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Lay summary

A reliable supply of electricity is a critical need for all modern societies. For

this reason, risk quantification in the electricity supply has been an active area

of research almost since the start of electrification, and is referred to as power

system adequacy. Its main goal is aiding decision makers in long term system

planning. Recent technological and economic developments in power systems,

such as the large scale introduction of renewable technologies like wind and solar

power in the system’s generation mix, as well as the proliferation of interconnec-

tors to neighbouring power systems, have introduced new challenges in system

adequacy modelling, or made existing challenges more pressing. Appropriate risk

quantification models that account for these transformations are crucial to make

the transition to a low carbon power system without compromising consumers’

access to electricity or putting economic growth at risk.

In this work, we mainly explore two problems. One is devising appropriate

statistical models for the occurrence of relevant extreme events in the system

(at least one of very high demand or very low available capacity, e.g. lower

than expected wind generation); this is important because almost all of the risks

to electricity supply come from extreme events, even though system adequacy

models often do not account for this explicitly. We explore said models in an

interconnected two-area systems, using results from the statistical theory of ex-

treme values. We find that these models can produce material differences in risk

estimates when compared to existing adequacy models.

The second one is analysing the effects of installing large amounts of wind

generation capacity in a system like the one in Great Britain. While adequacy

studies are usually limited to the calculation of unidimensional risk indices based

on long-term averages (i.e. expected values) of the statistics of interest, we per-

form a much deeper simulation analysis of loss of load event sizes, durations and

spread. We find that the usual expected value risk indices become progressively

insufficient to convey a useful summary of system risk as the amount of installed

wind capacity grows. In other words, the typical indices that have been used for
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many decades now to measure adequacy risks in power systems may not convey

a meaningful picture of system risk when renewable generation represents a sub-

stantial part of the generation mix. This is because the additional variation that

is introduced in the system due to the reliance on highly variable weather pat-

terns, make long-term average indices unrepresentative of year to year adequacy

risks.
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Abstract

In this work, we explore methodological extensions to modelling practices in

power system adequacy for single-area and two-area systems. Specifically, we

build on top of some of the practices currently in use in Great Britain (GB) by

National Grid, framing this in the context of the current technological transition

in which renewable capacity is gradually replacing a considerable share of fossil-

fuel-based capacity.

We explore two-area extensions of the methodology currently used in GB to

quantify risk in single-area models. By doing this, we also explore the impact of

shortfall-sharing policies and wind capacity on risk indices and on the value of

interconnection. Furthermore, we propose a model based on the statistical theory

of extreme values to characterise statistical dependence across systems in both

net demand (defined as power demand minus renewable generation) and capac-

ity surpluses/deficits (defined as power supply minus demand), looking at how

statistical dependence strength influences post-interconnection risk and the ca-

pacity value of interconnection. Lastly, we analyse the risk profile of a single-area

system as reliance on wind capacity grows, looking at risk beyond the standard

set of risk indices, which are based on long-term averages. In doing this, we look

at trends which are overlooked by the latter, yet are of considerable importance

for decision-makers. Moreover, we incorporate a measure of the decision-maker’s

degree of risk aversion into the current capacity procurement methodology in GB,

and look at the impact of this and other parameters on the amount of procured

capacity.

We find that shortfall-sharing policies can have a sizeable impact on the in-

terconnector’s valuation in terms of security of supply, specially for systems that

are significantly smaller than their neighbours. Moreover, this valuation also de-

pends strongly on the risk indices chosen to measure it. We also find that the

smoothing effect of parametric extreme value models on tail regions can have a

material effect on practical adequacy calculations for post-interconnection risks,

and that assumed independence between conventional generation fleets makes
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capacity shortfall co-occurrences only weakly dependent (in a precisely defined

sense) across areas despite much stronger statistical dependence between system

net demands. Lastly, as more wind capacity is installed, we find multiple relevant

changes in the (single-area) system’s risk profile that are not expressed by the

standard risk indices: in particular, we find a substantial increase in the frequency

of severe events, extreme year-to-year variability of outturn, and a progression

to a system with fewer days of potentially much larger shortfalls. Moreover, we

show that a high reliance on wind introduces a substantial amount of uncertainty

into the calculations due to the limited number of available historic years, which

cannot account for the wide range of possible weather conditions the system

could experience in the future. Lastly, we also find that the a higher reliance

on wind generation also impact the capacity procurement decision process, po-

tentially making the amount of procured capacity considerably more sensitive to

parameters such as the value of lost load.
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Chapter 1

Introduction

This Chapter outlines the context in which this thesis is framed. It discusses

the current transformation power systems are going through, and motivates the

research on power system adequacy. Furthermore, it delimits and motivates the

specific challenges this work intends to address, and outlines the outputs of this

research project, which go beyond this thesis. Lastly, the organisation of this

thesis is explained.

1.1 Problem’s context

Reliability, along with affordability and environmental sustainability, is one of

the pillars of energy policy in Great Britain (GB) and many other power systems

around the world. In this context, reliability is understood as the ability of the

system to function in a steady state for a sustained period of time. Power grids

are complex systems that can cover entire geographical regions and have a very

large number of individual components. For this reason reliability analyses tend

to focus on individual aspects of the system separately; in general we can make

a distinction between three main subsystems: generation, transmission and dis-

tribution. The generation subsystem is comprised of all generating power plants,

while the transmission system moves generated electricity over long distances to

population and industrial hubs, and distribution networks deliver electricity to

individual customers.

Within the study of power system reliability, in this work we focus on the

problem of resource adequacy, this is, the existence of sufficient generation ca-

pacity to satisfy electricity demand, which is mainly to do with the generation

subsystem (Billinton and Allan, 1984). The purpose of this kind of analysis is

to aid decision-makers and operators in capacity expansion planning for future
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years, ensuring security of supply standards are met despite changes in demand

patterns, the composition of the generation mix and other factors. Since in this

context the main concern are decisions on planning time scales of multiple years,

adequacy is usually analysed separately from security, which is understood as

the ability of the system to withstand unforeseen disturbances such as the loss

of transmission facilities, and which is associated to operational timescales, i.e.,

closer to real time; this separation allows a clearer and more logical approach to

the decision-making process in capacity planning (Billinton and Allan, 1985). We

follow this separation in this work, and thus failure modes or constraints arising

from the distribution and transmission networks are not considered.

The evolution of the system’s adequacy is influenced by multiple factors. On

the demand side, economic and technological change can alter power demand

patterns through time; in the UK, a shift away from heavy industry, among other

changes, has caused a downward trajectory in electricity demand since 2006, when

the historic maximum was observed (Boßmann and Staffell, 2015; BEIS, 2016).

On the other hand, most land transportation is projected to become electric by

2050 in all of the future scenarios considered by National Grid (NGESO, 2020b);

moreover, it is also projected that by then an important share of heating will

have switched from gas to electricity as well (NGESO, 2020a); these technologi-

cal changes will increase electricity demand and likely alter consumption patterns

considerably. Weather conditions can also impact demand levels; in the UK, the

severity of cold spells during winter has a strong impact on observed peak de-

mand (Richards and Ong, 2019), and it is reasonable to think that the sensitivity

of demand to weather-related factors could be exacerbated even further in the

future as heating becomes more reliant on electricity; moreover, climate change

could also alter the frequency and severity of cold spells in unpredictable ways,

making it harder to plan for future peak demand seasons, particularly considering

the increasing adoption of weather-dependent renewable generation technologies

(NGESO, 2020b). All of these exogenous sources of variation must be accounted

for in order to produce credible demand scenarios with which to evaluate future

capacity.

On the supply side, and for the purpose of adequacy models, it is useful to

make a distinction between what is usually called conventional and intermittent

power generating units. The former refers to units that are assumed to be dis-

patchable, in the sense that (in the absence of unexpected mechanical breakdown,

which occurs probabilistically) their output level can be scheduled in advance as

per economic considerations. This formulation is usually deemed appropriate for

traditional fossil-fuel based units, such as gas turbines, coal, biomass or hydro
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generation, assuming water reserves are available. Note that from an adequacy

perspective, units are considered available as long as mechanical breakdown does

not occur, even when the unit is offline, as it is assumed they can be brought

online if the need arises.

Intermittent generating units are those whose output level cannot be scheduled

in advance because of its dependence on exogenous factors such as meteorolog-

ical conditions; wind turbines and solar panels are the most popular examples

of this. As part of the decarbonisation efforts from international treaties such

as the Paris Climate Accord, fossil fuel based generators are being decommis-

sioned in GB and many other countries in favour of renewable energy sources like

these. This transformation has widespread implications for power systems, from

the structure of energy markets to public policy objectives (Morales González

et al., 2014; Sensfuß et al., 2008), and the system’s adequacy is not an exception:

to preserve security of electricity supply throughout this transformation in the

generation mix, in Great Britain a capacity market started auctions in the UK

in 2014 and commenced operations in 2018. In it, utilities can bid to provide

generation capacity to the grid operator between one and fifteen years into the

future (Engie, 2016). Successful bidders receive payments in the year of delivery

regardless of whether capacity is actually required for dispatch by the grid op-

erator. The objective is to ensure there is sufficient investment in new capacity

to meet ongoing reliability standards. Targets of capacity to procure for future

years by the system operator are informed by the results of resource adequacy

studies (NGESO, 2021c).

In addition to each system’s installed capacity, interconnection to neighbour-

ing countries and electricity trade across borders are becoming more common;

besides the economic arguments, an advantage of interconnection is that it can

enhance system reliability by potentially providing an additional source of energy

when capacity reserves are low. In the context of the current energy transition,

interconnection over wide geographical regions can offset some of the additional

variability in available capacity introduced by intermittent generation at the na-

tional level (M. Grams et al., 2017). In 2020 there were three interconnectors in

the UK to Ireland and France with a total capacity of 5 GW, and it is projected

that by 2030 interconnection capacity will have at least a three-fold increase, with

trading partners including Denmark, Norway, Ireland, France Belgium and the

Netherlands (NGESO, 2020b). The trend toward more interconnected systems

encompasses the European Union (EU) as well, where the 2013 TEN-E directive

set a target interconnection capacity equivalent to 10% of electricity consump-

tion for each member state (Council of European Union, 2013). The benefits
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of interconnectors from the point of view of security of supply have long been

recognised and studied (Billinton and Allan, 1985; Cook et al., 1963; Vassell and

Tibberts, 1972); however, incorporating them into adequacy calculations can be a

complex problem, and methodologies vary considerably across system operators:

for instance, while in France and Belgium detailed simulations of neighbouring

system at the level of unit commitment (i.e., scheduling the output level of in-

dividual generating units) are used to this end, some system operators in the

US take available imports as fixed, and some other systems assume there are no

interconnectors (National Grid, 2017b).

Resource adequacy assessments provide the tools to keep pace with techno-

logical and economic changes in the electricity system and reduce its carbon foot-

print without compromising consumers’ access to electricity or risking damage

to critical infrastructure; moreover, it is also aimed to prevent over-investment

in capacity that would be reflected in unnecessarily high electricity bills for con-

sumers. Research in resource adequacy methodology goes back to at least the

1930s (Benner, 1934; Smith, 1934), and practices have been developed on the

basis of decades of experience by system operators. In this work, we look at

some of the modelling practices in the Great Britain (GB) system, and develop

methodological extensions with which we analyse the system’s risk taking into

account interconnection capacity and in the context of an increasing reliance on

wind in the GB system.

1.2 Scope of this work

Many research questions are arising or becoming more prominent as the transfor-

mations mentioned above take place. This work focuses mainly on two challenges.

The first is devising principled probability models that account for extreme

events relevant to power systems. This is important since most adequacy risks

arise from unexpected occurrences of very high demand or very low available ca-

pacity; this problem is even more important when modelling multi-area systems,

as sparsity of data in tail regions (this is, co-occurring extremes) is exponen-

tially exhacerbated in multivariate settings due to the curse of dimensionality. In

this regard, extreme value theory (EVT) offers mathematically principled results

with which to model rare high-risk events and the statistical dependence between

their occurrences across areas. Moreover, parametric extreme value models of-

fer a smooth alternative to sparse data regimes from commonly used empirical

models in security of supply; the latter may produce risk indices that are heavily

18



concentrated on a handful of past observations and thus suffer from high sampling

variability.

The second challenge we focus on is performing an in-depth analysis of how

relevant risk distributions change as the proportion of renewable generation grows

to be the dominant factor in the generation mix. Great Britain, as well as other

power systems around the world, are experience a quick shift towards a low-

carbon generation mix, and it is crucial to understand how this transformation

affects the risk profile of these systems in terms of adequacy, as this may have

important consequences in decision-making for long-term system planning.

We go beyond usual univariate risk indices based on long-term averages (i.e.,

first moments) and take a wider look at how multiple relevant risk probability

distributions change as the system moves to a high-wind regime. We also look at

the current methodology for capacity procurement in Great Britain and incorpo-

rate a measure of risk aversion into the formulation (as it is likely decision-makers

are not risk-neutral when it comes to preventing high-impact capacity shortfall

events). With this methodological extension, we look at how the amount of in-

stalled wind capacity and the degree of risk aversion from decision-makers change

capacity procurement decisions.

1.3 Contributions

The contributions from this work are methodological in nature, and are intended

to be of practical use to practitioners and policy-makers; we do not develop

further theoretical results in statistics or power system adequacy, and instead

use real available data and existing statistical theory from various areas (such

as the theory of extremes) and from the literature of power system adequacy to

addresses the challenges outlined above in novel ways.

The outputs of this doctoral research project go beyond this thesis, and in-

clude:

• The publication of some of the contents of Chapter 3 in the proceedings

of Probabilistic Methods Applied to Power Systems (PMAPS) 2020 (see

Sanchez et al. (2020))

• The submission of a journal article with some of the contents of Chapter

4 to Sustainable Energy, Grids and Networks (SEGAN) (still in review at

the time of this writing)
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• Collaboration with National Grid on 2021 through the University’s statis-

tical consulting unit for the creation of a risk assessment study for the year

of 2027.

• The creation of a public, high quality Python package with adequacy as-

sessment functionality and implementations of some models from extreme

value theory (see Sanchez (2022)).

• Collaboration with the Alan Turing Institute for the creation of a manual

and a quickstart guide intended for R users for the package mentioned

above.

• The submission of some of the contents of Chapter 5 to the proceedings

of the IEEE Power and Energy Society General Meeting (PES GM) 2023

conference.

1.4 Thesis organisation

This thesis is organised as follows: in Chapter 2 we provide some historical back-

ground to this work and give a brief overview of the relevant literature and current

modelling practices in power system adequacy that we use throughout this thesis.

Chapter 3 outlines an analysis of the effects of different shortfall-sharing policies

on post-interconnection risk in a two-area system using data from the Ireland-

Great Britain system, and also analyses the impact of said policies and different

choices of risk indices on the valuation of interconnection in the context of a grow-

ing reliance on intermittent generation. In Chapter 4, a modelling methodology

based on extreme value theory is outlined for calculating post-interconnection

risks in a two-area system, using the same data as in Chapter 3 to analyse the

effects of statistical dependence across areas on post-interconnection risk and the

value of interconnection. Finally, in Chapter 5, we move to single-area analysis

and explore the evolution of the system’s risk profile beyond long-term averages,

focusing on aspects that are likely relevant for (possibly risk-averse) decision mak-

ers, again in the context of an increasing reliance of the Great British system on

wind generation; we also incorporate a notion of risk aversion into the current

capacity procurement methodology in Great Britain, and explore how parame-

ters such as the degree of risk aversion and the estimated value of lost load may

affect the optimal capacity to procure. Finally, Chapter 6 concludes this thesis

by summarising our findings and the possible extensions to our work.
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Chapter 2

Literature review and current

practices

In the problem of adequacy assessment, the system’s risk is usually calculated

for a future scenario of what is connected to the system, and is usually measured

using statistics of the corresponding stochastic process of capacity surplus/deficit

(defining it as available supply minus demand across time) such as the expected

duration of capacity shortfalls in a period of time. Most of the complexity in

this problem come from devising appropriate statistical modelling methodology

for both available supply and demand, as well as formulating credible future

scenarios. This chapter offers a brief history of power system adequacy modelling

and introduces some of the main risk indices used in the literature; after this,

a summary of modern practices for modelling dispatchable generation, demand,

wind generation and interconnection is outlined.

2.1 Historical context

Power systems have always been built placing emphasis on a reliable and afford-

able supply of electricity. In the interest of reliability, redundancies have been

built into the system, and a question that arises naturally is then how much re-

dundancy should be built. As additional redundancy increases costs, affordability

and reliability are thus competing qualities that must be balanced. Power system

reliability is a broad topic, and in this work we focus on adequacy, which refers

to the existence of enough generation capacity to meet power demand. When it

comes to generation capacity planning, the first techniques used to address this

problem were deterministic in nature (Billinton and Allan, 1985). An example

of these metrics is the percentage reserve margin, where installed capacity equals
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the expected maximum demand plus some fixed percentage of it, or the spinning

reserve capacity, where spinning capacity (this is, the aggregated capacity of all

the generating units currently online) equals the expected load plus some fixed

amount, usually equivalent to one or more of the largest generating units in the

system; the latter could be used to prevent consumer disconnections in the event

of the loss of the largest generator.

However, features of interest in power system adequacy such as generating

unit failures and the evolution of electricity demand are probabilistic in nature.

Hence, deterministic methods are not entirely appropriate in this context, and

basing reliability standards on these criteria may produce lower -than-anticipated

adequacy levels: in (Billinton and Allan, 1985) it is shown that systems that

look identical under deterministic criteria like the ones described above can have

markedly different capacity shortfall probabilities, depending on the particular

composition of the generator fleet, i.e., the number and size of generating units,

as well as their failure rates.

The need for probabilistic modelling in this area was recognised since at least

the 1930s, but the lack of data and computing facilities at the time, as well as a

lack of familiarity with probability theory by engineers and scientists prevented

its widespread adoption (Billinton and Allan, 1984). An important group of pa-

pers in this regard was (Lyman, 1947; Loane and Watchorn, 1947; Seelye, 1949;

Calabrese, 1947). They formalised the notion of probabilistic loss of load analysis

by modelling the probability distribution of available generating capacity as the

aggregated availability of individual generating units, which were modelled as in-

dependent, binary random variables (a similar model is described in Section 2.3).

At first, calculations in these and other similar articles relied on assumptions such

as identical failure rates and nameplate capacities across units; these simplifica-

tions were again in part due to the limited amount of data and computing power

at the time.

A decade later, a subsequent group of articles (Baldwin et al., 1959b,a,c)

proposed stochastic models for individual generating units with exponentially

distributed failure and repair times. The referenced articles developed a compre-

hensive statistical analysis of generator failures, including uncertainty estimates

around observed failure rates in historic data, under a range of assumptions.

Moreover, they developed an efficient simulation methodology for relatively large

fleets of generating units using these models, although still relying on some sim-

plifying approximations.

In the following decade, Markov chains were also explored as models for in-

dividual generating units (Hall et al., 1968; Ringlee and Wood, 1969; Galloway
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et al., 1969). In the context of the referenced articles, the main advantage of

Markov chain models over those described in the previous paragraph is that they

made possible, in a recursive manner, to construct a model for the aggregated

available capacity from all of the generating units. Some results on the frequency

and duration of aggregated capacity outage levels were then derived. Moreover,

an analogous model for daily peak loads was also used to compute loss of load

metrics for a hypothetical system with a small number of generators.

Models of available conventional capacity like the ones described above were

combined with statistical models of the system’s demand to compute quantities of

interest related to capacity shortfalls (See section 2.2 for a review of risk indices).

The formulation on which this is usually done is as follows: letXt,Dt be stochastic

processes representing available capacity and demand at time t. We call the

difference the capacity surplus (deficit) and define it as

Zt = Xt −Dt (2.1)

Negative values indicate a capacity shortfall, which might produce involuntary

customer disconnections, i.e., a loss of load. Unlike Xt, for which a probability

models is fully specified using data on nameplate capacities and failure rates

of generating units, like the ones described above, demand models are typically

based on observed historic data, which can be forward-mapped in some way to

the future scenario of interest (see Section 2.4 for more details); it is also usually

assumed that Xt and Dt are statistically independent.

2.1.1 Incorporating wind generation into the problem

Initially, the formulation of the problem of adequacy assessment only accounted

for conventional (i.e., dispatchable) generating units on the supply side. Currently

however, renewable intermittent generation represents a significant portion of the

generation mix in many power systems, and their share is only projected to grow.

In the case of Great Britain, wind is the main source of intermittent generation

(NGESO, 2020b). We can incorporate wind generation Wt into the formulation

simply by updating (2.1) to

Zt = Xt +Wt −Dt (2.2)

However, care must be taken to model wind generation appropriately, as it

does not fit within traditional models for conventional generating units. This

is due to the fact that its output is determined by exogenous factors such as
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meteorological conditions and cannot be scheduled in advance even in the absence

of mechanical failure. Because of this, renewable generation is modelled as a

time series which depends entirely on exogenous variables, just like how demand

is modelled; this is in contrast to conventional generating units, for which a

probability model is defined using failure rates and nameplate capacities (see

Section 2.3).

There is evidence Wt and Dt might also exhibit a complex statistical depen-

dence structure (Thornton et al., 2017). To avoid the complications of modelling

this association directly, in this thesis we work with net demand Yt = Dt −Wt,

which we define as power demand minus wind generation. This is, in all of this

work, we take net demand as the amount of capacity that has to be met by

available conventional generation; this can be expressed algebraically as

Zt = Xt − (Dt −Wt) = Xt − Yt (2.3)

This approach can be justified by the fact that in electricity markets renewable

generation is often used up before conventional generating units are scheduled,

hence the latter have to only satisfy net demand as defined above. This is because

in general renewable generators have lower operational costs (i.e., ongoing costs

throughout the plant’s lifetime), since they do not need fuel to produce power

and generally require less personnel, and hence usually sell their output at a lower

price1. This is related to what is known as the merit order effect of renewable

generation, which refers to the fact that the introduction of renewable generation

into electricity markets tend to lower electricity prices for the reasons outlined

above (Ballester and Furió, 2015; Antweiler and Muesgens, 2021).

2.2 Common adequacy indices

In adequacy studies, risk is usually expressed through statistics of the system’s

capacity surplus/deficit Zt in the scenario of interest. One well-known risk indices

is the loss of load probability (LOLP), which at time t is defined as

LOLPt = P(Zt < 0) (2.4)

This is valid only for a given point in time, however, whereas the objective is

1Capital costs of renewable projects and public policy around them can also affect how
renewable generation is priced in energy markets. This is an active research topic that is
beyond the scope of this work; see (Ferrari, 2021; Morales González et al., 2014) for a more
in-depth discussion.
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usually to evaluate the system’s level of risk over a period of time, e.g. a future

peak season. For this purpose, the period of interest is discretised at a given time

resolution (more on this in Section 2.2.1) and the risk added up over the resulting

partition. One of the most popular indices is the loss of load expectation (LOLE),

which is defined as the expected count of discrete time intervals at which a loss

of load event occurs (Billinton and Allan, 1985; Singh et al., 2018). If the period

of interest consists of n segments, this can be written as

LOLE = E

[
n∑

t=1

I(Zt < 0) ·∆t

]
=

n∑
t=1

LOLPt ·∆t (2.5)

where subscripts denote the time index t, ∆t is the time resolution (usually ex-

pressed in hours) and I(·) is an indicator function, i.e., it equals 1 when the

argument is true, and 0 otherwise.

A shortcoming of LOLE is that it does not make a distinction between shortfall

sizes, placing the same weight on shortfalls that affect a few customers and those

that affect millions. An alternative risk metric that addresses this problem is the

expected energy unserved (EEU) defined as

EEU = E

[
n∑

t=1

max{0,−Zt} ·∆t

]
(2.6)

This is the expected aggregate shortfall size on the whole period. Note that

both of these indices are based in long term averages (i.e., mathematical expecta-

tions). This in itself can be a drawback for some purposes, as they cannot convey

changes in higher order moments that may be relevant for the question at hand.

See Chapter 5.

2.2.1 Interpretation of different time resolutions for LOLE

Time resolution in adequacy calculations can differ across studies and system

operators, which entails some subtle differences in the interpretation of the results

(Stephen et al., 2022). In the case of LOLE, some systems, like in Great Britain

and much of Europe, use an hourly resolution2, while others, like the ones in

North America, use a daily resolution by using daily peak demand data. LOLE

is expressed in hours/year or days/year, depending on the time resolution used.

Care must be taken in this regard, as results for different resolutions are not

directly comparable, and assuming otherwise is a common source of confusion.

2Note that in the case of GB, available data is in half-hourly resolution, but LOLE and other
results are expressed in hours.
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To see this, let us imagine a system with a LOLE of 1 day/year, meaning the

expected number of days with loss of load events in a given year is one. The

loss of load event can be as short as one hour or as long as 24 hours, but should

all happen within a single day. If we try to translate this directly to a LOLE

of 24 hours/year under an hourly resolution, we would find that such a system

would have on average 24 hourly loss of load events that would be likely spread

on different days, with as many as 24 days of single-hour capacity shortfalls or as

little as one day of (round the clock) shortfalls; the latter is the only scenario in

which both daily indices and their naive translation to an hourly criteria would

be equivalent.

2.2.2 Time-collapsed models

Despite what the time-indexed notation might indicate in (2.5) and (2.6), for

expected value based indices like these we can further simplify the problem by

obviating the need to model temporal dependence in Zt. We can do this by defin-

ing a non-sequential or time-collapsed model Z ′ of the capacity surplus probability

distribution in which we sample time steps uniformly at random from the period

of interest. Samples from Z ′ are thus independent and identically distributed

(i.i.d), and we have that (2.5) is equivalent to

LOLE = n · P(Z ′ < 0) (2.7)

Analogously, (2.6) is equivalent to

EEU = n · E[max{0,−Z ′}] (2.8)

Thus, finding a suitable time-collapsed or non-sequential model Z ′ for the

capacity surplus is sufficient to calculate LOLE and EEU indices.

Nevertheless, it is noted in (National Grid, 2017b) that most of the surveyed

system operators use sequential Monte Carlo based methodology (see Section 5.4

for an overview of sequential adequacy modelling) to estimate LOLE or EEU

despite their time-collapsed nature, with only GB and PJM Interconnection in

the east coast of the US using time-collapsed modelling. The use of sequential

modelling for LOLE/EEU calculations can be advantageous to take into account

additional system features that are not time-collapsed in nature, such as the use

of energy storage (Sioshansi et al., 2022). This refers to the dispatch of capacity

stored in devices such as batteries at times of low available capacity margins.

However, this requires a preceding time window of enough available capacity to
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charge storage devices. This sequential process cannot be adequately accounted

for in a time-collapsed model, thus sequential modelling is necessary to compute

the corresponding LOLE or EEU in this case.

2.2.3 Adequacy indices in practice

In 2017, an international survey of adequacy practices and methodologies was

conducted by National Grid, and it was found that most of the surveyed systems

used LOLE as their main risk indices for adequacy modelling (National Grid,

2017b). In the US, most systems use a reliability standard of 1 day in 10 years,

also expressed as 0.1 days/year. Some systems in the US, however, use a literal

translation of this standard into an hourly resolution resulting in 2.4 hours/year.

This includes XCEL, Entergy and Portland General. On the other hand, systems

in the north-west part of the US use a LOLP of 5% at a yearly resolution, meaning

on average one year out of twenty having with loss of load events. However, this

places no restriction on the number or frequency of loss of load events within such

a year.

In most European systems, LOLE is also commonly used as the main relia-

bility standard under an hourly resolution, as is the case in Great Britain (GB)

(3 hours/year), Ireland (8 hours/year), France (3 hours/year) the Netherlands (4

hours/year) and other countries, some of which use LOLE in conjunction with

other indices; for example, standards in Denmark use both LOLE and EEU (Na-

tional Grid, 2017b). It must be noted that although these systems use the same

time resolution in their standards, the survey concluded that due to methodolog-

ical differences across systems on adequacy calculations, it was not possible to

find a system whose reliability standards were directly comparable with those of

GB.

In practice, it is almost always the case that reliability standards based on

LOLE and EEU are used as relative adequacy indices by system operators: this is,

they are used to provide a before-and-after comparison of the system’s adequacy,

instead of precise numerical predictions of loss of load occurrences (Billinton

and Allan, 1985). For example, an increase in a system’s year-to-year LOLE

or EEU would indicate a proportional decrease in resource adequacy relative to

the system’s previous state, and vice versa. In reality, most systems experience

a lower number of loss of load events than indicated by LOLE/EEU (National

Grid, 2017b). Part of the reason for this is that even when a capacity shortfall

is projected to occur, this does not mean customers will necessarily be discon-

nected, as system operators have a set of real-time remedial actions that can be
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taken to mitigate it or avoid it altogether. In GB this includes temporary over-

generation orders, voluntary load reduction by large customers, voltage reduction

and emergency imports from other systems (Ofgem, 2013). Today these actions

are not factored into LOLE/EEU calculations in Great Britain, but they were

before 1985. At the time, the reliability standard was an annual LOLP of 4%

(i.e., four years with loss of load events out of a hundred years on average) af-

ter emergency measures, with the corresponding pre-emergency measures LOLP

being 19% (National Grid, 2017b). All in all, multiple factors can result in the

real system experiencing a lower number of loss of load events than indicated by

LOLE or EEU.

An advantage of relative indices is that they might be better suited for this

problem, as absolute estimate of loss of load statistics would carry substantial

uncertainty due to the large number of components and processes that would need

to be taken into account. Doing so would likely compound numerical errors and

modelling inaccuracies, making it difficult to obtain results with any reasonable

certainty. Relative indices on the other hand help tracking the evolution of the

system’s adequacy using past performance as a baseline, and provide a more

useful assessment in this sense.

2.2.4 Value of lost load (VOLL) and value based adequacy

assessment

Research before 1970 mainly addressed the problem of modelling available gen-

eration and enabled the widespread calculation of LOLE and EEU, but did not

address the question of what constitutes an optimal or even acceptable level of

LOLE. Starting from the 1970s, considerable research has been done on what is

now called value based adequacy assessment, which analyses adequacy levels in

the context of economic considerations by placing a monetary value on loss of

load events (Billinton et al., 1983). This is a difficult problem (not least because

absolute loss of load indices are usually required), as there are multiple social (i.e.,

non-monetary) costs that have to be factored in, and even monetary costs might

not be straightforward to quantify. Explored approaches include quantifying so-

cial costs from government agency figures and economic costs from local business

activity indices (Kaufman and Daly, 1978); estimating the lost gross national

product (GNP) as a result of energy not supplied (Shipley et al., 1972); using

GNP/KWh as a conservative upper bound and wages/kWh as a more reasonable

upper bound (Telson, 1975); measuring the cost as residential willingness to pay

from price elasticities (Myers, 1978), among others.
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Modern reviews on estimation methodology for VOLL can be found in (Gor-

man, 2022; Schröder and Kuckshinrichs, 2015). Importantly, (Gorman, 2022)

also discusses three of the main methodologies that have emerged throughout the

last decades to quantify the VOLL, namely proxy, revealed preference and survey

methods. Briefly, in order to estimate VOLL, proxy methods use macroeconomic

indicators as a reference, revealed preference studies observe the behaviour of

electricity consumers in the markets, while survey methods involve interviewing

individuals or businesses to ask them for their specific VOLL or related measure-

ments.

It is noted in (Gorman, 2022) that survey methods have historically been the

most popular ones to estimate VOLL, as it is in fact done currently by Ofgem in

GB (Ofgem and DECC, 2013). The preference of survey methods over the others

have to do with many factors, among them known drawbacks and difficulties

inherent to the other methodologies, as pointed out in (Gorman, 2022).

Within survey methods, there are a variety of approaches to enquire for the

customer’s VOLL, for instance, asking for their willingness to pay (WTP), this

is, how much the customer is willing to pay in order to avoid a power outage with

certain characteristics; another possibility is asking for their the willingness to

accept (WTA), this is, the amount of money the customer is willing to accept to

incur in an outage with certain characteristics. In theory, both should be equal

(Hartman et al., 1991), but in practice both can end up being be very different,

evidence of well known issues with these types of survey studies (Hausman, 2012).

A more robust result can be devised using conjoint analysis (Steiner and

Meißner, 2018), in which customers are instead asked to order their preference

between a set of alternative hypothetical outage scenarios. This approach is

based on evidence that shows that indirect measurements of consumer preferences

are better than direct measurements at predicting and understanding consumer

behaviour (McFadden, 1986). Conjoint analysis has been used in the Netherlands

to determine VOLL (Ecorys, 2022), and has recently been used by Ofgem in Great

Britain to understand consurmers’ makret behaviour (Ofgem, 2018).

Recent studies have been conducted in different countries to produce up to

date estimates of the cost of energy not supplied similar to those discussed above.

In (National Grid, 2017b) it is mentioned for instance that in France a study from

2012 calculates a cost of 26,000 euro/MWh, while customer surveys in Australia

calculated a value of 33,460 AUD/MWh. Meanwhile for the UK, a survey con-

ducted in 2013 calculated the cost at around 17,000 £/MWh.

It was noted in (National Grid, 2017b) that the use of cost-benefit analyses

was not the norm among system operators (with GB being an exception to this
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back then; see Section 5.3 for the current cost-benefit formulation for capacity

procurement), however, in 2018 the European Commission formally mandated the

development of reliability standards relying on cost-benefit analyses (EU, 2018).

To the best of our knowledge this has not been implemented in any EU member

yet, and some of the possible reasons for this are the high level of uncertainty

involved in estimating relevant parameters, as discussed above, and the difficulty

of obtaining absolute loss of load statistics, which are often required in cost-

benefit analysis calculations. Instead, adequacy standards have historically been

chosen by expert judgement, which could be seen as procuring an acceptable level

of reliability at an acceptable cost, based on the system’s historic performance.

2.3 Modelling conventional generating units

2.3.1 Time-collapsed models

The simplest and most common model for available conventional (i.e., dispatch-

able) generation in reliability studies assumes generating units can be either fully

available or fully unavailable (i.e., no de-rated states exist) with some proba-

bility; furthermore, under a time-collapsed view (see Section 2.2.2) sequential

dependence between their states can be ignored, which results in their availabili-

ties being modelled as binary random variables (Billinton and Allan, 1985; Singh

et al., 2018); this model has been used, for instance, in (Tindemans et al., 2019;

Wilson and Zachary, 2019; Sanchez et al., 2020); in this Section we give a brief

description of it.

In order to define the model above, data on the units’ outage rates are needed.

The outage rate of a unit or group of units is defined as the number of outage

occurrences per unit of service time (IEEE, 2019a). For instance, if the service

time is one year, using an hourly resolution this would be the number of hours

of unavailability divided by the total number of hours in a year. Depending on

the purpose of the study, different types of outages can be considered, e.g. only

forced outages which occur due to unforeseen mechanical failure, or including

scheduled outages due to routine maintenance; these rates can be calculated for

an individual unit but it is common to do so for a class of units, e.g. nuclear

generators.

A generator with an outage rate of π and nameplate capacity c ∈ R is modelled

as a random variable G such that
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P(G = x) =

π, x = 0

1− π, x = c
(2.9)

The available capacity of a fleet of conventional generating units would con-

sequently be given by the aggregate available capacity of all of its units. For a

fleet with m generating units this can be written as

X =
m∑
i=1

Gi (2.10)

where Gi denotes the availability of the i-th generating unit with a maximum

capacity and failure probability of ci, pi, respectively. Note that there are no time

indices, as we are assuming a time-collapsed view of conventional generation

availability.

In general, the probability distribution of X depends not only on nameplate

capacities and outage rates of individual units, but also on the statistical de-

pendence across units. It is common in adequacy studies to assume statistical

independence between generating units, as we do in this work. However, other

dependence structures have been explored, and there is some evidence forced

generator outages might be correlated in some circumstances. For example, in

(Murphy et al., 2018) the assumption of independence between generators is anal-

ysed and evidence of statistical dependence is found in all regions. Temperature

was determined to be one of the reasons behind this dependence, which could also

be associated with natural disasters such as draughts and cold spells that affect

wide geographical areas. A relevant example of this effect are the events in Texas

on February 2021 in which multiple generators failed due to lack of fuel which was

caused by frozen gas pipelines. Note that outages like these are weather-driven,

and as such they could be taken as independent conditional on the weather for

modelling purposes. This case is contemplated in IEEE standards for reporting

outages of electrical facilities (IEEE, 2019b). Nevertheless, the authors note that

even when excluding natural disasters from the data, evidence of dependence

remains. Another example of this analysis is (Murphy et al., 2020), where a

model for temperature-dependent correlated outages is used to assess increases

in capacity shortfall risks due to a warmer future climate in some regions of the

U.S.

For the model of conventional generation X in (2.10), and assuming statistical

independence between generating units, the probability distribution of X can be

computed from (2.9) alone by convolving the discrete probability distributions of

31



all generating units. To do this, nameplate capacities are usually rounded to the

nearest integer for convenience. This is not an issue in practice, as nameplate

capacities are usually in the range of tens to hundreds of MW, and so the error

induced by rounding is negligible. Algorithms to numerically compute this prob-

ability distribution are outlined in (Billinton and Allan, 1985). Note that the

convolution of integer probability distributions can also be efficiently done using

a fast Fourier transform algorithm (Elliott, 1987).

2.3.2 Time-sequential models

Many time-sequential models have been proposed too for the availability of con-

ventional generation capacity; in (Baldwin et al., 1959b,a,c), generating units are

assumed to have exponentially distributed times to repair and times to failure.

Another common method assumes the availability of generating units follows a

Markov chain process (Billinton and Allan, 1985; Singh et al., 2018). The latter

model have been used in (Edwards et al., 2017; Sheehy et al., 2016), and we also

use it in Chapter 5 to calculate the output of sequential adequacy models. Note

that in all of these, statistical independence between generating units is assumed.

In this Section, we describe Markov chain models for generating units in more

detail.

The simplest sequential Markov chain model in this regard is again one with-

out de-rated states in which generators are fully available or not at all. This

model can also be characterised as a two-state birth-death process as we show

below; in what follows, rate units are omitted but assumed to be identical across

parameters (e.g., hourly rates). In addition to the unit’s outage rate, we need

to know the unit’s mean time to repair (MTTR), usually expressed in hours.

To illustrate this, let G be a generator with an hourly outage rate of π and an

MTTR of τ ≥ 1 (since the shortest time a Markov chain model can remain in

a given state is a single time step). Then, the probability of transitioning to an

availability state whenever the unit is unavailable is µ = τ−1. Let λ be the prob-

ability of transitioning to an unavailability state whenever the unit is available.

We can derive λ by noting that (2.9) gives us the chain’s stationary probability

distribution, and so if A is the chain’s transition matrix, we must have that

ATπ =

(
1− µ λ

µ 1− λ

)(
π

1− π

)
= π (2.11)

where the chain’s states are (0, c)T ; this yields
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λ = µ
π

(1− π)
(2.12)

G = c G = 0

λ

1− λ

µ

1− µ

Figure 2.1: Birth-death process for a conventional generating unit. Edges are
labelled by their corresponding transition probabilities.

The aggregate available conventional generation Xt would then be a sum of

Markov chains, analogous to (2.10); moreover, statistical independence across

generating units is also assumed. For time-sequential risk indices, Monte Carlo

simulation is the only viable alternative for calculating model outputs.

The inclusion of de-rated states to both of the models outlined in this and

the previous Section is straightforward from a computational and mathematical

point of view, as this would just entail using different probability mass functions

in (2.9) or larger transition matrices in (2.11). Nevertheless, sometimes system

operators do not have access to the necessary data to specify more detailed models

of generating units. Available data varies considerably across system operators.

For example, power systems in North America use the Generating Availability

Data System (GADS) as a centralised monitoring systems where comprehensive

availability data is compulsorily reported for all units above 20 MW of capacity

(NERC, 2022). The granularity of this data allows in-depth statistical analysis

of the outage probability distributions both for individual units or unit types and

for entire generator fleets, as has been done in (Murphy et al., 2018). On the

other hand, in systems like GB there are no analogous standards and existing

availability data is more limited (National Grid, 2017b).

There is not much discussion in the literature on how appropriate Markov

chains are when modelling generating units. It is possible that two-state Markov

models are too simple to be an accurate model for some types of units, e.g.

those with multiple generating components that work in parallel and that could

in principle fail independently. However, the inclusion of de-rated states could

address this. Even though there is no evidence to our knowledge that mechanical

failures are Markovian in nature, under the usual framework of characterising

availability by mean times to repair or failure (or more generally state exit times,

if more availability states exist in the Markov chain model) Markov chains with

appropriate de-rated states would in principle be a valid model for this problem.
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2.4 Modelling electricity demand

Adequacy calculations require the elicitation of credible future demand scenarios;

demand data in the historic record deemed to be representative of current and

near-future demand trends is generally used as a basis for this (National Grid,

2017b). The data are usually transformed in some way to represent a future sce-

nario of demand. There are many ways of doing this, the simplest being rescaling

by a suitable constant factor; this method is used at present by National Grid

(National Grid, 2017b), and will be explained in detail later on. However, it has

been pointed out this methodology does not account for things such as techno-

logical change and other effects that could alter the probability distribution of

demand beyond a change in scale (Boßmann and Staffell, 2015). More complex

modelling approaches have been explored in the literature for modelling future de-

mand, for example, extrapolating trends in the historical evolution of load shape

(Basaran Filik et al., 2009). Modelling future demand of particular technological

transformations such as the adoption of electric vehicles or heat pumps (Koreneff

et al., 2009); partitioning demand into different segments such as industrial and

residential users, which are modeled individually and then added up to form an

aggregated demand forecast (A. Pina, 2011), among others. We note that with

the possible exception of (Fan and Hyndman, 2012), most of the recent models

for demand in future years have been developed for purposes other than adequacy

modelling, e.g. studying the sensitivity of future demand to different aspect of

technological change, as done in (Boßmann and Staffell, 2015).

2.4.1 Using average cold spell factors to rescale demand

in GB

In Great Britain, constant rescaling factors are used to forward-map historic

demand to the future scenario of interest, which is usually a future peak demand

season. These are called average cold spell (ACS) peak factors, and are calculated

for each historic peak demand season individually, which in GB occur during

winter. Generally speaking, they are meant to be a reflection of the effect of

weather variability on the demand level conditioned to the corresponding peak

season. More specifically, they are estimates of the median of the peak demand

season’s maximum half-hourly demand across a range of weather conditions. In

the case of forward-looking adequacy calculations, if a future peak season under

analysis is projected to have an ACS peak of α, then a historic peak season with

an estimated ACS peak of β is forward-mapped to the future year’s conditions by
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rescaling observed demand values by α/β. Once historic peak seasons have been

standardised in this way, the data is deemed to be representative for the scenario

of interest.

The estimation methodology for ACS peak factors is detailed in (Richards

and Ong, 2019). Briefly, a linear model for total demand conditioned to the

corresponding peak season is defined with the following structure

total demand =base demand + temporal effect+

weather effect− unmetered generation+

random variation (2.13)

Here, the left hand side represents demand metered at the transmission level,

i.e., demand that has to be met by the generation subsystem and moved through

the transmission system to the customers. On the right hand side we have base

demand, which refers to the underlying level of non-varying (i.e., constant) de-

mand independent of other factors during the corresponding peak season; tem-

poral effects, which account for variations due to day of year and day of week;

weather effects measures dependence on weather conditions, particularly tem-

perature features; unmetered generation is generation embedded in distribution

networks (more on this below); finally, random variations account for residual

variability.

We note that unmetered generation is subtracted on the right hand side;

unmetered generation refers to generation embedded into distribution networks

(e.g. solar panels installed on a customer’s rooftop) that can satisfy local demand

without making use of the transmission network. For this reason, this needs to

be subtracted from total demand in (2.13) to estimate demand metered at the

transmission level.

The model above is used in a Monte Carlo estimation process to calculate

ACS peak factors. To do this, historic weather data are block-resampled in

weekly blocks to assemble a peak season’s worth of synthetic weather conditions.

These are used as inputs to calculate weather effects and unmetered generation

in (2.13), and this demand model is then used to produce a demand trace for the

synthetic peak season. This is repeated 20,000 times, from which the median of

the maximum half-hourly demand is computed.

For each historic peak season, both a forecast and outturn ACS peak values

are calculated before the season starts and after it ends, respectively. Forecast

ACS peak values are published in a yearly Winter Outlook report by National
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Grid right before the season’s start. For the outturn ACS peak, features such as

the base demand level and temporal effects are updated using observed data, and

the estimate is recalculated. Note that in contrast to years in the historic record,

estimating the ACS peak for a peak season multiple years into the future which

is usually the case for the scenario of interest might require the use of market

intelligence and expert judgement.

Recently, linear models that account for season-specific weather and temper-

ature features have been proposed as a more expressive alternative to the ACS

peak methodology. In (Wheatcroft, E. and Dent, C. and Wilson, A., 2022), linear

models with weather and temperature features are fitted to each historic year and

used to project the weather conditions of one year onto demand from a different

year. The linearity of the models allows doing this in a straightforward way by

simple addition and subtraction of estimated weather parameters for different

years, while allowing for a richer set of credible scenarios compared to a constant

rescaling factor. The authors point out that a demand model like (2.13) could

be plugged into this methodology to achieve more expressive demand forecasts

in forward-looking calculations without the need to block-resample historic win-

ters, which could be problematic (e.g., random block resampling might implicitly

assume that conditions at different points in winter are interchangeable).

Eirgrid, the Irish system operator, follows a similar methodology as the one

outlined above for modelling future demand scenarios into their reliability studies,

while in other countries methodological details generally differ and are specific

to each system operator (National Grid, 2017b). For example, the cited survey

mentions that PJM in the US scales historical loads by a random factor in a range

of values determined by expert judgement.

2.5 Modelling wind generation

In the last twenty years, wind generation has grown to encompass an important

proportion of the generation mix in the UK and other European countries. How-

ever, unlike conventional generating units, the output of wind farms cannot be

scheduled in advance and instead depends on weather conditions. This creates

the need for accurate historic wind generation data for adequacy calculations.

Nevertheless, generation data from wind farms are typically not public.

Partly because of this, it is a common practice in adequacy studies to use

public weather reanalysis models such as NASA’s MERRA (Rienecker et al., 2011)

or MERRA2 (Gelaro et al., 2017) to reconstruct historic wind generation traces
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for the wind fleets in the scenario of interest. Moreover, this practice also provide

a consistent historic record to explore hypothetical wind scenarios. Reanalysis

models combine satellite and ground-based historic weather observation data with

short-range weather forecast models to provide an approximation to the planet’s

weather conditions at an evenly spaced grid on the Earth’s surface. This is done

across time at short time intervals (e.g. hourly), and in the case of MERRA2, the

grid resolution is roughly 60 km. Wind speed data on this grid can be interpolated

to wind farm locations, and the results can be combined with data on the type

and number of turbines at the wind farm to estimate the farm’s hourly capacity

factors, e.g. its output expressed as a proportion of installed capacity. These

estimates are subsequently aggregated at a national level in the form of national

capacity factors, which can then be rescaled to actual wind generation output

using data on the amount of total installed wind capacity under the scenario of

interest.

However, reanalysis data needs careful validation and calibration, as it has

been found that raw reanalysis data incur in significant spatial bias when used

to this end (Stickler and Brönnimann, 2011; Decker et al., 2012), due in part

to the relatively coarse grid over which measurements are imputed, which could

overlook blocking geographical features affecting wind farms, among other is-

sues. In (Staffell and Pfenninger, 2016) it is found that a consequence of this is

an overestimation of wind capacity factors in northern Europe by roughly 30%

while underestimating those of southern Europe; the cited paper develops a bias

correction methodology which uses an affine transformation of reanalysis data’s

wind speeds (i.e., a change in the data’s location and scale) so that simulated his-

torical wind capacity factors for on-shore and off-shore fleets match long-running

observed historical averages. The results show high goodness of fit, achieving close

to 95% correlation with observed hourly wind speed validation data in northern

Europeean countries, including the UK; the resulting corrected wind speed data

is openly available; see (Staffell and Pfenninger, 2016).

2.6 Modelling multi-area systems

In this work, we call multi-area systems those that share an interconnection

through which power can be exchanged and which are managed by independent

system operators. Many power systems around the world are part of broader

multi-area systems as defined above, such as those in North America (except

Texas’ ERCOT) and most of Europe. Being part of a multi-area system gener-
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ally improves adequacy, as systems experiencing tight margins can be assisted by

other areas if spare capacity is available. This is in addition to other economic

benefits from the resulting market coupling; see (Newbery et al., 2019) for a more

detailed analysis of their economic impact.

Multi-area adequacy models are also called multi-node models, as they are

usually represented as an undirected network where each node represents a system

and edges represent tie lines, or interconnectors, between them. In a multi-

area system, the risk in any area depends now on the resource-sharing policy

between system operators, the load and available generation at other areas (since

this determines whether any assistance can be provided), and interconnection

capacities.

Resource-sharing policies dictate how interconnection would work when one

or both systems experience a capacity shortfall. Two of the most common ones

in the literature are the veto or no load loss sharing (NLLS) policy and the share

or load loss sharing (LLS) policy (Singh et al., 2018; Tindemans et al., 2019).

The former means power can flow to other areas only after domestic load is met;

under a share policy on the other hand, loss of load is shared across areas to

the extent interconnection permits. The latter would be, in principle, compatible

with non-discrimination regulations that the EU aim to implement in its energy

network (Rumpf and Bjørnebye, 2019). See Section 3.3 and Figure 3.2 for the

version of these policies we use in this work and their concrete mathematical

specification.

Multi-area models have been studied since at least the 1960s: for instance, in

(Cook et al., 1963), LOLP calculations for a 2-area system are outlined, assuming

a veto policy (i.e., only spare capacity after meeting local load can be exported),

and are used to evaluate the reduction in reserve requirements in a small 2-area

system. In (Vassell and Tibberts, 1972) a similar approach is used to study exten-

sions to three and more systems, with and without loops. However, simplifying

assumptions about the order of interaction between systems were used, e.g., a

fixed order of priority when exporting power to systems that need it. This can

help simplifying the analysis if complex topologies are involved; moreover, pairs

of areas are merged by convolving their capacity probability distributions, implic-

itly assuming statistical independence. In (Pang and Wood, 1975), models for

multi-area system with an arbitrary topology are also explored, this time without

simplifying assumptions about the model’s topology, using a min-cut algorithm

to determine actual power flows between systems instead; however, statistical

independence is again assumed between individual systems.

One of the easiest and most popular approaches for incorporating neighbour-
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ing areas into a system’s adequacy calculations is treating them as two-state

generating units (see Section 2.3) whose availability probability distribution is

then convolved with the local capacity surplus/deficit probability distribution

to compute risk indices (thus, once again assuming statistical independence be-

tween systems). This has been called the equivalent unit approach or equivalent

assistance approach (Billinton and Allan, 1985; Singh et al., 2018). More for-

mally, let Z be the capacity surplus in the local area. Then under the equivalent

unit approach a random (usually binary) variable G representing the capacity at

the other side of interconnection is added to Z, hence the post-interconnection

capacity surplus of the local system is given by Z = Z + G, which can be com-

puted through the convolution of the associated probability mass functions. This

approach can use a two-state or multi-state generating unit probability distribu-

tion for G. Note that under such a model, modelling particular shortfall-sharing

policies is problematic, as by construction it is assumed available imports are

independent from local capacity surpluses/deficits. If there are multiple neigh-

bouring systems, all of them would be modelled analogously. This approach is

computationally cheap. However, as was said above, it implicitly assumes both

systems are statistically independent. This assumption can be problematic, for

instance if the system have similar daily demand patterns (as is usually the case

in interconnected systems, since areas are geographically close), as the resulting

models likely overestimate the utility of interconnection in adequacy calculations.

A more detailed approach is using the full multivariate capacity surplus/deficit

probability distributions for risk calculations, where each dimensional component

correspond to one individual system. This is also sometimes called the proba-

bility array or contingency enumeration approach (Billinton and Allan, 1985;

Singh et al., 2018). For a k-area system this would require computing the mul-

tivariate capacity surplus probability distribution Z = (Z1, ..., Zk). In numerical

calculations, each univariate capacity surplus is usually modelled as a discrete

random variable with an integer support (which can be the result of convolving

the probability distributions of available conventional capacity with demand in

(2.1) or net demand in (2.3)), and this can be in the thousands to tens of thou-

sands in length (as they are commonly expressed in MW). Thus, exact calculation

of post-interconnection risk indices would entail sweeping the corresponding k-

dimensional grid. For these reasons, exact computations using this model can

quickly become impractical as more neighbouring systems are added, and can

be computationally expensive even for two-area systems; binning the support of

capacity surpluses/deficits into coarser resolutions, as done in (Tindemans et al.,

2019), might help keeping this model computationally feasible. See Chapter 3
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and Appendix B for implementation details of this approach in a two-area sys-

tems at full resolution for the versions of veto and share policies explored in said

Chapter.

Other approaches have been proposed to find a compromise between the

model’s level of detail and computational efficiency. For instance, in (Lago-

Gonzalez and Singh, 1990), conventional generation states are aggregated into

disjoint sets, and multivariate demand observations are merged into clusters that

are intended to represent different types of load scenarios. Monte Carlo simulation

can also be used on top of these decomposition methods or in conjunction with

them to find relevant sets of system states (Clancy et al., 1983; Singh and Deng,

1991; Singh and Mitra, 1997); more recently, Monte Carlo methods have also been

used directly on top of full multivariate models for capacity surpluses/deficits

(Singh et al., 2018).

2.6.1 Capacity value of interconnection

Methods have also been proposed to estimate capacity values metrics for inter-

connectors. The objective of capacity value metrics is to provide a common basis

to compare the contributions to system adequacy from assets as different as con-

ventional generating units, battery storage, renewable generating units and in

this case interconnectors (Tindemans et al., 2019). Two common capacity value

metrics are equivalent firm capacity (EFC) and equivalent load carrying capacity

(ELCC), both of which are computed relative to a user-chosen risk metric, e.g.

LOLE or EEU (see Section 2.2) and will be briefly explained below; see (Zachary

and Dent, 2012) for a more in-depth discussion of capacity value metrics.

The EFC is defined as the amount of firm capacity (i.e., constant available

capacity) to which the asset in question (say, a conventional generating unit, a

wind farm or an energy storage device) is equivalent in terms of the chosen risk

metric. In other words, installing said asset into the system or adding its EFC

on the supply side are equivalent alternatives with respect to the (user-chosen)

system’s risk metric.

ELCC on the other hand expresses an equivalence in terms of additional firm

demand rather than supply. This is, adding an asset (say, battery storage) to

a system’s supply and at the same time its corresponding ELCC as additional

firm load (i.e., constant load) would leave the chosen risk metric unchanged.

Although conceptually both EFC and ELCC could be seen as similar in some

sense (as both represent firm added capacity but with opposite signs), this is not

mathematically true due to the non-linearities induced by risk indices. However,
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it has been proven that when the new asset’s capacity is small relative to what

its already installed in the system, EFC and ELCC essentially coincide (Zachary

and Dent, 2012); however, this may not hold in the case of interconnectors as

their capacity is usually in the order of GWs.

To see how both metrics are calculated in the case of interconnectors from

the point of view of the local system, let r(·) be the user-chosen risk metric as a

function of the system’s surplus, e.g. LOLE or EEU in (2.5) or (2.6) respectively,

and let Z,Z be the system’s pre and post interconnection capacity surplus/deficit.

Then interconnection EFC and ELCC are such that

r(Z + EFC) =r(Z), EFC > 0 (2.14)

r(Z − ELCC) =r(Z), ELCC > 0 (2.15)

We emphasise that the Equations above value interconnection from the point

of view of the local system only, and assume the neighbouring system will not

adapt to the presence of interconnection. However, computing simultaneous in-

terconnection valuations when both systems take advantage of it (e.g. change

their conventional generation fleet) is more complex, as changes in one system

will change interconnection value for the other system. In this sense, a methodol-

ogy to compute the Pareto frontier of interconnection valuations based on ELCC

was developed in (Tindemans et al., 2019). Furthermore, (Greenwood et al.,

2022) develops the concept of minimum EFC to value interconnection; this is

the smallest amount of firm generation that has to be installed across both areas

(possibly unevenly) to replace interconnection in terms of adequacy risks.

Note that EFC and ELCC are used inside pre and post-interconnection risk

indices respectively; note also that ELCC is subtracted as it represents addi-

tional load to the system. In (Tindemans et al., 2019), methodology is outlined

to compute interconnection’s ELCC using data from Great Britain and France.

Computing interconnection’s capacity value metrics is important to determine to

which extent they can participate in capacity auctions, for instance. Finally, the

calculations of quantities involved in (2.14) and (2.15) can be performed through

any of the techniques discussed earlier in this Section.
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2.6.2 Other benefits of interconnection in system ade-

quacy

In the current context of decarbonisation, interconnection can dampen variabil-

ity arising from a growing reliance on intermittent energy sources. In (M. Grams

et al., 2017), strategies for deployment of wind farms throughout Europe are ex-

plored, aiming to reduce variability in continental-level wind generation. Strate-

gies like this one would make heavy use of interconnectors to transfer large

amounts of power between northern and southern Europe, which are negatively

correlated in terms of wind generation.

Interconnection would also allow, in principle, a more efficient allocation of

resources when procuring new capacity across multiple areas. In (Hagspiel et al.,

2018), they show how a system representative of the European network could

reach target adequacy standards while procuring 6% less capacity by using a

coordinated approach compared to an uncoordinated one. The authors note

that changes in system-wise adequacy targets can have a considerable impact on

the results, which suggest standardisation of adequacy targets and methodology

across areas could be beneficial in this coordinated scheme. It is unclear, however,

how closely the numerical results would be reproduced in the real European

network, as some of the assumptions in the study might not be representative

of the system. For instance, the authors assume demand and wind generation

data are essentially independent, using different year combinations from both

data sets, which might mischaracterise statistical dependence between wind and

demand; moreover, available conventional generation seem to be taken as constant

in all areas rather than as probability distributions. However, the results do offer

motivation for further study on the benefits of adequacy coordination.

2.6.3 Multi-area calculations in practice

In practice, methodology to incorporate interconnection into adequacy calcula-

tions varies across systems, as described in (National Grid, 2017b). In Great

Britain and Finland, BID3, a market dispatch model with specification for mul-

tiple European power systems, is used to this end, while Belgium and France use

Antares, an open source software similar in functionality to BID3. The equivalent

unit approach, described in this section, is used by operators in Spain, Denmark

and Ireland, while others do not include interconnection in the calculations, like

in the Netherlands. We note that using market dispatch models for this pur-

pose could be problematic, as these assume normal operating conditions, while
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adequacy calculations are mainly driven by rare, extreme events. In Chapter

4, we propose an alternative methodology for 2-area systems based on extreme

value theory, a branch of statistics that offers principled models for characterising

extreme events, using data from the Ireland-Great Britain system.
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Chapter 3

Quantifying The Reliability

Contribution of Interconnectors

in the Britain - Ireland Power

System Using a Hindcast

Approach

A reliable electricity supply is a key consideration for energy system planners. At

present, the value of support from other systems is of particular interest in Great

Britain (GB), including from Ireland’s (IRL) Single Electricity Market, to which

at the time of this writing there is 1 GW of interconnection capacity. This chapter

presents a study of how interconnection influences risk levels in the GB and IRL

systems, based on the standard Loss of Load Expectation (LOLE) and Expected

Energy Unserved (EEU) indices, and a hindcast approach for demand and wind

generation. Specific areas of investigation include the effect of different resource

sharing policies on adequacy risk levels under a range of assumptions regarding

renewable penetration and interconnection size, as well as the dependence of the

value of interconnection on the wind capacities in the two systems.

3.1 Introduction

Along with sustainability and affordability, security of supply is one of the three

pillars of energy policy. In Great Britain as in many other power systems, there

is thus considerable interest in the outputs of security of supply risk calculations,

and development of methodology for this appropriate to any new circumstances –
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such calculations may be for the general purpose of understanding the risk profile

of the system, or they may be performed as part of the operation of a capacity

market (NGESO, 2019).

At present there is increasing interest in the contribution of interconnection

between systems to security of supply – this is due to the possibility of available

renewable capacity being less variable when aggregated over wider geographical

areas, and of political drive for market integration (European Comission, 2016),

in addition to the economies of scale available from sharing planning reserve over

wider areas which have long been recognised.

Quantifying the contribution of interconnectors is a long-standing area of

study, and has become a standard topic in the power system reliability litera-

ture (see Section 2.6 for an overview). A recent development in this topic has

been the study of how capacity value metrics may be used to value intercon-

nection between systems (see Section 2.6.1), including consequences of different

policies for sharing resources (for instance comparing a policy where each area

looks after itself first, to one where at times of shortfall resources are shared

between systems). In this work, we investigate contribution of the interconnec-

tion between Ireland (IRL) and GB to both areas. We work in a similar overall

picture to (Tindemans et al., 2019), although with a somewhat different focus.

The cited paper explores the valuation of interconnection for different resource

sharing policies, characterising the set of Pareto optimal ELCCs for both inter-

connected areas. We analyse the valuation of interconnection as installed wind

capacity grows, and look at how this valuation depends also on the combination

of risk indices chosen to measure it and the resource sharing policy, taking the

definition of a share and veto policies as described in (Tindemans et al., 2019).

Furthermore, we compare the evolution of risk indices at both areas for increasing

interconnection capacities under these policies. We model both systems jointly

(see Section 2.6), and consider all demand and available capacity states at both;

while this approach is also used in (Tindemans et al., 2019), binning the resulting

bivariate model into a coarser resolution was necessary to control computational

complexity. We derive exact formulas for EEU and LOLE for both of the consid-

ered policies in terms of univariate integrals, which allows for calculations at full

resolution.

This chapter is organised as follows. First, Section 3.2 presents the two area

risk model, and Section 3.3 describes the approach used to calculate risk indices.

Section 3.4 describes the data used, and Section 3.5 presents numerical results.

Finally Section 3.6 discusses issues arising from data limitations and possible

future work to mitigate this, and Section 3.7 presents conclusions.
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3.2 Formulation

In the following sections we denote random variables as uppercase, specific in-

stances as lowercase, and vectors as bold. We define net demand as demand

minus renewable generation and capacity reserves as available supply minus de-

mand; we call these reserves capacity surplus/deficit. We assume the future

period under study is divided into n time intervals (e.g. hourly), and then for

a given time t the system’s capacity surplus/deficit Zt is given by the difference

between available capacity and demand, i.e., Zt = Xt+Wt−Dt, where Xt,Wt, Dt

represent available conventional generation, renewable generation and demand,

respectively. We further assume that conventional generation Xt is independent

of all else, and that each generator can be either fully available or under forced

outage (see Section 2.3). Note that in the case of renewable generation, we do not

model plant outages. Using this framework we can calculate the standard risk

indices LOLE =
∑n

t=1 P(Zt < 0) · ∆t, or loss of load expectation, the expected

number of discrete time units in which a shortfall occurs during the period of

interest, and EEU =
∑n

t=1 max(−Zt, 0) ·∆t or expected energy unserved, in the

period of interest. Without loss of generality, the time resolution ∆t in these

calculations is taken as 1h.

Typically one has available for statistical estimation historic data from mul-

tiple years of demand and available renewables (dτ , wτ ), where τ indexes historic

times, and these data combine historic weather and time of day/week/year with

a scenario of what is connected to the power system in the future season or year

under study. We assume that a distribution of available conventional capacity

for that scenario is also available. This is usually modelled as in Section 2.3. The

most common estimation approach for estimating the above indices is then ‘hind-

cast’, which considers what the risk level in the future scenario would be given

a repeat of the historic weather (and thus also demand patterns). We then have

an estimate of the LOLE not conditional on any particular weather conditions

LOLE = (1/s) ·
∑

τ P(Xτ < dτ −wτ ) ·∆t, where the sum is over the entire historic

dataset and s is the number of years in it; an analogous expression may be writ-

ten down for hindcast EEU. It is also possible to calculate a hindcast LOLE or

EEU conditional on repeat of weather from a single specific historic year (Wilson

et al., 2018).
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3.3 Determining 2-area system risk indices

In order to do a proper risk evaluation in a multi-area system, it is necessary to

take into account the capacity available to be imported from other areas at times

of shortfalls. How much is available depends on what the capacity surplus/deficit

in each area would be in the absence of interconnection, the policies in place for

sharing power at times of shortfall in one system, and the interconnector capacity.

From a security of supply perspective, we are interested only in the available

power to support neighbouring systems, not what will flow in day-to-day trading

when no system is under stress. Finally, we assume that full interconnector

capacity is available throughout the peak season.

In a 2 area system, the available capacities and demands are now vectors

Xt,Wt,Dt of length two. It is convenient first of all to look at the risk calculation

for a single fixed demand d = (d1, d2) and available renewable capacity w =

(w1, w2), from which hindcast results can be obtained in the obvious way. For

compactness of notation, we write y = d−w, and again write z = x− y.

The Loss of Load Probability (LOLP) and Expected Power unserved (EPU)

conditioned to fixed values of demand and wind may be written in general form

as:

LOLP1 =

∫
fX1(x1)fX2(x2)I(d1 > x1 + w1 + g1(x,d,w))dx (3.1)

EPU1 =

∫
fX1(x1)fX2(x2)(d1 − x1 − w1 − g1(x,d,w))+dx (3.2)

where f denotes the corresponding density functions, the indicator function I
is 1 if the condition in brackets is true and 0 otherwise, (a)+ = max(a, 0), and

g1 is the capacity available for import to area 1 (which is in general depend on

the shortfall-sharing policy and is a function of demand and generation in both

systems; see Figure 3.2 for available flows under a veto and share policies). Both

(conditional) LOLP and EPU can thus be written as expectations of functions

over the range of possible conventional plant availabilities (see Figure 3.3 for the

precise integration regions of veto and share policies in available conventional

generation space).

3.3.1 Veto policy

The first sharing policy considered is a veto power flow policy, in which areas only

export whatever available generation surplus they have after satisfying their own

demand; this ensures that the contribution of interconnectors is non-negative for
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all areas. This calculation has been performed in many papers and textbooks

(Billinton and Allan, 1985; Singh et al., 2018), however the way it is stated here

is slightly different from most treatments in the adequacy literature.

The LOLP in area 1 can then be calculated by considering the three cases in

which the capacity surplus/deficit at area 2 is respectively negative, between 0

and the interconnector capacity c, and greater than c:

LOLP1 = P (X2 < y2)P (X1 < y1)

+

∫ y2+c

y2

fX2(x2)P (X1 < y1 − (x2 − y2))dx2

+ P (X2 > y2 + c)P (X1 < y1 − c) (3.3)

in the case of a continuous distribution of available conventional capacity. The

three cases above correspond to area 2 having a capacity shortfall (therefore not

being able to provide any capacity to area 1), area 2 not having a shortfall but

not being able to cover area 1 shortfalls completely, and area 2 being able to

saturate the interconnector but area 1 having a shortfall larger than intercon-

nection capacity (see Figure 3.1 for a depiction of the capacity shortfall region

in pre-interconnection capacity surplus/deficit space). For calculations presented

here, capacities are rounded to the nearest MW and the integral converted to a

sum. A similar expression may be derived for EPU in area 2.

3.3.2 Share policy

In this policy, areas share shortfalls in proportion to their demand level, to the

extent that the interconnection capacity allows. This could be the result of an

agreement between system operators or areas within a system to pool security of

supply, and an economic interpretation has also been suggested in (Tindemans

et al., 2019) where we believe this policy was first studied.

In a 2-area system with an infinite interconnector capacity, a shortfall occurs

when the aggregate capacity surplus/deficit is negative, i.e., z1 + z2 < 0. Then

the surplus/deficit in 1 given transfer over the interconnector would be

z∞1 =
d1

d1 + d2
(z1 + z2) < 0 (3.4)

and the power flow through the interconnector would be the difference between
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pre and post interconnection surplus/deficits

δ1 = z∞1 − z1 =
d1

d1 + d2
z2 −

d2
d1 + d2

z1 (3.5)

This transfer depends on both the demands and renewable capacities, and not

just on the net demands in each area. It is also notable that under ‘share’, an area

can have a shortfall even if it would not have had one without the interconnector;

if both systems have a shortfall, area 1 would still benefit (this is, draw power

from area 2) if z1/z2 ≤ d1/d2, so that shortfalls are shared in the same proportion

as total demand. The finite interconnector capacity is imposed by simply capping

the flow at that interconnector capacity.

0

z1

0z 2

(-c,c)

Area 1 shortfall region
Area 2 shortfall region

(a) Shortfall regions (veto)

0

z1

0z 2
(-c,c)

Area 1 shortfall region
Area 2 shortfall region

(b) Shortfall regions (share)

Figure 3.1: Shortfall regions under veto and share policies in pre-interconnection
capacity surplus/deficit space (z1, z2). Overlapping regions indicate capacity
shortfall regions for both systems .Note that under a share policy shortfalls can
occur even when an area has positive pre-interconnection capacity surplus/deficit
depending on capacity shortfalls in area 2.

As for the share policy, there are three cases to be considered in any calcu-

lation, namely a flow of size c to 1, a flow of size c from 1, and interconnector

flow not on its limit. Closed form expressions may be derived for the boundary

in the conventional generation space (x1, x2) between these regions as illustrated

in Fig. 3.3a, and for each region a formula for the LOLP or EPU in area 1 may

be derived in terms of a single integral over x1 (see Appendix B). While compu-

tation has previously been performed for this policy in (Tindemans et al., 2019),

we expect the scheme presented here in terms of single integrals to be more effi-

cient than the computational scheme in that previous work, which performed an
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Figure 3.2: Available imports/exports to area 1 under veto and share policies
in pre-interconnection capacity surplus/deficit space (z1, z2); dark regions denote
exports from area 1, expressed as negative imports. In the case of share, available
flows depend on demand proportions at the time of capacity shortfalls too as
per Eq. (3.5). For visualisation purposes, demand proportions were fixed to
5/6 ≈ 0.83 for area 1, which is approximately the proportion of GB demand in
the GB-IRL system; this ratio determines the angle between the sloped contours
and the x-axis in the lower right Figure. Finally, interconnection size was set to
4 GW.

explicit double integral over (x1, x2) using fast Fourier transform.

3.3.3 Interconnection EFC

We can value the interconnection’s contributions to security of supply in a given

2-area system in terms of its equivalent firm capacity (EFC) for each of the indi-

vidual systems. Capacity metrics such as EFC allow a direct comparison between

system components in terms of the contribution to system adequacy that they

make, even when said assets are qualitatively different and are otherwise difficult

to compare. In this case for instance, an interconnector makes it possible for

imports to flow but do not itself produce any power, which in a sense complicates

comparison to traditional generating units. The EFC is defined as the amount

of ideal (i.e., fully reliable) capacity to which the system component under con-

sideration is equivalent in terms of system risk. This implicitly assumes a risk

indices under which the equivalency is measured. For instance, under LOLE a

generating unit’s EFC is simply it’s average long-term availability times its gen-

erating capacity. In the case of interconnection, let r(·) be a risk indices as a

function of a system’s capacity surplus/deficit distribution; let Z,Z be the pre
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Figure 3.3: Regions in conventional generation space (x1, x2) that cause area
1 to experience a capacity shortfall for fixed values of demand and wind d =
(d1, d2),w = (w1, w2). Different policies are displayed in each figure, and subre-
gions are coloured by interconnection saturation types. For a share policy, the
shortfall region is larger due to some shortfalls originating from area 2.

and post-interconnection capacity surplus/deficit of a system respectively, then

interconnection’s EFC is such that

r(Z + EFC) =r(Z), EFC ∈ R (3.6)

The EFC of an interconnection with a given capacity c in general varies de-

pending on the shortfall sharing policy assumed, the chosen risk metric, and the

system background to which the interconnector is added. Note Eq. (3.6) valu-

ates interconnection from the point of view of the local system and assumes the

neighbouring system does not change (e.g. to take advantage of interconnection’s

adequacy benefits). Computing simultaneous interconnection valuations for both

areas is a more complex problem (See the end of Section 2.6.1 for a brief review

of relevant literature in this regard).

3.4 Data

The demand data we use consist of historical hourly measurements from both sys-

tem operators that have been rescaled using yearly Average Cold Spell estimates
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as in reference (National Grid, 2017a). Hourly wind generation measurements

are based on preprocessed MERRA data as in (Staffell and Pfenninger, 2016),

aggregating estimated wind capacity factors over the locations of wind farms as

of January 2015. A total wind generation capacity of 15 GW and 3 GW was used

for GB and Ireland, respectively, and different installed wind capacities can be

obtained by rescaling these numbers by a constant factor. In the case of availabil-

ity probabilities and capacities for each generator in each area, we use generation

scenarios for 2016-2017 from Baringa Ltd. (Baringa Ltd, 2016) in the case of

Ireland, and generation scenarios from National Grid in the case of GB. Finally,

demand and wind data were rescaled so as to give an overall LOLE of 3 hours

per year when pooling data from 2007 to 2013 inclusive; this was done for both

countries without considering interconnection.

In the remainder of this work, we refer to each peak season in the data by the

year at which the season started, so for example we refer to the 2007-2008 winter

just by 2007.

3.5 Numerical Experiments

We use the formulation described so far to calculate the value of the intercon-

nection for each area in terms of EFC and risk reduction, taking the isolated

version of each system as a baseline. The goal of the experiments described in

this section is to assess how interconnection contributions vary under different

system configurations, in particular regarding shortfall sharing policies and an

increasing proportion of renewable generation. The qualitative behaviour of the

EEU under the different system configurations studied was in general similar to

LOLE, so for some experiments we will show results for LOLE only.

Year GB IRL
2007 0.73 0.79
2008 2.55 3.96
2009 2.79 4.23
2010 8.04 9.38
2011 1.89 0.56
2012 4.90 1.47
2013 0.10 0.62

Table 3.1: Table of baseline LOLE values expressed in hours per years, to which
we compare risk indices for different system configurations. The values shown
here correspond to a null interconnection capacity for data from the corresponding
year.
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3.5.1 Interconnection under different policies

The qualitative behaviour of the LOLE and EEU as we varied interconnection

capacity was fairly consistent across years for both areas. In Fig. 3.4 we show

a representative comparison of 2011 and 2012 for a range of interconnections

capacities (X-axis). In this plot, we show how the LOLE evolves as we add more

interconnection capacity, and we do this for each combination of year, area and

policy. The LOLE for each year is shown as a proportion of the baseline value

for that year – these baseline values can be found in Table 3.1.
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Figure 3.4: Traces of LOLE as proportions of their baseline values in table 3.1.
For each combination of year, area and policy, we show how LOLE evolves as we
add interconnection capacity. Interconnection capacity is on the X axis, while the
Y axis shows post-interconnection LOLE as a percentage of pre-interconnection
LOLE.

Much of the sensitivity of risk to different parameters was consistent across

all years; in Fig. 3.4 we show 2011 and 2012, years of low and above-average

risk for GB respectively, and low risk for IRL. In the case of GB, both policies

entail practically the same decrease in risk for all interconnection capacities and

years; interconnection decreases risk to around 30% of that of an isolated GB

system, and its contributions plateau between 1 and 2GW capacity; all of these

behaviours were consistent across system configurations.

Risk in Ireland consistently becomes negligible under a veto policy above

1 GW capacity. However, it was found that under a share policy, additional

interconnection capacity starts increasing the shortfall risk after 0.6GW; this

effect was also consistent across historic years but particularly strong in 2011 and

2012; in the latter, the interconnection contribution becomes slightly negative
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at around 2.5GW. The same effect is observed for EEU, although the increase

in risk stabilises at around 50% of the baseline risk value. This implies that a

share policy could make relatively small scale shortfalls more likely in Ireland.

The underlying reason for this behaviour is the asymmetry in the ability of the

system to provide sufficient surplus to cover a shortfall in the other area, due to

the smaller size of the Irish system.

To show this, we use data from 2011 and 2012 to find times in the historic

record that are driving most of the increase in Irish LOLE when going from 0.6

to 2.5GW interconnection under a share policy. In Figures 3.5a and 3.5b we show

these times and the corresponding increase in LOLE they induce in Ireland (Y-

axis). In these figures, the scale we use for the x-axis is the shortfall probability

that each of these net demand observations induce in the corresponding area,

which makes it straightforward to compare how shortfall risks in each of the

two areas drive the Irish increase in LOLE. It is apparent from looking at both

plots that what drives almost all of the increase in Irish LOLE when adding

interconnection capacity is the shortfall probability in the GB system and not

so much the Irish system itself; there seems to be a strong linear relationship

between the logarithms of the Irish LOLE increase and shortfall probabilities in

GB. The correlation coefficient between the GB shortfall probability and the Irish

LOLE increase is 0.95 – this reduces to 0.56 when comparing the Irish shortfall

probabilities and LOLE increases.

0.001

0.010

0.100

1e-05 1e-04 1e-03 1e-02
Shortfall probability in IRL

Ad
di

tio
na

l L
O

LE
 in

 IR
L 

(h
ou

rs
)

Year
2011

2012

(a) Highest risk-inducing observations
from the IRL system

0.001

0.010

0.100

0.01 0.03 0.10 0.30
Shortfall probability in GB

Ad
di

tio
na

l L
O

LE
 in

 IR
L 

(h
ou

rs
)

Year
2011

2012

(b) Highest risk-inducing observations
from the GB system

Figure 3.5: Observations from 2011 and 2012 in each one of the systems that
cause the largest increase in risk for Ireland when going from 0.6GW to 2.5GW
interconnection capacity under a share policy. The Y axis is the net increase in
LOLE (in log scale), while the X axis is the shortfall probability that each level
of net demand induces in the corresponding system.
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3.5.2 Interconnection and renewables integration

Another important factor to consider in this system is the wind penetration fac-

tors. Under some of the scenarios considered by National Grid, renewable gen-

eration could represent up to 80% of total electricity output (NGESO, 2017) in

2030. We thus analyse how the EFC of interconnection changes as the proportion

of wind generation increases in each system’s generation mix. To this end, we

rescale wind generation data using progressively larger rescaling factors (from the

baseline levels of 3GW and 15GW for Ireland and GB respectively), at the same

time shifting the distribution of available conventional capacity so as to keep the

baseline risk levels fixed throughout the experiments. This ensures we analyse

credible system configurations in terms of the current adequacy standards in GB.

While any such experiment is, while instructive, somewhat artificial, we judge

that shifting the conventional generation distribution is preferable to rescaling

demand, as the latter could distort outcomes of the share policy.

We display results for an interconnection capacity of 1GW, i.e., the present

interconnector capacity. The value of interconnection is expressed as an EFC,

based on pooling historic data from all years. Calculations are performed for wind

capacities from 15 to 30 GW and from 3 to 6 GW in GB and Ireland respectively.

The results for GB are shown in Figure 3.6 and for IRL in Figure 3.7, for all four

possible combinations of risk index (LOLE and EEU) and interconnector policy

(veto and share).

In all combinations of policy-metric-area, larger amounts of installed wind

capacity in the two systems increase interconnection’s EFC. The change in EFC

as a function of wind capacities for GB seem to follow a similar pattern in all

cases except for a share-EEU combination; in the latter case, the EFC seem to

depend almost solely on the Irish installed wind capacity.

Conversely, in the case of the Irish system, EFC seem to depend almost solely

on the installed wind capacity in GB when using a share policy regardless of the

risk metric used, while under a veto policy sensitivity to installed wind capacity

at both areas is more similar. However, for both areas sensitivity of EFC to

installed wind capacities is overall small compared to sensitivity to the choice of

policy and risk metric.

While in GB, the EFC does not depend too strongly on any of the factors

varied and stays in a range of 600-690 MW for all policy-metric combinations,

in Ireland the difference can be as large as 250 MW, namely between the veto-

LOLE and share-LOLE combinations. Moreover, the choice of risk metric within

a given policy for IRL can change interconnection’s EFC by roughly 100 MW.
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Figure 3.6: Interconnection EFC’s (expressed in MW) contour line plots for GB,
under different combinations of policy and underlying risk metric.
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Figure 3.7: Interconnection EFC’s (expressed in MW) contour line plots for IRL,
under different combinations of policy and underlying risk metric.
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Figure 3.8: LOLE arising from the n historical records with highest (demand-
wind) for GB, against n. Only the top 100 observations are shown.

This illustrates the importance of choosing a risk metric which is relevant to the

question at hand, and of considering governance arrangements when planning in-

terconnection between systems. Overall, the observation that the range of values

of interconnection’s EFC remains small given a metric-policy combination might

be partly due to dependence between the outcomes of (demand minus renewable

generation) in the two areas.

3.6 Future extensions

The risk calculations in this Chapter have used the ‘hindcast’ approach, i.e.,

using the empirical historical distribution of (demand - wind) observations as the

estimated distribution required for predictive risk calculations. This provides a

simple way of accounting for statistical association between wind availability and

demand as seen in the historic data, but hindcast results can be driven directly

by a very limited number of historic records. Fig. 3.8 illustrates this for GB.

For calculations conditional on a specific historic year of data, around 75%

to 90% of the calculated LOLE arises from just 10 historic records, and pooling

all the data the equivalent figure is 40%. It is notable however that 9 of the

12 highest-risk records come from a limited period in winter 2010-11, and that

more generally given a different prevalence of historic winters in a similar size

dataset quite a different LOLE result might be found (arising from sampling

uncertainty) even given the same underlying power system and climate. It would

thus be valuable to develop the necessary multivariate extreme value approaches

to smooth the tail of the distribution of net demand, in analogy to (Wilson and

Zachary, 2019) for a single area system.
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3.7 Conclusion

This chapter has presented an analysis of how interconnection contributes to

system reliability in a 2-area model of the combined IRL-GB system. We demon-

strate how the benefit of interconnection to a system can depend on the policy

agreed for sharing resource between systems. If a system covers its own demand

before making capacity available across the interconnector, then the presence of

interconnection can only reduce the level of risk in the model in comparison to

the counterfactual of no interconnection. However, for a policy where shortfalls

are shared between the two systems in proportion to demand, the presence of

interconnection can actually increase the level of risk in the smaller Irish system.

3.8 Discussion

Even though a share policy would, in principle, be compatible with objectives

outlined by the European Union regarding the integration of energy networks

(Rumpf and Bjørnebye, 2019), results we observed may make it a difficult choice

for some (possibly risk-averse) system operators, at least in the form we have

explored here, as small systems could potentially experience an increase in over-

all risk in certain circumstances. As mentioned in (Tindemans et al., 2019), a

share policy can be used instead as a conservative estimate on the benefits of

interconnection, although the results obtained here suggest this bound might be

conservative in some cases.

Experiments regarding valuation of interconnection suggest the choice of re-

source sharing policies between systems and the choice of risk indices under which

interconnection contributions are measured can have a large impact on its valu-

ation. This is an important consideration, for instance, when deciding to what

extent interconnectors can participate in capacity markets, as pointed out in (Tin-

demans et al., 2019). Installed wind capacity seem to have only a small impact

on this, and in the GB-IRL system this might be because of strong statistical

dependence in wind generation across both areas. Verifying whether this holds

true for other systems could be an interesting exercise.

We have also derived efficient, exact calculations for EEU and LOLE risk

indices at full resolution in a two-area power systems under the versions of a

veto and share policies we use in this work (see Appendix B). Moreover, the

implementations are available in the riskmodels Python package (Sanchez, 2022)

(see Appendix A). These calculations rely on a hindcast model of net demand

under a time-collapsed framework (i.e, using the empirical historical distribution
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of demand minus wind generation as the estimated distribution for predictive

risk calculations), which is similar to the methodology currently used for single-

area adequacy calculations in GB. However, it is unlikely this can be extended

beyond two areas, as formulas for exact calculations quickly become unwieldy and

the involved computation time grows exponentially with the number of systems.

Thus for more than two areas, Monte Carlo estimation may be the only viable

alternative to compute analogous results when working at full resolution (i.e.,

without binning probability distributions to a coarser resolution).

Figure 3.8 suggests estimates from hindcast models are dominated by a very

small number of points. Although the provided example illustrates this for a

single-area system, this issue is likely more serious for two-area or multi-area

systems, as there will be an even lower number of observations where net demand

is simultaneously high at multiple systems. Moreover, hindcast models cannot

account for the possibility of record-breaking net demand values beyond what

has been observed in the past, which can certainly occur in a future year. Using

results from multivariate extreme value theory to develop a principled alternative

to the bivariate hindcast model we have used here is a natural extension to this

work, along the direction set by (Wilson and Zachary, 2019). We explore this

alternative in the next Chapter.
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Chapter 4

Analysing the effects of statistical

dependence on the security of

supply of the Ireland - Great

Britain power system

Adequacy risks originate at the tails of the involved distribution: a combination

of unusually high net demand (defining it as demand minus available renewable

generation) and unusually low available conventional capacity. Relevant data in

the historic record is thus sparse. As a consequence of this sparsity, hindcast

models of net demand (which use the empirical distribution of forward-mapped

historic net demand data as the predictive net demand distribution for risk cal-

culations) like the ones we used in the previous Chapter tend to produce risk

estimates which are driven by a very small number of historic observations (see

Figure 3.8); this issue is likely more serious in multi-area systems, as the number

of points in the joint tails may be even smaller.

In this Chapter, we use results from statistical extreme value theory (EVT)

to find smooth, bivariate models for the tails of net demand in a two-area sys-

tem and to model dependence in capacity surpluses/deficits across areas, using

data from the Ireland - Great Britain (IRL-GB) system. In addition to providing

parametric models to smooth out the sparse data regime at the tails, the concept

of asymptotic dependence from EVT provides a useful theoretical tool for charac-

terising dependence between extreme occurrences. We find strong evidence that

the capacity deficits in the GB and Ireland systems are asymptotically indepen-

dent, despite finding some evidence of asymptotic dependence in net demands

across the two areas. This is consistent with the intuition that, when indepen-
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dent distributions of conventional capacity are convolved with those of demand

and wind, the dependence is considerably weakened. The consequent use of a

Gaussian copula to describe the dependence of capacity deficit occurrences pro-

vides a convenient means of carrying out sensitivity analysis to the strength of

relationship.

The contributions of this chapter are methodological and of a practical na-

ture: we use existing results from the theory of extreme values as well as models

from the power system adequacy literature to propose a novel methodology for

computing risk estimates in a two-area power system. We use data from the GB-

IRL system to demonstrate this methodology and its advantages and compare

the results to existing risk quantification models.

4.1 Introduction

Security of supply is one of the three pillars of energy policy, along with afford-

ability and sustainability. In Great Britain (GB), annual capacity auctions take

place to ensure that capacity meets reliability standards based on risk estimates

for future years (NGESO, 2019). For this reason, risk calculations and their

statistical methodology are of considerable interest for policy makers. Such esti-

mates need to consider the existence of interconnectors to other power systems,

which potentially represent an additional source of available capacity. This is

particularly relevant in the context of decarbonisation, as the aggregation of re-

newable generation over wider geographical regions is expected to result in less

variable power output. On top of this, there are other benefits regarding mar-

ket integration (European Comission, 2016) like economies of scale from shared

planning over wide regions.

Multi-area reliability has been studied since at least the 1960s, and models

proposed in the literature for adequacy calculations in multi-area systems are

numerous (see Sections 2.6 for a brief overview). This variety is reflected in

the range of practices found across different system operators. National Grid

conducted an international survey in 2017 (National Grid, 2017b) and it was

found, for instance, that some system operators such as those in France and

Belgium as well as some parts of the US, have relatively fine-grained market

simulation tools for neighbouring systems and use them in their reliability studies,

while others take available imports as fixed. In the case of Great Britain, an off-

line market model is also used to specify a distribution of available flows through

interconnectors conditioned on different demand percentiles, and this distribution
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is convolved with the overall supply balance thereafter. We note that the use of

market modelling tools in adequacy calculations could be problematic, as market

simulation tools assume (implicitly or explicitly) regular operating conditions

in their models, whereas adequacy risks are almost entirely determined by the

occurrence of extreme events for which assumed conditions might simply not hold.

Most of the risk regarding capacity shortfalls come from rare events either at

the demand side, which can be unusually high perhaps due to cold weather in the

case of Great Britain (GB), or at the generation side, where conventional gen-

erators can fail unexpectedly and renewable generation can experience sustained

drops in generation output due to certain weather patterns. Interconnected sys-

tems are usually geographically close, and so their demand and renewable gener-

ation output is likely to be statistically dependent through the action of weather

systems and similar energy usage patterns. Simultaneous occurrence of extreme

demand and renewable generation in both areas can have a large effect on the

value of interconnection in terms of security of supply. Under strong statistical

dependence, it is more likely that both systems experience stress at the same

time, with low availability of imports or exports as a consequence.

It is a common practice in reliability studies both in industry and in the

literature to use the empirical distribution of historic load as input, either suitably

rescaled or as is (National Grid, 2017b; Sheehy et al., 2016; Billinton and Allan,

1985), as the predictive distribution for risk calculations. Chapter 3 uses a model

like this to value interconnection in the IRL-GB system. The tails of empirical

distributions are by definition sparse, with all of the probability mass in these

regions concentrated in only a handful of points representing previously observed

extreme levels. As risk comes almost entirely from the tails, a consequence of

this is that risk indices can be essentially determined by a very small set of past

observations (Sanchez et al., 2020). Moreover these models implicitly assume that

no record-breaking events can occur in the future. Results from EVT provide

a sound methodological basis for finding smooth parametric alternatives to the

sparse tail regimes of hindcast models, and to characterise the tails of the involved

distribution and the dependence between them (i.e., extremal dependence) with a

small number of interpretable parameters. This in turn makes it straightforward

to perform a sensitivity analysis of interconnection value to the type and strength

of statistical dependence. Models from EVT have been used before in a single-

area system model using data for GB (Wilson and Zachary, 2019); we build on

this work by developing appropriate statistical dependence models between the

two areas of the IRL-GB system.

Models of statistical dependence (e.g. copula models) have been used before
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in the adequacy literature, particularly for modelling wind generation. For ex-

ample, in (Hagspiel et al., 2012), copulas are used to model dependence in wind

generation across the European network, using the resulting model to examine

the effects of increasing wind penetration on the Swiss power grid. The use of

copulas to model wind generation at smaller geographical scales, e.g. across wind

farm sites or even across individual wind turbines, has also been studied (Hu

and Bo, 2013; D’Amico et al., 2015). However, to our knowledge, extreme value

copulas and other results from EVT regarding statistical dependence have not

been explored in multi-area adequacy calculations.

The outline of the chapter is as follows: in Section 4.2, we give a brief review

of standard power system risk models and indices from the literature that we use

in this work. In Section 4.3, motivation for the use of extreme value theory is

given, and the most relevant results for this work are briefly discussed, referencing

more comprehensive material on the subject; Section 4.4 describes the data we

used. In Section 4.5 we describe the methodology for our two-area net demand

model, which is defined as demand minus renewables, and its comparison to a

hindcast net-demand model; in Section 4.6 we switch focus to analysing statistical

dependence in capacity surpluses, characterising its dependence and performing

sensitivity analysis of different risk indices to statistical dependence. Finally,

Section 4.7 outlines the Chapter’s conclusions.

4.2 System model

In this section, we give a brief overview of some of the existing models from the

literature of security of supply that will be using in this work. We denote random

variables with uppercase letters and constants with lowercase letters. Vectors will

use bold letters. We useX,W andD to denote random variables corresponding to

available conventional generation, renewable generation and demand respectively.

Furthermore, we define net demand, or demand net of renewables, as Y = D−W ,

and capacity surplus as Z = X − Y = X − (D −W ).

4.2.1 Single area system

Let the period of interest (say, a peak season) be divided into n segments ∆t,

usually expressed in hours. We will consider two risk indices, the loss of load

expectation (LOLE), which is the expected number of hourly1 shortfalls in the

1For simplicity, all results presented here are for an hourly time step, as per the available
data from GB – in N American terminology this corresponds to LOLH. The results generalise
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period, defined as

LOLE = E

[
n∑

t=1

I(Zt < 0) ·∆t

]
=

n∑
t=1

P(Xt < Yt) ·∆t, (4.1)

and the expected energy unserved (EEU), which is the expected amount of energy

not supplied, defined as

EEU = E

[
n∑

t=1

max{0,−Zt} ·∆t

]
. (4.2)

Here t indexes times in the future season or year under study. For the purposes

of statistical modelling, as in this Chapter, it is often more convenient to work in

a time-collapsed picture with the time-collapsed variable Z representing surplus

at a randomly chosen point in time in the peak season under study. For a system

such as that considered here, which does not have storage or other technologies

which link time periods in a similar way, the LOLE is then calculated as

LOLE = n · P(Z < 0) = n · P(X < Y ), (4.3)

and an analogous formula applies for EEU.

The most common means of estimating the distribution of net demand is

to use the forward-mapped empirical historic distribution as the distribution for

predictive risk calculations, sometimes referred to as hindcast (Zachary and Dent,

2014; Keane et al., 2011). The distribution of net demand is then given by

P(D −W ≤ y) =
1

T

T∑
τ=1

I(dτ − wτ ≤ y). (4.4)

where T is the number of observations in the historic record, τ indexes the historic

records, and historic demand and wind resource have been appropriately rescaled

to the future system scenario under study. This approach may also be interpreted

as estimating the risk conditional on a repeat of historic conditions in one or more

years.

Available conventional generation X is modelled in a time-collapsed fashion

as well, as outlined in Section 2.3.1, using historic data on outage rates. Within

the examples presented, risk indices that depend on the distribution of Z may

then be calculated by convolving the distributions of X and Y . However, a time-

sequential model would in general be needed to consider technologies such as

in a straightforward way to calculations for higher time resolutions.
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storage that link time periods in the calculations, even when only expected value

indices such as EEU and LOLE are evaluated.

4.2.2 2-area system

In a 2-area system, interconnection can make imports available to a system un-

der stress, up to the interconnection capacity, thereby reducing risk for both

systems. The impact of interconnection on the risk indices depends not only on

interconnection capacity and statistical dependence across areas, but also on the

shortfall-sharing policy, understood here as an agreement of how the intercon-

nector is used when one or both systems are under stress. Various policies have

been studied in the literature. For instance, (Tindemans et al., 2019) discusses

so-called veto and share policies, the former being that in which a power system

exports only spare available capacity, if any, while in the latter case shortfalls

are shared across areas according to an agreed rule. In the rest of this Chapter,

we assume a veto policy between both areas, as this will suffice to illustrate the

statistical approaches developed. If Z ∈ R2 is the bivariate pre-interconnection

vector of capacity surpluses/deficits across both systems, and there is an inter-

connector with capacity c ≥ 0 between them, the post-interconnection shortfall

region for area 1 under a veto policy can be divided in two subregions:

R1 ={Z ∈ R2 |Z1 < −c} (4.5)

R2 ={Z ∈ R2 | − c ≤ Z1 ≤ 0, Z2 < −Z1} (4.6)

which represent the cases where area 1 has a shortfall larger than interconnection

capacity, and the case of area 2 not being able to cover a shortfall in area 1,

despite the shortfall being smaller than interconnection capacity (see Figure 3.1a

for a depiction of these regions).

Under a snapshot model the two risk indices may be calculated as follows for

area 1:

LOLE =n · P(Z ∈ R1 ∪R2) (4.7)

EEU =n · E[−Z1 · I(Z ∈ R1 ∪R2)] (4.8)

where I is an indicator function. This is, there is only a shortfall in area 1 when

the pre-interconnection surplus vector Z is in R1 ∪R2. For area 2, the reasoning

is analogous with reversed indices.
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4.3 Extreme value theory

In terms of LOLE and EEU, virtually all of the risk is concentrated in the tails of

net demand, that is, it comes from the highest net demand values. As mentioned

before, this concentration is especially severe in empirical hindcast models of

net demand, where risk indices can be determined by a very small number of

historic records with the highest net demand observations. In order to alleviate

this problem, we turn to EVT-based models which provide a smooth parametric

alternative to hindcast models.

EVT is a branch of statistics that provides mathematically principled meth-

ods for making inferences about statistical properties of extreme events, including

those rare enough to be outside the historic record’s range. These models arise

as limiting behaviour of sample maxima or exceedances above progressively large

levels. EVT makes only mild regularity assumptions on the data while provid-

ing general results on extreme occurrences of random variables. It is widely

applicable and routinely used in fields from insurance to environmental sciences

(Beirlant et al., 2006; Coles, 2013). In this work we are interested in the threshold-

exceedance framework which we outline below. Then, we briefly discuss relevant

results in multivariate EVT.

The following section provides a brief overview of the concepts from EVT

that are relevant to this Chapter. We emphasise the reviewed content is not

new, and is in fact well known in the EVT community. For a more detailed (but

still concise) overview of these methods and concepts, see Appendix C.2; a full

treatment of these topics can be found at (Beirlant et al., 2006; Coles, 2013).

4.3.1 Univariate exceedances

A key result from EVT states that under mild assumptions on the distribution of

a random variable X ∼ F (x), exceedances over a threshold µ, given by the con-

ditional distribution X |X > µ, follow a Generalised Pareto distribution (GPD)

in the limit, as µ → ∞ (Coles, 2013). For the purpose of this work, this result

means that for an appropriately large threshold µ, net demand exceedances over

said threshold, conditioned on D − Y > µ, are well approximated by a GPD,

whose cumulative distribution function is given by

P(W ≤ w) = 1−
(
1 + ξ

(
w − µ

σ

))−1/ξ

+

, w > µ (4.9)

where ξ ∈ R and σ > 0, and reduces to an exponential distribution if ξ = 0.
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A semiparametric model for the full data range can then be constructed by

using the fitted GPD model for tail exceedances above the chosen threshold µ, and

the empirical data distribution F̂ below it. The full model can thus be written

as

F̄ (Z ≤ z) =

F̂ (z) z ≤ µ

F̂ (µ) + (1− F̂ (µ)) ∗ FGP (z) z > µ
(4.10)

where FGP is the fitted GPD. A model like this has already been applied to a

single-area power system using data from GB (Wilson and Zachary, 2019).

4.3.2 Asymptotic dependence and multivariate EVT

When dealing with extremes of multiple random variables, as is the case in a two-

area system, EVT also provides a framework to measure the degree of association

between different components at extreme levels, which in our problem directly

influences the utility of interconnection in terms of security of supply.

A central concept in this context is asymptotic dependence, which quantifies

the degree to which extreme values of different components occur together. Con-

sidering that the choice of marginal distributions does not affect the dependence

structure between random variables, and that the marginals can be chosen by ap-

plying a particular transformation to each random variable, we assume without

loss of generality that Y1, Y2 are standard Frechet random variables with marginal

CDF F (y) = exp(−1/y), y > 0. Then, we define the χ statistic as

χ = lim
y→∞

P (Y2 > t |Y1 > y) (4.11)

The variables are asymptotically dependent if χ > 0, and asymptotically

independent otherwise. Asymptotically independent variables can still exhibit

strong dependence at non-extreme levels, with dependence vanishing only in the

tails. An example of this is the bivariate normal distribution with correlation

−1 < ρ < 1 whose components can be proven to be asymptotically indepen-

dent, regardless of ρ (Beirlant et al., 2006, p. 285). Determining the presence

of asymptotic dependence is important in devising an appropriate model for the

data. There are many well studied parametric models for asymptotically depen-

dent data, while asymptotically independent data may require semiparametric or

non-parametric modelling approaches instead, as done in (Heffernan and Tawn,

2004).

Although a useful theoretical concept, precise estimation of χ is not straight-

forward, and typically visual inspection of empirical approximations are used to
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assess asymptotic dependence. A related statistic that is more amenable to nu-

merical estimation is the coefficient of tail dependence η (Beirlant et al., 2006,

p. 345); this is bounded by 0 ≤ η ≤ 1, and is defined by making an additional

assumption in the context of (4.11), namely

P(Y1 > y, Y2 > y) = L(y) · P(Y1 > y)1/η, y > 0 (4.12)

where L(x) is a slowly varying function, that is, L(yz)/L(y) → 1 as y → ∞ for

all z > 0. Intuitively, slowly varying functions become flat rapidly (in a precise

sense) as y → ∞ (note that L does not necessarily converge, e.g. L(z) = ln(z)).

This class of functions arise in many important results from the theory of extreme

values, and (4.12) has been shown to be valid for a broad range of conditions and

models (Ledford and Tawn, 1997; Heffernan, 2000). Here, η describes the type of

dependence and L(y) its strength within the dependence type given by η. We have

η = 1 whenever χ > 0, and 0 ≤ η < 1 otherwise, thus characterising the presence

of asymptotic dependence; furthermore, we can estimate η by maximum likeli-

hood as the shape parameter ξ in (4.9) from the transformation Z = min{Y1, Y2}.
In practical terms, this allows us to estimate η for our net demand data y1, ..., yt

by transforming it to approximate standard Frechet margins using the trans-

formation vi = 1/(1 − F̄ (yi)), i = 1, ..., n for the net demand samples of each

individual system, with F̄ as in (4.10), and using the component-wise minima

of the transformed data zi = min{v(1)i , v
(2)
i }, i = 1, ..., n, where superscripts cor-

respond to each of the systems. Moreover, likelihood estimation of η allows for

measuring estimation uncertainty, which will be useful later in this work.

4.3.3 Models of extremal dependence

Models of statistical dependence can be described using copula functions. A

copula is a multivariate distribution with uniform marginals in [0,1], and can be

constructed for any given distribution simply by transforming its marginals to

standard uniform. Sklar’s theorem states that any multivariate distribution can

be written in terms of its univariate marginal distribution functions and a copula

function (Sklar, 1959).

Copulas arising from dependence between extremes are called extreme value

copulas. More specifically, C∗(u) is an extreme value copula if there is a copula

C(u) such that

C∗(u) = lim
n→∞

(
C(u1/n)

)n
(4.13)

This means the copula between component-wise sample maxima from C(·) con-
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verges to C∗(·) as the sample size goes to infinity, and we say that C(·) is in the

domain of attraction of C∗(·). Sometimes it is more convenient to characterise

extreme value copulas through their Pickands dependence function A(t), 0 ≤
t ≤ 1 (Beirlant et al., 2006, p. 285). This is a convex function bounded by

max{t, 1− t} ≤ A(t) ≤ 1, and has a one to one relationship with C∗(u). For its

precise definition and relationship to extreme value distributions, see Section C.2

and Definition 6 in the Appendix. In the two-dimensional case any function with

these characteristics induces an extreme value copula, and we can write

C(u, v) = (uv)A(log(v)/ log(uv)) (4.14)

From the above we can see that A(t) = 1 produces independent components.

Conversely, A(t) = max{t, 1− t} produces perfectly dependent components.

One of the simplest parametric model of extremal dependence is the so called

logistic model, defined by

A(t) =
(
t1/α + (1− t)1/α

)α
, α ∈ (0, 1] (4.15)

This Pickands function induces a Gumbel-Hougaard copula, given by

C(u, v) = exp
(
−
(
(− log u)1/α + (− log v)1/α

)α)
, α ∈ (0, 1] (4.16)

which has been shown to arise as an extremal dependence structure from a wide

family of copulas in the underlying distributions (Gudendorf and Segers, 2010).

However, from (4.15) we see that this model entails symmetry in A(t) in the sense

that A(1/2− t) = A(1/2+ t) for all 0 ≤ t ≤ 1/2, which is not always appropriate.

A more flexible generalisation of this model is the asymmetric logistic model

whose Pickands function in the bivariate case is given by

A(t) = (ψ2 − ψ1)t− ψ2 + 1 +
(
(ψ1t)

1/α + (ψ2(1− t))1/α
)α

(4.17)

with 0 ≤ ψ1, ψ2, α ≤ 1. This reduces to the logistic model if ψ1 = ψ2 = 1, and to

independence if α = 1 or ψ1 = 0 or ψ2 = 0.

Another advantage of working with Pickands functions is that they provide a

way to visually inspect the goodness of fit of a model for extremal dependence by

comparing the fitted model’s Pickands function to the empirical approximation

induced by the data, as in Fig. 4.4.

Note that most if not all parametric models of extremal dependence make

the assumption of asymptotic dependence. This is because the only possible
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limiting behaviour from asymptotically independent copulas is full independence.

This means that for, say, normally distributed data with correlation −1 < ρ <

1, the dependence between components weakens at progressively more extreme

levels and disappears completely in the limit, which severely reduces the utility of

parametric, asymptotic approximations in the case of asymptotically independent

data. However, many useful semiparametric approaches have been explored; see

(Heffernan and Tawn, 2004).

4.4 Data

Wind data were obtained from (Staffell and Pfenninger, 2016). They consist of

hourly wind capacity factors based on atmospheric reanalysis data and the lo-

cations of installed generation on January 2015, and for this work it has been

rescaled to a total wind capacity of 3 GW in IRL and 15 GW in GB. Different in-

stalled wind capacities can be obtained for purpose of numerical experimentation

by rescaling by a constant factor.

Demand data consist of hourly measurements for the peak seasons of 2007

to 2013 for both systems; GB demand data was obtained from (Staffell and

Pfenninger, 2018) while data for IRL was provided by Baringa Ltd. The data has

been standardised by rescaling each peak season by their corresponding Average

Cold Spell estimates as in reference (National Grid, 2017a) to correct for external

factors such as economic growth but preserving variation due to weather patterns

(Wilson and Zachary, 2019). Subsequently, all normalised peak seasons were

again rescaled to fix the average seven-year period LOLE to three hours per year.

Capacity and failure probability data for conventional generating units in

Ireland were developed by Baringa Ltd for the Irish Single Electricity Market

Committee in 2016, and are publicly available at (Baringa Ltd, 2016). In the case

of Great Britain, data were provided by National Grid, and were anonymised to

protect its sensitivity; we take the anonymised data as representative of the real

system.

Finally, in this work, we refer to each historic peak season in the data by

the year at which the season started, so for example we refer to the 2007-2008

winter just by 2007. We illustrate results on a subset of years in the body of the

Chapter; the full series of plots for all years is shown in Appendix C.1.
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4.5 Modelling net demand

As mentioned above, we assume that available conventional generation is inde-

pendent between the systems, and so statistical association in capacity surpluses

or deficits comes entirely from net demand across areas. The main motivation

in looking for a smooth alternative to a hindcast net demand model is its ten-

dency to produce risk estimates that are almost entirely determined by a very

small number of points. Figure 4.1 shows the concentration of LOLE in the

highest net demand observations for each season under a hindcast model. For

instance, for 2011 in GB roughly 80% of the estimated pre-interconnection LOLE

comes from just eight observations. Moreover, this concentration is exacerbated

in post-interconnector calculations, particularly for IRL which is smaller relative

to interconnection size. The use of smooth, parametric models in the regions of

interest could offer a more balanced alternative.
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Figure 4.1: Attribution of pre-interconnection (green) and post-
interconnection(purple) LOLE proportion for the highest net demand measure-
ments in each peak season under a hindcast net demand model. For instance,
just three demand measurements virtually determine post-interconnection LOLE
in 2012 for IRL (lower right corner).

As the influence of net demand on shortfall risks is almost completely limited

to the upper tail of net demand data in both systems, i.e., from the highest

values of (demand minus available wind), this section describes the application

of methodology from the theory of extremes to model net demand tail events in
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the two-area system, modelling each peak season separately but using the same

methodology for all of them. Then, we compare risk estimates of this model to

those of an empirical (hindcast) model of net demand. All of this was done using

a bespoke Python package riskmodels which is publicly available through the

PYPI repository (Sanchez, 2022).

4.5.1 Parametric models for net demand extremes

4.5.1.1 Fitting GPD tail models

We first fit univariate Genralised Pareto distributions for each system using the

largest net demand observations in the peak season under consideration; in order

to set exceedance thresholds, we follow the approach described in (Coles, 2013)

using mean residual life plots, concluding that 95% quantile thresholds are appro-

priate for both areas in all individual peak seasons; then, using the exceedances

above said thresholds we fit generalised Pareto models. For both areas and all

peak seasons we observe negative fitted shape parameters (ξ in (4.9)); this means

net demand data has light tails in the sense that the fitted models have a finite

upper endpoint. Fig. 4.2 shows Q-Q plots for the fitted tail models in both areas.

We observed similar goodness of fit for net demand in all years. Finally, fitted

parameters are shown in Table 4.2.
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Figure 4.2: Q-Q plots for tail models in both areas. Data shown are exceedances
above the 95% quantile threshold for each peak season, and the fitted models are
generalised Pareto distribution.
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4.5.1.2 Testing for extremal dependence in net demand

Common visual diagnostic based on empirical estimates for χ were consistent

with the hypothesis of asymptotic dependence for all years except 2011 and 2012

(Figure C.1); for the latter, confidence bounds for empirical estimates of (4.11)

contained 0 for some of the largest quantiles. We also attempt to obtain a nu-

merical assessment of this hypothesis by performing a Bayesian ratio test on the

coefficient of tail dependence η (Section 4.3.2) using the 95% quantile as thresh-

old for both systems. As the hypothesis of asymptotic dependence consists of a

single point in the hypothesis space, namely H0 : η = 1 vs H1 : η ̸= 1, η ∈ [0, 1],

we calculate the Savage-Dickey ratio r, defined as the ratio between the posterior

and prior densities for the value of interest (Chen, 2005; Wagenmakers et al.,

2010), in this case η = 1. This can be thought of as the limiting value of a Bayes

ratio test when the null hypothesis subset shrinks to a single point; the test value

itself, r, equals the ratio of posterior to prior odds for H0 (Dickey and Lientz,

1970).

Year ratio
2007 7.24
2008 1.6
2009 4.75
2010 2.55
2011 2.79
2012 0.15

Table 4.1: Results for the Savage-Dickey ratio test described Section 4.5.1.2 for
each peak season of net demand

To perform the test, we set P(H0) = P(H1) = 0.5 and use a Jeffreys prior on

both parameters η and σ; Jeffreys priors are invariant under reparametrisation

(Castellanos and Cabras, 2007), which makes them a robust choice when no

additional information is available. We restrict η to [0, 1] and treat σ > 0 as a

nuisance parameter. Under this setting, r values larger than 1 make H0 more

credible than the alternative, and we find this to be the case for all individual

years except 2012 (Table 4.1). Note that even though some values might appear

to provide only weak evidence for H0, the fact that it is at the very edge of the

hypothesis space might make the posterior converge slowly to H0 even when it is

true, and indeed we observed similar values for r when using synthetic data for

which H0 was the correct choice (Figure 4.3). The use of uniform priors did not

alter the conclusions of the tests, and we thus conclude asymptotically dependent

extreme value models are appropriate for our net demand data.
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Figure 4.3: Results of the Savage-Dickey test described in Section 4.5.1.2 on a
peak season’s worth of synthetic data with logistic dependence (Equation 4.15).
The test correctly identifies the existence of asymptotic dependence in most sce-
narios, but posterior odds remain relatively low; some false negatives occur for
α = 0.9, the closest tested value to asymptotic independence, i.e., α = 1.

Lastly, as asymptotic dependence was the favored hypothesis for all other

years, for the sake of simplicity we use the same model for 2012 too, rather than

alternatives such as (Heffernan and Tawn, 2004). There is further discussion

of the validity of this model of asymptotic dependence in Section 4.6.1 (which

considers dependence between surpluses, as opposed to the net demands studied

here).

4.5.1.3 Fitting the dependence model

To fit the dependence models we use the same modelling thresholds as for the

marginal exceedance models, and we consider logistic and asymmetric logistic

dependence (Section 4.3.3). A visual comparison of the empirical Pickands ap-

proximation induced by joint exceedance data (as calculated in (Hall and Tajvidi,

2000)) against those of the models fitted on joint exceedances (Fig. 4.4) suggests

that both models provide an appropriate descriptions of the data, except for

2008 where the asymmetric logistic produces a better fit. However, the effect of

the choice between these two models turns out to be minimal in the consequent

results, and so we choose a logistic model for parsimony.

Lastly, the model is fitted in all of the exceedance region, i.e., that in which

at least one exceedance in the two areas occur. Fitted dependence parameters

are shown in Table 4.2.
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Figure 4.4: Comparison of the fitted logistic (teal) and asymmetric logistic (yel-
low) Pickands functions to the empirical Pickands function (red) for each peak
season.

4.5.1.4 The fully fitted model

Given a sample of net demand data y1, ...,yn ∈ R2 and a quantile threshold

q ≈ 1 (corresponding to the modelling threshold µ in Section 4.3.1), the steps

below summarise the fitting and sampling process for the final bivariate model

used hereafter. Note that for data samples, component indices are denoted as

superscripts and sample indices as subscripts:

1. Fit the semiparametric model in Eq. (4.10) for each component (i.e., for

each single-area system). Let us call the CDF functions of the fitted uni-

variate models’ F̄1(y), F̄2(y).

2. Project samples to copula scale u1, ...,un ∈ [0,1] where

ui =
(
F̄1

(
y
(1)
i

)
, F̄2

(
y
(2)
i

))
Define Û as the empirical copula of the projected sample, q = (q, q) and

κ = 1− P
(
Û ≤ q

)
= P(Û ≰ q)

3. Let U be the parametric copula given by Eq. (4.16), and fit the conditional

tail model U |U ≰ q to projected data in Step 2 in the region u ≰ q. Note
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that in general the CDF of a conditional model of the form U |U ≰ q can

be written as

FU |U≰q(u) =
FU(u)− FU(min{q,u})

FU(q)
, u ≰ q

Where min{∗} is applied component-wise. The density of this conditional

model is proportional to the unconditioned model, and so maximising likeli-

hood is straightforward. As the fit is performed only with data in the region

u ≰ q, the fitted parameters are those that better represent dependence at

the tails; the fitted model only cover said region, and the case for u ≤ q is

addressed below.

4. We now define the full semiparametric copula model Ū along the same lines

of Eq. (4.10); in this case its CDF is given by

FŪ (u) =

FÛ (u) if u ≤ q

FÛ (min{q,u}) + κ · FU |U≰q(u) if u ≰ q

5. Sample ū1, ..., ūn from Ū and map to original scale ȳ1, ..., ȳn by doing

ȳi =
(
F̄−1
1

(
ū
(1)
i

)
, F̄−1

2

(
ū
(2)
i

))
The components of the semiparametric distribution Ū are sampled accord-

ing to their probability mass, i.e., 1 − κ for Û and κ for U |U ≰ q. The

former is an empirical copula and is straightforward to sample. The latter

is more complex, but in the case of a two-dimensional Gumbel copula cor-

responding to a logistic model, this can be done efficiently by using inverse

transform sampling (Fishman, 1996) as follows: let U+ = max{u1, u2} and

U− = min{u1, u2}, then sample u+ from U+ |U+ > q and then u− from

U−|U+ = u+; finally, one of the resulting vectors (u+, u−) and (u−, u+)

is chosen at random. For the copula corresponding to (4.17) the method

described can be used as a basis for sampling too, since an asymmetric lo-

gistic model can be sampled as elementwise maxima of independent logistic

models (Stephenson, 2003). However, for more than 2 dimensions or dif-

ferent copulas, other sampling methods might be required. Once data are

sampled, they can be projected back to the original data scale using the

numerical inverse functions of (4.10) for each component.

In other words, the fully fitted model is semiparametric and comprises the
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empirical data distribution for the non-extreme region Y ≤ µ, with threshold

vector µ given in Table 4.2, and a parametric exceedance model defined on the

region Y ≰ µ. The model’s marginal distributions are as in (4.10) with fitted tail

parameters as in the referenced table, and dependence in the exceedance region

is given by the fitted copula.

season GB (µ, σ, ξ) IRL (µ, σ, ξ) dependence (α)
2007 (43.18, 2.78, -0.33) (6.96, 0.37, -0.08) 0.53
2008 (44.7, 2.58, -0.31) (7.3, 0.5, -0.21) 0.51
2009 (45.42, 2.05, -0.23) (7.44, 0.48, -0.28) 0.47
2010 (45.4, 2.9, -0.3) (7.54, 0.5, -0.18) 0.46
2011 (43.91, 2.66, -0.26) (6.7, 0.52, -0.2) 0.56
2012 (45.43, 2.41, -0.26) (7.08, 0.47, -0.21) 0.6
2013 (42.45, 2.48, -0.36) (6.85, 0.53, -0.27) 0.5

Table 4.2: Table with fitted model parameters for all peak seasons. GB and
IRL columns show the fitted parameters for the respective univariate exceedance
distributions; µ, σ are in GW, and µ correspond to the 95% quantile in all cases.

4.5.2 Comparison to hindcast net demand models

In this subsection, we compare LOLE estimates from the modelling methodology

described in previous subsections to those from the hindcast model (4.4).

To make this comparison more relevant in the context of growing renewables

penetrations and market integration, we perform numerical experiments using an

interconnection capacity of 2 GW and a wind generation capacity of 2.5 times

that from installed in 2014 (i.e., installed wind capacities of 7.5 GW for IRL and

38 GW for GB). The distribution of surplus in each system is then shifted to

keep the pre-interconnector value of LOLE averaged across all seven years at the

initial level of 3 h/y.

Both a hindcast and a semiparametric logistic methodology are used to model

net demand data in each of these scenarios, and the resulting risk estimates are

compared below.

4.5.2.1 Comparison of LOLE estimates

Fig. 4.5 shows post-interconnection LOLE estimate for both areas; because the

integral in (4.7) cannot be calculated exactly for the fitted tail models, Monte

Carlo estimates are used instead, and corresponding confidence bands for the

central estimate are shown in blue (results for all years and both areas can be
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Figure 4.5: Comparison of LOLE estimates from hindcast (orange) and logistic
(blue) models. Because estimation from a logistic model requires Monte Carlo
simulation, 95% confidence bands for its central estimate are shown.

seen in Figures C.4 and C.5). As these results consider the contribution of in-

terconnection, LOLE values are generally low, particularly for Ireland where the

system is smaller relative to the capacity of interconnection. However we can ob-

serve large relative differences between model estimates at both areas, e.g. years

2011, 2012 for GB and 2008, 2012 for IRL. Furthermore, for 2011 in GB and 2008

in IRL, both models suggest diverging risk estimates as more wind is installed.

While the difference between the hindcast and EVT results are not very great

for the highest risk year (2010), there are substantial differences in some of the

higher risk years (2012 in GB, 2008 in Ireland), demonstrating how the effect of

smoothing the tail can be material in practical risk calculations.

Lastly, the next Section contains a discussion on different attempts to compare

both net demand models in terms of output quality and estimation variability.

However, results were inconclusive, and it was not clear whether a fair comparison

was even possible in this regard, as it would most likely need a credible generative

probability model for net demand traces, which if existed would obviate the need

for either of the tested models in adequacy calculations. Conversely, although fair

comparisons between both models can be made on synthetic data sets, it is not

clear how to evaluate whether these data sets are representative of net demand

data in an appropriate sense; however, the discussion is included for the sake of

completeness.
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4.5.2.2 On the comparison of estimation variability between hindcast

and EVT-based net demand models

Figure 4.5 shows that both models can produce visibly different risk estimates

in some scenarios, as well as different trends on the evolution of LOLE as more

wind capacity is installed. Investigating which model offers more accurate risk

estimates is thus a valid undertaking. We already saw that hindcast LOLE es-

timates tend to be based on very few historic observations (Figure 4.1), which

would point to high output variability. Parametric models of extremal depen-

dence can help on smoothing out this coarseness, but we have also seen that

determining the existence of asymptotic dependence (which enables the justified

use of said models) is difficult and there is a risk of dependence type misspecifi-

cation, which would produce an overestimation or underestimation of risk; this

is in addition of possible model misspecification errors within the correct type of

extremal dependence.

Making a valid comparison between the models is not straightforward, as it

is not possible to obtain different realisations of a given set of winter conditions

with which this can be done directly. In this section we attempt to assess model

output quality by using synthetic net demand data sampled from an appropriate

’ground truth’ net demand distribution, repeatedly computing outputs from both

models using these synthetic peak seasons and assessing their output mean and

confidence bounds around it; we compare these outputs to the ’ground truth’

risk, e.g. the risk induced by the ground truth net demand distribution. Thus,

for the following experiments we select generative ’ground truth’ distributions

from which 500 realisations of synthetic peak seasons are simulated, all of which

are used to produce output LOLE values from both models. In the case of

logistic semiparametric models, they are fitted from scratch for each simulated

peak season following the methodology outlined in previous sections. However,

we found that devising an appropriate ground net demand distribution to make

a valid comparison turned out to be more difficult than anticipated; below we

describe the approaches we tried.

We first use the fitted semiparametric net demand model from the previous

section as ground truth model. We note that this is a time-collapsed model, i.e., it

produces i.i.d samples and as such it is not representative of real net demand data,

which exhibits a high degree of autocorrelation. However, it can be argued that

this model preserves the most important features to reproduce the behaviour of

net demand data in a relevant sense, e.g. tail behaviour and extremal dependence.

Asymptotic guarantees from EVT would arguably also make this choice relatively
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uncontroversial regarding marginal distributions. The lack of autocorrelation

structure would likely make estimation variability appear artificially small, but it

is likely that this phenomenon is of similar magnitude across both models, thus

i.i.d data would still be valid to explore relative differences between models.
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Figure 4.6: Comparison of sampled post-interconnection LOLE estimates for
hindcast (orange) and logistic (blue) models, for sampling distributions based on
different years in the historic record. Solid lines show average estimated LOLE,
while filled sections show 95% confidence bands. While both models recover
the true sampling distribution’s LOLE (black dotted line) on average, hindcast
models show consistently higher estimation variability.

Figure 4.6 shows the results for this experiment based on different years for the

ground truth model; 95% confidence bounds are shown (results for all years and

both areas can be seen in Figures 4.9 and 4.10), representing the variability across

the 500 samples drawn. Taking these bounds as a measure of the corresponding

estimation variability, we observe higher hindcast-based variability across all years

and scenarios. Moreover, the relative difference for some years is considerable,

particularly for Ireland, whose size is smaller relative to interconnection capacity.

For instance, results for 2012 in IRL show 40% more variable hindcast estimates

compared to a logistic model, with a considerably higher upward bias; this was

also true for 2007, which is not shown here.

There is a significant problem with the experiment above, however, which is

implicitly assuming there is no model misspecification whatsoever, i.e., the ground

truth model belongs to the same parametric family than one of the models be-
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(a) First approach. Synthetic peak sea-
sons are assembled by a blocked sam-
pling approach from multiple historic
peak seasons

Synthetic peak season

Historic peak season

(b) Second approach. Single peak sea-
sons are recombined through week-long
block sampling. Sampled blocks can
overlap.

Figure 4.7: Diagrams showing how blocked bootstrap sampling was performed in
experiments from section 4.5.2.2

ing tested, which could make the comparison unfair, even if a hindcast model is

entirely non-parametric. For this reason, our second experiment tries instead a

blocked bootstrap approach using historic net demand data. Each historic peak

season in our data consists of 20 consecutive weeks. With this in mind, two

approaches were tried: in the first one, synthetic peak seasons were randomly

assembled by choosing each of its 20 week blocks uniformly at random from the

corresponding blocks of historic peak seasons (Figure 4.7a). Nevertheless, this

incurs in issues related to mixing winter conditions from different years, compli-

cating the interpretation of any takeaways from this experiment. For instance,

we have seen in Figure 4.4 and Table 4.1 that different peak seasons likely exhibit

slightly different extremal dependence structures. Thus, the mix of different peak

season data would likely result in a mixture dependence model unrelated to any

relevant physical process. The second approach, on the other hand, performs

week-long blocked resampling from within a given peak season, uniformly sam-

pling 20 one-week periods (not necessarily aligned to calendar weeks; see Figure

4.7b).

The second approach avoids the mentioned issues from mixing different winter

conditions, and emulates the within-peak-season autocorrelation structure to a

certain degree. Results for this experiment using 500 synthetic peak seasons are

shown in figure 4.8 (results for all years and both areas can be seen in Figures 4.11

and 4.12). In this case we observe significantly more variability from logistic mod-

els than for hindcast models. However, direct comparison of confidence bounds

might not be entirely appropriate due to the fact that there are also significant
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Figure 4.8: Comparison along the same lines of figure 4.6 for a blocked bootstrap
resampling of each of the displayed peak seasons. In blue, results for logistic model
outputs; in yellow, results for hindcast model outputs. Dotted black line shows
estimated risk from ground truth model; shaded regions denote 95% confidence
bands.

differences in the models’ mean risk estimates (in other words, a standard error

of, say, 0.5 denotes a different degree of uncertainty for a mean value of 3 than

for a mean value of 0.6). In fact, mean estimates in said figure for both models

are exactly those from Figure 4.5. this suggests that this experiment may now be

biased towards the hindcast model, as the ground truth distribution reproduces

its results exactly. This makes sense, as it is essentially re-sampling historical

observations, but again complicates any conclusion on comparing the quality of

outputs from both models.

From the last two experiments, it looks like designing a credible, unbiased

ground truth net demand distribution would require significantly more work than

any of the simple models tried above. We explored using linear and non-linear

models to de-trend net demand, using the resulting mean trends together with

randomly sampled residuals to produce synthetic peak seasons. However, diag-

nostic plots revealed that a good deal of residual autocorrelation persisted in

both cases. It is possible that autocorrelation has some impact on risk (as in

reality autocorrelation would be driven partly by weather patterns such as cold

spells). Moreover, post-interconnection LOLE from these models were somewhat

different than those from original data and so it was not entirely clear to which
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degree these models were a valid representation of net demand data.

Despite not being able to get conclusive results on comparing model output

quality, we believe EVT models offer a more mathematically principled approach

to risk management than hindcast models, and provide aditional functionality

such as calculation of probabilities beyond the data range. Even for peak seasons

in which it is not sufficiently clear whether a model for asymptotic dependence is

the most appropriate one, outputs from an EV-based model like the one developed

in this section could be used as a credible upper bound on post-interconnection

risk.
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Figure 4.9: Model output comparison (all years) for GB in the logistic ground
truth model experiment as outlined in Section 4.5.2.2.

4.6 Statistical dependence in capacity surpluses

Having developed a model for extreme net demand events in the two-area system

in the previous section, we now turn our attention to statistical dependence in

capacity surpluses, i.e., between the values of (available supply minus demand)

in the two areas. The analysis in the previous section demonstrated a strong

association in extreme net demand co-occurrences, however each of these net

demands is convolved with the available conventional capacity in the relevant

area, and the available conventional capacities are assumed independent. It is

thus natural to think that in some relevant sense the dependence may be weaker
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Figure 4.10: Model output comparison (all years) for IRL in the logistic ground
trugh model experiment as outlined in Section 4.5.2.2.
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Figure 4.11: Model output comparison (all years) for GB in the blocked bootstrap
experiment as outlined in Section 4.5.2.2.

for power surpluses than for net demand.

We work with the negative of capacity surpluses, treating shortfalls as maxima

instead of minima to make results from EVT immediately applicable. To avoid

any confusion we call this the shortfall distribution, and negative values simply
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Figure 4.12: Model output comparison (all years) for IRL in the blocked bootstrap
experiment as outlined in Section 4.5.2.2.

indicate the non-occurrence of a shortfall.

4.6.1 Characterising statistical dependence

We proceed in a manner similar to the analysis of net demand in Section 4.5,

performing the same Bayesian ratio test as in Section 4.5.1.2 to determine whether

asymptotic dependence is present, resulting in a Savage-Dickey ratio of r < 10−3

for all years and a wide range of quantile thresholds between 80% and 99.99%.

This provides strong direct evidence of capacity shortfalls being asymptotically

independent across areas.

The evidence for asymptotic dependence between the two net demands was

not as definitive as this evidence against for capacity shortfalls, but the difference

in r for the two cases clearly demonstrates stronger tail dependence for the net

demands as compared to the surpluses. This would appear to confirm the intu-

ition that the convolution with the (independent) conventional plant distributions

should weaken the dependence between the systems – and provides some further

justification for the use of the logistic model for the earlier cases even where the

evidence for asymptotic dependence was relatively weak.

Extreme value copulas like the ones used on net demand data are not appro-

priate to model asymptotically independent data. However, as was said in Section

4.3.2, Gaussian copulas provide a simple parametric example of an asymptotically
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independent copula, and we test this as a dependence model for joint exceedances

of the shortfall distribution, finding that it is a good fit for all peak seasons and

tested thresholds between 80% and 99.99%. Fig. 4.13 shows the comparison be-

tween contour lines for each decile of the empirical and fitted Gaussian copula

for a threshold of 80%.

We note that Gaussian copulas are not typically used to model extremal

dependence in the EVT literature because they are not an extreme value copula in

the sense of Equation (4.13). Our choice here is instead based on practicality, as

it provides a simple parametric model that accurately describes tail dependence

in the capacity shortfall distribution.

Based on this evidence, we proceed as with the net demand model and use

a Gaussian copula to describe dependence between exceedances at both com-

ponents, defining an exceedance as a shortfall in the corresponding component.

The modelling region is illustrated in Fig. 4.14b. The quantile threshold in this

case was much higher than for net demand, as shortfalls occur with a probability

of approximately 0.001% in each area, due to the LOLE normalisation to three

hours per year over the whole seven-year period.
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Figure 4.13: Contour lines for cumulative probability functions of empirical (or-
ange) and fitted Gaussian copulas (blue); the first nine deciles are shown. The
data consisted of 2500 simulated joint shortfalls.

The difference between the regimes of tail dependence in net demand and

the shortfall distributions can be more clearly seen in Fig. 4.14: the net demand

distribution’s tails are much more concentrated around the diagonal of the graph
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Figure 4.14: Hex-binned net demand and capacity shortfall distribution scatter-
plots for 2010. The modelling thresholds, which delimit the modelling region
(shaded orange) are shown as dashed lines. Points in the modelling regions were
simulated from the fitted models.

than those of capacity shortfalls. A consequence of this is that simultaneous

shortfalls occur rarely relative to shortfalls in just one region, whereas there is a

much stronger tendency for extremes of net demand to occur in both areas at the

same time. Fitted dependence parameters for this model are given in Table 4.3.

season ρ
2007 0.68
2008 0.7
2009 0.69
2010 0.76
2011 0.7
2012 0.66

Table 4.3: Fitted values for Gaussian exceedance dependence model.

We note that these observations about dependence between deficits in the two

areas follows in substantial part from the assumption of independence between

available conventional capacities in the two areas. This assumption is usually

made in practical calculations, though it must be caveated if there is a possibility

of a common cause event affecting units in both systems – for instance restriction

on primary fuel supply, or elevated failure rates in certain weather conditions as

in (Murphy et al., 2018, 2020). Nevertheless, these results around asymptotic

dependence are helpful in understanding outputs of present risk calculations, and

it seems reasonable to think that even where common cause events are relevant
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the influence of conventional plant will weaken the tail dependence between the

distributions of deficit in the two areas as compared to the dependence between

net demands.

4.6.2 Sensitivity of risk metrics to dependence strength

Having a single-parameter dependence model for the shortfall region in the ca-

pacity shortfall distributions makes it straightforward to perform a sensitivity

analysis of LOLE and EEU to statistical dependence strength between the ca-

pacity surpluses at both areas. Fig. 4.15 shows the results of the sensitivity

analysis using all available historic data. The dependence of the LOLE level is

quite weak at low values of ρ, with the estimated risk level only increasing signif-

icantly above the ‘independence’ limiting case forρ above about 0.5; as the latter

approaches 1, LOLE values approach pre-interconnection levels.
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Figure 4.15: Sensitivity of each metric (LOLE and EEU) to dependence strength,
in both areas; the dotted line represents the estimated dependence parameter in
the GB-IRL system.

Lastly, we also perform a sensitivity analysis for the equivalent firm capac-

ity (EFC) of interconnection and of new non-local conventional generating units

that are installed on the other end of the interconnector, looking at how their

EFC depends on the strength of statistical dependence between capacity deficits

across areas and using LOLE as the risk metric with which this is computed (see

(Zachary and Dent, 2012) for a more detailed overview of capacity value met-

rics). While for the area where new generation is being installed, a new unit’s
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Figure 4.16: Sensitivity of EFC for interconnection and new generating units
installed outside each system (i.e., on the other side of the interconnector); the
dotted line represents the estimated dependence parameter in the GB-IRL system.

EFC equals its expected available capacity at a randomly chosen point in time

when measured through LOLE, for the area at the opposite side this depends

on multiple factors such as each system’s installed capacity background, their

shortfall-sharing policy and interconnection capacity. Moreover, this can be use-

ful to quantify from the point of view of capacity market operations, e.g. if

generating units from other systems were allowed to participate in local capacity

auctions. To demonstrate this we assume a nameplate capacity of 100 MW and

an availability probability of 95% for the new unit. The results of the analysis

are shown in Figure 4.16b.

We can see in Figure 4.16a that for systems with statistically independent

capacity deficits, interconnection’s EFC equals 1 GW, i.e., the assumed intercon-

nection capacity in these experiments. This is a consequence of the fact that

under this scenario, available imports can saturate the interconnector whenever

one of the areas experience a capacity deficits, as simultaneous occurrences of

low capacities are extremely unlikely. As statistical dependence grows, the EFC

is reduced at a roughly constant rate, until being close to zero for ρ = 1. It is

interesting to note that for a range of values roughly around 0.5 for the depen-

dence parameter ρ, interconnection’s EFC is visibly larger for GB than for IRL;

this could be a reflection of the fact that capacity shortfalls in IRL on average

require less assistance from GB than vice versa simply because of the difference

in system size.
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It is to be expected that in Figure 4.16b the EFC of the new non-local gen-

erating unit (e.g. at the other side of the interconnector) initially increases for

both areas as statistical dependence become stronger. This is because systems

with statistically independent capacity surplus/deficits would be very likely to

have enough spare capacity to completely mitigate a capacity shortfall in the

other area or saturate the interconnector, following the same argument as above.

Thus, for statistically independent systems new non-local capacity would make

little difference to the already considerably reduced post-interconnection risks.

As dependence strength increases, this start to change, and additional non-local

generation start to become more valuable.

The peak and subsequent decrease in EFC for new Irish generation from

the point of view of GB is likely due to the fact that in our experiments IRL

has a slightly larger LOLP than GB; this means that as ρ → 1 and capacity

deficits at both systems start to become perfectly dependent, the Irish system

would start experiencing shortfalls whenever the British system does, but not the

other way around, and consequently newly installed Irish capacity would have a

progressively smaller impact on GB under a veto policy, since any new unit would

be completely used up by Irish demand at times when GB might benefit from

them; hence, ρ = 1 would imply EFC = 0 from the point of view of GB (note the

plotted values only reach ρ = 0.99).

The EFC for new generating units in GB from the point of view of IRL has a

milder slope than vice versa in Figure 4.16b. This is likely a consequence of the

difference in system size. The GB system is already large enough to substantially

reduce shortfalls risks in IRL by means of exported capacity, so new generation

in GB will have a smaller effect in IRL than the other way around. As ρ→ 1, the

argument from the previous paragraph would also explain the sudden increase in

EFC for new units in GB.

4.7 Conclusion

This Chapter has presented approaches to statistical modelling of net demands

and of capacity shortfalls in two area power systems. The general approach is to

assess whether the quantities of interest are asymptotically dependent, and then

to choose an appropriate bivariate model based on this assessment.

In the case of net demands, the tests are consistent with asymptotic depen-

dence, though this conclusion is not very definitive. Other diagnostics do also

suggest that an extreme value copula with asymptotic dependence provides a
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good fit to the empirical dependence structure. The resulting smoothing of the

sparse extreme region of the empirical distribution of net demand can change

risk calculation results substantially, with a possible explanation being that the

calculation results involving the empirical distribution are driven by a very small

number of historic records.

We also demonstrate how the dependence structure of capacity shortfalls in

the two areas may be modelled directly. In this case there is very strong evidence

against asymptotic dependence, and we find that a Gaussian copula describes

this behaviour appropriately in this case. This contrast in the assessment of

asymptotic dependence for the two cases confirms the intuition that dependence

between shortfalls in the two systems might be weakened by convolution with

the distributions of available conventional capacity (which are assumed indepen-

dent between the systems). This also provides a means of performing sensitivity

analysis of the risk model outputs to the strength of dependence between the

shortfalls, by varying the correlation coefficient of the Gaussian copula.

4.8 Discussion

The net demand model developed in this Chapter shows high goodness of fit for

the GB-IRL system; moreover, from a statistical point of view, models based on

EVT offer more principled tools for adequacy calculations than hindcast models,

and offer other advantages that we did not fully explore in this Chapter, such as

the ability of calculating exceedance probabilities beyond the historic data range,

or using the estimated parameter values on relevant sensitivity analysis calcula-

tions, such as measuring dependence strength under different wind penetration

scenarios as we did in Chapter 3. We also argue that EVT models as used here

provide the right level of granularity and appropriate mathematical tools for the

problem of adequacy assessment, particularly when compared to market simula-

tion modelling tools that use much more granular models (down to hourly unit

commitment simulations) but are not designed for this problem. More specifi-

cally, such a high level of granularity might ultimately compound uncertainty in

the estimations, which are not designed to model the rare, extreme events that

drive adequacy risks.

Lastly, as we are working here on a time-collapsed framework, the models we

have developed can only really be used to compute time-collapsed risk metrics

such as LOLE and EEU or perform sensitivity analysis of quantities based on

these risk indices, but the risk profile of a power system is complex and cannot
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be summarised by these metrics alone: in (Sheehy et al., 2016), an example was

shown of important changes in the system’s risk profile that are not accounted for

by LOLE as more wind capacity is installed into the system, namely an increase

in the probability of severe loss of load events. It is reasonable to think that other

important properties of the system could also change which are not reflected by

these indices; the progression to an increased reliance on wind capacity currently

taking place in GB and other systems is a structural transformation that poten-

tially alters the distribution of loss of load events in complex ways. It is critical

to understand these changes in order to integrate renewable technologies with-

out disrupting electricity supply. To look at statistics beyond LOLE, however,

a sequential model of the system is needed. Sequential models also require the

use Monte Carlo estimation for risk indices as the methodology in this Section,

but they are more computationally demanding. In the next Chapter, we explore

large scale sequential modelling to look at more detailed features of the system’s

risk profile and explore issues that may be relevant to decision-makers beyond

LOLE or EEU risk indices.
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Chapter 5

An analysis of the impact of very

high wind capacities on system

adequacy beyond long-term

averages

So far in this thesis, we have worked on a time-collapsed framework, using stan-

dard risk indices like loss of load expectation (LOLE) and expected energy un-

served (EEU) to characterise the system’s risk under different scenarios, and have

developed statistical methodology on top of this picture. These indices have long

been used to asses system adequacy both by researchers and system operators as

we saw in Section 2.2. However, these are just long-term averages of the under-

lying quantities of interests, and their usage alone might offer too narrow a view

of the system’s risk profile for some of the practical considerations with which

system planners are faced: for instance, questions about variability of outcome

of the corresponding quantities of interest, or the relative frequency of events of

a certain magnitude cannot be addressed through these indices. It is reasonable

to believe that for most decision-makers, a system with low variability would be

preferable to one with high variability even if both have the same risk in terms of

LOLE or EEU. Decision-makers might thus exhibit some degree of risk-aversion

(Grechuk and Zabarankin, 2014; Kahneman and Tversky, 1979), which raises the

need to explore system risk beyond long-term averages. This is particularly rele-

vant under the current transition to a high wind capacity regime in Great Britain

(GB), which could alter the statistical behaviour of loss of load events in complex

ways, many of which may be of considerable importance for policy makers yet

are not reflected by the usual risk indices.
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In this Chapter, we use a sequential model representative of the (single-area)

GB system to look at the system’s risk profile beyond long-term averages such as

LOLE and EEU, and illustrate concrete examples of the issues discussed above

as more wind is installed: through extensive simulation, we explore the proba-

bility distributions associated to different aspects of loss of load events such as

their duration, size and spread across peak season days, looking at how these and

other quantities of interests change in the context of an increasing reliance on

wind generation. We focus this analysis on the evolution of the system through

the coming decade, using data on projected installed wind capacity in GB up to

the year 2032. Moreover, we also explore the impact of this technological trans-

formation on the capacity procurement decision process in GB and incorporate a

notion of risk aversion into the current formulation. Our results suggest that as

the installed wind capacity reach the projected levels for 2032 of approximately

71 GW, the resulting system has substantially higher variability of outcome than

in low wind regimes, with fewer loss of load events of relatively mild severity (as

expressed by the quantities of interest mentioned above) but considerably more

events of high severity. This progression occurs even if wind capacity is installed

in such a way that LOLE or EEU indices do not change. Moreover, there is also

a progression toward a system with fewer days of potentially much more severe

shortfalls than a system with low or no wind capacity. Even more specifically, one

where hourly loss of load events tend to increasingly occur grouped together into

fewer but longer runs, defining a run as a sequence of one or more consecutive

hourly time indices. The overall increase in variability also impacts the decision

process for capacity procurement, where optimal procured capacity becomes more

sensitive to parameters such as the value of lost load (VOLL) and the degree of

risk aversion from the decision-maker as the system’s wind capacity grows.

5.1 Introduction

Reliability of electricity supply is a crucial consideration in energy system plan-

ning. In some systems, like the one in Great Britain (GB), capacity markets

have been set up to ensure there is enough investment in new capacity to satisfy

reliability standards (DECC, 2013c). When a decision on the amount of capacity

to procure is required, this is usually based either on target values for reliabil-

ity standards, or on a cost-benefit analysis which considers the costs of procuring

new capacity and the costs associated to the system’s reliability level, the latter of

which is usually calculated using the value of lost load (VOLL) parameter, which
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represents the average costs to consumers per unit of energy not served (National

Grid, 2017b). In either case, decisions are often based on a standard set of risk in-

dices such as loss of load expectation (LOLE), expected energy unserved (EEU),

or other summary statistics such as system average interruption frequency index

(SAIFI) or the system average interruption duration index (SAIDI) (Billinton

and Allan, 1985).

However, there are multiple potential issues with this picture from the point of

view of decision analysis. Firstly, as pointed out above, it is reasonable to believe

that decision-makers dealing with rare but potentially very negative outcomes

as is the case with capacity shortfalls might prefer to avoid risk, i.e., they might

exhibit some degree of risk aversion. Risk aversion is a central concept in decision

theory, and has been widely studied (Meyer, 2014). It can be understood as the

decision-maker’s disinclination to gamble (Smith, 2010). More specifically, a risk-

averse agent will always prefer a deterministic pay-off of x to a random pay-off

with an expectation of x. Under the usual framework of expected utility theory,

this property is a consequence of the agent’s utility function being concave, which

is related to the concept of diminishing returns (Grechuk and Zabarankin, 2014).

A risk-averse decision-maker would thus be interested in aspects beyond long-

term averages, such as variability of outturn for individual years. This is by

definition not possible to express by expectation-based risk indices, e.g. LOLE

and EEU. Thus, reliability standards based on long-term averages alone might

not provide a good reflection of the concerns of decision-makers.

Secondly, expressing reliability standards as a single numerical value as is usu-

ally done through LOLE or EEU might provide too narrow a view of the system.

Multiple characteristics of loss of load events are relevant for system planners,

including duration, frequency and the amount of lost load, among other statis-

tics. Hence, system adequacy exhibits a multidimensional risk profile that may

not be appropriately summarised by any given univariate metric. This issue may

become more pressing in the current context of technological change in which the

share of intermittent energy sources in the generation mix is quickly growing: in

(Sheehy et al., 2016), a model representative of GB was used to show that an

increasing share of wind generation causes greater variability of outturn in both

energy unserved and the duration of loss of load events, even if wind is incorpo-

rated in such a way that the system’s LOLE remains constant. Thus, aspects that

would likely be deemed highly relevant in the evolution of the system are simply

not represented by the usual univariate reliability standards. Issues with trying

to summarise system risk in a single number have been noted before: in (Tin-

demans and Strbac, 2015), this is addressed by proposing more comprehensive
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multi-dimensional risk profiles assembled from the distribution of outputs from

a sequential simulations of the system. A clustering procedure is then used to

summarise the outputs into a limited number of qualitatively different scenarios

that can be evaluated by decision-makers.

Thirdly, the estimation of the VOLL parameter in cost-benefit analyses for

capacity procurement as currently done in GB can be highly problematic: there is

ample disagreement in how to measure it, even when only considering the impact

of loss of load events on aspects for which a monetary value results natural, such

as economic losses (Schröder and Kuckshinrichs, 2015; Billinton et al., 1983).

Moreover, it is recognised that loss of load events can have an impact on less

tangible aspects that are difficult to value monetarily even though they ultimately

have an economic effect, such as a decrease in wider economic confidence or

foreign investment (National Grid, 2017b). Furthermore, it is usually assumed

that during a loss of load event, the system operator will be able to disconnect

the precise amount of load required and nothing more, but this might not be

the case in practice, which would effectively make VOLL larger than assumed,

possibly substantially. For instance, in the case of GB it is noted in (Ofgem, 2013)

that the number and type of disconnected customers (e.g. commercial, residential

or industrial) cannot be known in advance and depends on the composition of

demand at the time of loss of load. Thus, it is reasonable to believe that at the

time of a capacity shortfall there would be considerable uncertainty as to how

to proceed with disconnections in order to minimise societal or economic costs.

Lastly, even if one accepts the idea of monetising energy unserved in the usual

way, it is not clear that the average value per customer is an appropriate summary,

given that effects on different customers can vary widely, and so a larger value

more representative of customers for which this is a major difficulty might also

be worth considering.

In this Chapter, we aim to show concrete examples of the issues outlined above

by performing an analysis of a model representative of the GB system, focusing

the analysis on aspects that might be considered important by decision-makers.

We do this in two ways: firstly, we perform large scale sequential simulation

of the system’s capacity surplus/deficit, looking at how the progression to a very

high wind regime (with 71 GW of installed wind capacity) alters the probability

distributions associated to different aspects of loss of load events, including their

duration and energy unserved, as well as their spread across the peak season.

We assume the systems meets current reliability standards throughout this pro-

gression, and in this sense, we work on a similar picture to (Sheehy et al., 2016)

but perform more extensive simulations with a larger set of updated future wind
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scenarios, and looking at a wider set of loss of load statistics; we also test the

sensitivity of our results to different experimental configurations.

Secondly, we incorporate a measure of the decision-maker’s degree of risk aver-

sion into the cost-benefit analysis framework currently used in GB for capacity

procurement. Under the current methodology, costs associated to the system’s

reliability level are calculated by multiplying the EEU by an estimate of the

VOLL to compute the total unreliability costs. We replace the EEU by a con-

ditional value at risk (CVaR) (Embrechts et al., 1999; Artzner et al., 1999) of

energy unserved. CVaR can be calculated as an expectation conditional on an

exceedance above a user-defined quantile level; in this sense, it generalises the

EEU. Moreover, the chosen quantile level can be seen as a measure of risk aver-

sion. We use the resulting cost function to explore how the optimal capacity to

procure changes as a function of the decision-maker’s degree of risk aversion and

the VOLL parameter as more wind is installed into the system.

This Chapter is organised as follows: Section 5.2 outlines the current pic-

ture of adequacy assessment in GB; Section 5.3 reviews the current methodology

for capacity procurement in GB; Section 5.4 provides an overview of sequential

Monte Carlo modelling methodology for adequacy assessment; Section 5.5 out-

lines the data we use to perform the experiments; Section 5.6 and 5.7 describes

the experiments and the results we obtained, and finally, Section 5.8 discusses

the findings of this Chapter and possible extensions.

5.2 Current reliability standards in GB

Recall the formulation of the adequacy assessment problem that we have used

throughout this work, given by Equation (2.3), and let us assume without loss

of generality that the period of interest (usually a peak season) is divided into

n hourly segments. Current reliability standards in GB are based on having a

LOLE of 3 hours/year, and the estimation methodology relies on the use of time-

collapsed models for available conventional capacity (ACC) and net demand (de-

fined as demand minus wind generation), the latter of which is forward-mapped

to the period of interest (Ofgem, 2013; NGESO, 2021c). Sections 2.1 to 2.5 cover

modelling methodology for demand, wind and ACC in more detail.

The resulting time-collapsed model of net demand, Y , is given by the empirical

distribution of the forward-mapped historic data y1, ..., yη, and can be written as

P(Y ≤ y) =
1

η

η∑
τ=1

I(yτ < y) (5.1)
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where τ is the time index from the historic period and I(·) denotes an indicator

function. A time-collapsed probability model for ACC, X, can be calculated

numerically using data on the number and type of conventional generating units as

well as their historic availability rates. The assumption of independence between

Y and X produces the following identities for LOLE and EEU

LOLE =n · P(X < Y ) = n · 1
η

η∑
τ=1

P(X < yτ ) (5.2)

EEU =n · E[(Y −X)+] = n · 1
η

η∑
τ=1

EX [(yτ −X)+] (5.3)

where (∗)+ = max{∗, 0}.

5.3 The capacity procurement problem in GB

After assessing the risk for the scenario under consideration, decision-makers are

tasked with determining whether investment on any additional capacity is needed,

and if so, how much of it to procure. In the case of GB, this is done through the

capacity market, in which auctions are held every year to procure capacity for 4

years into the future (Engie, 2016). The decision on how much capacity to procure

through these auctions corresponds to the Secretary of State, but their decision

is supported by a formal recommendation from the system operator (Ofgem,

2013). This recommendation is based on a cost-benefit analysis methodology

that aims to balance economic costs from procuring additional capacity with the

costs associated to the resulting reliability levels.

Approaches based on a cost-benefit analysis are part of what is sometimes

called value based reliability assessment (Billinton and Allan, 1985), and in gen-

eral consist in procuring an amount of capacity x∗ ∈ R such that it minimises

the total economic costs c(x), given by

c(x) = κ(x) + r(x) (5.4)

where κ(x) is the capacity procurement cost, which is an increasing function of

the procured capacity x, and r(x) is a cost associated to the reliability level (or

lack thereof) after procuring x units of capacity, and is a decreasing function of

x; in the rest of this Chapter we refer to κ(x) and r(x) as procurement costs and

unreliability costs, respectively.

Elicitation of c(x) under the current methodology used by National Grid
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makes the assumption that procurement costs are proportional to the amount

of capacity procured; additionally, the unreliability costs are taken to be propor-

tional to the amount of expected energy unserved. This can be formalised by the

following cost function

cGB(x) =β · x+ γ · EEU(x), β, γ > 0 (5.5)

EEU(x) =E

[
n∑

t=1

(Yt −Xt − x)+ ·∆t

]
(5.6)

Note that calculation of the unreliability costs in (5.6) assumes procured ca-

pacity will only shift the distribution of the capacity surplus/deficit process. This

is a reasonable assumption when the amount of procured capacity is small with

respect to what is already installed into the system, and does not include new

generation that may be statistically associated with existing generation, e.g. wind

turbines (Dent and Zachary, 2014). Both of these conditions are often met in ca-

pacity market auctions. Note also that since EEU is a time-collapsed quantity,

(5.3) can also be used to compute EEU(x) in the obvious way.

In practical calculations, values for β and γ in (5.5) are given by estimates of

the cost of new entry (CONE) and value of lost load (VOLL) respectively. The

former is taken to be approximately £47,000/MW-year, and is based on the esti-

mated annual revenue required to cover the construction costs of a peaking open

cycle gas turbine (OCGT) (DECC, 2013a,b,c,d). VOLL is taken to be approxi-

mately £17,000/MWh, and is based on the estimated average value to consumers

of preventing disconnections at times of peak demand (DECC, 2013c,d); note

both of these values are annualised and expressed per unit of energy, i.e., MWh

in the case of VOLL and £/MW/y in the case of CONE. The cost function used

in GB for annual recommendations on capacity procurement thus takes the form

cGB(x) = CONE · x+VOLL · EEU(x) (5.7)

Due to the high uncertainty of what will be connected to the system multiple

years into the future, National Grid contemplates a set of different scenarios when

producing its recommendation. This set of scenarios S considers different system

configurations and sensitivities in both the supply and demand side, which are

informed by market intelligence and consultation with subject matter experts

(NGESO, 2021c). Each scenario i ∈ S defines a cost function cGB
i (x) of the same

form as (5.7), which incorporates the corresponding scenario assumptions through
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the distributions of Xt, Yt in (5.6); for convenience, let us denote the associated

optimal decision as x∗i , i ∈ S.
Once the set S is elicitated, a least worst regret (LWR) decision rule (Loomes

and Sugden, 1982; Bell, 1982; Fishburn, 1982) is used to make the final recom-

mendation on the amount of capacity to procure, x∗LWR, given the set S and its

associated cost functions {cGB
i (x)}i∈S . LWR is closely related to the min-max

decision rule (Savage, 1951), for which the output x∗minmax is the decision that

minimises the maximum cost across scenarios; for the problem at hand this is

given by

x∗minmax = min
x∈R

{max
i∈S

{cGB
i (x)}}

The calculation of x∗LWR requires to first define a regret function for each

scenario i ∈ S, where we take regret to be the difference between the optimal

cost and the decision’s cost. These functions can be written as

cLWR
i (x) = cGB

i (x)− cGB
i (x∗i ), i ∈ S

We thus have that for all i ∈ S

cLWR
i (x) ≥ 0 ∀x ∈ R

cLWR
i (x∗i ) = 0

This is, for each scenario regret is always non-negative, and equals zero only if

the optimal decision for the corresponding scenario is chosen. The LWR solution

minimises the largest regret across scenarios, and for the problem at hand is given

by

x∗LWR = min
x∈R

{max
i∈S

{cLWR
i (x)}}

Note that this is equivalent to the min-max solution on the regret functions.

5.4 Time-sequential adequacy models

LOLE and EEU form the basis of reliability standards in GB and many other

power systems (National Grid, 2017b). These indices are the expected values of

two common quantities of interest in adequacy calculations, namely the loss of

load duration (LOLD), defined as the number of time units (in this case, hours) in

which a shortfall will have occured, and the energy unserved (EU), defined as the
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overall amount of power that will fail to be supplied. These are mathematically

defined as

LOLD =
n∑

t=1

I(Xt < Yt) ·∆t (5.8)

EU =
n∑

t=1

(Yt −Xt)+ ·∆t (5.9)

where ∆t is the time step length ( usually expressed in hours), Yt, Xt are net

demand and ACC at time t respectively, and the sum is taken over the future

period of interest. However, statistics other than their expected value (say, their

quantiles or standard deviation) are not time-collapsed in nature, i.e., there is no

analogous to (5.2) and (5.3) and their calculation requires the use time-sequential

models and Monte Carlo estimation.

There is abundant literature on the use of Monte Carlo methods for applica-

tions in adequacy assessment where exact estimation is not possible (Li, 1994).

The main challenge when using sequential Monte Carlo methods is their high

computational cost. LOLD, EU and related quantities are determined by rare

events, as was discussed in Chapter 4. For this reason a large number of realisa-

tions might be required for any estimate to attain a reasonable level of accuracy.

This problem has been addressed in various ways in the literature, for example,

(Billinton and Jonnavithula, 1997) explores variance reduction techniques in the

context of adequacy calculations; (Tindemans and Strbac, 2020) explores the use

of multi-level Monte Carlo (MLMC), in which estimates from a sequence of mod-

els with increasing degrees of granularity are combined to speed up computations

while preserving accuracy. More recently, MLMC methods have also been com-

bined with machine learning based surrogate models to speed up the elicitation

of the multiple submodels involved (Sharifnia and Tindemans, 2022).

Sequential hindcast models for net demand simply assume a repeat of historic

net demand conditions, as the time series of forward-mapped historic data are

used directly (Sheehy et al., 2016). In the case of ACC, time-sequential models

like those from Section 2.3 are typically used, where individual generating units

are modelled as (usually two-state) Markov chain processes. In this case, in

addition to historic failure rates, data of mean times to repair (MTTR) or mean

times to failure (MTTF) from generating unit types are used to estimate the

chain’s transition probabilities (Singh et al., 2018; Billinton and Allan, 1985).

The aggregated availability Xt is then given by a sum of independent Markov
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chain processes. Under this model, Monte Carlo realisations of LOLD and EU

conditioned to a peak season S in the forward-mapped data are given by

lold =
∑
t∈S

I(xt < yt) · δt (5.10)

eu =
∑
t∈S

(yt − xt)+ · δt (5.11)

where yt are the forward-mapped net demand values corresponding to historic

peak season S, and xt are simulated values for ACC. Statistics from these and

other random variables can then be estimated in the usual way conditioned to

particular peak seasons or for the entire period. Additionally, calculation of

other relevant quantities beyond LOLD and EU from the resulting realisations,

e.g. number of days with capacity shortfalls, is also straightforward.

5.5 Data

We use openly available historic demand data from the GB system for the period

2005-2017 (NGESO, 2022). Demand met by generation embedded at the distri-

bution level was added back to demand metered at the transmission level in order

to obtain the system’s total demand1. Furthermore, we use peak season dates

and Average Cold Spell (ACS) peak factors from Table D.1 to rescale historic

peak season demand data to a common baseline of 55,000 MW. The latter value

is only meant to be representative of demand levels in GB (see Section 2.4 for

details on the ACS peak factor rescaling methodology). In total, the demand

data used here comprises 12 peak seasons, which in GB occur during winter,

from 2005/2006 to 2016/2017. From here on, we refer to individual peak seasons

by the year in which they started. e.g. the peak season of 2005 corresponds to

2005/2006.

For wind generation data, we use hourly wind capacity factors for the same

periods as in the demand data; these capacity factors have been reconstructed

from calibrated MERRA2 reanalysis wind speed data as done in (Staffell and

Pfenninger, 2016). Briefly, global reanalysis weather models such as MERRA2

provide estimates of meteorological features on an evenly spaced grid on the

Earth’s surface and atmosphere and at a certain time resolution, usually hourly.

The resulting wind speed data can be calibrated and interpolated to wind farm

1this follows a similar argument than in the ACS peak factor calculation methodology in
GB; see Section 2.4
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locations, then combined with data on the farm’s number and type of turbines

to reconstruct the farm’s hourly capacity factors, this is, their generation output

expressed as a proportion of the farm’s total installed capacity. These factors for

individual farms are then combined to produce capacity factors at the national

level; see Section 2.5 for more details.

Wind data sets resulting from the process described above for GB are also

openly available (Pfenninger and Staffell, 2015), and comprise both offshore and

onshore capacity factors for three different wind fleets: the current scenario cor-

responding to wind farms that were operational as of 2016, the near term sce-

nario corresponding to wind farms that were in some construction stage as of

2016, and the long term scenario corresponding to wind farms that were in some

pre-approval stage as of 2016. We use capacity factors corresponding to the ag-

gregated current and near term fleets, but do not include the long term fleet

due to the high uncertainty inherent to the completion of construction projects

in pre-approval stages. The resulting capacity factors can then be rescaled using

data on total installed onshore and offshore wind capacity (more on this below)

to obtain reconstructed historic wind generation traces.

Data on historic and projected total installed wind capacity in GB was com-

piled from various sources for the period 2016-2032 . For historic data, we used

the UK Government’s data of total installed capacity for the years of 2016-2022

(UK Government, 2022), while for projected installed capacity values we use the

Future Energy Scenarios (FES) 2021 report by National Grid (NGESO, 2021a,b).

This report contains a five-years forecast of total installed wind capacity (cur-

rently up to 2027), as well as four main future scenarios up to 2050, from which

we take the median total installed capacity for years beyond 2027. All wind

capacities as used here include both centralised and decentralised capacity (i.e.,

wind generation at the both the generation and distribution levels). This results

in installed capacity values shown in table 5.1.

Data on the number and availability rate of conventional generating units

was originally provided by National Grid. Due to the sensitive nature of this

data, random noise was added to availability rates. We take the resulting data

to be broadly representative of the GB system. As we will be working with time-

sequential models, we use MTTR values from the 1996 IEEE Reliability Test

System (Grigg et al., 1999) for each unit type to fully specify two-state Markov

chain models for the generating units (see Section 2.3 for more details).

In order to test the robustness of the results to the input data for conventional

generation, we also use parameters from (Murphy et al., 2018), which derives

capacity-weighted MTTR and MTTF values for each generator type from an
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Year Offshore (GW) Onshore (GW) Total (GW)

2016 5.3 10.8 16.10
2017 7.0 12.6 19.60
2018 8.2 13.5 21.70
2019 9.9 14.0 23.90
2020 10.5 14.1 24.60
2021 13.2 14.5 27.70
2022 14.8 15.0 29.80
2023 15.1 15.5 30.60
2024 17.3 16.0 33.30
2025 21.8 16.4 38.20
2026 22.5 18.2 40.70
2027 25.3 19.3 44.60
2028 27.1 21.9 49.00
2029 31.0 23.4 54.40
2030 40.5 24.8 65.35
2031 41.4 25.7 67.15
2032 44.5 26.5 71.00

Table 5.1: Assembled data set of installed wind capacities between 2016-2032

analysis of the GADS data set (NERC, 2019). The latter comprises historic

operational data for more than 8,000 generating units in the US. This provides

an additional set of credible availability and MTTR parameters.

5.6 Exploring system risk beyond long-term av-

erages

5.6.1 Experimental configurations

The main objective of this section is to illustrate how aspects of the system’s risk

profile that are relevant for decision-makers can experience substantial changes as

more wind capacity is installed, even if LOLE and EEU indices do not change. To

devise multiple scenarios of progressively higher installed wind capacity, we take

an evenly spaced partition of the period 2016-2032 inclusive, and use Table 5.1 to

produce the corresponding installed wind capacity values by linear interpolation

for both onshore and offshore fleets. Additionally, we include a baseline scenario of

no installed wind capacity for comparison. In total, 10 wind capacity scenarios are

considered, which are listed in Table D.3. For each of these, historic wind traces

can be computed by rescaling historic wind capacity factors by the corresponding

scenario’s onshore and offshore capacity values.
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We use a sequential available conventional capacity (ACC) model that assumes

two-state Markov chain models for generating units (see Section 2.3 for details).

For each of the tested wind capacity scenarios (Table D.3), we rescale the ACC

distribution via a multiplicative factor to enforce a constraint of having a LOLE

of 3 hrs/year over the entire 12-year period, effectively assuming that the system

meets current reliability standards in GB.

In previous Chapters, the above has been done through a change in the lo-

cation of the ACC distribution, because the main focus were risk indices based

on long-term averages. In this Chapter, however, we are looking at risk indices

beyond their first statistical moment, and for this reason we have used a multi-

plicative normalisation factor on the ACC distribution, as this is arguably a better

approximation to the change in ACC variability as generators are decomissioned.

Even though it may also be argued this normalisation method risks underesti-

mating the variability of the future ACC distribution, and hence estimated risk

indices, we found that multiplicative and additive normalisations on the ACC

distribution produced virtually identical outcomes in our experiments. Since an

additive normalisation provides an upper bound in terms of future ACC variabil-

ity, we can conclude the effect of this issue in the present analysis is negligible.

Note that, while we have used a change in location of the ACC distribution

to normalise system risk in previous chapters, a multiplicative rescaling factor

makes more sense here as it accounts for the change in variability of ACC as

more generators are decommissioned, and this factor may have an effect beyond

first order moments of the risk distributions, which are the focus of this Chapter.

The presented results were generated by simulation of the system’s capacity

surplus/deficit in Equation (2.3) on 100,000 realisations of the historic period un-

der consideration (i.e., 1.2 million peak seasons were simulated overall, as historic

demand and wind data comprise 12 peak seasons). This was done by simulating

ACC traces and subtracting historic net demand traces thereafter to compute

capacity surplus/deficit values.

All of this was done efficiently through parallelised Python and C imple-

mentations which are publicly available through Python’s riskmodels package

(Sanchez, 2022) (see Chapter A), and can be installed in the usual way. Overall,

results were obtained in around half an hour using 5 physical cores in a system

with an Intel i7-10875H CPU and a solid state drive (SSD)2.

To ensure the robustness of the results presented below, we test different

configurations for the system’s model. The reference configuration is normalised

2Map-reduce operation are I/O-bound and depend heavily on storage access performance;
SSDs are much more efficient than hard drives in this sense.
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to have a LOLE of 3 hours/year over the period 2005-2016, and uses MTTR data

from (Grigg et al., 1999) and availability data provided by National Grid. We call

this the standard configuration; other model configurations are listed in Table 5.2.

Results shown in the following section are for the standard configuration unless

specified otherwise, and we comment on results for other configurations when

relevant.

Configuration Reliability standard MTTR/MTTF data period

Standard LOLE = 3 hrs/yr (Grigg et al., 1999) 2005-2016
low LOLE LOLE = 0.3 hrs/yr (Grigg et al., 1999) 2005-2016
fixed EEU EEU = 3 GWh/year (Grigg et al., 1999) 2005-2016
GADS parameters LOLE = 3 hrs/yr (Murphy et al., 2018)3 2005-2016
No 2005 LOLE = 3 hrs/yr (Grigg et al., 1999) 2006-2016

Table 5.2: Table of tested experimental configurations.
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Figure 5.1: Upper row: Attribution of total LOLE and EEU in the entire 2005-
2016 period for the peak season of 2005; this season concentrates an increasing
proportion of the period’s risk as more wind is installed. Lower row: system’s
LOLE and EEU for each wind capacity scenario.

3In this case, availability rates were also computed from the referenced article.
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5.6.2 Results

5.6.2.1 Variability in year-to-year outturn becomes extreme

Some of the problems with using long-term averages to describe the system’s risk

in high wind regimes are apparent from Figure 5.1, which shows that the system’s

LOLE and EEU are increasingly determined by a single high-risk peak season in

the data as more wind capacity is installed, namely that of 2005. For a wind

capacity of 71 GW, the other 11 peak seasons taken together represent just half

of the total risk as measured by these indices. This also means that for very high

wind regimes such as these, long-term averages are not representative of typical

year-to-year outturn, as the difference between the largest and smallest values of

LOLE conditioned to individual peak seasons vary by many orders of magnitude:

while LOLE conditioned to 2005 is 17 hrs/year, the LOLE conditioned to 2013 is

just 0.08 hrs/year. Note that while LOLE is fixed across wind capacity scenarios

to 3 hrs/year, the EEU consistently grows as more wind is installed (Figure 5.1d)

in addition to being increasingly driven by the 2005 season. This mean loss of

load events become larger on average as wind capacity grows; moreover, since

the EEU is also increasingly determined by a single peak season, the extreme

difference between outturn for individual years that we observed for LOLE also

occurs for EEU, with conditional values for 2005 and 2013 being 32 GWh/year

and 0.06 GWh/year, respectively.
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(a) Wind capacity: 17 GW
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(b) Wind capacity: 71 GW

Figure 5.2: Comparison of wind and demand values that cause the highest ob-
served net demand in low and high wind regimes (left and right respectively).
Black diagonal lines mark contour lines for net demand.

We can more clearly see the underlying reasons for this extreme concentration
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of risk in Figure 5.2. Under a relatively low wind regime of 17 GW of installed

capacity, the highest net demand observations (say, in excess of 50 GW) originate

from a combination of high demand and low wind (Figure 5.2a) and are spread

across multiple peak seasons. However, in a high wind regime with 71 GW of

installed wind capacity, it is clear from Figure 5.2b that the highest observed

net demand values are characterised by low wind generation, with demand levels

playing only a smaller role (as the largest observed demand levels correspond to

low overall net demand levels). Moreover, the lowest observed wind generation

consistently occurred in the peak season of 2005; this also suggests adequacy

risks become more strongly associated with low wind generation rather than high

demand in very high wind regimes.

5.6.2.2 Sampling uncertainty in the results of adequacy calculations

increases substantially

In addition to the above, the inclusion (exclusion) of the 2005 peak season into

the analysis determines whether extreme LOLD occurrences become more (less)

frequent for very high wind capacities in the experiment’s results. Figure 5.3

shows the LOLD survival functions when repeating the experiment with and

without the 2005 peak season. Under ’usual’ conditions (i.e., without accounting

for 2005), scenarios with very high wind capacity seem to leave the frequency

of events of the type 0 ≤ LOLD < 15 more or less unaffected, and reduce the

frequency of more severe events (e.g. LOLD > 20). However, the inclusion

of the 2005 peak season in the analysis changes this picture completely, with

additional wind capacity consistently increasing the frequency of LOLD > 10

events while slightly reducing the frequency of events below this threshold. The

latter trade-off is driven by normalising the system to an LOLE of 3 hrs/year,

which acts by reducing the number of years with capacity shortfalls (i.e., lower

frequency of LOLD > 0 events), as well as making occurrences of 0 < LOLD ≤ 10

less frequent, but this happens at the expense of a considerable increase in the

frequency of LOLD > 10 events. For instance, the probability of very severe

LOLD > 25 occurrences goes from around 10−3 in a baseline of no wind capacity

to more than 10−2 for a scenario with 71 GW of wind capacity. All of this

would suggest that for very high wind regimes the number of years with capacity

shortfalls is lower, but when they do occur, they would potentially be much more

severe than in low wind regimes as measured by LOLD. This illustrates quite

clearly the general point that using long-term averages alone as reliability targets

in a system that is progressing to a very high wind regime may overlook critical
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considerations for decision-makers, such as a substantial increase in the likelihood

of severe loss of load events (Figure 5.3a).

We emphasise the importance of the above results in a more general sense,

namely, the large effect of a small number of rare, high-impact years (in this case,

one) on the results and interpretation of adequacy calculations for high wind

regimes: the inclusion of the 2005 peak season completely changes the results in

Figure 5.3b in our experiments and the interpretation on the effect of very high

wind capacities on the system’s LOLD. One clear lesson from this is that the small

number of historic years that are usually available for these calculations cannot

accurately represent the wide range of possible weather conditions that the system

can experience, some of which might entail a much larger risk than anything in

the historic record for systems highly reliant on intermittent generation. Hence,

the interpretation of results from adequacy studies in this case becomes highly

contingent on the available historic data, which necessarily offers an incomplete

picture of possible weather conditions, and it is very possible that a more complete

picture in this sense could considerably alter the results, analogously to how data

from 2005 alters Figure 5.3b. This issue introduces a substantial amount of

uncertainty into the interpretation of these calculations, and illustrate the need

to develop appropriate ways of accounting for it.
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(a) Including 2005
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(b) Not including 2005

Figure 5.3: Survival function for LOLD (in log scale) for two experiments with
and without the peak season of 2005, which concentrates most of the period’s
LOLE. Each experiment is normalised to have an average LOLE of 3 hours per
year for the corresponding period.

5.6.2.3 Severe energy unserved events become more frequent

Results for the distribution of EU were much more consistent across experimental

configurations from Table 5.2, in the sense that in all of them the EU showed
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substantially heavier tails as more wind capacity is installed. This again means

severe EU events become more frequent; this is consistent with the progressive

increase in EEU even when keeping the LOLE constant (Figure 5.1d) as more

wind is installed, nevertheless, Figure 5.4 shows that heavier EU tails also occur

when looking at a system with fixed EEU across wind capacity scenarios, which

suggests results on the increased frequency of severe EU events are, to an extent,

unrelated to the long-term average outturn, and instead seem to be an unavoid-

able consequence of a increasing reliance on wind, at least in the model we have

use here.

Moreover, we can also see in Figure 5.4b that as more wind capacity is in-

stalled, a reliability standard based on EEU results in a trade-off between more

years without capacity shortfalls (i.e., less EU > 0 events) and a lower number

of 0 < EU ≤ 10 GWh events at the expense of a considerable increase in the fre-

quency of EU > 10 GWh events. For instance, the one-in-a-hundred-years return

level goes from roughly 25 GWh to more than 50 GWh, and an increment of sim-

ilar proportions is true for all return levels above 20 years. This is analogous to

the effect on the LOLD distribution under a reliability standard based on LOLE

= 3 hrs/yr (Figure 5.3a). However, we note that the increase in the frequency

of severe EU events in a system that uses EEU as a reliability standard (Figure

5.4b) is less pronounced than in a system with a reliability standard based on

LOLE (Figure 5.4a).

Overall, our results are consistent with those obtained in (Sheehy et al., 2016)

in the sense that we observe a substantial increase in the likelihood of severe EU

and LOLD events as more wind capacity is installed (Sheehy et al., 2016) despite

LOLE/EEU remaining constant, but here we have showed these results are robust

to a variety of choices regarding experimental configurations (see Table 5.2); the

survival function of EU for the rest of the tested models can be seen in Appendix

D.2.

5.6.2.4 A progression to a regime of fewer days of much more severe

shortfalls

Another important change in the system’s risk profile as more wind capacity

is installed is the progression toward a system with fewer days of more severe

shortfalls. Even more specifically, one where hourly loss of load events tend to

occur in fewer but longer runs, defining a run as a sequence of one or more

consecutive hourly time indices. To see this more clearly, we make use of the

loss of load count (LOLC) statistic as defined in (Tindemans and Strbac, 2015),
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(a) LOLE = 3 hrs/yr configuration
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(b) EEU = 3 GWh/yr configuration

Figure 5.4: Survival function for EU (in log scale) in two experimental configura-
tions with reliability standards of LOLE of 3 hrs/year and EEU of 3 GWh/year
respectively.

which counts the number of times the capacity surplus process Zt in (2.3) crosses

from non-negatives to negatives values in the period of interest; in essence, this

metric counts the number of loss of load runs as defined above. For the discrete

hourly capacity surplus model we have used this can be computed as

LOLC = I(Z1 < 0) +
n∑

t=2

I(Zt−1 ≥ 0) · I(Zt < 0) (5.12)

Figure 5.5 shows the survival functions for different risk metrics relevant to this

change in system behaviour; we see a sharp and progressive decrease in LOLC for

systems with wind penetration in Figure 5.5d compared to a baseline of no wind,

which provides evidence that fewer loss of load runs occur at high wind regimes.

However, as the LOLE is fixed across wind capacities, this also means loss of

load runs are longer on average. The number of days with shortfalls also shows

a sharp decrease, but these fewer days have considerably more severe shortfalls

as measured by overall EU and LOLD, as shown by Figures 5.5b and 5.5c, where

their relative frequency increases by multiple orders of magnitude for very high

wind capacities compared to a baseline of no wind capacity. For instance, when

conditioning to days with capacity shortfalls, events of LOLD > 9hours occurred

with a probability of roughly 10−3 for a system with no wind capacity, while for

a system with 71 GW of installed capacity this increases to roughly 0.1, i.e., once

every 10 days with shortfalls on average. In the case of energy unserved (again

conditioned to days with capacity shortfalls), events with EU > 16 GWh occur

with a probability of roughly 10−3, which becomes roughly 0.12 for a system with

71 GW of wind capacity, e.g. once every eight days with shortfalls on average.

Note that for a system with such a high level of wind capacity, the frequency of
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(b) EU in days with shortfalls
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(c) LOLD in days with shortfalls
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(d) LOLC

Figure 5.5: Survival functions for risk metrics related to the number of days
with shortfalls and their severity, as well as LOLC. These results correspond to
the standard experimental configuration (Table 5.2), but results were consistent
across configurations.

days with capacity shortfalls also decreases considerably (Figure 5.5a), however,

this again suggests that when shortfalls do occur, they are potentially much more

severe than in low wind regimes.

A similar progression in the system’s risk profile as shown by Figure 5.5 was

observed across all of the tested experimental configurations as more wind ca-

pacity was installed. Among other things, this means this progression occurs

even without accounting for the high-risk year of 2005. A possible reason for this

change is the fact that an increasing reliance on wind exposes the system to short-

falls induced by low-wind weather patterns, which could last for multiple hours

or more. From the point of view of decision-makers, the progression to a system

with fewer days of potentially much more severe shortfalls, and an overall pattern

of fewer but longer runs of hourly shortfalls is likely to be an important consid-

eration; nevertheless, these trends are again not reflected by long-term averages

such as LOLE or EEU.
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5.6.2.5 Some results for a system with EEU-based reliability stan-

dards

Lastly, we offer a brief discussion of some interesting results for the experimental

configuration with a fixed EEU of 3 GWh/year; this particular normalising value

was chosen based on the EEU for a system with no wind capacity and a LOLE

of 3 hrs/year, which was 2.9 GWh/year. The LOLE progression and LOLD

survival function for this configuration across wind capacities are shown in Figure

5.6. We can see that for this reliability standard, the system’s LOLE decreases

as more wind is installed (unlike our results for a system with a LOLE-based

reliability standard where EEU consistently increases for progressively larger wind

capacities).

Although the evolution of the LOLD distribution as more wind is installed is

similar under both LOLE and EEU-based reliability standards, under the latter,

the increase in the frequency of severe events (Figure 5.6b) is smaller than under

the former (Figure 5.3a). However, the general points made above about the

increase in frequency of severe EU events, as well as a regime of fewer days

with more severe shortfalls and fewer runs of hourly loss of load events, were

also valid for this experimental configuration (see Figure D.5). However, besides

entailing significantly larger amounts of capacity to procure in order to meet such

a reliability standard, it might also conflict with the underlying economic rationale

of the capacity procurement methodology in GB, as the latter assumes there is

an optimal fixed level of LOLE that minimises costs (Zachary et al., 2021), while

Figure 5.6a shows the LOLE of a system with a fixed EEU consistently decreases

as more wind is installed.
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Figure 5.6: Results for LOLE and LOLD in a system with the fixed EEU config-
uration (Table 5.2).
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5.6.2.6 Summary

In this Section we have illustrated concrete changes in the system’s risk profile

that would be of interest for (risk-averse) decision-makers as more wind capacity

is installed, namely, much higher year to year variability in outturn (Section

5.6.2.1) with more frequent occurrences of severe EU events (5.6.2.3), fewer days

with more potentially much more severe shortfalls and a tendency of loss of load

events to occur in fewer but longer hourly runs (Section 5.6.2.4), defining a run

as a sequence of one or more consecutive hourly time indices. Overall, for a

system with very high levels of wind capacity this suggests a picture of a lower

number of years and days with capacity shortfalls but where shortfalls that can

be potentially much more severe, which is no doubt an important consideration

for policy makers. Moreover, we have also illustrated that a high reliance on

renewable resources introduces substantial sampling uncertainty into the results

and interpretation of adequacy calculations due to the limited number of historic

years available to evaluate future possible weather conditions (Section 5.6.2.2).

Lastly, we explored some differences in results for a system with a reliability

standard based on EEU (5.6.2.5).

Finally, we note that events with probabilities less than, say, 10−3 in these

experiments are likely unrepresentative of the real system, as there is a high

level of parametric and epistemic uncertainty in these models. However, these

experiments do illustrate the more general trends noted above as the systems

transitions to a very high reliance on wind capacity. Moreover, these trends seem

to be present for a variety of system configurations (see Table 5.2), which suggests

these results may generalise beyond the data we have used here.

5.7 Sensitivity analysis of optimal procured ca-

pacity

We now analyse the problem of capacity procurement in GB from the point of

view of risk-averse decision-makers. The objective of this Section is to incorporate

risk aversion into the current decision analysis framework (Section 5.3), and to

look at how misspefication of the degree of risk aversion and the VOLL parameter

affect the output of this process in the context of an increasing reliance on wind.

We do not explore the effects of these parameters on the wider LWR solution in

(5.8), and limit the analysis to the individual cost functions of any given future

scenario in the sense described in Section 5.3
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5.7.1 Incorporating risk aversion into the cost function

As discussed previously in this Chapter, decision-makers dealing with the pos-

sibility of events with very severe consequences, as can be the case with capac-

ity shortfalls, might exhibit a degree of risk aversion. Nevertheless, this is not

presently accounted for by the current methodology in GB. We incorporate this

by replacing the measure of the system’s unreliability, namely the EEU(x) term

in (5.7),by the conditional value at risk (CVaR) of the energy unserved. To illus-

trate this, we first define the value at risk (VaR) for a random variable X and a

probability level α ∈ [0, 1] as

VaR(X;α) = min {x ∈ R | FX(x) ≥ α}

where FX is the cumulative distribution function of X. Thus, VaR(X;α) is just

the α-level quantile of X. We can now define CVaR as done in (Sarykalin et al.,

2008) by writing

CVaR(X;α) =

∫ ∞

−∞
zdF α

X(z) (5.13)

where

Fα
X(x) =

0, when x < VaRα(X)

FX(z)−α
1−α

, when x ≥ VaRα(X)

Note that for continuous distributions (i.e., where there are no points with

probability mass), (5.13) reduces to

CVaR(X;α) = E[X | X > VaR(X;α)] (5.14)

which is the expected value of X conditioned on an exceedance of its α-level

quantile. However, this identity is not true for more general distributions, and

this distinction is important here since the distribution of EU, defined in (5.9),

has probability mass at zero, as peak seasons with no capacity shortfalls (i.e.,

EU = 0) have a positive probability of occurrence. For this reason, using (5.14)

directly on the EU distribution would result in a discontinuous risk function with
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respect to α. However, the more general definition of CVaR in (5.13) avoids this

problem altogether; later in this Section, we show an explicit formula for the

CVaR of the EU distribution. Lastly, we note that the α parameter in both VaR

and CVaR can be seen as the degree of risk aversion from the decision-maker,

with higher values representing an increasing degree of risk aversion. On the

other hand, CVaR recovers the (risk-neutral) expectation E[X] for α = 0 .

The CVaR function has already been explored in optimisation problems re-

lated to system adequacy for incorporating a notion of risk aversion into the

problem, for example, (Mays et al., 2019) analyses the implications of capacity

market mechanisms on the decisions of risk-averse private investors. Another ex-

ample is (Dias and da Costa, 2018), which formulates iterative algorithms for the

problem of capacity expansion planning, using CVaR and the EU distribution in

the reliability constraints, which are meant to account for the degree of risk aver-

sion from stakeholders. We note that the latter referenced work is similar to this

work in the sense that both are modelling societal investors, i.e., national gov-

ernments that need to decide how much capacity to procure. On the other hand,

(Mays et al., 2019) models private investors that participate in capacity markets.

However, the principles of utility theory on which the use of CVaR is based are

the same in both cases. Finally, CVaR is widely used in these and other fields

of application partly due to the fact that it is a coherent risk measure, meaning

it meets certain theoretical properties that are desirable in a risk function from

the point of view of utility theory (Artzner et al., 1999). In particular, CVaR

is a convex function in the space (X,α), where the first component denotes the

space of random variables and α denotes the risk-aversion level; see (Sarykalin

et al., 2008) for more details. This property makes CVaR particularly attractive

in optimisation problems like this work and the applications mentioned above.

We now show the derivation of the CVaR function for the EU distribution

that we use in the rest of this Chapter and the corresponding cost function for

the capacity procurement problem. First, note that (5.6) can be expressed as

EEU(x) =E[EU(x)] (5.15)

EU(x) =
n∑

t=1

(Yt −Xt − x)+ ·∆t (5.16)

We use (5.16) to directly replace EEU(x) in (5.7) by

R(x;α) = CVaR(EU(x);α) (5.17)

118



In order to derive a more explicit expression for (5.17), let us define

p0(x) =P(EU(x) = 0)

EU+(x) =EU(x)|EU(x) > 0

EEU+(x) =E[EU+(x)]

Here, p0 is the probability of having a peak season without capacity shortfalls,

EU+ is the distribution of EU conditional on being positive (i.e., conditional on

peak seasons with capacity shortfalls), and EEU+ is the expectation of the latter,

and all of these quantities are parameterised by the level of procured capacity x.

Then, we can write (5.17) as

R(x;α) =

E [EU(x) | EU(x) > VaR(EU(x);α)] , α > p0(x)

(1− p0(x))/(1− α) · EEU+(x), α ≤ p0(x)
(5.18)

This can be seen as the expected value of an EU outturn above a level which

is exceeded every (1 − α)−1 years on average. The corresponding cost function

can be written as

c′(x;α) = CONE · x+VOLL · R(x;α) (5.19)

Note that (5.19) reduces to the original cost function (5.7) for α = 0, this is,

R(x; 0) = EEU(x), which is just a consequence of the fact that CVaR(X; 0) =

E[X] for any random variable X.

Lastly, we note that it could be argued that the degree of risk aversion from the

decision-maker would also affect the value of the VOLL parameter in the capacity

procurement problem. The current methodology for estimating the VOLL relies

on measuring the average costs across consumers per lost unit of energy, and in

this sense it is a risk-neutral measure of the costs. Higher degrees of risk aversion

could mean decision-makers place more weight on the costs of customers that are

more severely affected by loss of load events, resulting in a larger VOLL. However,

it is not clear how to properly incorporate this consideration into the formulation

without additional data on consumer costs. For this reason, in this work we keep

the effect of the risk aversion parameter limited to the CVaR function of the EU,

and treat this experiment as a first approximation to this problem.
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5.7.2 Experimental setup

In the following Section, we present various visualisations that explore how the

optimal procured capacity x∗, which minimises (5.19), depends on risk aversion,

the VOLL parameter and the amount of installed wind capacity. We set a CONE

of 49,000 £/MW-year, which is slightly above the CONE used by National Grid

in (DECC, 2013c) to emphasise our model intends to merely be representative of

the GB system. In general computing x∗ for α > 0 requires sequential simulation,

as quantiles of the EU distribution cannot be calculated as outputs of a time -

collapsed model. Moreover, numerical optimisation algorithms require multiple

evaluations of the cost function (5.19), each of which require a pass through all

of the simulated data, and so this is also more computationally expensive than

the experiments in the previous Section which required a single pass through the

data. For this reason results in this Section use a smaller simulated data set with

10,000 realisations of the same set of peak seasons used in the previous Section.

To devise scenarios for installed wind capacity, we proceed analogously to the

previous Section to produce 4 installed wind capacity scenarios (one of which is

a baseline with no installed wind capacity), which are shown in Table D.2. For

each one of these wind scenarios, (5.19) was minimised for a parameter grid (α,

VOLL) of size 20 × 20; we use the system model corresponding to the standard

experimental configuration in Table 5.2 to perform these experiments. All of this

took approximately 14 hours using the same hardware configurations as in the

previous Section.

Lastly, we note that different values of VOLL act on x∗ through a ratio of the

form CONE/VOLL in (5.19), in the sense that usual optimality conditions for

(5.19) imply

−∂R
∂x

∣∣∣
x=x∗

=
CONE

VOLL
(5.20)

We hereafter call the right hand side the cost ratio, and note that it is just

ratio between the procurement and unreliability costs per unit of energy under the

current methodology in GB. In what follows we present and interpret the results

in terms of this ratio rather than raw VOLL values, although the relationship

between the two quantities is straightforward to see; moreover, analogous results

in terms of raw VOLL can be found in Section D.3.

Lastly, in the following experiments we only compare different degrees of risk

aversion through the values of optimal procured capacity or economic costs they

produce in our formulation. However, in a more general sense, we note that direct

comparison between different degrees of risk aversion, e.g. directly comparing
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Figure 5.7: Contour lines for the optimal procured capacity x∗ as a function of
the risk aversion parameter α (X axis) and the ratio of CONE/VOLL (Y axis),
for each wind capacity scenario. Dotted lines denote negative contour levels.

R(x;α) for different values of α, might be conceptually problematic even though

they are expressed in the same units, as in this case different values may be seen

as different subjective assessments of the world by the decision-maker.

5.7.3 Results

5.7.3.1 Sensitivity to cost ratio is higher than to risk aversion degree

Figure 5.7 shows results for procured capacity x∗ as a function of both the cost

ratio (Y axis) and α (X axis)4. For ease of comparison, the Figure’s colormaps

have been standardised to the same range and labelled contour lines show the

same levels in all subfigures. For the systems from Figures 5.7a to 5.7d, the

parameter p0 = P(EU = 0) was 0.36, 0.38, 0.4 and 0.48, respectively; this means

higher wind capacities produce less years with shortfall occurrences on average,

4Note that the normalisation to a LOLE of 3 hrs/year that we have performed fixes the
contour line corresponding to x∗ = 0 to a value close to 3 in the Y axis. The reason is that for
α = 0, it can be shown that (5.20) implies LOLE = CONE/VOLL at x∗ (Zachary et al., 2021).
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as was discussed in the previous Sections.

We can see that for all wind capacities the contour lines of x∗ are almost

linear, with a mild upward slope, except for very high values of α; an implication

of this is that the procured capacity x∗ is much less sensitive to changes in α than

to changes in in the cost ratio, except for very high values of α. For example,

in the case of no wind capacity, parameter values of α = 0.5 and CONE/VOLL

= 3 produce an x∗ of approximately 200 MW, which is similar to the solution

for α = 0 and CONE/VOLL = 2.6, i.e., in terms of the procured capacity x∗,

an increase in risk aversion from a risk-neutral value of α = 0 to α = 0.5 is

equivalent to a decrease in the CONE/VOLL ratio from 3 to 2.6 , or an increase

of around 2,000 £/MWh in VOLL (since CONE is fixed to £49,000 throughout

these experiments).
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Figure 5.8: Optimal procured capacity x∗ (Y axis) as a function of the cost ratio
(X axis) for each of the wind capacity scenarios.

5.7.3.2 Sensitivity to cost ratio grows as more wind is installed

The general shape of the contour lines do not seem to be altered across wind

capacities in Figure 5.8, meaning sensitivity of x∗ to α across wind capacities
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remain roughly similar. However, sensitivity of x∗ to the cost ratio increases

substantially as wind capacity grows: looking at the scale of contour lines across

the Y axis in Figure 5.7, we can see this sensitivity becomes larger as more wind

is installed.

A clearer picture of this effect can be seen in Figure 5.8, which shows the

procured capacity x∗ (Y axis) as a function of the cost ratio (X axis) for the four

scenarios of installed wind capacity. The Y axis range has been standardised to

the same range for ease of comparison.

The increase in scale of procured capacity values x∗ is evident from this Figure

as the reliance on wind grows. Note that while the impact of the degree of risk

aversion from the decision-maker α on x∗ is also somewhat larger in high wind

regimes, this effect is much smaller than that of the cost ratio. Sensitivity to α

in Figure 5.8 seem to be largest when the cost ratio is small (i.e., large VOLL),

but this is much less pronounced for large values of it (i.e., small VOLL).

Part of the reason for the increase in sensitivity to the cost ratio for higher

wind capacities is likely the increase in tail heaviness of the EU distribution as

the amount of installed wind capacity grows (Figure 5.4a). More specifically, as

reliance on wind grows, heavier EU tails make CVaR values larger for any given

α ∈ [0, 1], and this change in scale might in turn produce a change in scale in the

values of optimal procured capacity through (5.20), ultimately exacerbating its

sensitivity to the cost ratio.

5.7.3.3 Pareto frontiers of optimal costs are close to linear

Lastly, in Figure 5.9, we show the Pareto frontier of procurement and unreliability

costs for different choices of α and cost ratios. The displayed trajectories are the

image of the functions κα : R+ → R2 where

κα

(
CONE

VOLL

)
=

(
CONE · x∗

VOLL · R(x∗;α)

)
(5.21)

This is, κα maps the cost ratio to the optimal procurement and unreliability

costs (note that since we keep CONE fixed, κα is a function of VOLL only). Larger

values of the cost ratio (lower values of VOLL) correspond to lower procurement

costs, i.e., the left end of the shown trajectories. It is clear from Figure 5.9 that

higher wind capacities produce a positive change in location and scale of the

optimal unreliability cost trajectories; this is, optimal unreliability costs become

larger in general, but also more sensitive to the choice of cost ratio. On the other

hand, a large positive change in scale is also observed for optimal procurement
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cost trajectories, which become considerably more sensitive to the cost ratio as

more wind is installed. Note that no change in location is observed in this case,

e.g. optimal procurement cost trajectories remain centred at zero, which is caused

by the normalisation to an LOLE of 3 hrs/year for all wind capacity scenarios.

Finally, it is also clear that for higher wind capacities the optimal procurement

costs are more sensitive to α when the cost ratio is low (i.e., right end of the

trajectories); all these effects are in line with what was observed in previous

Figures.

It is interesting to note that cost trajectories are fairly linear for virtually

all parameter combinations (despite some visible numerical instability in Figure

5.9d), except for the case of high values of α in the baseline scenario of no wind

capacity. In the latter case, optimal unreliability costs plateau around £60M for

a VOLL of 15,000 £/MWh, and is virtually unaffected by larger VOLL values

up to 100,000 £/MWh and their corresponding increases in procured capacity,

i.e., in this case additional procured capacity prevents unreliability costs from

growing, rather than decreasing them.
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Figure 5.9: Bivariate trajectories of optimal procurement (X axis) and unrelia-
bility costs (Y axis) as a function of the cost ratio
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5.7.3.4 Summary

Overall, in these experiments we observe that optimal procured capacity is signif-

icantly more sensitive to the cost ratio than to the degree of risk aversion of the

decision-maker (Section 5.7.3.1). Moreover, as more wind is installed x∗ becomes

substantially more sensitive to the value of the cost ratio (i.e., CONE/VOLL),

with sensitivity to α also increasing but to a lesser degree (Section 5.7.3.2). Fi-

nally, we show that the Pareto frontiers of the optimal costs for almost all pa-

rameter combinations are linear (Section 5.7.3.3).

A possible interpretation of these results is that (at least under the formulation

we have used here) a principled specification of VOLL becomes more important

as more wind is installed in order to procure appropriate a level of capacity that

reflects the decision-maker’s concerns. Here, the VOLL parameter should also

reflect these concerns, since the decision-maker’s degree of risk aversion would

likely influence this parameter too, as per the discussion at the end of Section

5.7.1. In this sense, a principled specification of the decision-maker’s degree of

risk aversion would be required first in order to produce an appropriate VOLL

parameter, even though in these experiments x∗ is not very sensitive to α per

se. However, we note that it remains to be explored to which extent the changes

observed in these experiments translate to the output of the decision process,

namely the LWR solution in (5.8).

We also note that, while these experiments are useful to illustrate the points

outlined in the previous paragraph, the specific relationship between x∗ and

R(x∗;α) would likely be different in a real system for some of the explored levels

of procured capacity: as was mentioned in Section 5.3, for small values of addi-

tional capacity (compared to what is already installed in the system), shifting the

capacity surplus distribution as we do in (5.6) and (5.16) provides a reasonable

approximation, but this may not hold when additional capacity values are the

order of multiple GWs. In the latter case, available additional capacity may be

more accurately represented by a probability distribution, and so higher order

moments of the total ACC distribution may also change when this is added to

the system. In particular, it is likely our experiments overlook additional variance

in ACC when adding multiple GWs of additional conventional capacity, which

might mean values of R(x∗;α) would be higher than observed in these experi-

ments. This in turn could make the sensitivity of x∗ to be even higher than what

we observed in Figure 5.8.
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5.8 Discussion

Overall, results in this Chapter are along the same lines as the discussion in (Sten-

clik et al., 2021): as power systems progress to a regime of very high renewable

generation, adequacy risks are fundamentally altered, as most of the risk now

comes from events of low renewable generation (which are dominated by weather

patterns) rather than very high demand levels. Most of the changes that this

transformation entails are not reflected by traditional risk indices like LOLE and

EEU, even though these changes are important for system planning. Thus, a

more comprehensive analysis of the system’s risk profile that accounts for short-

fall size, frequency and duration is needed in order to give decision makers the

right tools to make principled choices.

In addition to this, robust methodology for accounting for uncertainty in

future weather variability that is not reflected in historic data will be critical

in adequacy calculations for power systems dominated by renewable generation.

Approaches that complement analysis of historical data with appropriate prob-

abilistic models for weather conditions outside of the historic record, as well as

new modes of failure, are needed to properly address this problem.

Finally, we have shown that devising appropriate formulations for the capacity

procurement problem that better reflect the concerns from decision-makers is

going to be increasingly important as reliance on wind capacity grows in order to

procure amounts of capacity in line with decision-maker’s concerns, which may

not be those of a risk-neutral agent.

5.8.1 Future work

The system model that we have used here does not take into account intercon-

nection to other systems; interconnection will play an important role in offsetting

the increased variability entailed by a higher reliance of intermittent sources like

wind and solar (M. Grams et al., 2017), and so performing an analogous multi-

area study that looks at the degree to which interconnection changes the picture

described in this Chapter could be a direct extension to this work. For the two-

area case, the software used in this Chapter (see Section A) can be readily used to

that end. As more wind is installed in the coming decade (which is the time hori-

zon we have looked at here), other technologies on both the supply and demand

sides, such as energy storage and electric vehicles, might start to experience more

widespread adoption. Exploring the effect of these technologies on the results we

obtained would also be an important extension to this work.
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Another possible extension is incorporating more detailed unreliability cost

functions in the capacity procurement formulation that better reflect the concerns

of decision-makers. For example, the degree of risk aversion from the decision

maker is likely to also affect the VOLL, as more risk averse agents may also

give more weight to customers that experience higher costs per value of lost unit

of energy, resulting in larger VOLL parameters. Moreover, one might consider

more complex unreliability cost functions than VOLL times a measure of energy

unserved, for instance, one in which VOLL is an increasing function of the amount

of energy unserved, reflecting the notion that costs of capacity shortfalls grow

superlinearly with shortfall size. In this case, the VOLL itself would be calculated

as a model output according to a specified function of the EU.

Results on the substantial increase in sampling uncertainty in the output of

adequacy calculations for very high wind capacities suggest the need to develop

appropriate ways to account for this. Accounting for events outside the historic

record, which include completely new modes of failure, is a difficult problems as

by definition there is no direct data available for analysis, and as such requires the

use of expert judgement and elicitation. In this regard, principled probabilistic

weather models elicited using insights from domain experts is one possibility. For

instance, using graphical models, such as Bayesian networks, as a foundation

for this, linking scientific evidence of long-term climate trends to their possible

effects on renewable generation. Results in this Chapter suggest these and related

avenues of research may be critical for the future of system adequacy modelling

in GB.
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Chapter 6

Conclusion

In this work we have developed statistical methodology for system adequacy

modelling on top of some of the practices currently in use in Great Britain, and

have use data from Great Britain (GB) and Ireland (IRL) to analyse risk for both

single-area and two-area systems, usually in the context of an increasing reliance

on interconnection and wind capacity.

Results from Chapter 3 suggest the reliability contributions of interconnection

is highly dependent on both the shortfall-sharing policy and the risk metric used

to measure this, which emphasises the importance of setting clear arrangements

between system operators and carefully choosing an appropriate measure of risk

for the problem at hand. We also showed that a share policy as described in

(Tindemans et al., 2019) can be undesirable from the point of view of small

systems, as this policy can make interconnection less valuable than under a veto

policy, or even increase risk depending on interconnection size and the other

system’s background.

In Chapter 4, we built on the work from the previous chapter and developed

a parametric bivariate model based on results from extreme value theory (EVT)

to model the tails of net demand in a two-area system. This model showed high

goodness of fit and produced visible differences in post-interconnection LOLE

estimates when compared to hindcast models. We also showed that the latter

produce risk estimates driven by a very small number of historic observations,

which suggests sampling variability of its estimates may be considerable. More-

over, we used the concepts of asymptotic dependence/independence from EVT

to characterise statistical association in net demands and capacity deficits across

areas, finding capacity deficits have asymptotically independent tails, a much

weaker type of dependence than in net demands. This difference is driven by the

assumption of independence between conventional generation fleets across areas,
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which is commonly made in adequacy studies. One practical implication of this

is that the occurrence of simultaneous capacity shortfalls at both areas is very

rare, despite simultaneous occurrence of extreme net demand levels being much

more common.

Finally, in Chapter 5 we found multiple important changes in the risk profile

of a single area system representative of GB as it progresses to very high levels

of wind capacity. Nevertheless, these changes are not reflected by risk indices

based on long-term averages such as LOLE and EEU, and only become apparent

upon closer inspection of the probability distribution of different aspects of loss

of load events. Namely, we have found a progression towards a system with

extreme variability in year-to-year outturn which can be orders of magnitude

larger or smaller than long-term average statistics, a lower number of years with

capacity shortfalls at the expense of a considerable increase in the frequency

of severe loss of load events, and fewer days of potentially much more severe

shortfalls both in terms of LOLD and EU. Lastly, loss of load events tend to

occur in fewer, longer runs, defining a run as a sequence of one or more consecutive

hourly time indices. Another important change is the fact that a high reliance on

wind introduces a substantial amount of uncertainty into the results of adequacy

calculations, due to the fact that the limited number of historic years to perform

these calculations cannot represent the full range of weather conditions that the

system might experience.

Moreover, as more wind capacity is installed, the solution to the capacity

procurement problem becomes much more sensitive to parameters such as the

value of lost load (VOLL). Thus, as this progression takes place, devising princi-

pled estimate of VOLL, and in general, formulations of the capacity procurement

problem that better reflect the concerns of decision-makers, will become increas-

ingly important to procure amounts of capacity in line with the decision-maker’s

concerns, which might not be those of a risk-neutral agent.

6.1 Future work

EVT models and Monte Carlo estimation provide a mathematically convenient,

and computationally scalable alternative to perform adequacy assessment in multi-

area systems where the number of individual systems is large. Performing an

analysis similar to Chapter 4 in a system with more than two areas could be a di-

rect extension to this work. A graphical model structure like the one proposed in

(Engelke and Hitz, 2018) could help reduce the complexity from high-dimensional
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extreme value analysis, and semi-parametric EVT models proposed in (Heffernan

and Tawn, 2004; Keef et al., 2013; Liu and Tawn, 2014) together with more clas-

sical parametric models like the one we have used in this work could also help

characterising the wide range of tail dependence structure that may be found

between pairs of individual systems.

A direct extension to the work from Chapter 5 would be the inclusion of

interconnection into the model. Interconnectors will play a big role offsetting ad-

ditional variability from wind and other intermittent resources (M. Grams et al.,

2017), and it would be worth exploring how interconnection changes the picture

we described in said Chapter. The inclusion in our model of new technologies

that may be more widely adopted in the near term, such as grid-level battery

storage and electric vehicles, would also be an important extension to this work.

Lastly, we note that in Chapter 5, we did not look at how the wider least worst

regret (LWR) solution to the problem of capacity procurement was affected by

the model parameters on which we performed sensitivity analysis, and limited

this analysis to the cost function of individual future scenarios. Investigating the

effects of these parameters on the LWR solution is another possible extension to

this work.

Another interesting direction may be investigating more general approaches to

incorporating the degree of risk aversion of the decision-maker into the capacity

procurement problem, or more generally, making the capacity procurement prob-

lem reflect the concerns of decision-makers as closely as possible. For instance,

in Section 5.8.1 we have discussed the possibility of considering more complex

function of energy unserved than in the current formulation. In this regard, one

may consider the case where the cost per unit of energy unserved is an increas-

ing function of the amount of energy unserved, reflecting the notion that the

economic impact of capacity shortfalls grows super-linearly with shortfall size.

In this case, VOLL may be specified as a function of energy unserved, and its

outturn calculated as a part of the model’s output. These and other alternative

formulations for VOLL should ideally make it a function of the decision-maker’s

subjective considerations, e.g. its degree of risk aversion.

Finally, we saw that meteorological conditions outside of the historic record

could produce very different results than those from adequacy studies performed

on available historic data, for systems highly reliant on wind capacity (see Sec-

tion 5.6.2.6). It is critical to address this issue in order to help decision-makers

make principled choices. Elicitation and expert judgement are essentially the only

tools to address this problem, and one possibility is the development of princi-

pled probabilistic climate models based on insights from domain experts, that
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link evidence on long-term climate trends to their possible impact on renewable

generation.
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Appendix A

Dissemination of methods:

riskmodel Python package

Throughout the course of this research project, a large amount of code was devel-

oped to perform various common tasks in adequacy procurement and run differ-

ent kinds of experiments; this code was subsequently improved, refactored, tested

and integrated into a coherent Python package that is publicly available through

Python’s PYPI repository and can be installed in the usual way using pip. Mak-

ing well-tested, reproducible code that could be reused by other researchers was

one of the main objectives throughout this PhD project.

This package encompasses the three main bodies of research outlined in this

thesis, namely:

1. Exact two-area EEU and LOLE calculations under a time-collapsed hind-

cast models and for both a veto and share policies (see Chapter 3).

2. Univariate and bivariate functionality for extreme value models, including

graphical diagnostics, logistic and asymmetric logistic dependence models

and hypothesis testing for asymptotic dependence (see Chapter 4)

3. Univariate sequential models as used in Chapter 5. Although said Chapter

only outlined results for a single-area model, analogous two-area models are

also implemented with veto and share policies.

The code is also openly available on Github1, and has an extensive API docu-

mentation that follows standard format guidelines2. In particular, point 2 above

contributes to the implementation in Python of extreme value methodology, which

at the moment is not widespread outside the R programming language.

1https://github.com/nestorSag/riskmodels
2https://nestorsag.github.io/riskmodels/

133

https://github.com/nestorSag/riskmodels
https://nestorsag.github.io/riskmodels/


For more detailed information readers are encouraged to look at the API

documentation or the Github repository. Below, a high-level overview of the

package is given.

A.1 Computational efficiency

Particular attention was given to computational efficiency, and a number of C-

based extensions included with the package were developed, in particular for

points 1 and 3 above. For sequential model simulations, an efficient C implemen-

tation of Markov chain based available conventional generation (ACG) is avail-

able, which showed a boost in speed of about two orders of magnitude when com-

pared with pure R or Python implementations. This is not limited to two-state

chains as is usually done in adequacy studies, and in principle general Markov

chain models that incorporate de-rated states or start-up states could also be

used. During sequential simulations, the package scales computations through a

(local) map-reduce processing pattern where multiple files of simulated ACG val-

ues are repeatedly processed in parallel; this allowed for computations using up

to a million simulated years of ACG data to be performed in a reasonable time,

depending on the number of passes needed; single passes over said data sets were

done in a matter of seconds using the hardware as described in 5.6. However,

we found that for scales larger than this (for instance, for performing compu-

tations from Section 5.7 using larger ACG data sets) a distributed approach is

likely to be needed, as the local multi-core approach taken by the package at this

time is not performant enough, due to storage and memory bandwidths becoming

serious bottlenecks. This can in principle be fixed relatively easily by develop-

ing small extensions to make the package take advantage of mature, massively

parallel processing frameworks such as Apache Spark.

A.2 Algebraic manipulation of discrete distri-

butions

Discrete distributions are extensively used throughout adequacy studies, partic-

ularly for time-collapsed models, where both ACG and net demand are usually

modelled as discrete variables. The package implements functionality to han-

dle them in an algebraic manner when it comes to affine transformations, e.g.

z = a*x + b*y + c would produce the correct distribution for z by convolving

the appropriate probability mass functions (hence, this assumes they are inde-
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pendent); exceedance functions are implemented through logical operators, e.g.

z > k would produce the appropriate distribution for Z|Z > k; all of these

features also work when one of the objects is a semi-parametric model with a

generalised Pareto tail model, as is usually done in extreme value theory, since

the package also handles the generalised Pareto mixture that would result in such

a case; finally, general a map method is implemented for general transformations.

A.3 Implemented extreme value models

At the time of this writing, available extreme value models include:

1. Univariate MLE-based generalised Pareto tail models

2. Univariate Bayesian generalised Pareto tail models

3. Logistic bivariate MLE-based tail dependence

4. Asymmetric logistic bivariate MLE-based tail dependence

The package can work with univariate or bivariate empirical distributions

based on observed data, and fit univariate or bivariate models easily. In the case

of bivariate models, the marginal tail models and the dependence model are fitted

separately, and at the moment joint optimisation is not supported.

Available diagnostics before and after model-fitting include:

1. Mean residual life plots

2. Goodness of fit plots for univariate and bivariate models including profile

log-likelihood, likelihood surface, return levels and Q-Q plots

3. Empirical Pickands dependence function

The hypothesis test for asymptotic dependence used in Section 4.5.1.2 is also

available.

135



136



Appendix B

Chapter 3 appendix

B.1 LOLE and EEU formulas for 2-area time-

collapsed hindcast calculations

In this section, the closed form of LOLE and EEU used in numerical experi-

ments of Chapter 3 are shown; we include some comments on the computational

efficiency of these calculations

B.1.1 Computational considerations

Due to the shape of the relevant regions that have to be integrated in Figure 3.3,

these formulas usually involve adding up probability mass on triangular sections of

the integer lattice that form the support of the available conventional generation

distribution; a naive approach that scans this section would have a quadratic

complexity on the triangle’s side lengths. By using arrays of CDF values instead of

adding up probability mass from scratch, this can be reduced to linear complexity

on the triangle’s side length. However, we can do better than this by taking

advantage of the fact that both of the triangle’s sides are of the same lengths;

this allows recursion to be used in the calculation, which achieves logarithmic

computational complexity. This is done as follows.

Let (x, y), (x+ l, y), (x, y+ l) be the vertices of a right triangle inscribed in an

integer lattice with a side length l > 0. This region has a probability mass of

p(x, y, l) =
x+l∑
x1=x

y+l−x1∑
x2=y

fX1(x1)fX2(x2) (B.1)

where f denotes the corresponding probability mass function. First note that the

probability mass of the square inscribed in this triangle with side lenght ⌊l/2⌋ and
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lower left corner (x, y) can be calculated in constant time using CDF evaluations

s(x, y, ⌊l/2⌋) =FX1 (x+ ⌊l/2⌋)FX2 (y + ⌊l/2⌋)+

FX1 (x)FX2 (y)−

FX1 (x)FX2 (y + ⌊l/2⌋)−

FX1(x+ ⌊l/2⌋)FX2 (x) (B.2)

Then, we have the following recursive relationship

p(x, y, l) =s(x, y, ⌊l/2⌋)+

p (x, y + ⌊l/2⌋ , l − ⌊l/2⌋)+

p (x+ ⌊l/2⌋ , y, l − ⌊l/2⌋) (B.3)

Using (B.3) we can reduce computational complexity to O(log c) when cal-

culating LOLE for a given interconnector capacity c. Note that this does not

work for EEU, as in that case of an expectation each element in the triangular

lattice has to be weighted, and this necessarily requires a full scan which inccurs

in quadratic computational complexity.

B.1.2 Formulas

In the following equations, we assume that di − wi > 0 for area i, i = 1, 2. For

ease of syntax let us define a truncated expectation for a random variable X as

EX(g(X), a, b) =
b∑

x=a

g(x) · P(X = x) (B.4)

Note that EX(X,−∞,∞) = E[X]. For any given policy, under a hindcast net

demand model for a historic dataset with n points we have

LOLE =
1

n

n∑
i=1

P(M ′
1 < 0|D = di,W = wi; c) (B.5)

EEU =
1

n

n∑
i=1

EX [max(0,−M ′
1)|D = di,W = wi; c] (B.6)

where c is a fixed interconnection capacity andM ′ is the vector of post-interconnection

power margins. Finally, let
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vi = d1 − wi, i = 1, 2 (B.7)

be the net demand in each system. Below, the form of the summands in (B.5)

and (B.6) are specified for the veto and share policies and for area 1 in terms of

CDF evaluations and functions B.3 and B.4; calculations for area 2 are performed

analogously with swapped indices.

B.1.3 Veto policy

P(M ′
1 < 0|D = di,W = wi; c) =FX2(v2)FX1(v1)+

FX1(v1 − c)−

FX2(v2)FX1(v1 − c)+

p(v2, v1 − c, c) (B.8)

EX [max(0,−M ′
1)|D = d,W = w; c,V ] = FX2(v2)EX1(v1 −X1, 0, v1)+

EX2(EX1(v1 + v2 −X1 −X2, 0, v1 + v2 −X2), v2, v2 + c)+

(1− FX2(v2 + c)) EX1(v1 − c−X1, 0, v1 − c) (B.9)

B.1.4 Share policy

P(M ′
1 < 0|D = d,W = w; c,S) =FX2(v2 − c)FX1(v1 + c)+

FX1(v1 − c)−

FX2(v2 − c)FX1(v1 − c)+

p(v2 − c, v1 − c, 2c)

(B.10)

To calculate EX [max(0,−M ′
1)|D = d,W = w] let us first define

α(y) =
d1
d2

(y − d2 + w2 − c)− di + wi − c (B.11)

β(y) = α(y) + 2

(
1 +

d1
d2

)
c (B.12)

These are straight parallel lines that delimit the region of non-saturated in-

terconnector flow in conventional generation space (see Fig. 3.3a); by using the
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regions in the referenced Figure to compute the EEU, the following equality can

be derived.

EX [max(0,−M ′
1)|D = d,W = w; c] =

EX2

(
EX1

(
− d1
d1 + d2

(X1 +X2 − v1 − v2), ⌊α(X2)⌋ , v1 + v2 −X2

)
, v2 − c, v2 + c

)
+

EX2

(
EX1

(
− d1
d1 + d2

(X1 +X2 − v1 − v2), ⌊α(X2)⌋ , ⌊β(X2)− 1⌋
)
, 0, v2 − c

)
+

EX2 (EX1 (vi − c−X1, 0, ⌊α(X2)− 1⌋) , ⌈v2 + c− d2/d1(v1 − c)⌉ , v2 + c)+

(1− FX2(d2 + w2 + c))EX1 (v1 − c−X1, 0, v1 − c)+

EX2 (EX1 (v1 + c−X1, ⌊β(X2)⌋ , v1 + c) , 0, v2 − c)

(B.13)

Note that some of the complexity in the above Equation stems from from the

discretisation of conventional generation space into a lattice as well as from the

change between interconnector saturation and non-saturation regimes delimited

by sloped lines (B.11) and (B.12). Note that these lines are not always well

aligned with said lattice.
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Appendix C

Chapter 4 appendix

C.1 Additional figures
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Figure C.1: Figures displaying estimates of χ and χ̄ for diagnosing the presence of
asymptotic dependence (see C.2.3) in net demand data, as given by the texmex

R package. Greyed out figures mean confidence intervals in the figure suggest
there is no asymptotic dependence.
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Figure C.2: Q-Q plots for fitted exceedance Generalised Pareto models on GB
data
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Figure C.3: Q-Q plots for fitted exceedance Generalised Pareto models on IRL
data
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Figure C.4: Estimated post-interconnection values for LOLE in GB, following
the experimental setup outlined in 4.5.2
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Figure C.5: Estimated post-interconnection values for LOLE in IRL, following
the experimental setup outlined in 4.5.2
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C.2 Review of extreme value theory

This Section offers a very brief introduction to the main results in univariate and

multivariate extreme value theory that were used when working in Chapter 4.

This is a condensed version of content that can be found in (Beirlant et al., 2006)

and (Coles, 2013). Additional references are provided when needed.

C.2.1 Univariate EVT

Extreme value theory is concerned with estimating the distribution of sample

maxima. Let us assume we have sample of independent, identically distributed

(iid) values x1, , ..., xn ∈ R with probability density function (PDF) fx(·) and

cumulative distribution function (CDF) Fx(·). Let us also denote the sample

maximum as Mn = max{x1, ..., xn}. The extremal types theorem, which is ar-

guably the most important result in univariate extreme value theory, characterizes

the possible distributional limits of Mn

Theorem 1 (Extremal types theorem). If there exist real sequences {an} ⊂
R+, {bn} ⊂ R such that limn→∞ P

(
Mn−bn

an
≤ z
)

= G(z) where G(·) is a non-

degenerate distribution function, then G(·) belongs to one of the following families

G(z) = exp
{
− exp

[
−
(
z−µ
σ

)]}
, −∞ < z <∞

G(z) = exp
{
−
(
1 + ξ

(
z−µ
σ

))ξ}
, ξ < 0,−∞ < z < −ξ−1

G(z) = exp
{
−
(
1 + ξ

(
z−µ
σ

))ξ}
, ξ > 0,−ξ−1 < z <∞

where µ ∈ R, σ ∈ R+ are location and scale parameters respectively.

If the sample maxima of X converges in distribution to G, we say that FX is

in the domain of attraction of G. This is formalised in the following definition

Definition 1 (Domain of attraction). Let Mn be the sample maxima of a distri-

bution FX such that

lim
n→∞

P
(
Mn − bn
an

≤ z

)
= G(z) (C.1)
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for a non-degenerate distribution G(z) and some sequences {an} ⊂ R+, {bn} ⊂
R. Then we say that FX is in the domain of attraction of G, and denote it as

FX ∈ D(G).

The distributions in theorem 1 are called Gumbel, Weibull and Frechet distri-

butions respectively, and for inference purposes the three families can be expressed

as different subfamilies from a single distribution, called the generalized extreme

value distribution (GEVD)

Definition 2 (generalized extreme value distribution). A random variable X ∈ R
follows a generalized extreme value distribution with shape parameter ξ ∈ R, scale
parameter σ ∈ R+, and location parameter µ ∈ R if its CDF is given by

FX(x) =

exp
{
−
[
1 + ξ

(
x−µ
σ

)]−1/ξ
}
, ξ ̸= 0

exp
{
− exp

(
x−µ
σ

)}
, ξ = 0

(C.2)

and we say that FX ∼ GEVD(µ, σ, ξ)

The shape parameter ξ in C.2 controls the heavyness of the tails, with ξ < 0

giving rise to a distribution with a finite upper bound (Weibull distribution),

ξ = 0 giving rise to asymptotically exponential tails (Gumbel distribution), and

ξ > 0 to an asympotiticaly power-tailed distribution (Frechet distribution). These

two results provide a justification for modelling extreme observation as following a

GEVD, since if (Mn− bn)/an converges in distribution to G(z) = GEVD(µ, σ, ξ),

as n→ ∞, then we can assume that for suitably large values of n

P(Mn ≤ z) = P
(
Mn − bn
an

≤ z − bn
an

)
≈ G

(
z − bn
an

)
= GEVD(anµ+ bn, anσ, ξ)

(C.3)

Note that in (C.3), the mean and scale parameters of the GEVD approxi-

mation depend, in principle, on the sequences {an}, {bn}; this is not an issue in

practice.

Historically, estimation of the GEVD model was first done by arranging the

data into multiple blocks, and using block maxima to perform maximum likeli-

hood estimation. This is called the block maxima approach, and is more formally

described in Algorithm 1.
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Algorithm 1: Block maxima aproach GEVD estimation

Data: sample x1, ..., xn, number of blocks m

Result: estimated extreme value distribution GEVD(µ̂, σ̂, ξ̂)

1 Partition the data into m blocks b1, ..., bm

2 set yi = max{x|x ∈ bi} ∀i = 1, ...,m

3 Estimate µ̂, σ̂, ξ̂ by maximum likelihood using y1, ..., ym and (C.2)

In applications, it is common for the data to be indexed by time, and it

is possible to group them by, say, year, in this way estimating the distribution

of yearly maxima. If they are not indexed, it is also possible to shuffle them

randomly into m different groups.

However, the block maxima approach is not very data-efficient. In this regard,

a threshold exceedances approach, in which all data above a certain threshold is

used for model fitting, is better, and it takes advantage of the following reasoning:

assume, as for the block maxima approach, that the distribution of the maximum,

Mn, in the data x1, ..., xn, is well approximated by a GEVD, i.e., P(Mn ≤ u) ≈
GEVD(µ, σ, ξ). Then we have

P(Mn ≤ u) = F n
X(u) ≈ GEVD(µ, σ, ξ) = exp

(
−
(
1 + ξ

(
u− µ

σ

))−1/ξ

+

)

then

n logFX(u) ≈ −
(
1 + ξ

(
u− µ

σ

))−1/ξ

+

If u is large enough so that FX(u) ≈ 1 we can use the Taylor expansion of

logarithm around 1 (i.e., ln(x) ≈ x− 1 for x ≈ 1) to get

P(X > u) = 1− FX(u) ≈
1

n

(
−
(
1 + ξ

(
u− µ

σ

))−1/ξ

+

)

which implies the following conditional probability distribution

P(X > u+ y|X > u) ≈
1
n

(
−
(
1 + ξ

(
u+y−µ

σ

))−1/ξ

+

)
1
n

(
−
(
1 + ξ

(
u−µ
σ

))−1/ξ

+

) =
(
1 + ξ · y

σ∗

)−1/ξ

+
(C.4)

where σ∗ = σ + ξ(u − µ); moreover, (C.4) becomes an equality in the limit

as u → ∞. We then say that the exceedances of X follows (asymptotically) a
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generalized Pareto distribution, which is defined as below

Definition 3 (generalized Pareto distribution). A random variable x ∈ R follows

a generalized Pareto distribution with shape parameter ξ ∈ R, scale parameter

σ ∈ R+, and location parameter µ ∈ R if its CDF is given by

F (x) = 1−
(
1 + ξ

(
x− µ

σ

))−1/ξ

+

, x ≥ µ (C.5)

and we say that F ∼ GPD(µ, σ, ξ)

This reasoning suggest that instead of grouping the data into blocks, we can

look at their exceedances over a high enough threshold u. This approach usually

allows to use significantly more data, and Algorithm 2 the general procedure of

estimation by threshold exceedances.

Algorithm 2: threshold exceedances approach GEVD estimation

Data: sample x1, ..., xn, threshold u such that Fx(u) ≈ 1

Result: estimated extreme value distribution GPD(u, σ̂, ξ̂)

1 create exceedances subset S = {xi|xi > u, i = 1, ..., n}
2 Use S to fit a generalized Pareto distribution by maximum likelihood

The threshold value u is a model parameter that has to be specified before-

hand, and a typical way of doing so is looking at mean residual life plots, in the

following way: note that if Y ∼ GPD(u, σ, ξ) with a shape parameter ξ ≤ 1, then

E[Y ] = σ/(1− ξ). Now let us assume that for some sample of a random variable

X, a generalized Pareto approximations hold well for thresholds of u0 or more,

then for u > u0 we have

E[X − u|X > u] ≈ σu
1− ξ

=
σu0 + ξu

1− ξ
=

ξ

1− ξ
u+

σu0

1− ξ

where σu is the scale of the exceedances over u, so it follows that as we move

the threshold upwards, the mean of the exceedances is a linear function of the

threshold u. Hence, a mean residual life plot consists in plotting the function

hu : (u, xmax) → R such that

hu(v) =
1

nv

nv∑
i=1

(
x(i) − v

)
where nv is the number of samples above threshold v and x(i) are the corre-

sponding sample indices; we should then select a threshold u over which fu(v) is

approximately a straight line.
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C.2.2 Multivariate EVT

In the multivariate case we study the component-wise maxima of multidimen-

sional data. Let us assume we have a vector sample x1, ...,xn ∈ Rd with CDF

FX(·) and define the vector relationship x ≤ y meaning xi ≤ yi for all i = 1, ..d,

and the ∨ symbol as a maximum operator, e.g. x ∨ y = max{x, y}. We define

the componentwise maximum of an n-sized sample, Mn, as

Mn =

(
n∨

i=1

xi,1, ...,

n∨
i=1

xi,d

)
Note that the component-wise maximum is not part of the data if maxima at

different components were observed at different times. Although this fact may

make Mn seem somewhat artificial, its analysis can give us valuable insights

about the co-occurrences of extremes across components.

The CDF of Mn is F n
X(·), and we are interested in the limiting distribu-

tion of normalised component-wise sample maxima, such that for some suitable

sequences {an}, {bn} we have

lim
n→∞

P
(
Mn − bn

an

≤ z

)
= G(z)

where vector division applies component-wise. The univariate extremal types

theorem (Theorem 1) ensures each of the marginal distributions of G(z) is a

GEVD with parameters (µj, σj, ξj), j = 1, ..., d. We say FX is in the domain of

attraction of G, and denote this as FX ∈ D(G).

An important property of multivariate extreme value distributions G(z) is

max-stability, which is defined below

Definition 4 (max-stable distribution). Let Z ∈ Rd be a random vector with CDF

G(z), then G is said to be max-stable if for every k > 0, there exist a > 0, b ∈ R
such that Gk(z) = G(az + b)

Intuitively, the sample maxima of max-stable distributions follows the same

distribution with only a change of scale and location.

To avoid dealing with potentially many different distributions types at the

margins, it is useful to map the components Xi so that they are identically dis-

tributed. A common choice is making them standard Frechet, so that their CDF

is given by Gj(z) = exp(−1/z), j = 1, ..., d; to do this, we can define

Zj = − 1

lnFXj
(Xj)

, 1 ≤ j ≤ d (C.6)
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Zj follows a standard Frechet distribution, and since extreme value distribu-

tions are in their own domain of attraction, maxima from the transformed data

will also follow a Frechet distribution, only with different location and scale pa-

rameters. The choice of margins is not important, and different choices can be

made, for example, for Pareto distributions we can define

Zj = − 1

1− FXj
(Xj)

, 1 ≤ j ≤ d

and for Gumbel distributions we do

Zj = − ln(− lnFXj
(Xj)), 1 ≤ j ≤ d (C.7)

To simplify analytical calculations however, it is more convenient to deal with

standard Frechet margins.

Let G∗(z) be the limiting distribution of normalised maxima from the trans-

formed vectors z1, ...,zn, then the standard Frechet margins and max-stability of

G∗ imply

Gk
∗(kz) = G∗(z) ∀k > 0, z ∈ (R+)d (C.8)

moreover, it can be proved that every max-stable distribution G can be repre-

sented as

G(x) = exp(−µ([q,∞) \ [q,x])) (C.9)

where q is the lowest endpoint in the support of X and µ(·) is a measure called

the exponent measure of G.

Let µ∗ be the exponential measure of G∗; Equations (C.8) and (C.9) imply

that for any s > 0

µ∗(sB) = s−1µ∗(B) (C.10)

for any Borel subset B; this is called the homogeneity property of G∗, and it can

be meaningfully restated in polar coordinates in the following way: Let H1 ={
ω ∈ Rd : ∥ω∥1 = 1

}
be the (n-1)-dimensional simplex in Rd and the mapping

T : Rd → (0,∞) × H1 a pseudo-polar coordinates representation of any z ∈ Rd

such that T (z) = (r,w), where r = ∥z∥1 and ω = z/r. Let us also define a

measure S on Ξ = H1 ∩ [0,∞) as

S(B) = µ∗ ({z ∈ [0,∞) : ∥z∥1 ≥ 1, z/∥z∥1 ∈ B}) (C.11)
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S(·) is called the spectral measure of G∗ and is uniquely determined by µ∗;

the homogeneity property of equation C.10 implies

µ∗ ({z ∈ [0,∞) : ∥z∥1 ≥ r,z/∥z∥1 ∈ B}) = r−1S(B) (C.12)

The interpretation of this result is that the exponent measure µ∗ can be fac-

tored as the product of a radial measure r−2dr and an angular measure S.

With some algebra, we can then express G∗ as

G∗(z) = exp

(
−
∫
Ξ

(
d∨

j=1

ωj

zj

)
S(dω)

)
, z ∈ [0,∞] (C.13)

subject to ∫
Ξ

ωjS(dω) = 1, j = 1, . . . , d (C.14)

These constraints enforce standard Frechet margins as we originally assumed.

In view of these results, deriving a good model for the extremes of our data

is a matter of accurately approximating the angular measure S; in practice, it is

usually done by estimation of functionals that have a one to one correspondence

with S, but that are more amenable for direct estimation, such as the stable

tail dependence function (STDF), which has the additional property of being a

bounded convex function, and is defined as follows

Definition 5 (stable tail dependence function). Let G∗ be a max-stable distribu-

tion with Frechet margins and angular measure S, then its stable tail dependence

function is defined as

l(v) =

∫
Ξ

(
d∨

j=1

vjωj

)
S(dω), v ∈ [0,∞]

STDFs are convex and bounded by ||v||∞ ≤ l(v) ≤ ||v||1; they are directly

related to G∗ by

G∗(z) = exp(−l(1/z1, ..., 1/zd)) (C.15)

STDFs also has the property that l(sv) = sl(v), so if we knew l for all values in

the simplex H1 we could specify it completely; the Pickands dependence function,

defined below for the two-dimensional case, takes advantage of this fact.

Definition 6 (Pickands dependence function). Let G∗ be a max-stable distri-

bution in R2 with Frechet margins and STDF l, then the Pickands dependence
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function is defined as

A(t) = l(1− t, t) (C.16)

then for (v1, v2) ∈ (R+)2 we have

l (v1, v2) = (v1 + v2)A

(
v2

v1 + v2

)
The Pickands dependence function and more generally the STDF are used

in practice to indirectly estimate S, µ∗ and G∗ through (C.9)-(C.16). Once a

model for G∗ is available, inferences about the original data can be performed by

applying the inverse transformation of (C.6).

There are many approaches to model A(t) and l(v), parametric and non-

parametric; (Beirlant et al., 2006) contains detailed information on this topic.

In our case, perhaps the most relevant model is the so-called logistic model, a

parametric model that assumes exchangeability in the dependence of extreme

values in all components of the data, and induces an STDF of the form

l(v) =

(
d∑

j=1

v
1/α
1

)α

, vj ≥ 0, α ∈ [0, 1] (C.17)

The smaller α is, the more dependent extreme values are across components:

α = 0 implies complete dependence, where all components are exactly equal,

while α = 1 implies statistical independence.

Yet another way of characterising G∗ is by analysing the copula of the trans-

formed data z1, ...,zn. The copula characterises the dependence structure be-

tween components and as such is not affected by component-wise transformations,

soX and Z share the same copula. The definition of extreme value copulas, given

below, is analogous to that of multivariate extreme value distributions

Definition 7 (Extreme value copula). C∗ is an extreme value copula if for some

copula C and every u ∈ [0,1]

C∗(u) = lim
n→∞

Cn(u
1/n
1 , ..., u

1/n
d ) (C.18)

and we say that C is in the domain of attraction of C∗.

Extreme value copulas are in a one-to-one relationship to STDFs through the

following equality

C∗(u) = exp(−l(− lnu1, ...,− lnud)) (C.19)
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One of the most popular parametric families of coupla models is the Archimedean

family, and it turns out that, under mild smoothness assumptions, are in the do-

main of attraction of the Gumbel copula (Gudendorf and Segers, 2010), which

induces a logistic STDF as defined in (C.17), so the logistic model is quite ex-

pressive provided the dependence structure is symmetric in the components.

Until now we have been assuming we know the marginal CDFs of X but often

this is not the case, and they have to be approximated. Typically a semiparamet-

ric models is used for each component, with fitted generalised Pareto tails above

a selected threshold, and an empirical CDF below it: let uj be the threshold

for the j-th component, F̃Xj
(·) its empirical CDF, and σj, ξj its fitted tail GPD

parameters, then its semiparametric approximation is given by

F̂Xj
(x) =

F̃Xj
(uj) +

(
1− F̃Xi

(uj)
)(

1− (1 + ξj (x− uj) /σj)
−1/ξj
+

)
, x > uj

F̃Xj
(x), x ≤ uj

(C.20)

Thus, it is common in applications to use (C.20) when transforming marginal

distributions in the data to and from Frechet or similar choices through (C.6)-

(C.7).

C.2.3 Asymptotic dependence

Extreme value copulas, given by the limit (C.18), can take a wide variety of

forms, and there is no closed form solution that encompasses all of them. One of

the possible limits is in fact the independence copula. This would indicate that

the dependence in extreme co-occurrences across components is weak or non-

existent and vanishes at progressively more extreme levels, which can occur even

though at non-extreme levels different components may be strongly associated;

the multivariate normal distribution is a good example of this, as it is in the

domain of attraction of the independent copula for any correlation ρ such that

−1 < ρ < 1 (Sibuya, 1960). Because of this, when devising a multivariate extreme

value model, care must be taken to make sure the chosen model reflects the data

appropriately in this regard: misspecication of the extreme value copula may

produce large errors in estimated risks. The concepts of asymptotic dependence

and independence help us to address this issue: let X ∈ R2 be a random vector

with Frechet marginals. Define

χ = lim
t→∞

P(X1 > t|X2 > t) (C.21)
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We say that there is asymptotic dependence if χ > 0, and asymptotic in-

dependence otherwise. A drawback of this metric is that it does not provide a

way to characterise the rate at which the dependence fades away in the case of

asymptotic independence. To address this, we can define the following statistic

χ̄ = lim
p→1

2 ln(1− p)

ln(P(X1 > F−1
X1

(p), X1 > F−1
X2

(p))
∈ [−1, 1] (C.22)

We then have asymptotic dependence when χ̄ = 1 and asymptotic indepen-

dence otherwise. Moreover, values in [−1, 1) are directly related to the rate with

which the dependence fades away at extreme levels. However, accurate estimation

of χ and χ̄ is not straightforward, and they are instead usually assessed graphi-

cally from direct empirical estimates; in this sense, yet another related statistic,

the coefficient of tail dependence η ∈ [0, 1], can be estimated by maximum likeli-

hood through standard univariate EVT methods under the following additional

assumption in the context of (C.21)

P(X1 > t,X2 > t) → L(t)× t−1/η (C.23)

where L(x) is a slowly varying function, that is, L(yz)/L(y) → 1 as y → ∞
for all z > 0. Intuitively, slowly varying functions become flat rapidly (in a precise

sense) as y → ∞ (note that L does not necessarily converge, e.g. L(z) = ln(z)).

This class of functions arise in many important results from the theory of extreme

values, and (C.23) has been shown to be valid for a broad range of conditions and

models (Ledford and Tawn, 1997; Heffernan, 2000); here, η describes the type of

dependence and L(y) its strength within the dependence type given by η. We

have η = 1 whenever χ > 0, and 0 ≤ η < 1 otherwise, thus characterising the

presence of asymptotic dependence. Furthermore, we can estimate η by maximum

likelihood as the shape parameter ξ in (C.5) from a sample of W = min{Z1, Z2}.
We also have the following identity

η =
1

2
(χ̄+ 1) (C.24)

In addition to these indices, there is abudant literature on statistical tests for

asymptotic dependence/independence; (De Carvalho and Ramos, 2012) provides

a good overview of this topic.
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C.2.4 Multivariate Generalised Pareto distributions

Just as (C.5) for the univariate case, asymptotic results for the distribution of

exceedances above a suitable threshold can be derived in the multivariate case.

Let the operator x ≰ y denote an exceedance of x above y in at least one

component, i.e., xi > yi for some i = 1, ..., d. Let x1, ...,xn ∈ Rd be a sample

from FX ∈ D(G), i.e., G(x) is the limiting multivariate extreme value distribution

for normalised maxima of X. Then it can be shown that there are normalising

constants {an}, {bn} such that

lim
n→∞

P
(
X − bn

an

≤ x|X ≰ bn

)
=

ln(G(x))− ln(G(x ∧ 0))

− ln(G(0))
, x ≰ 0 (C.25)

where x∧0 is a component-wise minimum operator, and G(0) > 0 without loss of

generality (Beirlant et al., 2006). Distributions of the form (C.25), where G is a

max-stable distribution, are called multivariate Generalised Pareto distributions.

Definition 8 (Multivariate Generalised Pareto distributions). Let G be a max-

stable distribution, and assume without loss of generality that G(0) > 0, then the

associated multivariate Generalised Pareto distribution is given by

FZ(z) =
ln(G(z))− ln(G(z ∧ 0))

− ln(G(0)
, z ≰ 0 (C.26)

The one-to-one relationship between multivariate GPD and extreme value

distributions is clear from (C.26); furthermore, for practical applications, an ar-

gument similar to (C.3) justifies their use as multivariate exceedance models.

Let W be a multivariate GPD, such that FW is given by (C.26). Note the

support of W has an inverted L-shape (or its multidimensional analogous), and

so it is not a product space; note also that marginal distributions Wj, j = 1, ..., d

are not univariate GPD distributions, however, marginal conditional exceedances

of the typeWj|Wj > 0, j = 1, ..., d are (Rootzén and Tajvidi, 2006); furthermore,

conditional exceedances of W only shift its location parameter, i.e., if c > 0 and

V = W | W ≰ c, then FV (v) = FW (v − c).

C.2.5 Conditional extremes

Parametric models of multivariate extreme value distributions make the implicit

assumption that extreme co-ocurrences across components are asymptotically

dependent. This is because limiting results for asymptotically independent dis-

tributions are either full independence, which is not informative, or degenerate
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distributions; an example for the latter is (C.26), which places all of its prob-

ability mass on regions with an infinite negative component if the underlying

distribution FW is asymptotically independent. In (Heffernan and Tawn, 2004),

this problem is addressed by developing a framework for the analysis of condi-

tional extremes instead. This is done under a similar picture to usual extreme

value analysis where normalised sample maxima is assumed to converge in dis-

tribution to a non-degenerate limit, but in this case this is only assumed to hold

when conditioning to an exceedance in some component. To make this clearer,

let Y be a vector with Gumbel marginal distributions without loss of generality;

let Y−i be the sub vector of all components of Y except the i-th entry, and let

us also assume that for every component i = 1, ..., d there exist vector functions

ai(yi) ∈ (R+)(d−1), bi(yi) ∈ R(d−1) such that

lim
n→∞

P
(
Y−i − bi(yi)

ai(yi)
≤ z |yi = n

)
= G|i(z) (C.27)

whereG|i(z)is nondegenerate. The authors develop a full semi-parametric method-

ology for estimating G|i together with tests for goodness-of-fit. Let Z|i = (Y−i −
bi(yi))/ai(yi), then a crucial observation is the fact that

lim
ui→∞

P
(
Z|i ⩽ z, Yi − ui = y | yi > ui

)
= G|i(z) exp(−y) (C.28)

This equation tells us that Z|i is independent from the exceedance Yi − ui in

the limit, and that the limiting distribution for the latter is exponential; these

two facts allows the simulation of joint samples from the model once G|i has

been estimated by choosing a large enough threshold ui, then simulating Z|i

independently using the fitted semi-parametric residual model. The authors also

provide closed-form results for G|i for some parametric models, one of which is

the logistic model, whose conditional extreme distribution is given by

G|i (z) =

{
1 +

∑
j ̸=i

exp
(
−zi
α

)}α−1

(C.29)

which resembles a multivariate version of a type I generalised logistic distribution.

This methodology is amenable for simulating the data distribution conditioned

to an exceedance in a given component. However, consistency issues arise when

simulating data conditioned to an exceedance in any component. It is argued in

(Heffernan and Tawn, 2004) that this is only a minor issue, as the problematic

region (i.e., the region of joint exceedances) has a small probability mass compared

to other exceedance regions; some of these consistency issues were subsequently
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addressed in (Keef et al., 2013; Liu and Tawn, 2014).
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Appendix D

Chapter 5 appendix

D.1 Experiment data

Peak Season ACS peak (MW) Start End

2005/6 60,440 30-Oct-05 25-Mar-06
2006/7 59,948 29-Oct-06 24-Mar-07
2007/8 59,762 28-Oct-07 22-Mar-08
2008/9 57,474 26-Oct-08 21-Mar-09
2009/10 57,290 25-Oct-09 20-Mar-10
2010/11 57,675 31-Oct-10 26-Mar-11
2011/12 55,954 30-Oct-11 24-Mar-12
2012/13 55,309 29-Oct-12 24-Mar-13
2013/14 54,422 27-Oct-13 22-Mar-14
2014/15 54,072 26-Oct-14 21-Mar-15
2015/16 52,164 26-Oct-15 20-Mar-16
2016/17 51,525 31-Oct-16 26-Mar-17

Table D.1: Official peak season data used by National Grid for the period 2005-
2016

Scenario Onshore Offshore Total (GW)

1 0.0 0.0 0.0
2 14.1 10.5 24.6
3 18.2 22.5 40.7
4 26.5 44.5 71.0

Table D.2: Scenarios of installed wind capacity used in experiments from Section
5.7
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Scenario Onshore Offshore Total (GW)

1 0.0 0.0 0.0
2 10.8 5.3 16.1
3 13.5 8.2 21.7
4 14.1 10.5 24.6
5 15.0 14.8 29.8
6 16.0 17.3 33.3
7 18.2 22.5 40.7
8 21.9 27.1 49.0
9 24.8 40.5 65.3
10 26.5 44.5 71.0

Table D.3: Scenarios of installed wind capacity used in experiments from Section
5.6

D.2 Results for different experimental configu-

rations

Below, figures for the full results for all experimental configurations (Table 5.2)

from Section 5.6 are shown. For every configuration, both LOLE and EEU figures

are shown at the top and display values for all of the tested wind capacities; recall

that some scenarios assume a fixed LOLE, while others assume a fixed EEU.

Beyond summary statistics, figures show the survival functions (in log scale) for

the calculated risk metrics which include EU, LOLD, LOLC, number of days

with shortfalls, EU conditioned to days with shortfall and LOLD conditioned to

days with shortfall. The Y axis is the same across all of these figures for ease of

comparison.
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Figure D.1: Standard scenario
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Figure D.2: Low LOLE scenario
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Figure D.3: Scenario of ACG model with data from (Murphy et al., 2018)

163



0.0 16.1 21.7 24.6 29.8 33.3 40.7 49.0 65.4 71.0
Wind capacity (GW)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

LO
LE

 (h
/y

r)

(a) LOLE

0.0 16.1 21.7 24.6 29.8 33.3 40.7 49.0 65.4 71.0
Wind capacity (GW)

0

1

2

3

4

EE
U 

(G
W

h/
yr

)

(b) EEU

0 20 40 60
Hours

10 5

10 4

10 3

10 2

10 1

100

Ex
ce

ed
an

ce
 p

ro
ba

bi
lit

y

0

10

20

30

40

50

60

70

W
in

d 
ca

pa
cit

y 
(G

W
)

(c) Loss of load duration

0 50 100 150
GWh

10 5

10 4

10 3

10 2

10 1

100

Ex
ce

ed
an

ce
 p

ro
ba

bi
lit

y

0

10

20

30

40

50

60

70

W
in

d 
ca

pa
cit

y 
(G

W
)

(d) Energy unserved

5 10 15
Occurrences

10 5

10 4

10 3

10 2

10 1

100

Ex
ce

ed
an

ce
 p

ro
ba

bi
lit

y

0

10

20

30

40

50

60

70

W
in

d 
ca

pa
cit

y 
(G

W
)

(e) Loss of load count

0 5 10 15
Days

10 5

10 4

10 3

10 2

10 1

100

Ex
ce

ed
an

ce
 p

ro
ba

bi
lit

y

0

10

20

30

40

50

60

70

W
in

d 
ca

pa
cit

y 
(G

W
)

(f) Number of days of shortfall

5 10 15
Hours

10 5

10 4

10 3

10 2

10 1

100

Ex
ce

ed
an

ce
 p

ro
ba

bi
lit

y

0

10

20

30

40

50

60

70

W
in

d 
ca

pa
cit

y 
(G

W
)

(g) LOLD within days of shortfall

0 25 50 75 100
GWh

10 5

10 4

10 3

10 2

10 1

100

Ex
ce

ed
an

ce
 p

ro
ba

bi
lit

y

0

10

20

30

40

50

60

70

W
in

d 
ca

pa
cit

y 
(G

W
)

(h) EU within days of shortfall

Figure D.4: Scenario without low-wind year of 2005
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Figure D.5: Scenario with fixed EEU = 3 GWh/year
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D.3 Results for raw VOLL values

The following figures show the results from Section 5.7.3 expressed in terms of

raw VOLL values.
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Figure D.6: Contour lines for the optimal procured capacity x∗ as a function of
the risk aversion parameter α (X axis) and the VOLL parameter (Y axis), for
each wind capacity scenario. Dotted lines denote negative contour values.
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Figure D.7: Optimal procured capacity x∗ (Y axis) as a function of VOLL (X
axis) for each of the wind capacity scenarios.
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Stickler, A. and Brönnimann, S. (2011). Significant bias of the NCEP/NCAR

and twentieth-century reanalyses relative to pilot balloon observations over the

West African Monsoon region (1940-1957). Quarterly Journal of the Royal

Meteorological Society, 137:1400 – 1416.

Telson, M. L. (1975). The economics of alternative levels of reliability for electric

power generation systems. The Bell Journal of Economics, pages 679–694.

Thornton, H. E., Scaife, A. A., Hoskins, B. J., and Brayshaw, D. J. (2017).

The relationship between wind power, electricity demand and winter weather

patterns in great britain. Environmental Research Letters, 12(6):064017.

Tindemans, S. and Strbac, G. (2020). Accelerating system adequacy assessment

using the multilevel Monte Carlo approach. Electric Power Systems Research,

189:106740.

Tindemans, S. H. and Strbac, G. (2015). Visualising risk in generating capacity

adequacy studies using clustering and prototypes. In 2015 IEEE Power Energy

Society General Meeting, pages 1–5.

181

https://www.esig.energy/resource-adequacy-for-modern-power-systems
https://www.esig.energy/resource-adequacy-for-modern-power-systems


Tindemans, S. H., Woolf, M., and Strbac, G. (2019). Capacity Value of Intercon-

nection Between Two Systems. In IEEE Power and Energy Society General

Meeting (PES GM).

UK Government (2022). Energy Trends: UK renewables . https://www.gov.uk/

government/statistics/energy-trends-section-6-renewables. Accessed

on: 01-03-22.

Vassell, G. S. and Tibberts, N. (1972). Analysis of generating-capacity reserve

requirements for interconnected power systems. IEEE Trans. Power Apparatus

and Systems, PAS-91(2):638–649.

Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., and Grasman, R. (2010).

Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey

method. Cognitive Psychology, 60(3):158–189.

Wheatcroft, E. and Dent, C. and Wilson, A. (2022). Rescaling of Historic Elec-

tricity Demand Series for Forward-Looking Risk Calculations. In International

Conference on Probabilistic Methods Applied to Power Systems (PMAPS).

Wilson, A. L. and Zachary, S. (2019). Using extreme value theory for the es-

timation of risk metrics for capacity adequacy assessment. arXiv preprint

arXiv:1907.13050.

Wilson, A. L., Zachary, S., and Dent, C. J. (2018). Use of Meteorological Data

for Improved Estimation of Risk in Capacity Adequacy Studies. In 2018 IEEE

International Conference on Probabilistic Methods Applied to Power Systems

(PMAPS), pages 1–6.

Zachary, S. and Dent, C. (2014). Estimation of Joint Distribution of Demand

and Available Renewables for Generation Adequacy Assessment.

Zachary, S. and Dent, C. J. (2012). Probability theory of capacity value of addi-

tional generation. Proceedings of the Institution of Mechanical Engineers, Part

O: Journal of Risk and Reliability, 226(1):33–43.

Zachary, S., Wilson, A., and Dent, C. (2021). The integration of variable gener-

ation and storage into electricity capacity markets. Energy Journal.

182

https://www.gov.uk/government/statistics/energy-trends-section-6-renewables
https://www.gov.uk/government/statistics/energy-trends-section-6-renewables

	Abstract
	Introduction
	Problem's context
	Scope of this work
	Contributions
	Thesis organisation

	Literature review and current practices
	Historical context
	Incorporating wind generation into the problem

	Common adequacy indices
	Interpretation of different time resolutions for LOLE
	Time-collapsed models
	Adequacy indices in practice
	Value of lost load (VOLL) and value based adequacy assessment

	Modelling conventional generating units
	Time-collapsed models
	Time-sequential models

	Modelling electricity demand
	Using average cold spell factors to rescale demand in GB

	Modelling wind generation
	Modelling multi-area systems
	Capacity value of interconnection
	Other benefits of interconnection in system adequacy
	Multi-area calculations in practice


	Quantifying The Reliability Contribution of Interconnectors in the Britain - Ireland Power System Using a Hindcast Approach
	Introduction
	Formulation
	Determining 2-area system risk indices
	Veto policy
	Share policy
	Interconnection EFC

	Data
	Numerical Experiments
	Interconnection under different policies
	Interconnection and renewables integration

	Future extensions
	Conclusion
	Discussion

	Analysing the effects of statistical dependence on the security of supply of the Ireland - Great Britain power system
	Introduction
	System model
	Single area system
	2-area system

	Extreme value theory
	Univariate exceedances
	Asymptotic dependence and multivariate EVT
	Models of extremal dependence

	Data
	Modelling net demand
	Parametric models for net demand extremes
	Fitting GPD tail models
	Testing for extremal dependence in net demand
	Fitting the dependence model
	The fully fitted model

	Comparison to hindcast net demand models
	Comparison of LOLE estimates
	On the comparison of estimation variability between hindcast and EVT-based net demand models


	Statistical dependence in capacity surpluses
	Characterising statistical dependence
	Sensitivity of risk metrics to dependence strength

	Conclusion
	Discussion

	An analysis of the impact of very high wind capacities on system adequacy beyond long-term averages
	Introduction
	Current reliability standards in GB
	The capacity procurement problem in GB
	Time-sequential adequacy models
	Data
	Exploring system risk beyond long-term averages
	Experimental configurations
	Results
	Variability in year-to-year outturn becomes extreme
	Sampling uncertainty in the results of adequacy calculations increases substantially
	Severe energy unserved events become more frequent
	A progression to a regime of fewer days of much more severe shortfalls
	Some results for a system with EEU-based reliability standards
	Summary


	Sensitivity analysis of optimal procured capacity
	Incorporating risk aversion into the cost function
	Experimental setup
	Results
	Sensitivity to cost ratio is higher than to risk aversion degree
	Sensitivity to cost ratio grows as more wind is installed
	Pareto frontiers of optimal costs are close to linear
	Summary


	Discussion
	Future work


	Conclusion
	Future work

	Dissemination of methods: riskmodel Python package
	Computational efficiency
	Algebraic manipulation of discrete distributions
	Implemented extreme value models

	Chapter 3 appendix
	LOLE and EEU formulas for 2-area time-collapsed hindcast calculations
	Computational considerations
	Formulas
	Veto policy
	Share policy


	Chapter 4 appendix
	Additional figures
	Review of extreme value theory
	Univariate EVT
	Multivariate EVT
	Asymptotic dependence
	Multivariate Generalised Pareto distributions
	Conditional extremes


	Chapter 5 appendix
	Experiment data
	Results for different experimental configurations
	Results for raw VOLL values


