. This group also exhibits more frequent charging events with less

time between charging sessions. Using this information, EVs with different charging

patterns were randomly placed on the network.

3.3 Community-level optimisation methodology

The previous section provided an overview of how the flexibility of smart assets was

modelled. This section describes the optimisation methodology used to achieve max-

imum self-consumption and minimum costs. It should be noted that as the focus

of this thesis is on community-level coordination and energy sharing, an aggregated

objective function was used rather than individual objective functions per household.

Additionally, the optimisation model in this work uses historical data rather than

performing near real-time operational scheduling.

The community perspective of this thesis reduces the complexity of the problem

as the aim is to minimise the net power import as a neighbourhood through energy

sharing rather than minimising energy export individually at every node. The latter
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Figure 3.1: K-means clustering of EV data where two user groups were
identified, shown in red and blue.

would result in a larger problem which would require a decomposition-based optimi-

sation technique [48]. However, in this case, decomposition was not required. Hence,

the mixed integer linear programming (MILP) method used by various studies in the

field of neighbourhood coordination [26, 45, 65] was adopted. Another decision cri-

terion was that the optimisation module and solver had to be open-source and free.

The implementation of MILP was available through the open-source Python optimi-

sation package, Pyomo which provides free solvers such as the COIN-OR branch and

cut (CBC) [48, 223]. As the work in this thesis yielded industry collaboration, it was

essential for the optimisation package to be in Python and open-source for integra-

tion with the industrial partner’s simulation platform. As the simulation workflow

developed in this thesis is bottom-up, it enables the implementation of decomposition

algorithms. For instance, if the future work chooses this approach, the distributed

MILP optimisation by [50] can be implemented.

3.3.1 Objective function

In this thesis, optimisation was performed to simulate the community behaviour re-

quired for reaching the minimum cost and hence, achieving higher self-consumption

and self-sufficiency through load shifting. Similarly, the same methodology can be
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applied to minimising the carbon footprint of the communities, incurred by importing

electricity from the grid during periods of high carbon intensity.

Two of the objective function inputs are electricity import and export tariffs

as denoted by λbuy and λsell in Equation A.4. Imported and exported power are

calculated in an aggregated approach which are the variables of the cost function

shown in Equation A.4.

min
∑T

0 λbuy · σn,t,t0 · Pimport − λsell · Pexport ∀n ∈ N

where Pimport ∈ R≥0 and Pexport ∈ R≤0

(3.7)

Similarly for the carbon emission minimisation scenarios (presented in Chapter

5), the grid import and export tariffs were replaced by grid carbon intensity and local

generation carbon intensity, respectively. The former was obtained from the National

Grid’s carbon intensity data portal [5] and the latter was input as 0 kgCO2/kWh as

the only type of local distributed generation simulated was solar PV.

3.3.2 User-centric optimisation

In order to quantify and incorporate the increasing level of inconvenience incurred

to the user by delaying the operation of their assets, a penalty matrix σt,t0 (in A.4)

was designed for each asset, n where delaying a load with respect to its scheduled

start time results in an increasingly higher penalty. This is shown in Figure 3.2 which

illustrates a slice of the delay-based penalty matrix taken at the 32nd time step. In

this case, the EV arrives home at t=32 and was scheduled to start re-charging upon

arrival by the user. However, as this time step corresponds to 4:30 pm, it is during

the peak pricing period and therefore the charging event is delayed to off-peak hours.

The penalty factor σn,t,t0 is multiplied with the cost in the objective function in

Equation A.4. Hence, the optimiser did not solely minimise the financial or carbon

costs as its cost function also includes some consideration of the inconvenience caused

to the user to achieve some economic or environmental benefit.

For instance, delaying the EV charging to a later time in the day results in lower

user utility as the asset is kept idling with a low SoC and could not be used if the user

decided to unplug and use the EV before the end of the declared availability window.

For example, the Economy 7 tariff offers a cheaper electricity import rate for seven

hours during the night and when it was input, the EV would be scheduled during
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the low cost hours. The incorporation of σn,t,t0 ensured that the charging action was

rescheduled as close to the user set schedule as possible. In this case, charging the EV

at the start or at the end of the low cost duration would make no difference in terms

of financial costs. Nevertheless, delaying the action of charging further away from the

user’s preferred start time would result in a higher penalty, denoted by σn,t,t0 where

t0 is the user set period of operation and t is the one chosen by the optimiser.

Figure 3.2: A slice of the delay-based penalty matrix for an EV that arrives
home at t=32 and was scheduled to start re-charging upon arrival by the
user.

To summarise, the significance of the delay penalty matrix is that it minimises

the disutility that would be caused by the transactive control actions. Therefore, it

brings a user-centric approach by integrating the user’s perspective into the purely

cost or carbon minimisation algorithms. This feature differentiates the optimisation

methodology in this thesis from other studies such as [45, 50, 65] which focus on the

benefits of transactive control and neglect the impact on the users. The most recent

review articles such as [26, 49] highlight the research gap with respect to integrated

user comfort modelling. While most of the research in this area considers thermal

comfort limits related to heating and cooling, there is a lack of consideration for the

inconvenience caused by delaying the user-scheduled EV charging actions. Lotfi et al.

[49] stated only one publication that considered and quantified this as “discomfort in-

dex” [66]. However, this study is limited to home energy management system (HEMS)

optimisation rather than the neighbourhood-level coordination demonstrated in this

thesis. Lastly, the consideration of user comfort is taken further Chapter 5 where the

thermal comfort of users was investigated in the first case study.

3.3.3 Variables and constraints

The power imported from the grid and power exported to the grid are variables

and hence, they are manipulated by the optimisation algorithm in order to minimise
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the objective function. In most of the scenarios, the imported power is minimised by

shifting the demand to the hours of solar output while adhering to a list of constraints

which reflect the technical and operational limits of the assets and the network.

The power balance in the system is denoted by the relationship between power

import, export and asset behaviour - as shown in Equation A.1. The term pt,n is the

power consumption of the each asset, dt is the inflexible load and gt is the generation.

The total sum of all terms in the equation should be equal to zero at each time

step and, as shown previously in Equation A.4, the convention for power import

is positive and power export and generation outputs are negative. The optimiser

performs load shifting by scheduling EVs and batteries to maximise self-consumption

and self-sufficiency at the neighbourhood level. In order to leverage cheap import costs

(irrespective of whether that is in terms of financial or carbon costs), the optimiser

employed a technology-agnostic approach by increasing or decreasing demand from

different smart assets.

N∑
0

pt,n + dt + gt − Pimport, t − Pexport, t = 0 ∀t ∈ [0, . . . , T ] (3.8)

This action was bounded by the flexibility range of the asset which is expressed

as minimum and maximum operational bounds as shown in Equation A.2. Insights

from the ZUoS pilot case showed that turning EV charging down to 0 kW of usage

disabled the option of resuming charging of the vehicle. Hence, this information was

reflected in the turned down capacity (i.e. τmint) which was limited to 1.4 kW.

τmint ⩽ pt ⩽ τmaxt ∀t ∈ T (3.9)

The business-as-usual operation profiles were used to calculate the total energy

consumption of smart assets in an arbitrary time horizon which is 24 hours in this

use-case. The values for each asset were used as a reference to ensure that the demand

was only shifted and not decreased which could have resulted in end-user disutility

and discomfort. This equality constraint is portrayed in Equation A.3 where N is the

total number of assets, t is the time step of the optimiser and t0 is the time step fed

in from the business-as-usual case.

T∑
0

pt,n ×∆t =
T∑
0

pt0,n ×∆t ∀n ∈ N (3.10)
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When the optimisation algorithm was deployed on a community level, the total

financial or environmental benefit for the whole community was maximised through

minimisation of the aggregated electricity import costs minus the aggregated electric-

ity export. For instance, the excess solar energy of one household may be used to

charge the EV at another node in order to minimise the communal carbon footprint.

3.4 Curtailment methods for demand-side response

modelling

This section is about the potential of using local flexibility for participation in res-

idential DSR services in order to offer balancing services to the DNO and the grid

through the aggregation of the flexibility offered by individual assets.

3.4.1 Participation in residential demand-side response ser-
vices

Integrating network awareness into the optimisation algorithm ensures its operation

within voltage limits without overloading the network. Using this approach, commu-

nity coordination and optimisation result in a reduction of the costs without inducing

excess imbalance on the grid.

Distribution system operators recognise the threats posed by the planned uptake

of low-carbon high-consumption devices such as EVs and heat pumps. Additionally,

they acknowledge the flexibility that these residential and small commercial loads can

offer. Hence, the business model of DSR is now scaled from large commercial loads

such as cold stores and battery farms to flexible neighbourhoods. Essentially, this

shows that energy communities are seen as virtual power plants from the perspective

of the system operators [26].

For instance, Western Power Distribution (WPD) operates as a DSO in different

regions of the United Kingdom which are namely the Midlands, South Wales and the

South West [6]. Their “Sustain-H” service is a curtailment subscription where the

households are required to deliver a pre-arranged decrease in their demand. According

to WPD [6], this service will be commercially available by March 2023. There are

two curtailment windows of 4-hour duration which start at 8 am and 4 pm. For

households to be eligible, they need to have one of the following technologies; EV
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Figure 3.3: Illustration of the LV distribution network DSR service Sus-
tain [6].

chargers, heat pumps and batteries. WPD [6] estimates a total flexibility of 1.3 GW

across its operational regions by 2030.

The visualisation of this residential DSR service is shown in Figure 3.3 where

the EV charging demand increases the energy demand and significantly amplifies the

peak evening consumption. The plot shows the impact of the 4-hour Sustain-H service

(between 4 and 8 pm) where all of the EV charging is curtailed. The compensation for

this service is rewarded per kW of demand reduced and according to the congestion

zones determined by the DNO. The prices are £8.00/kW, £2.50/kW and £1.00/kW
for red, amber and green congestion areas, respectively.

3.4.2 Peak shaving and curtailment method

Using WPD’s residential DSR demand turn-down service as a reference and a cur-

tailment strategy was implemented in the optimisation code. Peak shaving was per-

formed by imposing a maximum power import limit. This limit was coded as an

inequality constraint in the optimisation algorithm in order to achieve cost or carbon

minimal results while participating in the residential DSR service. This is shown in

Equation 3.11 where the imported power at every time step was curtailed to be less
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than or equal to the variable limit, Pmax, t. During the curtailment periods (e.g. 4 to

8 pm), this limit was set to match the inflexible household demand.

Pimport, t ⩽ Pmax, t ∀t ∈ T (3.11)

In some simulation cases, this limit was applied for the entire day rather than

focusing on red-rate periods. This means that instead of just shifting the peak in

time, the peak import value was reduced. This is because in some of the cases, the

morning peak was observed to be higher than the evening surge or that the evening

peak was just shifted to a time after 8 pm. Therefore, this constraint caps the power

import level to the given limit at any time during the simulation. To achieve peak

shaving results with the maximum effect, the optimisation code was modified to

implement the constraint in Equation 3.11.

3.5 Network-aware optimisation approach

This section provides an overview of the network-aware optimisation modelling tech-

nique that requires interfacing of the optimisation and network modules. It also briefly

presents the results from the optimisation and DSR service participation simulation.

However, the discussion of the results is kept concise as the focus of this chapter

is on the modelling and optimisation methodology. Instead, the results from more

detailed real-life case studies are later presented in Chapter 5 along with a discussion

of limitations and implications for various stakeholders.

The outputs of the neighbourhood coordination and DSR simulations include

optimised operation schedules for each asset modelled in the neighbourhood, the

total cost associated with net imported active power and incurred delay penalties.

In order to yield these outputs and simulate the economic benefit from the DSR

participation, green, amber and red congestion zones had to be determined. The

battery, EV and solar PV assets were randomly distributed to the 55 nodes present

in the European LV network provided by the IEEE [7] shown in Figure 3.4. A power

flow analysis was performed to ensure that the network was operational with the

random asset placement, on the distribution system simulator OpenDSS [224]. The

maximum peak (i.e. Pmax, t) was read at the secondary substation node (shown in

green in Figure 3.4). The red, amber and green zones were assigned according to

the number of assets located at each feeder. The inflexible demand on the system
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Figure 3.4: One-line diagram of the European low voltage test feeder where
the substation is marked with a green square [7].

(which forms the business-as-usual scenario) was not modelled but instead real half-

hourly residential consumption data from the Thames Valley Vision project [225] (in

Southeast England) was fed into the nodes as consumption profiles, using the Python

interface of OpenDSS [224].

The simulation revealed that the peak demand could be curtailed up to 34%

of its maximum value. Therefore, it resulted in decreased power losses (2.3%) and

lower stress on the network. Due to the variation in the DSR compensation, some

households obtained an annual revenue of £14 and the ones in the red zone with the

highest flexibility volumes were paid up to £122. In other words, the houses placed

in the red congestion zone earned 8 times higher compensation per kW than others

in lower congestion areas. The users who provided the highest value to the DSO had

more than one asset (e.g. EV and battery) and were located in the red zone. This

shows that this service may create an economic disparity between the users in the same

neighbourhood. In their report, the Centre for Sustainable Energy examined social

justice in the future energy systems and highlighted how certain flexibility services

can contribute to the wealth gap as the users with higher flexibility volumes often

have the capital to invest in EVs and home batteries while less flexible households
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are often already using the bare minimum volume with no additional flexible capacity

from costly smart assets [226].

To summarise, the network-aware optimisation methodology shown in this chapter

creates a feedback loop which allows monitoring of the grid signals. This increases the

relevance of this thesis for DNOs and aggregators and also ensures healthy operation

of the system.

3.6 Key findings

This chapter demonstrated a user-centric and bottom-up approach to modelling dis-

tributed demand and generation starting from asset-level and reaching community-

level simulations on the distribution network. It is important to consider user comfort

when performing optimisation for minimum cost and/or carbon footprint to make sure

that the life quality and utility of the users are not compromised. To achieve this, the

optimisation methodology in this chapter incorporated a delay-based penalty matrix

that was minimised inside the objective function.

Additionally, this chapter demonstrated the value of distribution-level flexibility

to the DSO and the potential economic revenue it can bring to the participants. To

achieve this, a network-aware optimisation technique was introduced which achived

interfacing between Python and OpenDSS. In the future, the need for residential DSR

and hence, network-aware optimisation is expected to increase as the number of EVs

and heat pumps on the distribution networks grow.

The user-centric community coordination and optimisation methods shown here

are taken further in Chapter 4 through the integration of local energy markets. After

that, Chapter 5 uses the same methodology to simulate network-aware curtailment

and P2P trading case studies.
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Chapter 4

Local Energy Markets and
Co-simulation of the Grid and
Market

This chapter builds on the optimisation and grid simulations by adding the layer of

local energy market simulations. Briefly, it explains the motivation behind the use

of local energy markets. It presents the co-simulation structure which facilitates the

communication between the market and grid models. It compares community-based

and auction-based P2P trading methods and proposes a novel approach to integrate

carbon awareness into the local energy market design. It analyses the relationship

between energy storage and P2P trading and evaluates their separate and combined

effect on community self-sustainability and self-sufficiency. Additionally, it discusses

the use of P2P trading during some noteworthy times of pricing affected by the

COVID-19 lockdown and the winter gas scarcity. The results from the methodology

presented in this chapter are shown in Chapter 5. Parts of this chapter were published

in [33].

4.1 Introduction

In the business-as-usual setup with a flat tariff, there is no communication of the

real-time grid stress, carbon intensity or wholesale pricing to the end-users on the

distribution network. However, dynamic pricing and local energy market technolo-

gies can transfer this critical information to the end-users through pricing and other

methods in order to influence their consumption patterns and the magnitude of peak
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load. Therefore, using peer-to-peer trading, load shifting and peak shaving algo-

rithms, energy communities become more self-sufficient and reduce their reliance on

the central generation.

The main motivation for co-simulation of market and grid in this thesis is the need

for a holistic approach towards local energy systems in addition to the two dominant

streams of research which focus on either efficient and fair design of local energy

markets or achieving more balanced networks via distributed control and virtual

power plants. There is recent work that explores the effect of local energy markets

on LV distribution networks [83, 84, 85]. As detailed in Chapter 2, research in the

field of local and distributed energy trading has yielded multiple methodologies that

enable further advancements in distribution network decentralisation. The use of

local energy trading algorithms allow for further integration of flexible assets and

improved local network balancing due to better utilisation of local energy resources

[44, 86, 87, 88]. Co-simulation of both market and grid layers is essential in local

energy systems modelling as the most optimal market actions may lead to high or

low voltage levels which increase the burden on the distribution system operator.

4.2 Market and grid co-simulation methods

In this section, the market and grid co-simulation architecture is presented which

shows the transfer of information between different layers of modelling. Following

this, the two most common P2P market designs are demonstrated which are namely,

auction-based markets, making use of blind double auctions and community-based

markets, relying on neighbourhood-level supply-to-demand ratios.

In this section, IEEE LV European case study was used which was also employed

in [83, 227] for co-simulation of local energy systems. The details regarding the grid

model were presented in Chapter 3.

According to Sousa et al. [30], there are two main P2P market design approaches

which are “full P2P” and “community-based P2P”. Others such as [77, 80] categorise

two types of P2P markets with respect to how the energy price is set where either the

energy prices are set by individual sellers (pricing model similar to Airbnb and eBay)

or the pricing is decided according to the demand via a local ledger (similar to Uber).

The so-called full P2P market solely depends on multiple bi-lateral contracts between

producers and consumers and the price of the dispatch is determined by the inputs
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from the involved parties. It allows for user heterogeneity in the sense that the users

can limit their choices to green DER generation and express their willingness-to-pay

through bids. However, it depends on communication and trust between different

parties. The other approach, namely community-based P2P, may be considered as

less decentralised as certain actions such as trade management are handled at the

community-level. This task is handled by a community manager who can be a peer,

aggregator, DSO or a centralised algorithm which has access to the user information.

There is no direct negotiation between the peers which significantly decreases the

burden on computational and communication systems. Additionally, there is a hybrid

approach which is a combination of the two previous approaches. For instance, there

are studies that incorporate bi-lateral trading between microgrids that have nested

community-based P2P markets. In this study, both of the traditional approaches are

simulated and compared. However, only the coordinated approach of balancing the

supply and demand of the local network is taken further via the integration of carbon

awareness. Hence, the modifications of community-based P2P markets, which include

carbon-aware, inter-community and intra-community variations, are used in the case

study presented in Chapter 5.

4.2.1 System model

There are two main factors that deem a P2P transaction “threatening” from a net-

work point of view which are high voltage (i.e. the system is long) or low voltage

(i.e. the system is short)levels due to supply and demand imbalance, and high load-

ings of transformers and lines due to high import rates during cheaper periods of

consumption. Co-simulation of market and grid ensure that disruptive transactions

that yield such high-risk grid signals in the system are prevented. Through the use

of the feedback loop shown in Figure 4.1, system stability and loading indicators are

communicated to the market layer. This is a pre-requisite for clearing a transaction

between the two parties if an auction-based P2P method is used. If a low voltage

value occurs when simulating a community-based P2P method, the P2P price for that

period is reset to match the grid price which removes the incentive to consume more

of the cheaper local energy.

Figure 4.1 depicts the simulation methodology that has four core components

which are listed below. It should be noted that without the carbon awareness module
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(i.e. the second component), the methodology yield a co-simulation of the network

and the local energy market.

1. Community-based P2P market

2. Carbon awareness

3. Optimisation

4. Network simulation

The simulation workflow starts at (1) community-based P2P market module where

the aggregated consumption and generation of the community is used to evaluate the

supply-to-demand ratio (SDR). The local SDR value is applied to the grid electricity

import and export tariffs in order to evaluate the local pricing of electricity. If the

market design is carbon-aware, then the dynamic carbon incentives are calculated

which affect the computations of P2P buy and sell prices. The module of carbon-

awareness is explained in detail in Section 4.3. In short, a carbon incentive is applied

to the local sell prices to encourage sharing of local energy generation when the grid

is producing energy with high carbon intensity.

Once the P2P buy and sell prices are computed, they are input into the optimi-

sation module where mixed integer linear programming is performed at a community

scale to minimise costs. The resultant time-series of energy import and export from

different end-users are mapped onto the LV network and simulated in the network

module. This module outputs power flow analysis and per-unit voltage analysis using

the open-source distribution network software OpenDSS.

4.2.2 Community-based P2P

There are many ways a market can be cleared, all of which may be applied to the

context of local energy systems. Hence, the scope of this study was narrowed down

to one of the most popular approaches in literature which involves the use of SDR

to compute P2P trading prices. P2P energy trading or sharing takes place between

prosumers and consumers where energy surplus from prosumer households is shared

and consumed in the community. P2P markets are usually designed to function

without an intermediary or a central authority. In this study, a local energy market

layer was built with enabling functions to allow trading amongst the participants
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Figure 4.1: Simulation architecture for carbon-aware community P2P mar-
ket.
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to maximise community benefit. This method provides the option for prosumers to

trade electricity with other community members who contribute to the local economy

[228].

A well-known method of designing local energy markets include the calculation

of SDR which is simply the local generation available in a network divided by the

electricity demand [81]. As formulated by Liu et al. [229], the economic relationship

between electricity price and SDR is inversely proportional. This means high SDR

yields relatively low prices and vice versa. Various works in literature [81, 227, 230,

231] make use of SDR-based P2P pricing models. The same method was employed in

this thesis to model community-based P2P market where the P2P price is determined

in a less decentralised fashion through the use of aggregated community level data

rather than individual bids and offers. As shown in Equation 4.1, SDR (i.e. ρ)

was calculated as the ratio between aggregated power export and import from the

households (i.e. nodes). The aggregated power export includes PV generation and

any excess discharge from the battery. The inflexible household demand, EV charging,

battery charging and other loads contribute to the power import. When SDR is equal

to one, the local network is self-sufficient with no excess power export. If SDR is less

than one, the system is short and vice versa if its value is higher than one. The P2P

buy and sell prices are scaled to reflect the state of the community.

ρ(t) =

∑N
0 Pexport,n∑N
0 Pimport,n

(4.1)

Using Equation 4.2, P2P sell prices were computed where P2P sell price is a

function of SDR. Similarly, P2P buy price which is a function of both SDR and

P2P sell price was calculated as shown in Equation 4.3. In the following equations,

P2Pbuy and P2Psell are the prices for users participating in P2P energy sharing in the

community. λbuy and λsell denote the price of energy imported from and exported to

the grid. SDR is represented by ρ and the P2P pricing functions are presented for

variable levels of SDR in the network.

P2Psell(t) = f (ρt) =

{ λsell,t·λbuy,t

(λbuy,t−λsell,t)·ρt+λsell,t
0 ⩽ ρt ⩽ 1

λsell,t ρt > 1
(4.2)

P2Pbuy(t) = f ′ (ρt) =

{
P2Psell,t · ρt + λbuy,t · (1− ρt) 0 ⩽ ρt ⩽ 1

λsell,t ρt > 1
(4.3)
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The computed P2P pricing for different scenarios was then fed into the optimiser

which aims to minimise costs by increasing community-level self-sufficiency. This

enabled the comparison of half-hourly dynamic pricing and various P2P tariffs. The

approach assumed 100% accurate forecasting of solar output and energy demand from

EVs. Figure 4.2 shows the summer and winter P2P pricing where the grid import

tariff was based on 2019 prices of the dynamic Agile tariff by the energy supplier

Octopus. The export price was assumed to be 5p/kWh similar to other studies in the

field such as [81].

Regarding dynamic or variable pricing, this is used as a basis for P2P pricing

rather than a flat tariff as the aim is to simulate the future of P2P in energy systems

and numerous studies including [232] foresee a transition to this approach in the

future. It is a more consumer-centric approach where the domestic consumers are

billed using similar half-hourly prices to the commercial ones rather than having a

fixed tariff (i.e. a volumetric calculation using a fixed p/kWh rate). There is also

the commonly known time-of-use (ToU) pricing where the p/kWh rate varies for

different times of the day which usually correlates to higher rates for higher demand

periods. For instance, electricity prices from 4 to 7 pm would be higher to reflect

the evening peak whereas from 1 am to 4 am when the system is long, the prices

would be lower. Hence, this method of pricing would also result in demand shifting

and is shown to result in merely shifting the peak rather than reducing the peak

consumption [37, 233].

A British energy supplier called Octopus [234] readily offers their “Agile” electric-

ity tariff which is an indexed half-hourly dynamic pricing that tracks the wholesale

price of electricity (i.e. the domestic rate changes every 30 minutes instead of a fixed

rate). On numerous occasions, this resulted in negative pricing (i.e. the energy sup-

plier paid its customers to consume electricity). However, this also means that there

is usually a steep price from 4 pm to 7 pm during the evening consumption surge.

The following logic in Equation 4.4, is used to determine the prime-time pricing. It

uses the distribution cost coefficient (µ) multiplied by the wholesale cost of electricity

(λ) and Pr which is the peak-time premium (which was equal to 12p/kWh during

prime time in 2019). Then it caps the price at 35p/kWh if the previous outcome is

higher than this value. This is because on average the fixed tariffs were in the range

of 15-20p/kWh in 2019 and it could be argued that exposing domestic consumers to

extreme fluctuations in the system would be unfair.
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min((µ× λ+ Pr), 35p/kWh) (4.4)

Figures 4.2 and 4.3 show local P2P market prices alongside the grid tariffs. Both

figures depict a summer week in the top plot and a winter week in the bottom one

(where the week starts on a Monday). This is to reflect the variations between working

and non-working days and also the seasonal differences that arise from the changes

in demand and supply. The winter week exhibits increase in residential loads due

to higher heating demand due to colder weather conditions and lower solar energy

output in the northern hemisphere (i.e. higher demand, lower supply). Whereas, the

summer case has the higher solar energy output due to longer hours of sunshine and

higher levels of solar irradiance and lower demand (i.e. lower demand, higher supply).

For these results, a neighbourhood of 65 users, with 45% EV and 14% solar PV and

battery penetration, was simulated. SDR and hence, the P2P prices were calculated

on a 5-minutely basis.

Figure 4.2: Half-hourly community-based P2P buy prices based on dy-
namic grid import tariff.

The top plot in Figure 4.2 shows the summer case with solar generation present

during the day. There is an overall significant reduction in P2P pricing where the peak

prices are lower than the import tariff in summer. As shown in the bottom plot, there
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is very little difference between the grid and P2P prices in winter. This is because as

previously denoted by Equation 4.3, P2P buy prices are equal to the grid tariff when

the SDR is zero (i.e. P2Pbuy=λbuy). Additionally, when SDR is more than 1 (i.e. a

local surplus), the value of export is capped at 5p/kWh, making it more profitable to

store and sell later - as illustrated by the plateaus in the summer P2P prices (shown

in orange). From the consumer’s perspective, shifting their consumption towards

midday is incentivised as this is cheaper than the grid overnight import price in the

summer. The top plot in Figure 4.2 annotates a pattern where the midday import

pricing on a Sunday in the summer case (i.e. Day 7 on the top plot) follows the

varying SDR values. The bottom plot shows the winter pricing and there is almost

no decrease in P2P pricing except a slight decrease (i.e. 0.68p/kWh) in P2P pricing

during solar generation periods. As Agile tariff was used as an input, the users

participating in P2P were also able to leverage the occurrence of overnight negative

pricing on Saturday night due to the surplus on the system (possibly from wind

generation).

Figure 4.3: Half-hourly community-based SDR and corresponding P2P
buy and sell prices in summer (top) and winter (bottom).

Similar to Figure 4.2, Figure 4.3 also shows a summer and winter case in the top

and bottom plots for community-based SDR values and the corresponding P2P buy
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and sell prices. The general trend for SDR was that the winter values are 30% of

the summer ones. This is because of increased load due to heating and decreased

contribution from solar generation. The previous figure (4.2) illustrated that P2P

buy prices are lower than the grid buy prices for the summer months but closely

follow grid import prices in winter. This applies to P2P buy prices as well. In this

case, a grid export tariff of 5p/kWh was used. As shown in the bottom plot, lower

SDR during winter months leads to highly rewarding export prices for prosumers due

to scarcity of local resources. The P2P export prices follow P2P import prices which

are based on the dynamic grid tariff and hence, P2P export during winter is much

higher than the flat grid export rate. The annotation in the bottom plot shows a

slight decrease in P2P sell pricing which is linked to positive fluctuations in SDR

values. As depicted in the top plot, SDR increases with higher solar production in

summer and hence, when there is more local supply, P2P sell prices are capped at

the grid export price. Nevertheless, at a point of a sudden drop in SDR, the P2P sell

price was more than tripled and reached a value of 17.5p/kWh (as annotated in the

top plot). Another extreme in this summer week was when the sell price was negative

which indicates a surplus of energy in the whole system and is reflected to local energy

producers (in this market design) through the use of a dynamic grid tariff.

4.2.2.1 Relationship between energy storage and P2P market participa-
tion

A sensitivity analysis was performed to investigate the effect of storage penetration

(i.e. storage-to-demand ratio) and P2P participation levels on the community self-

consumption and self-sufficiency levels. Self-consumption is the ratio of loads supplied

by solar generation over total solar energy output (denoted by SC in Equation 4.5).

Whereas, self-sufficiency represents how much of the total load is covered by local

generation. This is shown Equation 4.6 where self-sufficiency is abbreviated as SS.

SC =

∑N
1 Esupplied locally,n∑N

1 EPV,n

(4.5)

SS =

∑N
1 Esupplied locally,n∑N

1 Edemand,n

(4.6)

Figure 4.4 (a) shows that P2P participation and storage penetration levels act

as substitutes with a varying ratio at higher storage penetration levels which can be
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approximated as a 4:1 ratio. This means increasing P2P participation by 4% has a

similar effect on self-consumption as 1% increase in storage penetration. This shows

that P2P markets accelerate the route to self-consuming communities by decreasing

the magnitude of storage required. Over 90% self-consumption levels were reached

when the whole community has a P2P market with only 25% storage penetration. As-

suming that P2P market and implementation costs were lower than storage systems,

this indicates a considerable cost saving for the community. On its own, complete

P2P market participation cannot increase self-consumption beyond 50%. This is be-

cause self-consumption is mainly increased by rescheduling loads to periods of local

generation output and this is limited to the flexibility of the loads. Beyond this value,

there is a need for storage to capture excess energy generation in the community and

discharge during periods of peak load. However, with no P2P participation, over 57%

penetration results in more than 90% self-consumption. Hence, P2P participation

saves the need for 35% extra storage installation and hence, it saves all the costs

associated with hardware installation and maintenance.

Figure 4.4: The impact of P2P participation and storage penetration levels
on self-consumption (a) and self-sufficiency (b).

Another aspect to note in Figure 4.4(a) is that the gradients of the lines that

separate the different levels of self-consumption are changing. The gradient becomes

less steep for higher levels of storage. This indicates that bigger contributions from

storage assets are required as the target self-consumption level increases for low levels
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of P2P participation. For instance, as shown in the plot, when P2P is zero, an extra

volume of 2% storage is required to increase self-consumption levels from 20 to 30%.

Yet, the required added volume increases to 15% if the community wants to increase

their levels from 80 to 90%. On the other hand, when P2P participation is 100%, the

width of these zones becomes significantly smaller and similar to one another. For

instance, full P2P involvement yields 62% self-consumption on its own. To reach 70,

80 and 90%, almost even increments of approximately 10% storage are required.

Without the co-existence of the P2P market and storage, the self-sufficiency value

is capped below 30%. To cover more than 30% of the total load using local generation,

both P2P participation and storage have to be implemented. Figure 4.4(b) illustrates

the effect of these two variables on the self-sufficiency of the community. As shown, the

relationship demonstrated in Figure 4.4(a) and (b) are different. From the perspective

of self-consumption, P2P participation and storage may be regarded as substitutes

(i.e. due to the linear relationship) where P2P participation reduces the requirement

for installation of storage assets. Whereas, from a self-sufficiency perspective, they

are complementary and their co-existence is desired to obtain self-sufficiency levels

over 30% with a maximum of 52%. Increasing self-sufficiency means that more of

the local demand is covered by the local generation. Hence, this results in lower

costs for consumers and higher benefits for local producers. Full P2P participation

and 53% battery penetration yields 51% self-sufficiency. Without P2P, this would be

limited to 26%. Therefore, P2P participation reduced reliance on the grid by 25%.

Consequently, this would reduce the stress on the grid and as the demand was covered

by local renewable generation, the carbon emissions would be also reduced. Lastly,

as 25% more of the demand was covered by local generators rather than commercial

power plants, the revenue would be retained in the community which connotes to

positive socio-economic effects.
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4.2.3 Auction-based P2P

In addition to the community-based markets, another common methodology in LEM

research makes use of the existing auction models and applies these to the context of

local energy sharing and distribution networks. There are numerous auction meth-

ods such as [235, 236], however, double blind auctions populate most of the recent

auction-based publications [83, 143, 237, 238, 239]. Three different methods, shown

in [16, 240], were compared as shown in Table 4.1 where the double blind auction

method outperforms the Huang Multi–Unit Double Auction method [235] in terms of

percentage energy traded and welfare. The latter is a multi-unit auction that updates

the demand to adjust their quantities to match the supply in case of a shortage and

vice versa. Uniform pricing ensures maximum welfare, however, almost 10% of the

pool remains unused. Lastly, the double blind auction method results in a 10% lower

social welfare but achieves the highest level of energy shared. The advantage of the

method by Huang et al. [235] is that it has a strategy–proof approach with respect

to the reservation price and is shown to achieve lower levels of underreporting of the

available generation by the sellers which may be used to boost the market price. As

such considerations are out of the scope of this study, the trading method of Double

Blind Auction [16] (based on [241]) is chosen as it results in the highest levels of

energy sharing.

The following methodology was used to simulate the auction process. Each par-

ticipant declares their interest to participate in the P2P auction. They submit a

quantity which is the amount of energy to be imported or exported in kWh along

with a reservation price (p/kWh). The reservation price is the preferred maximum

buy price for the consumers and the minimum sell price for the prosumers.

At the time of this experiment, the electricity import and export tariffs were

around 15 and 5p/kWh respectively, this situation creates an opportunity to form a

Table 4.1: Comparison of auctioning algorithms in terms of energy traded,
welfare and other criteria using the Huang and Uniform models presented
by [16].

Method % Shared energy Welfare
Uniform 91.78 1.0
Huang Multi–Unit Auction [235] 87.43 0.97
Double Blind Auction [16, 241] 99.50 0.90
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Table 4.2: Preferences of P2P trading participants

Buy, sell price Description
Preference 1 15, 5 prefers cheaper electricity
Preference 2 20, 5 willing to pay a premium for buying local
Preference 3 15, 3 sells cheaper energy to lower income households
Preference 4 10, 5 prioritises low-income/price-sensitive households

local energy market where the locally generated energy is valued at a higher price

by the consumers in the community, leading to a higher profit for the distributed

renewable energy generation. In return, the consumers reduce both their carbon

footprint and bills. From a community perspective, local energy transactions increase

self-sufficiency and hence, reduce dependency on the grid supply which primarily

consists of polluting sources.

In this energy market, there is also room for expressing preferences such as local

consumption and green energy consumption in a similar way to the multi-class energy

management work [27] in community-based markets. Additionally, local energy can

be subsidised for enabling more affordable consumption by lower income households.

This potentially offers a novel way to subsidise the energy usage in low-income house-

holds as buying local energy would be cheaper than importing from the grid. The

different preferences of users can be expressed through pricing such as cheaper value,

higher willingness to pay for local energy, discounted energy offer for low-income

residents and price-sensitive users in Table 4.2.

As a result of co-simulating the auction-based P2P market and the European LV

feeder grid, it was found that the aggregated active power export from the nodes

increased by 14% and the reactive power import decreased by 8% as shown in Table

4.3. This is because the self-sufficiency and self-consumption levels were increased

due to higher sharing of electricity in the network. However, this market design

yielded 2% increase in losses and more significantly 2.2% higher voltage imbalance.

Voltage imbalance in this thesis and other publications [83] is calculated according to

the IEEE’s definition of phase voltage unbalance rate which is the maximum voltage

deviation from the average phase voltage divided by the average phase voltage [242].

Voltage fluctuations pose a challenge in this case. With higher roof-top PV and EV

penetrations to reach net-zero goals, the sudden evening spike in demand due to the

decreasing solar output and connection of loads such as EV and heating is expected
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Table 4.3: The effect of the auction-based market on the network in com-
parison to the business-as-usual case.

Grid signals Difference
Power losses 1.90%
Aggregated active power export 14.37%
Aggregated reactive power demand −7.64%
Voltage imbalance 2.2%

to grow. Such sudden changes in demand and supply values cause an imbalance in

the system.

4.2.4 Comparison of community-based and auction-based P2P
markets

There were two types of local energy markets studied in this thesis which were based

on community-level supply-to-demand ratios and individual auctions. In this subsec-

tion, these two market models are compared and the decision to take the method of

community-based P2P trading forward is justified.

The auction-based market design offers individual freedom of choice and autonomy

and relies on the notion of individual cost minimisation. Yet, the preferences for

green energy and an option to donate energy to deprived homes may be expressed

through the upper and lower limits of the user’s bids and offers. On the other hand,

the community-based method enables cooperation and sharing in the community

towards the common goal of maximising the community’s self-sufficiency rather than

focusing on individual cost minimisation. The neighbourhood target can be altered

to maximise savings in terms of cost and carbon.

From a technical perspective, compared to the auction-based P2P method, com-

munity P2P approach slightly increased the grid import by 2.97% and yielded neg-

ligible differences in social welfare and profits (in specific, lowered it by 2% and 1%

respectively). However, the decision to choose the community-based markets was

not driven by technical performance alone. A significant determining factor was the

feasibility of implementing this technology by 2032 in the use-case in Scotland.

In this thesis, year 2032 was chosen as it is a critical point in the Distributed

Future Energy Scenarios (DFES) [32]. This thesis decided to simulate 2032 rather

than 2050 to reflect the DSO’s perspective and provide local rather than national
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context (see Chapter 5). This choice enabled the case studies to use local projections

for renewable energy and smart asset penetrations in Aberdeenshire using Scottish

and Southern Electricity Networks (SSEN)’s analysis. On a macro scale, the FES are

useful as they bring a range of possible strategies based on political, techno-economic

and social perspectives [243]. However, these scenarios do not reflect the potential

and energy requirements of the north of Scotland observed by SSEN [32] - which is

the location of the use-cases used in this project.

Therefore, the P2P market type was chosen according to how feasible its adop-

tion would be by 2032. Community-based markets were evaluated to be the most

compatible with the existing system in the next ten years [14, 30]. This is because

this method yields a common pricing signal for the entire community which decreases

the complexity of clearing the local market with potentially hundreds of participants

which would require multiple clearing rounds and longer computational time. Ad-

ditionally, the auction system poses the risk of malicious bids and the formation of

coalitions which might result in unfairly high local prices that would require research

into market regulation. Furthermore, information regarding participants’ preferences

was not available from the pilot study and hence, this would result in a less real-

istic simulation of 2032. Whereas, the community-based market design avoids such

problems as it uses the supply-to-demand ratio data for the designated microgrid

to determine the price. Sharing this information with the DNO would increase the

visibility of distributed residential microgrids to the distribution system and energy

system operators which increases the potential of residential DSR. This method of

P2P trading can be readily used in conjunction with DSR services for the grid op-

erators and could also contribute to more accurate and more granular forecasting of

energy consumption on LV networks. This is expected to develop into a symbiotic

relationship between the end-users and the system. For instance, higher accuracy in

forecasting would result in a lower imbalance which could lead to lower electricity

import prices and potential carbon emissions.

To summarise, after comparing the technical benefits and near-future feasibility of

the two P2P market designs, the decision was made to proceed with the community-

based P2P methodology as it was predicted to have higher chances of implementation

by 2032 in comparison to the auction-based markets due to its community outlook

(i.e. the common goal of carbon or cost savings), decreased complexity, lower compu-

tational time and avoided risks associated with auction-based market distortion.

91



4.3. CARBON-AWARE P2P TRADING

4.3 Carbon-aware P2P trading

For the first time, this work developed a P2P mechanism that takes into account

carbon dioxide emissions. This section introduces the novel concept of carbon-aware

P2P pricing. As P2P trading offers an opportunity to redefine energy markets, it

may be used to transmit system-level information to the end-users through the use

of system-indexed variable pricing such as the Agile pricing mentioned previously.

This method is used to transmit information about the carbon intensity of the grid

by applying an extra incentive for sharing excess energy during high-carbon periods

which acts as a penalty for consuming electricity. This workflow uses an incentive to

motivate P2P agents to trade during high carbon intensity hours of the day rather

than when there is excess solar generation which is often when the system-level carbon

intensity is already very low.

Previous approaches merely use a conversion method to calculate carbon savings

achieved by multiplying energy savings with a constant per-unit carbon emission

value [97, 98]. Therefore, a gap was identified in studying the carbon-saving nature

of local energy trading in literature. The method of assuming a constant value is not

an accurate representation of the varying pattern of carbon intensity throughout the

day due to the periodical nature of RES. Studies [97, 98] have shown 15% reduction

of carbon emissions, assuming a constant rate of 0.55kgCO2/kWh based on the as-

sumption that the central generation is totally gas powered. However, the average

carbon intensity of electricity in the UK is 0.233kg of carbon dioxide equivalent per

kWh [5] which indicates that previous research did not realistically reflect the car-

bon saving potential of P2P energy markets. Additionally, on average, midday and

overnight carbon levels are much lower due to solar and wind generation even though

it should be noted that the relationship between electricity cost and carbon intensity

is not always proportional. The assumptions regarding constantly high grid carbon

intensity do not provide correct information to the optimiser which leads to results

which are inadequate for estimating the carbon savings resulting from cost-minimal

load shifting. This is because, as shown in Figure 4.5 and 4.6, the morning surge

often results in the highest per-unit carbon emission value of the day. The methods

employed in the literature demonstrate co-simulation platforms that focus on P2P

market and grid simulations, whereas the study presented here introduces a novel
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Figure 4.5: Relationship between carbon intensity and dynamic import
tariff which is indexed on system buy prices.

approach by incorporating carbon awareness as one of the key layers in the simula-

tion platform. The framework uses this information to generate carbon-aware P2P

pricing which adjusts the values to take into account the grid carbon intensity at

each time period. For example, if there are two periods in the simulation which have

the same price, scheduling the consumption to either one of these periods would lead

to the same result from the perspective of cost optimisation. Integration of carbon

awareness in the simulation differentiates these periods from one another depending

on the level of grid carbon intensity. This proposed carbon-aware co-simulation of

network and market was previously illustrated in Figure 4.1.

To contribute to the decrease in carbon emissions on the system level the frame-

work has to optimise pricing so that the energy is exported when the grid has the

highest carbon levels. In that case, the designed carbon-based P2P pricing benefits

the prosumer by increasing one’s self-sufficiency during the hours of highest carbon

intensity which is when the grid activates peaking plans and under normal operation

conditions meets the increased peak demand by gas generation and hence increasing

the overall carbon footprint of the system.

Through the use of an API, the system carbon intensity for the GB electricity
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system is reached [5]. In this dataset, the carbon intensity of electricity is a measure

of CO2 emissions produced per kWh of electricity consumption. Using the analysis

of Long et al. [81] as a basis, a 4p/kWh incentive for a community with 14% solar

penetration is chosen. In [81], in order to ensure energy sharing is profitable for all

participants, a constant economic incentive is applied which is expected to be covered

by DSO for increasing self-sufficiency of the local network. This incentive creates a

buffer between buy and sell prices when there is an energy surplus in the network.

As the scope of this study is different and includes the relationship between local

energy markets and their impact on carbon emissions, a carbon-aware P2P pricing

mechanism with a dynamic incentive is designed. The carbon incentive, λcarbon is a

function of time that is indexed to the grid carbon footprint information from [5].

The total sum of incentives is calculated per day using the aforementioned 4p/kWh

incentive as a basis. The incentive is then manipulated and scaled to reflect the tem-

poral variations in the grid carbon intensity. In order to integrate carbon awareness

the P2P sell and buy functions were revised as shown in Equation 4.7 and 4.8.

C-P2Psell(t) =


(λsell,t+λcarbon, t)·λbuy,t

(λbuy,t−λsell,t−λcarbon,t)·ρt+λsell,t+λcarbon,t
0 ⩽ ρt ⩽ 1

λsell,t +
λcarbon,t

ρt
ρt > 1

(4.7)

C-P2Pbuy(t) =

{
C-P2Psell ·ρt + λbuy ,t · (1− ρt) 0 ⩽ ρt ⩽ 1

λsell ,t + λcarbon ,t ρt > 1
(4.8)

The carbon-aware P2P trading algorithm builds a feature of carbon-awareness into

the co-simulation platform through the calculation of dynamic carbon incentive based

on half-hourly grid carbon intensity values. This workflow and simulation architecture

was previously presented in Figure 4.1. These carbon signals are then fed into the

market layer which contribute towards the modified computation of P2P buy and sell

prices which are shown as C-P2Psell and C-P2Pbuy in Equation 4.7 and 4.8. Following

this, the methodology is the same as community-based markets described in Section

4.2.2 where the P2P prices are input into the optimisation and grid layers.

Figure 4.6 shows a snapshot of the 2019 carbon intensity levels in summer (i.e.

yellow in the top plot) and winter (i.e. brown in the bottom plot), along with grid

and P2P prices. As seen from this figure, the carbon intensity of electricity generation

does not have a directly proportional relationship with grid pricing. Majority of the

time, the maximum system buy prices of the day occur during the evening peak.
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Figure 4.6: Carbon-aware P2P pricing in comparison with community P2P
and grid import pricing. Summer and winter snapshots are shown in the
top and bottom plots, correspondingly.

However, that is not always the case for carbon intensity as shown in both top and

bottom plots in Figure 4.6 where the carbon intensity is higher during the morning

surge on average. In the bottom plot of Figure 4.6, the behaviour of the designed

carbon P2P pricing is presented in the winter. Both P2P and carbon P2P prices

follow the grid buy tariff closely due to the low solar output and hence, the low SDR

levels. The behaviour of the carbon P2P is very similar to the P2P market pricing in

general. However, in the summer (shown in the top plot), carbon-aware P2P (in red)

has higher buy prices than the regular P2P where the difference is equal to λcarbon.

This results in higher economic benefit for those who export during high grid intensity

pricing and reduces the carbon footprint of the buyers.

As the goal of the optimiser is to minimise the cost of energy usage by the end-

user, this hybrid approach shifts the transactions that occur during midday to this

period of high carbon emissions. This approach and the carbon incentive may be

sponsored by organisations of interest such as DSOs and local governments in order to

encourage participation in carbon-aware P2P trading to reduce the carbon footprint of
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energy communities which accelerates decarbonisation of energy systems in a bottom-

up approach. The results and comparison with various community-based P2P case

studies are presented in the next chapter, specifically in Section 5.3.

4.4 P2P market operation under abnormal condi-

tions

Previous sections introduced the concepts of community and auction-based local en-

ergy markets. The electricity prices from 2019 were used in order to assess the perfor-

mance of the local energy market designs under business-as-usual conditions. How-

ever, the COVID-19 lockdowns in 2020 and winter gas scarcity in late 2020 and early

2021, challenged the energy markets around the world to operate under abnormal

conditions due to drastic changes in demand and supply shortages correspondingly.

This section analyses these changes in demand and supply and evaluates the operation

of P2P markets under these conditions.

4.4.1 Impact of COVID-19 lockdown on P2P markets

In this subsection, the possible impact of the COVID-19 lockdown on P2P markets

is discussed in a qualitative manner. Analysis of the GB demand data during the

March 2020 lockdown indicated that a shift to WFH would result to a net benefit for

flexible stakeholders, such as consumers on variable tariffs [33].

As displayed in Figure 4.7, load duration curves show the base and peak demand

by visualising the relationship between sorted demand (i.e. ranked descending) and

exceedence. Whilst the base demand decreased by 10% during the lockdown, the

peak and mean demand more drastically dropped by 20% and 24% respectively.

The figure illustrates that the overall demand decreased as a majority of the commer-

cial users (e.g. factories, businesses, etc.) shut down despite the increased residential

consumption due to WFH. Besides the demand reduction, the lockdown also influ-

enced the consumption pattern which results in a changed load profile shape.

In addition to affecting system prices, the impact of the lockdown was transferred

to end-users on the variable Agile tariff. In Figure 4.8, an example of capping at the

maximum price of 35p/kWh is shown on the 4th of March 2020 (i.e. during the pre-

lockdown week). This day marked the first time a system price was over £2000/MWh

since 2001. It peaked at £2242/MWh [244]. The week commencing on the 30th of
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Figure 4.7: Load duration curve of system demand for pre and post-
lockdown actions (w/c 02/03/20 and 23/03/20) showing the decrease in
the post-action scenario with the highest decrease in peak and lowest in
the base load.
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Figure 4.8: Examples of price capping (5th March 2020 on the lower orange
x-axis) and negative pricing (5th April 2020 on the higher green x-axis)
during pre and post-lockdown weeks respectively (using the data from [8]).

March 2020 was of interest for comparison with the other extreme, namely negative

pricing, as it dropped to near -3p/kWh. The reduction in demand magnitude and

changes in the profile are correlated to the changes between the pre and post-lockdown

pricing profiles in Figure 4.8. Since the launch of the Agile tariff, there had been 96

occurrences of negative pricing (i.e. price < 0p/kWh). Almost 70% of these events

(i.e. 67 out of 96) took place during the lockdowns.

In a community-based P2P market, working from home (WFH) due to the lock-

down would result in a lower supply-to-demand ratio as domestic energy consumption

during the lockdown had increased. Lower SDR levels indicate higher P2P buy prices

for the consumers during the evening peak. Flexible assets would avoid such high-

priced periods and leverage the negative pricing. For prosumers, there would be an

increased opportunity to sell for higher prices during peak hours. Even though the

SDR indicates local level scarcity during the lockdown, there were many instances

when the system was long which resulted in negative pricing. This would result in

having to pay to export electricity. On the other hand, in an auction-based P2P set-

up, there would be a higher benefit for consumers assuming that sellers would offer

cheaper prices than the grid import price. When compared to the grid export tariff,
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Figure 4.9: Corresponding Agile outgoing sell prices using the data from
[8], that shows a high sell price reflecting the reserve scarcity (5th March
2020 on the lower orange x-axis) and a capped price of 0p/kWh (5th April
2020 on the higher green x-axis).

this would still be beneficial to the sellers, although, less than the community-based

P2P trading.

Octopus also provides variable pricing for selling electricity [234]. The correspond-

ing sell prices are plotted in Figure 4.9. The highest sell price around 19p/kWh was

recorded which corresponds to the day with the highest system price since 2001. The

benefit is passed on to the distributed generators. In the case of negative load pricing

when the consumers were paid to use electricity on the 5th of May, there would also

be negative pricing for exporting electricity (i.e. generators pay to export electricity).

The pricing for generation is capped at a minimum of 0p/kWh which indicates that

the energy was exported for free during that period as shown in Figure 4.9. Capping

export prices at 0p/kWh could be applied to P2P markets to ensure that prosumers

are not penalised for sharing energy with their community while the local SDR is low.

Otherwise, this would decrease self-sufficiency of the community.

There is virtually no benefit for the distributed consumers with a fixed rate sup-

ply agreement as the average domestic household demand increased due to WFH.

However, the 70 negative pricing events show that consumers with variable pricing
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such as the Agile tariff are getting paid to use electricity. Such consumers can also

take advantage of reserve scarcity and benefit from exporting when the grid is under

stress. Regarding the commercial and industrial users, the same would apply which

indicates that the users with the most flexible assets/loads would be able to take

advantage of the effects of the lockdown on the pricing.

4.4.2 Impact of 2021/22 winter gas scarcity on P2P trading

The other abnormal market operation condition took place in late 2021 and early

2022. Due to a sudden increase in global gas prices in the winter caused by the

scarcity during the preceding 6 months, electricity prices were increased to compen-

sate for the wholesale price surge. The Agile import prices reflect the changes in the

wholesale market till the 35p/kWh price limit was reached. As wholesale pricing is

the largest contributor (40% on average), this price surge resulted in higher user bills.

In decreasing order, the rest of the contributing factors are operating (i.e. billing and

metering), network, policy, administration, profit margin of the energy supplier and

VAT.

Figure 4.10 illustrates the daily Agile import tariff profile from 5th February 2022

where the usual morning (8:30) and evening (18:00) peaks are capped. The lower

period of demand during early morning, midday and late night lead to price drops

below the limit. This figure also shows that different regions in the GB are affected

at different levels where North Scotland and Yorkshire have the highest and lowest

prices respectively. Capping of Agile prices removes the benefit of its dynamic nature

and essentially converts it into a flat tariff at 35p/kWh. If the cost optimisation

algorithm used this profile as an input, it would result in a highly decreased benefit

to the users.

Figure 4.11 shows the average Agile import prices in North Scotland over the

last 18 months, which is used as a case study in this thesis. It shows the effect

of gas supply scarcity which started in October 2021 when the 35p/kWh price cap

was applied. Hence, the benefits of community-based P2P trading would have been

significantly compromised. However, participants on the P2P tariff would still have

access to lower prices during times of local generation surplus. Nevertheless, the

participants who are on flat tariffs with fixed per kWh pricing (e.g. 18p/kWh) were

affected the least by the scarcity pricing.
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Figure 4.10: Capped Agile electricity pricing on 5th February 2022 for
different regions in the Great Britain where the most expensive region is
in North Scotland (pink) and the cheapest is in Yorkshire (dark blue) -
data from [8].

According to Ofgem [9], the price cap is designed to protect approximately 20 mil-

lion households on flat electricity import tariffs from steep increases in energy prices

due to supply volatility. Figure 4.12 compares two annual energy bills based on win-

ter 2021/22 and summer 2022 energy price caps. In this example, “typical domestic

consumption values” of 2.9 MWh of electricity and 12 MWh of gas consumption were

assumed. As shown, the increase in energy price caps is expected to result in an

increase of approximately £700 per year. From a prosumer perspective, this means

that if the grid export prices stay the same despite the increase in grid import tariff,

the economic benefit of P2P trading in comparison to selling to the grid would be

amplified. Hence, buying electricity locally would also result in lower bills for the

consumers.

Assuming that SDR would stay the same, the effect of higher grid buy prices would

not have an effect on P2P buy and sell prices during the period when SDR is equal

or greater than 1 which means either the community is fully self-sufficient or there

is an energy surplus. This is because the community P2P pricing mechanism where

the P2P buy and sell prices are indexed on the grid sell price when the supply meets

and/or exceeds demand. However, when SDR is less than 1, P2P market exporting

electricity would be rewarded at the high price of 28p/kWh which is 5.6 times higher
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Figure 4.11: Average Agile import prices in North Scotland for the last 18
months which shows the effect of gas supply scarcity starting in October
2021 where the price is capped at 35p/kWh - data from [8].

than the average export tariff of 5p/kWh. The new price cap is expected to result

in maximised self-consumption and higher motivation to participate in P2P trading

as this would result in higher relative benefit for the generators in comparison to the

previous lower price cap.

4.5 Limitations

One of the limitations of the approach was that the uncertainty of the DER was not

taken into account and that the forecast of the demand and supply were assumed

to be 100% accurate. To improve this, the methods used in [245] for determining

the effect of uncertainty between day-ahead and actual out-turn may be applied in

future research. Additionally, it should be noted that as this research is concerned

with local energy systems in 2032, it assumes that all participating households have

net metering.

As the pricing mechanisms for community-based markets were based on an energy

supplier’s tariff rather than the wholesale pricing, aspects such as network, policy,

administration costs, profit margin of the energy supplier and VAT were assumed to

be taken care of and included in the price. It is likely that in a future P2P market

operation, the transmission network fees and other costs related to administration

and policy would not be applicable. This would further decrease the costs, resulting

in higher benefits for the users.

The study presented in the auction-based P2P market considered an ideal set of

102



4.5. LIMITATIONS

Figure 4.12: The increase in price cap announced by Ofgem and the dif-
ference in contributing factors between Winter 2021/22 and Summer 2022
[9].
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users. Possible conflicts of interest between different stakeholders and/or users were

not considered. The participants of the P2P community network were assumed to

act in an honest manner with no intention of exploiting the system for personal gain.

Therefore, misleading actions such as placing malicious bids and offers, tampering

with the P2P trading within the community and other security threats were not

considered in this chapter. However, these points are addressed through the use of

blockchain and smart contracting technologies in Chapter 6. Additionally, due to

their higher potential of adoption by 2032, only community-based energy markets

were taken further in this research. Hence, the limitations caused by the auction

component of the market models did not need to be addressed.

As local energy market design involves users from diverse backgrounds, ensuring

inclusivity and fairness is one of the major challenges. This study did not consider the

effect of low visibility or forecasting or other factors specific to certain user groups.

Everyone is assumed to be equal and have access to very accurate forecasting. As

it has a more systems and environmental outlook than social, aspects of inclusivity

and fairness were not the focus in this study. However, Reis et al. [231] proposed

a road map for community-based P2P markets to protect vulnerable consumers and

the lessons from this study may be used in the future to create carbon-aware and

inclusive P2P trading algorithms.

Lastly, the simulations of COVID-19 lockdown and winter gas scarcity cases were

limited due to the lack of demand data available during these periods. When the

data becomes available, the pricing provided in this thesis may be used to evaluate

the techno-economic and environmental impacts of P2P trading during these low

probability high impact events.

4.6 Discussion

This chapter presented the co-simulation methodology for network-aware local energy

market simulations. Two separate P2P market modules were simulated and compared

in Section 4.2.4 which concluded that community-based P2P energy markets were

more suitable for the objectives of this project and more feasible for its adoption in

the use-case by 2032.

When implemented in real life, the local energy markets are anticipated to yield

cheaper electricity prices for all P2P agents. Additionally, as the community-based
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local markets consider the supply-to-demand ratio, this results in better matching

of local demand to local supply. Through the feedback loop of the network simula-

tions, the implementation of local energy markets would have integrated local network

awareness which would ensure healthy operation of the local system. P2P markets

achieve lower local imbalance as the flexible demand is scheduled to match the hours

of local generation surplus. This decreases the reliance on the centralised genera-

tion which is often more carbon intensive than the local supply of distributed PV

generation.

The relationship between storage penetration and P2P participation was anal-

ysed in terms of their impact on self-consumption and self-sufficiency. It was found

that participation in P2P markets could increase self-sufficiency by 25% which means

reliance on the centralised generation would decrease by that amount. As a larger

portion of the demand would be covered by the local carbon-neutral generators rather

than the commercial power plants, the revenue would be kept in the community. This

would result in socio-economic benefits for the community and lower carbon emis-

sions, contributing to net zero goals. In addition, it was also found that to achieve

a 90% self-consumption level, the storage penetration of the community should be

57%. Nevertheless, when the community participates in P2P trading, this value de-

creases to 25%. Therefore, this study showed that implementation of P2P markets

in local energy systems can decrease the storage installation requirements by 32%

which saves installation and maintenance costs and also avoids environmental im-

plications of small-scale lithium-ion batteries. Additionally, avoidance of hardware

on the network implies that this would help delay infrastructural upgrades. From

a non-technical perspective, implementation of P2P markets is expected to increase

the sense of community as it retains the economic benefits in the neighbourhood and

optimises consumption and generation using a common objective whether that is cost

or carbon oriented.

The benefits of P2P trading vary according to the capacity of the energy storage

installed in the local system. The 2032 storage penetration in distributed networks

is predicted to reach 14% according to Distributed Future Energy Scenarios (DFES)

[32]. By incorporating full participation in P2P, the self-consumption of local solar

production can be increased from 45% to almost 79%. Similarly, 100% P2P subscrip-

tion can increase self-sufficiency values from 17% to 34% by 2032.
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Recently, there were low probability but high impact events which resulted in

abnormal market operation conditions which threatened the operation of local energy

markets. These were due to the COVID-19 lockdown and the winter gas scarcity. The

energy market prices were disrupted which affected the dynamic electricity tariffs and

also community-based local energy markets as they are both volatile to system prices.

The community-based market would yield lower energy prices than the Agile tariff

when there is a local generation surplus. However, as the distributed demand was

already high due to the lockdown and the winter heating demands, there would be

less frequent instances of local surplus.

In addition to the techno-economic benefits of the P2P markets, this thesis showed

that P2P market models can be designed with integrated carbon awareness in order

to yield environmental benefits. A novel carbon-informed local energy market design,

namely carbon-aware P2P trading, was proposed in Section 4.3 which scales the

incentive provided in community-based P2P to indicate the grid carbon intensity

levels. The P2P trading mechanism proposed in this work enables prosumers to shift

from the conventional approach of trading with a single retail supplier to a more

decentralised method of trading with other prosumers. Carbon-aware P2P trading

incentivises trading during the hours of high carbon intensity grid generation. It

uses an incentive to motivate P2P agents to export during the high carbon intensity

hours of the day rather than when there is already a surplus of solar generation in

the community (which is often when the system-level carbon intensity is already very

low). This novel method introduced carbon-informed local energy trading to the

field of local energy systems and showed that the use of decentralised markets could

accelerate the net zero transition.

4.7 Key findings

This chapter displayed a co-simulation structure through the communication be-

tween the market and grid models. It investigated the use of community-based and

auction-based P2P markets correspondingly. The relationship between community

local energy markets participation and storage penetration was analysed and it was

concluded that 100% uptake of P2P trading can increase self-consumption by 25%.

While achieving 90% self-consumption of the local supply, P2P markets would reduce

battery installations by approx. 30%, saving both economic and environmental costs
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associated with residential lithium-ion batteries. Additionally, implementation of the

community-based P2P trading increased the self-sufficiency levels by 25% when de-

ployed along with distributed storage assets. It was also shown that P2P increased

energy sharing by 14% in a sample European LV network whilst resulting in a negli-

gible increase in power losses and voltage imbalance.

The contributions of this chapter included Section 4.3 which proposed a novel

carbon-aware P2P trading mechanism that incorporated consideration of grid-level

carbon intensity, encouraging export during high-carbon periods. Following this,

there was a discussion of different P2P market designs and limitations of the method-

ology were evaluated. Lastly, the use of community-based P2P markets during both

the 2020 COVID-19 lockdown and 2021 winter energy scarcity were discussed.

Out of the different P2P market designs that were demonstrated in this chapter,

the community-based and carbon-aware markets were taken further and explored in

Chapter 5 using a 2032 case study in North Scotland. More technical and quantitative

results regarding grid signals, cost savings and carbon emissions are presented in the

next chapter.
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Chapter 5

Network Control and P2P Trading
Case Studies

The previous chapters discussed the methodology of modelling local flexibility and

introduced the co-simulation of transactive local energy systems. This chapter shows

and evaluates the results of the flexibility coordination and energy trading strate-

gies using the case study of Huntly, Aberdeenshire. The digital twin models and

simulation platform, as published in [11], were achieved through collaboration with

Scene Connect Ltd. This pilot study was used in two separate case studies which

are namely “network-aware community control for load curtailment” presented in

Section 5.2 and “comparison of P2P and community-level optimisation” presented in

Section 5.3. The first case study explores the flexibility of the future local energy

systems in terms of load shifting to achieve peak-hour avoidance (i.e. re-scheduling

load away from the peak consumption hours) and peak shaving (i.e. load curtailment

during the peak hours). It involves simulation of a neighbourhood energy demand in

2032 which includes heat pumps, EVs, PV generation and batteries. It assesses the

carbon savings, losses and user comfort. The second case study in this chapter ex-

pands the simulation network to three nearby neighbourhoods. It compares the effect

of inter-neighbourhood and intra-neighbourhood P2P trading using neighbourhood-

specific supply-to-demand ratios. It also evaluates the carbon and cost outputs of the

carbon-aware P2P energy sharing algorithm proposed in this thesis. Lastly, it also

compares cost/carbon minimal community-level optimisation results against P2P re-

sults.

As this thesis appreciates that decarbonisation of local energy systems requires

a holistic approach, the results are presented from an economic, environmental and
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system perspective wherever possible. Following the presentation of the results from

both of the case studies, the discussion section presents the shortcomings of the

simulations and implications for different stakeholders.

5.1 Background about the use-case

The use-case employed in this chapter is the live pilot site of the Zonal Use of Sys-

tems (ZUoS) project which aims to accelerate the net zero transition through the use

of community coordination to increase the consumption of low-carbon distributed

energy resources. The ZUoS project enrolled various residential and non-residential

distribution network users to participate in a live pilot case of community control

in Huntly, Aberdeenshire. The main aim is to re-schedule the usage of EV charging

points, heat pumps and renewable generation in order to optimise the use of energy

at a community-scale for a lower overall carbon footprint. In addition, the pilot case

records real-time building demand and DER operation data that is used for further

model development and verification providing detailed insight into individual partic-

ipant and community level behavioural patterns. The pilot project started in Winter

2020 with the financial support of the UK Government’s Department for Business,

Energy & Industrial Strategy (BEIS) to provide regulatory change recommendations

and address the challenges associated with financing similar community network bal-

ancing projects.

Similar community-centric initiatives such as Northern Isles New Energy Solu-

tions (NINES) [246] already exist in Scotland. The NINES project aims to build

up a smart grid in the Shetland Islands that utilises a large-scale battery and hence

helps balancing the intermittent wind energy supply providing power to domestic

heaters. Despite having similar aims, the project is different from ZUoS as it fo-

cuses on storing locally generated wind energy, whereas in Huntly the focus is on

employing domestic scale battery storage to absorb existing solar energy and hence

maximising self-consumption. Another similar project, namely 4D Heat [247], aims

to take the advantage of heating flexibility by shifting demand to times with national

wind energy surplus. Similarly to ZUoS, this project focuses on neighbourhood level

consumption management but does not consider the potential of the local generation.

Local Energy Oxfordshire (LEO) [248] project is formed as an innovative energy trial

to provide insight for the future energy strategy by launching a platform that enables
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prosumers to sell energy as well as balancing services. It is designed to trade lo-

cally with the help of peer-to-peer services or execute transactions through mediated

markets allowing aggregation of local resources. Regardless of similar objectives, all

of the mentioned projects entail individual scheduling, optimisation and forecasting

solutions that significantly vary in terms of required input signals and data.

The pilot site of ZUoS was used as a demonstrator in this thesis to apply the

optimisation and P2P trading algorithms in a real world setting. The inclusion of

this use-case in this thesis helped to validate the use of asset modelling and co-

simulation techniques described previously (see Chapters 3 and 4). To simulate the

future demand of the pilot site, a series of local datasets were used. These include

the local demographics dataset, local network data obtained from the DNO, survey

results about the asset preferences of the residents and area-specific predictions for

increased smart asset penetrations.

The year 2032 was chosen instead of 2050 Future Energy Scenario of the National

Grid Electricity System Operator because 2032 is a critical point in the Distributed

Future Energy Scenarios (DFES). In line with the analysis of Scottish and Southern

Electricity Networks (SSEN) that involve network simulations and investment plan-

ning processes, this thesis also used 2032 as the target year for the simulations to

provide the view of the DSOs and provide local context rather than national penetra-

tion scenarios. On a macro scale, the FES are very informative as they incorporate

a range of possible strategies based on political, technological, economic and social

stances [243]. Nevertheless, when analysing the effect on a part of the distribution

grid, these scenarios do not reflect the potential and energy needs of the north of

Scotland observed by SSEN [32].

Additionally, North Scotland and in specific Aberdeenshire has the highest level

of fuel poverty in the UK [249] and it was found that it also has the highest elec-

tricity regional pricing when the Agile tariff of the energy supplier Octopus [234] was

analysed in this work.

With the rising energy prices and a predicted increase in the number of households

with energy poverty, this area proves to be a case study of interest and importance.
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5.2 Case study: Network-aware Community Con-

trol for Curtailment

This section describes the attributes of the case study that is used in this chapter. In

the first subsection, it depicts the configuration and placement of smart assets in the

community and modelling of domestic energy demand based on the region’s demo-

graphic data and weather input. In the second part, it details the modelling method-

ology of heat pumps coupled with the physical building thermal models. Following

this, it introduces the low voltage network topology used for power flow analysis and

the network control logic alongside different scenarios that were simulated (e.g. peak-

hour avoidance and network-aware peak control). Lastly, it discusses the results, with

highlights of user comfort, carbon savings and per-unit voltage levels, and lists the

limitations of the simulation methodology. This case study was published in [11].

5.2.1 Bottom-up demand

The use case features electrical load in the form of smart assets and household con-

sumption profiles. Additionally, there are heat pumps coupled with thermal building

models in order to monitor the effect of different control strategies on indoor temper-

atures.

The flexible demand from EV charging and heating loads are modelled individually

and these form the majority of the household demand in 2032. For the former, the

methodology of modelling is similar to the one described in the flexibility modelling

section, Chapter 3. The heating loads are modelled using a heat pump and also

include two thermal building models. Lastly, other smaller loads such as lighting,

kitchen appliances and wet loads are simulated using a probabilistic approach.

For the simulation of EV loads, the amount of charge required, and the plug-in

time vary according to a normal distribution, with the standard deviation of distance

travelled per day, and plug-in times. The inputs to the deterministic home EV charger

model including the aforementioned factors and also battery size, charging efficiency

and so on are shown in Table 5.1. The three most dominant EV charging windows

were identified using the national transportation survey as a source [17] as shown

in Table 5.2. An equal presence of each group was assumed to set the availability

windows of the EVs.
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Table 5.1: EV charger deterministic model specifications.

Parameter (Units) Value
Charging efficiency (%) 90
Battery size (kWh) 22
Maximum charge rate (kW) 7.3
Mileage efficiency (miles/kWh) 3.8
Std dev. of schedule times (s) 300
Std dev. of distance variation (miles) 2.0

Table 5.2: EV default charging windows from [17].

Arrival from work Leave for work
14:25 05:25
17:20 07:30
05:27 20:47

To estimate the rest of the household consumption (i.e. lighting, wet loads, etc),

the occupant type of each household in this area is obtained from the local council

[250] and matched with the archetypes in the Twente database [251] which outputs

an estimated consumption of each household using a set of plug loads and kitchen

appliances common in the UK. The resultant demand profiles are modelled such that

they can reflect changes in user behaviour and external/environmental conditions.

5.2.2 Modelling thermal building response and heat pumps

This subsection describes the methods used for simulation of thermal response from

two different house archetypes and heat pumps to cover the simulated electrical heat

demand.

Table 5.3: Load profiles according to the occupant type [11]

Occupant type % contribution
Single adult 41%
Working couple 14%
Working couple with dependants 10%
Retired couple 10%
Couple (one working) 9%
Couple (one working) with dependants 6%
Single adult with dependants 6%
Retired single 4%
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(a) Detached archetype (b) Bungalow archetype

Figure 5.1: Detached and bungalow housing archetypes used for the build-
ing thermal response models.

Figure 5.2: An example of the equivalent thermal model implemented
using resistor and capacitors [10].

5.2.2.1 Building thermal response

The building thermal response model uses a lumped capacitance (i.e. 2R2C)

which is a grey-box model for heat flow. The parameters for these models are derived

from white-box building models created in the specialised heat-flow model ESP-r, by

the University of Strathclyde, detailed in [252]. Two thermal building models of a

bungalow and a detached house are used in scenarios where a heat pump is simulated.

The geometries of the two models are shown in 5.1. The input parameters for the

archetypes are summarised in 5.4. The parameters are used by GridLAB-D to create

a suitable 2R2C model, represented in 5.2. The equivalent thermal parameters are

derived from the input values according to equations 5.1 to 5.4 based on [10].

The total heat loss coefficient (conductance), UA, is calculated as:

UA = Cp,airVairIair +
n∑

i=1

An

Rn

(5.1)

where Cp,air is the volumetric heat capacity of air; Vair is the interior air volume; Iair

is the air infiltration rate; and An and Rn are the surface area and thermal resistance
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per unit area of building surface n, respectively.

The interior mass surface conductance, Hm, is calculated as:

Hm = hs × (AEW + AIW + AC) (5.2)

where hs is the interior surface heat transfer coefficient; AEW is the external wall

area; AIW is the internal wall area and AC is the ceiling area.

The total air mass, Ca is calculated as:

Ca = 3× Cp,air × (Vair) (5.3)

The total thermal mass, Cm, is calculated as:

Cm = mf × Afloor − (2× Cp,airVair) (5.4)

where Afloor is the floor area and mf is the total thermal mass, per unit floor area.

5.2.2.2 Heat pumps

Heat pumps are implemented in both of the archetypes, and are programmed

to operate whenever the indoor temperature goes below the temperature set-point

(i.e. consumer heating schedule). The heat pump model operates at its maximum

rated power when the indoor temperature is below the current set point. Each heat

pump was sized suitably to maintain the set temperatures throughout the year. The

detached house archetype has a heat pump size of 11 kW (electrical) and the Bungalow

archetype has a heat pump size of 7 kW (electrical). Both heat pumps operate with

a varying coefficient of performance (COP) depending on the differential between the

outside and inside temperature, with the COP decreasing as the differential decreases

[10].

5.2.3 Local network topology

Using network topology data provided by the local DNO, a distribution network power

flow simulation is set up to measure the impact of the 2032 demand and different

control and coordination strategies. The local network data includes voltage ratings

of 400V, 11kV and 33kV. Hence, the network model covers the range from household

supply points to the primary substation which serves all of the chosen region. Figure

5.3 shows the low-voltage network indicating the point of 11kV connection and also

the placement of the smart assets. Existing solar PV systems were identified and
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Table 5.4: Input parameters for the building thermal model [11].

Parameter Detached Bungalow
Floor Area (m2) 106.8 106.9
Wall Area (m2) 95.3 77.9
Ceiling Height (m) 7.5 4.4
No. of Stories 3 2
R roof (m2K/W ) 2.3 2.3
R wall (m2K.W ) 2.3 2.7
R floor (m2K/W ) 1.5 1.4
R windows (m2K/W ) 0.4 0.4

Table 5.5: Number of assets in the local network model

Scenario Solar Battery EV Heat pump Total no of nodes
1 0 0 0 0 84

2, 3, 4 4 (4.8%) 4 (4.8%) 12 (14.3%) 7 (8.5%) 84

added using satellite data. Using the responses from the project participants, a

subset of users with an interest to purchase EVs, heat pumps, batteries was formed.

Following the penetration level in each scenario, the assets were randomly distributed

amongst this subset of participants (i.e. given that the number of assets was lower

than the number of users who expressed interest).

The network model has 84 nodes in total and the total number of smart assets

on the network was scaled according to the DFES 2032 Steady Progression strategy.

This is summarised in Table 5.5. As shown in Figure 5.3, the blue nodes mark the

households with no smart asset. The individual heat pump and EV ownerships are

shown in purple and yellow respectively but where both are co-located, it is shown

in orange. Battery and solar systems are marked in green and if the same node also

has an EV load, it is shown in grey.

5.2.4 Control and curtailment simulations

This subsection presents network and carbon saving results from a neighbourhood in

the chosen community. It compares the effects of load shifting and network-aware

peak shaving control scenarios listed below.

1. Business-as-usual control (2020)
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Figure 5.3: Network diagram of the LV section simulated.

2. Selfish control (2032)

3. Peak hour avoidance (i.e. load shifting) (2032)

4. Network aware control (i.e. peak shaving based on transformer loading) (2032)

Scenario 1 has a DER penetration representative of Huntly today and hence, has

no DER assets connected. Scenarios 2, 3 and 4 have DER penetrations representative

of Huntly in 2032. The control strategies for Scenarios 1 and 2 are the same. These are

based on business-as-usual control whereby devices act to benefit the device owner,

without consideration for the rest of the distribution network. In Scenarios 2, 3 and

4, the batteries connected to the network operate to maximise self-consumption, as

is typical for many domestic PV battery systems in the UK.

In Scenario 2, the heat pumps follow a typical domestic demand schedule, with a

morning and evening peak. The EVs start charging as soon as the vehicle is plugged

in until the battery is full or the consumer unplugs it.

In Scenario 3, the heat pumps follow a typical domestic demand schedule, but

with a drop in temperature of 1.7 ◦C within DNO “red rate” periods, following the

comfort-aware approach in [253]. ‘Red rate’ periods are when Distribution Use of
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Figure 5.4: Visualisation of the simulation workflow [11].

System (DUoS) charges for half-hourly metered customers are highest and are an

indication of when the distribution network is most heavily loaded. For 2020, these

times are 16:30-19:30 on weekdays [254]. The EV charging behaviour is the same as

in Scenario 2. However, they are forced to charge outside of DNO ‘red rate’ periods

to decrease the aggregated peak load.

Scenario 4 uses a co-simulation approach and therefore this allows for the simu-

lation to be queried and modified whilst it is running. As shown in Figure 5.4, the

inputs to the simulations included the network data, DER asset penetrations, thermal

parameters for the building models, weather data and user schedules of smart assets.

Smart grid simulation software, GridLAB-D was used to output power flow calcula-

tions and corresponding results. In Scenarios 2 and 3, the built-in device controls

were used. However, Scenario 4 required co-simulation with the external control logic

implemented in Python and fed into the grid simulation through the intermediary

platform HELICS. The use of this platform allowed for inspections of power flows at

30-minute intervals.

Figure 5.5 shows the control which was applied every 30-minute interval to the

GridLAB-D simulation. The curtailment for both EVs and heat pumps operates to

limit power for both devices. This curtailment is applied when any LV mains cable

loading exceeds 90% of its maximum current rating; the limit is then removed if all LV

mains cables are loaded less than 80%. If there is no limit, both devices operate as they

would in Scenario 2. For the purpose of this case study, this algorithm was applied to

all EVs and heat pumps. However, the platform is capable of applying a rotational

neighbourhood participation scheme similar to the case study with batteries shown in

[255]. Additionally, the objective of the control can be multiple as demonstrated by
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[256] using scheduling techniques such as particle swarm optimisation. The objective

criteria may include greenhouse gas emissions, voltage variation and economic benefits

[257]. For the purpose of this case study, only peak-hour avoidance and peak shaving

(i.e. curtailment) cases were simulated. Optimisation with carbon and cost objectives

in addition to P2P energy sharing scenarios were explored and discussed in the next

case study in Section 5.3.

Either value 
> 

90%xcapacity?

Check loading of lines
and transformer

Curtailment rate
= 

% overload

Reduce EV and
HP demand by
the same rate

No

Yes

Continue
consumption as

scheduled
Consumption

curtailed

Figure 5.5: Curtailment logic for the network-aware community control,
based on line and/or transformer loading. The curtailment of EV and HP
loads is equal to the percentage of overloading.
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5.2.5 Discussion of results

The simulation framework within this paper allowed for the direct comparison of

control and DER penetration scenarios. The results below are shown for all four

scenarios, and how the control of assets impacts the relative network conditions,

carbon emissions, and user requirements.

5.2.5.1 Network voltages

The areas of the network with the greatest power loss were used to assess the voltage

drop. The LV main line with the highest voltage drop on phase B was found to be

the main-to-supply feeder 2 labelled as “F2 M2S” in the local network data. This

line supplies electricity to 4 heat pumps (3 on phase B) and 3 EVs (2 on phase

B). The voltage experienced by a user at the end of the LV main was assessed at

the point in time when the main line phase B experienced maximum loading in

Scenario 1 (i.e. 6 pm on the 22nd of November). The resulting line voltage drop is

presented in Figure 5.6. Avoiding the peak hours introduced in Scenario 3 caused a

significant voltage drop (to 0.9204 p.u.), resulting in a voltage below statutory limits

(-6%). This was because lowering the set temperature was not enough to avoid heat

pumps turning on during the peak period. The network-aware control in Scenario 4

significantly reduced the voltage drop on the 15 network nodes while the remaining

two nodes have similar voltages to Scenario 2. These results showed that the control

algorithm in this work would be valuable for reducing the line voltage drop.
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Figure 5.6: Voltage drop along a three phase LV main at the time of the
highest power loss across all scenarios

120



5.2. CASE STUDY: NETWORK-AWARE COMMUNITY CONTROL FOR
CURTAILMENT

5.2.5.2 Transformer loading

The future load scenarios showed a significant increase in peak time loads. The

apparent power loads for all cases in the week of the year with the highest peak load

for Scenario 1 were compared with the secondary substation transformer ratings. It

is noted that the transformer loading in future scenarios did not exceed its rating at

any simulated time step. Avoiding the ‘red rate’ periods introduced in Scenario 3

postponed the peak, but at some stages, the drop in the house temperature set-point

was not enough to avoid heat pump loads at later stages of the afternoon peak hours.

In case of the Scenario 4, the load was not only shifted from the ‘red rate’ periods

but the high transformer loading occurring during the morning peak was also reduced

compared to Scenarios 2 and 3.

5.2.5.3 Cable loading

In order to assess the effectiveness of Scenario 4 in reducing line and cable loading,

the worst-case loading from Scenario 2 was compared with Scenarios 3 and 4. Current

levels higher than the line ratings occurred in three of the four future load scenarios. It

should be noted that the simple control introduced in Scenario 3 avoided some of the

current spikes from Scenario 2, but caused new (increased) overloading at later times.

A responsive approach was introduced in Scenario 4, which was able to lower the

current level below the threshold every time the cables became overloaded. However,

the increase in demand after the curtailment period was not released gradually and

caused a rapid increase in demand. An incremental increase of the load was introduced

to overcome this issue. However, there are no guidelines from the DSO about the ramp

up of the demand when it comes to allowing the curtailed load to return to its normal

consumption behaviour beyond the peak hours.

5.2.5.4 Comfort levels

This study employed a comfort-aware approach when implementing control for house-

hold heating needs. It adapted the analysis method in [253] as there was no forecasting

of the thermal comfort available. The managed interior air temperature was compared

with the user preference set points in order to express the level of comfort as shown

in Equation 5.5 [253]. The temperature curtailment is limited to a maximum of

1.7 ◦C to ensure control within the comfort bounds. The function (bmt) in Equation
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5.5, quantifies the thermal comfort using a Gaussian function. Hence, the comfort

level is inversely proportional to the difference between the mean preferred indoor

temperature T pref and managed indoor temperature Tmt. The variance in preferred

temperature (σTpref ) is also accounted for.

bmt = exp

(
−(Tmt − T pref )

2

2(σTpref )2

)
(5.5)

Evaluation of the comfort levels using Equation 5.5 showed a 4% decrease in the

comfort levels in Scenario 4 in comparison to Scenario 3. This was confirmed by the

lower mean temperature of 16.96 ◦C while it is 17.15 ◦C in Scenario 3. Throughout

the whole year of simulations, the indoor air temperature fell below the preferred

temperature only 1.94% and 4.24% of the time for Scenario 3 and 4, respectively.

On the other hand, Scenario 2 met the preferred temperature for every time period

simulated.

Although heating in Scenario 3 was curtailed throughout the peak “red rate”

periods, it was still able to come on if the indoor temperature dropped below the

preferred temperature. As such, the preferred temperature was only not met, when

the home was being ‘re-heated’ from a temperature dip.

Scenario 4 attempted to avoid line overloading, however, it oscillated the heat

pumps off and on. This meant that the heating preferences were not always met

since the heat pumps may have been curtailed during the peak demand hours (i.e.

this happened 4.24% of the time) when they were required to be on at full power.

5.2.5.5 EV charging

In order to assess if the EV charging control in any of the scenarios was detrimental

to the user experience, a comparison was carried out to assess the number of times

in a year that the desired SoCs for the electric vehicles on the network were not met.

The simplifying assumption was that all EV users required 100% SoC for their

journey to work on weekdays, and the SoC during other times was not important to

them. This analysis showed that all EV charging needs were met for the entire year

simulated.

Different scenarios resulted in different charging times. For example, Scenario 1

charges the EV as soon as it is plugged in (e.g. at 17:00), Scenario 3 delays the

charging until after the peak times, and Scenario 4 operates with curtailed charging

122



5.2. CASE STUDY: NETWORK-AWARE COMMUNITY CONTROL FOR
CURTAILMENT

at around 66% curtailment - indicating that the line was loaded 66% above the upper

limit when all EVs were on.

User needs were met in Scenarios 3 and 4 due to the large period of time available

for charging (> 12 hours in every scenario). The charging rate was set at 7.3 kW,

meaning a full charge could be completed in just over 3 hours, although 7 kW chargers

are increasingly common, 3 kW chargers continue to be deployed. Interrupting the

less powerful chargers might result in user needs going unmet.

The results showed that under Scenario 4, EV user satisfaction was maintained,

and the network overloading was reduced. The higher DER asset penetration on the

network in Scenario 4 required curtailment of EV charging more frequently, resulting

in reduced consumer satisfaction overall.

5.2.5.6 Line losses

Active power line losses for the entire LV network are presented in Figure 5.7. The

highest instantaneous power loss and cumulative annual energy loss for each scenario

are shown in Table 5.6. A key result is that Scenario 4 reduced the annual energy

losses since the devices were intentionally operated outside of the high network loading

conditions.

As shown in Table 5.6, Scenario 1 losses were significantly lower than other scenar-

ios with the highest instantaneous value of 0.96 kW and a cumulative annual energy

loss of 0.62 MWh. In Scenario 2, the power losses were significantly higher, due to

the increased demand, without any network upgrade. The highest power loss was

almost 10 times higher (9.57 kW) than in Scenario 1, resulting in 28.5 times higher

energy losses (17.62 MWh). Although the increased load in Scenario 3 was shifted

to off-peak times, the highest registered power loss increased to 10.07 kW, and the

total energy loss increased to 17.9 MWh. The smart control introduced in Scenario

4 significant increased the maximum instantaneous power loss to 11.49 kW, but the

overall reduction of the LV power consumption reduced the energy losses to 15.90

MWh.

5.2.5.7 CO2 emission savings

The difference in carbon emissions between the scenarios can be compared by using

National Grid Carbon Intensity Data [258] with half hourly energy usage at the

substation level. The results are shown in Table 5.6. The carbon intensity of peak
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Figure 5.7: Active power loss on the network across all cases.

Table 5.6: Annual energy demand, carbon emissions, maximum observed
line losses and total energy loss comparison between the four simulated
cases.

Cases Annual energy
demand (kWh)

Annual carbon
emission (tCO2)

Maximum
line loss

(kW)

Annual
energy loss

(kWh)
1 201 62 0.96 620
2 548 170 9.57 17620
3 542 168 10.07 17900
4 506 157 11.49 15900
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hours (DNO “red rates”) was calculated as 326 gCO2/kWh on average which is 7-9%

higher than the rest of the day.

Scenarios 2 and 3 have approximately the same energy consumption, however,

Scenario 3 reduced carbon emissions and the network losses which are both the high-

est at peak hours. Scenario 4 resulted in the most significant carbon savings, and

minimum energy usage. As shown in Table 5.6, the roll-out of heat pumps and EVs

resulted in 2.8 times higher carbon emissions when compared to the business-as-usual

case. It should be noted that this evaluation assumed the generation portfolio in the

future would not change. However, contributions from renewable and low-carbon

sources such as solar, wind, hydro and nuclear energy are expected to increase in the

future.

5.2.6 Limitations

A half-hourly data inspection and network control interval was used in order to simu-

late a year of operation. Inspection and control operating at a higher resolution (e.g.

minutely) may be of more use to the DNO and/or the aggregator. In return, this

would result in a longer run time.

The effect of a small C&I load in this neighbourhood was neglected. An increase

in inflexible local loads would require higher curtailment rates from the EVs and heat

pumps. Small C&I loads are taken into account in the next case study.

It is also noted that a 2R2C heat model for each house was used to convert survey

parameters into building thermal response parameters. Additionally, only two types

of house archetypes were used. A more sophisticated method such as 5R2C could be

employed along with a larger portfolio of house archetypes to increase the modelling

accuracy.

For the carbon emission analysis, it was assumed that the generation portfolio in

the future would not change. However, contributions from renewable and low-carbon

sources such as solar, wind, hydro and nuclear energy are expected to increase in the

future. This means that the actual carbon savings in the future might be lower than

the simulated values in this case study.

The study assumed that in 2032, the same type and capacity of EVs and EV

chargers would be in use as there is currently no information regarding how these

technologies will evolve in the future. However, it is expected that the charging times

will be shorter and the battery capacities will be larger. This is expected to further
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increase the effects shown in this study in terms of voltage drops and overloading of

lines. The same assumption is extended to no local population growth, no increase

in the number of dwellings in the area and no new connections to the local network.

These assumptions may seem unrealistic but there is currently no information avail-

able as to how the population, dwelling density, etc. would change in the future

which inhibits the simulation of such a scenario. However, the results from the four

scenarios in this case study are still valid in terms of comfort levels, overloading and

carbon emissions. All of these results can be scaled and the simulation scenarios can

be easily adapted to reflect the mentioned considerations once the detailed projections

are obtained.

The local penetration values from DFES were chosen such that they represent the

Steady Progression scenario of NGESO’s FES. This scenario assumes that the rate

of smart assets uptake (e.g. EVs and heat pumps) will progress in the same way

in the future. However, the adoption of these technologies is expected to increase

exponentially with further economic incentives and updated regulations in the future.

To account for this, the next case study uses a more ambitious projection, namely

Community Renewables. More details regarding this scenario are presented in the

next section (Section 5.3).
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5.3 Case study: Comparison of P2P and Community-

level Optimisation

This section briefly introduces the case study, and the changes and improvements in

the modelling methodology and input data in comparison to the previous simulations

shown. It presents the Future Energy Scenarios (FES) used to simulate three neigh-

bourhoods in Huntly, Aberdeenshire with 2032 renewable and flexible asset penetra-

tions. Using these scenarios as a basis, the impact of P2P trading, community-level

optimisation and DSO peak-shaving actions are compared and discussed in terms of

economic, environmental and system stability indicators.

5.3.1 Introduction

In this section, the optimisation and LEM algorithms previously presented in Chap-

ters 3 and 4 are used in the use-case described earlier in this chapter. However,

this section differs from the previous section (Section 5.2) in that instead of focusing

on a single neighbourhood, three neighbourhoods were modelled with an increased

total population of 238 end-users. This allowed the comparison of intra and inter-

community P2P trading and price determination. Additionally, this case study over-

came the previous limitation of neglected C&I loads by modelling non-residential

loads. Rather than using a single EV, PV and battery model, in this use-case a

portfolio of different assets is introduced with varying specifications.

First, the scenarios used for simulating a futuristic neighbourhood are described.

Second, the data inputs and methodology involved in the aforementioned improve-

ments are described in the following subsections.

5.3.2 Future energy scenarios and asset penetrations

A number of scenarios were simulated to measure the impact of different control

and coordination strategies. These strategies include asset-level configurations with

optimisation of the battery systems to maximise self-consumption of solar generation

by storing the excess generation during the day and discharging during high cost

and/or carbon intensive periods of demand.

The DFES levels of renewable generation and flexible demand penetrations were

used to analyse the effect of different coordination strategies in 2032 - similar to the
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previous case study in Section 5.2. Table 5.7 shows the levels of penetration used. The

previous case study used the Steady Progression case which assumes a constant rate

of uptake using the current trends. However, this case study simulated an accelerated

rate of uptake in the future using the local adaptation of the National Grid Energy

System Operator’s Community Renewables scenario. In the latter case, the transition

to net zero is community-led and supported by end-user behaviour change, purchases

of smart grid technologies, etc. It requires a more agile adoption of flexibility and

local generation which is equal to 5% faster uptake of PV and battery systems and

17% and 18% increase in penetration of EV and HPs respectively.

Table 5.7: Smart asset and solar PV penetrations following the DFES
Community Renewables targets.

Scenarios % Asset penetration
Solar Battery EV HP

Business-as-usual 0% 0% 0% 0%
All other scenarios 14% 14% 45% 43%

Table 5.8 lists the number of assets in each neighbourhood along with the total

number of nodes in each sector in ascending order. The same level of asset penetration

was applied to all, assuming the community renewables future energy scenario of the

National Grid. Neighbourhoods 4010, 9030 and 4030 represent 27, 30 and 43% of the

community with 238 simulated agents in total. This is equal to around 10% of the

people who live in this district.

Below is the list of the simulation scenarios undertaken in this thesis. A brief

explanation for each simulation scenario is provided which are later described in

detail.

1. Business-as-usual scenario - models the current demand with today’s level

of smart asset penetration and electricity demand.

Table 5.8: Number of assets per neighbourhood.

Neighbourhood Solar Battery EV HP Total no of nodes
4010 9 9 29 28 65
9030 10 10 32 31 72
4030 14 14 45 43 101
Total 33 33 106 102 238
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2. No-control with increased levels of smart asset penetration - features

the increased penetrations of smart assets without any control.

3. Optimisation for minimum cost - applies community-level coordination to

minimise cost by shifting load and re-scheduling all smart assets while respecting

operational and user comfort constraints.

4. Optimisation for minimum carbon emissions - similar to the previous

case with an objective to minimise carbon intensity of the electricity consumed

in the community.

5. (Inter-community) P2P trading - coordinates the community energy de-

mand and surplus using local supply-to-demand ratios at every time step -

from all of the three neighbourhoods.

6. Intra-community P2P trading - similar to the previous case but the supply-

to-demand ratios and trades occur within the individual neighbourhoods located

behind the separate secondary substations.

7. Carbon-aware P2P trading - a new carbon-aware local energy market design

with an added dynamic incentive to reward export and penalise import during

high carbon intensity hours - previously described in Section 4.3.

5.3.3 EV, PV and battery models

As using a single set of EV, PV and battery specifications is not a good representation

of the choices the users would have in 2032, various models of EVs, PVs and batteries

were added to the asset modelling portfolio. This introduces a more diverse flexibility

portfolio and corresponding savings per user. The placement of the assets involved

no consideration of the socio-economic condition of the users or their willingness to

invest in these specific technologies as this information was not available.

As mentioned, the previous simulations used two methods to enhance the mod-

elling of EV home charging behaviour which were using a normal distribution to vary

the arrival and departure times obtained from the national household travel surveys

[17] and using a range of different distances per day which resulted in different levels of

energy required to reach the preferred SoC of the users. However, the different ranges

of EVs available on the market were not leveraged. In this case study, two different
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brands and four different models of EVs were used which reduces the reliance of the

results on a single fixed capacity. In total, there are 106 EVs simulated which cor-

respond to 45% penetration. The battery capacities, rated powers and travel ranges

of different models are displayed in Table 5.9. Like other assets, using the responses

from the project participants, a pool of users with an interest to purchase an EV was

used to randomly disperse the total number of EVs across the network.

Table 5.9: Different EV models and corresponding battery capacity, rated
power and maximum driving range.

Model Capacity (kWh) Rated power (kW) Range (km)
Tesla 3 long range 70 11 448
Tesla 3 standard 57 11 378
Nissan Leaf 62 56 6.6 336
Nissan Leaf 40 36 6.6 230

Similarly, the previous simulations used a single battery type whereas as shown in

Table 5.10, in this use case, a variety of battery models is used. Following the same

principle as before, the batteries are co-located with nodes that have solar generation

and matched according to the generation capacity. Hence, an assumption is made

that users with no solar generation do not own batteries for the use of arbitrage, peak

shaving and similar. While PV modelling inputs such as tilt angle, azimuth, efficiency

and similar stayed the same, a range of peak kW (kWp) values (i.e. 2, 3, 4, 5, 6, 8 and

10kWp) and three different panel types (i.e. CdTe, CSi, CIS) are incorporated in the

PV asset model to reflect the different PV models available in the market [215, 259].

Table 5.10: A set of battery models from different manufacturers and their
rated power and capacities.

Battery options Rated power (kW) Capacity (kWh)
Moixa standard 3.0 4.8
Moixa large 6.0 9.6
Tesla Powerwall 5.0 13.5
Sonnen hybrid 5.0 2.5 5.0
Sonnen hybrid 7.5, 10.0, 12.5, 15.0 3.3 7.5, 10.0, 12.5, 15.0
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5.3.4 Non-domestic load profiles

In addition to the residential demand, this case study features non-domestic loads in

the local network which are shown in Table 5.11. The first branch of the network has

a bike shop, church and two small size factories (baking and dairy sectors) as indus-

trial loads. Cafe, library and newsagents are the non-domestic loads on the second

branch, while the third one accommodates entertainment and hospital buildings. The

available energy usage data is used for these loads where possible, however, in some

cases, the information is missing and therefore a different approach was needed. The

method based on the data provided by [260, 261] was developed to obtain half-hourly

demand profiles and estimate non-domestic electricity consumption.

Firstly, the floor area for each site was found or approximated using satellite

images if the information was not available. The floor areas were then input into the

non-residential building energy usage benchmarking tool provided by CIBSE [262]

to estimate the annual electricity demand. The tool is based on a naive calculator

which accounts for the business type and benchmarks it against the existing energy

consumption trends to provide an estimated annual electricity demand per square

meter of area (kWh/m2/yr). It was assumed that natural gas is the preferred heating

source for the facilities.

This modelling approach allowed the development of half-hourly demand profiles

for non-domestic electricity consumption, where data was unavailable. The final step

was to extrapolate the annual demand data to half-hourly intervals across the full

year. As the business sectors were identified, the prevailing opening and closing times

for each sector were taken into account to guide this modelling process. Ofgem [260]

provided a set of the typical workday and weekend profiles for different business sectors

and facilities. Using their demand profiles as a reference, the annual energy consump-

tion data were manipulated and scaled to generate a working and non-working day

consumption profile for each season and the total energy demand was divided across

the year. To validate the outcomes, the data was then compared against the report

by [261] which contains averaged normalised profiles for each business sector (aver-

aged across all building types within the sector). The report includes raw empirical

demand data, processed by Element Energy and DeMontfort University.
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Table 5.11: Location and type of non-residential loads in different neigh-
bourhoods

Neighbourhood No of tapes Non-residential load
type

Connection
type

4030 39 Bakery, bank, cafe,
garages, hotel, restaurant,
office, performance hall,
police station, post office,
pub, shops

10 3-phase, 9
AN, 5 BN, 8 CN

4010 3 Church, Bowling club,
Motorcycle dealer

1 AN, 1 BN, 1
CN

9030 1 Hospital 1 3-phase

5.3.5 Network modelling

Using a data set of line coordinates, lengths, capacitance and reactance values, the

low voltage networks of the three neighbourhoods were constructed as shown on the

GIS map in Figure 5.8. The relevant primary and secondary substations are labelled.

The networks in black, green and red correspond to Neighbourhoods 4030, 4010 and

9030 in Huntly, Aberdeenshire, Scotland.

The challenges of constructing the network model from raw SSEN line data in-

cluded partially missing line data. For instance, at the bottom of the 4010 network

(in green), some disconnected lines between the so-called “supply attachment points”

and the main feeder were shown in Figure 5.8. To overcome this problem, an assump-

tion was made that the node should be linked to the nearest feeder and the following

methodology was followed to create the missing data. If there was any existing line

data between the node and the feeder but it was broken, using the existing line prop-

erties, the length of the line was extended to complete the connection. Otherwise,

using the GIS map, the shortest length of line between the node and feeder was cal-

culated and the line properties were assumed to be the same as the most common

type.
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Figure 5.8: The LV network of the pilot site in Huntly, Aberdeenshire,
Scotland.
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5.3.6 Optimisation and peak shaving methods

The simulation workflow in this chapter followed the same market and grid co-

simulation steps outlined in Chapter 4 - in specific in Figure 4.1. The optimisation

and peak shaving methods employed in this chapter adapted the methodology pre-

sented in Chapter 3 and Section 5.2. Using the inputs from the digital twin models

of the three neighbourhoods, optimisation was performed to simulate the community

level behaviour for reaching minimum cost and hence, higher self-consumption and

self-sufficiency through load shifting. Similarly, the same methodology was applied to

minimising the carbon footprint of the communities, incurred by importing electricity

from the grid during periods of high carbon intensity. The nature of the objective

function stayed the same for both carbon and cost minimisation.

Two of the inputs of the objective function are the grid import and export tariffs.

The Octopus Agile tariff was used as the grid import pricing. This dynamic half-

hourly domestic tariff is indexed on Elexon system buy prices and it was previously

introduced and used in Section 4.4.1. A range of export prices was used between 0 to

30p/kWh where 0p/kWh reflects no economic benefit for exporting electricity to the

grid. It should be noted that often in literature 5p/kWh is used as a nominal value for

the UK. Imported power and exported power are calculated in an aggregated approach

which are the variables of the cost function - as previously shown in Equation A.4.

For the carbon minimal optimisation, the grid import and export tariffs were

replaced by grid carbon intensity and local generation carbon intensity, respectively.

The former was obtained from [5] and the latter was input as 0 gCO2/kWh as the

only type of local distributed generation simulated in this use-case was roof-top solar

PV.

In order to leverage cheap import costs (irrespective of whether that is in terms

of financial or carbon costs), the optimiser employed a technology-agnostic approach

by increasing or decreasing demand from different smart assets. This was bounded

by the flexibility range of the asset which is expressed as minimum and maximum

operational bounds as shown in Equation A.2. Insights from the live pilot case showed

that turning EV charging down to 0 kW of usage disabled the option of resuming

charging of the vehicle. Hence, this insight was reflected in the turned down capacity

(i.e. τmint) which was limited to 1.4 kW.

The business-as-usual asset behaviour from the digital twins was used to calculate

the total energy consumption of smart assets in an arbitrary time horizon which is
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24 hours in this use-case. The values for each asset were used as a reference to ensure

that the demand was only shifted and not curtailed which could have resulted in

end-user disutility and discomfort.

Similar to Chapter 3, the optimisation algorithm was deployed on a community

scale, the total financial or environmental benefit for the whole community is max-

imised through minimisation of the aggregated electricity import costs minus the

aggregated electricity export. For instance, the excess solar generation at one node

can be used to cover the demand at another node in order to minimise the communal

carbon footprint and costs. In this case study, all the heating demand is assumed to

be inflexible. Hence, there are no pre-heating enabled assets.

Some optimisation and P2P strategies resulted in higher peak loads, in winter,

which are later discussed in Section 5.3.8. Hence, using the constraint introduced

in Equation 3.11, the peak incurred by P2P trading was shaved. This resulted in a

hybrid simulation of peak shaving and P2P trading. The results drew attention to

the risk of increasing the imbalance and stress on the system that could be heightened

through the adoption of local energy markets and coordination techniques.

This limit was applied for the entire day rather than focusing on red rate periods.

This is because in some of the cases, the morning peak was observed to be higher

than the evening surge. Therefore, this constraint caps the power import level to

the given limit at any time during the simulation. The business-as-usual scenario

from the digital twin models was used to determine Pmax per neighbourhood as each

neighbourhood is located behind its own secondary substation as shown in Figure 5.8.

Following the previous simulation approaches, the peak was also curtailed to 30% of

its maximum value in some cases.

5.3.7 P2P methods

This subsection describes the method of the three different variations of local en-

ergy markets compared in this case study. These are namely the community-based

P2P (see Section 4.2.2), carbon-aware P2P market (see Section 4.3) and the newly

introduced intra-community P2P trading algorithm. The pricing mechanisms build

on the community-based P2P trading mechanisms described in Chapter 4. In this

case study, SDR was calculated based on the inputs from the business-as-usual digital

twin models, using distributed solar generation and battery export as supply. Using

Equation 4.2 from Chapter 4, P2P sell prices were computed where P2P sell price is
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a function of SDR. Similarly, P2P buy price which is a function of both SDR and

P2P sell price was calculated as shown in Equation 4.3 in Chapter 4.

Using a similar approach to Long et al. [81], an incentive was introduced to fairly

reward the contributions from local energy generators. This incentive is shown as λ.

Following the sensitivity analysis performed in [81], 4p/kWh was chosen for the level

of DER penetration in this case study.

For the simulation of carbon-aware P2P trading, λ is a variable which is indexed

to the levels of system carbon intensity as described in Section 4.3. This method was

used to produce carbon-informed pricing for local energy trading. It rewards sharing

of energy and penalises consumption during times of high system carbon footprint.

Having multiple neighbourhoods in this case study enabled two approaches to

computing the P2P pricing. The first method is called inter-community and the

second method is named intra-community. In the inter-community P2P case, three

neighbourhoods were able to trade with one another and their SDR and hence P2P

pricing was calculated using an aggregated approach. On the other hand, for the

intra-community trading, the supply and demand were evaluated individually for each

neighbourhood. Therefore, each neighbourhood trades within its own community

using its own pricing based on neighbourhood-level SDR values.

The computed P2P pricing for different scenarios was then fed into the optimiser

which aims to minimise costs by increasing community-level self-sufficiency. This

enabled comparison of various P2P tariffs with community-level cost and carbon

optimisation cases. More details about the simulations architecture were previously

presented in Figure 4.1 (in Chapter 4).

5.3.8 Discussion of results

As previously mentioned, the main aim of this case study was to compare P2P energy

trading and community-level optimisation in terms of economic, environmental and

system level cost and benefit. For this reason, different electricity system congestion

and stability indicators were analysed which included peak loads, network voltages,

transformer and line losses. To assess the economic and environmental benefits, CO2

emissions and user bills were analysed.
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5.3.8.1 P2P tariffs

There are three main approaches shown here which are inter-community, intra-community

and carbon-aware P2P tariffs which are outputs from the local energy market simu-

lations.

Inter-community P2P energy trading (also referred to as simply P2P in this chap-

ter) followed the same methodology as the community-based local energy market

design in Section 4. This approach views all of the three neighbourhoods as a single

pool of flexible demand and local generation. In terms of their proximity, the three

neighbourhoods are located behind the same primary substation - as shown in Figure

5.8.

The carbon-aware P2P approach applies the same incentive/levy as detailed in

Section 4.3. Figure 5.9 compares the summer and winter prices obtained by the

carbon-aware and inter-community P2P approaches. It also displays the grid import

prices which both of the pricing approaches rely on. Additionally, it shows the carbon

intensity which was used to scale the carbon premium. Two days of data are plotted

in Figure 5.9 where it is clearly shown that no particular correlation between grid

buy prices and carbon intensity exists. The top plot shows the summer case where

the carbon intensity values are relatively high (i.e. on average 150gCO2/kWh). Both

P2P and carbon-aware P2P cases yielded lower buy prices for the local participants.

The summer P2P buy prices (in green) exhibit a plateau around midday when there

is a surplus of local solar generation which results in SDR values higher than 1. This

leads to the capping of the export prices at 5p/kWh. While this is highly beneficial

for buyers as the grid value of the same generation is 2.5-7p/kWh more expensive,

from the seller’s view, there is no difference and hence no benefit in participating

in the local energy market when compared to exporting to the grid. In order to

reflect the carbon intensity of the grid supply (i.e. hence discourage import) and also

reward local generators that contribute towards decreasing the emissions by supplying

carbon-neutral energy, a dynamic carbon premium was applied. This brought up the

export prices from the P2P’s 5p/kWh to a range of 7.17 to 9.22p/kWh.

The first peak price in the summer plot is reduced by both P2P and carbon-aware

P2P cases. It is 25.74, 23.58 and 22.52p per unit for the grid, carbon-aware P2P and

inter-community P2P buy prices correspondingly. It should be noted that the carbon

intensity is relatively high at this time which is reflected in the pricing.
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Figure 5.9: Summer and winter comparison of carbon-aware P2P and
inter-community P2P trading prices, in the top and bottom plot respec-
tively, using grid import tariff and carbon intensity levels as reference
points.

On the other hand, in the bottom plot of Figure 5.9 where the winter case is

shown, all three of the pricing signals are very similar. This is because SDR ranges

between zero to very low values due to decreased supply and increased demand in

winter.

The intra-community P2P market is a new addition in this chapter. As there are

multiple neighbourhoods, the intra-community P2P approach calculates the SDR be-

hind separate secondary substations and evaluates the local pricing according to the

solar output and flexibility of the demand in that specific community. The resultant

local import tariffs are shown in Figure 5.10 for a summer day. The tariff for Neigh-

bourhood 4030 is significantly higher than the others. This is due to the large portion

of small C&I loads present. A third of the nodes present in this local network have

non-residential load types which increase the demand during midday (which is often
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lower in purely residential neighbourhoods). As only domestic-scale generation was

in the scope of this work, any commercial-scale generation was neglected. Therefore,

larger contributions from small C&I loads correlate with the increased demand on

the system around midday which resulted in lower SDR values. To summarise, the

supply-to-demand ratio for Neighbourhood 4030 is lower in comparison to the other

neighbourhoods due to higher levels of C&I load and hence, this results in higher

local energy prices in that community.

Figure 5.10: Individual local energy prices for each community where the
pricing is higher for neighbourhoods with higher C&I loads.

While the previous figure discussed the differences between the different intra-

neighbourhood pricing signals in summer, the next figures (i.e. Figures 5.11 and

5.12) examine the variations in pricing in winter and summer months. Following the

trend previously presented, the summer months result in relatively lower prices than

the grid import tariff for all three neighbourhoods. However, as the SDR is lower in

the winter months, the local prices mostly match the grid buy prices. From a local

energy consumer’s perspective, trading in Neighbourhood 4010 is more beneficial as

during the summer, the evening peak prices are not only reduced to 23p/kWh but

the duration of peak pricing is diminished to around one-fifth of the Agile tariff.

Additionally, if the consumers have a flexible load, they could shift their load to

periods with high SDR which resulted in the 5p/kWh plateau during the hours of

solar energy output. However, in winter participation in either the 4010 or 4030 local
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Figure 5.11: Comparison of winter and summer P2P buy pricing in Neigh-
bourhood 4010 which is mostly residential.

energy markets makes almost no difference as they both very closely follow the grid

pricing.

Overall, it was found that the consumers in Neighbourhood 4010 experienced

lower prices compared to the participants in Neighbourhood 4030. This is because of

the nature of the communities as 4010 is highly residential and 4030 has small C&I

loads on 39 nodes. Having a highly residential neighbourhood results in higher solar

penetration and lower loads which leads to a higher overall SDR average in the local

market. Despite this, the 4030 residents who participate in P2P trading would still

leverage the perks of dynamic energy pricing in comparison to the fixed rate tariffs.

Figure 5.13 shows an example of a negative pricing event that took place in winter.

So far, the tariffs were analysed from the perspective of the consumer as the focus

was on the electricity import prices. Figures 5.14 and 5.15 display the summer and

winter P2P sell prices for the same neighbourhoods in order to compare the LEM

participation in 4010 and 4030 from the producer’s point of view. While Neighbour-

hood 4010 prices were more attractive for the consumers, the opposite case applies

to the sellers. This is because there is a high penetration of solar energy output in

this area which leads to very high SDR levels. This consequently drives down the

market prices of local generation down. This is capped at 5p/kWh in this use case to

ensure that the local market benefit to the seller would not be lower than exporting
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Figure 5.12: Comparison of winter and summer P2P buy pricing in Neigh-
bourhood 4030 where a third of the nodes have non-residential loads.

energy to the grid. However, this also means that from the seller’s point of view,

there is hardly any difference between participating in P2P or selling energy to the

grid during hours of solar output. On the other hand, if the producer is also to store

the energy and sell later, they can leverage higher benefits during peak hours and

overnight sell pricing when the community SDR is low. Participants with different

generation methods (i.e. not solar) such as wind turbines would highly benefit from

this market structure regardless of which neighbourhood they reside in. The sellers in

Neighbourhood 4030 have access to more profitable sell prices that are always higher

than the grid export price in this use-case. Therefore, it can be concluded from this

case study that neighbourhoods with a more diverse load mix that include small C&I

are more advantageous for small local producers of solar energy in the distribution

networks.

141



5.3. CASE STUDY: COMPARISON OF P2P AND COMMUNITY-LEVEL
OPTIMISATION

Figure 5.13: An event of negative pricing in the winter case.

Figure 5.14: Comparison of winter and summer P2P sell pricing in Neigh-
bourhood 4010 which is mostly residential.
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Figure 5.15: Comparison of winter and summer P2P sell pricing in Neigh-
bourhood 4030 where a third of the nodes have non-residential loads.
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5.3.8.2 Peak load and effect of peak shaving

As shown in Table 5.12, P2P and optimisation cases result in higher peak values in

winter. This results in higher loading in lines and increased usage at the transformer

level. Therefore, this increased peak value leads to an increase in power losses, de-

creasing the overall efficiency of the power flow. The higher peak values are found

disruptive from the view of a distribution system operator. The case with the highest

aggregated peak is the cost minimisation case where the highest peak occurred on

the 6th of December at 19:25. Following this, intra P2P and P2P cases resulted in

increases within the range of 0.60-0.62%. As there is a scarcity of local generation in

the winter months, the local P2P prices are mostly commanded by the grid import

prices. This meant that the cost signals, that reflect high system demand, did not

align with the local peak demand. Therefore, the price during the local peak period

was not the highest pricing of the day. This allowed the cost-focused algorithms to

schedule 0.60% more loads on top of the existing peak. As a response to the increased

peak in the P2P and cost minimum cases, peak shaving was applied which both re-

sulted in an aggregated peak value of 637kW of the net power import. On the other

hand, the carbon minimum and carbon-aware P2P cases led to a negligible decrease

in the peak value, by only 20 to 40W. This is because during the local peak demand,

the carbon intensity of the grid was relatively high which led to a small decrease in

the peak power import values.

Table 5.12: Comparison of peak values for net power import during dif-
ferent cases against the no-control case - including P2P, cost minimisation
and peak-shaving options.

Peak power (kW) Difference (W) % difference
P2P 640 318.56 0.60%
Carbon-aware
P2P

637 -21.33 -0.04%

P2P with peak
shaving

637 0.00 0.00%

Intra P2P 641 325.88 0.61%
Min cost 641 330.99 0.62%
Min carbon 637 -37.31 -0.07%
Min cost with
peak shaving

637 0.00 0.00%
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Despite causing an increase in the net power imported during the winter months,

the transactive energy algorithms diminished the peak during the summer season.

The percentage difference of the summer peak decrease (i.e. 1.8%) was considerably

higher than the increase caused in the winter cases (i.e. 0.6%). The response from

all of the algorithms was similar and approximately resulted in a 1.8% decrease of

the peak value as shown in Table 5.13. This is because all of the algorithms leverage

the local generation using different approaches and they all attempt to maximise

self-sufficiency. For the optimisation and P2P cases that are based on a grid import

tariff, the results indicated that the peak pricing (which reflects high demand on a

national scale) takes place during local peak demand periods in summer. Hence,

while minimising costs, the algorithm yields lower demand peaks. The difference

in behaviour between the summer and winter months originates from the different

seasonal usage and generation patterns. Most importantly, the lower solar generation

and increased heating demand in winter vastly decrease the level of flexibility in the

distributed loads.

Table 5.13: Comparison of summer peak net import values for net power
import against the no-control case - including P2P, cost minimisation and
peak-shaving options.

Peak power (kW) Difference (W) % difference
P2P 358 -537.08 -1.77%
Carbon-aware
P2P

358 -538.97 -1.77%

Intra P2P 358 -534.27 -1.76%
Min cost 358 -534.27 -1.76%
Min carbon 358 -536.03 -1.76%

Further experiments were carried out using the maximum import limit. The

simulation case was shown to reduce the aggregated demand by up to 30% on certain

days. However, as the main focus of this case study is the comparison between P2P

and community-level optimisation, this analysis was not taken further. Table 5.14

shows the results from a winter day where the aggressive peak shaving method was

applied. The results reflect the flexibility of each neighbourhood where the maximum

peak reduction of 4.30% takes place in 4010 which is highly residential and the lowest

reduction of 0.02% is experienced by 4030 where one-third of the nodes are C&I.

These results confirm that the penetration of small C&I loads decreases the flexibility
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of the community which is also linked to poorer performance of Neighbourhood 4030

in terms of price reductions in the intra-community P2P market case. It should be

noted that the flexibility of non-domestic loads was disregarded in this case study.

Table 5.14: More aggressive peak shaving in winter which shows that
highly residential neighbourhoods are more flexible than the ones with
C&I loads.

Area Pre peak shaving (kW) Post peak shaving (kW) % diff
4010 106.74 102.28 -4.30%
9030 129.98 128.59 -1.07%
4030 637.07 636.93 -0.02%
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5.3.8.3 Network voltages

As shown in Figure 5.16, P2P cases resulted in lower voltage levels due to higher self-

consumption. The P2P pricing reflects the level of local supply on the network which

in return encouraged local consumption. On average, during high generation periods,

P2P resulted in 2% lower voltage levels where the cost optimisation very slightly

increased them (i.e. 0.002%). When the first level of peak shaving was applied to

the cost optimisation (where the import limit was curtailed to the peak load in the

no-control case), the voltage levels were reduced by 0.01%. With the maximum peak

shaving, this resulted in a higher decrease of 0.02%. This is shown in Figure 5.17 in

yellow, peak shaving of the cost optimisation case results in the lowest voltage levels

of the non-P2P cases.

Figure 5.16: Comparison of per-unit network voltages on a high solar
output on a summer day where P2P algorithms decrease the p.u. voltages
by shifting demand to periods of generation.
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Figure 5.17: Network voltage levels of Feeder 2 during a high solar output
period where implementation of peak limit (in yellow) results in slightly
lower p.u. voltage levels.
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5.3.8.4 Transformer loading

The transformer loadings were checked to ensure that the implementation of local

energy markets or network control algorithms did not result in operations that exceed

90% of the rated capacity. It should be noted that this limit was never reached in any

of the simulations across the three secondary substations. On average, all of the P2P

and optimisation cases yielded 8.53A of usage. The maximum values shown in Table

5.15 were all achieved in winter as energy demand is much higher (i.e. 1.7 times on

average) due to heating loads.

While the no-control case had the lowest maximum current, P2P and minimum

cost cases only increased it by 0.02 and 0.03A correspondingly. This value reduced

to the no-control loading when peak shaving was applied to the cost optimisation

case. It should also be noted that the P2P case lowered the maximum loading on the

transformer in the summer by 0.03A along with the peak-controlled minimum cost

case. On the other hand, a 0.08A increase in loading was imposed by the pure cost

minimisation case.

Table 5.15: Transformer current loadings for P2P and cost minimisation
cases from the secondary substation transformer “P8AU 11kV BUS”.

Cases Maximum loading (A) Maximum loading
in summer (A)

No-control 24.87 17.03
P2P 24.89 17.00
Min cost 24.90 17.11
Min cost with peak shaving 24.87 17.00

5.3.8.5 EV charging

In the previous case study, one way to assess user satisfaction was to check if the EV

left the home charger with the demanded SoC. Due to the delay penalty and the equal

energy consumption constraint in the optimisation algorithm, the SoC requirements

were always met in this case study. This is because curtailment is not allowed in

the designed optimisation algorithm. Instead, the loads can be shifted to different

periods in the day with an increasing penalty for delaying the actions later than

the scheduled start point. Charging of the EV is ramped up and down within the

provided flexibility volumes.
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5.3.8.6 Battery usage

The battery behaviour and hence, the number of cycles vary according to the seasonal

differences (i.e. higher solar energy output in the summer and vice versa) and the

control strategy deployed. Compared to the no-control case, all cases completed a

higher number of cycles annually. On average, the simulated cases used 0.5 to 2 more

cycles per week during summer months than winter ones. This is due to the higher

solar generation output during summer. The simulated P2P and optimisation cases

have similar battery usages where they all resulted in approximately 90 extra cycles

in a year. This obviously would lead to further degradation of the domestic battery

which might positively or negatively affect the return on investment and the levelised

cost of storage. However, this is outside the scope of this work.

5.3.8.7 Comfort levels

In this case study, the comfort levels were integrated as constraints in the optimisation

algorithm using the penalty matrix for delaying the user scheduled actions. As this

use case has 238 residential and 43 small C&I nodes, further evaluations of comfort

were discarded.

5.3.8.8 Losses

Annual energy losses were calculated for all of the simulated cases. When compared

to the benchmark no-control case, most of the cases achieved a negligible increase

of 0.12% in total energy losses. The only exception was the inter-community P2P

trading case which resulted in 0.24% higher energy losses annually - which might be

due to the increased energy sharing between the communities. This is because most

of the literature such as [27, 83] and the case studies in the previous chapters assumed

higher penetrations of EVs, solar energy and storage whereas 14% solar and battery

and 45% EV penetration was assumed in this case study. These percentage values

were obtained from the DNO’s DFES projections for the specific region in North

Scotland [32]. When analysing the losses in winter, it was found that the P2P cases

yielded slightly lower energy losses in comparison to the minimum cost and carbon

optimisation cases in winter. This might be because the P2P algorithms take into

account the local supply-to-demand ratio whereas the minimum cost and carbon al-

gorithms discard this value completely. For all cases, the maximum line losses took
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Table 5.16: Annual carbon savings in percentage.

Cases Annual carbon savings (%)
No-control 0.00
Inter-community P2P 6.52
Carbon-aware P2P 7.24
Intra-community P2P 6.70
Minimum cost 6.56
Minimum carbon 7.31

place during the winter when the net active power import was the highest in that

specific case. The maximum line loss values were around 9kW. All simulated cases ex-

cept the minimum carbon and carbon-aware P2P trading resulted in a 1.54% increase

in the maximum line losses value when compared with the no-control case. However,

minimum carbon and carbon-aware case led to 0.25% and no increase respectively.

5.3.8.9 CO2 emissions

Even though carbon emission reduction was only the objective of the carbon minimum

and carbon-aware P2P cases, all cases achieved a minimum of 6% annual carbon

savings when compared against the benchmark no-control case in 2032. The detailed

contributions of each case are shown in Table 5.16. The main highlight was that

the novel concept of carbon-aware P2P trading introduced in this thesis was able to

achieve almost the same level of carbon saving as the carbon minimal optimisation

case - which is equal to 35 tonnes of carbon dioxide in a year. This validated the choice

of 4p/kWh carbon premium as anything less would have resulted in smaller savings

and more would have led to over penalisation of the users. The difference between

the savings of carbon minimum and carbon-aware P2P case was 0.07%. However, it

should be noted that the local energy market structure in the carbon-aware P2P case

leads to higher economic benefits - which is discussed in the next section.

5.3.8.10 Cost savings

The majority of the optimisation and P2P algorithms have either cost or carbon focus

except the carbon-aware P2P trading which brings together both of these perspec-

tives. Hence, the cost and carbon savings of each case are presented in Figure 5.18

using percentages.
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The cost and carbon optimisation choices showed that optimising for carbon jeop-

ardises the cost savings and vice versa. This is because the current electricity prices

do not reflect the carbon intensity of electricity consumption. While the cost opti-

misation achieved 9.2% cost savings, this was lowered to 8.7% with the peak import

limit. The carbon minimisation case resulted in the lowest saving of 8.1% whilst

having the highest carbon avoidance.

All of the local market simulations (including carbon-aware P2P) resulted in

higher cost savings than the optimisation cases. This is because the electricity pric-

ing was adjusted using the local supply-to-demand values. The inter-community P2P

case yielded the highest savings (i.e. 15.8%) with and without the peak import limit.

On average, each household that participated in inter-community P2P saved £207.37
during the simulation year.

Moreover, the intra-community approach yielded slightly lower savings (i.e. by

1.5%) as the average P2P prices were higher for this approach. The carbon-aware

P2P case output the lowest savings out of the three local energy market approaches.

Its savings were 4.4% lower than the inter-community P2P case.

The carbon-aware P2P sacrificed 0.07% of the annual carbon emission savings

made by the carbon minimal case and in return, through its local energy market

mechanism saved 3.3% more costs annually. When compared with the benchmark

inter-community P2P energy trading case, carbon-aware P2P trading only achieves

around 72% of the savings possible (for a P2P mechanism) which is equal to a total

loss of £15,000 annually and on average £63.03 per household per year. This is still

2.7% higher than the cost minimal optimisation that does not implement any local

energy markets.

In order to express the carbon savings in monetary terms, the social cost per

tonne of carbon dioxide was used. The social cost of carbon measures the economic

effect of every tonne of carbon dioxide released which contributes to global climate

change [263, 264]. This measure takes into account the economic loss experienced by

businesses and families due to the effects of climate change such as adverse weather

events and rising sea levels. [263] estimated the social cost of carbon as US$200 per

tonne. Hence, the use of carbon-aware P2P trading would result in £5.7k savings.

Another approach to express the carbon savings in monetary terms is to evaluate the

avoided cost of carbon capture and storage. Using the per-unit carbon capture storage

costs from [265], the use of this local energy market design would save a further £2.6k.
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Figure 5.18: Percentage cost and carbon savings for all types of local
energy market and network control methodologies.

This results in a total of £8.3k worth of carbon savings. This is still lower than the

£15k sacrificed but this method provides both economic and environmental benefits

as opposed to a single one.

5.3.8.11 Net power import from the grid

The annual energy consumption from 238 residential and 43 small C&I nodes added

up to 30.42 GWh of energy, with contributions from 4030, 9030 and 4010 as 82.17%,

11.10% and 6.74% correspondingly. The power factors and annual reactive power

demand follow the same trend - as shown in Table 5.17. As mentioned previously,

the optimisation was performed such that the total energy demand of the use case

stayed constant in a day.

As the key objective of implementing smart local energy systems is reducing the

reliance on the centralised carbon-intensive generation, it is important to analyse

the net active and reactive power import of local energy management strategies,

namely P2P energy sharing and community-level cost/carbon minimisation. This also
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Figure 5.19: Net active power import for cost and carbon optimisation
cases compared against the benchmark no-control case.

indicates the self-sufficiency and self-consumption rates of the local energy system.

The aggregated net active power import profiles for the community are shown in

Figure 5.19. The highest import takes place during the evening peaks and the cost

and carbon optimisation scenarios result in a decreased midday active power import.

This is because more of the surplus solar energy is consumed locally and the evening

flexible load is shifted to relatively cheaper periods of consumption overnight. Thus,

as annotated in Figure 5.19, the overnight import is increased. The P2P cases exhibit

similar net power import profiles to the optimisation cases with slight differences. The

imported power during the midday is further decreased as the local energy prices are

very low due to solar energy surplus. This indicates that more of the flexible load is

scheduled to match the hours of solar generation. Hence, a small increase in overnight

import was observed in most cases.

The self-consumption levels for the P2P cases were 71% with an increase of 6.5%

from the no-control case. This is because local energy markets enabled energy sharing

amongst peers and communities. Consequently, the self-sufficiency levels increased

to 32%. This indicates that the communities in North Scotland can cover up to a

third of their loads locally by 2032, reducing their reliance on the grid and hence,

central generation with higher carbon intensity. However, to reach net zero by 2050,

self-sufficiency of communities is required to be higher. One shortcoming of this case

study was that only solar DER were simulated and hence, all the local generation was
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Table 5.17: Annual active and reactive power consumption per neighbour-
hood and their contributions to the total.

Neighbourhood Active
power
(MW)

% contr. Reactive
power

(MVAr)

% contr. p.f.

4010 2047.50 6.74% -269.10 31.08% 0.991
4030 24977.42 82.17% -285.22 32.94% 1.000
9030 3372.72 11.10% -311.48 35.98% 0.995

output at the same time. If the local energy supply is diversified (e.g. wind turbine),

the self-sufficiency rate should increase.

The aggregated net active power import profiles for the community are shown in

Figure 5.19. The highest import takes place during the evening peaks and the cost

and carbon optimisation scenarios result in a decreased midday active power import.

This is because more of the surplus solar energy is consumed locally and the evening

flexible load is shifted to relatively cheaper periods of consumption overnight. Thus,

as annotated in Figure 5.19, the overnight import is increased. The P2P cases exhibit

similar net power import profiles to the optimisation cases with slight differences. The

imported power during the midday is further decreased as the local energy prices are

very low due to solar energy surplus. This indicates that more of the flexible load is

scheduled to match the hours of solar generation. Hence, a slight increase in overnight

import was observed in most cases.

5.3.9 Limitations

This subsection lists the limitations of the second case study presented in this chapter.

This use case simulated the future demand in three neighbourhoods in North

Scotland assuming that there would be no population growth and no increase in the

number of dwellings. A more accurate approach was not viable as there is currently

no detailed data available that provides population and dwelling density projections

for this local area. Nevertheless, this does not invalidate the simulation method or

the results as these can be updated as the projections become available.

The case study only simulated solar PV and no other local energy generation.

The winter savings in terms of cost and carbon may have significantly improved if

wind generation was taken into account. As solar energy is only available during
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hours of daylight in a day. A more diverse local energy mix with the inclusion of

wind energy would have also increased the community self-sufficiency. Wind energy

would be expected to yield great economic benefits in P2P markets in winter when

the generation output from solar is considerably lower.

Due to the availability of data, only 3 neighbourhoods were simulated. Simulation

of a larger area with more neighbourhoods is expected to yield better results in terms

of a higher volume of flexibility and more efficient local energy markets. On the other

hand, the use of local energy markets and bottom-up control approaches may become

too inefficient for larger areas of applications where aggregated top-down actions are

more commonly used.

While the heating was provided by heat pumps in the previous case study, this one

made the simplifying assumption that the heating loads were not programmable for

all of the three neighbourhoods. This simplifying assumption was applied in this case

study due to unavailability of data and also the large size of the simulation network

with 238 residential and 49 non-residential nodes.

Participation in P2P and optimisation strategies was assumed to be undertaken by

all of the community peers. In a real life setting, achieving 100% participation would

be challenging due to issues related social acceptance. But, this case study makes

this assumption in order to portray the contribution of these P2P and optimisation

scenarios towards decarbonisation of the energy systems and calculate the resultant

cost savings. A sensitivity analysis using varying levels of peer-to-peer participation

and storage penetration was previously presented in Subsection 4.2.2.

Degradation of the distributed assets such as battery and EV was not in the

scope. However, the batteries were used 20% more frequently than in the no-control

case which would result in quicker degradation but also possibly faster return on

investments.

Sousa et al. [30] presented a hybrid P2P design that leads to inter-community

trading using a premium to incentivise usage of local generation even if cheaper

options are available elsewhere. This is a hybrid model which sits between the intra

and inter-community approaches presented in this study. The simulation of the novel

carbon-aware P2P market design was prioritised over the simulation of this hybrid

design in this case study. Future work could expand on this work through simulation

of this hybrid market structure.
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Additionally, the issues around fairness and distribution of benefits were left out

of the scope of this work. However, it is important to ensure that the new designs of

local energy markets are fair as it is one of the objectives of the Scottish Government

to deliver a just net zero transition [266].

Lastly, this approach assumed 100% accurate forecasting of solar output and en-

ergy demand from EVs. However, forecast errors are expected to result in discrep-

ancies between scheduled and actual demand and generation. This was neglected

in this work. Nevertheless, as observed in literature, various post-action settlement

logics [126, 130, 194] can be applied to resolve the resultant discrepancies in the P2P

transactions and end-user bills. More information about this is in Chapter 6 which re-

views different methods of settlement strategies in P2P markets and their deployment

on blockchain-based smart contracts.

5.4 Discussion

This chapter featured two case studies which were about bottom-up network-aware

control and peer-to-peer trading in local energy networks. The detailed and techni-

cal discussions of the results from the case studies were provided in their dedicated

sections, namely Sections 5.2 and 5.3. The discussion in this section highlights the

key findings from these use-cases and provides high-level interpretations of the re-

sults. The effects on different stakeholders, which range from the end-users to the

energy system operator, are evaluated. Lastly, the future implications of the simu-

lated strategies (e.g. carbon-aware P2P trading) are evaluated and discussed in terms

of net zero goals and the barriers and opportunities for their adoption in real life.

The location for both of the case studies was Huntly, Aberdeenshire in Scotland.

The use of this site in this thesis was made available by the ZUoS project of Scene Ltd.

In this case, Scotland provided a special case study as it has ambitions to achieve the

net zero emissions goal by 2045 and become a pioneer in the field of energy system

decarbonisation [11]. In addition, Aberdeenshire, North Scotland has both the UK’s

highest level of fuel poverty and the highest regional electricity prices [234, 249] which

increases the impact of the thesis outputs in terms of social and economic benefits.

However, it should be noted that the peer-to-peer trading, optimisation and network

control algorithms presented in this thesis were designed in such a way that they can

be applied to different networks and locations.
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Using the network and demographic data from this use-case, the first case study

constructed a futuristic neighbourhood with EVs, heat pumps and solar systems with

storage, using DFES to represent 2032. It showed that network-aware control led to

the lowest carbon emissions, energy losses and obtained acceptable voltage levels

while decreasing user comfort by less than 5%.

The second case study focused on the community-level optimisation and P2P

trading comparison. P2P market designs yielded 7% higher economic benefit than

the cost optimisation algorithm. The simulations also showed that the carbon and

cost objectives were sometimes mutually exclusive (e.g. cost optimisation jeopardised

carbon savings and vice versa). However, the proposed method of carbon-aware P2P

sharing achieved a trade-off with 11% cost and 7% carbon savings. Additionally, this

study found that larger pools of flexibility (i.e. inter-community trading) achieved

higher savings than the separate neighbourhood only trading within themselves (i.e.

intra-community trading).

It should be noted that one of the recommendations from this thesis is to diver-

sify the local energy supply. This is because as only solar was considered the P2P

trading and optimisation methods revealed much higher benefits during summer days

and sunlight hours. On the other hand, due to the scarcity of local generation, the

advantages of adopting these technologies were not justifiable in winter. Addition-

ally, they caused small increases in peak loads and hence higher losses. To overcome

this, peak shaving was applied which demonstrated the co-existence of P2P trading,

optimisation and DSR services in one simulation.

The next subsections detail the implication on various stakeholders, accelerators

and barriers and the last one provides an outlook on future energy systems.

5.4.1 Implications on stakeholders

When evaluating the impact of local energy solutions, it is important to ensure that

the interests of the end-users are considered to enable a bottom-up and user-centric

decarbonisation approach. The end users were expected to care the most about

the energy bills and the effect of any kind of implemented control methods on their

comfort levels. The simulation work in this thesis assumed full access to the users’

generators, storages and flexible loads. To ensure that the comfort levels were not

compromised, a delay-based penalty matrix was used in the optimisation process of

all P2P and community-level cost/carbon minimisation studies. Additionally, in the
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second case study only load shifting rather than curtailment was modelled to ensure

the satisfaction of the participant. The comfort of the users was modelled and evalu-

ated in more detail in the first case study (which included network-aware curtailment)

where actual indoor temperatures and SoC of EVs were compared against user pref-

erences. The first case study showed at the expense of reducing user comfort (4%

of the time), that the overloading of the transformer and lines were prevented which

resulted in lower annual demand, carbon emissions and losses. However, a suitable

method should be found to compensate the users for decreasing their comfort levels.

From the end-user’s point of view, participation in P2P energy trading (as simulated

in the second case study) proves to bring the highest economic benefit of around £170
on average per household per year. Out of the three different local energy market

designs, inter-community trading resulted in the highest savings (i.e. 18% lower bills

with an average of £210 of savings per household) as it has the largest pool of flex-

ibility and generation. While inter-community P2P trading would be preferred by

the consumers, intra-neighbourhood trading yields higher selling prices which would

be more attractive to local energy producers. This is because neighbourhoods with

higher penetration of small C&I loads experienced more inflexible demand and hence,

the generation output was more highly rewarded. The end-users with environmental

awareness may choose to subscribe to the carbon-aware P2P market and sacrifice 4%

of their cost savings (i.e. £63 per year) in order to reduce their carbon footprint by

7.2% (i.e. 150kg of carbon emissions per year).

Another type of stakeholder in the local energy systems is the distribution network

or system operator (i.e. the current DNO and the future DSO). Stakeholders of this

type prioritise healthy operation of the local grid, network control and aggregated

flexibility of the community over user cost and system carbon savings. In the case of

the network operator, the increased visibility of the network and, demand and gen-

eration of the users would help to avoid congestion and stress in network operation.

In the first case study, it was shown that network-aware community flexibility offers

voltage balancing attributes. This is shown to be a better approach than the more

commonly known peak-hour or red-rate avoidance strategy as it results in lower en-

ergy losses and better maintained voltages. As shown in the second case study, some

local energy sharing scenarios may increase the peak import which results in higher

losses and lower voltage levels. To tackle this, a maximum power import limit was

implemented in this thesis which can be a future requirement from the DNO in real
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life in order to minimise the network disruption and avoid overloading of lines and

transformers in the future due to increased electrification of transportation and heat-

ing. To summarise, the implementation of P2P markets and bottom-up coordination

offers an opportunity for more granular and responsive network control with higher

visibility of local generation and smart assets.

In addition to the operator, the role of the aggregator is also expected to become

more prominent in future local energy systems. Local energy system technologies

presented in this thesis create a new opportunity for the aggregators to expand their

portfolio to small distributed generation, storage and controllable loads. This could

result in higher profits at the expense of more complex coordination, assuming that

the aggregated residential flexibility would be more competitive than the larger com-

mercial balancing mechanism units such as a grid-scale battery. As mentioned pre-

viously, the peak shaving algorithm provided a demonstration which could be used

in a similar way to the Western Power Distribution’s curtailment service during peak

hours [6].

As a result of higher self-consumption and self-sufficiency, the centralised genera-

tors and energy suppliers are expected to earn less. However, as only renewable and

specifically solar PV generation was considered, the local energy system simulated

is still highly reliant on the grid import. If the generation portfolio in the future

would be more diverse and coupled with higher generation and storage capacity, then

this might cause a significant reduction in the earnings for the centralised supply as

instead of the commercial large generators, the economic benefit would go to local

small-scale generators.

From the National Grid’s perspective, higher self-consumption means lower mid-

day solar export and higher self-sufficiency indicates better matching of local demand

and local supply. Hence, the resultant evening demand would be lower and the

overall imbalance volume would decrease. This would improve the system operation

conditions and also reduce the frequency of balancing action deployment which would

eventually result in lower balancing costs and hence, decreased system cost of electric-

ity. Additionally, aggregated participation of residential resources in the balancing

market would increase the volume of flexibility which may drive down the cost of

balancing actions.

Even though they are not directly associated with local energy systems, local gov-

ernments, decision makers and bodies like Ofgem, NGESO and the UK and Scottish
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Governments are also stakeholders. From their point of view, the most important

aspects include the carbon emission savings of the bottom-up flexibility coordina-

tion. It is important to note that due to the seasonal nature of solar generation,

most of the benefits from the strategies presented in this chapter show little economic

or environmental benefit during the winter months. Therefore a recommendation

from this study would be to diversify the local energy supplies. The case studies in

this chapter also show an increase in the self-sufficiency levels of the local communi-

ties. However, this was inhibited as the sole energy supply considered in this thesis

was solar PV generation. Nevertheless, through peer-to-peer trading and community

level optimisation methods, the carbon-saving potential of local energy networks was

demonstrated and highlighted. The demonstrated concept of user-centric bottom-up

modelling increased sharing of local energy which would benefit the stakeholders in

terms of accelerating the transition to net zero while bringing local benefits to the

participants which indirectly contributes to other social and economic issues such as

fuel poverty.

5.4.2 Accelerators and barriers

While the simulation results of local energy markets and community level optimisation

prove to be very beneficial to all stakeholders, they are still not fully adopted by

the industry except for the few pilot studies such as the Huntly pilot of the ZUoS

project by Scene Connect Ltd. In recent years, there also have been some positive

advancements relevant to the real-life adoption of local energy markets. These include

smart metering, smart homes control infrastructures, economic incentives for the

uptake of EVs and heat pumps and lastly increased awareness about environmental

issues which affect users’ energy choices. Additionally, due to the previous economic

incentives (e.g. Feed-in-Tariff), there is already a considerable amount of distributed

solar PV present in the UK and other European countries [267].

The barriers of real life implementation include concerns regarding security, pri-

vacy, data collection and storage. As the control and coordination methods pre-

sented in this thesis require granular monitoring of different smart assets such as

EVs and heat pumps, this poses a significant threat to the adoption of the developed

methodology. However, distributed ledger technologies, including but not limited to

blockchains, enable tamper-proof, encrypted and decentralised storage of data. Es-

pecially the smart contracting aspect of blockchains is highly relevant to the field of
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local energy systems and markets as they offer a solution to the problems related to

the centralised collection and storage of residential household energy use data.

5.4.3 Outlook on future energy systems

According to the Committee on Climate Change [210], 40% of the UK’s carbon emis-

sions stem from households. They propose a range of solutions including renewable

DERs and more efficient devices to reduce the per-household annual carbon foot-

print from 1.7t in 2014 to 0.041t in 2030 [268]. In the first case study, it was found

that the carbon footprint of the simulated households would reach 2.05tCO2 by 2032

if no action was taken. This emphasises the need for a local energy market mech-

anism that takes into account the carbon emissions of electricity use such as the

carbon-aware P2P market design proposed in this thesis. On average, each household

saved 150kgCO2 annually using the carbon-aware P2P trading mechanism - assuming

that the carbon intensity of the grid generation would not improve. The simulations

showed the potential of saving a total of 35tCO2 in a year from the three neighbour-

hoods in North Scotland. This indicates the significant impact of this carbon-saving

local energy market design towards meeting the net zero goals.

Using the proposed carbon-aware mechanism, the transition to net zero in 2050

can be accelerated in a bottom-up manner where the carbon saving potential of

the distributed renewable generation and residential demand flexibility in 28 million

households would be utilised. The main advantage of this approach is that it brings

system-level holistic value in addition to local economic benefit.

5.5 Key findings

This chapter presented the results of the network-aware flexibility coordination and

P2P energy trading strategies using the case study of Huntly, Aberdeenshire. It de-

scribed the digital twin models and the simulation platform used for the co-simulation

of the 2032 use-case with increased DER penetrations.

The first case study simulated network control and evaluated the advantages of

network-aware bottom-up control when compared to the fixed peak-hour avoidance

approach. It featured a neighbourhood with EVs, heat pumps and solar systems with

storage. It also took into account the thermal response of buildings and user comfort.

To summarise, it showed that network-aware control resulted in the lowest carbon
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emissions, energy losses and obtained voltage levels within the required bounds - at

the expense of decreasing the user comfort by 4%.

The second case study focused on the community-level optimisation and P2P

trading comparison. The results were presented with environmental, economic and

system outlooks. Overall, P2P market designs resulted in approximately 7% higher

economic benefit than the cost optimisation scenario. The simulations also showed

that the carbon and cost objectives were not always compatible (i.e. cost optimi-

sation decreased carbon savings and vice versa). However, the proposed method of

carbon-informed P2P trading offered a solution to this by yielding 11% cost and 7%

carbon savings. This case study also took small C&I loads into account and showed

that higher penetrations led to lower savings. Additionally, it compared the single

versus multi-neighbourhood markets and output that larger pools of flexibility (i.e.

inter-community trading) result in higher savings than having an individual pool per

neighbourhood (i.e. intra-community trading).

To summarise, this chapter concluded that the adoption of P2P markets and/or

network-aware control brings economic benefit to the end-users and reduces carbon

emissions, contributing to the net zero transition. From the DNO’s perspective, it

creates opportunities for better visibility of the network and flexibility provision to

decrease transformer and line loadings and regulate network voltages. From a high-

level holistic perspective, this chapter demonstrated the feasibility of both carbon and

cost savings through the use of carbon-aware local energy markets. The adoption of

this method would provide 4% lower cost savings but also achieves the highest carbon

savings which adds value and functionality to the concept of local energy markets as

instruments of decarbonisation.

Lastly, this chapter identified the challenges for the implementation of P2P mar-

kets and community-level optimisation (including monitoring, data storage and pri-

vacy) which are addressed by the next chapter through the proposed use of blockchain-

based smart contracts (see Chapter 6).
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Chapter 6

Use of Blockchain and Smart
Contracts in Local Energy Systems

This chapter proposes the use of blockchain-based smart contracting as a poten-

tial solution to the barriers associated with the real-life adoption of P2P markets

and community-level optimisation. Some of these challenges were introduced previ-

ously in Chapter 5 and include distributed asset monitoring, synchronisation, financial

transactions, data storage and cybersecurity. This chapter also presents the key char-

acteristics of this technology and its energy systems application areas. Synthesising

the information from the literature review in Chapter 2, a novel six-layer taxonomy of

energy smart contracting is proposed in Section 6.3. Following this, the methodology

for smart contracting is explained and demonstrated using a case study of P2P smart

contracting. This chapter also evaluates the computational, economic and environ-

mental costs associated with the computation of smart contracting. It also explores

the opportunities and threats associated with energy smart contracting focusing on

the themes of scalability and security which are key for wider adoption in Section 6.8.

Lastly, it provides recommendations for future research.

The majority of the material in this chapter was published by Kirli et al. [12].

Additionally, the source code of the work presented in this chapter was made available

on a public repository (along with a tutorial) in [269].

6.1 Introduction

As shown in previous chapters, the predicted increase in new types of decentralised

load such as EVs and heat pumps could offer the flexibility required by the grid,
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in terms of load shifting, peak shaving and other demand-side response services.

Nevertheless, the problem is that the current system operation paradigm is not able

to coordinate and leverage the vast amount of small-scale decentralised assets on the

distribution network.

Smart contracting, along with distributed ledger technologies (DLTs) offer a po-

tential solution to these challenges, as highlighted by the systematic review of An-

doni et al. [29]. Blockchain and other DLTs provide a secure and immutable ledger

of digital transactions and value transfers in a network. Smart contracts have an

underlying blockchain architecture and hence, they inherit many of the favourable

properties, such as decentralisation, automation, immutability and security. While

blockchain architectures are concerned with cryptographic security and data storage

on the blockchain, the smart contracting layer deals with the contractual operations

and transactions to be executed on the blockchain, in terms of P2P trades and flex-

ibility commitments. Therefore, smart contracts are the most relevant aspect of

blockchain technologies to the local energy systems.

Smart contracts are used in many applications in local energy systems, ranging

from energy trading to the coordination of distributed assets - as shown in Figure

6.1. The type of applications of smart contracts can be categorised into two main

categories: energy and flexibility trading on the left-hand side, and distributed control

on the right-hand side. 65% of the 178 peer-reviewed papers analysed in [12] had

energy and flexibility trading applications. Whereas, 35% of the literature used smart

contracting for distributed control applications. Overall, P2P trading was the most

common use-case for energy smart contracting where almost one in four papers used

smart contracting coupled with P2P markets. On the other hand, DSR services

covered 10.3% of the total.

In recent years, blockchain-enabled P2P trading and community-centric energy

sharing applications have received an increased research interest as demonstrated by

[40, 72, 73, 74]. There is also an increasing focus on the LV microgrids and local

distribution networks for the application of blockchain technologies in P2P energy

trading [36, 75, 76]. Nevertheless, while these technologies are mentioned in the

literature, only a few studies actually implement the energy management algorithms

in smart contracts or demonstrate the steps of smart contracting in a repeatable

format. This chapter addresses both of these issues by detailing the methodology of

programming and execution of smart contracts and demonstration of P2P case study.
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Figure 6.1: Application of smart contracts in the energy sector. Each
application is discussed in one of the two main application categories iden-
tified which are (1) energy and flexibility trading and (2) distributed con-
trol [12].

Additionally, there is a gap in the literature when it comes to evaluating the impact

of smart contracting on energy, in terms of computational power, energy use, costs

and carbon emissions. This chapter in the thesis evaluates these aspects against the

savings achieved through the deployment of local energy markets (using the results

from Chapter 5).

6.2 Key characteristics of smart contracts

Smart contracts have many key characteristics that make them an enabling technol-

ogy for local energy markets and transactive control. These include self-verification,

security, speed and so on. However, there are also other aspects of smart contracts

such as their computational expense and the fact that coding a smart contract in-

volves reliance on specific programming languages (i.e. not including Python, Julia,

MatLab which are the most commonly used languages in energy research). The key

characteristics of smart contracts are summarised below and further discussed later

in Section 6.8 in this chapter. The main characteristics of smart contracts are the

following:

1. Self-enforcement and automation: Smart contracts are made of code that takes
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decisions based on specific inputs. This code is executed automatically in a

virtual environment that is shared among the nodes of the blockchain when

specified conditions arise. Therefore, smart contracts are self-enforced and will

execute the dedicated code automatically.

2. Tamper-proof nature: Smart contracts are software components that are stored

on a blockchain. Therefore, they inherit distributed ledger properties, among

which the tamper-proof characteristics. Indeed, being stored on a blockchain

makes the smart contract code immutable and unalterable, as this would require

changing the whole blockchain. A smart contract cannot be changed by any

other node of the blockchain. Therefore, it is ensured that the smart contract

code is original and corresponds to its designer’s code.

3. Transparency and accessibility: Being part of a blockchain, the smart contract

is transparent and accessible to all the members of a blockchain. Therefore, in

the case of permissionless ledgers, everyone can have access to the content of

a smart contract, whereas it might be restricted to some users in the case of

permissioned blockchain.

4. Security: Given the high level of cryptography and the characteristics of blockchain

(e.g. tamper-proof), smart contracts inherit a high level of security, as their

content cannot be changed by anyone, and their execution is automatic.

5. Speed and reliability: This is a key aspect of smart contracts as they run in a

virtual environment shared among the blockchain nodes, their code is compiled

at the moment this virtual environment is triggered when the specified condition

is met. This ensures a fast response that is maintained as long as there are nodes

in the blockchain. Furthermore, this ensures high reliability in the execution,

as the code execution does not depend on a single server as would be the case

in a centralised architecture scheme.

6. Self-verification: Although formal verification is still an ongoing research field,

most smart contract languages and blockchains verify the code embedded in a

smart contract, in order to ensure the viability of the contract. For example,

the self-verification steps to deploy a smart contract on a blockchain can include

interaction with an EV or any other smart device.
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6.3 A novel taxonomy of energy smart contracting

After a systematic review of smart contracting in energy systems (as shown in the

publication by Kirli et al. [12]), a novel 6-layer structure of energy smart contracting

is hereby proposed in this section. Synthesising the information published in a variety

of areas that range from settlement mechanisms to cybersecurity, a multi-layer ar-

chitecture was designed to describe and illustrate the flow of information that starts

with the input from agents. As shown in Figure 6.2, from user input to the response

of the physical assets, smart contract processes involve six different layers that the

information travels through. The identified six layers are namely:

1. Input layer with information from agents, devices and the grid,

2. Energy algorithms layer such as consensus and control,

3. Native smart contracting functions layer that takes care of the user registration,

financial and gas transactions,

4. Blockchain layer with verification, encryption, etc.,

5. Computation layer including processes and different threads run by the virtual

environment

6. Communication layer that involves physical transfer of the information between

nodes.

Layer 1 requires data from an agent, device and/or the grid. Some of the exam-

ples include bids and offer from agents engaged in P2P trading, availability signal

from a smart charging EV and voltage levels from the grid to trigger an automated

demand-side action. On the second layer, this information is passed to the energy

management algorithms which are designed by energy researchers. In the literature,

this layer usually is novel and involves optimisation techniques. For instance, this

may be an advanced efficient settlement algorithm to resolve the mismatch between

contracted and delivered energy. Any sophisticated form of decision-making such as

control algorithms, negotiations, etc. would be performed on this layer. Such com-

putations can be deployed off the smart contract or “off-chain” to avoid unnecessary
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computational costs. The third layer involves programming of the contract which is

often in a standalone smart contract language (e.g. Solidity). There are many ex-

amples where Layer 2 and Layer 3 are coded in different languages. Hence, they are

expressed as separate layers. Registration of agents and devices, any form of financial

transaction, etc. take place on this layer, as well as the calculation of gas usage.

The output is a digital contract composed of code (and prose). Layer 4 involves the

integration of the smart contract on a block in the blockchain. This brings the as-

pects of verification and encryption. A popular example is the Proof of Work used

for Bitcoin. Implementation and computation take place on Layer 5 which involves

interaction with virtual machines such as the Ethereum Virtual Machine (EVM).

Lastly, the information is transferred via communication protocols. This may in-

volve machine-to-machine (M2M) communication via wired and/or wireless means.

For instance, as a result, the smart contract could trigger the smart meter to send

information to a software.

6.4 Methods for smart contracting

The previous sections provided an overview of the applications and capabilities of

smart contracting in energy systems. This section showcases the methodology.

6.4.1 Programming of smart contracts

As previously stated, a smart contract is a software that executes in a virtual environ-

ment distributed among the nodes of a blockchain. This software is often written in

a particular language that has certain characteristics. All languages (e.g. Solidity or

Vyper) are not identical and do not allow the same computation. As an example, for

deployment in a blockchain, the type or size of code is restricted in order to limit the

computational expense. Also, some languages used for smart contracts development

are close to Turing Completeness, whereas others are not. In more detail, Turing

completeness (named after Alan Turing, a pioneer in the field of modern computer

science) is defined as the ability of a language to compute any Turing-computable

function, i.e. to execute any recursive function, as while, if or for loops, among oth-

ers. This property is problematic in smart contracts, as a Turing-complete language

could run a while loop forever, depending on the memory usage, and thus overload

the corresponding blockchain. To overcome this possibility, most smart contracts
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6 Layers of Smart Contracting in Energy Systems

Figure 6.2: The 6-layer structure of smart contracting for energy applica-
tions.

languages are not Turing-complete (TC). However, Solidity language along with the

Ethereum Virtual Machine (EVM) can be defined as a pseudo-Turing complete sys-

tem, where Solidity can be considered as a deterministic TC language [270] but the

gas cost limits artificially the EVM computational power, where the defined budget

determines the maximum computational power and operations available for the smart

contract. This prevents a smart contract from running indefinitely on the Ethereum

blockchain, although Solidity language does not impose such a limit. Therefore, the

flexibility of TC languages can be their biggest threat in smart contract applications

due to security issues as highlighted by the DAO attack [271] and halting problems

[272]. This showed that a TC language could affect the expected contract solution,

duplicate the amounts of money spent or create fraudulent withdrawal of funds from
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a contract. Unlike Solidity language, non-TC languages such as Vyper [273] reduce

possible attacks and facilitate the estimation of the required computational power per

contract. The use of non-TC languages is discussed in [272] through the evaluation

of computational requirements from 53,757 smart contracts, where only 6.9% of them

require a TC programming language to be implemented. Finally, it is essential for a

smart contracting language to be deterministic so that the execution of a contract is

the same in every node. This ensures consistency between the network nodes.

6.4.2 Execution of smart contracts

This section focuses on the software tools that are the most widely used to imple-

ment smart contracts in energy-related research projects. One of the most popular

implementations of smart contracts consists of setting up a local private distributed

ledger such as an Ethereum based blockchain, using tools as Ganache, that create a

blockchain with ten accounts already configured, with 100 ethers each. Then, running

a smart contract on this blockchain requires uploading it to the Ethereum Virtual

Machine through one account. Therefore, the steps to set up, and deploy a smart

contract are the following:

1. Configuration of a local blockchain with nodes (virtual machines) and accounts,

using Ganache

2. Develop a smart contract in a given language (e.g. Solidity or Vyper)

3. Compile the Smart contract code using the language compiler

4. Deploy the compiled code (byte code) in the blockchain using either Python or

Javascript Web3 libraries

5. Interact with the contract (and the blockchain) through Python or Javascript

commands that are sent to the address of the smart contract via a node of the

local blockchain.

In terms of the development and deployment of smart contracts or distributed ap-

plications (Dapp), existing research mainly used one of the three distributed ledger

technologies that are: Ethereum (most used DLT that is mainly permissionless), Hy-

perledger (permissioned DLT) and IOTA (more scalable DLT as it does not require
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mining process to store data). For Ethereum DLT, the following implementation tools

are available:

• Truffle suite, which is a development framework for the development and de-

ployment of Ethereum based applications. It includes many other tools listed

below to create, compile, test, deploy and interact with smart contracts.

• Ganache, as mentioned above, is a tool that allows users to create a local

Ethereum DLT with sample accounts in which a smart contract can be de-

ployed.

• Remix IDE (Integrated Development Environment) is a popular browser-based

IDE for Javascript-based smart contracts.

• Embark is an alternative framework for development, build, test and deployment

of smart contracts with modular plugins. It is also compatible with Ganache

for simulated blockchain.

• Go Ethereum, or Get is a command-line interface (CLI) client that allows smart

contract developers to interact with a blockchain and thus to deploy smart

contracts. It is the Golang implementation of Ethereum protocol but other

implementations exist in C++ and Python. Parity is an alternative to such

interaction software, which is written in Rust.

• Metamask is a browser extension that can be used to manage Ethereum wallets

and the deployment of Distributed Applications.

Similarly, hyperledger has associated tools that can ease the development and

deployment of smart contracts as Hyperledger Cello which is an application that

is used to manage, supervise and deploy multiple blockchains and associated smart

contracts.

6.5 Case study: P2P smart contracting

A workflow of energy smart contracting is shown in Figure 6.3, using auction-based

P2P energy trading as an example. The auction-based P2P trading was chosen as the

case study because the auction-related native functions of smart contracting address

the issues of synchronisation, data storage and clearing which are some of the key
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barriers associated with the implementation of this local energy market design. These

issues were also a part of the decision in Chapter 4 which evaluated that the feasibility

of implementing community-based methods by 2032 would be higher than auction-

based methods.

The flowchart of P2P energy smart contracting shown in Figure 6.3, starts with

the initialisation of the contract which prompts the command to read the capacity and

price offered by the generators. It is assumed that the forecast, estimation and price

selection are performed on the prosumer’s side. In this example, the kWh magnitude

of the offer is communicated to the buyers (consumers) and the bidding procedure

starts for the available excess generation in the community. There is a variety of

possible techniques for clearing the price as previously discussed in Chapter 4. The

most commonly used one is the Double Auction which ranks the bids and offers

in ascending and descending order respectively and evaluates an equilibrium price

that is the midpoint between the buy and sell prices. The next step is to assess

the physical feasibility of the allocations by inspecting the grid power flows through

power simulations. Then, the smart contract is updated with the outcome and the

energy transaction is verified using the smart meter recording of the generator. Once

verified, the total units and duration of generation are checked and any scaling and

penalties are applied if necessary. Following this, the payment to the generators is

authorised and the transaction is stored. This means that it is now irreversible. This

methodology is adaptable for different uses such as distributed control actions issued

by the DSO. Following the previous simulation cases, DSO-issued demand reduction

actions, the fair distribution of the benefits is automated using smart meter data to

identify each participant’s contribution to the overall demand reduction. Additionally,

as shown in Figure 6.3, scaling or penalty functions are applied according to the

metering data.

Algorithm 1 shows a brief pseudocode of a simplified smart contract for P2P en-

ergy balance update and transfer of funds. Separate data structures are created for

consumers and prosumers as the information required from these agents is different.

While the prosumer declares its hexadecimal identifier (i.e. address), EnergyOffer

in kWh and e-wallet details, the consumer needs to input its address, EnergyRequest

in kWh, the per-unit bid price and also their e-wallet details. The matched pairs for

P2P trading would be input in the LocalEnergyTransfer which compares the re-

quested and offered energy. If there is excess energy, the energy balances are updated
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Figure 6.3: Smart contracting algorithm for P2P energy trading.

accordingly and the total price is set as the product of the per-unit bid price and the

energy requested by the consumer. On the other hand, if there is not enough local

energy offered, the price is equal to the per-unit price multiplied by the energy offered

by the prosumer.

Lastly, Figure 6.4 describes the interfacing between the DLT (i.e. blockchain) layer

and the energy management algorithm which include P2P and transactive control

methods presented in previous chapters. A Python library called Web3 is used to

facilitate the exchange of information between these two layers. The outcomes of the
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Algorithm 1: Pseudocode for a P2P energy exchange balance update and
transfer
initialisation
create P2Pbalance{
define prosumer(address, EnergyOffer, Wallet)
define consumer(address, EnergyRequest, BidPrice, Wallet)
function LocalEnergyTransfer(prosumer, consumer){
if prosumer.EnergyOffer > consumer.EnergyRequest then

BalanceLocalEnergy = (consumer.BidPrice*consumer.EnergyRequest)
prosumer.EnergyOffer -= consumer.EnergyRequest
consumer.EnergyRequest = 0

else
BalanceLocalEnergy = (consumer.BidPrice*prosumer.EnergyOffer)
consumer.EnergyRequest -= prosumer.EnergyOffer
prosumer.EnergyOffer = 0

end
prosumer.Wallet += BalanceLocalEnergy
consumer.Wallet -= BalanceLocalEnergy
}}

algorithms such as pricing and energy volumes are transferred to the DLT layer where

the smart contract actions take place. Additionally, there is also a transfer of data

and information between the network layer and the other two layers which are DLT

and energy algorithms. The algorithm layer requires information from the grid layer

to ensure the feasibility of the planned actions whereas the DLT layer uses device and

net household metering data from the network layer in order to verify the contracted

actions. The implementation of this process was published on Github [269] as an

open-source repository. Solidity was used as the smart contracting language and the

code was deployed on a virtual Ethereum DLT.

6.6 Ethereum gas costs, economic impact and car-

bon emissions

In literature, there is little consideration of cost and carbon footprint of DLT tech-

nologies and, in specific, the usage of gas in EVM. However, accurate estimates are

needed as they offset the economic and environmental benefits of the P2P trading

and community-level optimisation strategies previously presented in Chapter 5. This
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Figure 6.4: An illustration of how different layers of simulations interface
with each other.

is identified as a gap in the simulation approaches of smart contracts for local en-

ergy systems. Therefore, this section introduces and evaluates the computational,

economic and environmental costs.

In this chapter, smart contracts were executed in a virtual environment shared

among the blockchain nodes and each node dedicates a part of its computational

power to the smart contract execution process. The execution cost was assumed

to be covered by the smart contract owner (i.e. the node that deploys the smart

contract on the blockchain). To track the associated monetary costs, Ethereum Gas,

a measurement unit for executing operations in the virtual environment was used.

A single transaction between the users combines a number of elementary operations,

such as addition, multiplication, etc, each of which has a set gas cost. Therefore,

the final cost equates to the total sum of all operations carried out to complete a

transaction.

Wood et al. [270] presented a table with the gas requirements per operation. The

amount of gas increases as the complexity of operations in a smart contract increases.

For example, an Ethereum (ETH) transaction to another agent costs 21,000 gas,

whereas the deployment of a new contract costs at least 32,000 gas to create an
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account. The current cost for bytecode execution is 200 gas, and 68 gas per byte used

to start a transaction. Also, the contract’s first execution embeds an additional cost.

The total deployment cost of a smart contract can be higher than 200,000 gas, with

an execution cost near to 50,000, as presented in [274], where 3 types of contracts

were evaluated.

In public networks, the gas cost is determined by the demand and supply, where

a limited number of miners can offer their computational power to a large number of

agents, generating gas price fluctuations between 10 Gwei (i.e. nanoether, 10−9 ETH)

to 100 Gwei in a year and peaks over 400 Gwei in high congestion events, according

to ETH Gas Station data [275]. The unit of wei is the smallest (i.e. non-divisible)

denomination of ether (ETH) which is the cryptocurrency coin used on the Ethereum

network where 1 wei is equal to 10−18 ETH.

In private networks, costs are usually neglected as the blockchain nodes do not

need a specific financial incentive to take part in the virtual environment. To cal-

culate the required gas for a transaction or a contract deployment the function

web3.eth.estimateGas is used as a testnet before the deployment of the contract

[276]. In order to reduce the future transaction cost of smart contracts, different

gas-wasteful patterns were identified in [277] and [278], where the use of for and

while loops, non 256-bit and unnecessary public variables in the code increase the

contract deployment and execution cost. These practices are avoided in the smart

contract design methodology shown here.

A gas limit was set to restrict the amount of gas spent on a transaction and it

reflects the user’s willingness to proceed with computationally expensive transactions.

The gas limit may vary and is used to express different preferences in the network

with regard to high and low cost computations. In this study, a local blockchain

emulator, namely Ganache, was employed and computational gas units are assumed

to have a set price of 20 Gwei, neglecting the volatility in gas pricing and variation

in computational supply availability.

Figure 6.5 compares the smart contract execution costs against the number of

participants taking part in P2P trading. As the number of users increases, the com-

putational costs per participant, expressed as gas units, decrease and reach a plateau

with values of 158k gas and lower for 80 and more participants. The shown costing

(blue) is for the initial round of the trading system and includes computational expen-

sive smart contract deployment costs. The deployment and matching functions are
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computed only once whereas other functions such as register and transfer are multi-

plied by the number of participants. Therefore, it is more cost-effective to have larger

pools of P2P trading participants in order to achieve lower gas costs per transaction

per user. In the case the same smart contract is executed again in the successive

trading rounds (orange), the costs are 140,000 units of gas which was shown to be

lower for 80 and more participants.

The costs and carbon footprint of running a smart contract vary depending on

the smart contract architecture (e.g. the number of functions, operations and loops

involved), type of blockchain (public, private or permissioned), local electricity prices

and carbon intensity of the grid (assuming there is no on-site low-carbon generation).

There is no established consensus whether blockchain and other DLT technologies

offer lower [279, 280] or higher [18, 281, 282] transaction costs in comparison to

the existing transaction methods. As an example, Ethereum and VISA transactions

comparison in terms of energy consumption by [18] is presented in Table 6.1 where

one Ethereum transaction was shown to consume 1.6 times more energy than 100,000

VISA transactions.

On the other hand, the Ethereum network transition is migrating from Proof-of-

Work (PoW) to Proof-of-Stake (PoS) protocol in order to increase the security of

the network and curb computational expense. This change of protocols for transac-

tion verification is approximated to result in a 99.95% reduction of Ethereum energy

Figure 6.5: Smart contract execution costs in gas units for varying number
of participants. The execution costs (per participant) decrease as the
number of participants increases.
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Table 6.1: Energy consumption of Ethereum and VISA transactions [18].

Transaction type Energy consumption in kWh
1 Ethereum transaction 238.22
100,000 VISA transactions 148.63

consumption [280]. This would reduce the energy consumption of one Ethereum

transaction to 120Wh which is roughly equivalent to 80 VISA transactions. Further

discussion on the computational expense of smart contracts and a critique of the

current approaches is provided in Section 6.8.1.3. The section also summarises the

current advancements in the literature and provides insights for future work.

In this case study, the energy consumption along with the corresponding elec-

tricity costs and carbon footprint of smart contract execution was estimated using

the information provided by Ethereum [280] and other smart contracting sources

[12, 122]. A single computational unit of gas was estimated to cost £5.20×10-6 and

requires approximately 0.4Wh to compute. Following the results presented in Figure

6.5, this translated to £0.71 and 5.74kWh of electricity per participant for 238 users.

Therefore, this would result in a carbon footprint of 1.34kgCO2 for each transaction

in this system.

If a single energy transaction was executed each day, the annual cost for a 238-user

network would be £61.7k (£259.15 per participant). Considering that the annual cost

savings for the case study used in Section 5.3 (with the same no of participants) were

around £210 per household, the benefits of P2P savings are outweighed in this exam-

ple. However, this should be treated with caution as the simulated case only focused

on the year 2032. With the predicted increases in flexibility volumes and local energy

production, P2P markets (if incentivised and regulated appropriately) would become

more profitable in future years. These costs could potentially be reduced if smart

contracts were executed using permissioned blockchains [283]. Also, blockchain tech-

nology is moving towards a more efficient Proof-of-Stake verification approach which

would reduce annual transaction costs to £36.67 (£0.15 per participant). Similar

trends were present when the transaction costs were evaluated in terms of carbon

footprint. The associated annual CO2 emissions using PoW were estimated to be 167

tonnes of CO2 (0.7 tonnes of CO2 per participant) in comparison to 0.15 tonnes of

CO2 savings per household which were achieved by the novel carbon-aware P2P - as

shown in Section 5.3. Whereas, using PoS as a consensus mechanism was estimated
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to emit 0.35kgCO2. Assuming half-hourly transactions, use of PoS could achieve 89%

and 82% of the simulated P2P carbon and cost savings.

6.7 Limitations

One of the shortcomings of the methodology presented in Section 6.4 was that the

matching and optimisation algorithms were executed outside of the smart contract

(i.e. “off-chain”). In the case presented here, this method was chosen to increase

computational efficiency and speed of transactions. However, it resulted in a less

decentralised DLT system. The algorithms were located and executed on a single local

machine and therefore, this makes the process more susceptible to malicious attacks

which may cause economic loss and also loss of trust in the DLT system. Another

assumption was that the gas limit was assumed to be the same for all participants.

However, different gas limits may be implemented to capture the amount each user is

willing to pay per transaction. If a community with more socio-economic information

is simulated, these gas limits could reflect the price sensitivity of the users. This case

may show that the users with higher gas limits would be able to participate in more

complex transactions which may involve computationally expensive AI functions such

as accurate forecasting. As a result, higher gas limits may prove to be an advantage

for securing a more profitable position in the marketplace. Additionally, the users

may choose to add a “tip” to their gas limit which prioritises their transactions over

the others waiting in the queue. These were left outside of the scope of this study.

Energy smart contracting functions developed for the specific use of local energy

markets were shown to result in lower gas consumption [150]. In this study only

native solidity functions were employed, future research should leverage novel smart

contracting functions published in the latest research articles such as the P2P match-

ing functions developed by [150]. However, one shortcoming of the new and lower gas

consumption methods is that they are not easy to replicate and apply in other research

projects due to the lack of documentation and restricted access to code repositories.

Further discussion regarding volatility of cryptocurrencies and their effect on en-

ergy smart contracting and so on are addressed in Section 6.8.1.3 and the remaining

parts of Section 6.8.
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6.8 Discussion

The previous sections analysed the use of smart contracts in energy systems in terms

of variety of applications and embedded functions. A methodology for implementing

smart contracts for peer-to-peer trading applications was also presented along with

the results in terms of gas and energy consumption of this implementation method.

Based on the previous sections, in this section the key challenges and opportunities

are discussed.

6.8.1 Scalability of energy smart contracts: opportunities
and threats

First, this subsection discusses the opportunities and threats associated with scaling

up the use of smart contracts for energy applications. It presents the key issues

observed from analysing the literature and suggests solutions that incorporate a novel

outlook on energy systems. It also highlights the main advantages of smart contracts

such as automation, and reduction in time and cost of market operations.

6.8.1.1 Cyber-security and privacy

One of the major challenges in applying smart contracts in any sector revolves around

cybersecurity, confidentiality and privacy which involve identity theft and data leak-

age. For what concerns cybersecurity aspects, the challenges are associated with the

fact that some smart contracts decisions can be operational decisions controlling elec-

trical grid assets, which can become a threat to the energy system. To address this

issue, encryption with private keys and the addition of a hash ensure that the data

received was generated by a trusted entity. The append-only and distributed nature

of smart contracts provides an advantage [137, 169] when used with cryptography

and hash functions to protect the data [284, 285]. Furthermore, the risk of denial of

service of the blockchain that could happen from a smart contract running infinite

loops with heavy computation tasks is limited by strategies such as gas limitation.

To illustrate this cybersecurity aspect, [286] provides a study on “cyber-resilient”

systems whereas [287, 288] show the robustness of smart contract-enabled control of

battery systems against cyber-attacks.

Smart contracts are tamper-proof and immutable, in the sense, their code is self-

executing and cannot be stopped by any single party, once the contract is deployed
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and written on the blockchain. While often viewed as a strength, their immutability

could be a weakness for smart contracts, as the contract code defines each interaction,

where errors or bugs can generate unexpected results and consequences if it has not

been thoroughly tested and validated [289]. The relevance of immutability in smart

contracts is best exemplified by the infamous “DAO attack” [271, 290]. A malfunction

allowed the withdrawal of an amount of ethers much higher than the original deposit.

The losses associated with the malicious transactions were estimated to be over US$
150 million [291]. The permanent nature of the blockchain forced the attackers to

hard fork in order to erase the malicious transactions. This sparked a new set of

coding regulations and best practices to work with the deterministic nature of smart

contracts which elevated the security measures [292, 293].

Despite these concerns around cybersecurity, smart contracts are also seen as a

solution to increase the reliability of the whole energy chain by removing the single

points of failure such as central control by a unique server or the reliance on a trusted

third party (TTP). A single point of failure can pose a threat to the scalability of

energy systems as it is bounded by the capacity and capability of the TTP. Secure

private blockchains offer a reliable solution to this problem, as it was shown in Chapter

2 (in specific part 2.4.3.2) by works such as [294] and [105] where smart contracts were

shown to be helpful for grid operations. Similarly for market applications, the work

from [295] allows the users and producers to negotiate energy directly through smart

contracts, without any TTP.

Finally, the ability to authenticate bids and offers is also essential, as fake bids/offers

may be sent to sabotage the system using smart contracts, such as a P2P microgrid.

For instance, bids and offers can be secured using private keys based encryption,

whereas transactions can be authenticated by authorised aggregators [119].

6.8.1.2 Implementation and communication risks in smart contracts

Although the majority of the papers reviewed in Chapter 2 only describe projects

at a proof-of-concept stage, some researchers deployed energy smart contracts on op-

erational blockchains. These are especially Ethereum based, and rely mostly on a

private blockchain. Moreover, some works present the use of single-board computers,

such as Raspberry Pis to emulate a physical private blockchain with nodes physically

hosted in a laboratory, which allows further experiments to be carried out [296, 297].

Goranovic et al. [296] creates a comprehensive testbed using a stacked formation of
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Raspberry Pis for testing communications characteristics during smart contracts ex-

ecution on hyperledger. Notholt and Coil-Mayor [297] dedicated one Raspberry Pi

per agent and used these Raspberry Pis as light nodes of an Ethereum blockchain.

Such testbeds could be used to assess the impacts of simulated network latency or

communication errors. This is expected to become more significant for smart con-

tracts used in market applications, especially when the settlement periods decrease

in length from 30 minutes to shorter periods, such as 5 minutes. Indeed, in such a

development, the impact of latency and bandwidth would increase.

Communication and synchronisation issues can play a significant role, especially

in real-world smart contracts that have a “live” deployment. For example, a smart

contract whose self-executing code states it must be closed once the clearing price in

a certain market (called an “oracle”) drops below a certain level. It is possible that

in an iliquid market prices are highly volatile, experiencing a lot of fluctuations, even

within an hour or number of minutes, hence the price may drop below a critical level

for a few minutes, but then be restored some minutes later. Hence, there is a risk

the contract would be closed (or not closed) depending on how frequently the price is

updated in a particular smart contract implementation or device. Such “oracle risks”

would need to be taken into account in future implementations in energy systems.

For example, spot prices in energy markets are known to be highly volatile, especially

in those markets that use locational marginal pricing [298]. If the spot prices are used

as “oracles” for deciding to execute or liquidate a smart contract, then the contract

design must account explicitly for this volatility.

6.8.1.3 Computational expense of smart contracts

As more assets take an active role in the energy systems, their associated computa-

tional expense would increase. The benefit of automation should outweigh the cost

of computation and the associated problems such as latency.

Although most of the papers reviewed did not address the subject of the cost

(in gas units) of running smart contracts, this cost would not be a negligible factor,

especially when smart contracts are deployed for electricity market applications [299].

Therefore, a method is proposed to predict the approximate performance and

data requirements of contract execution for Ethereum-based smart contracts [300].

This would be a valuable addition to smart contract design and a good metric for
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comparison of the performance of smart contracts proposed in energy related research

papers.

Most smart contracts require a certain amount of data from sensors and smart

meters. The deployment of smart contracts on the blockchain would be limited by

the bandwidth and computational power required to transfer and process the neces-

sary data. Fog computing (also known as edge computing), offers a solution to this

problem, by the processing of data at a local level, before transferring the results

to cloud-based servers [301, 302, 303]. This would result in reduced bandwidth and

cloud-based storage requirements. Gai et al. [304] present an example of a permis-

sioned blockchain system that uses fog or edge computing for a smart grid application.

For energy market operations, market clearing computations in smart contracts

can be made more efficient by allowing the sharing of more information with the

participants which reduces the number of unknowns and the level of discrepancy

between bids and offers. For instance, the encourage-real-quotation (ERQ) rule [128]

allows the producers to make an offer after the consumers place bids. This decreases

the difference between bids and offers and speeds up the clearing process.

Another key concern is the volatility in price in registering and running a smart

contract on a blockchain. In more detail, many current and proposed energy smart

contracts are currently deployed on the Ethereum blockchain, where the cost is ex-

pressed in subunits of ether called gas. However, the price of gas can be highly volatile

between subsequent weeks and even days, hence the moment of registering/deploying

a smart contract needs to be chosen very carefully, to minimise both financial and

environmental costs.

Finally, it should be noted that the cost for a smart contract running is not only

financial. Smart contracts also have an environmental cost, since running a smart

contract and associated DLTs require considerable electricity consumption. Hence,

the environmental impact of smart contracts depends heavily on the source of electric-

ity generation. As the number of energy transactions is expected to increase due to

innovations such as peer-to-peer trading, in order to scale up, the existing blockchain

consensus protocols used to deploy and run smart contracts need to be re-designed to

minimise their energy consumption. The Ethereum Foundation aims to transition to

a Proof-of-Stake (PoS) protocol (from the current energy-consuming Proof-of-Work)

which could provide a significant step in this regard, if/when it happens.

184



6.8. DISCUSSION

6.8.1.4 Novel market mechanisms

It is demonstrated that the settlement processes are faster due to the embedded

monitoring and verification functions of smart contracts [305]. As the number of

peer-to-peer energy trades increases, the market regulation mechanisms need to be

adapted, especially to ensure a continuous balance between production and consump-

tion, such that the frequency and voltage are maintained within acceptable limits.

Therefore, novel settlement mechanisms dealing with a contribution to imbalance on

an individual, group and global level could be designed to address the increase of

agents participating actively in energy trading. The novel settlement mechanisms

could include imbalance contribution coefficients as proposed in [194], could be spe-

cific to a particular type of energy traded, such as solar energy trading settlement

[191] or lead to the emergence of multi-layer and multi-settlement markets [130, 195].

Another concern regarding smart contracts in energy trading is fairness and the

formation of oligopolies. Intuitively defined, an oligopoly represents the domination

of the market by a small number of large producers. Deval and Norta [306] describe an

improvement of the Proof-of-Stake with lifecycle governance of smart contracts that

decreases the risk of oligopoly formation. Some research work also considered the

issue of fairness of market mechanisms in smart contract design which was out of the

scope of this thesis. For example, Danzi et al. [307] use proportional-fairness control

in a simulated microgrid where all assets contribute to the overall action equally.

Finally, market designs should also consider exceptions such as system failures (e.g.

fault at a line) that could inhibit the actions prescribed by the smart contract.

6.8.1.5 Software requirements

Most researchers in energy modelling are not familiar with using smart contracting

languages, such as the popular smart contract programming language Solidity. The

fact that most smart contract design and modelling takes place on Solidity, rather

than in the languages used by the energy systems modelling community, inhibits the

research in energy smart contracts. For instance, unlike Python, Simulink does not

have the right communication protocol to directly interact with the Ethereum node.

There is ongoing work which develops a solution to this issue and presents an example

smart contract in Simulink [308]. Both this thesis1 and other work [297] demonstrate

1See the energy smart contracting code and tutorial outputs in the public Github repository [269]
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smart contracting using a combination of MatLab, Python and Solidity – with Python

used to facilitate communication between the other two platforms. Indeed, Python3 is

a suitable solution to ensure interoperability between the research application code in

which agents are modelled (usually written in Python or MatLab), and smart contract

code, implemented in languages such as Solidity. Finally, Solidity’s limitations such

as the lack of some data types or mathematical functions are an obstacle to the

implementation of smart contracts for energy use cases. For example, the fact that

Solidity does not allow exponentiation for real numbers makes it unsuitable for power

flow computations.

Another trend observed in recent years, due to the increasing complexity of smart

contract code, has been to employ specialised companies to verify and certify the code

against errors and specially security issues, such as potential backdoor attacks. This

is important as, once deployed, the smart contract code is self-executing and harder

to correct in a decentralised environment.

6.8.2 Legal issues related to smart contracts design

For energy applications, the contract design depends on the applicability of the law

and the local legal framework which requires them to be adapted or interpreted,

introducing new requirements to the programming of the contract. For peer-to-peer

trading, the definition of the interaction between the participants as a Business-to-

Consumer or Consumer-to-Consumer can change depending on how the contract was

coded. For instance, if a prosumer is considered to be a business, they would need to

contribute to grid balancing in Germany (according to the German Energy Industry

Act) [309] and add a withdrawal policy according to the consumer rights law in the

EU [310]. According to the EU Renewable Energy Directive [311], a “renewables self-

consumer” consumes local energy that is generated behind the meter. This invokes

barriers against energy trading within communities. Similarly, the Dutch law requires

a supplier certification for selling energy to the grid [312].

To summarise, how an entity is considered in each market defines how the smart

contract needs to operate and the local laws need to comply accordingly. On the

other hand, new definitions and regulations are required to make smart contracts

compatible with new energy markets or services.

Advances in the energy trading process such as the use of automated bids and

offers may generate market distortions. Especially, it is argued that the use of smart
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contracts in wholesale electricity markets will give rise to a need to review the EU’s

financial market regulations [313]:

• Regulation on Wholesale Energy Market Integrity and Transparency (REMIT)

- prohibits insider trading and market manipulation and requires extensive re-

porting obligations.

• Markets in Financial Instruments (MiFiD II) - introduces authorisation require-

ments for investment services. Regarding peer-to-peer energy trading, MiFiD

II discusses the use of a virtual currency.

• European Market Infrastructure Regulation (EMIR) - aims to increase trans-

parency in Over-the-Counter derivative markets, mitigate credit risk and re-

duce systemic risk [314], where trading companies must report their contracts

to Trade Repositories (TR), which at their turn report to the authorities [315].

Enerchain [316] is an energy trading blockchain for peer-to-peer transactions, spe-

cially designed in order to try to resolve these issues. It includes tools that ensure

trades are compliant with REMIT.

Some efforts are being made in different countries to include and enable the use of

smart contracts in energy markets. In Germany, the project BEST (Blockchain-based

decentralised energy market design and management structures) aims to develop an

open-source electricity market bidding system, supported by the German Federal

Ministry for Economic Affairs and Energy [317]. One of the research topics in BEST

is about the requirement for such a legal energy framework and how it complies with

existing frameworks. The “Blockchain strategy of the Federal Government” [318]

currently stimulates innovation, testing and application of blockchain technologies in

the German industry.

For services that imply data storage issues, the General Data Protection Regu-

lation (GDPR) [319] in Articles 17 and 21 introduce the capacity to delete personal

and sensitive data from databases. GDPR introduced 3 principles that are relevant

to smart contracts in energy [320]:

1. The first principle is that it considers the existence of a legal person who can

fulfil its requirements. The basis of blockchain and smart contracts is decentrali-

sation and operation without third parties, but the GDPR requires the presence

of an administrator or manager who can manage sensitive information.
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2. The second principle is the assumption that data can be erased or modified to

comply with legal requirements. However, the immutability of blockchain does

not allow tampering or editing. One way could be to allow data access on a

restricted basis and the transactions could be reversed by fabricating the reverse

transactions in subsequent blocks of the ledger.

3. Lastly, the GDPR assumes that data can be processed to be kept a minimum

number of copies of data. The blockchain stores the data in each node connected

using the append-only methods, which is against the data minimisation principle

included in the GDPR.

These three principles affect the operation and decentralisation of smart contracts.

Hence, it is necessary to research how the GDPR requirements can be fulfilled as most

of the energy data stored may be considered sensitive. One proposal is to introduce a

third party such as cloud storage systems (e.g. Interplanetary File System and StorJ

or local resource servers) [321] or a data manager. The latter could include functions

in the contract to limit internal data access after a time interval, introducing hashing

and encrypting techniques to anonymise the stored data [322].

6.8.3 Outlook on future research for smart contracts for en-
ergy systems

In this subsection, the knowledge gaps identified from the above analysis and Chapter

2 are presented along with an outlook on future of energy smart contracts.

An open area requiring further research and attention in smart contracts is cy-

bersecurity. Smart contracts are, by definition, self-executing and tamper-proof once

agreed and deployed on a blockchain - in the sense that it is hard for a single party

to stop or change their execution. While this is a clear advantage that has the poten-

tial to enable true decentralisation, this also involves considerable security risks and

vulnerability to potential attacks, if the smart contract code is not properly checked

before deployment. The so-called re-entrancy attacks (such as the well-known DAO

attack whose only solution was a “hard fork” in the Ethereum blockchain, splitting it

into 2 crypto-currencies - see Section 2.4.2.2 for details) is one example. Moreover, it

is also possible for the smart contract developer to build an intentional “backdoor” in

the smart contract code, of which the party accepting the contract is not fully aware,

and which is impossible to change once the contract is deployed on a blockchain. Such
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a backdoor could, for example, specify that the other party will automatically pay the

contract maker a commission on each future sale, or could even enable one of the par-

ties to withdraw valuable digital assets or cryptocurrencies to their own digital wallet,

executing a so-called “rug pull”. As the use of smart contracts in energy systems has,

so far, been mostly geared to research and demonstration projects, this has not been

a significant issue in energy systems yet. But, as smart contracts gain wider adoption

in commercial energy projects, the security and verifiability of smart contract code

is an aspect that needs to be considered. A possible solution is to employ companies

and authorities that verify and certify smart contract code before deployment, as is

the current practice when deploying smart contracts in decentralised finance (DeFi)

applications.

Another key challenge that smart contracts in energy face are scalability and

questions of energy use. So far, most smart contract projects in the energy sector have

been relatively small scale, and/or implemented on a private blockchain (as opposed

to, e.g. deployment on the public Ethereum blockchain, which requires considerable

gas payments). However, as smart contracts in energy scale up and applications

become more commercial in nature, the constraints and costs of real implementation

(both financial and environmental) need to be considered carefully and mitigated.

Currently, the most popular platform for implementing smart contracts, Ethereum

(though the Solidity language, also used in the illustrative example for this thesis)

charges a cost in a sub-unit of Ethereum called gas. Yet, the cost of gas can be

substantial - especially for a complex contract, and moreover, the value of gas is

often highly volatile. Besides the financial aspect, there is an environmental impact

to consider, in the energy that is consumed just to run the Proof-of-Work protocol

underlying Ethereum. The transition of Ethereum towards a Proof-of-Stake protocol

(if/when it happens) should reduce this idle energy consumption very considerably,

but still this requires consideration of what computations should be deployed/run on

a public blockchain.

Thirdly, smart contracts are not particularly “smart” themselves, in terms of hav-

ing embedded Artificial Intelligence or machine learning capabilities. This is both

due to the computational cost of executing complex code on a distributed public

blockchain, but also because smart contract programming languages are often re-

stricted, due to computational and security reasons (for example Solidity/Ethereum

limits recursive calls and exponentiation operations, and some other smart languages
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are even more restricted). This is clearly a direction where further research and de-

velopment effort will be needed, as has been achieved in other domains where smart

contracts are applied, such as decentralised finance. One potential solution is to

have smart contracts as part of larger frameworks where AI-enabled devices perform

learning and decentralised control (for example of available generation, or demand-

side flexibility [323]), and make transparent, verifiable commitments to other parties

in the system using smart contracts.

Finally, more research is needed from the energy and power systems commu-

nity to develop smart contracts with capabilities to enable intelligent management

of power networks. Smart contracts that integrate uncertain generation/loads and

perform, e.g. ADMM computations have already been proposed, but augmented by

AI-capabilities, smart contracts could play a key role in achieving more decentralised,

flexible and “self-healing” energy networks of the future.

6.9 Key findings

This chapter added practical value to this thesis as it investigated the implementation

of the P2P trading, optimisation and network control algorithms previously proposed

in Chapters 3, 4 and 5. In specific, it analysed and demonstrated the use of smart con-

tracting in local energy systems which is a part of the distributed ledger technologies

such as blockchain. The methods used included native smart contracting functions

such as registration and billing but also algorithms specific to the local energy market

applications. The latter included verification of energy import and export via smart

metering and automatic settlement. This case study also evaluated the costs and ben-

efits of energy smart contracting using a P2P case study which is often overlooked

in literature. It revealed that the economic and carbon savings achieved by P2P

trading were outweighed by the costs of executing smart contracts due to their high

computational costs. Therefore, while smart contracting was shown to be a valuable

enabling technology for local energy system applications, their current use was shown

to hinder the benefits of P2P trading. Nevertheless, as more computationally efficient

mechanisms become available in the future (such as PoS), implementing energy smart

contracts on a large scale is expected to become more feasible. For instance, the use

of PoS would not outweigh the benefits but still decrease the cost and carbon savings
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by 18.0 and 11.2% respectively. This would in return enhance the scalability of P2P

and flexibility market transactions.

In addition to the methodology and case study sections, this chapter also con-

tributed a novel six-layer taxonomy which describes the journey of smart contracting

that starts with an input from the agents and devices and ends with the information

transfer in the physical layer. An extensive discussion on the opportunities and threats

associated with the legal implementation and scability of energy smart contracts was

also provided in order to address the knowledge gap identified in the literature survey

provided in Chapter 2 (which was published in [12]). Lastly, an outlook on the future

of energy smart contracts was presented, highlighting the knowledge gaps and open

research questions for future research.
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Chapter 7

Discussion and Conclusions

Research work presented in this thesis investigated the impact of P2P energy markets

and community-level flexibility on local energy systems, in terms of grid signals, costs

and carbon emissions. The following sections summarise the key findings, outputs of

thesis chapters and limitations of the research approach. Additionally, this chapter

makes recommendations regarding the adoption of local energy systems and their role

in a future decarbonised energy systems.

7.1 Thesis statement validation

This research work titled “Impact of Peer-to-Peer Trading and Flexibility on Local

Energy Systems” investigated whether P2P energy trading and coordinated flexibility

could provide economic benefit to the participants and also help decarbonise the

energy systems whilst maintaining a healthy operation of the network. Through the

2032 simulation results shown in Chapters 4 and 5 and the use of case studies in

Scotland, this thesis statement was validated.

7.2 Summary of key findings and recommenda-

tions

In order to increase the validity of the research outputs, this thesis used a pilot study

based in Scotland to demonstrate the application of community-level optimisation

to minimise local carbon footprint and costs. Intra and inter-neighbourhood P2P

trading algorithms were also implemented in this case study to compare the future

impact of local energy management techniques, using 2032 projections of EVs, solar
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energy and battery systems, etc. The inter-community P2P case yielded the highest

savings (i.e. 15.8%) which was around £210 per household annually.

Additionally, this work proposed and demonstrated the novel concept of carbon-

aware community-based P2P trading which increased local energy sharing by 6.5%

while decreasing carbon emissions by 35 tCO2 in one year (2019) when compared with

the benchmark business-as-usual case. The end-users subscribed to the carbon-aware

P2P market sacrificed 4% of their cost savings (i.e. £53 per year) in order to reduce

their carbon footprint by 7.2% (i.e. 150kg of carbon emissions per year).

This work also evaluated the community-level self-consumption and self-sufficiency

indicators with varying storage and P2P participation penetrations. While storage

and P2P markets were shown to be substitutes for lower levels of self-consumption

and self-sufficiency, this relationship became complementary for higher targets. For

instance, without local energy market participation, 90% of the solar generation could

be consumed locally which would in return decrease reliance on the central generation.

However, this required a high level of storage penetration around 60%. Participation

in P2P markets was shown to decrease this to 25% and defer the installation of

distributed batteries.

The real life implementation of such control and market mechanisms is often hin-

dered by the challenges of monitoring and coordination. This thesis put forward the

concept of energy smart contracts, embedded on blockchains, as a solution to these

challenges. However, through the deployment of energy smart contracts, it was ob-

served that the computational cost and carbon footprint of this implementation could

outweigh the benefits gained from local energy trading and flexibility coordination.

Nevertheless, this technology is identified as a key enabler for the adoption of smart

local energy systems in the near future. By 2032, the more efficient consensus mecha-

nisms such as Proof-of-Stake or Proof-of-Authority are expected to enable wide-scale

use. The implementation of energy smart contracting using PoS was estimated to

decrease the cost and carbon savings only by 18.0 and 11.2%.

7.3 Contributions of the thesis chapters

Chapter 1 introduced the topic of the local energy markets and flexibility discussed

in this thesis, provided some background and highlighted the significance of local en-
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ergy systems. Additionally, the main outcomes, research approach and dissemination

outputs were presented.

Chapter 2 reviewed the literature in local energy system modelling, surveying the

motivation, methodologies and contributions of existing work. The limitations of

previous work were discussed which included inadequate consideration of the effect

of local energy markets on the power grid and a lack of research in the areas of the

carbon-saving nature of local energy markets.

Chapter 3 detailed the approach used in bottom-up demand and generation mod-

elling. It provided models of electric vehicles, solar panels and batteries. It featured

a cost-minimal home energy management optimisation with considerations of user

comfort and various pricing strategies. It demonstrated the value of decentralised

flexibility through participation in residential demand-side response, in specific, peak

shaving during hours of high demand. Overall, this chapter provided the modelling

and optimisation methodology for the results later shown in Chapter 5.

Chapter 4 presented the co-simulation platform used to model both the electric-

ity market and network. It discussed different methods of P2P trading and anal-

ysed the relationship between storage and P2P trading and their combined effect

on self-sufficiency and self-consumption. It also concluded that establishing LEMs

could reduce the investment in storage technologies and proposed a novel form called

carbon-aware P2P trading which provides incentives to consume energy during hours

of low carbon intensity and export energy during times of carbon intense grid genera-

tion. To summarise, this chapter provided a new perspective on local energy market

design through the introduction of carbon incentive and also discussed the operation

of P2P markets under abnormal conditions, such as COVID-19 lockdown and 2021/22

winter gas scarcity pricing.

Chapter 5 built on the methodologies presented in Chapters 3 and 4. It intro-

duced various case studies from Scotland and presented simulation results in terms

of network signals, carbon emissions and costs. It compared community-level cost

and carbon minimal optimisation scenarios with three forms of P2P trading which

are namely intra-community, inter-community and carbon-aware. Moreover, peak

import limits were imposed in order to shave the peak demand and reduce the stress

on the network. Using the digital twin of a part of the Scottish distribution network,

this chapter evaluated the effect of community-level optimisation and P2P trading

on the grid signals. The case studies included small commercial loads in addition to
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domestic nodes. Eventually, this chapter demonstrated that community-level flexibil-

ity coordination and P2P trading offer economic and environmental benefits whilst

maintaining a healthy operation of the network.

Chapter 6 explored the use of smart contracting as a potential solution to the ma-

jor challenges of privacy, monitoring and contracting associated with local energy and

flexibility markets. Smart contracting between various agents engaged in P2P energy

trading was simulated and demonstrated. Further analysis of the results revealed that

the benefits of P2P trading were outweighed due to the high prices and carbon inten-

sity levels of electricity used for block-chain embedded smart contracting. However,

this technology is still promising as more efficient computation methods are developed

(e.g. adoption of Proof of Stake), its relevancy in local energy systems is expected to

increase. Furthermore, this chapter discussed the future applications of smart con-

tracting in energy systems and analysed issues related to scalability, cyber-security,

privacy and legal perspectives.

7.4 Implications of the research

The results from this thesis provided insights into how the local energy systems are ex-

pected to evolve by 2032 and emphasised the significance of leveraging local flexibility.

This work demonstrated the feasibility of implementing community-level transactive

control and markets within healthy operation bounds of the network. This is expected

to increase confidence in local energy markets and bottom-up flexibility coordination.

During the course of this doctoral research work, six months were spent at the

community energy company Scene Connect Ltd. This secondment has significantly

increased the industry relevance and applicability of this work. In fact, some of the

algorithms and models developed and presented in this thesis were utilised in the

pilot study of the case study presented in Chapter 5.

The results of this research work indicate benefits for numerous energy systems

stakeholders. For instance, through the community-based P2P energy markets, the

distribution system end-users are expected to benefit from lower electricity import

costs and higher export prices. Implementing the required smart metering and mon-

itoring systems would provide the system operators with a better visibility of the

local-level flexibility along with the associated technical challenges in terms of losses,

imbalance and loading. From a commercial perspective, community energy companies
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such as Scene Connect may utilise this study to inform investment decisions regard-

ing storage, distributed generation and transactive market solutions. Furthermore,

the insights about the energy smart contracts would allow blockchain and relevant

technology sectors to recognise the opportunities and challenges of smart contracts

and distributed ledger technologies that are specific to the energy sector. On a high-

level outlook, Energy System Operators such as the National Grid ESO, regulators

such as Ofgem and other high-level central decision and policy-makers can compare

the simulated impact of community-led energy transition on the net zero goals with

large-scale top-down initiatives.

There are also further implications associated with the dissemination of this work

which is expected to continue inspiring future work within the research community.

An extensive list was provided in Section 1.8.

7.5 Limitations of the research and future work

This section provides an overview of the limitations associated with this thesis and

makes recommendations for future work. However, it should be noted that the limita-

tions regarding the modelling and simulation methodologies were discussed separately

in each chapter.

While simulating distributed energy resources, this thesis only took small-scale

solar PV into account. However, it is recommended that future work considers

community-owned wind turbines as this could represent a different type of energy

community which can be found in Scotland and elsewhere in Europe. Addition of

wind generation is anticipated to increase the benefit of local energy markets which

was hindered by the seasonal pattern of solar generation. Similarly, various types of

small-scale lithium-ion domestic batteries were simulated in this work. Nevertheless,

the simulation of a community-owned central battery was neglected which can be

addressed by future work.

In addition, the work in this thesis assumed full access to the users’ assets and

ability to control them without any interruptions or overriding. However, potential

outages and downtime for maintenance are expected to slightly decrease the calculated

benefits. Additionally, in real life the users may override the control actions (e.g.

turning on a curtailed asset). The uncertainty associated with this kind of user

behaviour might decrease the value of P2P trading local flexibility to the DSO. When
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simulating participation in P2P markets, some simplifying assumptions were made

such as high levels of social acceptance and homogeneity in energy preferences. A

more in-depth market model can be built that takes into account different types of

users and their preferences. Hence, future work can contribute to the knowledge by

studying the social science aspects of local energy systems such as social acceptance of

P2P trading and distributed control, and uncertainty associated with user behaviour.

Lastly, the methods introduced in this thesis value flexibility of consumption and

generation and hence, they reward the households with the highest flexibility volumes.

However, often flexibility is provided by smart assets which are low-carbon but also,

costly and energy intensive. Hence, rewarding flexibility can contribute to the wealth

gap as the users with higher flexibility volumes often have the economic resources

required to purchase EVs, heat pumps and storage. Meanwhile, less flexible house-

holds would be already using the bare minimum volume with no additional flexible

capacity from costly smart assets [226]. Future research is encouraged to explore the

social justice aspect of local energy markets and community-level coordination.

7.6 Final remark

In conclusion, the research work validated the thesis statement and proved that local

energy systems are able to offer flexibility and value in terms of both cost and carbon

savings in the near future (2032) through the use of case studies. It introduced the

concept of carbon-aware local energy systems as an instrument of bottom-up decar-

bonisation. It successfully demonstrated the use of distributed ledger technologies

and smart contracting for local energy systems and provided recommendations for

their future development.

This thesis showed that through decentralisation, digitisation and the use of

consumer-centric energy markets, local energy systems can offer economic benefit

to the participants and flexibility to the system. Additionally, it demonstrated that

peer-to-peer energy trading and community-level energy management strategies can

significantly contribute to the decarbonisation of energy systems.
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Appendix A

Formulation of optimisation model

Input parameters

Electricity pricing or carbon intensity timeseries for import λbuy

Electricity pricing or carbon intensity timeseries for export λsell

Value from delay-based penalty matrix σt,t0

Aggregated inflexible load dt
Aggregated generation gt
Operational range of each flexible asset (e.g. EV) [τmint , τmaxt ]
No-control operation pattern for each flexible asset pt0,n

Decision variables

Optimised power timeseries of the each flexible asset pt,n

Constraints

Power balance in the system:

N∑
0

pt,n + dt + gt − Pimport, t − Pexport, t = 0 ∀t ∈ [0, . . . , T ] (A.1)

Operational constraints for flexible asset operation:

τmint ⩽ pt ⩽ τmaxt ∀t ∈ T (A.2)

Equality constraint for energy consumption of flexible assets:

T∑
0

pt,n ×∆t =
T∑
0

pt0,n ×∆t ∀n ∈ N (A.3)
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Objective function

min
∑T

0 λbuy · σn,t,t0 · Pimport − λsell · Pexport ∀n ∈ N

where Pimport ∈ R≥0 and Pexport ∈ R≤0

(A.4)
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