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Abstract

With the development of the power grid, the smart grid makes the system more

intelligent, efficient, sustainable and reliable with integrated Information and Commu-

nication Systems. Moreover, the data from the advanced system provides chances to

utilise machine learning algorithms to improve the system operation further. In addi-

tion, the load profile is undergoing altering and becoming more unpredictable because

of the increase in smart home appliances, EVs, e-heating systems, energy storage

devices, etc. These factors bring more challenges and opportunities for the future

power system to improve operational efficiency and demand response quality. In this

regard, considering load forecasting is crucial in smart distribution networks for utility

companies, especially those employing the demand-side management alternatives,

the short-term load forecast could be more accurate and robust, evolve for future load

forecasting purposes, and reveal its value in improving demand-side management

qualities.

This research proposes a novel Dynamic Adaptive Compensation-Long Short-Term

Memory (DAC-LSTM) forecast method. This method uses high time-resolution data-

sets and LSTM networks as fundamental to give short-term time-series load forecast

results. The proposed method dynamically distinguishes the peak and off-peak hours

and improves the forecast accuracy separately. For DNOs, the forecast errors, espe-

cially during peak hours, lead to penalties to start/stop backup generations or adjust

the distribution schedules, and this will result in more operational costs. Further, the

proposed method introduces a novel DAC block to compensate for forecast errors
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according to the error trend calculated by historical forecast and actual load, then

applying dynamic adaptive parameters. The greater the current-to-average forecast

error ratio or the closer the forecast step to the present time stamp, the larger the

compensation factors. Besides, the factor caps are set to prevent the model from

over-compensation conditions. The sensitivity of introduced parameters is analysed,

providing the performance of the developed method under different parameter values.

Afterwards, the proposed method is evaluated with six case studies, including varying

the forecast steps (compared with LSTM and ARIMA), limiting the size and length

of the training datasets (compared with ARIMA and Persistence), comparing with

other state-of-art methods qualitatively, and comparing with ELEXON UK domestic

load forecast results. Finally, the advantages of the DAC-LSTM method are validated,

including providing accurate short-term load forecast results during peak and off-peak

simultaneously, with a shorter length of or fewer households’ historical datasets, and

compared with existing transmission network forecast methods. The system operat-

ors, like DNOs, can reduce the operational cost with more accurate forecasts during

peak hours as well as own more load curtailment potentials during the off-peak hours.

Additionally, more contributions, including the future bottom-up load scenarios estab-

lishment and the improved Stackelberg Game demand response for end-user utility

bill reductions, will help system operators develop suitable DSM alternatives and

tariffs based on more realistic and accurate analysis. To be more specific, first, based

on the Ten Year Network Development Plan (TYNDP) 2018 and the UK government

reports, bottom-up load profiles are designed and generated for the UK distribution

network for the scenario years 2020, 2030 and 2040. The DAC-LSTM method is

evaluated with these scenario profiles, yielding up to 0.989 and 3.79% (measured in

R2 and MAPE) forecast accuracy, for various levels of electric vehicle and e-heating

penetration when compared with the ARIMA and Persistence methods. Second, a
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DSM alternative is built based on a Stackelberg Game to reduce the consumers’ utility

bill, which considered the forecast error as a constraint. In this game, given that the

consumer offers maximum controllable power to the operator, the game achieves the

Stackelberg Equilibrium while maximising the operator’s revenue and supplying the

necessary power to consumers. The case study demonstrates that when considering

forecast errors in demand response strategies, higher forecast accuracies reduce the

electricity bill up to 10.4% in an ideal circumstance. The improved Stackelberg Game

makes the forecast error one primary constraint that most existing DSM alternatives

lack. This proves the value of utilising state-of-art forecast methods in the deployment

of DSM alternatives.
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Lay Summary

With the anticipated altered demand profile and requirement of improving demand-

side management efficiency and quality, the short-term load forecast method, which

is crucial in smart distribution networks, embraces the opportunity of implementing

machine learning techniques to improve forecast qualities. Furthermore, as demand-

side management alternatives will be applied to the forecasted load rather than the

actual load, state-of-art short-term load forecast methods should be able to provide

convincing results under rigorous situations. For example, the historical dataset is

limited or incoherent, or the load profile is highly non-linear due to electric vehicle

charging, smart home appliances, etc.

In this regard, this thesis provides detailed development and evaluation procedures of

a novel machine learning method for short-term load forecast. The proposed method

is evaluated with different case studies that the future distribution network might

encounter, such as the length and size of the historical dataset being limited and the

forecast step requirement changes. In addition, the proposed method is evaluated

by quantitatively comparing with other extensively used methods, such as ARIMA

and Persistence methods, and qualitatively comparing with other state-of-art hybrid

machine learning approaches.
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Moreover, bottom-up load profiles are generated for the UK distribution network in the

scenario year 2020, 2030 and 2040. These profiles contain an aggregated base, elec-

tric vehicle, and e-heating demand profiles from several individual households. These

individual households’ datasets are collected from Thames Valley Vision Project and

the UK Energy Research Centre, or generated from the UK National Travel Survey.

Finally, the proposed method is evaluated with these scenarios.

Notably, the impact of utilising an accurate forecast method in demand-side manage-

ment strategies is assessed by introducing the Stackelberg Game, which maximises

the operator’s revenue and supplies the required power to consumers, given that

the consumer offers maximum controllable power to the operator. This work firstly

involves forecast accuracy as a primary constraint to establish the Stackelberg Game.

In conclusion, the electricity price is inversely proportional to the controllable power

consumers offer. The case study illustrated that the bill reduction is inversely propor-

tional to the forecast error in management.
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Chapter 1

Introduction

1.1 Research Background

Power systems are defined as a network of electrical components implemented to

generate, transfer and distribute electric power. In the past years, most studies fo-

cused on the generation and transmission levels, such as increasing the power gen-

eration capacity, reducing power generation and transmission cost, stability and se-

curity of power network, maintenance of network equipment, etc. However, with the

development of technology, the traditional power system issues are not dominated in

the future power system. Some new challenges such as better customer services,

environmental protection and more social responsibility [1].

With the development of information and communication technologies (ICT) and im-

proved metering infrastructure (AMI), the smart distribution network (SDN), also called

active distribution networks (ADN), is substituting the traditional distribution networks

[2]. Meanwhile, the smart grid (SG) encouraged the increasing penetration of distrib-

uted generations (DGs) and renewable energy sources (RES), and focuses on the

reliable operation transition [3, 4]. Due to these facts, the power network is becoming

more interactive and sophisticated, which requires improvement in planning and op-

1
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eration management. Notably, the planning and operation of SDN need precise load

forecast results from various time steps. Therefore, except for the long-term network

planning consideration, the accuracy of short-term load forecast is vital to the modern

SDN [5, 6].

Consequently, with state-of-art ICT and AMI implementation, massive system opera-

tion data is recorded and awaiting for later analysis. Using big data for load forecast

in the power system can improve existing services and benefit both operators and

consumers. It can also assist the construction of a data-driven distribution network,

the next generation of power systems. In this progress, the development of state-of-art

load forecast algorithms requires the consideration of prospects of future distribution

networks, such as network decentralisation, distributed renewable generations, de-

mand profile altering, etc.

1.2 Research objectives and scope

To utilise massive system operation data acquired from the network, machine learning

techniques are involved in improving existing services. In practice, DSM alternatives

are deployed to improve the network operation quality, provide optimised services

to consumers, reduce costs, etc. Meanwhile, the DSM alternatives are managed

especially based on short-term load forecast results. As research demonstrated, a

1% improvement in forecast accuracy can save 10 million pounds for one electric

utility in the UK [7]. Thus, the value of combining machine learning methods with

short-term load forecasts to benefit DSM is obvious.
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Besides, with many countries having released the carbon neutral target by different

target years, the RES and EVs penetration level, home appliances usage pattern,

heating system, etc., will significantly change and switch to an environmentally friendly

path. The residential and commercial electricity load patterns will change correspond-

ingly. Therefore, when designing the novel forecast method, the method should be

suitable for future load scenario applications.

According to the facts mentioned above, the research objectives can be summarised

as follow:

1. Development of adaptive short-term load forecast methods based on machine

learning approaches. The method is developed for distribution network applic-

ations, providing accurate peak and off-peak load forecast results. Besides,

the method should be optimised when the input training dataset is insufficient

or incoherent. Moreover, the method should be evaluated with other existing

methods.

2. Based on existing research and government policies, bottom-up load scenario

profiles should be generated for the United Kingdom (UK) distribution network.

These load profiles should take the penetration level of different load com-

positions into account, emulating the actual circumstances. In addition, the

developed forecast method should be evaluated with future load scenarios.

3. The value of deploying an accurate forecast method should be evaluated with

demand-side management alternatives. To achieve this objective, the game

theory is introduced and modified to fit the evaluation purpose.

The scope and boundaries of this research are defined as follows:
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1. The dataset used for forecast method development is expanded with linear

interpolation and adding random errors to emulate a high-resolution dataset. In

addition, the EV charging load profiles are collected or generated from Amer-

ican Adaptive Charging Network and the UK National Travel Survey, which are

different from the basic load profile from Thames Valley Vision Project.

2. The forecast method, its evaluations, and demand-side management are im-

plemented and optimised in Python. However, this research does not discuss

the required computational power and time consumption for model training.

3. The demand-side management method introduced is based on the existing

Stackelberg Game that fits the research purpose with modifications. This is

a supplement and perfection of previous work.

4. The thesis focuses on the short-term load forecast for the distribution network

only. Because the load profiles for the mid and long-term periods are highly

sinusoidal (which can be forecasted using linear approaches) and utilised for

investment analysis and power network planning (instead of real-time control),

these two periods are not discussed in detail in this work.

1.3 Thesis statement

Machine learning techniques can be utilised to develop adaptive forecast methods

which provide accurate forecast results for peak and off-peak load, and adapt to

smaller network applications.
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1.4 Acknowledgement of the thesis contributions

The main contribution of this research can be summarised as:

1. A novel dynamic error compensation method is developed for short-term load

forecast based on long short-term network structures. The proposed method

presents robust forecast accuracy when the load is highly non-linear or the

training dataset is limited, and this makes the forecast method appropriate for

load patterns that include high Electric Vehicle penetration levels and smaller

networks.

2. Bottom-up future load scenarios for the UK distribution network are built based

on existing research and policies for 2020, 2030, and 2040. The future load

scenario aims to evaluate the performance of the proposed forecast method.

3. The proposed forecast method is evaluated with demand-side management

strategies, which illustrates the advantage of utilising the forecast method with

higher accuracy. The demand-side management method utilises Stackelberg

Games which finds an equilibrium point for companies and consumers. This

method introduces forecast error factors to emulate real-world conditions and

proves the value of utilising forecast methods with higher accuracy.

1.5 Thesis structure

This thesis is divided into seven chapters. Chapter 1 includes an overview of the

whole research area, highlighting the contributions of this project and forming the

introduction of this doctoral thesis.
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Chapter 2 reviews the literature and achievements of related topics in three main sub-

jects. The first is the development of the distribution network, which introduces that the

current distribution network is implemented with more distributed generations, under-

going load profile altering, equipped with advanced monitoring and management sys-

tems, and becoming much ’smarter’. These changes generate a massive amount of

system operation data which can be utilised to improve existing service quality. Load

forecasting is crucial to delivering high-quality services such as long-term planning,

off-line planning, scheduling, and real-time operational planning. Secondly, short-term

load forecast methods widely utilised in the power network are reviewed because

the methodologies of these approaches are frequently referred to for novel method

development. The typical statistical methods can be concluded as follow: multiple

linear regression, exponential smoothing, ARIMA and its variants, and other methods.

The typical machine learning methods can be concluded as follow: support vector

regression, fuzzy logic, artificial neural network, random forest and hybrid learning

methods. Thirdly, applications of machine learning techniques in load forecast are

reviewed, including short-term, mid-term and long-term load forecast methods. Ref-

erenced forecast approaches can be classified into statistical and machine learning

methods, and the positive and negative aspects of these methods are discussed.

Finally, the importance of load forecast in demand-side management is reviewed.

The main objectives of the smart grid and typical demand-side management tech-

niques are referred to, followed by the discussion of the importance of load forecast in

electrical power businesses. In addition, the research gap is noted at the end of this

chapter.

Chapter 3 presents the detailed development procedures of a novel short-term load

forecast method. First, the Persistence and ARIMA methods are explained and the

forecast results will be compared with the proposed method. Next, the development

of the proposed forecast method can be concluded as follow: description of long
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short-term memory network and development of dynamic adaptive compensation

method. The followed chapter 4 carries out six case studies to evaluate the forecast

method developed in chapter 3. These case studies emulate real-world application

circumstances to test the robustness of the proposed method.

Chapter 5 discusses the build-up of future load scenarios for UK distribution networks.

This chapter introduces the standards, research, and procedures required to generate

bottom-up future load profiles. Finally, the proposed load forecast method is evaluated

with future load profiles.

Chapter 6 introduces a Stackelberg Game as a demand-side management strategy

for utility bill reductions. First, the modifications and methodologies of the Stackel-

berg game are discussed, followed by a case study that illustrates the value of the

proposed load forecast method in network management.

Chapter 7 is a summary and overview of all contributions to the research made in the

previous chapters. Furthermore, some limitations of the research are discussed, and

a future trajectory for improving this research is stated.





Chapter 2

Literature Review

2.1 Introduction

The causal relationship underlying socio-economic growth and the availability of re-

liable, pervasive, and high-quality electricity has long been acknowledged as one of

the significant impediments hindering development in numerous regions of the globe.

First, renewable energy can be regarded as a sustainable and reliable source of

electricity in these economies [8, 9, 10]. Incorporating large populations and/or distrib-

uted energy resources (DER) capacities and intelligent devices, such as small-scale

renewables, controllable loads, and storage, into a network may introduce planning,

management, and real-time control challenges. Second, the advancement of Inform-

ation and Communication Technologies (ICTs) in conjunction with smart monitoring

devices, including smart meters, Phasor Measurement Units (PMUs), aggregators,

etc., generates massive real-time data in terms of volume, velocity, and variety [11].

With the integration of DER and intelligent devices, big data could provide new op-

portunities for demand-side energy management, such as energy planning, efficient

energy generation, and distribution [12].

9
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On the one hand, the load pattern has altered significantly in the distribution network,

so user consumption behaviour is considerably more difficult to forecast, and this will

result in a greater generation mismatched between supply and demand. In addition,

the growth in the energy generated by renewable sources increases the load on

power lines due to the significant fluctuation of their performance, particularly in dis-

tributed networks. On the other hand, by implementing advanced measuring devices

such as PMUs, the system status with high precision and a short time interval could

be monitored for analysis, prediction, and management. Furthermore, the acquired

data might be utilised to train the machine learning model, such as load pattern

recognition, short-time load prediction, etc., even at the substation or bus level via

high computation capabilities [13, 14, 15]. This will provide the system operator with

an additional opportunity to detect abnormal system operating status and deploy

appropriate management techniques with a shorter response time and at a reduced

cost.

Furthermore, the future load pattern is influenced by the policies of governments and

organisations. One hundred thirty-seven counties have committed to carbon neutrality

(CN), with the commitments centred on the year 2050. On the residential side, the CN

is achieved by converting to low-carbon emission transportation, low-carbon heating

system, and boosting energy efficiency, among other measures [16]. In addition, the

CN is realised in the industrial and commercial sectors by increasing the proportion

of renewable energy generation and implementing industrial CO2 capture, removal,

storage, and utilisation devices, etc. [17]. Based on these changes, the future load

pattern at the distribution or lower network level will become even more non-linear,

rendering the current load forecasting approach inaccurate. Consequently, the system

operation can be benefited from utilising big data and machine learning techniques.
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2.2 Distribution Network

For hierarchical-based traditional grids, the merging problems including increasing

demands, ageing infrastructure, and limited expansion options bring more challenges

to keep up with current needs [18]. Furthermore, based on the existing technology,

the competitive energy market and service requirements have reached limits, which

leads to overstressed grid operations, especially at the distribution network (DN) [18].

Before, the DN has been designed to maintain unidirectional power flow with radial

architecture to deliver power to the end customer efficiently. However, escalating load

requirements over vast geographical distances have resulted in significant technical

challenges in DNs, including increased system losses, reduced voltage regulation,

impaired power quality, reliability concerns, and costly planning options [19, 20].

Because of the development of information and communication technologies (ICT)

and improved metering infrastructure (AMI), the smart distribution network (SDN),

also called active distribution networks (ADN), is substituting the traditional distribution

networks [2]. Meanwhile, the smart grid (SG) encouraged the increasing penetration

of distributed generations (DGs) and renewable energy sources (RES) and focuses

on the reliable operation transition [3, 4].

Due to these facts, the power network is becoming more interactive and sophistic-

ated, which requires improvement in planning and operation management. Notably,

the planning and operation of SDN need precise load forecast results from various

time steps. Therefore, except for the long-term network planning consideration, the

accuracy of short-term load forecast is vital to the modern SDN [5, 6]. Furthermore,

the modern grid utilises supervisory control and data acquisition (SCADA) systems to

monitor the SDN. Meanwhile, distribution management systems (DMS) and energy

management systems (EMS) serve as decision-support information systems for the
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coordination of remote SDN equipment. In addition, the extensive use of devices such

as distribution transformer terminal unit (TTU), feeder terminal unit (FTU), remote

terminal unit (RTU), and distribution automation terminal (DTU) contribute to the

maturity of SDN [5, 6]. The development of intelligent and interactive distribution grids

from the past to the smart future is depicted in figure 2.1(redrew from [18]).

Figure 2.1: Development process of distribution grids from the past to a smart future
[18]

The SG paradigm necessitates broad stakeholder input from multiple SDN perspect-

ives, particularly planning. Consequently, a deeper, broader, and aggregated ap-

proach to planning in the actual world is contagious. The typical planning issues

centre on locating an economically viable (cost-effective) solution. In addition, ob-

jectives such as reliability, power quality, minimal (negative) environmental effect,

system stability, energy efficiency, and customer satisfaction can be included in the

formulation of SDN problems [18]. Furthermore, long-term SDN planning, off-line

planning problem, scheduling, and real-time operational planning can be used to

classify the SDN planning difficulties planning, off-line planning problem, scheduling,

and real-time operational planning [21, 22, 23]. Finally, the load forecast is crucial to

delivering high-quality services in the aforementioned planning methodologies.
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2.3 Load Forecast Methods

The electric utility makes important short and long-term decisions based on load

forecasting, including power system planning, operation and control. Load forecast

helps planning and operation necessitate a specific amount of lead time, which is

often known as forecasting intervals or forecast stages. Planning for the growth of a

power system begins with a projection of anticipated future load requirements. De-

mand and energy requirements estimation is essential for effective system planning.

Demand predictions are used for determining the generation capacity, transmission,

distribution system additions, etc. Load forecasts are also used to define procurement

plans for construction capital energy estimates, which are necessary for determining

future fuel requirements. Therefore, an accurate prediction that reflects current and

future trends is essential for all planning. However, as a result of the liberalisation of

the energy industries, load forecasting is of even greater importance.

Moreover, the load forecast can also be classified into two categories [24]: demand

forecasting and energy forecasting. Demand forecasting is used to determine the

capacity of the generation, transmission, and distribution system additions. History

and government policy can be used to anticipate future demand based on the rapid

growth rate of demand in the past. The energy prediction is used to determine the

future facility types required.

The load forecast techniques are classified into statistical methods and machine

learning methods. This chapter refers to the most classical and widely utilised meth-

ods as the merits and demerits of these methods are considered in structuring this

thesis. Moreover, the principles of building these existing methods are referred to in

developing the proposed novel forecast method, which is discussed in chapter 4.
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In the past, the statistical methods are developed by traditional (conventional) math-

ematical techniques where load forecasting is considered a linear problem. From

the transmission network to the distribution network, however, the linearity of the

combined demand curve declines. At the level of transmission networks and for long-

term forecasts, statistical methods yield accurate forecast results. But when it comes

to the distribution network or even microgrid level and the short-term forecast, the pre-

viously used forecast methods are deficient. In recent years, as computing power has

increased, people have realised that machine learning methods are better suitable

for handling nonlinear problems. Therefore, research and implementations of cutting-

edge machine learning techniques are widely utilized today.

Several essential short-term load forecasting methods will be explained in this part,

along with references about improved methods.

2.3.1 Statistical Methods

Multiple Linear Regression

Multiple linear regression (MLR) models the relationship between multiple independ-

ent variables and one dependent variable. The method can be represented below

[25]:

y = β0 +β1x1 +β2x2 + ...+βkxk + ε (2.1)

where, y is the dependent variable, xk is k independent variables, β is the regression

coefficients and ε is represented as error term. Besides, for multiple observations, we

use multiple equations of y and these equations can be expressed as follow:

y = Xβ + ε (2.2)



2.3. Load Forecast Methods 15

Where,

y =




y1

y2

...

yn




X =




1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
...

1 xn1 xn2 . . . xnk




β =




y1

y2

...

yn




ε =




y1

y2

...

yn




(2.3)

Based on equation 2.3, the forecast load can be represented as follow:

y = Xβ + ε (2.4)

ŷ = Xβ (2.5)

where ŷ is the prediction of y.

The MLR method fit the electrical load curve well when the load trend shows obvious

periodicity. But as a result of the modification of modern load characteristics and

the application of the forecasting method to a smaller network, the load periodicity

decreases, and MLR can no longer effectively manage the STLF.

Exponential Smoothing

Exponential smoothing (ES) is a popular and dependable STLF technique over al-

ternative linear methods due to its computational simplicity, intuitiveness, and ability to

spot linear trends in a time series. ES bases each new forecast on the preceding fore-

cast in addition to a percentage of the forecast error at that time [26]. The difference

between the actual value and the anticipated value is the forecast error. Consequently,

ES is suitable for non-stationary data (i.e. data with a trend and seasonal data). The

forecast error is the difference between the actual value and the forecast value:
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ForecastError = ActualValue−ForecastValue (2.6)

The Exponential Smoothing forecast is computed using the following equation [27]:

Ft = Ft−1 +α(At−1 −Ft−1) (2.7)

Where, Ft is the forecast for the period at time t, α is the smoothing constant (rep-

resents a percentage of the forecast error, At−1 is the actual demand for the previous

period. α determines the responsiveness of the adjustment of the forecast to error.

When it tends to zero, the forecast is less responsive to the error. Conversely, as it

tends to unity, the forecast error influences increase, and the smoothing of the fore-

cast decreases. In real-world applications, the smoothing constant is the value which

balances the responsiveness of the model and the smoothing random variations [28].

The value is determined by trial and error, with the forecaster making an informed

selection.

Similar to the MLR method, ES shows weakness in forecasting load with lower peri-

odicity. Consequently, the accuracy of forecast results diminishes in the distribution or

smaller network.

ARIMA and Other Methods

Besides MLR and ES, Kalman Filter (KF) method is used for bottom-up load forecast

in [29]. The method focuses on analysing the behaviour of home appliances and

measuring the error rate. But the bottom-up method works only when most appliances

are well-modelled and the consumer behaviour follows a fixed pattern. Also, by ag-

gregating the households, the uncertainty of load forecast at a specific period will be
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amplified. In [30], a Blind Kalman Filter (BKF) is proposed based on the linear state-

space method with unknown state and observation matrices that are sequentially

estimated from the data. The methods assume a small segment of the entire time

series to be linear and estimate the forecast result.

Another commonly used method is ARIMA. ARIMA is a generalised method of Autore-

gressive Moving Average (ARMA) that combines the Autoregressive (AR) process

and the Moving Average (MA) processes and builds a composite model of the time

series. But ARIMA methods should be used on stationary data, therefore, parameters

should be predefined to remove the trend from the data. The detailed method descrip-

tion can be found in Section 4.2.2. Beyond the ARIMA method, which is univariate,

Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) is

developed for multivariate applications [31].

In conclusion, the statistical methods are classical when the computational power

is lacking, the machine learning techniques are not well developed, and most load

forecasting requirements exist at transmission network levels. However, with the de-

velopment of power systems, the ’smart’ network requires load forecasts for smal-

ler networks and better accuracy. Therefore, the statistical methods become non-

competitive.

Moreover, the statistical methods cannot accurately forecast peak and off-peak load

simultaneously. ES and ARIMA methods consider compensating the errors during

forecasting, but the compensation factors are fixed. Therefore, the robustness of the

forecast method is limited. These leave room for future improvements.
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2.3.2 Machine Learning Methods

Support Vector Regression

Support Vector Machine (SVM) is a supervised machine learning algorithm, which is

designed for classification and regression problems. The Structural Risk Minimisation

(SRM) principle, which is superior to the traditional Empirical Risk Minimisation (ERM)

principle, is the basis of the SVM. Its formulation is also used by conventional neural

networks [32, 33]. SRM minimises an upper bound on the estimated risk, while ERM

minimises the training data inaccuracy. This distinction gives SVM a stronger capacity

for generalisation [34]. Numerous MTLF and LTLF forecasting methods employ SVM

methods alone or in combination with other algorithms. SVM is effective in solving

high-dimensional spaces, and memory efficient as it uses subsets of training points in

decision function making. However, the algorithm provides the probability estimates

through a costly five-fold cross-validation procedure, which is not directly derived.

However, the algorithm does not directly provide probability estimates, as they are

derived through a costly five-fold cross-validation procedure. Numerous MTLF and

LTLF forecasting methods employ SVM methods alone or in combination with other

algorithms. In [35], the SVM was compared against other algorithms, such as the AR

method. In this case, the SVM allowed the training dataset to be above the limit that

the AR method or other neural networks allow. Based on the root-mean-square error

(RMSE), the performance of SVM was greatly improved by increasing the training

data to around two years.
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As SVM was initially designed to tackle binary classification problems and was later

adapted to regression problems, the Supported Vector Regression (SVR) approach

is developed as an enhanced method for handling nonlinear difficulties. Figure 2.2

(redrew from [36]) displays the primary structure of SVR. The goal is to locate a

smooth function in feature space as opposed to input space.

Figure 2.2: The main structure of SVR [36]

Fuzzy Logic

Fuzzy logic (FL) is a multi-valued logic that handles reasoning approximately, unlike

precise reasoning. The theory was to enable computers to emulate human thought

processes. Unlike the binary sets, which are based on Boolean logic (either 0 or 1), FL

has values ranging between 0 and 1. Therefore, particular functions are required to

regulate the degree to which a variable belongs to a fuzzy set as FL utilises linguistic

variables. Fuzzy sets are useful because they can model unclear data and deliver

appropriate decisions.

The relationship between load demand and factors like temperature and humidity is

nonlinear. In [37], the FL is used to scale the highly non-linear relationship between

the weather elements and the electric load profile. Moreover, FL is utilised to pre-

process input data prior to sending it to the neural network structures. In contrast
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to the internal neural networks, which are like black boxes and opaque to the user,

the fuzzy inference method is defined by the users. Therefore, as the learning and

optimising capabilities of neural networks are superior to FL, both methods can be

combined while ignoring their weaknesses and providing effective results.

Artificial Neural Network

The Artificial Neural Network (ANN) consists of numerous frameworks, such as RNN,

LSTM, CNN, Transformer, etc., each of which has been utilised in a variety of situ-

ations. The operation of the ANN is following four principles, which makes the ANN

successfully applied in scientific fields [33, 38, 39]:

• To train the network, a big database is necessary. The training process com-

pares the known inputs with the corresponding outputs.

• The output values are produced based on the actual output values and the

amendment of the weights in accordance with the network.

• With a proper network, the error reduces as the number of repetitions increases.

The trained network is achieved when the error is below the threshold determ-

ined at the beginning of the training process.

• The network is regarded as trained when it responds correctly to the new

incoming inputs.

The traditional ANN maps the input historical data and output forecast value but lacks

consideration of time correlation in the data sequence. This causes the problem that

the ANN cannot find the relationship between data and time. An RNN is an improved

network of ANN, which uses the temporal information of the input data, where connec-

tions between units form a directed cycle within the same layer. Therefore, the output

of each time step is affected by the input data from previous steps. But the vanishing

gradient problems affect the RNN in processing long time series datasets. As more
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layers using certain activation functions are added to neural networks, gradients of

the loss function approach zero, making the network hard to train and effectively pre-

venting the weight from changing its value. A fundamental method that can alleviate

vanishing gradient problems is to replace the activation function used in the neuron

network. But this method affects the performance of the model in specific cases. The

LSTM network is a variation of RNN that alleviates difficulties with vanishing gradients

in RNN by allowing the LSTM cell to recall or forget relevant or irrelevant input data.

The details of the RNN and LSTM network can be found in Chapter 3.

CNN is a class of ANN which can process high-dimensional data and is frequently

used for visual image, video, and text classification. Power system sensors and gad-

gets are highly intelligent. Therefore, the spatial information data recorded by the

smart sensors and devices in the SDN is preserved and the position and time se-

quence of these sensors and devices are stored as well. For the CNN, the spatiotem-

poral power system data is regarded as an image or, video and text sequences to

make the load forecast. The CNN structure is shown in Figure 2.3 (redrew from [40]).

Figure 2.3: Structure of CNN [40]

As shown in figure 2.3, the two-dimensional spatiotemporal matrices are firstly stacked

into three-dimensional blocks. Afterwards, these blocks were passed to the convo-

lution operation blocks, where the highly abstract feature of the input dataset will

be extracted. After the convolution operation, the outputs are applied to the pooling

operation. The pooling operation reduces the size of the matrix and the nodes num-

bers, therefore, reducing the parameters in the CNN. During the pooling operation,
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the depth of the input matrix is maintained. Next, after repeated convolution and

pooling operations, the highly abstract feature was obtained and flattened to a one-

dimensional vector, which is connected with the full connection layer. In this step, the

iterative calculation is applied to the weights and bias parameters obtained from the

full connection layer. Finally, outputs from the full connection layer are passed to the

activation function and the prediction results are obtained.

Random Forest

The Random Forest (RF) approach is an integrated, decision-tree-based algorithm

that is always combined with other methods. In [41], the RF is employed to pick

features, which is then followed by the CNN method. In [42], the RF is used as part

of the decision tree method for the load forecast. The RF approach is more robust

to noise and missing data, has a quicker learning rate, and its primary steps are as

follows [42]:

• For each decision tree, the training set P is constructed by N training sample

data with N times random sampling and put-back bootstrap. These N training

samples have M attributes. For those data which has not been sampled N

times, these data are regarded as out-of-bag data and not counted in the

training set sample.

• The CART (Classification And Regression Tree) decision tree T is generated

based on the training set samples from the previous step. The split attribute

set of the current tree node is randomly selected from M attribute sets, with

each node containing m(m < M) attributes. Meanwhile, the optimal path to split

the node among the m attributes is found. In this process, the stopping point is

reached when each tree grows as much as possible or reaches the conditions

set in advance.
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• By repeating the steps mentioned above, the training sets P1,P2, . . . ,Pn and

decision trees T1,T2, . . . ,Tn are obtained to construct the RF model.

• The prediction is based on the model built. The forecast value is the average of

the prediction from all trees.

In the regression tree, the minimum mean square deviation is used as the evaluation

standard:

min
a,t

[
min

cI
∑

xi∈R1(a,t)
(y j − c1)

2 +min
c2

∑
xi∈R2(a,t)

(y j − c2)
2

]
(2.8)

In addition, academics have proposed other machine learning approaches, such as

backpropagation, optimisation algorithms, etc. However, these procedures are typic-

ally included in the aforementioned methods.

In conclusion, the machine learning methods utilise tremendous computational power

to solve non-linear time-series problems which demand load curve represents, es-

pecially RNN. In general, the performance of RNN based network achieves similar

forecast results compared to a random combination of SVR, FL, RF, etc., methods.

However, the ability to provide accurate forecast results for both peak and off-peak

periods of these approaches is still lacking. Therefore, published approaches focus

on improving forecast accuracy for only peak loads. These demerits leave room for

future improvement to develop a method that provides an accurate forecast method

for peak and off-peak periods.

2.3.3 Hybrid Learning Methods

In recent years, hybrid methods have been developed to handle forecasting difficulties

because they combine the benefits of statistical and machine learning approaches.

In [37], an RNN-FL method is proposed and the computed results conclude that the

synergistic use of FL with the RNN method yields higher forecast results by analysing
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the relationship between the weather parameters and the change in load profile. In

[43], a hybrid approach, Support Vector Regression-Long Short-Term Memory (SVR-

LSTM) is presented for the microgrid (MG) load forecasting and the values of the new

methods compared with SVR and LSTM are evaluated in this paper. In [44], a hybrid

method for STLF for higher educational institutions, such as universities, using RF

and MLP methods for day-ahead load forecast. Also, this method utilises the decision

tree as the classifier to pre-process the input dataset. Moreover, dozens of hybrid

methods are proposed every year and the forecast accuracy outperform the original

methods in each of them in different application range.

2.4 Machine Learning in Electrical Load Forecast

The earliest record of load forecasting dates back to the late 1960s when the first pub-

lication on load forecasting techniques was published [45]. Nowadays, the load fore-

cast has become a crucial part of the power system operation. The system operators,

suppliers, financial institutions, and power production, transmission, and distribution

section players require an accurate load forecast result. The load forecast can be split

into three primary groups based on the time scale [46, 47, 48]:

• Short-term load forecast (STLF): STLF periods range from minutes to days or

weeks in advance. STLF aims for economic dispatch, optimal generating unit

commitment, and real-time control and security evaluation.

• Mid-term load forecast (MTLF): The duration of MTLF is between one month

and two years. MTLF tries to balance demand and generation via maintenance

scheduling, coordination of load dispatch, and price settlement.
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• Long-term load forecast (LTLF): The duration of LTLF is several years or longer.

LTLF seeks to plan system growth, including generation, transmission, and

distribution. In some instances, it affects the acquisition of new generating units.

Each length of time-period load forecast is crucial to the operation of the power sys-

tem. The unpredictability of the forecast outcome contributes to the loss and instability

of the economy and network control. In STLF, the accuracy of the forecast influences

the control efficiency, and In MTLF and LTLF, load forecasting is intimately connected

to system development, particularly system design and economics. In addition, the

load forecast is essential for dependability analysis [48, 49, 50].

In contrast, the load forecast can be classified as either spatial load forecast (SLF)

or hierarchical load forecast (HLF). Traditionally, load forecasting at the small area or

equipment level, such as distribution transformer, is often referred to as spatial load

forecasting [51, 52]. With the advent of the smart grid, large numbers of smart meters

have been deployed during the past decade, providing the system operator with vast

quantities of data. This information is both temporally and spatially granular [32]. By

combining the data collected from WAMS with advanced computational technologies

and forecast methods, spatial load forecast has been transformed into a hierarchical

load forecast. The HLF provides forecasts from the home level to the corporate level,

from a few minutes to several years in advance. The most significant development of

HLF refers to the Global Energy Forecasting Competition 2012 (GEFCom2012) [53].

In addition, probabilistic electric load forecasting (PLF) is proposed as a load predic-

tion category, but its use is limited. PLFs may base on scenarios. However, scenario-

based forecasts are not probabilistic forecasts until probabilities are assigned to the

scenarios. PLFs could be quantiles, intervals, or density functions [32]. In [54], [55]

and [56], a number of PLF techniques are offered for wind power forecasting.
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In general, the load forecast follows the steps shown in 2.4, with data collection and

model training being the most critical procedures. Several strategies can be employed

to process the data and increase the accuracy and resilience of the forecast method.
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Figure 2.4: Roadmap of load forecasting [57]

2.4.1 Short-Term Load Forecast

Short-term load forecasts are essential for balancing electricity supply and demand,

managing and planning power transmission and distribution, providing ancillary ser-

vices, and supporting operations and maintenance activities [58]. For the electrical

utilities, research carried out in [59] shows that a 1% decrease in STLF error can

result in a £10 million reduction in the annual operating cost. To be more specific,

the improved forecast accuracy minimised the forecast error between forecast and

actual load, especially during peak time. The reduced forecast mismatch reduces the

backup generators that the system operator should start during peak hours, therefore

reducing the cost. While during the off-peak hours, the system operator has plenty of

time to balance the power generation and consumption as the load pattern remains

flat. In the preceding decades, multiple STLF approaches have been presented, and

the STLF has become an active study area.
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The STLF approach can be broadly categorised as statistical and artificial intelligence-

based methods [60]. First, the statistical methods are classified into two categories:

time-series [61] and multiple linear regression (MLR) methods [62]. The time-series

methods, typically persistence and Autoregressive Moving Average (ARMA) methods

and the variants, are commonly utilised in peak load estimation [63]. The Autoregress-

ive Moving Average methods are improved by combining the Autoregressive and Mov-

ing Average methods. In recent years, it has been suggested that the Autoregressive

Integrated Moving Average method (ARIMA) and its derivatives should replace the

older techniques [64][65][66].

However, the ARIMA approaches only examine the electrical load [67] and do not

account for additional effect factors such as weather conditions, special events, etc.

Consequently, the forecast inaccuracy may increase in numerous circumstances [60].

In contrast, MLR approaches consider additional variables, such as meteorological

conditions, and have been widely used in recent decades. In [68], an MLR-based

STLF method is suggested for the day-ahead load forecast. This approach accounts

for meteorological conditions and yields a Mean Absolute Percentage Error (MAPE)

of 3.5% in the dry season and 4.3% in the wet season. Also, [69] achieves a MAPE

of 4.5% in the hourly load forecast.

According to [70] and [71], the stationary method demonstrates good performance

only over the stationary data, although the traditional electric load is simple, lacking

aspects such as renewable generation, smart home appliances, storage devices, etc.

The ARIMA method analyses time-series data based on the assumption that the

collected and forecast data are linearly related at the forecast point, while the actual

load pattern is highly non-smooth and non-linear [72]. Currently, the load non-linearity

at the transmission network (TN) and distribution network level are more significant

than in the past. For example, the increasing number of electric vehicles (EV) and
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distributed generation (DG) penetrations contribute to a massive portion of usage and

uncertain electricity generation across the day [73]. The traditional linear approaches

(persistence, ARIMA, MLR, etc.) are inferior to ML methods for load forecasting,

particularly in DN. With the massive development of computation ability, ML methods

have been wildly applied in the forecast method in the past decades.

Machine learning approaches such as Artificial Neural Network (ANN) [74], Support

Vector Machine (SVM) [75], Random Forest (RF) [76], Fuzzy Logic Theory [77],

optimisation algorithms [78], feed-forward Multilayer Perceptron (FFMLP) [79], Back

Propagation (BP) [80], etc. have been utilised in developing STLF methods in recent

years. The ML provides advantages for analysing non-linear data, particularly the

ANNs [81, 82]. These approaches are appropriate for modelling the complex relation-

ship among multiple variables, especially the non-linear relationships [82].

In general, ML methods such as BP algorithms, RF, Grey Projection Network, etc.,

lack the consideration of time correlation of time series data [83]. Furthermore, Fuzzy

Logic and Genetic Algorithms concentrate on distinct facets of data processing, such

as data classification and solution optimisation [84]. Moreover, the RNN is an im-

proved method based on the conception of ANN, using the temporal information of

the input data, where connections between units form a directed cycle within the

same layer, although the ANN cannot find the relationship between data and time.

Therefore, the output of each time step in the RNN is affected by the input data from

previous steps [85, 86]. However, the vanishing gradient problem affects the RNN

when the input time-series data becomes deep and complex [87, 88]. In some cases,

the gradient information during backpropagation progress will be vanishingly small,

preventing the weight stored in the network from changing its value [89].
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Thus, in solving STLF problems, the Long Short-Term Memory (LSTM) method, based

on Recurrent Neural Networks (RNN), is introduced, which provides the ability to

analyse non-linear data, taking into account the time correlation of time series data

[90, 91, 83]. To ease the vanishing gradient problem, LSTM blocks are introduced

into the cell in RNN to remember values for either long or short duration of time

[92]. Hidden units in LSTM blocks trap the coming input data depending on the

weight at the input and output gate, as shown in Figure 2.5. Therefore, the gradient

can be propagated back across several time steps in the backpropagation progress

without exploding and vanishing, which helps the LSTM network learn the long-range

dependencies of the time series.

Figure 2.5: The LSTM block

Recent research has demonstrated that a hybrid prediction scheme employing mul-

tiple machine learning or statistical approaches outperforms the standard prediction

scheme employing a single machine learning algorithm [93]. The hybrid method seeks

to deliver the highest possible prediction performance by controlling the strengths and

weaknesses of each base method automatically [60, 94, 95, 96, 40, 97, 98]. Kouhi et

al. [99] propose a three cascade neural network (CNN) structure to eliminate the
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unnecessary and redundant inputs in order to improve forecast error. Fan et al. [100]

offer a self-organised map (SOM) and SVM method that can automatically adjust

distinct methods simultaneously for ordinary days and anomalous days. Moon et al.

[44] suggest an STLF technique employing RF and multilayer perception for small

networks.

Variable selection is a crucial aspect in developing STLF methods [101]. Temperat-

ure, sunshine duration, relative humidity, cloud cover, and wind speed are common

meteorological factors utilised for STLFs [102, 103]. Li et al. [104] reduce the MAPE

of the method from 2.4% to 1.4% by incorporating the accumulated influence of

high temperatures upon electricity demand. In STLF methods, non-meteorological

variables such as time of day and day of the week are also crucial. For instance,

according to [105], short-term heat load estimates can be improved by integrating

calendar and holiday variables. In [76], the RF method produces a day-ahead forecast

with an average MAPE of 2.3%. In [106], the Gradient Boosting method is utilised

to produce an hourly load forecast. Finally, in [107], the RF and Gradient Boosting

methods are contrasted, while the location and used method influence the forecast

outcome. The MAPE ranges between 4% to 7%.

Behind-the-meter installation of solar panels and other DGs are other vital elements

that influence electrical demand. In [108], Kaur et al. find that the accuracy of STLFs in

California dropped when solar generation capacity was installed. [109] demonstrates

that incorporating photovoltaic (PV) variables in STLF methods improve method ac-

curacy. However, prior research has demonstrated that behind-the-meter DGs impact

load forecasts and this factor has not been considered in STLF methods until recently.

Takeda et al. [101] use estimated solar generation, temperature, solar radiation, hu-
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midity and wind speed in STLF methods in Tokyo, Japan. They achieve a MAPE of

1.8% during weekdays. Hasan et al. [110] using an ANN-based method to forecast

solar irradiance and then convert it into solar power. They find that this enhances their

STLF method forecast accuracy.

2.4.2 Mid and Long Term Load Forecast

MTLF and LTLF play essential roles in maintenance scheduling, fuel reverse planning,

unit commitment, energy contracts, load dispatching analysis, revenue from sales,

load dispatching coordination, monthly peak load studying, and capacity expansion for

electric utilities, Network planning, capital investment, purchase of generating units,

purchase of equipment, revenue analysis, and staff hiring, respectively [111, 112].

When making MTLF and LTLF, the method selection and accuracy are influenced by

several factors [97, 113, 114, 115, 116]:

• Population: number of electricity consumers, household units, electricity con-

nections, used or provided electric units, etc.

• Weather: temperature, global warming index, rainfall, humidity, etc.

• Economy of the Considered Territory: Gross Domestic Product (GDP), Per

Capita Income (PCI), Gross national product (GNP), Gross National Income

(GNI), etc.

• Standard of Living: Sales of luxury items including appliances, Technology de-

velopment, etc.

• Fuel and Electricity Prices: oil price, gas price, petroleum price, electricity price,

accessibility to amenities, etc.

• Geographical and Regional Developments

• Government Policies,

• Random Factors
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In the time period, MTLF contributes to the possible allocation of available resources

and the creation of other infrastructure elements [112]. For example, improving con-

gestion management in transmission grids and total system efficiency, and reducing

consumer energy cost [117]. Moreover, the deregulated firms can improve the trans-

mission and distribution systems under the guidance of the LTLF information [48].

Economically, the research about the impact of MTLF is shown in [118, 119]. The

precision of MTLF affects energy supply planning, with inadequate supply restraining

the economy’s growth and overstock resulting in cost overruns that may be passed

on to consumers. In addition, articles [120, 121] demonstrate the effects of MTLF

on hydro-thermal coordination and cost-efficient fuel purchasing. Nevertheless, the

MTLF has not gained much traction because academics have focused on the other

two load forecasting horizons, and the MTLF prediction period is wedged between the

STLF and LTLF.

When it comes to the LTLF, an electric utility must conduct accurate forecasting for

LTLF because the installation of power generation and transmission facilities usually

takes years and require substantial investments. The accuracy of LTLF directly has a

major impact on future generation and transmission network development. Therefore,

the importance of the electricity network planner to predict future circumstances is

crucial. In accordance with the anticipated demand, the electric utilities coordinate

the resources with a cost-effective plan. In general, the LTLF necessitates the eval-

uation of a significant number of uncertainties, and in [122], several reasons for the

inaccurate forecast are stated:

• Peak demand is quite much dependent on temperature.

• The required meteorological data and economic statistics for LTLF are unavail-

able.

• Difficulties in electric power storage.
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• The period to construct new power plants and transmission networks is years

and requires a substantial investment.

Compared with STLF, less work has been completed on LTLF yet. The cause is the

same as for MTLF, for example, uncertainty, complexity and difficulty of data collection

and processing. In addition, weather and economic and societal variables exacerbate

the difficulties of LTLF. In [123, 124], an LSTM method with a Genetic Algorithm (GA)

is proposed for LTLF, and it provides more accurate forecast results than statistical

methods. Moreover, [125] proposes a method that combines ANN with Fuzzy Logic

in which the neural network consists of multilayer sensing and the adaptation of

parameters to connect fluctuations in electricity usage with changes in electricity

pricing.

In this work, as the values of MTLF and LTLF are revealed mostly in power network

expansion planning, infrastructure investment, and other long-term objectives, only

STLF is discussed. The load pattern analysis in the mid and long-term window is

focused on the aggregated load profile, which is highly sinusoidal. Therefore, the

improvement of applying machine learning methods compared with STLF is less.

2.5 Demand-Side Management and Load Forecast in

Distribution Network

The main objectives of the smart grid are to improve power system efficiency, reduce

the peak-to-average ratio, minimise production costs, and integrate renewable energy

sources (RES). The particular objectives can be categorised into six groups [126]:

• Real-time pricing and billing implementation;

• Renewable energy resources integration;
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• Accommodation of plug-in hybrid vehicles (PHEV) and plug-in hybrid vehicles

(PEV);

• Bi-directional information flow between the utility company and consumer;

• Production cost minimisation;

• Energy production optimisation and greenhouse gas emission reduction.

The demand-side management (DSM) Program is an approach used to indirectly

regulate the load profile in order to meet utility objectives. These objectives are [36]:

• Keeping the load factor close to 1.0.

• Maintaining the peak load within the network capacity.

In the achievement of the objectives mentioned above, the utility company obtains the

maximum energy from the installed plants, therefore, maximising the overall profit and

minimising the average cost. As depicted in Figure 2.6 (redrew from [36]), common

load shaping strategies include peak clipping, valley filling, load shifting, strategic

conservation, strategic load increase, and variable load shape.

Figure 2.6: Typical demand-side management techniques [36]
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Demand response (DR) is the process that the utility company curbs the load or

remotely controls appliances with consumers’ premises to improve the operation and

service quality based on the existing systems and avoid substantial capital invest-

ments. DR aims to deal with fuel price spikes, brownouts, blackouts, and other emer-

gency conditions. Consumers are involved in participating in the DR programs via

various incentives and penalties [127]. In general, DR programs can be classified

into price-based and incentive-based programs. The price-based programs introduce

Time-of-Use, Real-Time Pricing, Critical Peak Pricing, etc. The incentive-based pro-

grams involve Direct Load Control, Demand Bidding, Interruptable Programs, etc.

[128].

Price-Based DR Program

The price-based DR programs and indirect load controls usually encourage con-

sumers to modify their energy consumption patterns at a specific period, such as

peak hours, in response to the operator’s time-based pricing schemes. The most

common schemes include Time-Of-Use pricing (TOU), Critical Peak Pricing (CPP),

and Real-Time Pricing (RTP). In [129], the tariff is designed to offer different charges

depending on the time in different year seasons or hours of the day. The price during

peak hours is generally higher than during off-peak hours. CPP is similar to TOU,

which periodically changes prices, especially when the system is overloaded in the

summer. In [130], the CPP scheme is notified to consumers a day ahead with proper

load forecasting techniques. Further, RTP offers hourly prices, and the participants

are notified about the time beforehand. The implementation of RTP requires well-

developed smart grid systems to achieve real-time communication among utilities,

customers, and control centres [131].
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Incentive-Based DR Program

In incentive-based DR programs, consumers receive financial incentives for their load-

reduction behaviours. The most common schemes include Direct Load Control (DLC),

demand bidding, and interruptible programs. DLC programs control customer appli-

ances remotely by sending signals based on the contract agreed between operators

and customers [132]. Demand bidding programs are market-based programs in that

customers bid for the load they are willing to offer control availability to the utility com-

panies [133]. Finally, interruptible programs allow customers to shift the unnecessary

load to off-peak periods. In some circumstances, the customers are encouraged to

shut down during emergencies. Participants receive incentives for their actions or

penalties if they fail to respond to the special events [134].

Soft Computing Based DSM

Depending on the machine learning approaches, the widely utilised approaches can

be classified as Fuzzy Logic, Artificial Neural Networks, and Evolutionary Computa-

tion (EC). The soft computing techniques have advantages in solving complex prob-

lems of intelligent building control [135]. First, the Fuzzy Logic is extensively utilised

in controlling and monitoring home appliances as this approach outperforms others

in dealing with uncertainties and nonlinearities [136]. Second, ANN is one of the

machine learning approaches that can consider various factors, therefore making

optimisation decisions with pattern and signal predictions[137, 138, 139]. Finally, EC

is used to solve complex nonlinear, nonconvex and constrained optimisation problems

[131].
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Optimisation Based DSM

Game Theory is one of the most commonly utilised and powerful optimisation tech-

niques. In [140], an Autonomous game theory-based DSM is presented. The object-

ives are to minimise energy costs and peak-to-average ratio. Moreover, for RTP-based

DSM, stochastic optimisation techniques are widely used for price minimisation and

controlling financial risks [129, 141, 142]. In [143], the DSM program is implemented

with Simulated Annealing techniques with white tariffs (an extension of the TOU

tariff). Besides, for various DSM program requirements, load scheduling optimisation,

multi-objective optimisation, interval number optimisation, etc., are introduced to solve

optimisation problems [144, 145, 146, 147].

Load Forecast in DSM

Forecasting electric load is an important component of the electrical power business.

It is essential to forecast the future electricity demand as early as feasible. The cor-

poration makes investments and decisions for purchasing energy from generating

companies and planning for maintenance and expansion based on the anticipated

load. Therefore, it is essential to know future energy usage. Electric power distrib-

utors require a tool that allows them to estimate the load in order to facilitate its

management and improve the planning formulation. Accurate prediction of electric

load is difficult. Predicting the electric load at a future time is a difficult task due to

the different properties of the electrical demand and the related uncertainty. A typical

daily variation of electric loads is shown in Figure 2.7 (redrew from [36]).
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Figure 2.7: Typical daily load curve variations [36]

The features of the electric load are determined by the consumers and the devices

such as motors, lighting, heating system, etc. Depending on the end-users and the

devices, the electric load can be divided into four categories, including residential,

commercial, industrial and agricultural. Load forecast is crucial in SDN for utility com-

panies because these companies offer DSM schemes based on the forecast load

rather than the actual load. Moreover, the importance of load forecasting is as follows

[36]:

• Purchasing, generation, sales

• Contracts

• DSM

• Area planning

• Infrastructure development/capital expenditure decision making

2.6 Research gaps

According to the comprehensive literature review done in this chapter, the research

gaps are noted as follows:

First, based on the review, the demerits of current forecast approaches can be con-

cluded as follow:
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• The existing STLF methods utilise sufficient historical data for model training

purposes. But, the DSM alternatives, such as Peer-to-Peer (P2P) trading meth-

ods, are usually utilised in a small network, where the collectable historical data

is insufficient or limited for model training purposes. Moreover, the nonlinearity

of the load curve increases further which worse the existing forecast meth-

ods and increases the forecast errors. Therefore, the novel developed method

should be able to provide accurate results when the training dataset is limited

and the nonlinearity of the load increases.

• The trained model only fits the trained historical dataset load patterns, and

when the application area changes, the model losses the forecast accuracy.

This is caused by the machine learning models being trained based on the spe-

cific datasets and these methods lack abilities to learn new features from other

datasets without proper training procedures. Therefore, the novel developed

method should be adaptive.

• The peak and off-peak load cannot be forecast accurately simultaneously. Al-

though hybrid processes and methods could be combined to ease this problem

in existing methods, it increases the model complicity, requires more compu-

tational power, and, therefore, narrows the application range. Moreover, the

forecast mismatch, especially during peak periods, will cause the extra oper-

ational cost for the system operators to increase/decrease backup generations

(or extra energy storage devices) to balance the demand. Therefore, the novel

forecast method proposed in this work should provide an accurate forecast

method for peak and off-peak periods and implement dynamic compensation

parameters, making the proposed method adaptive to fit various application

purposes.
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Second, with many countries releasing the carbon neutral target by different target

years, the RES and EVs penetration level, home appliances usage pattern, heating

system, etc. will be significantly changed and switch to an environmentally friendly

path. The existing forecast methods are validated with the historical dataset, while the

load pattern in the future is altered. This will lose the validation convincing for existing

forecast methods. Therefore, this research should build up future load scenarios to

evaluate the proposed method.

Third, the existing DSM alternatives are developed based on 100% accurate forecast

result which deviates from real-world application conditions. Therefore, this research

should reveal the value of improving forecast accuracy in deploying the DSM altern-

atives.

2.7 Conclusion

This chapter presents a general overview of the areas related to the primary research

topic of this PhD thesis. First, it summarises the development status of current smart

grids and the advantages of applying load forecast in the distribution network. The

current power grid is transitioning from passive to active distribution networks due to

the accelerated growth of emerging ICT and IMI. Moreover, the increased penetration

level of DGs offers more opportunities for operators to improve service quality. With

this consideration, an accurate load forecast method will benefit short, mid and long-

term power grid management. With state-of-art machine learning techniques, the

load accuracy is potentially improved by utilising neuron networks and data collected

from the monitoring system. Second, the load forecast methods widely utilised in the

power network as reviewed. As methodologies of these approaches are frequently

referred to for novel method development, it is worth investigating the value of ex-



42 Literature Review

isting methods. In this section, both statistical and machine learning methods are

reviewed. Typical statistical methods are as follows: multiple linear regression, expo-

nential smoothing, ARIMA and its variants, Kalman filter, etc. Typical machine learning

methods can be concluded as follow: support vector regression, fuzzy logic, artificial

neural network, random forest, etc. According to recent research, it has been found

that hybrid learning methods offer better forecast ability as they compensate for the

disadvantages of a single method. Third, applications of machine learning techniques

in various load forecast steps are reviewed, including short-term, mid-term and long-

term load forecast methods. Referenced forecast approaches can be classified into

statistical and machine learning methods, and the positive and negative aspects of

these methods are discussed. Finally, the demand-side management strategies are

reviewed, including widely utilised optimisation techniques. Also, the importance of

load forecast in demand-side management is reviewed.



Chapter 3

Development of Short-Term Load

Forecast Method for Distribution

Network

3.1 Introduction

Electric load forecast is fundamental in smart grids as it can help suppliers to model

and forecast load in advance, balance the demand and supply, adjust demand re-

sponse plans, implement real-time pricing schemes, etc. In this regard, the accuracy

and robustness load forecast method is important. The gap between electricity supply

and demand can be minimised with accurate forecast methods.

In a distribution network, the relationship between consumers, suppliers, and dis-

tribution system operators (DSO) becomes complex. The consumers become more

active in interacting with the electricity market, such as selling electricity to the open

market [148]. The situation is also challenging and beneficial for DSO. the DSO

provides advanced management methods, for example, the state estimator, the self-

healing function, etc., with accurate load forecast methods[149]. On the other hand,

the development of the smart grid has created massive real-time and historical data,

which is collected from the monitoring devices, such as smart meters, Phasor Meas-

43
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urement Units (PMUs), and other user behaviour data [150]. By taking advantage

of Machine Learning (ML), the short-term load forecast methods are expected to

increase forecast accuracy and method robustness upon modern load patterns and

massive load data.

In the modern smart grid, with the big data generated from the smart grid, the Wide

Area Monitoring System provides chances to change the way of energy production

and the pattern of energy consumption. We could efficiently analyse and mine the en-

ergy big data to support more effective and efficient decision makings, prevent risks,

protect privacy, etc. As the electricity load forecast accuracy is crucial in providing

better cost-effective risk management plans, the STLF method with high forecasting

accuracy is introduced [151].

This chapter will fully illuminate the short-term load forecast method based on the

ML algorithm. While the existing top-down load forecast method requires months

or years of historical data and cannot simultaneously forecast peak and off-peak

load accurately, the key contribution of the proposed method is the accurate forecast

result for both peak and off-peak periods at the DN when the historical data and

data varieties are insufficient. The novel developed method introduces dynamic error

compensation abilities to the existing LSTM network, which helps the forecast method

reduce errors in peak and off-peak load forecasting. Moreover, the forecast method is

featured in utilising high-time-frequency data with state-of-art machine learning meth-

ods to generate the load forecast method for the distribution network. Besides, the

developed method uses multi-variables, such as load, temperature, humidity, etc., as

the input, coming with the correlation selection function to improve forecast accuracy

even further. The surplus of the developed method provides the ability to apply load

forecast in small communities with fewer households, where the historical dataset is

insufficient.
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This chapter demonstrates detailed development procedures of the DAC-LSTM method,

including data processing and analysis, the dynamic adaptive compensation module,

and sensitivity analysis.

3.2 Long Short-Term Memory Network

Recurrent Neural Network

The traditional ANN maps the input historical data and output forecast value but lacks

consideration of time correlation in the data sequence. This causes the problem that

the ANN cannot find the relationship between data and time. An RNN is an improved

ANN class using the input data’s temporal information, where connections between

units form a directed cycle within the same layer [85, 152]. Therefore, the output of

each time step is affected by the input data from previous steps.

However, the vanishing gradient problem affects the original RNN when the input time

series data becomes deep and complex. The ’weight’ contributed by the former data

’vanishes’ as the input time series data becomes longer. As a result, the perception of

later nodes from the previous time step decreases, which prevents the ’weight’ stored

in cells from being updated in each epoch. The vanishing gradient problem is worse

when the activation function is sigmoid, while Gated Neural Networks (GNNs) such as

Long-short Term Memory and Gated Recurrent Unit (GRU) provide promising results

in time series learning tasks by introducing sophisticated network structures [153].

The RNN structure is shown in Figure 3.1.

The symbols in the figure above are explained as follows. X is the input unit. H is the

hidden unit. Y is the output unit. W is the weight matrix.
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Figure 3.1: The RNN network structure

Besides, the forward propagation can be expressed as follow:

at
h =

I

∑
i=1

whixt
i +

H

∑
h=1

wh′hst−1
h′ (3.1)

st
h = fh(at

h) (3.2)

at
o =

H

∑
h=1

whost−1
h (3.3)

The symbols in the equations above are explained as follows. w is the weight. a is

the sum weight. f is the activation function. s is the value after passing through the

activation function. t is represent the current time. i is the input vector number. h is

the hidden vector number at time t. h′ is the hidden vector number at time t −1. o is

the output vector number.
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Long Short-Term Memory Network

To solve or ease the vanishing gradient problem, an LSTM block is introduced into

the RNN, remembering the values of either long or short duration of time for different

cases [92]. To be more specific, the hidden units in the RNN are replaced by the

LSTM blocks. Each LSTM block contains three extra gates, which are used to control

the information flows into, out of, or trapped in the cell.

The structure of LSTM is shown in Figure 3.2 (redrew from [154, 155]).

Figure 3.2: The LSTM cell in an RNN network

at
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I
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∑
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∑
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∑
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∑
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I

∑
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wicxt
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h +bc (3.8)

dt
c = st
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c + st

jg(a
t
c) (3.9)
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at
l =

I

∑
i=1

wilxt
i +

H

∑
h=1

whlst−1
h +

C

∑
c=1

wclmt
c +bl (3.10)

st
l = f (at

l) (3.11)

st
h = st

lφ(d
t
c) (3.12)

The symbols in the equations above are explained as follows. X is the input unit.

w is the weight. a is the sum weight. h is the hidden vector number. s is the value

after passing through the activation function. m is the input from the cell to the input

gate. i is the input vector number. j, k and l are the input, forget and output gate

vector numbers. c is the cell vector number. d is the cell value. f ,g,φ are activation

functions.

Depending on the weight at the input and output gates, the LSTM blocks can let

errors into, out of or trapped in the block. The coming input data is trapped in the cell

if both input and output gates are closed. As a result, the value remains unchanged,

and the impact on the output of the current time step is prohibited. Therefore, when

the backpropagation progress occurs, the gradient can be propagated back across

several time steps without exploding and vanishing. This memory block allows the

LSTM network to learn the long-range dependencies of time series compared with

the traditional RNN. Moreover, by taking advantage of using RNN, the input matrix

towards the LSTM block can be multi-variables, multi-steps ahead, and the output

can be multi-steps after. Besides, the seasonal influences are minimised.
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3.3 Development of Dynamic Adaptive Compensation

This section presents a detailed methodology for developing an STLF forecast method.

It includes a data processing procedure, peak detection method, and LSTM method

developing with an adaptive weight correction procedure. In addition, the novel method

introduces dynamic error compensation abilities to the existing LSTM network, which

helps the forecast method reduce errors in peak and off-peak load forecasting.

The block diagram is shown in Figure 3.3.

Figure 3.3: Block diagram of the DAC-LSTM scheme

As Figure 3.3 illustrates, the raw data is first fed into the data processing module to

generate the required data format. Then by following the path with different colours,

consumption, EV, and weather data are passed to the LSTM forecast module. As

LSTM blocks cannot accurately forecast both peak and off-peak load, the peak load

detection module is added to distinguish the peak and off-peak load dynamically.

Different parameter sets will be applied to peak and off-peak loads separately af-

terwards. A more detailed explanation can be found in 3.3.5. Finally, according to the

forecast error from previous steps, the dynamic adaptive compensation (DAC) module

is added to improve forecast results for peak and off-peak periods.
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Because the DAC module provides different compensation parameters for peak and

off-peak hours dynamically, the forecast error is reduced dynamically according to the

forecast quality regardless of the forecast methods. The DAC-LSTM method solves

problems existing in most other methods, that, first, the forecast accuracy cannot

be maintained in peak and off-peak hours simultaneously, and, second, the model

performance (forecast accuracy) reduces when the training datasets are insufficient.

Figure 3.4 shows the overall forecast network structure. The forecast network is built

based on the LSTM network, consisting of several layers (Figure 3.4 left). Each layer

is structured as an RNN network. The hidden units in each layer are replaced by the

DAC-LSTM unit (Figure 3.4 middle). The peephole DAC unit is shown on the right

of Figure 3.4. The detailed explanation of the DAC-LSTM unit is presented in a later

section 3.3.7.

3.3.1 ML Problem Definition

This research aims to develop short-term load forecast methods using ML techniques.

As the existing forecast methods cannot forecast peak and off-peak periods simul-

taneously and the training dataset is assumed to be sufficient, this work intends to

develop a forecasting method based on the LSTM network, capable of providing

accurate peak and off-peak load forecast results simultaneously and dealing with

future smaller distribution network applications. The developed method intends to

utilise multiple variants as inputs and high-time resolution datasets to improve forecast

accuracy.
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Figure 3.4: DAC-LSTM structure: From the network to cells
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3.3.2 Data Description

Three primary datasets are utilised: electrical load, ambient condition, and EV char-

ging profile.

The forecast method is developed by using the following datasets. The real-world his-

torical electrical load data is obtained from the Thames Valley Vision Project (TVVP)

[156]. The data is half-hourly recorded, comes from 220 domestic properties, starts in

February and March 2013 and ends in November 2014. Also, the half-hourly weather

data in the Thames Valley area was collected from the local weather station from

January 2013 to December 2014, including 16 features described in the Correlation

Analysis Section. The weather data shows the general weather condition in this area

instead of the specific property. The EV charging profiles is from Adaptive Charging

Network (ACN), including the charging profiles from charging stations[157]. We as-

sume the US EV users are similar to those in the UK. According to the EV charging

data source, the dataset is made possible by close collaboration with PowerFlex

Systems around the US. These two datasets (datasets from TVVP and ACN) are

combined to emulate the real load pattern scenarios with high EV penetrations. The

detailed explanation can be found in section 3.3.3.

A one-week snapshot of TVVP and ACN datasets is shown in Figure 3.5. It can be

seen that the EV charging loads mainly contribute to the peak hours, constituting

about 10-20% of the sum load. Therefore, EV charging increases the Peak-to-Average

ratio and brings more challenges for existing forecast methods obtains accurate result

at peak and off-peak period simultaneously.
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Figure 3.5: Snapshot of TVVP and ACN datasets for 7 days

3.3.3 Data Input

The electrical load data from TVVP is pre-processed to remove the bad point, which

may be caused by the delay of recording devices installation, unrecorded days, etc. As

shown in Figure 3.6, the spark at the right (1 P.U.) represents the wrongly recorded

data or fault data, therefore removed. Moreover, to simulate the high-resolution big

data collected from modern smart devices (like smart meters and PMUs), the load

data is expanded using linear interpolation and -1.5% to 1.5% random error was

added to reduce the time interval from 30 to 5 minutes. The random error is used

to simulate the real data recording pattern in the real world. Afterwards, the individual

data from 220 households are aggregated to represent the total load. Finally, after

the processing, the usable dataset contains 550-day data. Also, the 5-minute interval

data is smoothed by passing a moving average block. This helps the methods to learn

the load pattern and keep the advantages of using high-time resolution data.
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Figure 3.6: Histogram of normalised data with 200 bins (data recorded under 200 is
removed)

Then, the EV charging profile from ACN is cleaned by removing the spikes and

the wrongly recorded samples. The numerical relationship between ACN and TVV

dataset is defined by the following steps below:

1. According to the report [158], the daily charging profile per EV is calculated,

peaking at 0.9 kW and 0.37 kW on average (across 24 hours).

2. From TVV, 220 households with 25% EV penetration yield 20.4 kW on average.

3. The dataset from ACN gives an average EV charging power of 53.8 kW. There-

fore, the ACN dataset is multiplied by 0.38 and then combined with the TVV

dataset.

The input dataset is pre-processed to clean the bad point and be expanded to a 5-min

time resolution. Then the following steps are taken as the data processing progress.
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3.3.4 Correlation Analysis

This section presents the process of selecting features related to load forecast. The

used feature data is recorded from the same area as the TVV Project and within the

same period. The collected data includes 16 features, while only 6 of them show a

potential relationship with the load selected. Besides, the weather condition feature is

simplified into sunny and not sunny. Moreover, 1 extra feature is added as wkornot,

which represents weekday or weekend.

Input Features

The input weather data includes 6 features as shown in Table 1.1: load, tempC,

weatherCode, humidity, cloudcover, wkorNot.

Table 3.1: Input features and its represents

Term Represent
Load Load (W)

tempC Temperature (◦C)
Humidity Humidity

WeatherCode Current weather
Cloudcover Cloud cover rate (%)

wkorNot weekday or weekend

Correlation Coefficient

The correlation analysis introduces the Pearson Correlation Analysis as it illustrates

the correlation between time series data [159]. By applying the equation 3.13, the

following Table 3.2 is derived, where n is the number of samples:

rxy =
n(∑xiyi −∑xi ∑yi)√

n∑x2
i − (∑xi)2

√
n∑y2

i − (∑yi)2
(3.13)
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Table 3.2: Numerical feature correlation coefficient

Index Load tempC Humidity
Coefficient 1 -0.154 0.022

Index Cloudcover wkornot weatherCode
Coefficient -0.026 -0.02 -0.116

Table 3.2 shows that the load value has a positive correlation with humidity and a

negative correlation with temperature. While the weatherCode influences weather,

humidity, etc., the weatherCode feature is excluded. In addition, the coefficient of

Load represents the self-correlation, which yields 1. In Figure 3.7, 3.8, the plot shows

the trend of the load and temperature, which is a repetitively negative correlation.

Figure 3.7: Load and temperature profiles in every 5 minutes
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Figure 3.8: Load and temperature profiles every 24 hours

3.3.5 Peak Detection

The LSTM forecast method cannot accurately forecast both peak and off-peak hours

simultaneously. Besides, when the peak comes, the forecast result may significantly

exceed or exceed the actual peak value due to the forecast hysteresis. Figure 3.9

shows the hysteresis of the forecast method and the large forecast error at the peak

(compared with the off-peak). Therefore, the peak detection method is applied to

distinguish peak and off-peak load before correcting the error upon the complete

forecast result. In the later section, methods are used to improve the average forecast

error and minimise the forecast error during the peak.

In figure 3.9, the forecast result is obtained from the LSTM method trained by TVVP

and ACN datasets. The forecast step is 30 minutes. The general forecast accuracy

is 7.92% (R2) and 0.956 (MAPE). The accuracies during off-peak hours are 7.73%

(R2) and 0.944 (MAPE), while during peak-hour are 9.17% (R2) and 0.895 (MAPE).
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Figure 3.9: Typical load and half-hourly LSTM forecast result for one day

This demonstrates that although the forecast mismatch during peak hour slightly

affects the general accuracy (reduced by 0.19%, measured in R2), the forecast error

still significantly (increased by 1.25%, measured in R2), which will cause the extra

operational cost for the DNOs.

The Z-score (also called the standard score) is based on the dispersion principle. The

algorithm is robust as the input time-series does not corrupt the threshold due to the

separated moving mean and deviation modules. The coming signals are determined

with similar accuracy, which is not affected by the previous signals [160]. According to

the Z-score method, the time series will be regarded as peak only when:

|y−avg|> threshold ∗ std (3.14)
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According to equation 3.14, three values will be generated afterwards, including 1,

-1 and 0. If the absolute values of the difference are greater than threshold ∗ std,

a positive (for y > avg) or negative (for y < avg) signal will be generated, which

represents the peak (1) and valley (-1) hours. In this research, only peak (1) and

off-peak (0) signals are considered, while the valley hours (-1) are considered as off-

peak (0).

Figure 3.10 shows the typical peak load detection result. The positive and negative

signal represents the ’peak’ and ’bottom’ load, while the zeros represent the off-peak

load. Depending on the purpose of the utilisation, the sensitivity of the method is

adjustable. The Z-score method requires the following parameters:

• lag: the lag of the moving window.

• threshold: the value that the datapoint is away from the moving mean when the

signal will be noted.

• influence: the influence (between 0 and 1) of new signals on the mean and

standard deviation.

Figure 3.10: Peak load detection using z-score method
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For example, when the lag is 10, the last 10 signals will be smoothed. When the

threshold is 5, the signal will be noted when a datapoint is 5 standard deviations

away from the moving mean. Last, when the influence is 0.5, half of the normal

datapoints’ influence. Similarly, an influence of 0 gives that all signals will be ignored

for recalculating the new threshold, and an influence of 1 represents the threshold

remains stationary. Therefore, the most robust mode is achieved when the influence

is 0 while the influence of 1 is the least robust. In addition, the influence should remain

between 0 and 1 for non-stationary data, which the load profile mostly represents. In

this research, the threshold value is defined manually by observing the performance

of the Z-score method. The configuration of the derived Figure 3.10 is as follows: lag

is 288, the threshold is 1, and influence is 0.8.

3.3.6 LSTM network Development

Python is used for implementing the algorithms along with Keras. The LSTM network

is developed using Spyder IDE and Tensorflow as the backend. The overall structure

is shown in Figure 3.11. In this Figure, the input matrix contains the preprocessed

data, and the three layers in the mid represent the network containing three hidden

layers. The following steps are taken in the algorithms:

1. Data normalisation: the data is normalised within [0,1]

2. Frame the data as supervised learning

3. Split the sample into two sets: train : test = 2 : 1

4. Reframe the train and test set into 3-dimension: (x, y, z), where x represents

the length of datasets, y represents the length of forecast steps, z represents

the amount of features.
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5. Network design: the network has 3 layers, numbers of cells in each layer are c,

c/2 and c/3. The recurrent activation function is ’sigmoid’. The dropout is set to

0.1. The Dense is d, which equals to the number of forecast steps.

6. The model is compiled with the following settings: the loss is measured by

’MSE’, Metrics is using ’MSE’, and the optimiser is using RMSprop. The other

parameters are default.

7. The model is fitted with the following settings: the maximum number of epochs

is 1000, and the batch size is 1152 (selected according to the maximum system

memory size). The batch size depends on the computational ability of the

computer. Therefore, it is not fixed.

8. When the model is trained, the next step is the prediction

9. Invert the data to the real value from the normalised

10. Calculate the accuracy and generate graphs

In addition, the network parameters are defined based on the following consideration.

First, the sample size ratio between the training and test dataset follows the most

common ratio utilised in machine learning model training, which is 2:1. Second, the

network contains 3 hidden layers as the size of the training sample is 1.4GB, which

required a relatively simple network. Therefore, the number of hidden layers is defined

as 3. Third, the cell in each hidden layer follows a dropping trend. In this research, the

number of cells in each hidden layer is defined as c, c/2 and c/3.

In the steps above, x is the number of rows of the train or test set, y is the time steps

used for prediction, z is the number of features, c is the calculated by equation 3.15,

d is the number of forecast steps, MSE represents Mean Squared Error, RMSprop

represents Root Mean Squared Propagation.

c = | Rtrain

2(Ctrain +Htrain)
| (3.15)
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Figure 3.11: An LSTM network with multiple layers

Where R is the number of rows, C is the number of columns, and H is the number of

heights.

Equation 3.15 is derived according to LSTM network development guidance provided

in [161]. There has no fixed equation to define cell numbers in each hidden layer. In

this work, the cell number is calculated based on the shape of the input dataset. The

maximum c is the length(Rtrain) of input, the divisor is defined as the sum of width

and depth (Ctrain and Htrain) of the input. Moreover, as the complicity of the network

is limited (3 hidden layers), the the divisor is multiplied by two.



3.3. Development of Dynamic Adaptive Compensation 63

3.3.7 Dynamic Adaptive Compensation

This section describes the Dynamic Adaptive Compensation (DAC) methods, which

are used to improve the forecast result dynamically. As Figure 3.12 shows, the DAC

is an add-on function to the LSTM block. The overall block diagram is shown in Figure

3.13. The pre-forecast value is compared with the real load value, generating an error.

According to the forecast step of the method and the rolling forecast procedure, calcu-

lated errors are passed through a moving average error block which gives the average

error value. Besides, the bias βbias is generated, which gives a dynamic-adjust bias

value. Also, the real-time forecast value passes through the Activation function, in this

research sigmoid, to generate a parameter αsigmoid . The parameter αsigmoid is fixed

according to different forecast steps. Finally, Equation 3.16 is introduced to give the

final forecast result.

Figure 3.12: The DAC-LSTM unit
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Figure 3.13: Block diagram of adaptive weight forecast method

This procedure can be expressed as the following equations:

F t+i
DAC = α

i
sigmoidβ

i
biasE

t +St+i
h (3.16)

In equation 3.16, the present time is t and the forecast step is i. FDAC is the forecast

value from DAC-LSTM, St+i
h is the forecast result from original LSTM block at ith

forecast step. The DAC-LSTM forecast result is calculated as the sum of the forecast

result from the LSTM block and the adjusted error calculated by 3.17 and coefficients.

Et = St
h −Rt (3.17)
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In equation 3.17, Et is the forecast error at time t, St
h is the best historical forecast

result at current time t, Rt is the recorded actual load data. Equation 3.17 illustrates

that the forecast error used for compensation is the difference between the best

forecast result (from LSTM block, uncompensated by DAC) from previous time steps

and the actual load at time t.

α
i
sigmoid = fα(i) (3.18)

In equation 3.18, α i
sigmoid is the fixed forecast step parameter. fα(i) is derived from

sigmoid function. For each forecast step i, the value of α i
sigmoid is constant.

β
i
bias =

Et

Eavg
fβ (i) (3.19)

In equation 3.19, β i
bias is the adaptive error parameter. Eavg is the moving average er-

ror calculated from several preceding Et . fβ (i) is a dynamic changing parameter. This

equation illustrates that the compensated error is adjustable according to previous

errors. If the forecast error shows an increasing trend, the compensation increases,

and vice versa.

The equation of fα(i) is described as follow and plotted in Figure 3.14:

fα(i) = 1.5− 1
1+ e(−i+1)/2

(3.20)

It can be seen that the parameter for the first forecast step is 1, reducing with each

later step. fα(i) aims to alleviate the effects of forecast error to the later step because

the errors may reduce. This function maintains the parameter for the first step is 1 and

the farthest step is above 0.5.
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Figure 3.14: The plot of fα(i)

The equation of fβ (i) is described as follow:

fβ (i) = kδ (
1− i

m
+1)+1 (3.21)

δ (
Et

i
Eavg

) =
2

5+5en(1− Et
i

Eavg )
− 1

5
(3.22)

Figure 3.15: The plot of δ , with n = 100, x-axis: Et
Eavg
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In equation 3.21, kδ is the compensation factor, determining the upper and lower

bound of the compensated P.U. value. k is sensitive to the error trend, while δ is

sensitive to the forecast step.

First, k is explained as follows. If the Et keeps increasing compared with previous

steps, k increases with a step of ∆ and vice-versa. The default value of k is 1 and k is

reset to default when Et
i

Eavg
changes the positive and negative.

Second, δ is explained as follows. The function of δ is derived from the commonly

used activation function in the LSTM network, the sigmoid function. This function

intends to limit the range of the compensation, which is ±0.2. If Et
i

Eavg
> 1, the com-

pensation will be positive and vice versa. If Et
i

Eavg
= 1, the compensation is cancelled.

Moreover, m and n are constant, which are determined by the test dataset. m controls

the sensitivity between forecast steps and compensation factor kδ , and m ≥ (imax −

1). This indicate that, for example, if m = 5 (given that maximum forecast step is 6),

fβ (6) = 1. Therefore, the compensation is disabled. n controls the sensitivity between

error changes ( Et
i

Eavg
) and compensation limit. For example, when ( Et

i
Eavg

) remains un-

changed, 3.22 with higher n yields larger |δ |, which means more compensated error.

Thus, when looking back to equation 3.21, the value of fβ (i) depends on forecast step

i and error trend Et
i

Eavg
. The bound of fβ (i) is 80-120% with slightly changes caused by

∆ and 1−i
m .

Besides, in this procedure, the compensated forecast result may exceed or is less

than the actual value significantly when the error becomes extremely large. Therefore,

to improve the forecast accuracy during the peak, the peak detection and compens-

ation cap methods are used to avoid over or under-compensation. The result with or

without a cap is shown in Figure 3.16. The max/minimum compensation value is set

to ±0.2k Et .
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Figure 3.16: The performance of applying peak cap

In addition, Figure 3.17 illustrates the snapshot of the DAC-LSTM forecast method

result for 24 hours. The red, green and blue curves represent the actual, LSTM

forecast, and DAC-LSTM forecast load profiles. It can be found that the error reduces

significantly, while at some points the DAC-LSTM forecast result exceeds the actual

load values. Moreover, the parameters for the whole simulation are present in Figure

3.18a, 3.18b, 3.18c and 3.18d. In Figure 3.18a, α remains 0.51 as the simulation

forecasts 30minute. Figures 3.18b and 3.18c represent parameters β and k. Figure

3.18d represents kδ which is within the limit ±0.2k.
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Figure 3.17: Snapshot of the DAC-LSTM method 24-hour forecast result, 30-minute
forecast

(a) α during the whole simulation (b) β during the whole simulation

(c) k during the whole simulation (d) kδ during the whole simulation

Figure 3.18: The plots for parameters in DAC-LSTM forecasting
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Figure 3.19 displays the 30-minute ahead forecast. This Figure gives a visual compar-

ison between the forecast performances of the ML, the persistence, and the ARIMA

methods for a period of 7 days taken from the evaluation set. It can be observed that

the DAC-LSTM method provides the closest value to the actual load profile.

Figure 3.19: Snapshot of 7-day Forecast results from the 30-minute ahead DAC-
LSTM method

The following figure 3.20 illustrates the forecast result during peak and off-peak hours

in detail. From this figure, it can be noticed that during off-peak hours, the forecast

result from ARIMA, Persistence and DAC-LSTM methods remains similar, while dur-

ing the peak hours, the DAC-LSTM method provides the best results. The detailed

numerical result is shown in table 3.3.
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Figure 3.20: Snapshot of 2-day Forecast results from the 30-minute ahead DAC-
LSTM method

Table 3.3: Forecast accuracy comparison among Persistence, ARIMA and DAC-
LSTM methods, evaluated in R2

Persistence ARIMA DAC-LSTM
General 0.881 0.920 0.991

Peak 0.884 0.892 0.990
off-peak 0.880 0.921 0.991

From table 3.3, it can be observed that the DAC-LSTM method achieves the best

forecast accuracy during general, peak and off-peak forecasts, all above 0.99. While

forecast accuracy from the ARIMA method during peak hours significantly reduces,

from 0.920 to 0.892. Because the Persistence method uses a hysteresis forecast,

therefore, the forecast accuracy changes slightly.
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3.3.8 Sensitivity Analysis

The parameters used in the DAC-LSTM method are analysed in this section, including

Eavg, m, n. To analyse the contribution of each parameter to the DAC-LSTM method,

the experiment is carried out as follows:

1. The utilised dataset is from TVVP and ACN, containing 220 households and

550 historical days.

2. The range for Eavg varies from 1 to 288, which represents 5 minutes to 1 day.

3. The range for m and n varies from 1 to 100.

The maximum accurate values are achieved when m is in the range 74 to 92 and n

is in the range 18 to 50, with R2 = 0.984 and MAPE = 4.3%. The following Figures

3.21 and 3.22 illustrate the R2 and MAPE values under different m and n when 221

samples are used to calculate Eavg.

Figure 3.21: R2 under different m and n values, when 221 samples are used to
calculate Eavg
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Figure 3.22: MAPE under different m and n values, when 221 samples are used to
calculate Eavg

Figure 3.23 illustrates the R2 and MAPE values for different lengths of datasets to

calculate Eavg (given that m = 85 and n = 30). It can be found that the highest R2 is

at the 221st sample, and the smallest MAPE is at the 38th sample. Moreover, as the

MAPE at 38th and 221st are 0.430 and 0.433 separately, the Eavg is calculated using

221 samples.

In conclusion, for the TVVP and ACN datasets, the optimised and selected paramet-

ers are m = 85, n = 30, and Eavg is calculated by 221 samples. For different training

datasets, the parameters are required to be re-calculated. In this case, the optimal

range for m and n are 18-50 and 74-92.
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Figure 3.23: The MAPE and R2 for different sample numbers for Eavg calculation

3.4 Conclusion

This work explains Persistence and ARIMA methods with equations, and detailed

parameter determination procedures are discussed with the TVVP and ACN data-

sets. Further, a novel robust DAC-LSTM forecast method is proposed for short-term

electricity load forecast based on the existing LSTM network, including a DAC module

as the add-on function. As most existing statistical and machine learning methods lack

the ability to forecast peak and off-peak hour loads simultaneously. Therefore, hybrid

methods or separated methods for peak and off-peak hours are required. Moreover,

existing methods assume the historical dataset is sufficient to train the required net-

work. However, with the construction of small-scale smart grids, the historical datasets

tend to be high time-resolution, high variety and less diversity (smaller networks

with fewer consumers). Meanwhile, methods with constant compensation parameters
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lead to more forecast errors. Therefore, the existing methods show weaknesses in

distribution network applications. This work proposes a robust forecast method which

provides accurate forecast results for peak and off-peak load and adapts to smaller

network applications.

The proposed STLF method follows a procedure including data processing, LSTM

network forecasting and peak load distinguishing, DAC for dynamic error compens-

ation, and forecast result generation. The key contribution of the proposed method

is the accurate forecast result for both peak and off-peak periods at the DN when

the historical data and data varieties are insufficient, while the existing top-down load

forecast methods require months or years of historical data and cannot forecast peak

and off-peak load simultaneously. The novel forecast method first introduces dynamic

peak load distinguishing blocks to separate peak and off-peak loads. Second, the

dynamic error compensation module is introduced to compensate for the forecast

error with dynamic adjusting parameters for peak and off-peak loads. These functions

help the forecast method reduce errors in peak and off-peak load forecasting, handle

various datasets, and provide accurate forecast results.





Chapter 4

Case Studies

4.1 Introduction

The development procedures of the DAC-LSTM method are present in Chapter 3.

The key contributions of the proposed method are the accurate forecast result for both

peak and off-peak periods at the DN when the historical data and data varieties are

insufficient. Furthermore, to validate the value of the DAC-LSTM method, this chapter

intends to carry out several case studies from aspects, including varying forecast

steps, varying length of training dataset, varying size of training dataset, expanding

application range to the transmission network, and qualitatively comparison with other

methods. Moreover, the DAC-LSTM method is benchmarked with the Persistence and

ARIMA methods.

4.2 Persistence and ARIMA Methods

This section includes an explanation of Persistence and ARIMA methods, which are

two commonly utilised methods in the academic and industrial areas. These two

methods are introduced as the benchmark to evaluate the performance of the DAC-

LSTM method.

77
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4.2.1 Persistence Method

The traditional short-term load forecast method is based on the fact that consumer

behaviours could be considered ’quasi-stationary’ on a time scale of a period[162].

However, the power consumption varies slowly over days at the transmission network

level. Therefore, the persistence method is commonly utilised. The equation is shown

below:

Pt+k = Pi (4.1)

In the equation above, P is the power. t represents the current status. i is the input

power time stamp. k is the forecast step. This equation indicates that the forecasted

value at step k is assumed to be the same as the previous value at time i.

The persistence method performs well at the transmission network level, but when

it comes to the distribution network or community network, the uncertainty of the

load forecast increases. Meanwhile, the load is influenced by special events (like the

football match will increase the evening peak), weekdays or weekend days, seasons,

weather, etc. Therefore, the persistence method shows a weakness in the short-term

load forecast.

4.2.2 ARIMA Method

To improve the forecast accuracy for fewer consumers and short-term loads, Autore-

gressive Integrated Moving Average (ARIMA) method with its variations has been

widely proposed in recent years. ARIMA is a generalised model of Autoregressive

Moving Average (ARMA) that combines the Autoregressive (AR) process and Moving

Average (MA) processes and builds a composite model of the time series. As the

acronym indicates, ARIMA captures the key elements of the model:



4.2. Persistence and ARIMA Methods 79

• AR: Autoregression. The dependencies between the input and several lagged

inputs are utilised to build the regression model (p).

• I: Integrated. The input dataset is measured in derivation at different times to

reach stationary status (d).

• MA: Moving Average. The dependency between inputs and the residual error

terms is considered when a moving average model is used for the lagged

observations (q).

Equation expressions of the ARIMA are shown as follows, from [163]. First is the AR

(p), which can be written as a linear process:

xt = c+
P

∑
i=1

φixt−i + εt (4.2)

In the equation above, xt is the stationary variable. c is constant. φi are autocorrelation

coefficients at lags from 1 to P. εt is the residuals, the Gaussian white noise series

with mean zero and variance σ2
ε .

Second is the MA, which can be written in the form:

xt = µ +
q

∑
i=0

θiεt−i (4.3)

In the equation above, µ is the expectation of xt (usually assumed equal to zero). θ

is the weights applied to the current and prior values of a stochastic term in the time

series, θ0 = 1.

By combining equations 4.2 and 4.3 and form an ARIMA model of order (p,q):

xt = c+
p

∑
i=1

φixt−i + εt +
q

∑
i=0

θiεt−i
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Where φi ̸= 0, θi ̸= 0, and σ2
ε > 0. p and q are the AR and MA orders. The ’Integrate’

component involves differencing the time series to convert a non-stationary time

series into a stationary. The general form of an ARIMA model is denoted as ARIMA

(p, d, q).

The critical step in building up the ARIMA model is the determination of (p, d, q)

values. By observing the plot of the input dataset, for instance, if the variance grows or

reduces with time, derivations should be used to stabilise the dataset and determine

d. The parameter d is the order of difference frequency changing from non-stationary

time series to stationary time series. Then, the autocorrelation function (ACF) is

introduced to measure the amount of linear dependence between inputs, and this

determines the lag p. Moreover, the partial autocorrelation function (PACF) is used to

determine the autoregressive terms q [163].

Figure 4.1, 4.2 and 4.3 illustrate the original series, first-order differencing, and second-

order differencing of TVVP datasets and their corresponding ACF and PACF. The

second-order differencing dataset is used for ARIMA parameters determination. The

determination process of parameters p, d, and q are explained as follows:

1. By comparing the ACF of original, first-order differencing and second-order

differencing, the time series reaches stationary with two orders of differencing.

However, looking at the ACF plot for the 2nd differencing, the lag goes into the

far negative zone reasonably quickly, indicating that the series might have been

over-differenced. Therefore, for this specific dataset, d should be 1.

2. Any autocorrelation in a stationarised series can be rectified by adding enough

AR terms. Thus, initially, The order of the AR term is taken to be equal to as

many lags that crosses the significance limit (the blue area) in the PACF plot. It

can be observed that the PACF lag 4 is quite significant since it is well above

the significance line. Thus, p is fixed as 4.
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Figure 4.1: Plot of original series, and its ACF and PACF for the TVVP dataset
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Figure 4.2: Plot of 1st differencing, and its ACF and PACF for the TVVP dataset
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Figure 4.3: Plot of 2nd differencing, and its ACF and PACF for the TVVP dataset
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3. The ACF tells how many MA terms are required to remove any autocorrelation

in the stationarised series. A couple of lags are well above the significance line.

Therefore, q is fixed as 4.

According to the steps above, ARIMA model parameters are defined as follows:

(p,d,q) = (4,1,4).

4.3 Performance Metrics

In this chapter, the performance of Dynamic Adaptive Compensation DAC-LSTM is

evaluated and carried out with case studies. TVVP and ACN datasets are used for

each case study. Moreover, the EXLETRON UK domestic load dataset is used to test

the application of DAC-LSTM in a higher-level power network. When evaluating the

DAC-LSTM, the following settings are made:

1. Each model is trained ten times and then takes the average error value to show

a steady performance of DAC-LSTM.

2. When training the LSTM model, the model parameters are adjusted according

to the training data pool size, forecast steps, and forecast steps ahead.

3. Each model is trained for 500 epochs and then returns to the best epoch.

4. A 30-day electric load is forecasted using the trained model and compared with

actual values to derive the R2, MAPE and correlation.

5. When needed, the input dataset is expanded to 5 min time resolution with linear

interpolation and random errors. The random error is typical -1.5% to 1.5%.

6. The configuration of parameters in the peak detection is as follows: lag is 288,

the threshold is 1, and influence is 0.8.

7. The configuration of the DAC module parameters is as follows: m = 85, n = 35.

8. The configuration of parameters in the ARIMA is as follows p, d, q = 4, 1, 4.
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The performance is evaluated by using the following values: R-squared (R2), Mean

absolute percentage error (MAPE) and Pearson Correlation (Correlation). Regression

models are usually evaluated by R2 and MAPE, both functions of errors between

predicted and actual values. R2 is a statistical measure representing the proportion

of the variance for a dependent variable explained by an independent variable or

variables in a regression model. For example, if R2 equals 0.5 in a model, then

approximately half of the observed variation can be explained by the model’s inputs.

MAPE is the sum of the individual absolute errors divided by the demand (each period

separately). It considers the error between forecast and actual and the percentage of

error and actual.

R2 = 1− UnexplainedVariation
TotalVariation

(4.4)

MAPE =
1
n ∑ |Ai −Fi

Ai
| (4.5)

ρ(x,y) =
E[xy]
σxσy

(4.6)

where E[xy] is the cross-correlation between x and y, and σ2
x = E[x2] and σ2

y = E[y2]

are variances of signals x and y, respectively. The R2 and MAPE reflect the
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4.4 Case 1: Comparison Between DAC-LSTM and LSTM

Methods with Various Forecast Steps

First, the proposed DAC-LSTM method is compared with the original LSTM method.

The forecast step varies from half an hour (1 step) to 24 hours (48 steps). The numeric

value is shown in Appendix, Table A.1. The data from Table A.1 is plot in Figure 4.4,

4.5, 4.6:

Figure 4.4: The forecast results comparison between LSTM and DAC-LSTM meth-
ods, forecast step varies from 0.5 hours to 24 hours, evaluated in R2
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Figure 4.5: The forecast results comparison between LSTM and DAC-LSTM meth-
ods, evaluated in MAPE

Figure 4.6: The forecast results comparison between LSTM and DAC-LSTM meth-
ods, forecast step varies from 0.5 hours to 24 hours, evaluated in Corr
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The improvement of the DAC-LSTM method compared with the LSTM method for the

24-hour forecast step is shown in Figure 4.7, 4.8:

Figure 4.7: Case 1: R2 Improvement percentage of DAC-LSTM compared with LSTM

Figure 4.8: Case 1: MAPE Improvement percentage of DAC-LSTM compared with
LSTM
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In Figure 4.4 - 4.8, the DAC-LSTM method shows significant improvement within the

12-hour forecast step. When forecast steps range from 1 (30 minutes) to 18 (9 hours),

the DAC-LSTM method performs better than the LSTM method. The improvement of

R2 and MAPE ranges from 12.2% (R2) and 53% (MAPE) to 3.1% (R2) and 2.7%. In

addition, the forecast accuracy of both LSTM and DAC-LSTM minimises at around

the 6-hour forecast step, which is followed by a slight increase. Eventually, MAPE

fluctuated at 14% (LSTM) and 11% (DAC-LSTM) and R2 fluctuated at 4.2% (LSTM)

3.8% (DAC-LSTM).

This result illustrates that at shorter-term load forecast, the DAC-LSTM method sig-

nificantly improves compared with the LSTM method while the forecast step is less

than 9 hours. However, when the forecast step approaches 24 hours, the DAC-LSTM

method results in 5% more error than the LSTM method on average. According to sec-

tion 3.3.7, the DAC module first monitors the moving average error from the previous

forecast and real load values. Then, the dynamic compensation fixes forecast errors

based on pre-defined equations and dynamic parameters. When the forecast step

increases, the correlation between the previous forecast error and the compensation

coefficient reduces. Therefore, DAC-LSTM outperforms LSTM when the forecast step

is less than 18 (9 hours) and slightly falls behind LSTM at the 24-hour forecast.

4.5 Case 2: Comparison Between DAC-LSTM and AR-

IMA with Various Forecast Steps

The second case study compares the DAC-LSTM method with the ARIMA method.

The forecast step varies from 1 (30-minute) to 48 (24 hours). The historical data pool

for training is fixed at 550 days and 220 households. The numeric value is shown in

Appendix, Table A.2. The data from Table A.2 is plot in Figure 4.9, 4.10, 4.11:
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Figure 4.9: The forecast results comparison between ARIMA and DAC-LSTM
methods, forecast step varies from 0.5 hours to 24 hours, evaluated in R2

Figure 4.10: The forecast results comparison between ARIMA and DAC-LSTM
methods, evaluated in MAPE

The improvement of the DAC-LSTM method compared with the ARIMA method for

the 24-hour forecast step is shown in Figure 4.12 and 4.13:



4.5. Case 2: Comparison Between DAC-LSTM and ARIMA with Various Forecast Steps91

Figure 4.11: The forecast results comparison between ARIMA and DAC-LSTM
methods, forecast step varies from 0.5 hours to 24 hours, evaluated in Corr

Figure 4.12: Case 2: R2 Improvement percentage of DAC-LSTM compared with
ARIMA

In Figure 4.9 - 4.13, the DAC-LSTM method shows significant improvement within

the 12-hour forecast step. For this 48 steps comparison, DAC-LSTM performs better

than ARIMA except for steps 10 (-1.20%), 13 (-2.97%), 18 (-1.35%), 23 (-3.95%),

and 27 (-0.28%) which improvements are negative. Despite these negative values,
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Figure 4.13: Case 2: MAPE Improvement percentage of DAC-LSTM compared with
ARIMA

which may be caused by a specific dataset that reduces the model accuracy, the

overall improvement is significant, which achieves 79.6% (R2) and 58.4% (MAPE).

This result proves that at a shorter-term load forecast (within 24 hours), the DAC-

LSTM method provides a significant improvement compared with the ARIMA method.

In addition, various forecast step comparisons between DAC-LSTM and Persistence

are not included as the Persistence method assumes the forecast value equals the

forecast-step ahead value. This limits the application of the Persistence method to an

hour or day-ahead forecast.
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4.6 Case 3: Various Lengths of Historical Data

The third case study compares forecast results with different amounts of days for

training. The historical data used are from TVVP and ACN, as described in Section

3.3.2. First, the model is tested with different training pools, from 550-day to 14-day

historical data. The expected forecast step is 6, which represents 30 minutes forecast.

This case study tests the model’s robustness when historical input data is insufficient.

Tables A.3, A.4, A.5 in Appendix contain numeric values of R2, MAPE, and correlation

according to different amounts of days for training by using Persistence, ARIMA, and

DAC-LSTM methods. The forecast accuracy values are plotted as bar charts in Figure

4.14, 4.16, and 4.18.

It illustrates that the forecast accuracy reduces with the reduction of training samples.

However, the DAC-LSTM method provides good forecast accuracy when the data

pool is reduced. The forecast accuracy from DAC-LSTM remains over 0.95 by using

more than 100-day historical data.

4.6.1 Comparison of R2

Figures 4.14 and 4.15 indicate R2 values and percentage of improvements of DAC-

LSTM compared with Persistence and ARIMA methods.
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Figure 4.14: Case 3: R2 with different amount of households for training

Figure 4.15: Case 3: R2 with different amount of households for training

As the figures show, the overall R2 increases by applying the DAC-LSTM method.

Figure 4.14 illustrates the DAC-LSTM method maintains forecast accuracy over 0.97

when training samples are obtained from more than 150 historical days. While Persist-

ence and ARIMA methods represent a decreasing trend with the reduced number of

historical days, none of these methods provides forecast accuracy above 0.93. In ad-

dition, Figure 4.15 illustrates the DAC-LSTM method provides 7% - 19% improvement

upon the ARIMA method and 6% - 15% improvement upon the Persistence method.
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4.6.2 Comparison of MAPE

Figures 4.16 and 4.17 indicate MAPE values and percentage of improvements of

DAC-LSTM compared with Persistence and ARIMA methods.

Figure 4.16: Case 3: MAPE with different amount of households for training

As the figures show, the overall MAPE increases by applying the DAC-LSTM method.

Figure 4.16 illustrates that the DAC-LSTM method maintains forecast accuracy below

5% when training samples are obtained from more than 300 historical days. While

Persistence and ARIMA methods represent an increasing trend with the reduced

number of historical days, none of these methods provides 5% or lower forecast

error. In addition, Figure 4.17 illustrates the DAC-LSTM method provides 16% - 41%

improvement upon the ARIMA method and 10% - 53% improvement upon the Per-

sistence method.
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Figure 4.17: Case 3: MAPE improvement with different amount of households for
training

4.6.3 Comparison of Correlation

Figures 4.18 and 4.19 indicate Correlation values and percentage of improvements

of DAC-LSTM compared with Persistence and ARIMA methods.

As the figures show, the overall correlation between forecasted and real loads in-

creases after applying the DAC-LSTM method. Figure 4.18 illustrates that the DAC-

LSTM method maintains a correlation of forecast and real values over 0.988, rep-

resenting that the forecasted load maintains the most similar load shape compared

with the real load. Correlations of ARIMA and Persistence show a decreasing trend

with the reduction of the length of the historical dataset. In addition, the green bars

in figure 4.18 are higher than the red bars, proving that the ARIMA method provides

more convincing results than the Persistence method. In figure 4.19, improvements

are 2% - 11% and 4% - 11% for ARIMA and Persistence methods separately.
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Figure 4.18: Case 3: Correlation with different amount of households for training

In conclusion, with the reduced length of the historical dataset, the DAC-LSTM method

provides the most convincing forecast result. R2 values remain over 0.95 when the

length of historical data is more than 130 days, where the input changes can efficiently

affect the predicted load. Moreover, the MAPE remains below 5% when the input data

is more than 300 days, where the predicted load gives relatively low errors. Therefore,

for this specific training dataset, the DAC-LSTM method provides accurate forecast

results (R2 over 0.95 and MAPE below 5%) when the length of the historical dataset is

longer than 300 days. Moreover, the DAC-LSTM method provides a convincing result

(R2 over 0.95 and MAPE below 6.1%) if the length of the historical dataset is longer

than 100 days. This case study illustrates that the proposed DAC-LSTM method can

be applied in a situation where the length of the historical dataset is limited, which

may be caused by temporal device failure, lack of infrastructure development, etc.
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Figure 4.19: Case 3: Correlation improvement with different amount of households
for training

In addition, the improvement is significant for correlation when comparing DAC-LSTM

with ARIMA and Persistence methods. This shows that DAC-LSTM keeps the load

shape and trend the closest to the actual shape.

4.7 Case 4: Various Sizes of Household Numbers

The fourth case study compares forecast results with different amounts of households

used for training. The historical data pool for training is fixed at 550 days. The expected

forecast step is 6, which represents 30 minutes forecast. The trained models are

used to forecast 220 households’ electrical load. Table A.6, A.7, A.8 in the Appendix

contain numerical values of R2, MAPE, and correlation according to different amounts

of households for training by using Persistence, ARIMA, and DAC-LSTM methods.

These values are plotted as bar charts in Figure 4.20, 4.22, and 4.25.
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It shows that the forecast accuracy reduces with the reduction of training samples.

However, the DAC-LSTM method provides good forecast accuracy when the data

pool is reduced. The forecast accuracy from DAC-LSTM remains over 0.95 by using

more than 30 household historical data.

4.7.1 Comparison of R2

Figure 4.20 and 4.21 indicate R2 values and percentage of improvements of DAC-

LSTM compared with Persistence and ARIMA.

Figure 4.20: Case 4: R2 with different number of households’ data for training

As the figures show, the overall R2 increases in using the DAC-LSTM method. Figure

4.20 illustrates that the DAC-LSTM method maintains forecast accuracies above 0.97

when training samples are obtained from more than 30 households. While Persist-

ence and ARIMA methods illustrate a linearly decreasing trend with the reduced

number of households and forecast accuracy reduced from 0.881 to 0.591 (Persist-

ence) and 0.92 to 0.587 (ARIMA). The forecast accuracy provided by Persistence
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Figure 4.21: Case 4: R2 improvement with different number of households’ data for
training

and ARIMA methods reduces significantly when the number of households is less

than 100. In addition, Figure 4.21 illustrates that the DAC-LSTM method provides

12% - 58% improvement upon the Persistence method and 7% - 59% improvement

upon the ARIMA method.
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4.7.2 Comparison of MAPE

Figure 4.22 and 4.23 indicate the MAPE value and percentage of improvement of

DAC-LSTM compared with Persistence and ARIMA.

Figure 4.22: Case 4: MAPE with different number of households for training

As the figures show, the overall MAPE increases by applying the DAC-LSTM method.

Figure 4.22 illustrates that the DAC-LSTM methods maintain the MAPE below 5%

when the training sample contains more than 100 household data. While Persistence

and ARIMA methods give an increasing error trend with the reduced number of

households, none of these methods provides 5% or lower forecast error. In addition,

Figure 4.23 illustrates the DAC-LSTM method provides 53% -59% and 40% - 71%

improvement compared with the Persistence and ARIMA methods, respectively.
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Figure 4.23: Case 4: MAPE improvement with different number of households for
training

4.7.3 Comparison of Correlation

Figure 4.24 and 4.25 indicate correlation values and percentage of improvement of

DAC-LSTM compared with Persistence and ARIMA methods.

As the figures show, the overall correlation was reduced by applying the DAC-LSTM

method. Figure 4.24 illustrates the DAC-LSTM method maintains a correlation of

forecast and actual values over 0.98 regardless of the number of households. While

the correlation of ARIMA and Persistence methods shows a decreasing trend. In

addition, Figure 4.25 illustrates the DAC-LSTM method provides 5% - 24% and 4% -

37% improvement compared with Persistence and ARIMA methods, respectively.

In conclusion, with the reduced number of households available for load monitoring,

the DAC-LSTM provides the most convincing forecast result. R2 values remain over

0.95 with a minimum number of 30 households. Moreover, the MAPE remains below

5% when at least 100 households are available. Therefore, for this specific training
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Figure 4.24: Case 4: Correlation with different number of households for training

dataset, the DAC-LSTM method provides accurate forecast results (R2 over 0.95 and

MAPE below 5%) when the number of households is more than 100. Moreover, the

DAC-LSTM method also provides a convincing result (R2 over 0.95 and MAPE below

6.5%) if the number of households is more than 30. This case study illustrates that

the proposed DAC-LSTM method can be applied in small distribution networks or

micro-grids with fewer consumers for the purpose of DSM, P2P, etc.

In addition, the improvement is significant for correlation when comparing DAC-LSTM

with ARIMA and Persistence methods. This illustrates that DAC-LSTM keeps the load

shape and trend the closest to the actual shape.
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Figure 4.25: Case 4: Correlation improvement with different number of households
for training

4.8 Case 5: Comparison with ELEXON UK Domestic

Load

In this case study, the DAC-LSTM method is applied to the UK domestic load from

ELEXON to expand the application range. As Figure 4.26 shows, the load trend

from ELEXON is more smooth and shows less distortion among days compared

with distribution network load data. The ELEXON dataset is recorded half-hourly and

without linear interpolation before training. Table 4.1 shows the forecast accuracy from

ELEXON and DAC-LSTM. The R2 of the ELEXON forecast and DAC-LSTM forecast

results are 0.97 and 0.99 separately, while the DAC-LSTM method gives less average

error. Figure 4.27 compares the actual and forecast result from ELEXON, LSTM, and

DAC-LSTM.



4.8. Case 5: Comparison with ELEXON UK Domestic Load 105

Figure 4.26: Case 5: real and forecast load from ELEXON, at 30-min time-step

Table 4.1: Case 5: UK domestic load dataset forecast result

R2 MAPE (%) RMSE (%, normalised)
ELEXON 0.97 0.17 0.13

DAC-LSTM 0.99 0.13 0.11

Figure 4.27: Case 5: real ELEXON recorded load, LSTM forecast result, and DAC-
LSTM forecast result
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4.9 Case 6: Comparison with Other Methods

The sixth case study compares the forecast result from the DAC-LSTM method with

other state-of-art machine learning methods. All referred methods are compared in-

stead of using quantitative numbers but measuring the improvements based on the

benchmarks. Moreover, as discussed in the literature review chapter, the LSTM net-

work shows advantages in long-time-series data forecast. Therefore, the forecast

accuracy of the LSTM method is set as the comparison baseline (benchmark) for each

method. As different publishments introduce various performance metrics, Table 4.2

summarises the most commonly used metrics, MAPE (%), as the standard. Moreover,

because different methods are developed for various forecast steps, the case study

only compares methods developed for a 30-minute to 2-hour forecast.

Table 4.2: Case 6: comparison among DAC-LSTM and other methods with the
performance of LSTM set as the baseline

DAC-LSTM [164] [165] [166] [167] [90]
LSTM 5.44 2.56 5.54 25.9 2.86 4.80

Proposed 4.04 1.96 4.37 24.4 2.57 3.96
Improvement 0.257 0.234 0.211 0.058 0.101 0.175

In [164, 165, 166, 167, 90], proposed methods are HEL-LSTM, MS-CNN, ResNet-

LSTM, EEMD-LSTM and CNN-LSTM respectively. It can be noticed that the hy-

brid methods illustrate better performance compared with the original machine learn-

ing method. Moreover, compared with other STLF methods, the DAC-LSTM method

provides more improvement, 25.7%, while the others vary from 10.1% to 23.4%.
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4.10 Conclusion

In this work, the proposed DAC-LSTM method is evaluated with 6 case studies,

including:

1. Compared with LSTM and ARIMA for various forecast steps (cases 1 and 2).

These two cases study evaluate the performance improvement upon LSTM and

ARIMA methods for forecast length within 24 hours. The result shows that DAC-

LSTM provides more convincing results than ARIMA within a 24-hour length

forecast or LSTM within a 9-hour length forecast.

2. Compared with ARIMA and Persistence for various lengths of historical data-

sets as input (case 3). This case study evaluates the performance of DAC-

LSTM while the length of the input dataset is deficient. The result proves that the

DAC-LSTM can be applied in the area where the load profile is not continuously

monitored across the year.

3. Compared with ARIMA and Persistence for various sizes of households’ data

as input (case 4). This case study evaluates the performance of DAC-LSTM

while the load profile variety is limited, which leads to a highly non-linear load

profile. The result proves that the DAC-LSTM can be applied in areas with fewer

households or utility companies.

4. Compared with ELEXON UK domestic load forecast result (case 5). This case

study extends the application range of the proposed method to the transmission

level. DAC-LSTM provides slightly more accurate less RMSE results than the

official half-hourly load forecast result.

5. Finally, qualitatively compared with other machine learning methods (case 6).

This case study qualitatively evaluates the performance of DAC-LSTM with

other state-of-art machine learning methods.
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The proposed method is evaluated in different scenarios based on the above case

studies. These results prove the DAC-LSTM method can be utilised from the distribu-

tion level network (highly non-linear) to the domestic load level. These features offer

opportunities for the electricity supplier and the grid operator to improve the existing

services, DR plan, real-time pricing schemes, etc. For example, in a P2P trading

system, more accurate STLF methods could reduce the Ethereum gas trading cost,

therefore reducing the operation cost and improving efficiency. Also, in a network with

high DG penetration, the share of renewable generation could be increased with more

accurate forecast methods to reduce carbon footprint.



Chapter 5

Future Load Scenarios

5.1 Introduction

Carbon neutralisation (CN) represents that carbon dioxide (CO2) should be com-

pensated through technologies such as carbon capture, carbon storage, and carbon

conversion within a period. The ultimate goal of CN is to achieve the net zero emis-

sion of greenhouse gases [168]. The concept of carbon neutrality was originated in

Samsoe Island, Denmark in 1997 and later accepted by industries around the world.

In 2003, the International Air Transport Association announce the goal of Carbon

Neutrality in the Aviation Industry by 2020. Afterwards, the 1.5°C above the temper-

ature of the pre-industrial level increasing goal is announced in the Paris Agreement

to limit global warming affections. According to the objective of the Intergovernmental

Panel on Climate Change (IPCC), the middle of the 21st century is the deadline for

achieving the carbon neutral target agreed upon by countries [169]. To realise the

goal proposed by IPCC, countries and unions including China, The Europe Union,

The United Kingdom, the United States, etc., announced their commitments to redu-

cing carbon emissions and achieving carbon neutrality before specific years (usually

between 2050 and 2060). However, the United Nations Environment Programme
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(UNEP) presents that the gap between countries’ targets emissions and the 1.5°C

goal is still big, as the “Emissions Gap Report 2019” released [170]. In order to reach

carbon neutrality, the IPCC states the importance of a multi-pronged approach based

on [171]:

• Phasing out fossil fuels, using renewable energy sources (RES);

• Facilitating behaviour change, improving energy efficiency (EE) for both supply

and demand;

• Introducing negative emissions measures.

Climate change has become a major global challenge in recent decades. To achieve

the emission reduction targets, the SDN is adequate to handle the increasing RES

share and associated management methods with appropriate ancillary services on

both supply and demand sides. In this progress, the STLF play a vital role in order to

improve the system management quality, such as the renewable energy generation

forecast, DSM algorithms deployment, etc. To be more specific, the load curve in

the future will shift to different patterns, which will include more controllable devices,

energy storage systems, renewable generation plants, etc., and the energy consump-

tion pattern changes due to the energy policies, heating habits, travellers’ beha-

viours, etc. Also, the importance of microgrid construction and management increases

while peer-to-peer (P2P) energy trading creates a platform for all microgrid users to

exchange their energy surplus and demand without the presence of a centralised

authority. Therefore, dozens of studies on the relationship between energy policies

and load patterns have been published in recent years and the STLF methods should

also be robust in future load scenario applications.
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This chapter intends to build up bottom-up future load scenarios based on existing

research and policies. The DAC-LSTM is present and evaluated in the previous two

chapters with 6 case studies from various aspects. The DAC-LSTM method can

provide accurate forecast results, while the training dataset is limited to various fore-

cast steps. This chapter extends this study into the future by using future load scen-

arios developed for different scenario years. The main differences in each scenario

are the EV and e-heating penetration levels, estimated according to research and

policies. The proposed method forecasts aggregated load profiles based on each

scenario. Eventually, the results will be analysed, and the performance of the DAC-

LSTM method will be discussed.

5.2 Policies

The United Kingdom

In 2015, “The Paris Agreement” is signed by 178 countries, including the UK. To

control the climate changing problems, the UK shows great responsibility, and in

June 2019, clearly stated in the “Climate Change Act” that carbon neutrality should

be achieved by 2050. Moreover, the carbon neutrality target is written into the law

first by the UK in developed countries. The UK is the first developed country to

start carbon neutrality practices. The British Standards Institute issued the world’s

first carbon neutral specification (PAS 2060) (BSI) [172]. In the industries, the UK

issued a program for The British civil aviation industry to achieve carbon neutrality

by 2050. More than announcing the Ten Point Plan for a Green Industrial Revolution,

as the capital of the UK, London makes clear low-carbon requirements in power,

construction, transportation and other sectors to reduce carbon emissions by 80%

before 2050.
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The European Union

Since the Paris Agreement, countries including Sweden, France, New Zealand, etc.

also passed legislation pledging to achieve the carbon goal by 2050 or earlier [171,

173]. According to the ambitious climate and energy targets set by the European

Union (EU), the Resolution on Climate Change of the European Parliament endorsed

a net-zero GHG emissions target by 2050 in March 2019 and “urged the Member

States to do the same as part of the Future of Europe”. Moreover, a target of 30%

carbon reduction is set as the intermediate target for most countries, it includes the

reduction in many aspects: GHG emission reduction by at least 40%, consumed

energy generation from RES account for at least 32%, improved EE by at least 32.5%

(comparing with business as usual). Until now, the goal is written into the draft of the

European Climate Law.

China

China is the world’s largest carbon emitter, contributing to 32% of the global carbon

emission by the end of 2020. The Chinese government set goal to achieve the peak

CO2 emission by 2030 on September 22, 2020. Afterwards, China sets the carbon-

neutral goal, achieved by 2060. Til now, China has made remarkable achievements

in controlling climate change during the 13th Five-Year Plan period. By the end of

2020, compared with the years 2005 and 2015, greenhouse emissions have been

reduced significantly, by 48.1% and 18.2%, and are effectively controlled. In addition,

renewable energy vehicles are growing rapidly in China and energy conservation in

some areas is proceeding steadily.
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The United States

On January 20, 2021, the United States government announced the return of the

United States to the Paris Agreement. During the campaign, a plan called “carbon-

free electricity society” is announced by Biden. This plan intends to achieve carbon-

free electricity by 2035 by utilising renewable energy and carbon neutrality with a

100% clean energy economy by 2050.

5.3 Future load structure in the UK

To demonstrate the future load scenarios, several publishes, government reports,

and projects have proposed future load models considering current policies, load

structures, user consumption patterns, weather impacts, etc. Typically, [174] proposed

a numerical modelling method for Hungary’s urban area, [175] provides a sustainable

energy development roadmap for Scotland, which includes the energy consumption

for different sections in 2030 and 2050. Moreover, [176, 177] analyses the future

passenger transport transformation and the impact of EVs in future scenarios. Also,

the European Network for Transmission System Operators Electricity (ENTSO-E) pro-

posed a comprehensive analysis of future scenarios across the European countries

[178].

5.3.1 TYNDP 2018

The 2018 Ten Year Network Development Plan (TYNDP 2018) was adopted by ENTSO-

E and publicly released on 19 November 2018 after a public consultation that ended

on 21 September 2018 [178]. The Plan comes at a pivotal time in delivering the

European policy objective of cost-efficiently achieving a clean future for the power
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system by 2050 while maintaining system security. The Plan gives a scenario analysis

for most European countries for 2020, 2025, 2030 and 2040. Thus, TYNDP 2018 is

referred to in this work to build up future load profiles. In TYNDP 2018, the year

2020 and 2025 has the best estimate scenarios; 2030 and 2040 scenarios have been

designed with European 2050 targets as an objective. Therefore, the scenarios for

2020 and 2025 are built as bottom-up topologies, while 2030 and 2040 are top-down

topologies. As of today, the year 2020 scenario is no longer required. Thus only the

analysis of the best years will be considered.

The project has three scenario storylines build-up with detailed electric load, various

types of generations, along with gas demand and supply, within the climate target

framework sets by the EU and commodity prices. The TYNDP scenarios include the

best estimate scenario before 2025 and three storylines for 2030 to 2050. The best

estimate scenario is developed for the short and medium term. In this scenario, it

includes a merit order sensitivity between coal and gas in 2025. While the longer

storylines consider the increasing uncertainties. In addition, these scenarios are built

to meet the EU’s carbon neutrality targets. The scenario pathways from 2020 to 2050

are in figure 5.1.

The storylines of the TYNDP 2018 are structured as follows:

• Distributed Generation: prosumers at the centre - small-scale generation, bat-

teries and fuel switching society engaged and empowered.

• Sustainable Transition: national regulation, emission trading schemes and sub-

sidies, maximising the use of existing infrastructure.

• Global Climate Action: global decarbonisation, large-scale renewables devel-

opment in both electricity and gas sectors.
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Figure 5.1: The scenario pathways from 2020 to 2050 and the RES shares [178]

• External scenario: based on EUCO 30 (European Commission) - an energy-

efficient target of 30% and energy targets agreed by the European Council in

2014.

The Sustainable Transition (ST) scenario is selected as the main storyline in this

project. For such a scenario, the following building key parameters and their changes

are taken into consideration:

• Power generation: increase in small-scale generations, P2G, electricity demand

flexibility, and heating needs in winter.

• Transport: increased electricity and gaseous usage, lower battery cost, and

liquefied natural gas (LNG) for long transport.

• Heat: more electric and hybrid heat pumps, higher building efficiencies, and

more district heating from combined heat and power (CHP) plants.

• Electricity demand: increased overall, residential growth reduced, peak demand

reduced because of proper management.

• Gas demand: transport sector increase, residential sector decrease, required

for peak demand situation (winter cold weather, etc.)
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The following sections are the scenario-building process, covering the electricity de-

mand, electric vehicle (EV) increase, and heating demand. The figures below illustrate

the numerical number and trend for the European countries. These numbers and

trends are considered in building the UK DN scenarios.

Electricity Demand

The ST scenario has the lowest electricity demand in 2030 and 2040 as the heating,

power generation and transport sectors are predominately supplied by gas and other

fuel types. The detailed comparison of different scenarios is shown in Figure 5.2.

Figure 5.2: Electricity annual demand by scenario [178]

EV, HP, and Hybrid HP

In this section, EV, HP and hybrid HP represent Electric Vehicles, Heat Pumps and

Hybrid Heat Pumps. The growth in electric vehicles is exponential throughout the

timeline in all scenario paths, as Figure 5.3 shows:
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Figure 5.3: Increase in numbers of EV, e-HP and hybrid HP for each scenarios[178]

About the EV, the lowest growth is seen in the ST scenario in both 2030 and 2040

because the gas prices are at the lowest. However, the number of heat pumps signi-

ficantly increases. The HP increases as the heating sector involve more electrification

heating systems to contribute to the decarbonise. The hybrid HP grows slightly due

to the moderate economic growth and increase in EVs.

5.3.2 UK Scenario for Distribution Network

Based on the scenario built in TYNDP 2018, the UK DN load profile is constructed

considering the base load profile, heating load profile, EV charging load profile and

EV penetration levels. The number of households is set to 220, which matches the

TVVP dataset. The simulation data for each year starts from 26th February 2013 to

25th February 2014 (which matches the TVVP dataset). The simulated scenario years

are 2030 and 2040. In addition, the assumption is made that user behaviour in these

years is unchanged.
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Base Load

The basic load profile inherits the TVVP dataset, which includes 220 households.

According to the UK government report, as Figure 5.4 shows, the non-transport final

energy consumption of heat energy used for space heating and water heating in 2013

is 7.7% (the numeric value can be found in Appendix A.1). In addition, industrial

reports show that only 0.16% of cars in 2013 were registered as plug-in electric

vehicles. Thus, the portion of EV and electrified heating loads in TVVP datasets are

assumed to be minimum. Moreover, consumer energy usage patterns are assumed

to be unchanged in future load scenarios build-up.

Figure 5.4: Non-transport final energy consumption of heat energy in 2013 [179]
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Heating Load Profile

The heating load profile is from Data Catalogue, UKERC Energy Data Centre. The

dataset includes annual heat demand data for England and Wales at Lower Layer

Super Output Area (LSOA) level, before and after energy efficiency measures. The

project can be found in [180]. The heating load is collected from the same area as the

TVVP dataset, Bracknell and surrounding areas. The number of households providing

a heating load profile is 26 (derived from Table 5.2). The heating profile is half-hourly

monitored. The profile includes Air Source Heat Pump (ASHP), Ground Source Heat

Pump (GSHP) and Resistance Heater (RH). Only heating types consuming electricity

are used in the UK DN scenario development. Figure 5.5 illustrates the 1-year E-

heating load profile of 26 households in Bracknell and surrounding areas.

Figure 5.5: Aggregated e-heating load profile of 26 households [179]
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EV Charging Profile and Penetration Level

The EV charging profile is generated using the same method in [181]. The mobility

data obtained from the U.K. National Travel Survey [182] is utilised to emulate cus-

tomer behaviours. This survey includes disaggregated data on means, demographics

and personal travel behaviour based on diaries dating back to 2002. According to this

survey, the average µ and standard deviation σ of daily mileage, arrival and departure

times of individual households were determined.

The arrival time refers to the arrival after the last trip of day one and the departure time

refers to the departure before the first trip of day two. In each household’s emulation,

the average and standard deviation of the arrival and departure times are calculated

and compiled as two sets of (µ ,σ ). These tuples represent the EV availability of each

household. The sum of all individual trips for each household on the record day is

the daily trip mileage. According to the mileage from each household, the required

battery charging capacity is derived. The mileage values are described and recorded

as a set of (µ ,σ ). The following parameters in Figure 5.6 are utilised in the modelling:

Figure 5.6: Distribution parameters for travel patterns, and values of arrival and
departure time represents minutes after midnight)
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The simulation result gives the EV charging profile for 93 households and 365 days

(derived from Table 5.2). Assuming the charging power is limited to 3.3kW, only 50%

of cars are charged daily. In Figure 5.7, the EV charging profile includes 93 (derived

from 5.2) individual cars is presented:

Figure 5.7: Aggregated 93 EVs charging profile for 365 days

Scenario Build-up

According to the number of households in England predicted by the UK government,

which is shown in Figure 5.8, the number of households increases steadily:

As Figure 5.8 illustrates, the total number of households in the UK is estimated

based on the same increase rate as England. Moreover, as previously discussed,

the TYNDP 2018 Plan is referred to generate the required parameters to build up the

UK DN scenario. Thus, the following Table 5.1 shows the number of households, EVs,

HP, and hybrid HP calculated based on TYNDP 2018 project data source and Figure

5.8:
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Figure 5.8: Projected number of households, 2016-based and 2018-based household
projections, England, 2001 to 2043 [183]

Table 5.1: Scenario build-up parameters

Year HH (England) HH (UK) EV (UK) HP (UK) HHP (UK)
2020 23.5 27.8 308399 153627 99016
2030 25.1 29.7 5014535 995567 1255638
2040 26.6 31.5 13324469 2165719 1505120

In Table 5.1, HH represents the number of households (million), and the number of EV,

HP and hybrid HP derive from the following sources [184]. Moreover, as percentages

of households that own EVs, HP and HHP can be derived from Table 5.1, parameters

required for UK DN scenarios are illustrated in the following Table 5.2:

Table 5.2: EV penetration level, number of EV and HP+HPP for UK DN scenario

Year PL EVUKDN HPUKDN +HPPUKDN
2020 0.01 2 2
2030 0.17 37 17
2040 0.42 93 26

In Table 5.2, the EV penetration level, number of EV and HP+HPP are calculated

according to the parameters given in Table 5.1, following the same share:
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PL = EV/HH (5.1)

EVUKDN = PL∗220 (5.2)

HPUKDN +HPPUKDN = (HP+HHP)/HH ∗220 (5.3)

A 24-hour load profile generated based on Section 5.3.2 is shown in Figure 5.9. It

includes the base load, heat load, EV charging load and their sum, representing

the full load. This figure is plotted based on scenario 2040, which represents 220

households in total, 0.42 EV penetration level (93 EVs), and 26 households who own

HP or HPP.

Figure 5.9: Base, Heat, EV charging and Sum load profiles for 24 hours
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5.4 DAC Based on Future Scenarios

As the UK DN scenario load profile is defined in the previous section, the DAC-

LSTM method is tested with this dataset. The performance metrics are the same

as in Chapter 4.3, which includes R2, MAPE and correlation. In this section, when

evaluating the DAC-LSTM, the following settings are made:

1. Each model is trained 10 times, then takes the average error value to show a

steady performance of DAC-LSTM.

2. When training the LSTM model, the model parameters are adjusted according

to the training data pool size, forecast steps, and forecast steps ahead.

3. Each model is trained for 500 epochs and then returns to the best epoch.

4. When needed, the input dataset is expanded to 5 min time resolution with linear

interpolation and random errors. The random error is typical -1.5% to 1.5%.

5. The configuration of parameters in the peak detection is as follows: lag is 288,

the threshold is 1, and influence is 0.8.

6. The configuration of parameters in the ARIMA is as follows: p, d, q = 6, 1, 2.

5.4.1 Case 1: The scenario Year 2020

The first case study compares forecast results among DAC-LSTM, ARIMA and Per-

sistence. The load profile is generated following the UK scenario 2030, shown in Table

5.3. The EV penetration level is 0.01, representing 2 EVs in the simulation area, and

the number of households utilising HP and HPP is 2.

Table 5.3: Case 1 parameters: the scenario year 2020

Year HH PL EVUKDN HPUKDN +HPPUKDN
2030 220 0.01 2 2
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Forecast accuracies are summarised in Table 5.4 and a 24-hour simulation result is

shown in Figure 5.10.

Table 5.4: Case 1 results: the scenario year 2020

R2 MAPE (%) Corr
DAC-LSTM 0.989 3.67 0.993

ARIMA 0.942 5.38 0.975
Per 0.911 6.89 0.948

Figure 5.10: Case 1: 24-hour DAC-LSTM forecast result (the scenario year 2020)

5.4.2 Case 2: The scenario Year 2030

The second case study compares forecast results among DAC-LSTM, ARIMA and

Persistence. The load profile is generated following the UK scenario 2030, shown in

Table 5.5. The EV penetration level is 0.17, representing 37 EVs in the simulation

area, and the number of households utilising HP and HPP is 17.

Table 5.5: Case 2 parameters: the scenario year 2030

Year HH PL EVUKDN HPUKDN +HPPUKDN
2030 220 0.17 37 17
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Forecast accuracies are summarised in Table 5.6 and a 24-hour simulation result is

shown in Figure 5.11.

Table 5.6: Case 2 results: the scenario year 2030

R2 MAPE (%) Corr
DAC-LSTM 0.976 3.72 0.992

ARIMA 0.905 6.44 0.941
Per 0.927 7.08 0.939

Figure 5.11: Case 2: 24-hour DAC-LSTM forecast result (the scenario year 2030)

5.4.3 Case 3: The scenario Year 2040

The third case study compares forecast results among DAC-LSTM, ARIMA and Per-

sistence. The load profile is generated following the UK scenario 2040, shown in Table

5.7. The EV penetration level is 0.42, representing 93 EVs in the simulation area, and

the number of households utilising HP and HPP is 26.

Table 5.7: Case 3 parameters: the scenario year 2040

Year HH PL EVUKDN HPUKDN +HPPUKDN
2040 220 0.42 93 26
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Forecast accuracies are summarised in Table 5.8 and a 24-hour simulation result is

shown in Figure 5.12.

Table 5.8: Case 3 results: the scenario year 2040

R2 MAPE (%) Corr
DAC-LSTM 0.957 3.79 0.988

ARIMA 0.868 7.71 0.916
Per 0.908 7.04 0.954

Figure 5.12: Case 3: 24-hour DAC-LSTM forecast result (the scenario year 2040)

5.4.4 Results Snalysis

Average values of base, EV, heat and sum load and their percentages in sum load

are shown in Table 5.9.

As Table 5.4, 5.6, 5.8 and 5.9 indicate, with the increase of EV penetration level and

e-heating demand portions, forecast accuracy of DAC-LSTM, ARIMA and Persistence

methods reduce. R2 of DAC-LSTM reduces from 0.989 to 0.957 (3.24% reduction),

of ARIMA from 0.942 to 0.868 (7.86%reduction), and of Persistence from 0.911 to
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Table 5.9: Average values of Base, EV, Heat, and Sum load and their percentages in
years 2020, 2030 and 2040

Base EV Heat Sum
Average (2020) 49894 304 1029 51227
Average (2030) 49894 5274 9738 64906
Average (2040) 49894 13510 14641 78046

Percentage (2020) 97.4% 0.6% 2.0% 100%
Percentage (2030) 76.9% 8.1% 15.0% 100%
Percentage (2040) 63.9% 17.3% 18.8% 100%

0.908 (0.33%reduction). While MAPE follows an opposite pattern as R2, of DAC-

LSTM increases from 3.67% to 3.79% (3.27% increase), of ARIMA increases from

5.38% to 7.71% (43.41% increase), of Persistence increases from 6.89% to 7.08%,

then reduces to 7.04% (2.18% increase).

It can be noticed that the forecast errors at the peak period, especially from the

ARIMA method, increase significantly due to the increasing EV penetration levels

because the ARIMA method cannot provide accurate peak and off-peak forecast

results simultaneously. Persistence gives the minor reduction (R2)/increase (MAPE)

from 2020 to 2040 as it assumes the load after 30 minutes equals the present. The

DAC-LSTM method maintains the most accurate result compared with ARIMA and

Persistence. Benefiting from the DAC module, the compensation parameters adapt

to the peak load changes while the parameters for the off-peak load change slightly.

As a result, DAC-LSTM minimises the forecast error when the peak load increases

further due to the EV charging (without DSM management), as Figure 5.11 and 5.12

shows, while ARIMA lacks dynamic error compensation ability.
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5.5 Conclusion

In the future, governments are taking steps to achieve carbon reduction or carbon

neutralisation and, therefore, publish policies and restrictions to alter current load

patterns. As reported by several organisations, there will be more electrified elements

in the load, especially EVs and e-heating systems. According to existing works and

government reports, this chapter builds bottom-up scenarios for the UK distribution

network load in the years 2020, 2030 and 2040. In these scenarios, the EV pen-

etration level, HP and HPP load increase. Based on existing works and datasets,

bottom-up load profiles are generated to simulate different percentages of EVs, HPs

and HPPs.

This work simulates a bottom-up distribution network load with 220 households, which

matches the inherited baseload dataset from TVVP. The heat load derives from UKERC

Energy Data Centre, which is in the same area as TVVP. The EV load is generated

from the existing model with mobility data obtained from the UK National Travel Sur-

vey. Figure 5.9 shows that the evening peak load rises significantly without proper

DSM algorithms. Therefore, the peak detection and DAC module in the DAC-LSTM

method efficiently minimise the error at the peak. When comparing the forecast result,

DAC-LSTM provides the best result among all case studies. ARIMA method was

the second best in 2020, and forecast accuracy drops the most in 2040 due to the

increase in EV and heat load. The Persistence method accuracy changes the least

because the forecasted value equals the present. These results illustrate that the

DAC-LSTM method is more robust in distribution network load forecast than existing

extensively used methods.





Chapter 6

DSM with DAC-LSTM Method for

End-Users Electricity Cost Reduction

6.1 Introduction

One critical aspect of DSM in the smart grid is demand response, which is the re-

sponse of consumers’ demands to price signals from utility companies. Demand Re-

sponse (DR) allows companies to control or manage consumers’ appliances directly

or indirectly, through direct load control or pricing incentives. Proper DR can improve

the electricity market efficiency [185]. However, the deployment of DR schemes al-

ways comes with difficulties [186]. Using the game theory framework, load-adaptive

pricing was introduced decades ago. This chapter introduces a game theory approach

to DR management development. In this game, the utility company and consumers

reach a Nash equilibrium where the prices and demands and optimally chosen, the

company maximise the revenues and the consumers minimise the electricity bills by

offering available power to the company.
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The novel method, DAC-LSTM, is developed in previous chapters for short-term load

forecasting, especially in distribution networks. Compared with existing and commonly

utilised forecast methods, the DAC-LSTM method can provide accurate forecast res-

ults, while the training dataset is limited for various forecast steps. Here the application

of the DAC-LSTM method in the supply system, reducing the cost of electricity for

end-users, is present in this chapter.

This chapter proposes a demand response algorithm based on the game theory

stated in [187]. The game theory method models the interactions of a Stackelberg

game, where companies set their prices and consumers respond by choosing their

demands. In this progress, companies deliver power to consumers while consumers

offer a minimum energy consumption threshold and flexible power availability. In [187],

the consumption threshold is 100% which means flexible power is zero. This research

modifies the method by improving the optimisation function with constraints that offer

flexible power and keep the base load uninfluenced.

6.2 Methodology

6.2.1 Game Theory Preliminaries

A static N-person noncooperative game is comprised of the player set, action sets,

and utility functions. Assume the play set is N := 1, . . . ,N, where N is the number of

players. The action set is A⟩ for each player The decision of player i is ai ∈ Ai. The

decisions taken by other players is a set of vector a−i := (a1, . . . ,ai−1,ai+1, . . . ,aN).
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For each player, his/her objective is to maximise the utility function ui(ai,a−i). In game

theory, the utility function of player i depends on both his/her actions and others. To

solve the problem, an equilibrium concept is developed which is the Nash equilibrium

(NE) [187]:

The action vector a∗ ∈ A1 ∗ . . . ∗AN constitutes an NE for the N-person static nonco-

operative game in pure strategies if:

ui(a∗i ,a
∗
−i)≥ ui(ai,a∗−i) ∀ai ∈ Ai, i ∈ N . (6.1)

Based on equation 6.1, the Game Theory can be improved and benefited by introdu-

cing the hierarchical structure. In this case, the players are leaders and followers. The

leaders send dominant decisions and the followers respond to the leaders’ decisions.

This game is also called the Stackelberg game, the optimised solution concept is

called the Stackelberg equilibrium. In such a game, the leaders start trading with

the followers and making corresponding actions according to the followers’ reactions.

Assume there are K leaders and N followers, with N := 1, . . . ,N and K := 1, . . . ,K,

and with the action sets (Fi)i∈N and (L j) j∈K . The action vector a∗ ∈L1 ∗ . . . ∗LN

is a Stackelberg equilibrium strategy for all the K leaders in pure strategies if, for each

j ∈ K :

u j(a∗j ,a
∗
−j,b

∗(a∗))≥ u j(a j,a∗−j,b
∗(a j;a∗− j)) ∀a j ∈ L j (6.2)
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Where, b∗(a) ∈ F is the followers’ optimal response. Generally, the equilibrium is

also the NE. But when the coupling between diffident followers does not exist, which

means the decision made by other followers has no impact on follower i, followers

become independent. In this case, it is assumed that each follower is independ-

ent, therefore, for a Stackelberg game, the pair a∗,b∗(a∗) constitutes the equilibrium

strategy.

6.2.2 Optimisation Problem Definition

The optimisation problem definition functions are referred to from work published in

[187]. In this work, optimisation functions are modified to fit simulation purposes: the

amount of electricity supply must meet the consumer’s requirement each day, and

the demand (available for power control) considers the forecast error factor. Besides,

steps in solving the optimisation functions are from [187]. The original method plays

Stackelberg games around multiple companies, while only one company is involved

in this work.

Consumer Side Analysis

Because of energy scheduling and storage devices (EV), consumers may have flexib-

ility on when to receive a certain amount of energy and postpone a certain percentage

of their energy consumption (switching e-heat to gas heating). On the consumer side,

the optimisation problem is defined as follows, which aims to maximise the utility of

consumers:

un(dn) = γn ∑
t∈T

ln(ζn +dn(t)) (6.3)
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Where γn > 0 and ζn ≥ 1are the preference parameters. In this research is set to 1. n

represents consumers and companies. t is the time slot. dn(t))≥ 0 is the demand at

the consumer side from the company.

The consumer-side optimisation problem is formulated as follows:

max
dn

Un(dn) (6.4)

s.t. ∑
t∈T

p(t)dn(t)≤ Bn (6.5)

∑
t∈T

dn(t)≥ Emin
n (6.6)

∑
t∈T

dn(t) = G (6.7)

dn(t)≥ Emin(t)≥ 0 ∀t ∈ T . (6.8)

Where p is the price, Bn is the budget of the consumer, Emin
n and Emin(t) denote

the minimum energy need for the entire time horizon and at time slot t. Constrains

above denote that the total cost for consumers must be less than budget Bn, the total

demand dn(t) must be greater than the minimum requirements and at time slot t,

demand dn(t) must greater than the base load requirement.

Company Side Analysis

The optimisation function for companies is to maximise the revenue:

π(p) := ∑
t∈T

p(t) ∑
n∈N

dn(p, t). (7)

The company-side optimisation problem is formulated as follows:
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max
p

π(p) (6.9)

s.t. ∑
n∈N

dn(p, t)≤ G(t)(1− e(t)) ∀ t ∈ T (6.10)

p(t)> 0 ∀ t ∈ T (6.11)

pmax ≥ p(t)≥ pmin > 0. (6.12)

Where e(t) denotes the forecast error at time slot t. Constrains above denote that

the demand at price signal p at time slot t must be less than the power that could be

supplied by the company, and the price must be between the maximum and minimum

price value required by the government.

Equilibrium Strategy

Equation 6.6 can be solved by finding the associated Lagrange function 6.13, and

this yields the following equation for d∗
n(t) (minimising the power required, dn(t), by

the consumer):

Ln =γn ∑
t∈T

ln(ζn +dn(t))

−λn,1

(
∑

t∈T

p(t)dn(t)−Bn

)
(6.13)

+ ∑
t∈T

λn,2(t)dn(t)
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d∗
n(t)=

Bn +∑h∈T p(h)ζn

KT p(t)
−ζn ∀ t ∈ T , (6.14)

Where K denotes the number of companies involved in the game. When considering

equation 6.10 and 6.14, the following equation can be derived (maximising the power

supplied, G(t) by the company) [187]:

B+Z ∑
h∈T

p(h) = KT p(t)(G(t)(1− e(t))+Z) ∀ t ∈ T (6.15)

Where B = ∑n∈N Bn and Z = ∑n∈N ζn . By solving equation 6.15, the following

equation 6.16 is derived. By letting ζn = 1 for each consumer, values of Z coincides

with N. It can be found that by given G, the price p∗(t)(G(t)(1 − e(t)) + N) is a

constant for all time slots. Thus, the power availability is inversely proportional to the

prices.

p∗(t) =
B

G(t)(1− e(t))+Z

(
1

KT −∑h∈T
Z

G(h)(1−e(h))+Z

)
(6.16)

6.3 Case Study

6.3.1 DSM with Scenario Year 2040

This Stackelberg game offers consumers to utilise a minimum amount of power from

the power grid and offer the maximum amount of power to the system operators for

load-shifting purposes. The first cast study intends to find the relationship between

forecast accuracy and the performance of DSM. In this case study, the equilibrium

point is achieved under the following circumstances and assumptions:

• Equation 6.14 and 6.16 are utilised to find the optimal solution.
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• The aim is to evaluate the relationship between forecast accuracy and DSM

outcomes. Therefore, the real load used is from Section 5.4.3.

• K = 1, which represents only one company involved.

• The load profile inherits from 5.4.3 assuming 220 households are homogen-

eous.

• Electric load consists of base, EV and heat loads. The base load is separated

from the profile. EV and heat loads are used for management with 100% control

availability, which denotes that ∑n∈N dn(p, t) = G(t)(1− e(t)).

• The original price applied to the base load while incentives only provided the

control-available power from consumers.

• Total power supplied by the system operator throughout a 24-hour day equals

the requirements (base + EV + heat).

• The EV load is assumed to be shiftable throughout the 24-hour day as con-

sumers may drive the car in/out of the monitoring region and receive similar

control signals.

The following Figure 6.1 indicates the Stackelberg games management result. The

right plot indicates real aggregated consumers’ half-hourly demand, the mid plot

indicates the original pricing signal and the Stackelberg game price signal, and the

right plot indicates the summed billing savings for 220 households. This result is

based on real load which is regarded as the baseline for the next comparison. It

can be found that prices are inversely proportional to power availability.

Furthermore, the savings are compared among DAC-LSTM, ARIMA and Persistence

methods. The pricing signal remains unchanged, the load profiles are derived from

5.4.3, and the control window is 30 minutes. Table 6.1 shows simulation results from

various methods.
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Figure 6.1: Consumer’s demand (left), Stackelberg game and original prices (middle),
and the cumulative original and Stackelberg games payments(right)

Table 6.1: Stackelberg game results from DAC-LSTM, ARIMA and Persistence (the
scenario year 2040)

Method Original DAC-LSTM ARIMA Persistence
Billings-Max (£) 843.0 712.1 690.1 705.7
Savings-Max (£) - 130.9 152.3 137.3

MAPE (%) - 3.79 7.71 7.04
Savings-Opt (£) - 87.9 52.6 58.3

Savings (%) - 10.4% 6.2% 6.9%

Table 6.1 illustrates the original billings, which is £843 per day for 220 households. The

Savings-Max represents bill reductions of each method, assuming the forecast result

is 100% accurate. The MAPE is referred to as the error rate in this case study. The

MAPE value of DAC-LSTM is 3.79%, which represents that the power availability of

the forecast load reduces by 3.79%. As equation 6.16 shows, the term G(t) and G(h)

reduces by corresponding MAPE value, (1−e(t)). Thus, the Saving-opt is derived for

each method, £87.9 (DAC-LSTM), £52.6 (ARIMA), and £58.3 (Persistence). In this

study, it can be found that the ARIMA method provides the most savings if the error

is not considered. However, the DAC-LSTM outperforms the other two methods when

introducing the error rate because of the smaller MAPE.
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6.3.2 DSM with Scenario Year 2020 and 2030

The case studies in this section intend to analysis the influences of controllable power

offered by the end-users to the DSM. The following table 6.2 and 6.3 list the Stack-

elberg game management results with the scenario year 2020 and 2030 datasets.

Table 6.2: Stackelberg game results from DAC-LSTM, ARIMA and Persistence (the
scenario year 2020)

Method Original DAC-LSTM ARIMA Persistence
Billings-Max (£) 553.3 541.1 539.6 542.3
Savings-Max (£) - 12.2 13.7 11

MAPE (%) - 3.67 5.38 6.89
Savings-Opt (£) - 7.7 5.4 5.3

Savings (%) - 1.4% 1.0% 0.9%

Table 6.3: Stackelberg game results from DAC-LSTM, ARIMA and Persistence (the
scenario year 2030)

Method Original DAC-LSTM ARIMA Persistence
Billings-Max (£) 701.1 634 642.7 638.2
Savings-Max (£) - 67.1 58.4 62.9

MAPE (%) - 3.72 6.44 7.08
Savings-Opt (£) - 44.1 21.5 19.8

Savings (%) - 6.3% 3.1% 2.8%

From table 6.2 - 6.1 and table 5.9, the percentages of bill savings of DAC-LSTM

methods increase from 1.4% to 10.4% and the percentages of controllable power

increase from 2.6% to 36.1%. As for the ARIMA and Persistence methods, the results

follow a similar trend. This result illustrates that the performance of DSM proportional

to the controllable power offered by the consumers. The DSM could achieve better

performance with accurate forecast methods with the increased EV penetration levels

in the future power system.
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6.4 Conclusion

In this Chapter, a Stackelberg Game method is implemented based on Game Theory

to evaluate the value of improving forecast accuracy in deploying a demand-side

management strategy. Although current research on DR is developed based on the

assumption that the forecast load is 100% accurate, this work intends to study the

influence factor of forecast accuracy by modifying existing DR methods’ optimisation

functions with more elements and constraints.

According to the Stackelberg Game proposed in [187], the equilibrium is achieved

where the company reaches the most revenue, and the consumer offers the max-

imum power availability to the company. Further, based on the existing Stackelberg

Game, this work extends the original optimisation functions and constraints to fit the

experiment purposes, including first, the amount of electricity supplied must meet

the consumer’s requirement each day. Second, the forecast error (MAPE) reduces

the controllable power offered by the consumers. Third, the power supplied by the

company must meet the base load requirement for each control period.

When considering the forecast error, if the maximum power availability from con-

sumers reduces, the price increases. Based on this fact, the case study in this chapter

shows that the forecast error (in this work measured in MAPE) significantly affects the

demand-side management performance. Moreover, as the equations and the second

case study illustrates, the utility bill saving is proportional to the controllable power

offered by the consumers.

In conclusion, the achievements in this chapter are:

1. A Stackelberg Game DR strategy is introduced, considering the forecast error

as a factor that affects the DR performance.
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2. The case study proves that forecast accuracy affects the performance of the DR

strategy. For example, in case study one, the forecast error (3.79%) reduces the

utility savings from £130.9 to £87.9.

3. The portion of controllable power offered by the consumers influences the utility

bill savings proportionally. For example, the percentages of bill savings of DAC-

LSTM methods increase from 1.4% to 10.4% and the percentages of control-

lable power increase from 2.6% to 36.1%.



Chapter 7

Conclusions

7.1 Thesis Summary

This thesis first presents an adaptive DAC-LSTM forecast method, validated with the

dataset from Thames Valley Vision Project, for short-term electricity demand forecast.

Compared with other existing methods, this DAC-LSTM method solves the following

problems, including the forecast results are not accurate for peak and off-peak periods

simultaneously, the datasets utilised for training the model are sufficient while the

collectable datasets in the real world are usually limited. To be more specific, the DAC-

LSTM method dynamically distinguishes peak and off-peak hours using the Z-score

method, applying different module parameters to the separated peak and off-peak

loads, which other methods barely have. Further, the proposed method introduces

the novel DAC block to compensate for forecast errors with various activation func-

tions and dynamic parameters according to different forecast steps. The greater the

current-to-average forecast error ratio or closer to present time stamps, the larger the

compensation factors. Besides, the factor caps are set to prevent the model from over-

compensation conditions. Finally, the sensitivity of introduced parameters is analysed,

providing the performance of the developed method under different parameter values.

143
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In chapter 4, the DAC-LSTM method is first compared with widely utilised methods,

ARIMA and Persistence, and then with other state-of-art machine learning (hybrid)

methods. In the case study section, the proposed method is first evaluated with

ARIMA and LSTM methods for different forecast steps, from 30 minutes to 24 hours.

The result illustrates the advantages and improvements of DAC-LSTM in short-term

load forecast. Second, the proposed DAC-LSTM method is evaluated by varying

the input historical dataset length from 550 days to 14 days and the input dataset

collected from 220 households to 15 households. These case studies demonstrate

the adaptation of the DAC-LSTM in STLF when the training dataset is insufficient

or incoherent. First, the DAC-LSTM method can provide accurate forecast results

when the trained model lacks historical data or sources or unfits the load pattern.

Further, the proposed method is applied to UK domestic load and shows convincing

results compared with the UK half-hourly forecast result provided by ELEXON, and

this proves that the application of the DAC-LSTM method ranges from distribution

level network (highly non-linear) to domestic load level. Finally, the proposed method

is evaluated qualitatively with other machine learning methods by comparing the

accuracy improvement based on LSTM. These features offer opportunities for the

electricity supplier and the grid operator to improve the existing services, DR plan,

real-time pricing schemes, etc. For example, in a P2P trading system, more accurate

STLF methods could reduce the Ethereum gas trading cost, therefore reducing the

operation cost and improving efficiency. Also, in a network with high DG penetration,

the share of renewable generation could be increased with more accurate forecast

methods to reduce carbon footprint.

In chapter 5, as demand profiles in the future are altered because of the net zero car-

bon roadmap announced by governments, the proposed DAC-LSTM method should

be evaluated with future load scenarios. In this chapter, several scenarios are built

based on published research and policies for the UK distribution network in the year
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2020, 2030 and 2040. These scenarios consist of bottom-up base, EV and e-heating

load profiles at different EV and heat penetration levels. For each simulation year, the

forecast result accuracy reduces as the EV and e-heating penetration level increase,

while the DAC-LSTM obtains the highest accuracy because it compensates for the

most error generated at the peak due to EV charging loads.

In chapter 6, the value of utilising the forecast method with higher accuracy is as-

sessed. A Stackelberg Game is introduced to find the equilibrium point for suppliers

and consumers. Equations prove that the price is inversely proportional to the power

availability. In this study, power availability represents the power offered by consumers

to suppliers for demand-side management. In addition, this work also considers fore-

cast error as a vital factor in the game. As the result demonstrates, the lower forecast

error rate significantly reduces the utility bill for consumers.

Overall, this thesis starts with the method development, followed by comprehensive

case studies to evaluate the performance of the DAC-LSTM method under several

situations. The conclusion is that the DAC-LSTM method shows its values in the

distribution network short-term load forecast.

7.2 Thesis Statement

Machine learning techniques can be utilised to develop robust forecast methods which

provide accurate forecast results for peak and off-peak load, and adapt to smaller

network applications. It is proved to be correct by the DAC-LSTM method developed

in chapter 3 and evaluations in chapters 4-6.
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7.3 Potential Impact of the Research

This thesis presents a complete, step-by-step modelling and evaluation framework

to build a short-term load forecast method, which can be utilised in power networks

(especially distribution networks) where the historical training dataset is limited or

incoherent for various reasons. Each chapter presents a different part of the method

development or evaluation procedure, and they are all linked together, presenting an

adaptive forecast method with wide application purposes and for further research.

First is the DAC-LSTM short-term load forecast method. The DAC-LSTM forecast

method is developed based on the LSTM network and provides dynamic error com-

pensations in forecasting load, especially in peak and off-peak load simultaneously

forecasting. The novel method utilises historical data collected from the network and

enhances the ability to forecast when the historical dataset is insufficient. Moreover,

the DAC-LSTM method distinguishes the peak and off-peak periods dynamically and

provides accurate forecast results for both periods. The sensitivity analysis valid-

ates the method under various parameter sets with TVVP and ACN datasets. With

sufficient case studies, the proposed method outperforms widely used ARIMA and

Persistence forecast methods and is competitive compared with other hybrid machine

learning methods. As system operators such DNOs, the accurate peak-hour forecast

result will reduce the backup generation cost. Moreover, the DAC-LSTM gives accur-

ate forecast results when the training dataset is limited, therefore, DSM alternatives

can be deployed to smaller networks, such as micro-grid, community P2P trading

networks, etc. This will bring more options for system operators to improve their

alternatives.
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The second is the UK distribution network scenarios. Bottom-up UK distribution net-

work load profiles are first generated for the scenario years 2020, 2030 and 2040. The

purposes are to evaluate the developed DAC-LSTM method with future load profiles

that are highly non-linear, with higher EV and e-heating penetration levels. These

scenarios are built based on existing research and policies and consist of base, EV

and e-heating loads. However, the implications of this work extend much further. For

example, more elements can be added, and the wetload can be separated from the

base load. Academic researchers could be benefited in control algorithm development

by these profiles.

The third is the value of utilising an accurate load forecast method in demand-side

management. The novelty of this work is to first introduce forecast error factors and

future load scenarios into demand-side management. This work studies the imple-

mentation value of utilising better forecast methods. Moreover, the utility bill reduction

proves that DAC-LSTM outperforms other forecast methods. When the control centre

deploys the DSM alternatives, the consideration of forecast errors will improve the

outcomes, therefore reducing the unexpected cost, for example, increased uncontrol-

lable power will weaken the preset control algorithms.

7.4 Limitations

Although the proposed short-term load forecast method can provide accurate forecast

results in various situations, there are still a few limitations of the work. The forecast

method is, first, validated with Thames Valley Vision Project and bottom-up built

future scenario load profiles, which is sufficient for novel method development but

still requires massive real-world tests before application. Second, the proposed DAC-

LSTM method uses big data and machine learning techniques, which require massive
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data collected from advanced monitoring devices and massive computation ability

for model training. Finally, the method to create a high-resolution dataset is linear

interpolation and adding random errors. This actual real-world 5-minute resolution

dataset might slightly deviate from this research.

When evaluating the performances of the proposed method, the residential load de-

mand is the most complex and contains plenty of uncertainties and variables. Future

load scenarios are obtained based on existing research and policies, which cannot

consider all factors and make precise forecasts. In addition, future scenarios only

consist of base, EV and e-heating load as load profile elements, assuming the user

energy consumption behaviours are slightly altered. However, built scenarios still can

present the overall trend of the future demand profiles, which contain high EV and

e-heating penetration levels.

Moreover, the value of DAC-LSTM for demand-side management is demonstrated

by a Stackelberg Game which achieves a Nash equilibrium for only one company

and several consumers by optimising the available power offered by consumers and

energy prices from the company. However, the real-world situation is much more

complicated. The real-world game might involve multiple companies which supply

electricity generated by different types of renewable energy and price, and different

shiftable power availability. In this work, only one company with a day-ahead price

signal is involved, and the shiftable power percentage is assumed to be 100%. How-

ever, the model simplification has minor effects in yielding the experimental result.

The utility bill saving illustrates that improving forecast accuracy helps bill reduction.
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7.5 Scope for Expansion of Research

Though the proposed method has good performance and values for network man-

agement, the research can be expanded:

1. The proposed method is designed for short-term load forecast, especially 30

minutes. The forecast steps and accuracy can be varied and improved with fur-

ther research, such as forming a hybrid forecast method with other approaches,

taking different input dataset analysing procedures, etc.

2. This thesis focuses on the short-term load forecast, while the mid and long-term

load forecast require further work.

3. When considering the impact on the network, for example, high EV penetration

may cause voltage regulation problems that require further demand response

actions. The forecast method should consider these actions as input, leaving

room for improvement in future work.

4. The load profile of future scenarios might contain more elements further base,

EV and e-heating loads. The wetload can be separated from the base load,

which contains the controllable home appliances. This requires more detailed

available system operation data or simulation models.

5. The demand-side management might consider the effects and profits of distrib-

uted generations or other renewable energy sources. For example, the value of

higher forecast accuracy could be investigated with various penetration levels

of distributed generations, the share of different renewable energy sources, etc.

6. Further, a power network model could be introduced for network simulation.

Therefore, research such as voltage regulation, optimal power flow, fault ana-

lysis, etc., could be carried out with an accurate forecast method and demand-

side management.
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Appendix-1

Table A.1: Case 1: comparison Between DAC-LSTM and LSTM Methods with
forecast steps from half hour to 24 hours

Step (0.5 hour) R2 Corr MAPE R2 Corr MAPE

1 0.991 0.994 4.04 0.901 0.956 7.92

2 0.958 0.979 4.6 0.854 0.937 9.91

3 0.898 0.949 7.61 0.826 0.929 10.87

4 0.861 0.933 9.27 0.795 0.922 11.95

5 0.829 0.92 10.23 0.76 0.908 12.7

6 0.804 0.91 11.43 0.734 0.904 14.18

7 0.786 0.901 11.78 0.728 0.9 13.99

8 0.772 0.894 12.35 0.719 0.895 14.2

9 0.76 0.887 12.92 0.719 0.896 14.49

10 0.735 0.876 13.71 0.682 0.879 15.19

11 0.743 0.875 13.39 0.717 0.889 14.23

12 0.738 0.873 13.61 0.703 0.882 14.56

13 0.719 0.862 14.34 0.679 0.867 15.22

14 0.726 0.866 14.14 0.691 0.873 14.79

15 0.737 0.869 14.01 0.71 0.877 14.4

16 0.716 0.86 14.17 0.695 0.866 13.99

17 0.733 0.871 13.62 0.712 0.88 13.66

18 0.733 0.871 14.24 0.711 0.884 14.19

19 0.738 0.874 13.73 0.723 0.887 13.41
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20 0.738 0.875 13.74 0.729 0.894 13.36

21 0.738 0.878 13.21 0.732 0.898 12.93

22 0.729 0.879 12.92 0.73 0.901 12.7

23 0.706 0.871 13.4 0.717 0.899 13.11

24 0.713 0.872 13.25 0.73 0.899 12.73

25 0.702 0.873 13.02 0.734 0.904 12.05

26 0.71 0.874 12.92 0.738 0.899 11.98

27 0.709 0.871 13.01 0.755 0.903 11.52

28 0.721 0.88 12.27 0.749 0.902 11.66

29 0.714 0.879 12.5 0.759 0.905 10.93

30 0.711 0.875 12.9 0.725 0.894 12.49

31 0.718 0.877 12.5 0.757 0.905 11.31

32 0.705 0.866 13.34 0.762 0.908 11.14

33 0.688 0.86 13.91 0.741 0.906 11.66

34 0.693 0.857 14.33 0.748 0.903 11.46

35 0.695 0.855 14.83 0.76 0.903 10.94

36 0.713 0.864 14.31 0.763 0.906 11.1

37 0.703 0.858 15.18 0.764 0.903 10.95

38 0.719 0.867 14.63 0.77 0.905 10.73

39 0.724 0.868 14.73 0.782 0.907 10.33

40 0.731 0.871 14.05 0.766 0.906 11.03

41 0.729 0.871 14.26 0.769 0.905 10.69

42 0.737 0.873 14.31 0.779 0.906 10.58

43 0.731 0.873 14.04 0.772 0.906 10.36

44 0.735 0.877 13.54 0.772 0.91 10.38

45 0.747 0.879 13.08 0.779 0.913 10.58

46 0.745 0.879 13.39 0.787 0.912 10.19

47 0.743 0.877 13.42 0.798 0.915 9.88

48 0.76 0.882 12.4 0.788 0.914 10.75
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Table A.2: Case 2: Comparison Between DAC-LSTM and ARIMA Methods with
forecast steps from half hour to 12 hours

Step (0.5 hour) DAC-LSTM ARIMA

R2 Corr MAPE (%) R2 Corr MAPE (%)

1 0.991 0.994 4.04 0.92 0.923 6.82

2 0.958 0.979 4.6 0.912 0.918 7.01

3 0.898 0.949 7.61 0.894 0.904 8.87

4 0.86 0.933 9.27 0.815 0.907 9.78

5 0.829 0.92 10.23 0.799 0.904 11.42

6 0.804 0.91 11.43 0.786 0.885 12.5

7 0.786 0.901 11.78 0.777 0.881 14.1

8 0.772 0.894 12.35 0.752 0.876 14.6

9 0.76 0.888 12.93 0.759 0.864 15.2

10 0.735 0.877 13.71 0.744 0.877 14.5

11 0.743 0.876 13.39 0.717 0.867 14.7

12 0.738 0.873 13.62 0.734 0.869 14.9

13 0.719 0.862 14.34 0.741 0.857 15.3

14 0.726 0.867 14.15 0.665 0.863 14.4

15 0.737 0.87 14.02 0.703 0.85 14.7

16 0.716 0.86 14.17 0.712 0.865 15.3

17 0.733 0.871 13.63 0.712 0.86 14.9

18 0.733 0.872 14.25 0.743 0.859 15.3

19 0.738 0.874 13.73 0.705 0.866 14.2

20 0.739 0.875 13.74 0.7 0.865 15.5

21 0.738 0.879 13.22 0.721 0.862 13.5

22 0.73 0.88 12.92 0.701 0.858 14.2

23 0.707 0.871 13.41 0.683 0.873 13.7

24 0.713 0.873 13.26 0.695 0.849 14.9

25 0.702 0.873 13.03 0.681 0.86 15.3

26 0.71 0.874 12.93 0.697 0.864 17.3

27 0.709 0.872 13.02 0.711 0.862 17.5
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28 0.722 0.881 12.28 0.703 0.862 17.4

29 0.715 0.879 12.5 0.712 0.868 18.4

30 0.712 0.876 12.91 0.693 0.863 19.3

31 0.719 0.877 12.53 0.667 0.862 20.6

32 0.705 0.867 13.35 0.689 0.859 19.8

33 0.689 0.86 13.91 0.673 0.877 21.7

34 0.694 0.857 14.34 0.642 0.854 20.9

35 0.696 0.856 14.84 0.627 0.858 21.5

36 0.714 0.865 14.31 0.658 0.849 22.5

37 0.704 0.859 15.18 0.633 0.865 23.8

38 0.719 0.868 14.63 0.619 0.851 22.2

39 0.725 0.869 14.73 0.588 0.853 23.4

40 0.731 0.872 14.05 0.591 0.853 23.7

41 0.729 0.871 14.27 0.489 0.855 24.1

42 0.737 0.873 14.32 0.57 0.852 25.3

43 0.732 0.874 14.05 0.518 0.848 25.9

44 0.735 0.877 13.55 0.511 0.85 26.4

45 0.747 0.88 13.09 0.525 0.849 26.8

46 0.745 0.879 13.39 0.471 0.855 30.1

47 0.744 0.877 13.43 0.415 0.847 29.2

48 0.76 0.882 12.4 0.43 0.843 29.8

Figure A.1: Domestic energy consumption by fuel and end use, 2013 [179]
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Table A.3: Case 3: R2

R2
Amount of days Per. ARIMA DAC-LSTM

550 0.881 0.920 0.991
500 0.867 0.891 0.990
450 0.913 0.909 0.991
400 0.864 0.833 0.991
350 0.898 0.892 0.990
300 0.898 0.874 0.975
250 0.883 0.897 0.989
200 0.893 0.894 0.990
150 0.898 0.891 0.998
100 0.876 0.873 0.958
50 0.850 0.825 0.926
30 0.795 0.794 0.904
14 0.824 0.820 0.875

Table A.4: Case 3: MAPE

MAPE(%)
Amount of days Per. ARIMA DAC-LSTM

550 8.71 6.82 4.04
500 8.05 7.76 4.46
450 9.29 7.02 4.49
400 8.76 8.83 4.72
350 10.41 7.61 4.77
300 8.00 7.92 5.00
250 7.91 7.36 5.84
200 8.50 7.42 5.95
150 8.29 7.77 6.12
100 7.21 6.95 5.78
50 8.81 8.38 6.86
30 9.95 9.87 7.62
14 7.75 7.75 7.91
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Table A.5: Case 3: Correlation

Correlation
Amount of days Per. ARIMA DAC-LSTM

550 0.940 0.959 0.994
500 0.934 0.942 0.993
450 0.956 0.961 0.996
400 0.932 0.914 0.995
350 0.949 0.946 0.995
300 0.949 0.939 0.993
250 0.941 0.947 0.994
200 0.947 0.944 0.988
150 0.949 0.953 0.991
100 0.938 0.943 0.992
50 0.925 0.913 0.997
30 0.897 0.899 0.997
14 0.913 0.913 0.995

Table A.6: Case 4: R2

R2
Amount of households Per. ARIMA DAC-LSTM

220 0.881 0.920 0.991
150 0.896 0.867 0.991
100 0.860 0.855 0.987
50 0.736 0.743 0.986
30 0.636 0.658 0.970
15 0.591 0.587 0.934

Table A.7: Case 4: MAPE

MAPE(%)
Amount of households Per. ARIMA DAC-LSTM

220 8.71 6.82 4.04
150 10.12 11.24 4.20
100 11.55 16.62 4.75
50 15.55 19.49 6.47
30 19.98 19.84 8.32
15 22.34 21.23 9.12
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Table A.8: Case 4:Correlation

Correlation
Amount of households Per. ARIMA DAC-LSTM

220 0.940 0.923 0.994
150 0.948 0.932 0.993
100 0.930 0.925 0.992
50 0.868 0.864 0.989
30 0.818 0.822 0.989
15 0.792 0.714 0.981
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Abstract—This paper describes a hardware in-the-
loop real-time co-simulation platform for smart distribu-
tion networks incorporating Phasor Measurement Units
(PMUs) and communications. The platform is designed to
simulate and collect data from different network topolo-
gies, penetrations of different types of generations and
loads and communication topologies. These capabilities
make the platform a suitable tool for the deployment
and test of smart control algorithms and energy trading
strategies. This paper also identifies and addresses a
communication infrastructure which provides the right
trade-offs for reliability, low-latency and low-cost com-
munication. Moreover, the various applications of PMU
in distribution networks are discussed and the potency
of PMU being the custodian of the electrical grid is
elucidated.

Index Terms—Power system simulation, smart grid,
real-time systems, phasor measurement units, energy man-
agement, communication network.

I. INTRODUCTION

With human progress and social development, the
traditional electrical grid is changing. On the consumer
side, the integration of electric vehicles, storage devices
and other intelligent appliances make the load more
complicated while the unexpected consumer reaction to
the Demand-Side Management (DSM) programs leads
to more unpredictable nature of the load. Further, the
significant increase of distributed generations (DGs) also
adds more stresses on the existing power grid. Therefore,
the traditional power grid has been upgraded and become
smarter by applying Wide Area Monitoring System
(WAMS) technology with sophisticated control systems.
In WAMS, PMUs are commonly deployed among the
system to achieve a wide area monitoring with time-
synchronised and high-resolution voltage and current
phasors measurement, which can help in the prediction

of voltage violations and prevent the unstable operation
of the grid.

Meanwhile, due to the measurement precision and
frequency which generate big data, one of the most
important parts of the of WAMS setup is the com-
munication network in addition to PMUs, Phasor Data
Concentrators (PDCs) and super PDCs [1]. Throughout
the recent investigation of different PMU applications, a
key assumption is that there is a proper communication
network, which can fulfil the requirement for timely and
reliable sharing of PMU data. Several challenges need to
be considered to evaluate and improve the performance
of the required communication system such as impact
of the transport layer protocol (TCP/IP protocols), the
effects of data compression techniques to deal with the
large amount of data produced in different PMUs within
the smart grid, and mitigating potential cybersecurity-
related problems.

Before the actual deployment of hardware and soft-
ware platforms, the success of pre-simulation is nec-
essary. Depending on the application, there is a mul-
titude of simulation tools commonly used like Simulink,
OpenDSS, Siemens PSS/E, MATPOWER, ETAP, etc.
Furthermore, some platforms are proposed for smart
grid simulation, e.g., GridSpice, which is a scalable
and cloud-based open-source simulation framework that
enables large network modelling and blur boundaries
between generation, transmission, distribution, and mar-
kets [2]. Additionally, MASGriP presents a multi-agent
smart grid simulation platform, which implements sev-
eral consumer and producer agents and considers real
characteristics, different goals and actuation strategies to
simulate technical and economical activities of several
players [3].

In this paper, we describe a hardware in-the-loop plat-
form for smart grid real-time simulation. The platform



makes provision for the utilisation of low-cost PMU
modules as Hardware-In-the-Loop (HIL), allowing the
implementation of advanced wide-area control strategies.
Development of this low-cost hardware-in-the loop plat-
form is of significant aid towards achieving real-time
monitoring for optimised energy management, which
is the central objective of the Data-Driven Intelligent
Energy Management (D-DIEM) collaborative project
between the Universities of Edinburgh and Queen’s
in Belfast from the United Kingdom, and the Indian
Institutes of Technology in Gandhinagar and Kanpur and
the Madan Mohan Malaviya University of Technology
from India [4]. Use of PMUs in the proposed platform
embraces the aforementioned points and accommodates
the accomplishment of D-DIEM project.

The paper is organised as follows. Section II describes
the hardware platform development. In Section III we
present our practical evaluation of current communica-
tion networks when used for communication of PMU
data. We also study the improvement of communication
systems associated with using data compression tech-
niques to reduce the volume of data associated with open
PMU networks. In Section IV, some key applications of
the developed platform are introduced. Finally, in Section
V, two case studies are proposed based on the simulation
platform.

II. PLATFORM DEVELOPMENT

The functional design of the co-simulation platform
is illustrated in Figure. 1; the upper layer indicates
the power flow in the system while the consumers can
merchandise and sell electricity to the network operator;
the lower optimisation and control layer can exchange
information with the upper layer via the communication
system. The platform includes a power system real-time
simulator, the PMU and a workstation used to emulate
the optimisation and control layer.

Fig. 1. The structure of the real-time simulation test rig

A. Real-time simulator: OPAL-RT

In power systems, real-time simulation is necessary
for users to test their developed hardware devices and

power system algorithms. The simulation result from the
simulator represents conditions in a real network and
thus provides opportunities for the developer to take
delays from the transmission system, communication
system and control centre into account, therefore, making
improvements. Additionally, the behaviour of developed
physical devices and their in-field interactions can be
recorded in real-time simulations.

The selected network real-time simulator is OPAL-
RT OP5600, which contains several I/O channels and
is compatible with external modules. The network is
developed in Simulink and embedded into OPAL-RT
via RT-LAB. In this stage, the network can be formed
as various topologies, penetrations of different types of
generations and loads for different network simulations.
As shown in Figure. 1, the OPAL-RT emulates the power
layer and generates real-time bus voltage and current
that can be measured by the PMU via the Analogue and
Digital I/Os channels on the OPAL-RT. Besides, infor-
mation can be exchanged with a computer to achieve
bi-directional communication in the network via cable
or wireless communication. These make the platform a
dedicated tool to be deployed in the real network and
execute tests.

B. Phasor Measurement Units

The PMU is the device that converts the three-phase
voltage and current analogue signals into synchropha-
sors. In detail, the measured voltage and current from
the potential transformer and the current transformer go
through filters for anti-aliasing and then being passed to
the analogue-to-digital (A/D) converter module. Mean-
while, the converted digital signal is appended with
time tags which come from the GPS clock with the
help of phase-locked oscillators. Afterwards, the data is
sent to the microprocessor to generate the corresponding
phasor, frequency and Rate of Change of Frequency
(ROCOF). Finally, the processed data goes into the
communication module for later transmission, which
may involve data compression, data encryption, etc. tech-
nologies. Therefore, PMUs bring two key functionalities
including generating high resolution measurement (50Hz
and 60Hz typically) and time-synchronised voltage and
current phasor, and these provide us the opportunity to
deploy real-time protection and control strategies, and
obtain accurate real-time network operation status. The
structure of the PMU is shown in Figure. 2.

The PMU module used in this co-simulation platform
is the OpenPMU, a low-cost, open source implemen-
tation of a Phasor Measurement Unit [5]. In addition
to the OpenPMU, external plug-in devices are available
to cooperate with the platform to provide functions like
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wireless communication, data encryption and decryption,
data compressing, etc.. The detailed communication sys-
tems and the field test is discussed in section III.

Figure. 3 illustrates the developed co-simulation plat-
form. It shows the front view of the OPAL-RT real time
simulator connected with a computer through an Ethernet
connection, while Analogue and Digital I/Os are coming
through the backside of the device.

Fig. 3. [1] Front view of OPAL-RT, [2] Back view of OPAL-RT, [3]
Structure of OpenPMU (with power supply)

C. Workstation

The data from the PMU and OPAL-RT can be ex-
changed with the computer, which behaves as the control
centre in the real network (as Figure. 4 shows). Algo-
rithms are deployed on the workstation to analyse the
data collected from PMUs, monitor the system operation
and, therefore, make a diagnosis. For example, using lim-
ited bus measurements to achieve high observability and
network fault detection. Afterwards, control algorithms
can be deployed through the communication system to
consumers and the consumers’ reactions can be sent

directly into the control centre. Also, the behaviour of
the consumers can be emulated on the computer. The
application of the platform is discussed in the later paper.
This makes the platform ready to test different control
algorithms.

Fig. 4. Structure of the network (based on IEEE 14-Bus network)

III. COMMUNICATION SYSTEMS

As shown in Figure. 1 the telecoms or communication
module is a key element of a PMU. WAMS can make
use of PMUs located across the smart grid to help
monitor the network conditions and the status of the
power grid in real-time. Due to the real-time monitoring,
a fast, responsive, reliable and secure communication
infrastructure is required. Effective information exchange
between different entities in a WAMS particularly be-
tween PMUs and PDCs is one of the key requirements
for a successful smart grid system. The following latency
and compression schemes are carried on the Raspberry
Pi (included in OpenPMU for communication) and the
PC.

A. Requirements and challenges of PMU data commu-
nication

Achieving a high data throughput, with low com-
munications latency and high reliability (low bit error
rate) are the primary factors for choosing an appropriate
communication system for the transfer of PMU data in
a WAMS. The communication system for PMUs in a
real-time WAMS, should support an overall time delay
of less than 1 second [1]. Based on the cycle of 50
reports/sec for a 50-Hz power system with a packet
size of 40 bytes mentioned in Section II.B, Table I
shows this corresponds to a 2KB data packet. Also, we
have considered packet sizes of up to 10 kbytes/sec to
understand what happens if the reporting rate increases
or higher resolution data is needed.



TABLE I
PMU DATA PACKET SIZE AND REPORTING RATE IN ONE SECOND.

Packet size (bytes) Reporting rate (packet per sec-
ond)

40 50

B. Last mile technologies

Communication links used by PMUs include both
wired and wireless options. Some key options are dis-
cussed and highlighted as follows: • Cellular Mobile
Networks: both 3G (data rates 1.5 Mbps - 6.8 Mbps)
and 4G (data rates 12 Mbps up to 22 Mbps) can provide
wireless access for wide-area coverage of smart grid sys-
tems to link to a WAMS; • Wired last mile connectivity:
full optical fibre broadband at a University Network and
Cable Broadband (data rates are 100Mbps or higher in
both cases) are studied to link to the internet backbone
and the WAMS. In order to evaluate the proposed model
[6], the performance of two internet protocols (Transmis-
sion Control Protocol(TCP) / User Datagram Protocol
(UDP)) has been tested in a PMU-PDC communication
model to emulate real data packets exchanged in a
WAMS system. A python script written to act as the
PDC is run on a laptop PC, which communicates with
the PMU code, which was installed on the Raspberry
Pi 3B (the same platform as for the Open PMU) to
emulate a low-cost PMU in a WAMS application. To
provide increased security, data communication through
the internet network is encrypted by a Virtual Private
Network (VPN) service running on both the PC and the
Raspberry Pi.

In this work, an accurate and reliable test set-
up has been implemented for gathering end-to-end
packet latency measurements, using high precision time-
synchronisation with GPS receivers implemented both in
the server and the client-side. We have investigated the
one-way latency for remote control PMU connections
and the results are shown in Figure. 5. Our experimental
investigation reveals that the typical average latencies
range from 100 msec to 600 msec for 1 kbyte to 10
kbyte short data packets. From Figure. 5 it can be seen
that the wired connections have better latency value for
different data packet sizes in comparison to wireless
(cellular) links. Results also suggest that UDP packets
experience 4 times more losses than TCP packets for
wired connections. UDP may be preferable in terms of
latency, provided the packet loss rate is not too high.

1) Compression Techniques: These work based on
removing redundant data and encoding the data more
effectively. This means that the data could be stored in
a smaller memory space at the PDC and require less
bandwidth on the communication channel for transmis-
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sion. The packet sizes can be reduced significantly by
compression techniques, which relaxes the requirements
for the communication system. For PMU datasets we
need to use lossless compression techniques [7], in order
not to lose any important information at the PDC. In loss-
less schemes, statistical modelling approaches are used
to find and reduce repeated information in a data set.
Some typical methods that compression techniques are
using include removing space characters and replacing
repeated multiple character strings with a shorter data
sequence. The Space Saving is a useful term to describe
reduction size which can be defined in equation (1):

S = 1− C
U

(1)

Where S, U and C are the Space Saving, the un-
compressed data size (in bytes) and the compressed
data size (in bytes) respectively. In order to evaluate
the impact of data compression on PMU data, differ-
ent data packet sizes are studied. Also, two lossless
compression techniques, Lempel-Ziv-Welch (LZW) and
Adaptive Huffman (AH) have been implemented [7] to
measure their performance on PMU data. As can be seen
in Figure. 6, the LZW method has better performance
on large dataset sizes, achieving a high space saving
percentage of up to 87% for large data packets and
therefore reducing the required communication band-
width significantly. On the other hand, the AH method
achieves a lower space saving percentage of around 75%
but it takes advantage of a simpler and faster algorithm
that makes it easier to implement on hardware. To select
proper compression schemes for a different part of our
communication scenario we have to make a trade-off
between compression rate, processing time and hardware
capabilities to meet the required requirement.

IV. APPLICATIONS OF THE PLATFORM

As the complexity of the electricity grid and market
grows, the applications of PMU technologies are increas-
ing, especially in the field of power system monitoring,
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control and protection. In order to address both real-time
and off-line capabilities of the PMU, its most significant
applications in smart grids are categorised accordingly
and presented in Table II.

TABLE II
APPLICATIONS OF THE PMU PLATFORM CATEGORISED INTO

REAL-TIME AND OFF-LINE TASKS. (PARTIALLY FROM [8], [9],
[10])

Real-time Applications Off-line Applications
State estimation Validation of system models

Power quality monitoring Calibrating parameters
Unit monitoring and control Post-disturbance analysis

Congestion management
Adaptive protection

Disturbance source identification
Load shedding

Real-time model validation

In this paper an indicative set of smart grid applica-
tions that can be simulated in the developed platform are
discussed.

A. Voltage Regulation

As the Supervisory Control and Data Acquisition
(SCADA) system scanning rate is 1 sample in 2-
4 seconds, it is restricted to identifying the dynamic
changes in the power system [11]. Application of time-
synchronised PMUs could address the existing chal-
lenges of real-time voltage stability monitoring and con-
trol.

To monitor the voltage stability margin and predict
possible voltage collapse, phasor measurements of cur-
rent and voltage from the load buses could be utilised
to calculate the load impedance and estimate the equiv-
alent Thevenin’s impedance of the system. Applying the
theorem of maximum power transfer, voltage stability
margin can be supervised to predict the point of voltage
collapse. The estimation of Thevenin’s impedance could
vary in methods and depend on the number of PMUs
in the network [12]. The optimal placement of PMUs in

the network should be established to achieve the cost-
efficient solution that provides full observability of the
system.

Upon the prediction of voltage stability margin or
detection of possible voltage violations, PMUs can pro-
vide the synchronised voltage phasors, which bring an
improvement in the control of state-of-the-art voltage
control techniques. Placing the PMUs at active nodes,
i.e. Distributed Generation (DG), Static VAR Compen-
sator (SVC) or large-scale load buses, and applying the
voltage-to-power sensitivities, the injected power from
the DGs can be regulated [13]. The computation part is
executed in the central PDC that provides either auto-
matic regulation in case of voltage surpassed its limits
or implements preventive actions to avoid the possible
voltage instability. The involvement of reactive power
compensators, such as shunt reactors or shunt capacitor
banks, could be additional ease in real-time voltage
regulation with voltage phasor measurements obtained
from PMU [14]. Apart from the regulation of injected
power from DGs, the voltage can be controlled by
implementing demand-side management techniques that
aid with matching supply and demand and consequently
improve the voltage profile.

B. Fault analysis

One of the most important applications of the PMU
is in the use of fault (FLT) location monitoring and
protection. With the optimal position and number of
PMUs deployment strategy, the system observability can
be improved. With efficient system monitoring, the Syn-
chrophasor unit reports any transient event accurately.
The continuously monitored network status is compared
with the PDC historian. A simple method of residual
value comparison calculates the difference in estimated
and real-time sampled value [15]. If the difference ex-
ceeds the threshold limit, then it is evident that the
system has gone into a fault or unbalanced state. PMUs
take about 40-60 samples/cycle at the nominal frequency
(50Hz). So, within 2-3 cycles the PMUs detect transients
and anomalies [16]. Within the next 2-3 cycles, the relays
get energised and circuit breakers (CBs) react. When a
fault is detected by PMU, relays in specific zones of the
grid with specific Current Setting Threshold (CST) and
Time Setting Multiplier (TSM) is energised to trip the
CB either by using battery power or on the grid power
supply. For the low voltage zones, we use the circuit
breaker and the contactors for the high voltage areas.
This takes about 750 msec to 1 sec to completely isolate
the affected location. Specific Control Algorithm (CA)
are set in place to initiate controlled fault isolation.



C. Demand-side management

The use of PMUs can improve DSM methods in terms
of response to dynamic events in the system. If the
frequency of the power system is seen to be close to its
limits, automatic control of the non-priority loads can be
launched to return the frequency within the stable state.
The non-priority loads in a direct load control (DLC)
program can act as virtual resources as they can be
switched off during the overload in the power system.
Due to the short response time of the DLC program, it
can be added to primary frequency control methods [17].
If frequency data from PDC indicates that the frequency
tends to fall though is still within its stable condition
and requires supervision, the distribution system operator
(DSO) can apply preventive demand control actions. As
the whole monitoring and control are taking place in real-
time, then only price-based or incentive-based programs
can be implemented due to their ability to produce
short-term solutions to the system. The real-time pricing
scheme is based on real-time wholesale electricity prices,
which are in turn related to real-time data from PMUs.
A short notice an hour ahead from the utility allows
the consumers to quickly respond and improve the load
pattern of the whole system. By reaching the objectives
of DSM such as peak clipping, valley filling, and load
shifting, the flat pattern of the load can be observed in
the distribution network. This can decrease the costs of
investment in reinforcing the distribution lines, increase
the output generation of DGs and improve the whole
state of the network.

D. Validation of Local Energy Market and Other Dy-
namic Models

The innovate smart grid technologies such as local en-
ergy markets, that enable local transactions of electricity
at the distribution level, require accurate monitoring, pro-
tection and control of power systems in real-time. Most
of these emerging technologies aim to utilise the wide-
area monitoring, protection and control (WAMPAC) [9].
The implementation of WAMPAC relies on the specific
attributes of the PMU which are namely, real-time and
time coordinated measurements of the distribution sys-
tem using GPS.

Local energy market transactions usually take place
amongst prosumers on the same designated distribution
system [18]. The transactions are designed to happen
at frequent intervals that range in duration. The volume
of exported electricity from the distributed generation
depends on whether their offer (i.e. the price in £/kWh
that they are willing to sell their generation for) is
matched with the bid of a buyer and their desired units
of electricity. Additionally, the buyers and sellers could

be allowed to change their prices and preferences in
real-time. For example, the Brooklyn MicroGrid [19],
which is a blockchain-based P2P energy trading plat-
form, allows these real-time modifications and facilitates
market-clearing in set intervals of 15 minutes [18]. This
introduces a dynamic system that requires the real-time
measurement, monitoring and protection capabilities of
PMU.

Traditionally, off-line power flow models coupled with
dynamic data are used for validation which may in-
volve disturbance events [20]. [10] presents an example
of the novel approach for testing dynamic real-time
system models with a PMU, using North American
Western Interconnection as a case study. Using a similar
methodology to [20] and [10], PMUs can be used for
validating the feasibility of local peer-to-peer electricity
transaction models and calibrating system parameters in
the transaction model.

E. Other Applications

Other applications of the PMU simulation platform
involves the test of backup protection [21]:

1) Control of Backup Protection Distance Relays
2) Providing additional control on angular stability of

the Power System
3) Advanced Forecastability and Dependable Supply.

These ancillary protections play an important role in
keeping the grid healthy. At times there can be an
unsuccessful attempt to disconnect the specific zonal
CB, so in order to keep the system safe, we apply the
philosophy next of kin method-based CB disconnection.
Due to the disconnection of CB, there can be transient
decrease/increase in load or generation, and this has
temporal effects on the rotor angle stability of the
generators supplying the load and gives rise to voltage
instabilities. Lastly, PMUs allow state estimation and
help to predict future demand which enables the utilities
to match demand and supply in a better way.

V. CASE STUDIES

To apply the theoretical framework of the proposed
platform on practice, two different applications were
tested, and the results are provided in the following
section.

A. Voltage control through DLC program

In the first case study, a modified version of the
IEEE 15-bus network was modelled in Simulink with
the help of Simscape Power Systems library package
and the results were obtained in RT-LAB software of
the OPAL-RT 5600 real-time digital simulator. A single
line diagram is presented in Figure. 7. The distribution



network is operating at 11kV and has four DGs con-
nected to the grid. The DGs are presented as photo-
voltaic (PV) solar systems rated at 100kWp at standard
conditions (1000 W/m2 irradiance and 25º C ambient
temperature). Residential loads are placed at buses with
DG connected and are divided into two groups. The first
group illustrates uncontrollable high-priority appliances
(static load), while the second group represents the loads
signed to the DLC program. In this case study, the role
of controllable appliances is played by air-conditioning
systems (AC).

Fig. 7. Single line diagram of 15-bus network

The major challenge associated with the connection
of PV solar systems is their intermittent nature caused
by constantly changing solar irradiance. The insolation
patterns of four PV arrays are presented in Figure. 8.
This corresponds to two minutes of real-time simulation,
with a cloud shading possibility.

Fig. 8. Solar insolation patterns

Consequently, it leads to fluctuations in voltage and
frequency levels in the network. To reduce the total cost
of the grid, PMUs are only placed at buses with critical
voltage levels. For this purpose, an offline simulation was
carried out in Simulink to define the buses with critical
voltage levels, omitting those that are close to the sub-
station. During the passing cloud, generated power from
solar systems decreased, and, therefore, led to voltage

levels at buses 12, 13 and 14 to fall to critical points
(Figure. 9). This is an expected outcome due to the larger
distance of these buses from the substation combined
with connected heavy loads. Hence, it is assumed that
two PMUs are placed at buses 13 and 14, missing bus
12 due to the neighbouring connection of buses 12 and
13, i.e. it is sufficient to check only one of them. To
increase the observability of the network, two additional
PMUs are placed at buses 7 and 15, resulting voltage
phasors can be further applied to the DLC program. If
the magnitudes of voltage phasors at the corresponding
buses are less than the statutory limit, which is ±6 % for
the UK distribution networks, an instruction is sent to
switch off the AC systems of participating customers.

Fig. 9. Offline simulation of voltage levels without control

After receiving magnitudes of voltage phasors from
PMUs, a control action of DLC program was simulated
in real-time. Figure. 10 shows that the DLC was enabled
at 55 seconds, after which the controller checked the
voltage phasors at the observable buses. As voltage levels
at buses 13 and 14 were at critical levels, the instruction
was sent to switch off the AC loads at buses 5 and 12,
due to the nearest location. By decreasing the volume of
load, the voltage levels were increased to the acceptable
range.

Fig. 10. Voltage level with DLC

B. Transient fault analysis

1) Model description and case scenarios: In this
section, the transient fault analysis has been carried
out. In Figure. 11, a Single Line Diagram depicting a
distribution network scenario has been emulated. At the
Bulk Supply Point, the nominal bus voltage is 1 kV with
a system power factor of 0.8. As per IEC 60038:1983,
any voltage up to 1000 volts (for AC Systems) is



classified as low voltage and low voltage circuit breakers
have been used. At bus 7, a 5MWp Solar Farm has been
connected and at bus 10, a 5MW (11 kV) Wind Farm
has been connected. These two Distributed Generators
support energy demand and help to ease the voltage sag.

Fig. 11. Network model

To understand the effect of faults in the system and
fault contribution by various generation elements in the
grid, three-phase balanced line faults are created between
bus 1 and 2 in the above network. This is chosen because
the magnitude of the fault current is always high when
it close to generating source as the network impedance
is the least.

In order to analyse the fault transient in OPAL-RT,
repetitive Line-Line-Line symmetrical faults are created
manually between Bus 1 and Bus 2. In Figure. 12, fault
transient occurs during the following intervals: 0.5s ,1.5s
and 2.5s. This is to ensure that the faults are traceable in
real-time. The fault is allowed to persist for about 500
milliseconds. After this, it is manually cleared without
using the CB. This is done to identify the areas where
the fault current is high and set relay grading and circuit
breaker rating accordingly.

A characteristic of a radial network that voltage keeps
decreasing down the line. So, distributed generation
serves as a cardinal instrument to maintain the right
voltage balance and account for power shortage and
supply the residual/deficit power.

2) Result discussion: From the Table. III, we can
see the buses 2, 3 and 6 are critically affected as they
are closest to the fault location (marked as red). It is
also observed that power supply has been constrained
in buses 4, 5 and 8. Due to this, there is a growing
need for a fast sensing device like the PMU. An optimal
PMU placement algorithm is implemented here [22].

Fig. 12. RMS Post Fault Current Values

TABLE III
FAULT CURRENT VALUES (RMS)

BUS CURRENT(Nom) FLT CURRENT CHANGE
BUS 1 46.43 217.047 79%
BUS 2 19.858 211.499 91%
BUS 3 28.368 158.23 82%
BUS 4 57.682 50.432 -14%
BUS 5 34.357 29.944 -15%
BUS 6 6.619 75.648 91%
BUS 7 50.117 105.277 52%
BUS 8 24.901 21.749 -14%
BUS 10 125.134 230.411 46%

According to this algorithm, PMUs are usually placed at
buses with the largest interconnected branches or with
generators or with heavy loads. Also, to maintain full
observability and optimise cost function, the PMUs are
placed one bus apart. So, in this system PMUs are placed
at bus 1, 2, 3, 5 and 7. PMUs can be used to sense a
sudden onset of the fault and since they have a very high
sampling and reporting rate, they identify fault transient
very quickly. The faults are generally addressed using
negative or zero sequence, but PMUs can measure only
positive sequence. So, it is observed that fault offsets
the positive sequence voltage and current phasors and
a specific control algorithm is in place to differentiate
between the change in positive sequence current phasor
due to overload and fault (i.e. current surge).

Accounting for the change in current phasor at bus two
due to fault as shown in Figure. 13, we see a sharp rise
rate of change of positive sequence current phasor both
magnitude and phase angle. This is detected by the PMU
and a control threshold is set to differentiate between a
sudden load change and a fault. When this threshold is
crossed, fault protection devices are triggered and this
energises the circuit breakers and trips them.

In the Simulation, as shown in Figure. 14, at 0.5
seconds, first fault occurs. The PMUs monitor the change



Fig. 13. Bus 2 Positive Sequence Current Phasor

in positive sequence current phasor and the control
threshold is set at 60A. When this is crossed, a trip
command is generated wherein a trip signal changes
from high logic (1) changes to low logic (0) to open
the circuit breaker. Once the circuit breaker is opened,
the voltage returns to its nominal value and the rest of the
circuit gets disconnected thereby stabilising the system.
PMUs act as the custodian of the grid and they are very
prompt and fast at reporting events. This forms the basic
pillar to keep the power grid stable.

Fig. 14. Protection Logic Sequence

VI. CONCLUSION

This paper discusses a hardware in-the-loop real-time
simulation system, which is built up based on the real-
time simulator, OPAL-RT and a low-cost PMU platform.
The proposed system is easily setup while it enables sim-
ulation and study of a wide range of power system ap-
plications. Moreover, this co-simulation platform allows
the inclusion of power electronics, with low-cost ICT
interfaces to enable network services such as demand
response as well as peer-to-peer energy trading, and
involves feasible communication systems configurations
to meet the key requirements of a successful smart grid
system. The platform also provides an opportunity not
only for lab simulation but also for Hardware-In-the-
Loop simulations for the development of controls and
devices that can then be deployed in the distribution
network. In the final section, a few key applications
of the platform were addressed including voltage reg-
ulation, fault analysis, DSM and Peer-to-Peer energy

trading. Finally, a few case studies are carried out upon
the simulation platform, which shows the importance
and flexibility of the hardware in-the-loop co-simulation
platform.
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Abstract—With the development of the power grid, the
smart grid makes the system more intelligent, efficient,
sustainable, and reliable with integrated Information and
Communication Systems (ICTs) and big data. In this
research, a Long Short-Term Memory (LSTM) based
Dynamic Adaptive Compensation (DAC) forecast method
is proposed. This method utilises high time-resolution data
and LSTM network to provide short-term load forecast
results with dynamic error correction ability. Compared
with existing Autoregressive Integrated Moving Average
Model (ARIMA) and Persistence forecast methods, the
proposed features at providing robust and more accurate
forecast results while the available historical training
dataset or the data source is limited. Therefore, in the
distribution network (DN) or microgrid, the DAC-LSTM
method provides accurate short-term forecast result for the
purpose of operation cost reduction, for example, Peer-
to-Peer (P2P) trading, and Distributed Generation (DG)
management to reduce carbon footprint, etc. Moreover, the
proposed method gives high performance upon domestic
load which expands the application range.

Index Terms—Smart grid (SG), long short-term memory
(LSTM), machine learning (ML), short-term load forecast
(STLF), big data.

I. INTRODUCTION

ELECTRIC load forecast is fundamental in smart
grid as it can help suppliers to model and forecast

load in advance, balance the demand and supply, adjust
demand-side management (DSM) plan, implement real-
time pricing schemes, etc. In this regard, the accuracy
and robustness of load forecast method is important.
In addition, the electricity market is motivated by eco-
nomics while the increase in load forecasting accuracy
reduces the negative impact on the economy [1], [2].
Generally, based on the forecast time step, the electrical
load forecast is classified into three categories, including
long-term, medium-term, and short-term [3].

In a distribution network (DN), the relationship be-
tween consumers, suppliers, and distribution system op-
erators (DSO) becomes complex [4], [5]. The develop-
ment of the smart grid has created massive real-time and

historical data, which is collected from the monitoring
devices, such as smart meters, Phasor Measurement
Units (PMUs), and other user behaviour data [6]. In
recent publications, short-term load forecast (STLF)
methods have been proposed using hybrid methods to
improve the forecast accuracy in different situations.
These methods utilise sufficient historical data collected
from the system from DN and even from the microgrid
for the purpose of model training. But generally, the
trained model fits only to the training historical dataset.
Moreover, the DSM such as Peer-to-Peer (P2P) trading
methods are usually utilised in small network. This
indicates that the collectable historical data might be
insufficient to train the model and the nonlinearity of
load curve increases further. Based on this fact, papers
published in improving the STLF accuracy while the
historical data is insufficient are lacked.

This paper describes novel STLF techniques based on
Long Short-Term Memory (LSTM) network. In this re-
search, the STLF based model will be fully illuminated.
The dataset from Thames Valley Vision (TVV) Project is
utilised for model development [7]. The forecast model
is featured in combining big data with the state-of-art
machine learning methods to generate the STLF model
for the distribution network. The forecast model adopts,
first, multi-feature and high time resolution datasets to
improve highly non-linear load forecast and, second,
the dynamic adaptive compensation (DAC) method to
improve the forecast accuracy while the input dataset is
limited. Therefore, the forecast model can be unitised
in smaller distribution network or communities, and
improve control methods like P2P trading and other real-
time control.

The remainder of this paper is organised as follow.
In Section II, the present load forecast techniques are
illustrated. In Section III, the detailed methodology is
presented. In Section IV, the experimental results and
their analysis are presented. Finally, the conclusion,
limitation, and future work are discussed in Section V.
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II. LOAD FORECASTING TECHNIQUES

There are various types of techniques in load forecast
that have been proposed in the last few decades to
improve the forecast accuracy based on regression model
[8], and machine learning (ML) [9].

A. Statistical Methods

The currently used methods to achieve load forecast
mainly includes statistical forecast methods and machine
learning models [10]. Commonly used statistical forecast
methods include the persistence method, Autoregressive
Integrated Moving Average Model (ARIMA), which can
be split into Autoregressive and Moving Average models,
and its variants [11] [12] [13]. According to [14] and
[15], the stationary model shows good performance only
over the stationary data, while the traditional electric load
is simple, without elements like renewable generation,
smart home appliances, storage devices, etc.

The ARIMA method analyses time-series data based
on the assumption that the collected and forecast dataset
are linearly related, while the actual load pattern is highly
non-smooth and non-linear [16]. Nowadays, the load
linearity at transmission network (TN) and distribution
network level are greater than in the past. For example,
the increase of electric vehicle (EV) and distributed
generation (DG) penetration contributes a huge portion
of uncertain electricity generation and usage across the
day [17]. The linear methods (persistence, ARIMA, etc.)
show weakness in load forecasting especially in DN
compared with the ML methods.

B. Machine Learning Methods

1) Artificial Neural Networks: ML methods have
advantages of analysing non-linear data especially the
Artificial Neural Networks (ANNs) [18], [19]. In con-
trast to the ARIMA method and its variants, ANNs
include several non-linear self-adaptive methods, such as
feed-forward Multilayer Perceptron (MLP) [20], Support
Vector Regression (SVR), Fuzzy Logic (FL), Genetic
Algorithms (GA), Random Forest (RF), Grey Projection
Network (GPN), Back Propagation (BP), etc. [21], [22].
However, different ML methods have varies application
ranges. When processing the time-series data, of which
the electric load profile represents, the ML models like
BP algorithms, RF, GPN, etc. are lack the consideration
of time correlation of time-series data [23]. Also, FL and
GA are focusing on different aspects of data processing,
like data classification and solution optimisation [24]. In
solving STLF problems, the Long Short-Term Memory
(LSTM) method, based on Recurrent Neural Networks
(RNN), is introduced which provides the ability to

analyse non-linear data, taking into account the time
correlation of time series data [23]–[25].

2) Long Short-Term Memory: The RNN is an im-
proved method using the temporal information of the
input data, where connections between units form a
directed cycle within the same layer, while the ANN
cannot find the relationship between data and time.
Therefore, the output of each time step in the RNN
is affected by the input data from previous steps [26],
[27]. But the vanishing gradient problem affects the
RNN when the input time-series data becomes deep
and complex [28], [29]. In some cases, the gradient
information during backpropagation progress will be
vanishingly small, preventing the weight stored in the
network from changing its value [30].

To ease the vanishing gradient problem, LSTM blocks
are introduced to remember values for either long or
short duration of time [31]. Hidden units in LSTM blocks
trap the coming input data depending on the weight
at the input and output gate, as shown in Figure 1.
Therefore, in the backpropagation progress, the gradient
can be propagated back across several time steps without
exploding and vanishing. This helps the LSTM network
learn the long-range dependencies of time-series.

Fig. 1: The LSTM block

III. MODEL DEVELOPMENT

This section presents the detailed methodology for
developing the forecast model. It includes the data pro-
cessing, peak detection method, and Dynamic Adaptive
Compensation (DAC) module development. The block
diagram is shown in Figure 3 and the structure of DAC-
LSTM is shown in Figure 2. First, raw data is fed into
the data processing module to generate the required data
format. Then required dataset are passed to the LSTM
forecast module. Because LSTM method cannot forecast
both peak load and off-peak load accurately at once,
the peak load detection module is added to distinguish
peak and off-peak dynamically. According to the forecast
error, the DAC module is used to improve forecast results
for peak and off-peak periods separately.
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Fig. 2: DAC-LSTM network

Fig. 3: Block diagram of the DAC-LSTM scheme

A. Data Description

There are three types of datasets used, including
electrical load, ambient condition, and EV charging
profile. The real-world historical load data is obtained
from the Thames Valley Vision Project (TVVP) [7],
which is half-hourly recorded, comes from 220 domestic
properties, starts in February and March 2013 and ends
in November 2014. Also, the weather data in the Thames
Valley area is collected from the local weather station,
from January 2013 to December 2014, including 16
features. The EV charging profiles is from Adaptive
Charging Network (ACN), including charging profiles
from charging stations [32]. We assume that EV users
in the US are similar to them in the UK. According
to the EV charging data source, the dataset is made by
close collaboration with PowerFlex Systems around the
US. To emulate the real load pattern scenarios with high
EV penetrations, these two datasets (dataset from TVV
and ACN) are combined. The detailed explanation can
be found in section III-B.

B. Data input

The input dataset is pre-processed to clean the bad
point and be expanded to a 5-min time step. Then the
following steps are taken as the data processing progress.

1) Correlation analysis: This section presents the
process to select features that are related to load forecast.
The used feature data is recorded from the same area as
the TVV Project and with the same period. The collected
data includes 16 features while only 6 of them which
show a potential relationship with load are selected.

2) Input features: The input weather data includes 6
features as shown in Table 1.1: load, tempC, weather-
Code, humidity, cloudcover, wkorNot.

TABLE I: Input features and its represents
Term Load WeatherCode

Represent Load(W) Current weather
Term tempC Cloudcover

Represent Temperature (◦C) Could cover rate (%)
Term Humidity wkorNot

Represent Humidity weekday or weekend

3) Correlation coefficient: The correlation analysis
introduces the Pearson Correlation Analysis as it illus-
trates the correlation between time series data [33]. The
following Table II is derived:

TABLE II: Numerical feature correlation coefficient

Index Load tempC Humidity
Coefficient 1 -0.154 0.022

Index Cloudcover wkornot weatherCode
Coefficient -0.026 -0.02 -0.116

Table II shows the load has a positive correlation with
humidity and a negative correlation with temperature.
Because the weatherCode influences the weather, humid-
ity, etc. features, the weatherCode feature is excluded.

C. Peak Detection

The LSTM forecast result cannot forecast both peak
and off-peak load with high accuracy. Besides, when the
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peak comes, the forecast result may exceed or below
the actual peak value significantly due to the forecast
hysteresis. Figure 4 shows the hysteresis of the forecast
model and the large forecast error at the peak (compared
with the off-peak). Therefore, before making the error
correction upon the complete forecast result, the peak
detection method is applied to distinguish peak and off-
peak load. In the later section, methods are used to
improve the average forecast error and minimise the
forecast error during the peak.

Fig. 4: Typical daily load and its forecast result based
on LSTM method

Based on the principle of dispersion, Z-score is used
[34]. According to Z-score method, the time-series will
be regarded as peak only when:

|y − avg| > threshold ∗ std (1)

D. Dynamic Adaptive Compensation

This section describes the Dynamic Adaptive Com-
pensation (DAC) methods, which are used to improve the
forecast result dynamically. As Figure 5 shows, the DAC
is an add-on function to the LSTM block. The overall
block diagram is shown in Figure 6. The pre-forecast
value is compared with the real load value, generating
an error. According to the forecast step of the model
and the repetitive forecast procedure, calculated errors
are passed through a moving average error block which
gives the average error value. Besides, the bias βbias
is generated, which gives a dynamic-adjust bias value.
Also, the real-time forecast value passes through the
Activation function, in this research sigmoid, to generate
a parameter αsigmoid. The parameter αsigmoid is fixed
according to different forecast steps. Finally, Equation 2
is introduced to give the final forecast result.

F t+i
DAC = αi

sigmoidβ
i
biasE

t
i + St+i

h (2)

Et
i = St

h −Rt (3)

Fig. 5: A peephole of the DAC-LSTM cell unit

Fig. 6: Block diagram of DAC module

αi
sigmoid = fα(i) (4)

βi
bias =

Et
i

Eavg
fβ(i) (5)

In equations above, the present time is t and the
forecast step is i. FDAC is the forecast value from DAC-
LSTM, Sh,i is the forecast result from original LSTM
block at ith forecast step, Ri is the real recorded load
data corresponding to ith forecast step, Et

i is the forecast
error at time t, αi

sigmoid is the forecast step parameter,
fixed with step, and βi

bias is the adaptive error parameter,
fα(i) is the sigmoid related function, fβ(i) has positive
correlation with Et

i

Eavg
and fβ(i) is a dynamic changing

parameter. The maximum compensation value is preset
to avoid infinity problems.

The equation of fα(i) is described as follow:

fα(i) = 1.5− 1

1 + e(−i+1)/2
(6)

The equation of fβ(i) is described as follow:

fβ(i) = kδ(
1− i

m
+ 1) + 1 (7)

δ =
2

5 + 5e
n(1− Et

i
Eavg

)
− 1

5
(8)
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In equation 8, the max/minimum value is limited to
±0.2, which represents around 80-120% k error compen-
sation (depends on which step), as shown in Figure ??. m
and n are constant, of which the test dataset determines
values. k is the compensation factor, determining the
upper and lower bound of the compensated P.U. value.
If the Et keeps increasing compared with the previous
steps, k increases with a step of 0.01 and vice-versa. The
default value of k is 1 and k is reset to default when
Et

i

Eavg
changes the positive ad negative. In this block,

the value used to compensate for forecast error changes
according to the previous forecast error and the forecast
steps. αsigmoid i helps avoid the non-convergence of the
DAC method, and βbias i helps the model to increase
forecast accuracy when the convergence is decreasing.
Besides, in this procedure, the compensated forecast
result exceeds or is less than the actual value significantly
when the Error increase. Therefore, to improve the
forecast accuracy during the peak, the peak detection
and compensation cap methods are used to avoid over
or under-compensation. The result with or without a
cap is shown in Figure 7. The maximum/minimum
compensation value is set to ±0.2k Et

i .

Fig. 7: The performance of applying peak cap

IV. CASE STUDY
In this section, the performance of the DAC-LSTM

method is evaluated and carried out with case studies.
Moreover, the ELEXON UK domestic load data is used
to test the application of DAC-LSTM in a higher-level
power network. When evaluating the DAC-LSTM, the
following settings are made:

1) Each model is trained 10 times, and then takes the
average error value to show a steady performance
of DAC-LSTM.

2) When training the LSTM model, the model param-
eters are adjusted according to the training data
pool size, and forecast steps.

3) Each model is trained for 500 epochs and then
returns to the best epoch.

4) When needed, the input dataset is expanded to 5
min time step with linear interpolation and random
errors (± 1.5%).

A. Performance Matrices

The performance is evaluated by using the following
values: R-squared (R2) and Mean Absolute Percentage
Error (MAPE).

R2 = 1− UnexplainedV ariation

TotalV ariation
(9)

MAPE =
1

n

∑
|Ai − Fi

Ai
(10)

B. Input data description

1) Case 1-3: The data used to train the model is
from TVVP, ACN and locl meteorological stations. The
detailed description can be found in Section III-A.

2) Case 4: The data used to train the model is
obtained from ELEXON Portal. The dataset contains the
load profile from the UK domestic, from January 2013 to
December 2014. The date is half-hourly recorded. Only
one feature (load) is used for model training.

C. Case 1: Various length of historical data

The first case study compares forecast results with
different amounts of days’ data for training. First, the
model is tested with different training pools, from 550
days of data to 14 days of data. The expected forecast
step is 6, which represents 30 minutes forecast. This case
study aims to test the model’s robustness when input
historical data is insufficient.

Table III illustrate the R2, MAPE, and correlation val-
ues according to different amounts of days for training by
using Persistence, ARIMA, and DAC-LSTM methods. It
shows with the reduction of training samples, the forecast
accuracy of these methods reduces. But the DAC-LSTM
method provides better forecast accuracy compared with
the other two. From less than 150 days, the forecast
accuracy of DAC-LSTM reduces significantly because
of the lack of historical data for training. The forecast
accuracy from DAC-LSTM remains over 0.95 by using
more than 100-day historical data. This experiment gives
that the DAC-LSTM methods can abstract load features
with much less historical data compared with ARIMA
and Persistence (from 550 to 150 days for this dataset).
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TABLE III: Case 1: R2, MAPE and Correlation

R2 MAPE Correlation
Amount of days Per. ARIMA DAC-LSTM Per. ARIMA DAC-LSTM Per. ARIMA DAC-LSTM

550 0.881 0.920 0.991 8.71 6.82 4.04 0.940 0.959 0.994
500 0.867 0.891 0.990 8.05 7.76 6.46 0.934 0.942 0.993
450 0.913 0.909 0.991 9.29 7.02 5.49 0.956 0.961 0.996
400 0.864 0.833 0.991 8.76 8.83 5.65 0.932 0.914 0.995
350 0.898 0.892 0.990 13.41 7.61 4.45 0.949 0.946 0.995
300 0.898 0.874 0.975 8.00 7.92 5.01 0.949 0.939 0.993
250 0.883 0.897 0.989 7.91 7.36 3.84 0.941 0.947 0.994
200 0.893 0.894 0.990 8.50 7.42 4.43 0.947 0.944 0.991
150 0.898 0.891 0.998 8.29 7.77 3.86 0.949 0.953 0.991
100 0.876 0.873 0.958 7.21 6.95 3.78 0.938 0.943 0.992
50 0.850 0.825 0.926 8.81 8.38 5.83 0.925 0.913 0.997
30 0.795 0.794 0.904 9.95 9.87 6.61 0.897 0.899 0.997
14 0.824 0.820 0.875 7.75 7.75 6.52 0.913 0.913 0.995

TABLE IV: Case 2: R2, MAPE and Correlation

R2 MAPE Correlation
Amount of households Per. ARIMA DAC-LSTM Per. ARIMA DAC-LSTM Per. ARIMA DAC-LSTM

220 0.881 0.920 0.991 8.71 6.82 4.04 0.940 0.923 0.994
150 0.896 0.867 0.991 10.12 11.24 4.20 0.948 0.932 0.993
100 0.860 0.855 0.987 11.55 16.62 4.75 0.930 0.925 0.992
50 0.736 0.743 0.986 15.55 19.49 6.47 0.868 0.864 0.989
30 0.636 0.658 0.970 19.98 19.84 8.32 0.818 0.822 0.989
15 0.591 0.587 0.934 22.34 21.23 9.12 0.792 0.714 0.981

D. Case 2: Various sizes of data pool

The second case study compares forecast results with
different amounts of households’ data used for training.
Historical days for training is fixed at 550. The expected
forecast step is 6, which represents 30 minutes forecast.
The trained models are used to forecast 220 households’
electrical load.

Table IV illustrate the R2, MAPE, and correlation
values according to different amounts of households
for training by using Persistence, ARIMA, and DAC-
LSTM methods. It shows with the reduction of training
samples, the forecast accuracy reduces. The DAC-LSTM
method provides better forecast accuracy when the data
pool is reduced. The DAC-LSTM forecast accuracy
remains over 0.95 by using more than 30-household
historical data. For less than 30 households, the forecast
accuracy of DAC-LSTM reduces significantly because
the periodicity reduces and nonlinearity increases, which
restricts the model training. This experiment gives that
the DAC-LSTM method can abstract load features with
much fewer data sources compared with ARIMA and
Persistence (from 220 to 30 for this dataset)

E. Case 3: Comparison between DAC-LSTM and LSTM
methods with various forecast steps

Third, the proposed DAC-LSTM method is compared
with the original LSTM method. The forecast step varies

from 30 minutes (1 step) to 24 hours (48 steps). The
forecast results comparison is shown in Figure 8.

Fig. 8: The forecast results comparison between LSTM
and DAC-LSTM methods (forecast step varies from 0.5

hour to 24 hours)

In Figure 8, the DAC-LSTM method shows significant
improvement when the forecast step is less than 12 hours.
When the forecast steps range from 1 (30 minutes) to
18 (9 hours), the DAC-LSTM method is better than the
LSTM method, while the percentage of improvement
varies from 12.2% (R2) and 53% (MAPE) to 3.1% (R2)
and 2.7%.



7

F. Case 4: Compare with ELEXON UK domestic load

In this case study, the DAC-LSTM method is applied
to the UK domestic load derived from ELEXON to
expand the application range. Because the ELEXON
data is derived from UK domestic, the load profile is
more smooth and shows less distortion among days
when compared with distribution network load data.
The dataset is recorded half-hourly and without linear
interpolation before training. Table V shows the real and
forecast accuracy from ELEXON and DAC-LSTM. The
R2 of the ELEXON forecast and DAC-LSTM forecast
results are 0.97 and 0.99 separately, while the DAC-
LSTM method gives less average error.

TABLE V: Forecast result: UK domestic load dataset

R2 MAPE (%) RMSE (%, normalised)
ELEXON 0.97 0.17 0.13

DAC-LSTM 0.99 0.13 0.11

V. CONCLUSION AND FUTURE WORK

In this work, a robust DAC-LSTM forecast model is
proposed for short-term electricity load forecast. The
proposed method features a non-linear electric load
forecast, using the big data collected from monitoring
devices which gives the model a quicker response to
load pattern changes, therefore higher forecast accu-
racy. Also, compared with existing forecast methods,
the DAC-LSTM can provide accurate forecast results
when the trained model is lack historical data and data
sources, or the trained model unfits the load pattern.
Moreover, the method is applied to the domestic load and
shows convincing results compared with the dataset from
ELEXON. The application of the method ranges from
distribution level network (highly non-linear) to domestic
load level. All these features offer opportunities for the
electricity supplier and the grid operator to improve the
existing services, DR plan, real-time pricing schemes,
etc. For example, in a P2P trading system, more accurate
STLF methods could reduce the Ethereum gas trading
cost, therefore reducing the operation cost and improving
efficiency. Also in the network with high DG penetration,
the share of renewable generation could be increased
with more accurate forecast methods to reduce carbon
footprint.

The DAC-LSTM method has good performance com-
pared with other widely used STLF methods, some
works remain for the future. The application of the DAC-
LSTM method can be extended to MTLF and LTLF
which requires further experiment upon the existing
model. Also, the forecast accuracy and robustness of the

proposed method can be tested with more historical data
collected from the various distribution networks.

In addition, the proposed method has limitations.
Though the DAC-LSTM method utilises the advantage
of big data and machine learning techniques, it requires
massive data collected from advanced monitoring de-
vices and massive computation ability. Moreover, Al-
though the ML techniques have been developed for
decades and applied in the power system operation, the
real-world application of the DAC-LSTM method still
needs time to be validated.
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