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Lay summary

Consider a system we would like to observe to determine its current state, using
some form of measurement. In many situations, the system may exhibit complex
behaviour and depend on many variables. The observations we can obtain may
be limited, as well as subject to errors and uncertainty, due to our imperfect
measurement method. In such a case, filtering aims to give the best possible
estimate of the system’s state, while accounting for the flaws in the information
we obtain.

To give an example, let us imagine we want to track weather parameters in a
given region. In order to do so, we have to come up with a model, which we
think describes their dynamics well and which usually depends on a number of
variables. Let us assume that, among them, we are interested in the air pressure,
the temperature and the humidity. The sensors we are given can only measure
the latter two. Moreover, they cannot do so everywhere, but only in certain
locations and with some error. With methods from filtering theory we can make
an estimate on the weather and its other parameters, for instance the air pres-
sure, given the flawed temperature and humidity measurements we have.

In many cases, it is desirable to know how likely a certain state of the system is,
given partial information, i.e. the probability of the system having said state.
Mathematically, this means we have to analyse the distribution of the state
conditioned on partial observations. In our example, we could be interested in
how likely the air pressure is between certain values, based on our temperature
and humidity measurements. We refer to this as the conditional distribution, i.e.
the distribution of the air pressure conditional on the temperature and humidity.

In our work, we consider a class of systems which has received a lot of interest
in mathematics lately, referred to as jump-diffusions. They model phenomena
that experience instantaneous changes in their dynamics, in such a way, that
their parameters exhibit jumps in their values. We prove that, if at the start of
our experiment, the conditional distribution is well-behaved in a certain sense
and if our model satisfies certain assumptions, then the conditional distribution
remains well-behaved at all future times as well.



Abstract

In this thesis, we study the filtering problem for a partially observed jump diffu-
sion (Z;)wefo,r) = (X, Yi)te[o,r] driven by Wiener processes and Poisson martin-
gale measures, such that the signal and observation noises are correlated. We de-
rive the filtering equations, describing the time evolution of the normalised condi-
tional distribution (P;(dx))iefo,r] and the unnormalised conditional distribution
of the unobservable signal X; given the observations (Y;)Se[(),t]. We prove that if
the coefficients satisfy linear growth and Lipschitz conditions in space, as well as
some additional assumptions on the jump coefficients, then, if E|mol; < oo for
some p > 2, the conditional density m = (7 )se[o,r], Where 7 = dP,/dx, exists and
is a weakly cadlag L,-valued process. Moreover, for an integer m > 0 and p > 2,
we show that if we additionally impose m + 1 continuous and bounded spatial
derivatives on the coefficients and if the initial conditional density E|mol?, < 00,
then 7 is weakly cadlag as a 1V "-valued process and strongly cadlag as a W -
valued process for s € [0,m).

vi
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Chapter I

Introduction

Since its early developments in the mid-twentieth century, filtering theory has
been a heavily researched area in a number of mathematical and more applied
disciplines. The primary objective of stochastic filtering is to develop meth-
ods that allow us to infer properties of the state of a system, given partial,
noisy or otherwise corrupted information of it. More precisely, most often we
are concerned with two random dynamical systems, one modeling a (partially)
unobservable signal X = (Xi)s[o,r] and the other representing the observation
Y = (Y})te[o,r] on some time interval [0,7"]. In most cases, the “best” estimate
of X, at time t given past observations {Y; : s < t} is considered to be the
mean-square estimate and it is well-known that for each time ¢, this is given by
the conditional expectation E(X;|{Y; : s < t}). Thus, in a more general sense,
the classic task of filtering theory is to calculate for a real-valued Borel function
f the conditional expectation

E(f(X)[{Ye,s <t}) = L@ f(x)Pi(dz), tel0,T], (L0.1)

and hence it is of interest to study the properties of P;(dz), the conditional dis-
tribution of X; given {Yj, s < t}.

This has been done for a variety of dynamical systems Z = (X,Y) and to give
an overview of the corresponding literature would exceed the scope of this work;
instead, we refer the reader to [11] for a historical account, to [3] for an exposi-
tion of various methods and approaches, as well as to the references therein for
further reading.

In this thesis, we consider a d + d’-dimensional stochastic process (Z¢)sejo,r] =

)

(X4, Yy )iepo,rp on a given complete filtered probability space (2, F, (F)i=0, P),
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satisfying the stochastic differential equation (SDE)
dXt = b(t, Zt>dt + O'(t, Zt)th + p(t, Zt)d‘/;f

+ L 0(t, Zi-,3) No(ds. dt) + L §(t, Ze—,3) N1 (dg, dt), (1.0.2)

dY; = B(t, Z,)dt + dV; + f 3]\71(d3, dt),
31

on the interval [0,7] for a given Fyp-measurable initial value Z, = (Xo,Yp),
where (W, V})iso is dy + d’-dimensional F;-Wiener process, and N;(d3,dt) =
N;(d3, dt)—v;(d3)dt, i = 0,1, are independent F;-Poisson martingale measures on
R, x 3; with o-finite characteristic measures vy and v; on separable measurable
spaces (3¢, Zo) and (31, Z1) = (R*\{0}, B(R¥\{0})), respectively. The mappings
b= (), B=(B"), o= (69 and p = (p") are Borel functions of (t,z) =
(t,x,y) € Ry x R with values in R? RY R4 and R respectively, and
n = (1) and ¢ = (¢') are Rl-valued B(R, x R¥*?) ® Zj-measurable and R%-
valued B(R; x R¥*?) ® Z,-measurable functions of (¢, z,30) € Ry x R x 3
and (t,2,31) € Ry x R¥™*¥ x 3, respectively.

As in (1.0.1) we consider X to be the signal process and Y the observation
process, governed by (1.0.2) on the finite time interval [0,7"]. The primary aim
of this thesis is to study the filtering density 7™ = (7)sefo,r7, satisfying for each
t € [0,7"] and bounded Borel function f,

P(Xt € dl"{Y; tSE [Ovt]})
dx

Ty =

and | f(@) Plde) = | f(@)m(r) dz,
(1.0.3)

almost surely.

The novelty of this thesis is threefold. Firstly, we derive the filtering equa-
tions, the Kushner-Shiryaev equation and the Zakai equation, associated to our
model (1.0.2). The former describes the time evolution of the conditional dis-
tribution (P;(dx))sepo,r) satisfying (1.0.1). We obtain it by a change of measure
method and first deriving the Zakai equation for the “unnormalised” condi-
tional density (u:(dx))efo,r], related to P via a normalising multiplicative pro-
cess. While the filtering equations for models with jumps have also been derived
in the recent works [2,5,9,10,19,47,49,50], to the best of the author’s knowledge,
they have not previously been derived for a model as general as (1.0.2). We refer
the reader to the introduction of Chapter III for a more detailed comparison
of our model to SDEs considered by other authors and related results on the
derivation of the filtering equations.

Secondly, we prove the existence of density valued processes associated to (Pt)te[O,T]
and (fu)eefo,r]. We show that if the coefficients in (1.0.2) have linear growth in
z = (z,y) € R¥? and are Lipschitz continuous in z, uniformly in the other
variables, if the measure v, admits an r-th moment for some r > 2, if n, ¢ satisfy
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some additional regularity condition in terms of a Jacobian and if the initial
condition satisfies E| X|” < o, then so long as E|m|P < oo for some p > 2, the
conditional distribution (P;(dw))swefo,r] admits a density process (m)seqo,r], which
is weakly cadlag as L,-valued process, satisfying (1.0.3) almost surely for each
t € [0,7] and bounded Borel function f. As a special case we obtain that if
p = 2, it is enough to assume r = 2. Our methods rely on some existence and
regularity results from [23] as well as It6 formulas for jump processes (in L,-
spaces) from [21,22]. These articles provide very recent results on L,-calculus
for jump processes. While there are results on Ls-valued density processes for
jump-diffusions, see [6,44,50], we obtained first results for existence of L,-valued
densities for our more general jump diffusion model (1.0.2) for p > 2.

Thirdly and finally, we investigate the regularity (in the Sobolev sense) of (7)se0,17
under additional regularity assumptions on the coefficients. More precisely, we
show that if in addition to the assumptions described above for the L,-case, we
assume the coefficients of (1.0.2) admit m + 1 continuous and bounded deriva-
tives in x € RY, then for an integer m > 0 and p > 2, the filtering density 7 is
a W]"-valued weakly cadlag process, so long as E|r|j < 90, where by W™ we
mean the space of functions with generalised derivatives in L,, up to order m.
Moreover, 7 is strongly cadlag as WW;-valued process, for s € [0,m). There have
been pioneering works, see [39,41,51], as well as some extensions [32,35,36], on
the regularity of filtering densities for the case of no jumps, i.e. when & =7 =0
in (1.0.2) and if Y contains no jumps. However, to the best of the authors
knowledge, these investigations have not previously been extended to systems
with Lévy noise. This thesis provides a first extension of such results on regu-
larity (in the Sobolev sense) to jump diffusions.

Our results, both on the conditional distribution P as well as its density pro-
cess 7, are obtained by first studying the Zakai equation. Its linearity makes it
easier to analyse in our case and we first obtain results on existence and regu-
larity of the unnormalised conditional density u = (uy)sefo,r7, satisfying for each
t, u; = dpy/dx almost surely. Through multiplication with a normalising process
we then get the desired results also for .

For more details on related results, relevant literature and the methods we
have employed, we refer the reader to the introductions to Chapters III, IV and
V. Moreover, the reader may also consult the articles [16], [17] and [18], which
provide the bases for the Chapters III, IV and V, respectively. The articles [16]
and [18] are joint work with Istvdn Gyongy, and the article [17] is joint work
with Alexander Davie and Istvan Gyongy.

Structure of the thesis

While the reader will find a more detailed outline of the individual Chapters
ITI, IV and V at their respective beginnings, we include a concise description of
them here.



In Chapter II we first collect and review some important results on jump
processes and related calculus. While it provides the reader with some back-
ground knowledge for results used in this thesis, it is meant to motivate our
choice of model, in particular its form (1.0.2). Finally, we state useful results on
existence, uniqueness and moment estimates for solutions to (1.0.2).

In Chapter III we derive the filtering equations associated to (1.0.2). We
generalise some necessary concepts from filtering theory and, using optional pro-
jections, derive first the Zakai equation. By multiplication with a normalising
process we then also obtain the Kushner-Shiryaev equation.

In Chapter IV we are concerned with the existence of an L,-valued density
process m. We first generalise some estimates originally presented in [41] and
obtain a supremum estimate for the L,-norm of the smoothed unnormalised
conditional density. A limit argument directly yields our result for the case of
L,. To obtain the result for L,, with general p > 2, we first prove it for the case
of compactly supported coefficients and then show the general case by using a
limit procedure.

In Chapter V we prove the existence of a W"-valued density process. We
show this by relying on results for the L,-case from Chapter IV and first estab-
lishing existence and regularity for compactly supported coefficients. As before,
a limit argument yields the desired result for general coefficients.



I.1 Notation

We conclude with some notions and notations used throughout the paper.

Spaces of continuous functions

For an integer n > 0 the notation C*(R?) means the space of real-valued bounded
continuous functions on R?, which have bounded and continuous derivatives up
to order n. (If n = 0, then C(R?) = C,(R?) denotes the space of real-valued
bounded continuous functions on R?). We use the notation C° = CP(R?) for
the space of real-valued compactly supported smooth functions on RY.

Signed measures and related notions

We denote by Ml = M(R?) the set of finite Borel measures on R? and by 9 =
IM(RY) the set of finite signed Borel measures on R?. For p € 9 we use the
notation

o) = | ot ulao

for Borel functions ¢ on R?. We say that a function v : 2 — M is G-measurable
for a o-algebra G < F, if v(p) is a G-measurable random variable for every
bounded Borel function ¢ on RY. An 9M-valued process (14)i=o is said to be
adapted to a filtration (G;)swe[o,r if 14(p) is a Gi-measurable random variable for
every t € [0,7] and bounded Borel function ¢ on R%. An M-valued stochastic
process v = (Vy)eo,r] is said to be weakly cadlag if almost surely v(p) is a
cadlag function of ¢ for all ¢ € C,(R?). An M-valued process (v4)sefo7] is weakly
cadlag, if it is the difference of two M-valued weakly cadlag processes.

o-algebras and filtrations

A measurable space (3, Z), or a measure space (3, Z,v), is called separable if
the o-algebra Z is countably generated. For processes U = (Uy)e[o,r] We use the
notation FY for the P-completion of the o-algebra generated by {U : s < t}.
By an abuse of notation, we often write FU when referring to the filtration
(FY )tejo,r), whenever this is clear from the context. For c-algebras G; < F,
1 = 1,2, the notation G; v G, means the P-completion of the smallest o-algebra
containing G; for ¢ = 1, 2.

Sobolev and Bessel potential spaces

For a measure space (3,2,v) and p > 1 we use the notation L,(3) for the
L,-space of R-valued Z-measurable processes defined on 3. However, if not oth-
erwise specified, the function spaces are considered to be over R%. We always use
without mention the summation convention, by which repeated integer valued
indices imply a summation. For a multi-index o = (ay, ..., aq) of nonnegative
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integers a;,i = 1,...,d, a function ¢ of x = (xy,...,24) € R? and a nonnegative
integer k we use the notation

DYp(x) = D{'Dy? ... Dyp(x), aswell as |DFyp|? = Z |D7]?,
IvI=k

where D; = % and | - | denotes an appropriate norm. We also use the notation

D;; = D;D;. If we want to stress that the derivative is taken in a variable x,
we write D2. If the norm | - | is not clear from the context, we sometimes use
appropriate subscripts, as in |¢[z, for the L,(R*)-norm of ¢. For p > 1 and
integers m > 0 the space of functions from L,,, whose generalized derivatives up
to order m are also in Ly, is denoted by W}". The norm |f |W£n of fin W is
defined by

Ty = ZJ |DF f(2)|P do < 0.
k=0 JVR?

For real-valued functions f and ¢ defined on R the notation (f,g) means the
Lebesgue integral of fg over R? whenever it is well-defined. Throughout the
paper we work on the finite time interval [0,7], where T' > 0 is fixed but
arbitrary, as well as on a given complete probability space (2, F, P) equipped
with a filtration (F;);=0 such that Fy contains all the P-null sets. For p,q > 1
and integers m > 1 we denote by W* = L,((Q, Fo, P), W;"(R?)) and W, <
Ly(, Ly ([0, T], W (R?))) the set of Fo@B(R?)-measurable real-valued functions
f = f(w,z) and Fi-optional W]"-valued functions g = g;(w, z) such that

» T q p/q
W, :zE( ) ]gt\wgndt> < 0,

f

]{’w ::E\f\pgn<oo and |g

respectively. If m = 0 we set L, = W) and L, , = W) . When instead of F,
we consider the measurability with respect to another o-algebra G, we write this
explicitly as IL,(G) or W*(G). If m > 0 is not an integer and p > 1, then W"
denotes the space of real-valued functions h on R? such that

‘h|WI§n = ‘(1 — A)m/Zh‘Lp < CO.



Chapter 11

Jump processes and related
stochastic calculus

In this chapter we collect important notions and results on stochastic calculus
related to Lévy processes as well as on stochastic differential equations driven
by Lévy noise, i.e., when they are driven by both Wiener processes and Poisson
random measures. We start by introducing random measures more generally and
finally conclude that the jumps of a cadlag semi-martingale can by expressed in
terms of Poisson random measures, yielding the semi-martingale decomposition.
We then state the decompositon of a particular semi-martingale, a Lévy process,
to motivate the form of stochastic differential equation considered as model in
this thesis. More precisely, we outline how a Lévy process can be decomposed
into a continuous drift, an integral against a Wiener process and an integral
against a Poisson random measure.

Having justified the type of SDE models we investigate, we provide some useful
results on existence of solutions to them, their uniqueness, as well as some mo-
ment estimates which are used in later sections.

While these results are well-known, we provide some sketches of proofs for the
reader’s convenience.

Throughout this chapter we consider a filtered probability space
(Q, F, (Ft)t=0, P) such that Fy contains all the P-null sets and a separable mea-
surable space (3, Z).

II.1 Lévy processes and random measures

Definition II.1.1. [1, p. 43] An Rvalued F;-adapted stochastic process
(X})i=0 is called Lévy process if

(i) Xo = 0 almost surely,



(ii) it is stochastically continuous, i.e. for all ¢ > 0 and s,t > 0,

lim P(1X; — X,| > ¢) =0,

(iii) it has stationary and independent increments, i.e. for all t > s > 0, the
random variable X; — X, is independent of the o-algebra F; and has the
same distribution as X;_;.

In the following we will refer to an Fi-adapted Lévy process as Fi-Lévy
process.

Proposition I1.1.1. /25, Thm. 2.68] Let X be an F;-Lévy process. Then it
has an Fi-adapted cadlag stochastic modification.

Henceforth we always mean the cadlag modification whenever we introduce a
Lévy process. Note that then, the Lévy process is in particular a semi-martingale.

Definition I1.1.2. [25, Def. 8.1] An Fi-adapted process X is called a semi-
martingale if it admits the decomposition

X =M+ A,

where M is a local F;-martingale and A is an F;-adapted process with finite
variation.

We say a martingale M is locally square integrable if there exists a sequence
of stopping times (7,,)%_;, such that 7, — o and for each n = 1, (M, r¢)i=0
is a square integrable martingale. For two square integrable martingales M,
and M, there exists a unique predictable locally integrable increasing process
(M, My) = ({(My, Ms)t)¢=0, such that MMy — (M, Ms) is a locally square
integrable martingale starting at 0. In this case (M, M) is referred to as Doob-
Meyer process of M;Ms. For the following theorem, we recall further the defini-

tion of the quadratic variation of two semi-martingales X, Y,

[X,Y] = Xo¥p + (X, V) + YT AX,AY,,

s<-

where X and Y¢ denote the continuous (locally square integrable) martingale
part of their semi-martingale decomposition (see [25]), AX = X, —Y,_, s> 0
with Xo_ := Xy and AY is defined analogously.

Theorem I1.1.2. /25, Thm. 11.43] Let Xy and Xy be Fi-Lévy processes. If
their quadratic variation [ X1, Xa] = 0 almost surely, then they are independent.

Theorem I1.1.3. /25, Thm. 15.44] Let X be an F;-Lévy process. Let (F;¥)i=o
be the natural filtration of X and denote by N the P-null sets. Then

A\

FEVN=F VN =FX VN, t=0,

8



where

-\ F5 and FY=(FX

s<t r>t

Definition I1.1.3. A mapping 1 : Q x B(R;) x Z — R, u {oo} is called a
random measure if

(i) for all we Q, pu(w,-) is a o-finite measure on B(R, ) ® Z,
(i) for all Be B(R;)® Z, u(-, B) is a random variable on (€2, F).

We set o
(©,7) = (@R, x 3, FRB(R,)® Z).

Define further ) )
O=0®Z and P=PR2Z,

referred to as optional and predictable o-algebra on 2 respectively, where @ and
‘P are the usual optional and predictable g-algebras on €2 x R,. In accordance
with this, we call a measurable function f on (,O) (resp. (Q,P)) optional
(resp. predictable).

In the usual way, we define the stochastic integral of an optional function f
on (Q,0) against u as (see [28, equ. 11.1.6])

(f % p)e = {Soga pulds, ds), if So Sg |f(5,3)] u(ds, ds) < P>

\
e

otherwise

Definition I1.1.4. [28, Def. I1.1.6] A random measure is called optional (resp.

predictable) if for every optional (resp. predictable) function f on (Q, 0) (resp.
(£2,P)) the process

fo) = f L f(5,3) ulds.ds), >0,

is optional (resp. predictable). Moreover, we say that s is finite, if ©(Q) < .
Finally, a random measure p is P-o-finite, or predictably o-finite, if there exists
a P-measurable partition (A,)%_; of Q, such that E(14, = yt), < oo for each n.

Theorem II.1.4. /28, Thm. II.1.8] Let ji be a P-o-finite optional random
measure on (2, F). Then there exists a predictable random measure ji# on (2, P),
unique up to a P-null set, such that for every nonnegative P-measurable function

f we have
Jthg, (w,ds,dt) = ffftg P(w, ds,dt).

In this case, pP is referred to as (predictable) compensator of .

9



We recall a few properties of u and pP. If u is already a predictably o-finite
random measure, then p? = p almost surely. Moreover, for any P-measurable
function f on €, such that |f| = p is a locally integrable increasing process, we
have that f = u? is the compensator of f * u and therefore, with the random
measure i ;= p — pP we have that

Lth(s,a) p(ds, ds) — Lt L F(s,3) 17 (d3, ds)

is a local martingale (see [28, Prop. 11.1.28].

The random measures in this theses will only be integer-valued random mea-
sures, as well as integrals against the latter, so that we henceforth focus our
exposition thereon.

Integer-valued random measures

Definition I1.1.5. [25, Def. 1I.1.13] We say that an optional P-o-finite random
measure /4 is an integer-valued random measure (on (€2, 0)), if

(i) p(w,3,{t}) €{0,1} for all (w,t) e Q x Ry,

(ii) for each A € B(R;)®Z the random variable u(w, A) takes values in Nu{w0}.
For a stopping time 7 we denote by [r] the graph of 7, that is [r] =
{(w, T(w)) e 2 xR, 1w e N}
If o is an integer-valued random measure, then there exists a sequence of
stopping times (7)., satisfying [7,] n [7n] = & for n # m, and a 3-valued
optional process 8 = (/)0 such that with D = [ J”_,[7.] we have

plw, dz, dt) = > 1p(w, $)6(s,(),5 (d3, ds), (I1.1.1)
s=0

with 0 denoting the Dirac measure.

Example I1.1.1. [28, Prop. 11.1.16] Consider an F;-adapted cadlad Re-valued
process X = (X;);>0 and consider the “jump-measure” pu* associated to X, i.e.
for AX, = X; — X;_, t >0 and Xy_ := X,

X (w, A x (s5,1) = [{AX,(w) e A:re (s,t)}] (I1.1.2)

Then we can write u¥ as in (IL.1.1) with D := [AX # 0] c Q x Ry, 8:= AX
and 3 := R%.

If g = g(w,t,z) is an optional real-valued function and g an integer-valued
random measure with D, (7,,)%_; and /8 as described above, then we can write,
see [28, equ. 1.15],

| | otsavntdn.ds) = 3 LactnaBu a8 = X 10(5) 1489050

s<t

10



If a set A is such that 0 ¢ A, the closure of A, then we say it is bounded
below.

Proposition I1.1.5. [1, Lemma 2.3.4] Consider X and p* as in Ezample
IL1.1. If A € B(RY) is bounded below, then we have p* (A x (0,t]) < o almost
surely for all t = 0.

Proof. Define the sequence of stopping times
=inf{t = 0: u(A x (0,t]) = n},
n = 1, where we observe that for ¢t > 0,
Ap¥(Ax(0,t]) >0 = AX; eA

First, note that due to the continuity of X from the right at 0, almost surely
71 > 0. Similarly we see that 7, — o0 as n — oo. If not, and 7, - 7 < ©
on some set ' of positive probability, X would not have left limits at 7 on €2'.
Thus for each t = 0 we have

pX(Ax (0,]) = Y Lom(t) <o, (as.).

n=1

]

Though we do not use the following theorem, Theorem II.1.6, in its full gen-
erality, but only for Lévy processes appearing in later sections, we include it here
to outline the role of random measures in semi-martingale decompositions. The
respective special case of Theorem I1.1.6, the decomposition of Lévy processes
presented later in this section, motivates our choice of model in this thesis.

Theorem I1.1.6. [25, Thm. 11.25] Let X = (X;)i=0 be an R%*-valued semi-

martingale, let i be its jump measure and v~ the predictable compensator of

w™. The X can be written as

Xy = Xo+ou+X{ —i—JJ z (u* —v) (dx, ds)+ JJ X(dx,ds), (11.1.3)
|z|<1 |ac\>1

where (oy)i=0 18 a predictable process with finite variation and M€ is the con-
tinuous (locally square integrable) martingale part of X with M§ = ag = 0.
Moreover, we have the properties

(i) v¥ (R x {0}) = v* ({0} x R}) =0,

(ii) ((|z]* A 1) = 17%)50 is increasing with locally integrable variation,
(iii) Aoy = §, xvX (dx, {t}).

11



Definition II.1.6. Consider a semi-martingale X with representation as in
(I1.1.3) of Theorem I1.1.6. Then we call the processes «, the Doob-Meyer process
B = (X¢) and the predictable compensator v the predictable characteristics of
X, or simply characteristics in short, often written as triple (o, 3, v%).

Proposition I1.1.7. /25, Cor. 11.28] A semi-martingale with predictable char-
acteristics (o, 3, v~) is stochastically continuous if and only if for all t = 0 we
have vX(RY x {t}) = 0 almost surely.

Similarly, if we consider a cadlag process with stationary and independent
increments, then one can see that the distribution of the random variables A X},
with ¢ > 0 does not depend on t and hence X cannot have a fixed time of
discontinuity.

Theorem I1.1.8. /25, Thm. 11.36] A stochastically continuous semimartingale
X is an Fi-Lévy process if and only if its predictable characteristics (o, 3,v~)
are non-random. Then we have moreover that

(i) « is continuous with finite variation and
(ii) B is continuous and monotone increasing, with By = 0.

We recall that a random variable N is Poisson distributed with intensity A if

M exp(—k)

P(N = k) = =—5—.

for k=0,1,2,....

Analogously we say that N = (N;);= is a Poisson process with intensity A if V
is a Lévy process taking values in N u {0} and if for each ¢ the random variable
N, has a Poisson distribution with intensity t\.

Definition I1.1.7. [30, Def. 19.1] Consider a o-finite measure space (H, H, 7).
A family of N U {oo}-valued random variables (N(A))aer is called a Poisson
random measure (on H) with characteristic measure v if

(i) for each A € H the random variable N(A) has a Poisson distribution with
intensity v(A),

(ii) N(A;) and N(Ajy) are independent whenever A; n Ay = ¥ and
(iii) for each w € Q, N(w,-) is a measure on H.

Proposition I1.1.9. /30, Prop. 19.4] Consider a o-finite measure space (H,H, 7).
Then there exists a probability space (¥, F', P') and a random measure N on
H, such that it 1s a Poisson random measure with characteristic measure .

We consider now the case when (H,H) = (R, x R B(R, x R%)) and show
that the jumps of a Lévy process can be described by a Poisson random measure.

12



Theorem I1.1.10. Consider an R%*-valued F;-Lévy process X on Q x R, and
let N denote the measure of its jumps. Then N is a Poisson random measure
on (Ry x (RN\{0}), B(R,)®B(RH\{0})), such that with a o-finite measure v, the
characteristic measure of N is given by v(dz,dt) = v(dx) ® dt.

Proof. We provide a rough sketch of a proof and refer to [1, Thm. 2.2.13] for full
details. For a set A€ B(R,) with 0¢ A, (N?)i=0 := (N(A x (0,]))e=0 is given
by the right-hand side of (II.1.2), with s := 0. First, one can show that N4 is
also a Lévy process. Clearly Ng' = 0 almost surely and it is not difficult to see
that, due to the independent and stationary increments of X and its stochastic
continuity, N4 shares these properties. Next we show that N4 is a Poisson
process. Taking a version of X with cadlag sample paths, we know that X has
at most countably many jumps of size in A, to which we assign the ordered set
of stopping times

ni=inf{t >0: AX; e A}, 7,:=inf{t>7,1:AX,€ A}, n=>2.

Using the stationary and independent increments of X, one can show that the
random variables

(T, 7o — 71,73 — T2, . .)
are independent and identically distributed. Further, we see immediately that
fi(t) := P(my > t) is decreasing. Moreover, f1(0) = 1, as otherwise there would
be a set F' of positive probability such that on F' we have AXy > 0. By the

same argument one can see that f is right-continuous at 0. Further, by due to
the independent and stationary increments,

filt+s) = PN = O|N{, — N = 0) = fi(t) fi(s).

Hence one can deduce that there exists A > 0 such that f;(t) = exp(—At), and
that as sum of exponentially and identically distributed random variables,

Tn=T1+ (o —71)+ -

has a gamma distribution. Finally, one can use induction to see that N4 is a
Poisson process with intensity t\. O]

If the compensator v of a Poisson random measure N on (R, x 3, B(R, )® Z)
admits the decomposition 7(d3, dt) = v(d3)®dt for a o-finite measure v on (3, Z),
then we also refer to v as the characteristic measure of N. This will always be
clear from the context. Moreover, we often write v(d3) ® dt = v(d3)dt.

Theorem I1.1.11. /25, Thm. 11.45] [1, Thm. 2.4.16] Let X be an F;-Lévy
process, N(ds,dx) its associated jump measure, with predictable compensator
ds®v(dx) and compensated martingale measure N(dz,dt) = N(dz,dt)—v(dz)dt.

13



Then it admits the representation

¢ ¢ ¢
that+fadef+ff a:N(dm,ds)vLJJ x N(dz,ds), t=0,
0 0 Jjal<1 0 Jjz|>1

where a € R, 0 = 0% € R™™ for some m =1 and W an m-dimensional Wiener
process.

Finally, we see that a Lévy process X exhibits a certain structure that allows
us to analyse it efficiently. This decomposition motivates our choice of model
(I.0.2) in investigating jump-diffusion processes, i.e., SDEs driven by Lévy pro-
cesses.

We finish with some integral properties of Poisson (martingale) random mea-
sures. For details and proofs we refer the reader to [27], in particular Section
I1.3 therein.

Proposition I1.1.12. Let f = f(w,t,3) be a P-measurable real-valued function
and let moreover N(ds, d3) be a Poisson random measure on (Ry x 3, B(R,)®Z2)
with compensator v(dz)dt. Then we have the following properties.

(i) If for T > 0,

EL L|f(s,3)|q v(dz)ds < oo, (IL.1.4)

with q := 1, then we have

B[ [ 1l Vs =] [ 1rslvtas

Moreover, we know that

Jffs;, (d3,ds) = fffs;, (d3,ds) — fffsg (d3)ds (II.1.5)

s an Fi-martingale.
(i) If for ¢ :==1 and q := 2 (11.1.4) holds, then the right-hand side of (11.1.5) is

a square integrable Fi-martingale and the Doob-Meyer process

<Jff83 (d3, ds)), = fj\fsz te0,T].

(iii) If (11.1.4) holds with q := 2, then there exists a sequence of P-measurable
real-valued functions (f,)_y, such that for each f, we have (11.1.4) with q :== 1,2
and f, in place of f, fn — f asn — o« for P ® dt ® d3-almost every (w,t,3) €
QO xR, x3 and

Jffnsg, (d3,ds), t=0, n=1,2 ...,

14



1s a Cauchy sequence in Ms, the space of square integrable Fi-martingales. Then
we define its limit by

Lth(s,g) N(d3,ds), t=0. (IL.1.6)

(iv) Finally, if f is such that for a sequence of stopping times (p,)>_, going to
w0, for eachn =1 (I1.1.4) holds for q := 2 and f1,<,, in place of f, then (11.1.6)
1s defined as the unique locally square integrable Fi-martingale M, such that for
eachn =1,

t
Ah%=JJL@J@ﬁN%d$ te[0,7).
0J3

It is worth noting that in case (iii) above the equality (II.1.5) may no longer
hold, as the integrals on the right-hand side thereof may not be well-defined.

I1.2 Some results on It6-Lévy processes

Consider again a complete filtered probability space (2, (F;)i=0, P), a separable
o-finite measure space (3, Z,v) and the stochastic differential equation

3

where b = (b%), 0 = (0¥) are B(R,) ® B(R?) measurable functions, n = (n%) and
is a B(R;) ® B(R?) ® Z-measurable function, fori =1,...,d,j=1,...,d;, W
is a di-dimensional F,-Wiener process, N (dj, dt) := N(d3, dt) — v(d3)dt with N
an JF;-Poisson random measure with characteristic measure v(d3)dt, the initial
condition Z; is R%-valued and Fy-measurable and Zy, W and N are independent.
We impose the following assumption on the coefficients.

Assumption I1.2.1. There are nonnegative constants Ky, K; and L such that

(i) for all ¢ > 0 and z € R?,
b2 + o2 + [ Inth, 2 9)v(ds) < Ko + Kl
(ii) for all ¢ = 0 and z;, 2, € R?
b(t, 21) — b(t, 22) > + |o(t, 21) — o (t, 2)|?
+L n(t, 21,3) = 0(t, 22,3)° v(ds) < L]z — 2|,
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Though the following theorem is well known, we provide a partial proof of
it for the reader’s convenience. For the full proof we refer the reader to [1], or
to [20] for a more general exposition.

Theorem I1.2.1. Let Assumption I11.2.1 hold. Then there exists a unique JF;-
adapted cadlag solution Z to (11.2.7).

Proof. We only outline the case E|Zy|*> < oo. For the other case, a truncation
argument can be applied and we refer the reader to [1] for full details. We define

a sequence by Zt(o) = 7y and

Z" Y = b(t, ZV) dt + o (t, Z) dW, + f n(t, Z",3) N(dg, dt), n=1,2,...
3

Clearly (a modiﬁcation of) Z; is cadlag and by an inductive argument we see
that this holds for Z(™ for all n > 1. First observe that by Doob’s martingale

inequality,
s t
E sup f o(r, Zy) < 4EJ \o(r, Zy)|? dr,
0<s<t 0
t
B s | [ ] 00 20.9) §tasan)[" < 48 | | ot 2o, g) vidg)ar
O<s<t 0 J3

and hence, due to the linear growth conditions on the coefficients,

E sup |Z" — ZOP < 2E sup

0<s<t 0<s<t

ff (r, Zo,3) dg,,dr)’

< 262(Ko + K1\E|Zo|?) + 16t(Ko + K1E|Zo|?) < N()t(Ko + KiE|Zo]?),

s 2
J b(r, Zo)|dr) + 2E sup

0<s<t

s 2
f o(r, Zo) dW,

0

+2E sup

0<s<t

with N(t) = max{2t, 16}. By induction we get that for each n, E sup,,<, |Z§") |? <
oo and using also the Lipschitz property of the coefficients, in a similar way, using
also Fubini’s theorem

E sup |2 — Z(W|2 < 9E sup

S 2
| bt 20 - st 2 o

0<s<t Oss<t ' Jo
s 2
+2E sup f (o(r, ZT(")) —o(r, Zr(”_l))) dw,
0<s<t
B 2
+mprJ )~ n(r. 207, 3) N(ds. dr)
0<s<t

¢
< N(t)LEJ sup |ZW — ZY 2 gy = ()LJ E sup |Z™ — Zz"=VD2ar.
0

0 0<r<s 0<r<s

16



Inductively we then get that

tn+1

E sup |Z(n+1) _ Z(n)|2 < Nn-‘rl(t)Ln

A o KA,

which converges to 0 as n — o0. Using the triangle inequality it is then easy to
show that

E|z™ — ZI™ > 0, foreacht>0asn,m — o,

ie. (Zt("));‘f’:1 is a Cauchy sequence in Ly(Q2) and we denote Z as the limit
process. Indeed, using the same kind of estimates, it is not difficult to show that
Z is the almost surely limit of the cadlag processes (Zt(”))ff:l and hence itself
cadlag. It remains to see that Z satisfies the SDE (I1.2.7). To see this, one can
define a process Z as the right-hand side of (I1.2.7), with Z as the limit process
constructed above and use the same arguments to verify that for each ¢ we have
lim,,_, Zt(") = 7, in mean square. By the uniqueness of the limit it then follows
that Z = Z. Uniqueness of solution can be by shown by standard techniques.
deriving similar estimates as above for the difference of two solutions Z! — 72

and finally applying Gronwall’s lemma. O]

Assumption I1.2.2. For a p > 2 and nonnegative constants Ky, K let n satisfy,
for all t > 0, z € RY,

ﬁw%wwm<m+&w.
3

The following can be found in [12, Lm. 2.2].

Theorem I1.2.2. Let Assumptions I1.2.1 and I1.2.2 hold for a p = 2 and let
E|Zy|P < 0. Then the solution Z of (11.2.7) satisfies

E sup |Z[P < N(1+E|Zf?),

0<t<T
for a constant N = N(d,dy,p, Ko, K1, T).
We provide a sketch of the proof.

Proof. First, we know by Theorem I1.2.1 that Z is the unique F;-adapted cadlag
process satisfying (I1.2.7). Fix a T'> 0. By It0’s formula, see [22, Cor. 2.4], we
have almost surely

t
|aw=w%w+pf|ap42&?ﬂw
0

t
’%L (21 Z|P2 2.7, 0o + (0 = 2)1 27" 42 |Ziod|? (11.2.8)
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d di t
s [1zr S Y erpds o[ [ 172 Nasa

i=1j=1

[ [ 2+ o =12 =2 P22 9) V(s
for all t € [0, T'], where we define, for t > 0 and 3 € 3,

bs :=0(s,Zs), o0s:=0(s,2s), ns(3):=n(s,Zs_,3).

Due to the linear growth conditions on the coefficients, by using Young’s in-
equality, the third and fourth terms in (II.2.8) can be estimated by

t
N+wamm (11.2.9)
0

for a constant N = N(d,dy, p, Ko, K1,T). For the fourth term in (I1.2.8), we can
use Taylor’s formula to rewrite its integrand as

1
0< f (1= Op((p— 2| Ze_ [P~ Z 21+ |Z01P26,) i (5) (5) dO
0

= As(é)

where ¢;; denoted the Dirac delta symbol and where we nonnegativity stems
from the fact that, with p > 2, we have |a + bP — |b]P — p|a[P"2ab > 0. Hence,
applying Proposition I1.1.12 and using Assumptions I1.2.1 and II. 2 2 as well as
Young’s inequality, we have, with the stopping times 7,, := inf{t > 0: |Z;|? > n},
for each n > 1,

t
J f mmns(3) N(d3, ds) J f mas(3) v(d3)ds < N+N]Ef | Z, nslP ds,
0

for a constant N = N(d,d;,p, Ko, K1,T). Moreover, one can see that for each
n = 1, the second and fourth term in (I1.2.8) are local martingales, which dis-
appear after taking the expectation, using the stopping times 7,,. Hence, from

(I1.2.8) we get, for (another) constant N = N(d, dy, p, Ko, K1,T),
t
MZM#<H%P+N+NJMZM#@,
0

so that by Gronwall’s inequality and Fatou’s lemma, for a constant N’ depending
only on d, dy, p, Ko, K1 and T,

sup E|Z|P < N'E|Zy|".
t€[0,T]
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Further, for the martingale terms in (I1.2.8), by Doob’s and Young’s inequalities,

sup
0<s<t/\7—n

e 2p—2 2 1/2 ' 2p—2 2
E( 2o P @) P rids)ds) < E( )| 12 |mM4»|W@ma
0 3 0

|| [ 12tz i) Nas.ar)|

1/2

N

t
< N+NIE<J |ZTnAS]2pds> < N + NE(sup |Z,, .sP) 1/2 J | Z, nsl? ds
0

0<s<t
t
<N+ %E sup |Z,, As? + 4NIEJ | Z7 as| ds,
0<s<t 0

for a constant N = N(p, Ko, K1,T). Similarly, also for the second term in
(I1.2.9),

S t
J |Zs\p’2Z§U§j dWSj < N+ }l]E sup |Z., AsP + 4NEJ | Z7 a5l ds
0 0

0<s<t

E sup

0<s<tATh

for another constant N = N(p, Ko, K;,T). Hence, taking the supremeum on
the left and right-hand side of (I1.2.9), and the expectation, as well as using the
above estimates yields for all n > 1,

E sup |Z < N+ NE|Zy|’ + 3E sup |Z,

t<Tpn AT t<Tpn AT

for another constant N = N(d,dy,p, Ko, K1,T). Rearranging the above equa-
tions and using Fatou’s lemma yields the desired result. O
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Chapter 111

The filtering equations

In this chapter, based on the article [16], we derive the filtering equations for the
signal-observation system (1.0.2), with its coefficients satisfying the measurability
properties described in the introduction of Chapter I. More precisely, we aim to
derive an equation for the conditional distribution (P;(dx))seo,r] of X; given the
observations {Y; : s € [0, ]}, such that for real-valued Borel functions f we have

E(f(Xy){Ys,s € [0,t]}) = y f(z) P(dx), almost surely for ¢ € [0, T].

As we mentioned, there has been an immense interest in the development of
filtering theory due to its wide applicability in various disciplines, be they of
theoretical or applied nature. A vast amount of research has been done on filter-
ing of partially observed processes governed by stochastic differential equations
driven by Wiener processes, i.e., when 1 = ¢ = 0 in (1.0.2) and when Y contains
no jumps, and a quite complete nonlinear filtering theory was built up, see for
instance [11] for a historical account.

In this case it is well-known that (P;(dx))wp,r] satisfies a nonlinear stochas-
tic PDE (SPDE), often called the Kushner-Shiryayev equation in filtering the-
ory. It is also well-known that this equation can be transformed into a linear
SPDE, called Zakai equation, or Duncan-Mortensen-Zakai equation for p;(dx) =
AP (dz), the unnormalised conditional distribution, where (A;)s[o,7] is a positive
normalising stochastic process.

There exist several known methods of deriving the filtering equations for par-
tially observed diffusion processes, three prominent of which are the “innovation
method”, the “reference measure method” and a “direct approach”. The innova-
tion method is based on “innovation process” representations, (see [43] and [15]),
and the direct approach is based on suitable existence and uniqueness theorems
for stochastic PDEs (see [40]). The reference probability method is employed in
this paper, where we make use of the fact that by Girsanov’s theorem one can
introduce a new measure under which the observation o-algebra, o(Y; : s < t), is
the product g-algebra of three independent o-algebras: the o-algebra generated
by the initial observation Y, and the o-algebras generated by a Wiener process
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with the stochastic differential B(t, Z;)dt +dV;, and the Poisson random measure
Ni(dj, dt) on 31 x [0, t], respectively. This structure of the observation o-algebra
makes it possible to calculate conditional expectations of functions of the process
Z given the observations. (See, e.g., [7] for descriptions of various methods used
in filtering theory.)

Recently, also filtering for jump diffusion systems has been intensively stud-

ied, which are most often modeled as SDEs driven by Wiener processes as well as
random jump measures, a classical case of which are Poisson random measures.
In an early article thereon, [47], the filtering equations were derived for uncorre-
lated continuous observations, as well as an observation process driven only by a
jump process that has no common jumps with the signal. A similar system with
continuous uncorrelated observations has also been considered in [48]. A more
general nonlinear system with jumps in the observation process was considered
in [5]. In [2] the filtering equations for a large class of uncorrelated linear sys-
tems with jumps are derived. In [19] a very general model is considered and a
representation for optional projection of the signal process is derived. However,
due to the generality a number of additional assumptions are imposed on their
model and equations for the filtering measures are not obtained.
In [9] and [10] the authors deal with a one-dimensional jump diffusion where
observation and signal may have common jumps, by introducing a new random
measure, nonzero only for observable jumps, relying on a construction in [8].
However, they impose a finiteness condition on the support of the integrand in
front of the jump term, which translates to observing only finitely many jumps
almost surely. In such a case, the jump measure and the associated predictable
compensator, also referred to as dual predictable projection, allow for a spe-
cific decomposition, see for instance [25, Sec. XI.4]. The filtering equations
have been derived for a class of jump diffusion systems [50], later generalised
to include correlated Wiener process noises in [49], however, it seems to us that
certain important results needed for this derivation, including Lemma 3.2 in [50],
also used in [49], do not hold, for instance if one considers the case of vanishing
coefficients. A model where a correlation structure between the Lévy process
noises in signal and observation is described using copulas is used in [14] to de-
rive the Zakai equation.

In this chapter we obtain the filtering equations for a jump diffusion system
driven by correlated Wiener process noises, as well as correlated Poisson mar-
tingale measure noises. We impose common linear growth conditions. We do
not assume any non-degeneracy conditions and allow for the number of jumps in
any component of (Z;);>¢ to be infinite over finite intervals. In order to obtain
the equations, we generalise some results from filtering theory and in particular
prove a “projection theorem” for a wide class of functions.

In Section III.1 a fairly general condition for Girsanov’s transformation and
our main result are presented. In Section III.2 a projection theorem covering
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a wide class of processes is proven, and thereby in the last section the filtering
equations are derived.

Conditions and results on the existence and regularity of the filtering density
are presented in the subsequent chapters of this thesis.

We conclude by asking the reader to recall the notation presented in Section
I.1.

II1.1 Formulation of the main results

We consider on a given finite interval [0, 7] a d+d'-dimensional stochastic process
Z = (Z)iepo,;r) = (Xt, Y4)ie[o,r) carried by a complete probability space (€2, F, P),
equipped with a filtration (F;);=0 such that Fy contains the P-null sets of . We
assume that Z satisfies the stochastic differential equation (1.0.2) on the interval
[0, T], with an Fy-measurable initial value Zy = (Xo, Yp).

Besides the natural measurability conditions on the coefficients b, o, p, &, n
and B, described in the Introduction, we assume the following conditions.

Assumption ITI.1.1. (i) There are nonnegative constants Ky, K; and K,

as well as nonnegative real-valued functions 7 € Ly(3¢, Zo,1) and & €
Ls(31, Z1,11), such that

b(t, 2)|? < Ko + Kil21%, |t 2) " + |p(t, 2)* + |B(t, 2)]* < Ko + K|z,
n(t, 2,301 < (30) (Ko + Kil2[*),  [€(t, 2,50 < £(30) (Ko + K| 2]*),
|, Py <
31
for all z = (z,y) e R¥*¥ 3,€3,,i=0,1and t € [0,T], and we have
(ii)

Note that in (III.1.1) we use the convention that 0 x oo = 0, i.e., if Ky =0,
then the finiteness of the second moment of | Xj| is not required, and if K; =
K5 = 0 then Assumption I11.1.1 (ii) clearly holds.

The following moment estimate is known and can be easily proved by the
help of well-known martingale inequalities.

Remark T11.1.1. If Assumption II1.1.1(i) holds, then for every p € [1,2] and
A € Fy we have
Esup 14| 7" < N(1 + E14|Z,|") (II1.1.2)
t<T

with a constant N depending only on p, T', Ky, K, Ky and d + d'.

We make also the following assumption.
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Assumption III1.1.2. We have Ev; = 1, where

¢
Ve = exp (—JB(S X, Yy) dV, f |BSX5,Y)|2CZS>, tel0,T].
0
(I11.1.3)

This assumption implies that the measure @), defined by dQ) = v7rdP on F, is
a probability measure equivalent to P, and hence by Girsanov’s theorem under
() the process

t
v, :J B(s, X,,Y,)ds +V,, tel0,T], (111.1.4)
0

is an F;-Wiener process.
To describe the evolution of the conditional distribution P;(dx) = P(X; €
dx|Ys,s < t) for t € [0,T], we introduce the random differential operators

‘Ct = aij(m)Dij + b;(SE)D“ Mf = p;k(x)Dl + Bf(l’), k= 1727 "'7d/7

where

i &
= %Z (o al™) (@) + 3D (ol pl) (), o} (x) = o™ (¢, 2,Y7),
k=1 =1
pil(x) = p”(t,x,Yt), bi(x) = b"(t,x,Y;), Bf(a:) = Bk(t,aﬁ,Y})

forweQ,tel0,T], z=(z',..,2%) e R and D; = 0/dx', D;; = 0*/(0x'd27) for
i,j =1,2...,d. Moreover for every t € [0,T] and 3 € 3; we introduce the random
operators I and Jf defined by

d
Lo(x,3) = o(z+&(2,3).3)—p(2.3),  Jro(z,3) = ffcb(x,a)—z€§(x73)Di¢>(x,a)

(II1.1.5)
for functions ¢ = ¢(z,3) and ¢ = ¢(x,3) of z € R? and 3 € 3;, and furthermore
the random operators [;' and J;', defined as If and J§, respectively, with 7,(z, 3)
in place of & (x,3), where

gt(ajaﬁl) = f(tw/lja}/t—aﬁl)a nt(x730) = 77(15,:17,1/}_,50)

forweQ, te[0,T], ve R and 3; € 3; for i = 0,1 (Yy_ := Y;). Now we are in
the position to formulate our main result. Recall that we denote by (F} )iejo.r]
the completed filtration generated by (Y})se[o.1]-

Theorem II11.1.1. Let Assumptions II1.1.1 and II1.1.2 hold. Then there exist
measure-valued F) -adapted weakly cadlag processes (P )iefo,r) and (,ut)te[oj] such
that almost surely

Pi(p) = pe(@)/1e(1),  for allt € [0,T] and
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Py(p) = E(p(X)IF) ), (o) = Eq(v '¢(Xo)|F)  (a.s.) for each t € [0,T7,
for bounded Borel functions ¢ on R%, and for every ¢ € CZ(R?) almost surely

t

(o) =) + [ nierds s [

0

JJ ps(J0) v (ds d3+ff ps—(150) Ni(d, ds),
31 31

(M) dF + f L (26 vl ) ds

(I11.1.6)

and

t

P¢) =Py(p) + f PLyp)ds + f (P.(ME ) — P(o)Py(BY)) dVF

J J (J@) vo(dz)ds —l—J J JEp) vi(d3)ds (II1.1.7)
3o 31

; j L P (If) R(ds, ds)

for all t € [0, T, where (Vi)weqor) is given in (TII1.1.4), and the process (V;)iepo.1]
1s defined by

dV, = dV, — P,(By) dt = dV, + (By(X;) — P.(By))dt, Vy=0.

Remark 111.1.2. Clearly, V = (‘Z)te[o,T] is a continuous process, starting from
zero, and by the help of Lemma II1.3.2 below it is easy to see that it is F) -
adapted. Moreover, it is not difficult to see that V' is a martingale (under P) with
respect to (F;)s=0, with quadratic variation process [V]; = t, t € [0, T]. Hence by
Lévy’s theorem, V is an FY-Wiener process. It is called the innovation process
in the case when the observation process does not have a stochastic integral
component with respect to Poisson measures, i.e., when vy = 0. In this case it
was conjectured that (‘75)36[0715] together with Y, carry the same information as
the observation (Y)se[o,q, i-€., that the o-algebra generated by (V)[04 and Yy
coincides with the o-algebra generated by (YS)SE[W] for every t. An affirmative
result concerning this conjecture, under quite general conditions on the filtering
models (but without jump components) was proved in [31] and [26]. For our
filtering model we conjecture that (V) o, together with Y5 and {N((0, s] xT) :
s € [0,t],I" € Z;} carry the same information as the observation (Y;)seoy, if
Assumption IT1.1.1 holds and the coefficients of (I1.0.2) satisfy an appropriate
Lipschitz condition.

Remark 111.1.3. For an M-valued weakly cadlag process (14)eo,r] (in the sense
introduced in the Introduction) there is a set €2’ < Q of full probability and there
is a uniquely defined (up to indistinguishability) M-valued process (14— )e(0,1]
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such that for every w €

v (o) = ligl ve(p) for all ¢ € Cy(RY) and t € (0, T, (II1.1.8)
and for each w € ' we have v, = v, for all but at most countably many
te(0,7].

Proof. First we show that (14— )0, defined by the right-hand side of (III.1.8)
defines a measure-valued process. Since v is weakly cadlag, there exists a set
QY of full probability such that for all w € ' and ¢ € Cy = Cy(R?), the space
of continuous and compactly supported functions, the function (v4(¢))w[o,r] is
cadlag. Hence we can see that, for w € 0,

Fp)(w) := lim v, (p)(w)
defines a positive linear functional on Cy. By the Riesz-Markov-Kakutani theo-
rem, see for instance [24, Thm. D], we then know that, for each w € ', there
exists a measure, denoted by v,_(w), such that

F(p)(w) = vs_(p)(w), forall we Q and ¢ € Cy(RY).

Finally, since for each w € ' and ¢ € ®, for a countable measure determining
subset ® < Cj, we have that v,_(¢) = v4(¢p) for all but countably many ¢ € [0, T],
we conclude that also v, = v; for all but countably many ¢ € [0, T]. ]

We will prove Theorem II1.1.1 by deducing equation (II1.1.7) from equation
(II1.1.6), which we obtain by taking, under @, the conditional expectation of the
terms in the equation for v, '(X;), given the observation {Y : s < t}.

There are several known conditions ensuring that Assumption II1.1.2 is satis-
fied. For a simple proof for the well-known Novikov condition and Kazamaki con-
dition, and their generalisations we refer to Exercise 6.8.VI in [33], [34] and [38].
These conditions, are clearly satisfied if | B| is bounded, but it does not seem to
be easy to reformulate them in terms of the coefficients of the system of equa-
tions (1.0.2), if | B| is unbounded. Here we give a condition, which together with
Assumption I11.1.1(i) ensures that Assumption II1.1.2 holds.

Assumption III1.1.3. There is a constant K such that
—z'p*(t, 2)BE(t,2) < K(1+|2|?) forallte[0,T], z = (z,y) € R+,
Remark 111.1.4. Define the R@*+4)*? yalued function p by p/* := pi* for j =

1,2,....d,k=1,2,...,d and p’* :=0for j =d+1,....d+d', k=1,2,....d. Then
Assumption III.1.3 means that the “one-sided linear growth” condition

2f(t2) < K(1+[2P), te[0,T], ze R,
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holds for the R*?_valued function f = —pB, where zf denotes the standard
inner product of the vectors z, f € R¥*% . Clearly, this condition is essentially
weaker then the linear growth condition on f (in z € R**), which obviously
holds if one of the functions p and B is bounded in magnitude and the other
satisfies the linear growth condition in Assumption I11.1.1 (i).

The following theorem provides a condition under which Assumption I11.1.2
holds. A more comprehensive investigation on absolutely continuous changes of
measures associated to jump diffusion processes, including a generalisation of
the following theorem, can be found in [29].

Theorem II1.1.2. Let Assumptions I11.1.1(i) and I11.1.3 hold. Then Eyp =1,
i.e., Assumption II1.1.2 holds.

Proof. We want to prove E(y71z,<r) = P(|Zo| < R) for every constant R > 0,
since by monotone convergence it implies

E’YT = lim E(’YT]-\ZO\SR) = lim P(|Zo| < R) = 1.
R— R—

To this end we fix a constant R > 0 and set ¥, := v;1|z,<r. By [to’s formula
dy, = =y B(t, Z;) dV;,

that shows that ¥ is a local Fi-martingale. Thus Eyr,.,, = P(|Zy| < R) for
an increasing sequence (7,,)%°_; of stopping times 7, such that 7, converges to
0 as n — 00, and (Y¢ar, )tefo,r] is @ martingale for every n. Consequently, if we
can show Esup,.r9: < o, then we can use Lebesgue’s theorem on dominated
convergence to get Eyr = P(|Zy| < R). Define the stopping times

7, = inf{t € [0, T] : [¥]: = n} for integers n > 1,
where .
[l = | 7B, Z)Pds
0
Then by standard estimates, using the Davis inequality, we have

_ _11/2 _1/2 Tamm 2 .\ 2
EsupJiar, <1+ 3E[F]p., <1+ 3Esup 'thn< Y| B(t, Z)| dt)
0

t<T t<T

T
<1+ iE iETp Nenry + 5151]0 W B(t, Z,)|? dt,

which, after we subtract %E SUDPy<7 Vinr, and let n — oo, by Fatou’s lemma gives
T T
sEsupy <1+ 5EJ Y| B(t, Z)Pdt <1+ 5EJ (Ko + K| Z,|?) dt.

t<T 0 0

Since E4; < 1, to show that the right-hand side of the last inequality is finite we
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need only prove that if Ky # 0 then

sup B, Z,|* < oo. (II1.1.9)

t<T

To this end we apply Ito’s formula to U; := 74| Z;|*

(i) and III.1.3 to get

and use Assumptions I11.1.1

AU, =5, (2Xb(t, Z4) + 2V, B(t, Zy) + |o(t, Z,)]* + |p(t, Z,)” + 1) dt

—2%(Xyp(t, Z))B(t, Zy) + Vi By(t, Zo)) dt + 5 | |n(t, Ze,3) | vo(ds)dt
30

+ |16 Zu ) Pn(ds)dt + 3, | 312 v (dg)dt + dmy
31 31

with a constant N and a cadlag local martingale m starting from zero. Hence by

a standard stopping time argument and Gronwall’s inequality we get a constant
N such that
sup EUp ., < N(1 + E(12,<r|Z0]?)) < 0

t<T

for an increasing sequence of stopping times 7,, 1 c0. Letting here n — oo by
Fatou’s lemma we get (II1.1.9), which finishes the proof of the theorem. O

I111.2 Preliminaries

The following lemma is our main tool for calculating conditional expectations of
Lebesgue and It6 stochastic integrals of simple processes under @ given JFy .

Lemma IT1.2.1. Let X and Y be random variables such that E|X| < oo, E|Y| <
w and E|XY| < o0. Let G', G* and G be o-algebras of events such that G' < G,
G? is independent of G, X is G-measurable and Y is independent of Gv G2. Then
almost surely

E(XY|G' v G*) = E(X|G")EY.

Proof. The right-hand side of the above equation is a G'-measurable random
variable, hence it is obviously G! v G?-measurable. Let H denote the family of
G e G' v G? such that

EYEEX|GH1g) = E(XY1g).
Then H is a A-system, and for G = G| n G5, G; € G* we have
EYE(E(X|GY1g) = EYE(E(1¢, X[G")1g,)) = EYE(E(1¢,X|GY))Elg,
— EYE(1¢, X)Elg, = E(XY1g),
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that shows that H contains the 7-system {G; "Gy : G; € G',i = 1,2}. Hence, by
Dynkin’s monotone class lemma H = G' v G2, which completes the proof. [

To formulate a theorem on conditional expectations of Lebesgue and Ito
integrals we consider a complete filtered probability space (2, F, P, F;) carrying
independent F,-Wiener processes W¢ = (Wf)tzo and independent F;-Poisson
random measures N; = N;(d3,dt) with o-finite characteristic measures v; on
separable measurable spaces (3;, Z;) for i = 0,1, respectively. We denote by
G; the P-completion of the o-algebra generated by the events of a o-algebra
Yo © Fo together with the random variables W} and Ni((0,s] x T') for s < ¢
and I' € Z; such that v,(I') < co. The predictable o-algebras on £ x [0,7],
relative to (Fi)i=0 and (Gi)i=0 are denoted by Pr and Pg, respectively. The
optional o-algebras relative to (F;)i=o and (G;);>o are denoted by O and Og,
respectively.

The following definition will be frequently used.

Definition III.2.1. Given a probability space (€2, F, P) and a sub-c-algebra
G < F, we say that a random variable f is o-integrable (with respect to P)

relative to G, if there exists an increasing sequence (€2,,)_; such that (J, €2, = €,
Q, € Gand E|f1q, | < oo for all n.

One knows that for nonnegative random variables f and c-algebras G ¢ F
the conditional expectation E(f|G) is well-defined, and that for general random
variables f, such that E(|f||G) < oo almost surely, the extended conditional
expectation is defined as E(f*|G) — E(f|G) on the set E(|f||G) < o0, and
it is defined to be +o on E(|f||G) = . It is not difficult to show that we
have E(|f]|G) < oo almost surely if and only if f is o-integrable relative to G
(see [25, Thm. 1.17] for a proof), meaning that E(f*|G) < o0 and E(f~|G) < o
almost surely.

We consider real-valued F ® B([0, T'])-measurable F;-adapted processes f =
(fo)ieor) and g = (g)eefo,r) on £ x [0,7T], real-valued F ® B([0,T]) ® Z;-
measurable functions A% = p" (w,3) of (w,t,3) € 2x[0,T] x 3; for i =0, 1, and
a real-valued F ® B([0,T]) ® Z-measurable function h = h¢(w,3) of (w,t,3) €
Q% [0,T] x 3, such that for every ¢ € [0, T] the functions h\ and hy are F, @ Z;-
measurable and F; ® Z-measurable, respectively, for i = 0,1, where (3, Z) is a
separable measurable space, equipped with a o-finite measure v. Assume that
almost surely

T 1/2 . s
e N B (N R D A
° 0 J3i
(I1.2.1)

T T
G e f go|ds < o0, Him f f Iha(3)| w(d3)ds < o0 (II1.2.2)
0 0 J3
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for ¢ = 0,1. Then the processes

¢ t
Qg o= J gsds, 0y := f f hs(3) v(dz)ds, te[0,T],
3

0 0

and

t
B = f fodWE, f f K9 () Ny(dz, ds), te[0,T], (111.2.3)
0 i

are well-defined for ¢ = 0, 1, and we have the following theorem.

Theorem II1.2.2. Assume the random variables F", G, H and |HW|? for i =
0,1, for some r > 1 are o-integrable (with respect to P) relative to Gy and that
for every G;-stopping time T < T, 3 € 3 and 3; € 3; (i = 0,1) the random
variables fr, gr, h-(3), hg)(g,i) (i = 0,1) are o-integrable relative to Gy. Then
for t € [0,T] we have

MiG,) = ffsdwl G, =0, (ITL.2.4)
E(cu|G:) =J gsds, TE(8]G,) = L th(g)y(dg,)ds, (I11.2.5)
G = f J h(3) Ny(ds, ds), E(6”|G,) =0 (I11.2.6)

31

almost surely for some Pg-measurable functions f and g on Qx[0,T], a Pe®Z; -
measurable function h! on Q x [0,T] x 31, and a Pg ® Z-measurable function h
on Q x [0,T] x 3 such that

=E(fi|G), g =E(%|G) (as.) for dt-a.e. te[0,T], (I11.2.7)

]Azgl) (h(l)( )|G:)  (a.s.) for dt @ vi-a.e. (t,3) € [0,T] x 31, (II1.2.8)
he = E(h(3)|Ge)  (as.) for dt @ v-a.e. (t,3) € [0,T] x 3. (I11.2.9)

Proof. Since F" is o-integrable with respect to Gy, there is an increasing sequence
Q,, € Gy such that Ule Q, =Q and E(1g, F") < oo for every integer n > 1. By
the definition and elementary properties of (extended) conditional expectations

and stochastic integrals, we have
t .
Gi) (] 0. ramfa)
0

JE(flG) = E(Le, filGy), te[0,T]

for i = 0,1 and every n > 1. Thus, taking 1g, f in place of f, we may assume
that EF" < co. Similarly, we may also assume that EG, EH and E|H®|? are

1QHE< fo t fodWi

) =& (10, [ £,
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finite in what follows below. Assume first that f belongs to Hg, the set of simple
processes of the form

k—1
ft = Z fiﬂ(ti,ti+1] (t)a (IIIQlO)
i=0
where 0 = tg < --- <ty =T are deterministic time instants, and &; is a bounded

Fi,-measurable random variable for every ¢ = 0,1, ...,k — 1 for an integer k£ > 1.
Then we have

E(Ltfdesl

For 0 < r < s < T define the o-algebra

gt> = NE&WE,,  ~ Wh|G), forte[0,T]. (IL2.11)

Grs=a(W=WI N(T x (u,0]): r<u<ov<s,leZ,ul) <o)
Then o-algebras G, and G, s are independent and G, = G, v G, ;. Thus, using
Lemma I11.2.1 with X := &, YV := 1, G' := G,,, G := F;, and G* := G, ; for
t; < s <T, we have

E(&|Gs) = E(&Gy,) fori=0,1,2,...,k— 1. (I11.2.12)
Hence for t; < s <t;y1 <t <T,
E(6 (W, ~W})

and for t; <s <t <T,

Gi) = E(&[G) (W,

tit1

~ W) = E(&|G) (WL, —W}) (I11.2.13)

E(fj(th - thjﬂgt) = E(fj‘gt)(wtl - thj) = E(ﬁj\gs)(th - Wti) (II1.2.14)

Consequently, defining f, = E(&]|G,) = E(f,|Gs) for s € (t;, ti1],i = 0,1, ..., k—1,
the function f on Q x [0,7] is Pg-measurable, and using (II1.2.11) we can see
that the first equation in (II1.2.4) holds. Assume now that f is F ® B([0,T])-
measurable and F;-adapted such that EF™ < oo. Then there are sequences

(fm)*_, and (f™)%_, such that f" e Hy, f" is Pg-measurable,

T r/2
lim E U |fi — f:|2dt> =0, (I11.2.15)
n—0o0 0
and almost surely

¢
gt) = J frdwl = I(f") for all t € [0,T],
0

) (I111.2.16)
fr=E(f|G,) for dt-ae. te[0,T] (111.2.17)

B(IG) = B( [ fraw]

for all n > 1. Using the Davis inequality, Doob’s inequality, Jensen’s and
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Burkholder’s inequalities for any » > 1 we have

T 1/2
E( | |f?—f?|2dt> < 3Esup [L(f" — )
0

t<T

=3E sup [E(L(f" - f™)|G)| <3E sup (E(sug [L(f" = f™)1G)

te[0,T]nQ te[0,T]nQ s<

r 1/r T r/2\ YT
<32 (Bsuplns - 1) <N(E(j g7 - g ) ,
r—1 t<T 0

where Q is the set of rational numbers and N = N(r) is a constant, which gives

T 1/2
lim E (f \f = ftm|2 dt) = 0.
n,m—0o0 0

Thus there exists a Pg-measurable function fon Qx [0, T], such that

T 1/2
lim E <J |fe — ft”\2dt) =0, (I11.2.18)
n—0o0 0
which implies R A
lim E sup [L,(f) — L(f™")] = 0. (I11.2.19)

n=%0  ¢e[0,T]

Using Jensen’s and Davis’ inequalities again we have

E[E(1(f)|G:) — E(L(f")G)] < BE(|L(f — f)IG)

T 1/2
~ B - <8 ([ - ipa)  torevery ce0.7)
0
ie., forn — o
E(L(fM)|G) — E(L(f)|G) in Li(Q) for every t€ [0,T].  (IT1.2.20)

Thus letting n — oo in equation (II1.2.16), by virtue of (II11.2.19) and (II1.2.20)
we get the first equation in (II1.2.4). Clearly, (II1.2.15) and (II1.2.18) imply

T
i | BIf,— f71 + Bl - e = o
n— 0

Hence there is a subsequence n; — o and a set S € B([0,7]) of Lebesgue
measure 0 such that for n; — oo,

I — fyand a f" — f, in L1(Q) for each t e [0, T]\S =: S¢,

and taking into account (II1.2.17), we can assume that S is a dt-zero set such
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that we also have f = E(f|G,) (as.) for every t € S¢. Thus for n; — o we
have E(f;"|G;) — E(f:|G:) in L1(2) for each t € S¢, which gives

fi = E(f|G)) almost surely for every ¢ € S°,

i.e., the first equation in (II1.2.7) holds. To prove the second equation in (I11.2.4)
we note that for & from the expression (I11.2.10) we have

E(&(thﬂm - th) gt) = E(§i|gti)E(Wt?+1/\t - th) =0 forie=1,2,...,N—1,
(I11.2.21)
by using Lemma I11.2.1 with X =¢&,, Y = thﬂ,\t — I/Vt?_At Gt:=G,cF. =G

and G% := G, for t; < t. Hence we get the second equation in (II1.2.4) for f
given in (I11.2.10), and the general case follows by approximation as above. To
prove the first equation in (I11.2.5) assume that g is given by the right-hand side
of (II1.2.10). Then using (II1.2.12) we can see that

k-1

g = Z E(fi‘gti>]‘(ti,ti+1](t) = E(gt‘gt)a le [O,T],
=0

and that the first equation in (II1.2.5) and the second equation in (II1.2.7) hold.
Assume now that g is an F ® B([0, T])-measurable F;-adapted random process
such that EG < oo. Then there are sequences (¢")7_, and (§")r_, such that
g" € Ho, " is Pg-measurable,

T
lim ]Ef |l9e — g¢'| dt = 0,
0

n—o0

and almost surely

t t
E(f grds gt) :J §ds for all ¢ € [0, 77,

0 0
g7 = E(g/'|G:) for dt-a.e. t € [0,T].
Hence noting that by Tonelli’s theorem and Jensen’s inequality

T T
Ef G — gl de = f E[E(}|G:) — E(g"|G)] dt
0

0

T T
< | EE(gr - grlg)dt—E | g - gl ar
0 0

and repeating previous arguments we get a Pr-measurable ¢ such that the first
equation in (II1.2.5) and the second equation in (III.2.7) hold. To prove the
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second equation in (II1.2.5) we assume first that

h(3) = Z Eil(t, 151 (8,3), (I11.2.22)
i=0

for a partition 0 < ¢ty < t; < ... <t = T of [0,T], bounded F;,-measurable
random variables &; and sets I'; € Z, v(I';) < o for i = 0,...,k — 1. Then

” v(ds) ds

Thus, since by virtue of (I11.2.12) we have

Qt> ZEgZygt L)t At —tint), tel0,T].

k—1

= Z E(§i|gti)1(ti:ti+1](t)]‘ri (3) = E(ht(3)|gt)v te [OvT]v S 37
=0

for h the second equation in (I11.2.5) and by definition (II.2.9) hold. Hence we
can get these equations in the general case by a straightforward approximation
procedure in the same way as the first equation in (II1.2.5) and the second
equation in (II1.2.7) have been proved above.

Now we are going to prove (I11.2.6). Assume first that h(") is a simple func-
tion, given by the right-hand side of equation (I11.2.22) with I'; € 27, 14 (T';) < o0,
i=0,1,...,k — 1. Then

f f 1 Nl dj dS
31

In the same way as equations (II1.2.13) and (II1.2.14) are obtained, by using
(IT1.2.12) we get

gt) Z]E GNL(TS x (At A E])|GL).

E (&N (Tix (ti,ti41])|Ge) = B(&1Ge, )Ny (T % (t3, ti1]) = E(&1Ga) Ny (T % (£, ti41])
for t; < s <t;y1 <t, and

E(&N:(T5 % (t5,1])]Ge) = E(&1Ge, )Ni(L; x (1, 1]) = E(&|G)N1(T; x (t,1])

for t; < s <t <tj;;. Thus for

WD) = 3 BE1G ) L v r (4:3) = E()1G0),

equations in (I11.2.6) and (II1.2.8) hold. Assume now that AV is FQB([0,T])®

Z-measurable such that for every t € [0, T'] the function hY is F,®2Zi-measurable
and E|HW|? < oo, where HW is defined in (II1.2.1). Then there exist sequences
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(h™)%_, and (h™)*_,, such that h" is a simple function of the form (II1.2.22), h"
is a Pg ® Z;-measurable function,

016 = B( [ [ 12060 tds, ) = [ [ ) 30505,

) (I11.2.23)
hi(3) = E(h(3)|G:), almost surely, for v1(d3) ® dt-a.e. (3,t) € 3; x [0,T7],
(I11.2.24)
for every n > 1, and
T
lim E J RO (3) — B2(3)[2 0 (d3) dt = 0. (I11.2.25)
n—aoo 0 31

Hence using Jensen’s inequality we get

lim EJ f W2 (3) — hi"(3)|? va(d)dt = 0,
n,Mm—>00 3
which implies the existence of a Pg ® Z;-measurable function h® such that
lim EJ f 1KV 3) = B2 G| v (dg) dt = 0. (111.2.26)
n—:00 31

Thus letting n — oo in (I11.2.23) we obtain (I11.2.6). By virtue of (I11.2.25) and
(II1.2.26) there is a subsequence n; — 0 and a set A € B([0,7]) ® Z; such that
dt ® v1(A) = 0 and for n; — o

~

hi'(3) — hgl)(g) and A (3) — hgl)(g) in mean square
for every (¢,3) € A°:=[0,7T] x 3;\A. Consequently,
E(hi*(3)|G:) — IE( ( )|G:) in mean square for every (3,t) € A,

and letting n := n; — oo in (I11.2.24) we obtain E(hV (3 )G = WY ;) for
(3,t) € A°, which proves (II1.2.8). To prove the second equation in (III.2.6)
assume first that h(®) is a simple function of the form (II1.2.22) with I'; € Z,
vo(Ti) <o fori=0,1,..k—1. Just like (II1.2.21) is obtained, by Lemma I11.2.1
we get

E(gzNO(Pz X (tz AN t,tz‘_;,_l AN t])|(]t) = E(€Z|gtl>E]\Nfo(Fl X (tz AN t,ti_,_l A t]) =0

fori=0,1,...,k—1 and t € [0,T], that implies the second equation in (I11.2.6).
Hence, we obtain the second equation in (II1.2.6) for Or-measurable functions
satisfying (I11.2.1) by approximation with simple functions. ]

We can reformulate the above theorem by using the notion of optional pro-
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jections of processes with respect to a given filtration. It is well-known (see for
instance [25, Thm 5.1], [13, Thm 2.43]) that if f = (f;)t«o,r7 is a B([0,T]) ® F-
measurable process such that f. is o-integrable (with respect to a probability
measure P) relative to the o-algebra G, for every G;-stopping time 7 < T (with
respect to a P-complete filtration (G;)se[o,r7), then there exists a unique (up to
evanescence) Gi-optional process °f = (°f;)sc[0,7] such that for every G;-stopping
time 7 < T

E(f:G-) =°f; (as.).

The process °f is called the optional projection of f (under P with respect to
(Gt)tefo,r])- If f is a cadlag process such that almost surely sup,|f:| < 7 for
some o-integrable random variable n with respect to P relative to Gy, then al-
most surely the trajectories of °f have left and right limits at every ¢t € (0,7] and
[0,T), respectively, and moreover, they are also almost surely right-continuous
if (Gt)iefo,r] is right-continuous. Notice that for every ¢ € [0,7] and process f,
such that f, is o-integrable relative to G, for every G;-stopping time 7 < T,
the extended conditional expectations E(f;"|G;) and E(f; |G;) are almost surely
equal to f;7) and % f;), respectively. Let h = (hy(3)) be an F ® B([0,T]) ® Z-
measurable function on Q x [0, 7] x 3 such that for every G;-stopping time 7 < T
and 3 € 3 the random variable h,(3) is o-integrable relative to G,. Then by the
help of the Monotone Class Theorem it is not difficult to show the existence of
an Og® Z-measurable function, which for each fixed 3 € 3 gives the (possibly ex-
tended) Og-optional projection of h(3) := (h¢(3))we[o,r;- We denote this function
by %, and call it the (extended) Og-optional projection of h.

Corollary II1.2.3. Assume the random variables F, H® and G, H, defined in
(II1.2.1) and (I11.2.2), respectively, are o-integrable relative to Gy fori = 0,1 and
that for every G;-stopping time 7 < T, 3 € 3 and 3; € 3; (i = 0,1) the random
variables fr, g-, h+(3), pt (3:) (1 =0,1) are o-integrable relative to Gy. Assume
moreover that almost surely

T T .
J °f,|2dt < oo, f DG vi(dz)dt < o0 fori=0,1,  (IIL2.27)
0 0 J3

where °f and WY are the (extended) Og-optional projections of f and h\¥, re-
spectively. Then for every t € [0,T] equations (111.2.4), (II1.2.5) and (I11.2.6)
hold almost surely with the Og-optional projections °f, °g, h @ and % in place
of f g, KD and h, respectively, for 1 = 0,1. Moreover, there is a dt-null set
To < [0, T], a dt®uvy-null set By < [0,T]x 31 and a dt®v-null set B < [0,T]x 3,
such that

(i) for each t € [0, T|\Ty the random variable |f;| + |g:| is o-integrable relative
to Gy and

E(f:|G:) =°fi € R, (a.s.), E(g:|G:) = g, € R (a.s.), (I11.2.28)
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(ii) for each (t,3) € [0,T] x 31\Bo the random variable |h§1)(3)| is o-integrable
relative to Gy and

EhMNG)IG) = 1V (G) e R (as.), (111.2.29)

(iii) for each (t,3) € [0,T] x 3\B the random variable |h,(3)| is o-integrable
relative to Gy, and

E(h,(3)|G,) = %hi(3) € R (a.5.). (111.2.30)

Proof. Just like in the proof of the previous lemma without loss of generality we
may and will assume that F, G, H and H®, i = 0,1, have finite expectation.
Thus by Minkowski’s inequality and Tonelli’s theorem we have

(LT(E\ftDZ dt> " <E (LT |ft|2dt> " < 0, JOTE\gt| dt = IEJOT lg¢| dt < o0,
LTL]E\ht(zN v(ds) dt = ELTL |he(3)| v(d3) dt < o0
([ [ eemnae) <e([ [ momaa) <=

Therefore E| f;| + E|g;| < oo for dt-almost every t € [0, T], E|h(3)| < oo for dtQv-
ae. (t,3) € [0,T] x 3, and E|A" (3)| < o for dt @ vi-ace. (t,3) € [0,T] x 31, i.e.,
we get (I11.2.28), (I11.2.29) and (II1.2.30). Hence due to (II1.2.7) and (II1.2.9)
we have (I11.2.5) with % and % in place of § and h, respectively. We also have
(I11.2.4) and (II1.2.6) with °f and () in place of f and h(), provided F" and
|H®)|? are g-integrable relative to Gy for i = 0, 1 for some r > 1. Thus it remains
to prove (I11.2.4) and (I11.2.6) with °f and (") in place of f and h(V, respectively,
under the condition that F' and H® are o-integrable relative to Gy for i = 0,1,
and (III1.2.27) holds. We show only (II1.2.6) under these conditions, because
(I11.2.4) can be proven similarly. To this end define AV" = 13.(—n v () A n)
for integers n > 1, where (3™)%_; is an increasing sequence of sets 3" € Z; such
that U 3" = 31 and 11 (3"™) < oo for every n = 1. Then for each ¢ € [0, T]

DG, = J Ll 3) Ni(dz,ds) (as.), (I11.2.31)

where §()" is defined as 6 in (I11.2.3), but with A" in place of h(Y). Note
that

|| < || P ® dt ® vi-almost every (w,t,3) € Q x [0,T] x 31,
and for n — we have "hgl)n(g,) — M (3) almost surely for every (s,3) € [0,T] % 31
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such that %" (3) # oo. Hence due to condition (II1.2.27), by Lebesgue’s theorem
on dominated convergence we have

T
f B (3) — B (3)12 v (d3)dt — 0 (as.) as n — o,
31

which implies

J f A" (3) Ny (dj, ds) — f J h{M(3) Ny(d3, ds) (111.2.32)
31 31

in probability, uniformly in ¢ € [0,7]. Using obvious properties of conditional
expectations, by Davis’ inequality and Lebesgue’s theorem on dominated con-
vergence we get

lim E[E(5""|G,) — E(5"|G,)| < lim E|g;"" — 5"

n—oo

T 1/2
<3mnE(f m@ww—hwewum%mﬁ

n—0o0 0 31

which by virtue of (II1.2.31) and (II1.2.32) finishes the proof of the first equation
n (II1.2.6). The second equation in (II1.2.6) can be obtained similarly. O

Remark 111.2.1. We have that almost surely
Jo , 19 (3)[2 vi(d3) ds < Jo O(\hgl)]i(m) ds (as.) fori=0,1,
for all ¢ € [0, T]. Thus
T .
y)dt < oo (a.s.) for 2 =0, 2.
Uh12,5,) d f 1 I11.2.33
0

implies the assumption on A® in (II1.2.27).

Proof. Let i € {0, 1} be fixed and let (A,)¥_; be an increasing sequence of sets
from 3; such that U*_; A, = 3; and v;(A,) < oo for every n = 1. Set

" (3) == (—n) v (La, 7" () A n.

Then by Jensen’s inequality for the optional projections we have |°h%"(3)
°(lhim(3)|?) for every 3 € 3;, and by an application of Corollary I11.2.3 we obtain

)

? <

([ prin@ P s < [ [ a6 wids)ds
A[):ﬁi J;)fz
~ ([ [ mrwp e
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t

t
- | cm s ds < | (W) ds

0

Letting here n — oo and using the Monotone Convergence Theorem and the
properties of extended optional projections on the left-hand side of the first
inequality, we finish the proof of the remark. O]

Let P(R?) be the space of of probability measures on the Borel sets of R?,
equipped with the topology of weak convergence of measures. Recall that Cy,(R?)
denotes the space of bounded continuous real functions on R¢, and as before, let
(3, Z) be a separable measurable space.

Lemma II1.2.4. Let (2, F, P) be a complete probability space equipped with a
right-continuous filtration (Gy)i=0, G < F for t = 0, such that Gy contains all
P-zero sets of F. Let (X;)i=0 be an Ri*-valued F @ B(R.)-measurable cadlag
process. Then the following statements hold.

(i) There is a P(R?)-valued weakly cadlag process (P,)i=o such that for every
bounded real-valued Borel function ¢ on RY and for each t = 0

Pp) = E(p(X))IG) (a.s.). (I11.2.34)

(ii) Let (P;)i=o be the measure-valued process from (i). Assume f = f(w,t,3,x)
is a Og®ZQB(RY)-measurable real function on QxR x 3 x R? such that
for every finite G;-stopping time T and (x,3) € R? x 3 the random variable
f-(x,3) is o-integrable relative to G,. Define

SRd f(t>57$) Pt(dx)v fOT (t>w>3)7 Zf S]Rd |f(t’5>$)| Pt(d$) < ©
o elsewhere.

Pt(f(t>3>) = {

Then P,(f(t,3)) is an Og ® Z-measurable (extended) function of (w,t,3)
such that

E(f(t,3, X)|G:) = P(f(t,3)) (a.s.) for each (t,3) € Ry x 3. (111.2.35)

Proof. Statement (i) is shown in [52]. Thus (ii) holds if f = g(¢,3)p(x) for
bounded Og ® Z-measurable functions g on Q x R, x 3 and bounded Borel
functions ¢ on R?. Hence by a standard monotone class argument we get (ii)
under the additional assumption that f is bounded. In the general case, the set

Ac Q xR, x 3 where

| st olpide) =
Rd
is in Og ® Z. Consequently, P.(f(t,3)) is Og ® Z-measurable in (w,t,3). We
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have

B(f (.5, X0] A 0lG) = [ 15(t5,0) AnP(dn) (as)

for every integer n > 1. Letting here n — o we get

E(|f(t 5, X)lG:) = fRd |[f(t,5,2) P(dx)  (as.), (II1.2.36)

that implies (I11.2.35). Since f(to, 30, Xt,) is o-integrable relative to Gy, there is
an increasing sequence (£2,)*_; such that Q, € G;,, P(u¥_,Q,) = 1, and

1Qn f f(t07507$) Pto(dx) = ]E(]-ann(t()aj()a Xt0)|gt())
R4

is almost surely finite for every n > 1. m

Corollary IIL.2.5. Let (2, F, P, (Gi)e=0) and (Xi)w[or) be a filtered probability
space and a stochastic process, respectively, satisfying the conditions in Lemma
II1.2.4. Let (Fy)i=o0 be a filtration such that G, < F, < F fort = 0. Let Q) be
a probability measure on F such that dQQ = ~ypdP for a Fr-measurable positive
random variable vr. Then the following statements hold.

(i) There is an M(R?)-valued weakly cadlag stochastic process (p)iwefo] Such
that for every bounded real-valued Borel function ¢ on R? and for every
e [0,T]

1(0) = Eo(vr'e(X0)|Gr) = Eo(v, 'o(X1)IGh) (a.s.). (T11.2.37)

(ii) Let f = f(w,t,3,7) be a Og @ Z ® B(R?)-measurable real function on
O x[0,T] x 3 xR such that for every finite G-stopping time T and (z,3) €
R? x 3 the random variable f.(x,3) is o-integrable relative to G.. Define

pe(f(t,3)) == {SW (t,3,%) wu(dz), for (t,w,3), if Spa lF(t,3,2)| p(dr) < oo

o0 elsewhere.

Then p:(f(t,3)) is a Og ® Z-measurable function such that for each (t,3)
we have

EQ(W;lf(taﬁa Xt)’gt) = EQ(’Yt_lf(tvza Xt>|gt> = ,ut(f(tvé)) (CL.S.).
(111.2.38)

Proof. Considering (F;4 )¢>o in place of (F;);=0 we may assume in the proof that
(Fi)i=0 is right-continuous. By Doob’s theorem there is a cadlag F;-martingale,
(V¢)te[o,r], such that v = Ep(yr|F;) (P-a.s) for each t € [0,T]. Clearly, almost
surely v > 0 for all ¢ € [0, T] since

0=Ep(l,-0%) =Ep(1,-077)

39



implies P(y, = 0) = 0 for every ¢ € [0,T]. Thus (v, )07 is a cadlag process,
and it is an F;-martingale under (), because

EQ(VFLE) = 1/Ep(yr|F:) =~ ' almost surely for ¢ € [0, T].

Since, ¥ = (7)we[o,r] is a (cadlag) Fi-martingale under P, the set {v,} for F;-
stopping times 7 < T is uniformly P-integrable, and hence one knows that %y,
the G;-optional projection of v under P, is a cadlag process. Due to v > 0, we
have % > 0 (a.s.). Define y; := (%) ' P, for t € [0,T], where (P,)sefo.r] is the
P(R%)-valued G;-adapted cadlag process (in the topology of weak convergence of
measures) by Lemma I11.2.4. Hence, (pt)wpo,r) is a Gi-adapted cadlag M(R?)-
valued process, and by (II1.2.34) for every bounded Borel function ¢ on R? we
have

Eo (7' 0(X1)|Gr) = Ep(0(X1)|Gi)/Ep(vr]Gr)
= Ep(e(X0)|G) ()" = (") ' Pu¢) = () (as) for each ¢ € [0,T7].

On the other hand, by well-known properties of conditional expectations
Eq(v7'0(X0)|Gr) = Eq(Eq(v7 (X0 F:)|Ge)

= Eo(p(X))Eq(v7 ' |F)|G:) = Eqlvy 'o(X0))|G),

which completes the proof of (i). To prove (ii), note that the function u(f(¢,3))
is Og ® Z-measurable in (w,t,3), and by (II1.2.35) for each (¢,3) almost surely

pe(f(t,3) = () P(f(8,3)) = E((%) ' f(t,5. X0)|Ge)

= Eq(vr (%) f(t,3, X0)1G) /Eq (v ' 1Ge) = Eq(vz' (%n) ™" f(t,3, X0)|Ge) e
= Eo(vr ' f(t,3, X0)|Ge) = Eq(v, ' f(t,3, X0)|Ge),

where the last equation holds because y~! is an F;-martingale under Q. We finish
the proof with the obvious observation that ,%1 f(to, 30, X4,) is o-integrable with
respect to @ relative to Gy, if f(to, 30, Xy,) i o-integrable with respect to P
relative to Gy, . O]

I1I11.3 Proof of Theorem III.1.1

Recall that by Assumption II1.1.2 the measure @), defined by d@) = ~yrdP is
a probability measure, equivalent to P, and by Girsanov’s theorem under )
the process (Wi, Vi)icpo.r], Where (Vi)iciory is defined by (IIL1.4), is a d; + d-
dimensional F;-Wiener process. Moreover, under @ the random measures N,
and N; remain independent F;-Poisson martingale measures, with characteristic
measures vy and vy, respectively, see e.g. [45, Sec. 1.3] for a proof. Clearly,
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(V¢ )tefo,r] is an Fy-martingale under P. By It6’s formula
dy; ' = By(Xy) AV, (II1.3.1)

the process v~1 = (v, 1)te[0,T] is an Fi-local martingale under ). Hence, taking
into account Eqgvy, ' =1, we get that y~! is an F;-martingale under Q. Thus the
Bayes formula for bounded Borel functions ¢ on R? gives

v Bl (X)F) | Eolile(X)|FY)
BV = =5 0r 7))~ Eoti 17Y)

(a.s.),  (IIL.3.2)

often also referred as Kallianpur-Striebel formula in the literature. Using V we
can rewrite system (1.0.2) in the form

dXt :b<t, Zt> dt + O'(t, Zt) th + p(t, Zt) d‘/;g

¥ j 0t Zoe.3) No(ds,dt) + | €(t, Zo,3) Wu(ds, do),
30 31

dY; =dV; + f 3 Ny (dt, d3), (I11.3.3)
31

which shows, in particular, that (Y}).eo,r] is a Lévy process under @, and hence it
is well-known that the filtration (F})sepo,r) is right-continuous. Thus we can ap-
ply Lemma III.2.4 and Corollary II1.2.5 with the unobservable process (X¢)sefo,r]
and the filtration (Gy)seor] = (F})tefo,r) to have a P-valued and M-valued weakly
cadlag F, -adapted processes P;(dx) and u,(dx), respectively, such that for every
bounded Borel function ¢ on R? for each t € [0,7] we have

Pi(p) = E(o(X)|IF)),  m(p) = Eq(vy 'e(X)|F) (as.),

and by (II1.3.2) it follows that almost surely P, = p;/p:(1) for all ¢ € [0,T]. To
get an equation for du () for sufficiently smooth functions we calculate first the
stochastic differential d(v; ' o(X;)).

Proposition I11.3.1. Let ¢ € CZ(RY). Then for the stochastic differential of
v Y o(X,) we have

d(v; ' e(Xh)) =7, Lop(Xy) dt + v, Mip(Xy) dVY + 4,7 o (X)) Dip(X,) dWE

oy L I7o(Xos) No(ds, dt) + 77 Lffm_)mda,dt)
0 1

+ f Jlo(Xy) vo(dz) dt + v, J JEo(X,) vi(d3) dt.
3o 31
(II1.3.4)
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Proof. By Itd’s formula, see for example in [1] or [27], for ¢ € CZ(R?) we have
do(X;) = (Et@(Xt) P;ZBI(Xt) (Xt>) dt
+ oM (Xy) Dip(Xy) AW} + pil (X)) Disp(Xy) AV}

+J I'o(X,) No(dt, ds) f Iio(Xe-) Ni(dt, dj)

30

b e st + | e mids)dr
30 31

where we use the notations introduced before the formulation of Theorem III.1.1.
Hence using (II1.3.1) and the stochastic differential rule for products,

d(v; "o(Xy)) = v de(Xy) + o( X)) dy '+ dryy tdp(X),

where

dy; M do(Xy) = v pf Bi(Xe) Dip(Xy) dt,
we obtain (I11.3.4). O

To calculate the conditional expectation (under @) of the terms in the equa-
tion for v, 'p(X;), given FY', we describe below the structure of 7. For each

t = 0 we denote by F the P-completion of the o-algebra generated by the
random variables N;((0,s] x I') for s € (0,¢] and I" € Z; such that 14 (I") < co.

Lemma I11.3.2. For every t € [0,T] we have
F =R v v EN

where FY v EV Vv ENl denotes the P-completion of the smallest o-algebra con-
taining Fy , FY and F".
Proof. From (II1.3.3) it immediately follows that

FYcF v F v FN
To prove the reversed inclusion, we claim
NY((0,t] x A) = N1((0,t] x A) almost surely for all te [0,7]  (II1.3.5)

for every A € Z,, where NV is the measure of jumps for the process Y. Clearly,
NY(dz,dt) = NM(d3,dt), where NM is the measure of jumps for the process

t
Mt:f f 3N1(d57dt)7 t =0,
0 J31

16 NY((0,t] x A) = Z 14(AY;) = Z 14(AM,) A€ Z.

O<s<t O<s<t
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To show (I11.3.5) let A = Ay be a set from Z; such that v4(Ay) < 0. Then

t
MtAO = f f 3N1(d3,d8) = Z psle(ps) _tj
0 JAp

0<s<t A

3vi(d3),
0

where (pt)te[O,T] is the Poisson point process associated with N;. Hence for
NO(dj3, dt), the measure of jumps of the process M, we have that almost surely

NO((0,t] x Ag) = N1((0,¢] x Ag) for all £ € [0, T]. (111.3.6)

It is not difficult to see that N°((0,¢] x Ag) = NM((0,¢] x Ap). Hence (I11.3.5)
for A = Ay follows.

Since vy is o-finite, for an arbitrary B € Z; there is a sequence (B,)r_; of
disjoint sets B, € Z; such that B = | J;_, B, and v4(B,) < o for each n > 1.
Thus for each integer n = 1 we have (I11.3.5) with B,, in place of A, and summing
this up over n > 1 and using the o-additivity of N¥ and N; we obtain (II1.3.5)
with B in place of A. Noting that F) contains the o-algebra generated by
NY((0,s] x B) for each s < t and B € Z, we see that F} > F'. Clearly,
FY o FY, and taking into account

t
Y;—Yo—ff 3 Ni(d3,ds) =V, forte|0,T],
0 J31

we get FY o FY. Consequently,
FYoF v F v FY,
that completes the proof. O

The above lemma is an essential tool in obtaining the filtering equations. A
similar lemma in a more general setting in some directions is presented in [50]
and [49] to obtain the filtering equations for the model considered in these papers.
It seems to us, however, that this lemma, Lemma 3.2 in [50], used as well in [49,
p.4], may not hold under the general conditions formulated in these papers,
since it is not true in the simple case of vanishing coefficients in front of the
random measures in the observation process. It is worth noticing that when
instead of the integrand 3 a stochastic integrand depending on 7, = (X;,Y;)
is considered in the observation process Y, the integral of such a term against
a Poisson random measure may fail to be a Lévy process, as it may not have
independent increments, which is a crucial property for the filtration generated
by the observation.

Now we are going to get an equation for u(y) by noting that by Proposition
I11.3.1 we have

Y o(Xe) = 9(Xo) +ar o} + oy + B+ B +0)+6, telo,T], (IL3.7)
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where

oy = Jt Vs Lap(X,) ds,

fJ%W" ) vo(dz)d JJ%Wﬁ ) v (d3)ds,
30 3

80 = j 2 Lo (X ) Dip(X,) dWE, Bl = j VT MLp(X,) T

Jf%m ) Ro(ds, ds), Jf%ﬁ%m Ny(d3, ds),
30 3

for ¢ € CZ(R?). We want to take the conditional expectation of both sides of
equation (I11.3.7) for each t € [0,T], under @, given FY. In order to apply
Corollary II1.2.3, we should verify that the random variables

T
G:JKWM&M&

0

jL%lw )l vo(ds) d fﬁv X)) (d3) ds.

PO = ([ aeapieegpas) R ([ S )

T 1/2
HO = (| e P tdis)
0 0

T 1/2
no = (| L 12 15X ) v (dg)ds
0 1

are o-integrable with respect to @Q relative to Fy , and that (II1.2.27) holds for
QF( in place of °f, and for ®h) in place of %, where @f©) QF1) CpO) and
@n(V) are the FY -optional projection under @Q of

fk(o) = (%ﬁ_lgék(XS)DZ'QD(XS))SE[O,T]a fl(l) = (7;1M2¢(X5)>SE[O,T]>

hO) = (’7;1[;790(X57>)se[0,T] and A = (Vgllg(p(Xsf>>s€[0,T]7

respectively for each fixed k = 1,2,...,d; and [ = 1,...,d". For a fixed integer
n=1lletQ, ={weQ: Yy <n}. Then due to Assumption II1.1.1, the
martingale property of (v¢)w[o,r] and (IIL.1.2) we have

T
EQ(lQnG) < NE(”}/TJ ’y;l(Ko + Kllgn‘Zt| + KQlQn|Zt’2) dt)
0

T
= NJ E(yry; YKo + Kilq,|Z,| + Kylq, | Z,%) dt
0
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T
_ Nf E(Ko + Kilo, | 7] + Kol |Z[2) dt
0

< N'(Ky + K\E|Xo| + K1E(1q, |Yo]) + KoE|Xo > + KoE(1g, [Yo]?)) < o

with constants N and N’, which shows that G is o-integrable with respect to @Q
relative to Fy . Similarly, using the estimate

[Tp(X0)| < sup | Digep(w) s (X[l (X)l,

xeR4

we get

Eg(1a, G f flgnm )| vo(ds)ds
30

Nf f Lo [n(5, Zer 3)[2 vo(d3) ds < N’f (Ko + Kylo, | Z:[?) ds < o
30 0

with constants N and N'. In the same way we get Eg(1g, GV) < 00. To prove
that F() and H® are o-integrable (with respect to Q) relative to F , we claim
first that

A, :=Eglq, supy, ' <o for every integer n > 1. (IIL.3.8)
t<T

To prove this we repeat a method used in proof of Theorem II1.1.2. From (I11.3.1)
by using the Davis inequality and then Young’s inequality we get

T ATy 1/2
EQ]-Q sup PYt/\Tk 1+ 3E (J ]-Q Yt 2|B(t Zt)’2 dt)
te[0,T] 0

T
<1+ {Eola, sup 5k, + 58 | a5 B( Z) d
te[0,T] 0

for stopping times
7, = inf{t € [0,T] : ;' =k}, for integers k > 1

Rearranging this inequality and then letting £ — oo by Fatou’s lemma we obtain

T
Eglg, sup v, ' <2+ 10J Eola, v, '|B(t, Z;)|? dt.
te[0,T] 0

Hence we get (II1.3.8) by noticing that using the martingale property of ~, the
estimate in (I11.1.2) and K,E|Xy|? < oo, for every t € [0,T] we have

EQ19n7;1|B(ta Zt)|2 = E]-QnrYT’)/;”B(tJ Zt)‘2 = ElQn‘B(t7 Zt)|2

< Ko + KoElg, | Z;* < Ko + KoNE(1 + | Xo|? + 1q, |Yol*) <
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Consequently,

T ' 1/2
Bolin, ") < Eq (1n,supo ([ 1o, (XD Pas) ) < 4,68,

s<T 0

with A, < oo, and

T

T
B, = EQJ 10,7 ot (Xs) Dip(Xs)|* ds = f E(1q, 77, oi(Xs) Dip(X,)[?) ds
0

0

T T
= J Ellq, 0 (Xs)Dip(X,)[* ds < NJ E(Ko + Kylq,|Z,|?) ds < .
0 0
We get Eg(1q, FV) < o0 in the same way. Similarly, Eq(1g, H?) < A4, + C,,
with A, given in (II1.3.8) and

_EQJ o J Lo, [ 170X 1(d3) ds-f L1Qnm D2 vo(ds)ds
(0]

Nf f 1o, |n(s, Zs,3)|? vo(d3)ds < N’f E(Ky + Kylq, |Z|?) ds < oo
30 0
with constants N and N’, where we use that by Taylor’s formula we have

[l e(X)| < sup | Dip(x)|[n (X))
xe

In the same way we have Eq(1q, H (1) < o0. For processes h = (ht)te[o, recall
that ®h and % denote the F, -optional projections of h under @) and under P,
respectively. Then using the formula ®h = 9(yh)/%, well-known properties of
optional projections and Remark II1.2.1 we have

U (Xm0 _ WX 50)
(v (>7)?

NI Ko XY

(%y)? (*)? (%)?

with a constant N. Remember that since v = (7)o, is a (cadlag) Fi-

martingale under P, the set {v,} for Fi-stopping times 7 < T is uniformly

P-integrable and hence due to the right-continuity of (F} )7, the optional

projection % is a cadlag process. Moreover, due to v > 0, we have ~v >0 (a.s.).
Since by (II1.1.2)

0)[2
]Qh( )|L2(30) —

Y]?

+ NK, CE

KoE(sup 1g, | X;[*) < oo for every n > 1,

t<T

(and (F) )sefo,rq is right-continuous), the process K>¥|X|?) is a cadlag process.
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Consequently, Ko/|%|?, K2%(|X]?)/|%|* and |Y|?/|%|* are cadlag processes. Hence

T T X]2), T |y,
d +Kf d +KJ d .8.),
L g e | S bR | g s = (as)

which proves

T
JJ\thi)|2yi(d5)ds<oo (as.)
0 J3

for © = 0, and we get this for ¢ = 1 in the same way. By the same argument we
have

T
f 9FOD12 ds < 0 (as.) fori=0,1.
0

Thus we can apply Corollary I11.2.3 to the processes a, af, 5* and ¢ (i=0,1),
and then use Corollary II1.2.5, to get

t
EQ(O‘tLFtY) = L MS(,CSQO) ds,

t
Q0| FY) = f L 1 (J79) vol(ds)ds, Eq(allFY) = f L 1o (JE) v (d3)ds,
0 1

Eq(AFY) =0, Eq(fl|FY) = f (M) dV,

Eo(6f|F)) =0, Eo(6|F) = fLu $0) Ny (d3, ds)

for t € [0,T] and ¢ € CZ(R?) almost surely, where (1)o7 is an M(R?)-valued
FY-adapted weakly cadlag process such that

i) = | o) lde) = Eqly " ¢(XIF) (as) for cach € 0,7,

for every bounded Borel function ¢ on R? Using Lemma II1.2.1 with random
variables X := p(Xp), Y := 1 and o-algebras G, := FY, G = Fyand Gy :=
FV v FM we get

Eq(p(Xo)|FY) = Eq(o(Xo)|Fy) = to(p)  (as.).

Consequently, taking the conditional expectation of both sides of equation (I11.3.7)
under @ given FY, we see that equation (II1.1.6) holds for each ¢ € [0,7T] and
¢ € CZ(R?) almost surely, that implies that for each ¢ € CZ(R?) equation (I11.1.6)
holds almost surely for all ¢ € [0, T'], since we have cadlag processes in both sides
of equation (II1.1.6) for each ¢ € CZ(R?). To prove (II1.1.7) first notice that for
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¢ := 1 equation (III.1.6) gives
dui(1) = pu(BF) dVF,  po(1) = 1.

Since (1) = (%) ' P(1) = (%), t € [0,T1], is a continuous process such that
pi(1) = Eg(v, HFY) (as.) for each t € [0,T], it is the FY-optional projection
under @ of the positive process (; ")ijor]- Hence A := (1), t € [0,T], is a
positive process, and by 1t6’s formula

AN = <A BE) V) + A (B d.
k

By It6’s formula for the product P;(¢) = A\ () we have

AP,(¢) = Pi(Lag) dt + P(MEg) T} +f

P(J0) vo(ds)dt + f Pu(J0) v (d3)dt
30

31
+ | Rf) Matds.dt) + Xl VAL
31

_Nt((p))‘;2ﬂt(Bf) dvtk - A Nt(Bf)Nt<Mf¢) dt
Hence noting that

A (o Zut (BF) = Pup) Y PA(BY), (o)A m(BF) = Po)P(Bf)

A;Qﬂt(Bf)Nt(MfQO) = Pt(Bf)Pt(Mf(p>7
we obtain
dP,(p) = Pi(Lep) dt + (P(MEp) — Pi(o) Pi(B)) dVF
(Pt(MfSO) Py )Pt(Bk))Pt(Bk) dt
. f P(J70) vo(ds )i + f P(JEp) 1 (d3)dt + f P(I0) K (ds, do).
30 31

31
Since clearly,

(P.(MEp) — Pp)P(BF)) AV} — (P(MPg) — Pi(p) Pi(BF)) Py(BY) dt

= (Pt(MfSD) - Pt(‘P)Pt(Bb) thk

with the process (‘Z:)te[o,T], given by dV;, = dV, — Py(B,)dt, Vo = 0, this gives
equation (III.1.7), and finishes the proof of Theorem III.1.1.
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Chapter IV

The filtering density

IV.1 Introduction

In Chapter III we were interested in the equations for the evolution of the condi-
tional distribution P;(dx) = P(X; € dz|Ys, s < t) of the unobserved component
X, given the observations (Y;)se[o,r], where Z = (Z;)wefo.r1 = (Xt, Y)teo,r] is given
by the stochastic differential equation (1.0.2) and where the coefficients satisfy
the measurability conditions, and dimensionality properties, stated in the intro-
duction, Chapter I. In the present chapter we investigate the existence of the
conditional density m = dP,/dx of the signal-observation system (1.0.2). More
precisely, we show, under fairly general conditions, that if the conditional distri-
bution of X, given Y, has a density 7, such that its L,(R?)-norm has a finite
p-th moment, in other words E\Wo\ip < oo for some p > 2, then X; for every
t has a conditional density m; given (Ys)te[o,t], which belongs also to L,, almost
surely for all . This chapter is based on the article [17].

We do not assume any non-degeneracy conditions on ¢ and 7, i.e., they
are allowed to vanish. Thus, given the observations, there may not remain any
randomness to smooth the conditional distribution P;(dx) of Xy, i.e., if the initial
conditional density 7y does not exists, then the conditional density m; for ¢t > 0
may not exist either. Therefore assuming that the initial conditional density
Ty exists, we are interested in the smoothness and growth conditions which
we should require from the coefficients in order to get that m; exists for every
t € [0,T] as well.

For partially observed diffusion processes, i.e., when & = n = 0 and the
observation process Y does not have jumps, the existence and the regularity
properties of the conditional density m; have been extensively studied in the lit-
erature. For important results under non-degeneracy conditions see, for exam-
ple, [36], [39], [35], [46], and the references therein. Without any non-degeneracy
assumptions, in [51] the existence of m; is proved if 7y € I/Vp2 N W3 for some p > 2,
the coefficients are bounded, o, p have uniformly bounded derivatives in x up to
order 4, and b, B have uniformly bounded derivatives in x up to order 3. Under
these conditions it is also proved that (m;)w[o,r] is a weakly continuous process
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with values in I/Vp2 N W3, and that m; has higher regularity if 7y and the coeffi-
cients are appropriately smoother. In [41] the existence of conditional densities
in Ly(R?) was proved using a very nice method, deriving a priori estimates for
an SPDE for the unnormalised conditional distribution smoothed with Gaussian
kernels. More precisely, it was shown, without assuming differentiability condi-
tions on the coefficients, that if they are bounded, Lipschitz continuous in space
and if the initial conditional density m satisfies E|mo|7, < oo, then m; remains in
Lo for all ¢.

More recently also filtering densities associated to systems with jumps have
been investigated, i.e. when &, n are not zero and the observation may also
contain jump terms. However, to the best of the authors knowledge, most results
treat only the case of Lo-valued densities.

Indeed, the result from [41] was also obtained with the same methods in [4]
for the case when the observation is driven by an Ornstein-Uhlenbeck process
independent of the signal. This smoothing approach is used again in [5] to prove
uniqueness of measure-valued solutions for the Zakai equation in the case where
the signal is a diffusion process, the observation contains a jump term and the
coefficients are time-independent, globally Lipschitz, except for the observation
drift term, which contains a time dependence, but is bounded and globally Lip-
schitz. The approach from [41] is extended in [44] to partially observed jump
diffusions when the Wiener process in the observation process Y is indepen-
dent of the Wiener process in the unobserved process, to prove, in particular,
the existence of the conditional density in Lo, if the initial conditional density
exists, belongs to L, the coefficients are bounded Lipschitz functions, the coef-
ficients of the random measures in the unobservable process are differentiable in
x and satisfy a condition in terms of their Jacobian. Another application of this
method, yielding an analogous result in Ly, can be found in [6] for the case when
the coefficients satisfy Lipschitz and linear growth conditions, the signal has a
bounded cadlag disturbance with bounded variation, adapted to the filtration
generated by Y, the observation has no jump terms and where additionally
has finite third moment. In [50] and [49] the filtering equations for fairly general
filtering models with partially observed jump diffusions are obtained and stud-
ied, but the existence of the conditional density (in Lg) is proved only in [50],
in the special case when the equation for the unobserved process is driven by a
Wiener process and an a-stable additive Lévy process, p = 0, the coefficients b
and o are bounded functions of € R?% b has bounded first order derivatives,
o has bounded derivatives up to second order and B = B(t, z,y) is a bounded
Lipschitz function in z = (z,y).

The main theorem, Theorem IV.2.1, of the present chapter reads as follows.
Assume that the coefficients b, o, p, B, &, n and pB are Lipschitz continuous in
z = (x,y) €e R Bisbounded, b, o, p, £ and 7 satisfy a linear growth condition,
¢ and 1 admit uniformly equicontinuous derivatives in x € RY, x + £(x), z + n(x)
are bijective mappings in x € R?, and have a Lipschitz continuous inverse with
Lipschitz constant independent of the other variables. Assume, moreover, that
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E|Xo|" < oo for some r > 2 and that 14 has finite r-th moment. Under these
conditions, if the initial conditional density m, exists for some p > 2, then the
conditional density m; exists and belongs to L, for every t. Moreover, (7)o,
is weakly cadlag as L,-valued process.

To prove our main theorem we use the It6 formula from [22] and adapt
an approach from [41] to estimate the L,-norm of the smoothed unnormalised
conditional distribution for even integers p > 2. Hence we obtain Theorem IV.2.1
for even integers p > 2. Then we use an interpolation theorem combined with
an approximation procedure to get the main theorem for every p > 2.

The chapter is organised as follows. In Section IV.2 we formulate our main
result. In Section IV.3 we recall important results from Chapter III together
with the filtering equations obtained therein. In Section IV.4 we prove L, esti-
mates needed for a priori bounds for the smoothed conditional distribution. In
Section IV.5 we obtain an Ito formula for the L,-norm of the smoothed condi-
tional distribution and prove our result for the case p = 2. Section IV.6 contains
existence and uniqueness results for the filtering equation in L,-spaces. Finally,
in Section IV.7 we prove our main theorem.

IV.2 Formulation of the main results

We fix nonnegative constants Ko, K1, L, K and functions £ € Ly(31) = Lo(31, Z1,v1),
7 € La(30) = L2(30, 20, ), used throughout the paper, and make the following
assumptions.

Assumption IV.2.1. (i) For z; = (zj,y;) € R¥*¥ (j = 1,2), t > 0 and
3i€3i (Z:()?]-)v

|b(t, z1) — b(t, z2)| + |B(t, z1) — B(t, z2)| + |o(t, z1) — o(t, 22)]

+p(t, z1) — p(t, 22)| < L|z1 — 22,
|77(t7 ZlaﬁO) - n(t7 Z2730)| < ﬁ(50)|zl - 22|7
‘f(t, Zlaﬁl) - €(t722731)’ < 5(31)’21 - 22"

(ii) For all z = (z,y) e R™¥ ¢ >0 and 3; € 3; for i = 0,1 we have
[6(t, 2)[ + |o(t, 2) + [p(t, 2)| < Ko+ Kal2|,  [B(,2)] < K,
[t 2, 30| < M(30) (Ko + Kulz]),  [€(t 2,51)] < (1) (Ko + Kil2]),

f 52 1a(ds) < K2.
3

(iii) The initial condition Zy = (X, Yp) is an Fy-measurable random variable
with values in R4,
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Assumption IV.2.2. The functions 7 € Ly(30) and € € Ly(3,) satisfy 7(30) <
K, and &(31) < K¢ for all 3; € 3;, i = 0,1 and some nonnegative constants K,
and Kg.

Assumption IV.2.3. For some r > 2 we have E|X,|" < o0, and the measure v,
satisfies
K,.:= | |3]"v(ds) < .
31

By Theorem I1.2.1 we know that Assumption IV.2.1 ensures the existence
and uniqueness of a solution (X, Y;);s0 to (I1.0.2) for any given Fp-measurable
initial value Zy = (X, Yp), and for every T' > 0,

Esup(|X¢|? + |Yi]?) < N(1 + E|Xo|? + E|Y]?) (IV.2.1)
t<T

holds for ¢ = 2 with a constant N depending only on T, Ky, K, K1, L, |¢|,,
17|, and d + d'. If in addition to Assumption IV.2.1 we have that Assumptions
IV.2.2 and IV.2.3 hold, then by Theorem I1.2.2, see also [12], we know that the
moment estimate (IV.2.1) holds with ¢ := r for every T" > 0, where now the
constant N depends also on r, K, K¢ and K,,.

As in the previous chapter, we also need the following additional assumption.

Assumption IV.2.4. (i) The functions fo(t, z,y,30) := n(t, x,y,30) and
filtt,z,y,31) == &(t,7,y,31) are continuously differentiable in x € R? for each
(t,y,3) € Ry x R x 3;, for i = 0 and 4 = 1, respectively, such that

lim sup sup sup sup ‘D:Efl(ta x7y73i) - Dxfi<t7x/7 y732)| =0
el0 1e[0,T] 3€3i |y|<R |x|<R,|2'|<R,|z—a'|<e

for every R > 0.
(ii) There is a constant A > 0 such that for 6 € [0,1], (¢,7,3:) € Ry x RY x 3;
for 2 = 0,1 we have

ANzy — 20| < |1 — 20 + 0(filt, 21,9, 3:) — fi(t, 2,9,3:))| for 21,29 € R

(iii) The function pB = (p®* B*) is Lipschitz in z € RY, uniformly in (¢,v), i.e.,
|(pB)(t,x1,y) - (pB)(tax27y)| < L|JZ1 - {L‘2|,
for all 1,2, € R? and (¢,7) € [0,7] x RY.

Recall that FY denotes the completion of the o-algebra generated by (Y;),<.
Then the main result of the paper reads as follows.

Theorem IV.2.1. Let Assumptions IV.2.1, IV.2.2 and IV.2.4 hold. If K; # 0
in Assumption IV.2.1, then let additionally Assumption IV.2.3 hold. Assume the
conditional density 7o = P(Xo € dz|FY)/dx exists and Elml}, < o0 for some
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p = 2. Then for each t € [0, T] the conditional density P(X; € dz|FY)/dx exists
almost surely. Moreover, there is an Ly-valued weakly cadlag process (ﬂ't)te[o,T]
such that for each t € [0,T] almost surely m; = P(X; € dx|F))/dx.

IV.3 The filtering equations revisited

We briefly review the main results needed from Chapter III for the reader’s
convenience, as well as present some new notions and auxiliary facts needed in
later sections of the present chapter.

We recall, for t € [0, T], the random differential operators
Ly = a (x)Dij + bi(x)Di, My = pi*(@)Di + Bf(x), k=1,2,...d,

where
dq d '
= %Z (oo™ (@) + 1 (o) (@), ot (x) = o™ (t,2,Y)),
k=1 =1
pi(x) = p'(t,2,Yy), bj(z):=b(ta Yt) Bk(x) = B*(t,z,Y})

forweQ,t>0,z=(z'...,29) e R and i, = ..,d, as well as for 3 € 3; the
random operators [f and JE defined by

d
Lp(r,3) = pla+&i(w,3),5)—p(r,3),  Jid(a.5) = [Fo(r,3) =) &(x,5) Did(,3)
i=1

(IV.3.1)
for functions ¢ = p(x,3) and ¢ = ¢(z,3) of z € R and 3 € 3;, and furthermore
the random operators I;' and J;!, defined as If and Jf, respectively, with n,(z, 3)
in place of & (z,3), where

ft(l';él) = 5(75715;}/%—;31); nt(x730> = n(t7x7}/t—730)

forwe, t >0, zeR?and 3 € 3; for i = 0,1. We recall also the processes

Ve = exp (— Lt f |Bs(X |2ds) te[0,T],

t
Vi :J B.(X,)ds + Vi, te[0,T). (IV.3.2)
0

Since by Assumption IV.2.1 (ii) B is bounded in magnitude by a constant, we
know that Assumption III.1.2 holds and hence, (%)te[o’T] is an F;-martingale
such that, by Girsanov’s theorem, the measure () defined by d@Q) = vrdP is a
probability measure equivalent to P and under ) the process (W, ‘Zﬁ)te[o’T] is a
dy + d’-dimensional F;-Wiener process.
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By Theorem III.1.1 we know that if Z = (X, Y})se[o,r satisfies equation
(1.0.2), Assumption IV.2.1(ii) holds and that if E|X,|*> < o0 so long as K; # 0
in Assumption IV.2.1(ii), then there exist measure-valued F) -adapted weakly
cadlag processes (P;)wfo,r] and (pu)seo,r] such that almost surely

Pi(p) = () /1(1),  for all ¢ € [0,T7,

Py(p) = E(o(X)|F ), melp) = Eq(y ' o(X,)|F)  (as.) for each ¢ € [0, T,
for bounded Borel functions ¢ on R?, and for every ¢ € CZ(R?) almost surely

t

pe(p) =po(p) + Jt ps(Lsp) ds + f

0

ff i (J5) 11 (d ds+ff o (I50) N (ds, ds),
31 31

for all ¢ € [0, T]. Clearly, equation (IV.3.3) can be rewritten as

(M) Tt + f L (26 vl ds

(IV.3.3)

t

pe(p) =po(p) + f ps(Lop) ds + f

0

ff i (J5) 11 (d ds+ff o (I50) N (ds, ds),
31 31

where £, = L, + By(Xs) M. Moreover, if dyug/dx exists for P ® dt-a.e. (w,t) €
Q2 x [0,T], and u = w(x) is an Fj-adapted L,-valued weakly cadlag process,
for p > 1, such that almost surely u; = du;/dx for all ¢t € [0,T], then for each
¢ € CZ(RY) we have that almost surely

(M) avE + f L (26 vl ds

(IV.3.4)

t

¢
(0> 9) = (0, 0) + j (s, o) ds + f (s, ME) AV + j |, oy nidsias
30
f J Usg, Scp v1(d3 ds+ff Ug—, sgo Nl(dg,ds)
31 31

holds for all t € [0,T].

(IV.3.5)

Finally we recall from Chapter III that there exists a cadlag F) -adapted
positive process (%)w[o,r], the optional projection of (v;)w[o,r] under P with
respect to (]—"ty)te[o 71, such that for every FY -stopping time 7 < T we have

E(y,|FY) =%., almost surely. (IV.3.6)

Since for each t € [0, T], by known properties of conditional expectations, almost

54



surely
(1) = Eq(y |1 F)) = VEMWIF) = 1/,
we also have that for each ¢ € C? almost surely P,(¢) = ()%, for all t € [0, T].

Definition IV.3.1. An 91-valued weakly cadlag F;-adapted process (,ut)te[o,T]
is said to be an 9M-solution to the equation

dpy =L pedt + M, dV;F + J T 1y vo (d3)dt
30

+ f th*,ut Vl(dﬁ)dt + J [tg*,utf N1(d3, dt) (IV.3.7)
31 31

with initial value pq, if for each ¢ € C? almost surely equation (IV.3.4) holds
for all ¢ € [0, T]. If (41¢)sefo,r) is an M-solution to equation (IV.3.7), such that it
takes values in M, then we call it a measure-valued solution.

Definition IV.3.2. Let p > 1 and let ¢ be an L,-valued Fy-measurable random
variable. Then we say that an L,-valued Fi-adapted weakly cadlag process
(u¢)e[o,r) is an Ly-solution of the equation

duy =LFudt + MFu, dVF + J Ty vo(d3)dt
30

+ f It uy yl(d;,)dwf IFu,_ Ny (d3, dt) (IV.3.8)
31 31

with initial condition 1, if for every ¢ € Ci° almost surely (IV.3.5) holds for all
te[0,7] and ug = ¢ (a.s.).

Lemma IV.3.1. Let Assumption [V.2.1 hold, and assume also E|X,|* < oo if
Ky # 0 in Assumptions IV.2.1(i1). Let (fit)efo,r) be the measure-valued process
from Theorem III.1.1. Then we have

E sup (1) < N, (IV.3.9)
te[0,T]

with a constant N depending only on d, K and T.

Proof. Taking 1 instead of ¢ in the Zakai equation (IV.3.3) yields for (/Bt)te[()"_'p] =
(B(X4))eefo,175

t t

s (BEBY) ds + J ps(BY) dVF. (IV.3.10)
0

py(1) = 1+J

0

Since Sé ps(BY) dVF is a martingale we can define

t

T, :=1inf{t > 0: J ps(l)ds =n}, n=1,
0
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and use |B| < K to compute after taking expectations on both sides,

t

Eptenr, (1) <1+ dK2J Efisnr, (1) ds.
0

Using Gronwall’s inequality and Fatou’s lemma, we obtain for each n,

sup Eu(1) < N, (IV.3.11)
te[0,T7]

with a constant N = N(d, K,T). Moreover, due to (IV.3.10), the process (1) is
continuous almost surely, wherefore ¢} := (sup,; fts(1))scqo,r] is locally integrable
and there exists a sequence of stopping times p,, T o such that Ec}, , < oo for
all m > 1. Hence, by Davis’ and Young’s inequalities as well as (IV.3.11),

e ky 17k oem 2 .\
E sup J 1o (BY) dV! <3E(ZJ 115(BY) ds>
L YO0

te[0,77] Jo

T 1/2
< NE( sup o, (1) [ a(0)ds) " <08 sup s, (1) 4 N
te[0,T] 0 te[0,T]
for all § > 0, n > 1 and constants N = N(d, K) and N = N'(6,d, K,T). Thus
also
E sup pinp,(1) < N, for all m,
te[0,T]
for another constant N = N(4,d, K,T). By Fatou’s lemma we then obtain
(IV.3.9) O

IV.4 L,-estimates

Recall that M = M(R?) denotes the set of finite measures on B(R%), and 9 :=
{p—v:p,veMj}. Forve I we use the notation |v| := v+ + v~ for the total
variation and set |v| = |v|(RY), where v+ € M and v~ € M are the positive and
negative parts of v. For ¢ > 0 we use the notation k. for the Gaussian density
function on RY with mean 0 and covariance matrix I. For linear functionals ®,
acting on a real vector space V containing S = S(R?), the rapidly decreasing
smooth functions on R%, the mollification ® is defined by

dE)(z) = ®(k.(z — ), zeR%

In particular, when ® = p is a (signed) measure from S*, the dual of S, or & = f
is a function from S*, then

W) = | R, 00 = | kla-pfw)dy. aeR
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and
LW = [ Lkla = puldy), ze R

L 0)e) = | (Lo =) fG)dy, e R

when L is a linear operator on V such that the integrals are well-defined for
every x € R?. The subscript y in L, indicates that the operator L acts in the
y-variable of the function k.(x,y) := k.(x —y). For example, if L is a differential
operator of the form a” D;; + b'D; + ¢, where a”, b" and ¢ are functions defined
on R?, then

(L) () = f (0 (y) o + V() e + cly) kel — y)pa(dy).

R4

We will often use the following well-known properties of mollifications with k.:
(i) |¢©z, <lglr, for € Ly(RY), p e [1,0);

(i) p©@ (@) == §gu n@(@)p(x) dz = 50 0 () u(dz) =: p(p®) for p e M and
pe LR, p=1

(iti) |p®|z, < [u@®|g, for 0 < e <4, pe M and p > 1. This property follows
immediately from (i) and the semigroup property” of the Gaussian kernel,

krvs(y—2z) = J k(y — 2)ks(x — 2)dz, y,zeRYand r,se (0,0).
R4
(IV.4.1)

The following generalization of (iii) is also useful: for integers p > 2 we have

pely) == L 10_ ke (2—y,) dx = cpee™ Zasressp e l/C0) gy — () € RP
R

(IV.4.2)

for e > 0, with a constant c,. = c¢,.(d) = p~¥?(2me)1=P)¥2 This can be seen

immediately by noticing that for z,y, € R and y = (yx)t_, € RP? we have

Se-w = p(e-Tun) +1 3 -u

1<k<I<p

Clearly, for every r = 1,2,...,pand i = 1,2, ..., d,
p
Qyipe(W) = S Wi —voe(v), v = () €RE g = (4 yl) e RY
s=1
(IV.4.3)
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It is easy to see that

P
Z é’yipe(y) =0 foryeRM j=1,2, ...4d.
r=1
We will often use this in the form
P
0yipe(y) = — Z Oppe(y) forr=1,. pandj=12 ., d (IV.4.4)
SF#T
In order for the left-hand side of the following L,-estimates for p € 90 in this
section to be well-defined, we require that

Klf |z|? || (d) < oo, (IV.4.5)
Rd

where we use the formal convention that 0-c0 = 0, i.e., if K1 = 0, then condition
(IV.4.5) is satisfied. The following lemma generalises a lemma from [41].

Lemma IV.4.1. Let p = 2 be an integer. Let o = (o'*) and b = (b*) be Borel
functions on R? with values in R¥>*™ and R?, respectively, such that for some
nonnegative constants Ky, Ky and L we have

|o(2)| +[b(z)] < Ko+ Kilz| o(z) —o(y)| < Llz—y|, [b(z)—b(y)| < Llz—y|
(IV.4.6)
for all z,y € R, Set a¥ = o™*a7%/2 fori,j =1,2,....d. Let u e M such that it
satisfies (IV.4.5). Then we have
p((p)P (@ Dig)* ) @) + PR (W)= (0% Dy)* )9, (07 D;)* ) @)
< NI2||l@ (IV.47)
(P (D) 1)) < NL2||u| @, (IV.4.8)
with a constant N = N(d,p).
Proof. Let A and B denote the left-hand side of the inequalities (IV.4.7) and
(IV.4.8), respectively. Note first that using
2
sup 3 [D*ho(z)] < 0, and J (1 + o] + Kalo?) [ul(dz) < oo, (IV.A4.9)
R4

zeRd k=0

as well as the conditions on on ¢ and b, it is easy to verify that A and B are
well-defined. Then by Fubini’s theorem and the symmetry of the Gaussian kernel

A= f £(2,y) 1pldy) de
R(p+1)d
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with
flz,y) = (pa (1p)043.05 + 22 0™ (yp1)07 (4) 0, ﬁyg) I _ k(2 — i),

where z € RY y = (yx)i_, € R, and y; denotes the i-th coordinate of y € R?
for k = 1,...,p, and p,(dy) := pu®(dy) = p(dyy)...u(dy,). Hence by Fubini’s
theorem and symmetry again

A= (e ()03 0,5 + 520 ™ (g ) (104, 01) 2(9) 1p(ly)
(IV.4.10)
ZJR 2@@ yr)a 8 + ZO' yr gjk(ys)ﬁ 8 ),05( ),up(dy) (IV4 11)
pd SH#T

where p. is given in (IV.4.2). Using here (IV.4.4) and symmetry of expressions
in y; and y;, we obtain

_ 1 Z 3 J 2a” ()03 0,5 — a““(ynaf’“(ys)ay;e@yg) p=(y) 1p(dy)

r=1s#r

where
6 (3, 2) — %(gz‘k@) — o*(2)) (07 (z) — 07 (2)) forz,zeR?  (IV.4.12)

and

127 (y) = p=H ()03 0,5 p-(y)

p P
1 51 i
oo 24 2Lk —y) + 5
k=11=1
Making use of the Lipschitz condition on ¢ and using for ¢ = 1,2 that

eI s — url™pe(y) < Npac(y), yeRM, ¢=0 (IV.4.13)
SFT
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with a constant N = N(d, p, q), we have

p p
22007 Wy W) < 25 D sl o)+ R D ey - (v)

r=1s=1 1<r<s<p 1<r<s<p

< N'L?pac(y)  for y e R
with constants N = N(d,p) and N’ = N'(d,p). Hence

A< N'L? JR ] an(y)|Mp|(dy) = N'L? JR d Ld Hf:lk%(x —Yr) dx|ﬂp|(dy)

N[ T e = )l do = N2

To prove (IV.4.8) we proceed similarly. By Fubini’s theorem and symmetry

pB =J PO (Yp) 0y pe(y) 1 (dy) = Zf b () Oy pe(y) 11p(dy)
Rpd

—= N | H o) wld) - Y | ¥ ol

r=1s#r r=1s#r
Thus
p
Sap) f K0 (0 =05 [ $oomian
r=1 pd r=1 s#r
p
22 [ S0 - ) oo
r=1 JRP S#T
p
= fR ) D0 () = 6 () DLW — 1)) () (IV.4.14)
r=1 P str l#r

Using the Lipschitz condition on b and the inequality (IV.4.13), we obtain

f S 1y — e () gl () < NLJ poe () 1 (dy) = N'L||ul O

s#r

with constants N = N(p,d) and N = N(p,d), which completes the proof of the
lemma. O

Corollary 1V.4.2. Let the conditions of Lemma 1V.4.1 hold for some even
p = 2. Then we have

(1)1, (@ D) )®) < NL2||u| @Y, 25 ()2 (0™ D) 1), (07 D;)* 1))
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< NL2||uf ],
for a constant N = N(d,p).

Proof. 1t suffices to observe that always

((M(E))p”((aikl)i)*u)(s), ((O'jij)*,LL>(E)) f P2 Z (0™ D;)* )de = 0.

k=1

]

Lemma IV.4.3. Let p > 2 be an integer and let 0 = (o) and b be Borel
functions on R® with values in RY and R respectively. Assume furthermore that
there exist constants K > 1, Ko and L such that

b(x)| < K, |o(2)] < Ko+ Kilz|,  |o(z) —o(y)| + |bo(z) —bo(y)| < Lz —y|
for all x,y e RY. Let u € M such that it satisfies (IV.4.5). Then we have

((4OP~2(60), (5)®) < K2l (V.41

(WP, (0D 1) @ ') < NKL|lal (IV.4.16)

for every € > 0 with a constant N = N(d,p).

Proof. We note again that by (IV.4.9) together with the conditions on o and
b, the left-hand sides of (IV.4.15) and (IV.4.16) are well-defined. Rewriting
products of integrals as multiple integrals and using Fubini’s theorem for the
left-hand side of the inequality (IV.4.15) we have

| ponbto) [ 10 e = ) oy

<R[ k(- ) dalylidy) = KO,
Rd(p+1)
for any r,s € {1,2,...,p}, where y = (y1,...,y,) € RF y; e R? for j = 1,2,.... p,

and the notation p,(dy) = u(dyy)...u(dy,) is used. This proves (IV.4.15).

Rewriting products of integrals as multiple integrals, using Fubini’s theorem,
interchanging the order of taking derivatives and integrals, and using equation
(IV.4.2), for the left-hand side R of the inequality (IV.4.16) we have

R [ b’y | T ke - ) dom(d)
Rdp R4

_ JR b )2y -(0) () (IV.A17)
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for any r, k € {1,2,..,p} such that r # k. Hence

po=1PR= 283 | oo (00000 ()

SDIDIDN R TCALIIAL AR

s=1r#s k#r

3 J]de(b(y’“) = b(ys))0" (45) i = (y) 1p(ly), (IV.A4.18)

s=1r#s

and using (IV.4.4) from (IV.4.17) we obtain

po=DR== XXX | o' (52 0-0) ()

r=1k#r s#r

- Z Z 2 Jde b<yk‘)0-z (yT)ay§p6<y) Mp(dy> (IV419)

s=1r+#s k#r

Adding up equations (IV.4.18) and (IV.4.19), and taking into account the equa-
tion

(b(yr) o b(ys))az(ys) = b(yr)ai(yr) - b(ys)ai(ys) - b(yr)<o-z(y7") - O-i(ys))
we get

Po=0R= 353 [ F )00 )

+2 J 9" (Y ¥5) 2y p=(y) p1p(dy) (IV.4.20)
with functions
fi@,u,0) = b(x) (0" (u) = ' (v),  ¢'(u,v) :=Db(u)o' (u) — b(v)o'(v) (IV.4.21)

defined for x,u,v € R? for each i = 1,2, ...,d. By the boundedness of |b| and the
Lipschitz condition on ¢ and bo we have

|fi(z,u,v)| < KLlu—v|, |¢'(u,v)| < Llu—v| z,u,veRY i=1,2 . 4d.

Thus, taking into account (IV.4.3) and (IV.4.13), from (IV.4.20) we obtain
Pp—1R < KLNL pae(W)lip(dy) = K LN < NEKL|[p 97,
Rap

with a constant N = N(d, p), that finishes the proof of (IV.4.16). O
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For R%valued functions ¢ on R? we define the linear operators I¢, J¢ and T¢
by
Tep(z) = p(z + £&(x), Ip(x) =T p(z) - p(z),
J(z) = I (x) — €(x)Dip(z), xeR? (IV.4.22)
acting on functions ¢ and differentiable functions ¢ on R?. If ¢ depends also

on some parameters, then I¢¢ and J¢1 are defined for each fixed parameter as
above.

Lemma IV.4.4. Let £ be an R%-valued function of v € RY such that for some
constants A > 0, Ky and L

€(z) — E(y)| < Lz —y|  for all 2,y € RY

and
Nz —y| < |z —y+0(E(x) — &) for all z,y € R and 6 € [0,1]. (IV.4.23)

Let ;v € M such that it satisfies (IV.4.5), let p = 2 be an integer, and for € > 0
set

€= J p(HOY T ) 4 (1 + (1)) = (1O) = p(u©@ Y11 1) d,
R4

where, to ease notation, the argument x € RY is suppressed in the integrand.
Then
Ol < N(1+ L) L2||u®f} for all e >0, (TV.4.24)

with a constant N = N(d,p, \).

Remark IV.4.1. Notice that in the special case p = 2 the estimate (IV.4.24) can
be rewritten as

2(u®, (J* )Y + (I1) @, (1% 0) @) < N(1+ L) L?||p| @2, for all € > 0.

Proof of Lemma IV.4.4. Again we note that by (IV.4.9), together with the con-
ditions on £ and that by Taylor’s formula

1

Ik (2) = f (Dik2)(x — 7 — O€(r)) dOE(r),

0

1

Ik (z) = j (1= 0)(Dyke)(z — 1 — 0¢(r)) dO /(1) (r),

0

as well as that sup,cga > oy |D*p-(x)| < o0, it is easy to verify that C' is well-
defined. Notice that
1) + (I 1)) = (T 1)
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and

p(pE P I ) S = p(u P I ) = —p(u)P (€ Di)* )@
Hence

C = [ (@O = Oy — P (€ D))

Rewriting here the product of integrals as multiple integrals and using the prod-
uct measure fi,(dy) := p(dyr)...;0(dy,) by Fubini’s theorem we get

(TP @) = [ LTSI e = 00 ),

WOP = | ke = ) ),
RP

PP (€7 Di)* )¢ —prdep Tk (2 = Y )€ (1) Oy e ( — ) (),
=p é(yp)a IP_ ke (2 — yo) pip(dy)

_[de Z fz vr) a HT 1ke(z = yr) pp(dy) (IV.4.25)

where the last equation is due to the symmetry of the function II?k.(z —y,) and
the measure y,(dy) in y = (y1,...,y,) € RP%. Thus

= J J LyH;i:lks(x - yr) Hp(dy) dx
Rd JRpd

with the operator

p
L = TS — 1= ) €00,

r=1

Using here Fubini’s theorem then changing the order of the operator Lg and the
integration against dx we have

J dLLfﬂf 1ke(x = yp) dx py(dy) = f Léf ke(z — yr) d i, (dy)
Rra JR

- | L)t (IV.4.26)

where, see (IV.4.2),

pe(y) = cpoe Tasr=ssn lyr—ys|*/(2ep) (IV.4.27)
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with ¢, . = p~¥2(2me)1P4/2,

Introduce for € > 0 the function
V() = cpﬁe—ZKKsspzfs/(?pa)’ 2 = (Zrs)1<r<s<p € RP@-1)d/2
Then clearly, p:(y) = ¥.(7) with
¥ = (Yrs)i<r<s<p = (Yr — Us)1<r<s<p € RP(P=142,

Hi) 1Tg (y) = ¢8(y+£( )) with é(y) = (ETS(y))1<7’<s<p7 ETS(y) = &(yr) — €(ys),
and by the chain rule

D W0 = D8 W) DL (Brr — 01)(02 1) ()

1<k<I<p

= > D0k =) W) (0, ) @) = YL (k) — € ())(0.1,4) (D)
Consequently,
Lipo(y) = 0e(§ +EW) —ve(@) = >, Euw)(@:4,4)(),
1<k<I<p

which by Taylor’s formula gives

Lip.(y) = j )Y (0 00§+ 0E)E()EL(y) db,

1<k<I<p 1<r<s<p

where the summation convention is used with respect to the repeated indices
1,7 =1,2,...,d. Note that

(04,05, ) ([ + 0 (y)) = e + 05 ()12 H (i + 0E(y))

with
ij,rs,kl L 1 7 j 1 .
lsj (Z) = _(pz-:)2 zklzﬁs — p—65rk5515ij fOI‘ z = (Zkl)1<k<l<p'

Due to the condition (IV.4.23) there is a constant x = x(d, \) > 1 such that for
0 € [0,1]

Koy — 2o? <oy — @9 + O(E(wy) — E(32))|* for 1, 29 € RY, (IV.4.28)
which implies
Ve + Hé(y)) < NYe(§/K) = Npee(y), ye€ R,
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and together with the Lipschitz condition on &,

G+ O < B+ L) Y e —wol + X

1<r<s<p

foralll < r<s<p l<k<l<pandij=1,2..d with a constant
N = N(d,p, \). Moreover,

& < NL* Y |yo—y,* fory = (y,)P_, € R™

1<r<s<p

with a constant N = N(d,p). Consequently, taking into account (IV.4.13) we
have

Lsp- <BL2A+ 2 (Y e — 5 @) + 222 |y — 5elpc()

1<r<s<p 1<r<s<p

SN'L*(1 + L?)pore(y) for y e R

with constants N = N(d,p,\) and N’ = N’(d,p,\). Using this we finish the
proof by noting that (IV.4.26) implies

C] < N'L*(1 + LQ)J pane(y) l1pl (dy) = N'LP(1 + L2)||u| )]

Rpd

< NLP(1+ L2 @],
O

Corollary 1V.4.5. Let the conditions of Lemma IV.4.4 hold. Then for every
even integer p = 2 there is a constant N = N(d,p, \) such that for e > 0 and
we M we have

[ @O e < NEQ S WO, (VA29)
R? g
Proof. Notice that |a + b|P — |b|P — pla|P~2ab = 0 for p > 2 for any a,b € R by
the convexity of the function f(a) = |a|?, a € R. Using this with a = p®) and
b= (I¢)® we have

(9 + (1) — (O~ p(u PO 50 for w < Y,

which shows that (IV.4.24) implies (IV.4.29), since

| W@ @) d < e
R4

O
Lemma IV.4.6. Let the conditions of Lemma IV.4.4 hold. Let p = 2 be an even
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integer. Then there is a constant N = N(d,p, ) such that for e > 0 and p € M
we have

U + (I )@Y — ()P da| < N(1+ L)L||p @5, (IV.4.30)
R4 ’

where the argument x € R? is suppressed in the integrand.

Proof. By the same arguments as in the proof of Lemma IV.4.4 we see that the
left-hand side of (IV.4.30) is well-defined. Clearly,

Dim [ (@ WOy~ uOrde = | | Mo o) mdy) da

Rd R4 JRpd

with the operator
MS=TE_\T: —1,

where p,(dy) = TE_ u(dy,), vy = (y1, ..., yp) € RPY. Hence by Fubini’s theorem,
then changing the order of the operator Mf, and the integration against dz and
by taking into account (IV.4.2) we have

D- VI ko= ) da () = | M [ Tkl = ) do )
Rp R

Rpd JRA

= | Myp=(y) mp(dy). (IV.4.31)
RP
As in the proof of Lemma IV.4.4 we introduce for € > 0 the function

- 2,/(2 —1)d/2
1/}5(2) — Cp’ge Zl§r<s<p er/( pE)’ z = (er>1<7“<s$p [= Rp(p ) / ,

such that p.(y) = ¥.(§) with § 1= (Yps)1<res<p = (Ur — Ys)1<res<p € RPPTVY2
and

HleTprg(y) = ¢€(@+é<y)) with é(y> = (érs(y))1$r<s$p7 érs<y> = g(i%’) - €<y8)'

By Taylor’s formula
Mép.(y) = (5 + Ew)) j (0, 62) (5 + OE(y)Els () do
0 1<k<i<p

where the summation convention is used with respect to the repeated indices
1 =1,2,...,d. Note that

(0., 0) (7 + 05(y) = e (3 + 05 (y)IE (5 + 64 (y))

with
il i 1 i 1)d/2
127%(2) = p—Ez,’d for 2 = (2zp)1<k<i<p € RP(P—1)d/
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By (IV.4.28) we have

V(i + 0€(y)) < N=(§/K) = Npee(y), yeRP,

and due to the Lipschitz condition on &,

145 + 0E(y))| < X1+ L)|ye — u

for all ¢ = 1,2, ...,d with constants x(d,\) > 1 and N = N(d,p,\). Moreover,
we get 3
[€(v)| < NLlyx —w| for y = (y,)7_, € R™

with a constant N = N(d,p). Consequently, taking into account (IV.4.13) we
have

(Mp-()] < ZA+L)L Y.y —wl*pre(y) < N'(1+ L) Lpoe(y)  for y e R

1<k<I<p

with constants N and N’ depending only on d, p and A. Using this, from
(IV.4.31) we obtain

DI < N DL | panc(w) bl(d) = N0+ DL, < N4 L) L,
Rp

which completes the proof of the lemma. n

IV.5 The smoothed measures

We use the notations introduced in Section IV.4. Moreover, we ask the reader
to recall the notations introduced in section 1.1, in particular the notion of cad-
lagness employed for M-valued, or 9-valued processes.

We present first a version of an It6 formula, Theorem 2.1 from [21], for L,-
valued processes. To formulate it, let ¢ = (¥(z)), f = (fu(z)), 9 = (gl (x))
and h = (hy(x,3)) be functions with values in R, R, R™ and R, respectively,
defined on Q x RY, Q x Hp, Q x Hy and Q x Hp x 3, respectively, where
Hr :=[0,T] x R? and (3, Z, v) is a measure space with a o-finite measure v and
countably generated o-algebra Z. Assume that v is Fy ® B(R?)-measurable, f
and g are O ® B(R%)-measurable and h is P ® B(R?) ® Z-measurable, such that

almost surely
T T . T
| e <o | Sig@rdr<on, || oo vids) di <
0 0 j 0 3
(IV.5.1)
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for each x € R?, and for each bounded Borel set I' = R? almost surely

LLT | fe(z)| dt dx < oo, L (LTZ \g{(l’)!th> v .

L (LTLZ e, 3) [ v(ds) dt) P e < 0. (IV.5.2)

Assume, moreover, that for a number p € [2,00) almost surely

JRd W(INP dx < o0, JOT fRd |ft(x)|p de dt < oo,
T 00 ()2 p/2 dx dt < oo, (IV.5.3)
J, [, (Swior)

KLJNWmWWM®ﬁ<w foLm@m%m»W®ﬁ<w

Theorem IV.5.1. Let conditions (IV.5.1), (IV.5.2) and (IV.5.3) with a number
p =2 hold. Assume there is an O ® B(RY)-measurable real-valued function v on
Q x Hp such that almost surely

f lvg(z)|Pde < oo for all t € [0,T] (IV.5.4)
Rd
and for every v € R? almost surely
t t ) ) t
w(e) = vla) + [ L@ ds+ | gl [ [ hiesadsd)  avss)
0 0 0J3

holds for all t € [0,T], where (w;)i=0 is an m-dimensional F;-Wiener pro-
cess, w(d3,ds) is an Fi-Poisson measure with characteristic measure v, and
7(d3,ds) = w(dj,ds) — v(d;3)ds is the compensated martingale measure. Then
(Ve)te[o,r) @5 an Lyp-valued Fi-adapted cadlag process, satisfying almost surely

t
alf, = 10l 40 [ [ o2l dedud
0 JR

t
+§JJ(%N”%#+@—WM”§H%%M@
0 JRA -
J

t
+pf JJ [vs_[P~2v,_h, dx 7(d3, ds)
0 J3 Jre

¢
+J JJ (|vs— + hol? — [vs— [P — plvs_|[P~2vs_hy) dz 7(d3,ds)  (IV.5.6)
0 J3 Jra
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for all t € [0,T], where vs_ means the left-hand limit in L, at s of v.

Proof. By a truncation and stopping time argument it is not difficult to see that
without loss of generality we may assume that the random variables in (IV.5.3)
have finite expectation.

Our aim is to use an It6 formula from [21], stated in Theorem 2.1 therein.
First we need to show that there exist “regular” versions of the stochastic inte-
grals in (IV.5.5) such that they are measurable in x € R%. Indeed, by Lemma
2.6 in [37] we know that there exists a real-valued function m on Q x [0, T'] x R?
such that

(i) it is measurable with respect to F ® B(R,) ® B(R?),
(ii) for each x € R the process (my(z))sefor] has continuous paths,

(iii) for each z € R? the process (m¢(x))efo.r] is a local Fy-martingale starting
at zero

and for each z € R? we have
t
my(z) = J g/(x) dw!, almost surely for all ¢t € [0,7].
0

By Theorem 3.4 in [21] there exists a function 7 on Q x [0,7] x R? with the
properties (i) & (iii) above, such that for each x € R? the process (r4(x))weo.r]
has cadlag paths, as well as such that for each x € R? we have

t
re(x) = J J hs(x,3) 7(d3,ds), almost surely for all ¢t € [0, T].
0J3

From (IV.5.5) then we get that for each ¢ € C7° almost surely

¢ ¢ ¢

() = (Wp) | (Fugyds | lghauis | [ (). o) 5. d9) (V5)
holds for all ¢ € [0,T]. This we can see if we multiply both sides of equation
(IV.5.5) with ¢ and then, making use of our measurability conditions and the
conditions (IV.5.1) and (IV.5.2), as well as the versions m and r of the stochastic
integrals, we integrate over R? with respect to dz and use deterministic and
stochastic Fubini theorems from [37] and [21] to change the order of integrations.
Due to (IV.5.7), the measurability conditions on v, f, g, h and v and to their
integrability conditions, (IV.5.3) and (IV.5.4), by virtue of Theorem 2.1 from [21]
there is an L,-valued F;-adapted cadlag process (@t)te[o,T] such that for each
¢ € Cf° almost surely (IV.5.7) holds with ¢ in place of v, and almost surely
(IV.5.6) holds with v in place of v. Moreover, for each ¢ € C7° almost surely
(vt,0) = (U, ) for all t € [0,7T], which implies that almost surely v = v as
L,-valued processes, and this finishes the proof of the theorem. O
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Lemma IV.5.2. Let Assumption IV.2.1 hold. Assume (p)wefor) s an M-
solution to equation (IV.3.7). If Ky # 0 in Assumption IV.2.1 (ii) then assume
also

esssupj 12 el (dy) < 0 (a.5.) (IV.5.8)
te[0,7] JRra

Then for each x € R* and € > 0,
) = )+ [ (B @)+ [ () ) v
+ f: U)ol s+ f: J (T 1) O (@) mi(ds) ds (IV.5.9)
o 1
# [ ] st fasa

holds almost surely for all t € [0,T]. Moreover, for each ¢ >0 and p > 2

p

W = 1R +p f (HOP24®, (MF* 1)) aV

P

0

t t
+p f (HOP 2, (£211,)@) ds + 22 Y j (1O P2, | (ME ) O P) ds
k
t
ip j J (6 P=21O (T 1)) vo(ds)ds
0 J3o
t
+pr3 (1P 2ul, (I8 1)) 11 (d3)ds (IV.5.10)
0 1
t
oo [ [ 02202 150 ©) S
1

o I IR R e e S T P T
31 JR

holds almost surely for all t € [0,T].

Proof. Let 1 € CF(RY) such that ¢(0) = 1, and for integers r > 1 define 1), by
dilation, v¥,.(z) = ¥(x/r), x € R%. Then substltutlng ke(x — ). () € CF in place
of ¢ in (IV.3.4), for each z € R? we get

il = ) = polke( — i) + f Lkl — i) ds

+LMS( E(ke(x — )p)) dVE + JLM = )¥r)) vo(ds)ds



J Ll ps(J5 (ko(x — <)1) 11 (dj)ds +J Ll fis— (IE (ko — b)) Ny (ds, ds),

(IV.5.11)
almost surely for all ¢ € [0,T]. Clearly, lim, o ko(x — y)1.(y) = ke(z — y) and
there is a constant NV, independent of r, such that

hee — ()| < N for all a,y e RY,
Hence almost surely

lim g (ko (2 — )¢,) = pe(ke(x — ) for each z € R and t € [0, T]. (IV.5.12)

7—00

It is easy to see that for every w e Q, x,y e R% se [0,T] and 3; € 3; (i = 0,1)
we have

lim A, (ke(z = y)n(y)) = As(he(z —y)) (IV.5.13)

7—00

with £, M*, J7. J¢ and I¢ in place of A. Clearly,

sup |, (z)| = sup [ (z)| < oo, sup | D, (z)] = v~ sup |Dip(x)| < oo,

xeRd xeR4 xeR4 zeR4

sup |D2¢T(:z:)| = r2sup |D2w(:v)| < o0,

zeR4 reR4

and there is a constant N depending only on d and ¢ such that for all z,y € R?
ke(z — y)| + | Dk=(z — y)| + |D*k(x — y)| < N. (IV.5.14)

Hence, due to Assumption IV.2.1, we have a constant N = N (e, d, K, Ky, K1)
such that

(Lo (ke(z — y)tor ()| < N(KG + Kily[* + K7 Y, ]?), (IV.5.15)

D IME(k (@ — ) ()P < N(K§ + K ly* + K7|YL ) (IV.5.16)
k

for z,y e R% s e [0,T], 7 = 1 and w € Q. Similarly, applying Taylor’s formula
to

Ag(ke(x — y)b,(y))  with J7, J¢ and I¢ in place of A,
we have a constant N = N(e,d, Ky, K7) such that

|7 (k(z — y)¢r ()] < sup | D} (ke(z — v)n(v)||ns(y: 30)]?

veRd
< Nns(y.30)], (IV.5.17)
| JE (ke (z — y)ibn(y))| < Sup | D2 (k= (z — v)¢, ()| (v, 31) |
< NI (y,30)) (IV.5.18)
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and

& (k- (2 — y)¥r(y))[* < sup | Dy(ke(z — 0)r (v))*€s(y, 31)

veRd

< NI&(y,30) % (IV.5.19)

respectively, for all z,y € R%, s € [0,T], 3; € 3i, i = 0,1 and w € Q. Using
(IV.5.13) (with A := £), (IV.5.15) and (IV.5.8), by Lebesgue’s theorem on
dominated convergence we get for each z € R?

t

¢
lim | ps(Lo(ke(z — )2by)) ds = f ps(Lsko(z —-))ds almost surely,
0

r—o0 Jq

uniformly in ¢ € [0,7]. Using Jensen’s inequality, (IV.5.13) (with A := M),
(IV.5.16) and (IV.5.8), by Lebesgue’s theorem on dominated convergence we
obtain

r—00

1imsupjo Z |,U,S(M'I;(k}5(l‘ - )¢T)) - MS(MI;(ka(x - ))|2d8

< ess sup |, limsup j j M ke )~ME o) Lol (dy) ds = 0

s€[0,T7] r—00

almost surely, which implies that for r — oo

jo e (ME (ke — i) dVE — f o (MEE (2 — ) dVE

in probability, for each x € R? uniformly in ¢ € [0,7]. Since by Assumption
IV.2.1(ii) and (IV.5.8)

T T
f f 029 30) Pvo(dso0) [1s] (dy) ds < 2K§|n%2f o] ds
0 R4 J3 0

T T
e2kHlilt, || Pl ds w2030l | [ VR @) ds <o (as)
0 0

from (IV.5.13) (with A := J") and (IV.5.17) by Lebesgue’s theorem on domi-
nated convergence we get

lim f L T2k ) ol = f L T = ) ) (as)

r—00

uniformly in ¢ € [0,7]. In the same way we obtain this with J¢, v; and 3; in
place of J", 1y and 3¢, respectively. Similarly, using first Jensen’s inequality and
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Fubini’s theorem we have

lim sup j (I (ha(e — 00)) — pa(IS (ke — )P 11 (d3) ds

r—>00 0

< ess sup 1, lim sup j j ISk )~ S ) ) sl ) s

s€[0,T] r—00
=0

almost surely, which implies that for r — o for each z € R? we have

JLI ps(Ti (el = )n)) Na(dp, ds) _’f Ll (15 (e (w = ))) N (d3. ds)

in probability, uniformly in ¢ € [0, T]. Consequently, letting r — o0 in equation
(IV.5.11), we obtain that (IV.5.9) holds almost surely for each ¢ € [0, .
To prove (IV.5.10) we are going to verify that

filw) o= (Li)® (@) + L (J" 1) () v0(d50) +L (5" 1) () 1 (d3),

g (x) = (MP ) (2),  hi(a,3) = I p)O(2),  vi(z) = i (2),

(weQ tel0,T], x e RY 3 € 3, j=1,2,...d) satisfy the conditions of
Theorem IV.5.1 with the F;-Wiener process w := V' and F;-Poisson martingale
measure 7 := Nj, carried by the probability space (2, F, Q) equipped with the
filtration (F;)i=0. To see that f, g, h satisfy the required measurability properties
first we claim that for bounded O ® B(R?%) ® B(RY) ® Z,-measurable functions
A = Ay(x,y,3) and bounded PR B(RY) @ B(R?) ® Zy-measurable A = A(x,y,3),
the functions

fRdAt(rv,y,a)ut(dy) and JR Bz, y, 3)p-(dy) (IV.5.20)

are O ® B(R?) ® Zy- and P ® B(R?) ® Zy-measurable, in (w,t,z,3) € Q2 x [0, T] x
R? x 3, respectively. Indeed, this is obvious if A;(z,y,3) = aup(x)d(y)k(3) and
Bi(z,y,3) = Bip(x)o(y)k(3) with ¢, ¢ € Cy(R?), bounded Zj-measurable func-
tion k on 39, and bounded O-measurable function v and bounded P-measurable
S on Q x [0,T]. Thus our claim follows by a standard application of the mono-
tone class lemma for functions. Hence one can easily see that our claim remains
valid if we replace the boundedness condition with the existence of the integrals
n (IV.5.20). Using this and taking into account (IV.5.15) and (IV.5.16) and the
estimates obtained by Taylor’s formula,

[ Jlke(z = y)l < Nlns(y,50)*,  |Jike(z —y)| < Nl&s(y, 5P, (IV.5.21)

ISk — y)* < NI&u(y,50)]? (1V.5.22)
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for x,y e R% s € [0,T], 3 € 3; and w € Q, where N = N(g,d), it is not difficult
to show that (LFu)® (z), (MI*p)E) () are O @ B(R?)-measurable in (w,t),
(J7™ 1)) () and (JF* 1)@ () are PQB(RY)®Z,- and PRB(RY)® Z,-measurable
in (w,t,2,30) and (w,t,2,31), respectively, and (I5*1,_)© (2) is P ® B(R%) @ Z,-
measurable in (w,,2,3;). Finally, integrating (J/™ ;)@ (z) and (J&* )@ (z)
over 3¢ and 31, respectively, by Fubini’s theorem we get that f is O ® B(R?)-
measurable. Using the estimates (IV.5.15), (IV.5.16) together with (IV.5.21)
and (IV.5.22) it is easy to see that due to esssuppr ||(R?) < 0 (a.s.) and
(IV.5.8) the conditions (IV.5.1), (IV.5.2) hold. By Minkowski’s inequality for
every z € R? ¢t € [0,T] and w € Q we have

Wt = [ 1] bl = il de < kel PR <

which shows that condition (IV.5.4) holds. To complete the proof of the lemma
it remains to show that almost surely

T
A:f‘[K@MW@Wmm<m,
0 R4

T

B::f f (D [(ME11) O (@) 2)"? dads < o,
0 R4 k
rT

C, = r

Jo JR4

J (J™ 1) (2, 3) yo(dg«,)’pdxds < o,
30

rT
Ce {ngﬁMW@ﬁm%me<w

Jo JRd
T r

G = J |(I§*us)(€)(x,5)|p v1(d3)dxds < o,
0o JrdJsz,

T p/2
H = J f ( |(18% 115) ) (2, 3) |2 Vl(d5)> dxds < 0.
0 JRd 31
To this end note first that with a constant N = N (e, d)

|ko(x = y)| + |Dk=(x — y)| + |D*k=(x — y)| < Nksyo(x —y) for all 2,y € RY,
(IV.5.23)
Thus, using Minkowski’s inequality and Assumption IV.2.1(ii), we have a con-
stant N, depending on ¢, d, Ky, K and K, such that almost surely

s [ et orar) an)as

T

< Nikselt, f

0

p
([ 5+ K30 + 2 ) s
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Hence taking into account esssupgp ) |ps| < o0 (a.s.), (IV.5.8) (if Ky # 0), as
well as the cadlagness of (Y})swe[o,r], we get A < o (a.s.). In the same way we
have B < o (a.s.). By Taylor’s formula and (IV.5.23) for each # € R? we have

1
L@&@—yﬂ<[\Dﬁu@—y—BM%wNM%wPM,
0

1
<ka%u—y—%@@»wmwdw,
0

for all y e RY s € [0,T], 3 € 30 and w € Q. Here, and often later on, the variable
s is suppressed, and the subscript y in J)! indicates that the operator J" acts in
the variable y. Hence Minkowski’s inequality gives

1/p
([ 1ot =P de) "™ < Nlkal, Intw. )2
R

with a constant N = N(d,e). Thus by the Minkowski inequality and Fubini’s
theorem,

p

Gﬁ££r<LJ%(LMUﬂH$—wV¢ﬂU¢MJWMM%BO ds

» [ 2 P
<Nl [ ([ [ o) il ) () s
0 30 JR

T

< 2Nl ks, |

p
([ R+ P ) ds < o (as)

In the same way we get C¢ < o0 (a.s.). By Taylor’s formula and (IV.5.23) for
each x € R? we have

1
\ﬁh@—yﬂ<ﬁ)Dwﬁw—y—%@@Mﬂ%wM&

1
<NLk%@—y—%@JDWK@JN (1V.5.24)

for all y € RY, s € [0,T], 3 € 39 and w € Q, with a constant N = N(d,p,¢).
Hence similarly to above we obtain

T

G<N@”mmmmf

([ o+ s+ Kl bl @) ds < 0 (o)

with a constant N = N(d, p,e). By Minkowski’s inequality, taking into account
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(IV.5.24) and Assumption IV.2.2 we have

H< LT (L qﬂ@ y<z§*Mt><s>|pdx)2/p yl(d3)>p/2 dt
<[ (L (Lot i) i) a

T
_ p
< Nt ks, [ ([ 0+ Balyl+ Kl il @) dt <
0 R

almost surely, with a constant N = N(d, p, ). ]

Lemma IV.5.3. Let Assumption IV.2.1 hold. Assume (ui)cpor) 45 an Ly-
solution of equation (IV.3.8) for a given p = 2 such that esssupep 7y ||z, <
(a.s.), and if Ky # 0 in Assumption IV.2.1 (ii), then

esssupf ly|? [ug|(dy) < oo (a.s.). (IV.5.25)
Rd

t€[0,T]

Then for each € RY and & > 0,
) = o @)+ [ (B Oy ds + [ 20O a2
+ LtL (J™ug) ) (2) vo(d3) ds + LtL (J¥us) () 11 (dz) ds  (IV.5.26)
+ Jot L (I;’*us,)(s)(:v) Nl(dg, ds)

holds almost surely for all t € [0,T]. Moreover, for each € >0 and p > 2

t

t
Ot = 7, | (P2, (ME @) dVEp [ (P20, (E2u) ) ds
0 0

p”thtPﬂﬂw% %WJL|UV2 (T7,)©) vo(da)ds
0

oo [ [ Q2. st miasiasen [ [ (0P, (1500, )0) NG o
1 1

t
+f J f {\uff_) + (If*us_)(g)‘p — |u£5_)|p —p|ug6_)|p_2u§_)(]§*us_)(5)} dxNy(d3, ds)
31 JRd

(IV.5.27)
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holds almost surely for all t € [0,T], where us_ denotes the left limit in L,.

Proof. Notice that equations (IV.5.26) and (IV.5.27) can be formally obtained
from equations (IV.5.9) and (IV.5.10), respectively, by substituting u;(z)dx and
w;—(z)dzr in place of p(dx) and p,_(dz), respectively. Note, however, that
u(z)dz, defines a signed measure only for P®dt-almost every (w,t) € Q2 x[0,T].
Thus this lemma does not follow directly from Lemma IV.5.2. We can copy, how-
ever, the proof of Lemma IV.5.2 by replacing u:(dz) and p;— (dz) with w(x)dx
and w;_(x)dx, respectively. We need also take into account that since (u:)iefo,m
is an L,-valued weakly cadlag process, we have have a set ' of full proba-
bility such that w; (w) = w(w) for all but countably many ¢ € [0,7], and
SUDsefo77 [t (W)L, < o0 for we Q. O

Lemma IV.5.4. Let Assumptions IV.2.1, IV.2.2 and IV.2.4 hold. Let (ju)swe[0,1]
be a measure-valued solution to (IV.3.7). If Ky # 0 in Assumption IV.2.1, then
assume additionally (IV.5.8). Then for e > 0 and even integers p = 2 we have

E sup |uf} < NEu'[} (IV.5.28)

te[0,7] Lo

with a constant N = N(p,d, T, K, Kg,Kn,L, A€ Lo 1] L,)-

Proof. We may assume that E| Mo i < 0. Define

Qy (b, p, B, s ko) = p (| P2 (L) @)+ HEZL N (|2, [(MP* ) @),

k
QY (n(30), 1, k) = p(|p= P2, (J760% 1)),
QM (E(31), 1, ko) = p(|p @2, (JE60* 1)), (IV.5.29)

Rp((51), 1, ke) = |0 + (100 ) O — [0} — p(|p& P20, (15600 1) ),

for p € M, B € R, functions b, o and p on Rd, with values in RY, R¥% and
R respectively, and R%valued functions 7(3¢) and &(3,) on R for each 3; € 3,
1= 0,1, where

L =1""+ p* ™Dy + B'p"D; + B'B', MF=p*D;+B*, k=1,2,..,d.

(IV.5.30)
Recall that (f,g) denotes the integral of the product of Lebesgue measurable
functions f and g over R? against the Lebesgue measure on R?. By Lemma
IV.5.2

diu1h, = Qulbr, o, pr. Bro e, ke dt +L QY (mi(3), s k) vo(d3) di
0

+ S 0 (&(3), e, k) 1 (d3) dt + S Ryp(&e(3)s pir—s ke) Ni(ds, dt) +dGi (1) +dCa(1),
1 1 (IV.5.31)
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where 8; = By(X;) and

Gt =p f (12 (ME* 1)) dVF, (1V.5.32)

0

t
G(t) = p f L (HOP24O, (15#1) @) Ry (dz,ds) ¢ e [0,T]
0 1

are local martingales under P. We write

Rp(&(31), pe—y ko) Ni(dz, dt) = | Rp(&(31), pe—, ke) vi(dz)dt + d(s(t)

31 31
(IV.5.33)
with

[ [ Ro&) k) Nl [ [ Roleela)onoms k) il
0 J31 0

31
which we can justify if we show
T
A= J Ry (Es(3),s s, k)| 1(d3) ds < o (a.s.). (IV.5.34)
0 J3
To this end observe that by Taylor’s formula
Rp(&:(3), ko) < N J PRI ) O 4 (1Y ) @ P e (IV 5.35)

with a constant N = N(d, p). Hence

| Rol(a): ke 11 (dg) < N f P2 1) O A 1) O, 5 dae
1

< N'(1u5 + Aut) + As(t))
with

) = [ I ) do Aalt) = [ 10O, do (1V.536)

and constants NV and N’ depending only on d and p. By Minkowski’s inequality

|ﬂt L, — fu@d
-1

telo =) lan)[ o < | [ lelu, et < Il it (1),
(IV.5.37)

L | fRd(ks(x —y—&(v,3)) — k(v —y)) ut(dy)|2u1(d5)lp/2dx

R4
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= ‘ Lh ‘ JRd(ks(. —y = &(:3)) — k(- — ) mu(dy) ;Vl(dé) v
< ‘Ll J}Rd ‘Dks‘Lp|£t<y75)’ﬂt(dy)rljl(dé)’p/Q
< |Dk.|% |§|L2 (31) <Ld(Ko + Kily| + K1|Yt|)ut(dy)>p, (1V.5.38)

and similarly, using Assumption IV.2.2,

L,
|,

— e p
<@ﬂm&ﬁ@mqym+mM+mwmmm. (IV.5.39)

v1(d3)dx

| e == 6059 = el = ) st

| et == 6050 = el = sl 1)

By (IV.5.35)-(IV.5.39) we have a constant N = N(K¢,p, d, ¢, ||1,(3,)) such that

T T
p
A< Nf WP(1) dt + Nf ( (Ko + Kily| + K\|Yi)) ,ut(dy)> dt < o0 (a.s.).
0 0 R4

Next we claim that, with the operator T¢ defined in (IV.4.22),

a0+ ) = [ [ 1T, 10, Filds, ) = <) for e [0.7),

(IV.5.40)
To see that the stochastic integral ((¢) is well-defined as an It6 integral note that
by Lemma IV.4.6 and (IV.5.37)

T
|, |t < 1t thmd“wsﬁdsaV5u>
0 1

T
<Nmammﬁﬁuﬂnw<wmw

with a constant N = N(d, p, A\, K¢). Since 3; is o-finite, there is an increasing
sequence (31n)i_1, 31n € 21, such that v(31,) < oo for every n and UY_; 3, =
31. Then it is easy to see that

Con®) ‘f J; 15, (3) (11 P21®, (15 1)) Na(ds, ds),
1

Gl®) = [ 13 0D 00, (15900 )
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C3n J L 131n 3) Hs— 7k )Nl(d37d5>7

Canl(1) ‘[ J;llahl §s(3), sy kie) v1(d3)ds
are well-defined, and
Ga(t) = lim (Can(t) = Con(1)), G3(8) = lim Gou(t) — lim Gaa(2),
where the limits are understood in probability. Hence

Go(t) + Go(t) = lim (Gnlt) + Gonlt) = (Gan(t) + Gon(0)))

=m&ngm@Mﬁ%W%Jw@mmw%@D=am

n—0o0

which completes the proof of (IV.5.40). Consequently, from (IV.5.31)-(IV.5.33)
we have

d|lu1($8)|zz,p = Qp(bta O, pta ﬁh l'['t7 ke) dt + 5 QZ(;O)<TIt(5O)7 ,uty k&‘) VO(da) dt
0

+ | Q&G ey ko) + Rp(€(31)s s ko) 1 (d3) dt + dGi(8) + d(t). (IV.5.42)
31
By Lemma IV.4.1, Corollary IV.4.2 and Lemma IV.4.3 we have
Qp(bs, Os, pas Bas prs, k) < N(L* + K2)|pOff (IV.5.43)

with a constant N = N(d, p), and by Lemma IV.4.4 and Corollary IV.4.5, using
that £ < K¢ and 1 < K, we have

Q) (15(3), s, o) < N*Q( NN,

(O + Ry)(Es). s ko) < NEG) 1l (IV.5.44)

with a constant N = N(K¢, K, d,p, \). Thus from (IV.5.42) for ¢ := |,u§6)|1£p
we obtain that almost surely

t
& <|us'ly +N L ds +ms for all t e [0,T] (IV.5.45)

with a constant N = N(T,p,d, K, K¢, K,;, L, \, |€|1,, |7|1,) and the local martin-
gale m® = (3 +(. For integers n > 1 set 7, = 7, A T,,, where (7)., is a localising
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sequence of stopping times for m® and

t

Tp = Tal(e) = inf {t e[0,T]: j cods > n}
0

Then from (IV.5.45) we get
t

Ec,,. < E|Mé€)|}£p + Nf Ec;,, ds <o forte[0,T] and integers n > 1.
0

Hence by Gronwall’s lemma
Ec;,, < NIE\/L[()E)VZP for t € [0,T] and integers n > 1

with a constant N = N(T,p,d, K, , K¢, K,,, L, \, |€|1,,17|1,). Letting here n —
o0, by Fatou’s lemma we obtain

sup E]ugs)\ip < NIE\/;(()E)]%F. (IV.5.46)
te[0,T]

Hence we follow a standard way to prove (IV.5.28). Clearly, from (IV.5.45), tak-
ing into account (IV.5.46), we have a constant N = N (T, p,d, K, K¢, K, L, A, |€| 15, 7] 1,)
such that

Esupc;,, < N]E]ués)\ﬁ + Esup |1 (t A T)| +Esup |[((t A T)| (IV.5.47)
i t<T

t<T t<T

for every stopping time 7. By estimates in Lemmas IV.4.1 and IV.4.6 for the
Doob-Meyer processes ((1) and (¢) of (; and ¢ we have

t t
GO = | 10200 (M) @) P s < Ny | 102, ds < o,
0 0

t

t
|m&m@ﬂww%fmmwsmjmﬂﬁ@<w
0
(IV.5.48)

O - |

0 J31

almost surely for all ¢ € [0,7], with constants N; = Ni(d,p, L) and N, =
No(d,p, A, Ke, [€]1,(31))- Using the Davis inequality, by (IV.5.48) and (IV.5.46)
we get

Esup|(i(t A7)+ Esup |C(t A T)] < 3E<C1>1/2(t AT)+ 3E<§>1/2(t AT)
t<T

t<T

1/2

/ ’ (e) |2p / (e) p g (e)|p 1/2
< NE( |-, dS) < NE(Sup sdelL, | 71, d8>
0 t<T 0
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1 A PR A
< GEsuw 1, + N'E | WO, ds < fEsup W 1, + NEE,
< 0
(IV.5.49)
which by (IV.5.47) gives

Esupc,. < NE|uS \p sEsupc;, .
T T

x x

with constants N, N’, N”, N” depending on T, p, d, K, K¢, K,, L, A, ||, and
17|, Substituting here the stopping time

= inf{t € [0, T : (G )(t) +<O)(t) = n}

in place of 7, from (IV.5.47) by virtue of the Davis inequality we have

Esupc, . NE],ués)ﬁp + %Esup Cinpn < O

t<T t<T

for every integer n > 1. Hence

E sup |p”f] <2NE|uS[;

t<T Apn

and letting here n — oo by Fatou’s lemma we finish the proof of (IV.5.28). O

Lemma IV.5.5. Let Assumptions IV.2.1, IV.2.2 and 1V.2.4 hold. Let (u)ie[o.1]
be an Ly,-solution to (IV.3.8) for an even integer p = 2 such that esssup,ep 7 |ut]L1
0 (a. 5) If Ky # 0 in Assumption IV.2.1, then assume additionally (IV 5.8).

Then we have
E sup |ul} < NEuoly, (IV.5.50)

te[0,T]
with a constant N = N(p,d,T, K, K¢, K, L\, |€| 1o, 111 1,) -
Proof. We may assume E|u0|ip < 0. By Lemma IV.5.3 for every ¢ > 0 equa-
tion (IV.5.27) holds almost surely for all ¢ € [0,T]. Hence following the proof
of Lemma IV.5.4 with u” (x), ut(z)dz, u—(x)dz, |u(z)|dz in place of ) (x),
pe(dx), py—(dz)dz and || (dz), respectively, and taking into account that almost

surely u; = u,_ for all but countable many ¢ € [0, 7], we obtain the counterpart
of (IV.5.45),

t
WP < W+ N f 0@ ds + m2

t
< |uoly, + NJO |us|7, ds +mj  almost surely for all ¢ € [0, 7]
(IV.5.51)

with a constant N = N(T,p,d, K, K¢, K,;, L, \, [€|1,, 7l1,) and a (cadlag) local
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martingale m{ = (f(t) + (°(¢), t € [0, T], where

t

cﬂw=pf<m9P*@%@M?%wai

0

t
ﬁw:LsuﬁmW%Jw@&Mm@@

Since (u)sefo,r is a weakly cadlag Fi-adapted process, we have supe(o 77 [ut]r, <
0 (a.s.), and hence

t
f juy, ds, te[0,T)
0

is a continuous JF;-adapted process for every r > 0. For ¢ > 0 and integers n > 1,
k =1 define the stopping times 7, ; := 7,, A 7, where

t
Tp := inf {t e [0,7]: J |u5|’£p ds > n}
0

for integers n > 1, and (75 )7, is a localizing sequence for the local martingale
m?. Thus from (IV.5.51) for ¢f := |uf[] and ¢, := [uf}, We get, using that for
all € > 0 we have |u® |, < |ul,,

t/\T’rEL,kI
Ecj e <Eco+ NEJ csds
’ 0
tATR
< Ec¢g + NEJ csds

0
t

< Ecg + NEJ Csnr, S < O
0

for every t € [0,7']. Letting here first £ — o0 and then ¢ — 0 by Fatou’s lemma

we obtain .

Ecinz, < Eco+ NEJ Csnm, ds < o0, te€]0,T],
0

which by Gronwall’s lemma gives
Ecinz, < eNTIE\uO\ZiP for t € [0,T7.
Letting now n — oo by Fatou’s lemma we have

sup Elu? < eNTEugl? . (IV.5.52)
te[0,T7] i P

Hence we are going to prove (IV.5.50) in an already familiar way. Analo-
gously to (IV.5.47), due to Lemmas IV.4.1 and IV.4.6, for the Doob-Meyer
processes of (§ and (° we have with constants Ny = Nj(d,p,L) and Ny =
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N2(dapa >‘7 K§> ’€’L2(31)>a
t
GO =7 [ [P, (M) ) P ds
Ot t
< le Hus|(5)|i’; ds < Nlj ]us\i’; ds,
. 0 0
M = || T )9, = WL, o G)ds
"o ,
< szo [Jus| @7 ds < NQL |7 ds. (IV.5.53)

We define the stopping time pf, , = 7 A pn, where
t
pn = inf {t e[0,7]: J |u5|i’; ds = n} for every integer n > 1,
0

and (77)72, denotes, as before, a localizing sequence of stopping times for m®.
Notice that from (IV.5.51), due to (IV.5.52) and (IV.5.53), by using the Davis
inequality we have

Esupcs, . < NEluof?, +Esup|Gi(t A pf)] + Esup C(t A 5.,)]
t<T ™ t<T t<T

T'rpn ) 1/2
< NEJugl; + NIE(J e dt> < o0,
0

where N’ and N are constants, depending only on p, d, T, K, K¢, K, L \, |¢|,
and |7|,. Letting here first & — o0 and then ¢ — 0 by Fatou’s lemma we obtain

T'Apn

1/2
Esup cirp, < NE[uglf, + NE(J |ut|iz; dt) <o for every n. (IV.5.54)
t<T

0

Hence, in the same standard way as before, by Young’s inequality and (IV.5.52)
we have

T 1/2
]Esup Ct/\pn < NE|U0|PL + NE(Sup Ct/\pn J |ut‘ll), dt)
t<T P t<T 0 P

T
p 1 N? p
< NE[uoly, + 3Esupcinp, + TEJ ey, dt
t<T 0

/ p o1
< N'Eluoly, + 3Esupcinp, < 0,
t<T

with a constant N’ = N(T, p,d, K, K¢, K,), L, \, [€|1,, 77| ,), which gives

E sup ¢;np, < 2N'Elugly .
t<T ?
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Letting here n — oo by Fatou’s lemma we finish the proof of (IV.5.50). O

To formulate the next lemma let (S,S) denote a measurable space, and let
H < F®S be a g-algebra.

Lemma IV.5.6. Let p = (pus)ses be an M-valued function on Q x S such that
ws(p) is an H-measurable random variable for every bounded Borel function ¢
onR?, and Ep,(1) < oo for every s € S. Let p > 1 and assume that for a positive
sequence €, — 0 we have

limsupEmga")Vip =: NP < oo for every seS.

en—0

Then for every s € S the density dus/dx exists almost surely, and there is an
L,(RY)-valued H-measurable mapping u on Q x S such that for each s we have

us = dug/dr (a.s.). Moreover, lim,, |u£6”) —us|r, =0 (a.s.) and ]E|u5|7];p < NP
for each s € S.

Proof. Fix s € S. Since (1{)%_| is a bounded sequence in L, := L,((Q,F, P), L,(R%))

n=1
. 15 .
from any subsequence of it one can choose a subsequence, pg ”/), which converges

weakly in L, to some i, € L,,. Thus for every p € CP(R?) and G € F we have
EJ ugan’)(a:)lggo(x) dr — EJ ts(x)1gp(x)dr asn' — oo.
R4 Rd

On the other hand, since

fRd JRd o (x = y)1elo(@)| ps(dy)de < |l e, <o with ¢ = p/(p — 1),

we can use Fubini’s theorem, and then, due to Eu(1) < oo, we can use Lebesgue’s
theorem on dominated convergence to get

B[ e@)iopls)dz - |
Rd

Lo (@) ) — B f 1ep(x) pa(d).

Rd

Consequently,

Elgf o(x) ps(dr) = Elgf p(x)us(x)dx  for any G € F and ¢ € Cf°,
Rd Rd

(IV.5.55)
which implies that djus/dx almost surely exists in L, and equals u,. Notice, that
Us, as an element of I, is independent of the chosen subsequences, i.e., if s

is the weak limit in IL, of some subsequence of a subsequence of u?“, then by
(IV.5.55) we have

Elgf o(x)us(x) de = Elgf p(x)us(z)dx for any G € F and ¢ € Cf°,
Rd Rd
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which means @, = 4 in IL,. Consequently, the whole sequence ug‘g”) converges

weakly to us in L, for every s, and for each s almost surely u, = dus/dx €
L,. Hence pl = gl e L, (a:s.), and thus by a well-known property of

mollifications, lim,,_, \MS") — |z, = 0 (a.s.). Set

A= {(w,5) € QxS pul) is convergent in L, as n — oo},
and let u, denote the limit of 1 A;&”) in L,. Then, since (uf”))ses is an L,
valued H-measurable function of (w, s) for every n, the function u = (us)ses is
also an L,-valued H-measurable function, and clearly, us = du,/dz (a.s.) and
Elus[y,, < NP for each s. O

Lemma IV.5.7. Let Assumptions [V.2.1, IV.2.2 and IV.2.4 hold. Let u =
(te)tefo,r) be a measure-valued solution to (IV.3.7). If Ky # 0 in Assumption
IV.2.1, then assume additionally (IV.5.8). Assume uy = duo/dz exists almost

surely and ]E]ugl’ip < o for some even p = 2. Then the following statements
hold.

(i) For each t € [0,T] the density du./dx ezists almost surely, and there is
an Ly-valued Fi-adapted weakly cadlag process (uy)epo,r) such that almost
surely u, = dy/dx for every t € [0,T] and Esupeoqpy |wly, < 0.

(ii) If ' = (1})eefo,) satisfies the same conditions (with the same even integer
p) as p, then for uy = duy/dx and v, = du,/dx we have

E sup |u; —wl < NE[ug — gy~ forte[0,T], (IV.5.56)
te[0,T]

with a constant N depending only on d, p, K, K¢, Ky, L, A, T, [7|L,(3,)
and [€] 1, (30)-

Proof. By Lemma IV.5.4 we have

Ets[lé]g;] mgf)vgp < N]E]u((f)\%p <w forevery te[0,7] and ¢ > 0
€lo,

with a constant N = N(d,p, K, T, K¢, Ky, L, A, [11] 1,31 €] 12(30))- Moreover, by
Lemma IV.5.6, there is an L,-valued F;-adapted F ® B([0, T'])-measurable pro-
cess (Us)efo,r] such that @, = dy,/dx (a.s.) for every t € [0,7]. To prove (i) let
A be a countable dense subset of [0, 7], such that T'e A. Then

=P _ C (en)|p s (en)|p
Esup |@;|7, = Esupliminf |7 < Eliminfsup [p; ™[}
teA teA N0 n—=% teA

< liminf Esup | [P < NE|du/dz|} < o (IV.5.57)
cA P P

n—oo I
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for a sequence ¢, | 0, and there is a set €)' € Fy of full probability such that

sup |ty (w)|z, <0, du/de =1u, for every we Q and t € A,
teA

and j1;(¢) is a cadlag function in ¢ € [0, 7] for w € ' and p € CF(R?). Hence,
if t € [0,7] and w € ', then there is a sequence ¢, = t,(w) € A such that ¢, | ¢
and , (w) converges weakly in L, to an element, denoted by u¢(w). Note that
since 4y, (w) is dz-everywhere nonnegative for every n, the function u(w) is also
dxz-almost everywhere nonnegative. Moreover, by property of a weak limit we
have

\uy(w)|r, < liminf |4, (w)[z, < sup |ts(w)|L,,
n—a seA
which gives

sup |ug(w)|z, < sup|us(w)|r, < oo forwe Q. (IV.5.58)
te[0,T] seA

Notice that

(up(w), @) = gi_r)gloutn(w,w) = w(w,p) forwe Q' tel0,T] and p € CF,

(IV.5.59)
which shows that u;(w) does not depend on the sequence t,. In particular, for
w e Q' we have @ (w) = w(w) for t € A. Moreover, it shows that (u¢(w), @) is
a cadlag function of ¢ € [0, T] for every ¢ € CF°. Hence, due to (IV.5.58), since
Cy is dense in L, it follows that u;(w) is a weakly cadlag L,-valued function
of t € [0, T] for each w € Q. Moreover, from (IV.5.59), by the monotone class
lemma it follows that w; = du./dx for every w € Q' and t € [0,T]. Define
u(w) = 0 for w ¢  and ¢t € [0,7]. Then (ui)epo,r) is an Ly-valued weakly
cadlag function in ¢ € [0, 7] for every w € 2, and since due to (IV.5.59) almost
surely (ut, ¢) = p(p) for ¢ € CF, it follows that u; is an Fi-measurable L,-
valued random variable for every t € [0,7]. Moreover, by virtue of (IV.5.57)
and (IV.5.58) we have Esupcjor |wly, < . To prove (ii), notice that by (i)
the process @, := u; —uy, t € [0,1], is an Ly-solution to equation (IV.3.8) such
that ess sup,epo 77 [te]z, < o (a.s.). Thus we have (IV.5.56) by Lemma IV.5.5. [

Definition IV.5.1. Let p > 1 and let ¢ be an L,-valued Fy-measurable random
variable. Then we say that an L,-valued F;-optional process v = (vt)te[(),T] is a
V,-solution to (IV.3.8) with initial value v if for each ¢ € C°

(ve, ) =(1, ) + f(vs,ﬁssf))dﬁf(vs, o)AV + fLO vs, Jp) vo(ds)ds

J J vg, Jo©) v1(d3) ds+Jf v, I50) Ny (d3, ds)
31 31
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for P ® dt-a.e. (w,t) e Q x[0,T].

Lemma IV.5.8. Let Assumption IV.2.1 (ii) hold. Let (v¢)seo,r) be a Vy-solution
for a p > 1 such that esssupo ) ||z, < o0 (a.s.), and there is an Ly,-valued
random variable g such that for each ¢ € C§ equation (IV.5.60) for t = T
holds almost surely with g in place of vy. Then there exists an L,-solution
u = (Ut)sefo,r) to equation (IV.3.8) such that ug = ¢ and u = v, P ® dt-almost
everywhere.

Proof. Let ® € Cf° be a countable dense set in L, for ¢ = p/(p — 1). Then there
is a set Q' € Q of full probability and for every w € Q' there is a set T, < [0, T]
of full Lebesgue measure in [0, 7], such that sup,r, |v¢(w)|r, < o for w e €V,
and for all ¢ € ® equation (IV.5.60) holds for all w € " and ¢t € T,,. We may
also assume that for each ¢ € ® and w € Q' equation (IV.5.60) holds for ¢t = T
with ¢ in place of vpr. Since the right-hand side of equation (IV.5.60), which
we denote by Fy(¢) for short, is almost surely a cadlag function of ¢, we may
assume, that for w € Q' it is cadlag for all ¢ € ®. Since T, is dense in [0, 7]
and sup;cp_ [vi(w)|r, < o for w e @', for each w € Q" and ¢ € [0,T") we have a
sequence t, = t,(w) € T, such that t,, | t and v;, — v, weakly in L, for some
element v, = v;(w) € L,. Hence

(0:(w), @) = lim (vr, (W), ) = lim Fi (o) (w, ) = Fy(w, p) forall p € @,

(IV.5.61)
which implies that for every sequence t, = t,(w) € T, such that ¢, | t the
sequence vy, () (w) converges weakly to U,(w) in L,. In particular, v;(w) = v(w)
for w e ¥ and t € T,. For w e Q' we define w;(w) := v,(w) for t € [0,T) and
ur(w) := g(w), and for w € O\ we set u(w) = 0 for all ¢t € [0,7]. Then due
to (IV.5.61) and that almost surely (ur,¢) = Fr(p) for all ¢ € ®, the process
u = (ut)te[oj] is an L,-valued F-adapted weakly cadlag process such that almost
surely (IV.5.60) holds for all ¢ € Ci°. Clearly, u = v (P ® dt-a.e.). Thus we also
have that almost surely

t t
f J (us—, 150) N1 (d3, ds) =J f (us, I8p) N1 (d3, ds)
0 J3; 0 J3;

for all ¢ € [0,7] and hence u satisfies (IV.5.60), with u, replaced by us_ in the
last term on the right-hand side, almost surely for all ¢ € C§° for all ¢ € [0,T7],
i.e., u is an L, solution to (IV.3.8). O

IV.6 Solvability of the filtering equations in L,-
spaces

To show the solvability of the linear filtering equation (IV.3.8), the Zakai equa-
tion, with any JFy-measurable L,-valued initial condition, we want to apply the
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existence and uniqueness theorem for stochastic integro-differential equations
proved in [23]. With this purpose in mind first we assume that the coefficients
o, b, p, B, & 1 are smooth in z € R?, and under this additional assumption we
are going to determine the form of the “adjoint” operators £*, MK+ Jmx J&*
and I%* as operators acting directly on Cg° such that

J A*p(z)p(x) de = J o(x)Ap(x)dx  for all ¢, ¢ € Cf°,
Rd

Rd

for £, M, J¢, J" and I¢ in place of A. The form of £* and M** is immediately
obvious by integrating by parts. To find the form of the other operators (defined
n (IV.4.22)), let ¢ : R — R? such that

7(z) = 1%(2) ==z + {(z), zeR?
is a C'-diffeomorphism on R?. Then observe that for ¢, ¢ € C° we have
(0, T°p) = f ¢(77 (z))| det DT (x)|p(w) da = (| det DT} T ¢, )
R4

with

(*(z) = —w 477 (2) = ~((r (@), T é(x) = d(x + (*(x)).  (IV.6.62)
Similarly,
(6.1%) f )| det D (2)] — 6(a))p() do

R4

Rd z))| det DT~ (2)| — ¢(77 (2)) + &(17 1 (2)) — d())p(x) dz

= (T, ) + <I<*¢ ),

%

where
¢(z) = |det DT (x)| - 1,

and
(¢, Jop) = (¢, I°p) — (¢, (' Dyep)

= (I¢,0) + (T ¢, 0) + (('Dig, ) + ((DiC') ¢, )

= (J ¢, ) + (I h, ) + ((c + DiC)d, ) + ((C* + ') Dy, )

= (J g, 0) + (I ¢, ) + (€ + DiC*" + Db, ) + ((¢* + ) Digh, ),
where

¢ = |det Dr7Y(z)] — 1 — D;¢*".
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Consequently, 7<%, I¢* and J*, the formal adjoint of 7¢, I¢ and J¢, can be
written in the form
— |det DT T,

19 = IS 4 cT%" ) J = J 4 eI + (¢ + C)Dy + e+ Di(CF + ¢F). (IV.6.63)

Lemma IV.6.1. Let ¢ be an R¥*-valued function on R® such that for an integer
m =1 it is continuously differentiable up to order m, and

. k —.
ee%fl] xlean |det(I 4+ 0D¢(z))| =: A > 0, 12}2};&3@ |D*C(z)| =: My, < .
(IV.6.64)

Then the following statements hold.

(i) The function 7 = x + 0((z), x € RY, is a C™-diffeomorphism for each
0 € [0,1], such that

inf inf [det D7~'(z)| = X, max sup |[D*r | < M/ < oo,
9e[0,1] zeRd 1<k<m . pd
(IV.6.65)

with constants X' = XN(d, My) > 0 and M), = M] (d, X\, M,,).

(ii) The function (*(x) = —x + 77 1(x), z € RY, is continuously differentiable
up to order m, such that

sup ] = supl|. (IV.6.66)
sup |DkC | < M* max sup \D¢|,  fork=1,2,..,m,
(IV.6.67)

inf mf |det(I+6DC*)| = X inf mf | det(I + 6DC¢)], (IV.6.68)
0el0,1] 0e(0,1]

with a constant M} = M} (d, X\, M,,) and with X' from (IV.6.65).
(iii) For the functions ¢ = det(I+ DC*) — 1, ¢ = ¢ — D;C* and ¢ + ¢* we have

sup |D'e(z)] < N max sup |D’C|, sup |[D"¢(x)] < N max sup|D/¢[?

zeRd 1<+l pa reRd 1<j<k+1 Ra
(IV.6.69)
sup |D*(¢ + ¢*)| < N max sup|D¢J. (IV.6.70)
R4 1<j<k+1 R4

foro<i<m-—1,1<k<m—1 with a constant N = N(d, A\, m, M,,).
Proof. To prove (i) note that (IV.6.64) implies that 7 is a C"™-diffeomorphism
and the estimates in (IV.6.65) are proved in [42] (see Lemma 3.3 therein). From
7(z) = z + ((x), by substituting 77!(z) in place of x we obtain (*(z) =
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—((77(z)). Hence (IV.6.66) follows immediately, and due to the second es-
timates in (IV.6.65), the estimate in (IV.6.67) also follows. Notice that

v+ 0" (@) =7 (@) + (7 (@) = 0 (@) = 7 (@) + (L= 0)C(r (@),
Hence, by the first inequality in (IV.6.65),

| det(T + 0DC*)| = | det(I + (1 — 0)D¢(771))|| det D771
> N|det(T+ (1 —0)D¢(77)],
which implies (IV.6.68). To prove the inequalities in (IV.6.69) notice that for

the function F(A) = det A, considered as the function of the entries AY of d x d
real matrices A, we have

0
0AY

det A|, =6, 1,5 =1,2,....d.

Thus

0
— det(I D¢*
% et(I +60D¢

and by Taylor’s formula we get

Moo = 05 D¢ = DiC*,

1
¢ =det(I+ D¢*) — detl = J aXUF(]I + 60D(*) d@DiC*j
0
and
¢ =det(l + DC*) —detl — D;¢*™ = f (1-— H)WF(]I +6DC*) dHDiC*]DkQ*l.
0

Hence using the estimates in (IV.6.67) we get (IV.6.69). Note that

1
o=

C+ ¢ =t —0c)|,_, = ¢ 0 (D) (771 — 6¢*) do.

Hence by the second estimate in (IV.6.64) and (IV.6.67) we obtain (IV.6.70). O

In this section for € > 0 and functions v on R? we use the notation v() for
the convolution of v with s.(-) = e 9k(-/¢), where & is a fixed nonnegative C°
function of unit integral such that x(z) = 0 for |z| > 1 and k(—x) = k(x) for
re R4,

Lemma IV.6.2. Let 7 be an R¥*-valued function on R® with uniformly continu-
ous derivative Dt on R? such that with positive constants A and K

A< |detDr| and |D7|<M onR%
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Then
IN<|det DT®| on R

for e € (0,e0) for g9 > 0 satisfying 5(go) < N/ (2d\dM1), where 6 = §(¢) is the

modulus of continuity of DT.

Proof. Clearly,

sup | D;7 — D; 7@ < 6(e) fore > 0,05 =1,2,...d.

xeR4
Hence, for € > 0,
. . d . .
sup [II%_, D;, 7" — H?=1Dji7—z(£)| < Z M* sup |Dj, ¢ — DjiTZ(a)’ < dM15(e),
zeRd i=1 Rd
for every permutation (ji, ..., jq) of 1,2, ...,d. Therefore

sup | det DT — det DT®)| < d!dM47§(e)  for £ > 0.

zeRd

Consequently, choosing g9 > 0 such that 6(eo) < \/(2d!dM91), for € € (0, &)
we have

|det D7) > |det Dr| — |det D — det D79| = A\/2 on R%.
O

Corollary IV.6.3. Let ¢ be an R%-valued function on RY such that D( is a
uniformly continuous function on R? and

0 <A<inf det(I+ D(¢), sup|D(| <M < w (IV.6.71)
R Rd

with some positive constants \ and M. Let gy > 0 such that §(go) < N/ (2d'dM1).
Then for every € (0,20) the first inequality in (IV.6.71) holds for ¢ in place
of ¢ with A\/2 in place of X. Moreover, supga |D¥¢®)| < My for every integer k
with a constant My = My(d, M,e), where My = M. Hence Lemma IV.6.1 holds
with ¢ in place of ¢, for e € (0,e) for every integer m > 1.

Consider for € € (0,1) the equation

du =L dt + MSF*us dVF + J T us vo(d3 )t

30
+f JEEuE vy (d3)dt + f IEuE Ny (d3, dt),  with uf, = 0, (IV.6.72)
31 31

where
MEE = p*Dy + B k=1,...,d
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L5 = a7 Dy + b D; +5f/vl§’f, B, = B(t, X, Y)),

z—:z ik .o
t 7 = 22 © (E pg) pi(,‘) )7 W] :1727"'7d7

the operators J; and J& are defined as J¢ in (IV.3.1) with 7' and € in place
of &, and the operator If is defined as I* in (IV.3.1) with £t(E) in place of &.
(Remember that v®) denotes the convolution of functions v in z € R?, with the
kernel . described above.) We define the Lj-solution (u;)po,r] to (IV.6.72) in
the sense of Definition IV.3.2. Define now for each w € €2, ¢ > 0 and 3; € 3; the
functions

T (x) =z + 00 (x), T(x) =x+ (), zeRY (IV.6.73)

where, and later on, we suppress the variables 3;, ¢ = 0, 1.
We recall that for p > 1, L, denotes the space of L,-valued Fj-measurable
random variables Z such that ]E|Z 7, < o, as well as that for p,q = 1 the no-

tation IL, , stands for the space of Lp-valued Fi-optional processes v = (V¢ )sefo,1]

such that
T p/q
o) =E (L ol? dt) < .

Let By denote the set of those functions 1 € [ ., IL, such that ¢(x) = 0 for |z >
R for some constant R > 0 depending on ¢ and such that sup g Sup,cga |(x)| <
. It is easy to see that By is a dense subspace of LL,, for every p € [1, ).

Lemma IV.6.4. Let Assumptions IV.2.1, IV.2.2 and IV.2.4 hold with K, = 0.
Assume that the following “support condition” holds: There is some R > 0 such
that

(be(x), Be(), oe(), pe(w), mi(x, 30), &(2,51)) = 0 (IV.6.74)
forwe Q, t >0, 50630, 31 € 31 and x € R? such that |z| = R. Let ¢ € By
such that ¥(x) = 0 if |x| = R. Then there exists an ¢y > 0 and a constant

R = R(R, K, Ky, K¢, K,)) such that the following statements hold for all m >
and even integers p = 2.

(i) For every € € (0,e0) there is an Ly-solution u® = (uf)eo,r to (IV.6.72),
which is a W -valued weakly cadlag process. Moreover, it satisfies

E sup |u;f5 W < 0 and u(z) =0, fordr-a.e xe{reR?:|z|> R},
te[0,T7]

(IV.6.75)
almost surely for all t € [0,T].
(ii) There exists a unique Ly-solution u = (uy)por) to equation (IV.3.8) with
initial condition ug = 1, such that almost surely u,(x) = 0 for dx-almost every
ref{reR: x| = R} for every t €[0,T] and

E sup |uf, <NE[[; (IV.6.76)

te[0,T]
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with a constant N = N(d,p,T, K, K¢, K, L\, |€] 1o, 1] 1,) -
(113) If ()2, < (0,20) such that e — O then we have

u" —u  weakly in L, ,, for every integer ¢ > 1.

Proof. To prove (i), we look for a W)"-valued weakly cadlag Fi-adapted process
(ug )seo,r) such that for each ¢ € CF almost surely

(45, 0) =, o) + f@%fww+jMM“mmw

JJ Jn*aagp V0d5 d5+ff Jﬁ*avsp Vl(dﬁ)d
30 31

J J {* 27()0 Nl(d57d5)7 (IV677)
31

holds for all ¢ € [0,T], where by virtue of (IV.6.63)
IEF = I8 8T8 g8 = JE SIS (64 4 €O D, 485 + Dy (€ 4£197),
TP = T ORI G ) D4 O 4 D ), (V.678)

with the functions

(@) = —z+ () (2), §'(2) = —2+ (1) (2),

¢ (2) = [det D(r*) " ()] =1, " (2) = |det D(r") "} (z)] — 1,

¢ (2) =|det D(1) 7 (2)| = 1 — Di&5* (2),
¢ (x) =|det D(r") " (z)| — 1 — Dif*(z) xeRY, (IV.6.79)
and clearly, .
M = —Di(pO"¢) + B¢,

L3¢ = Dij(az¢) = Di(b"0) — BiDi(p"0) + FIBE" ¢ for o Wy
Note that by Assumption IV.2.1(i) together with Assumption IV.2.4(i) & (ii),
for each w e Q, t € [0,T] and 3; € 3;, i = 0, 1, the mappings

TN x) =z +nelx,30), and 7(z) =+ &(2,51)

are biLipschitz and continuously differentiable as functions of # € R?. Hence, as
biLipschitz functions admit Lipschitz continuous inverses, it is easy to see that
for each we Q, t € [0,T] and 3; € 3;,7 =0, 1,

N < inf |det DT"(z)|, and X < inf |det D7%(x)|

zeRd zeRd
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for some X' = N(d,\, L, K,,, K¢). Due to Assumption IV.2.4 (i) by virtue of
Corollary IV.6.3 there is 4 € (0, 1) such that for € € (0, &) the functions 7% and
75 defined in (IV.6.73), are C*-diffeomorphisms on R¢ for all w € Q, t € [0, T
and 3;, i = 0,1. Moreover, the functions defined in (IV.6.79) are infinitely
differentiable functions in x € R?, for all t € [0,T] and 3; € 35,7 = 0, 1.

Hence we can easily verify that for each € € (0, gy) equation (IV.6.72) satisfies
the conditions of the existence and uniqueness theorem, Theorem 2.1 in [23].
Hence (IV.6.72) has a unique L,-solution (uf)po,r] which is weakly cadlag as
W)-valued process and satisfies the first equation in (IV.6.75), for every m > 1.
Due to the support condition (IV.6.74) and that || < KoK, |n| < KoK, there
is a constant R = R(R, Ky, K, K¢, K,,) such that for € € (0,£0) and s € [0,T] we
have

Loip=MFo =150 =JS0=J =0, k=12 ..,d,

for all ¢ € C° such that o(z) = 0 for |z| < R. Thus from equation (IV.6.77) we
get that almost surely

(uf, ) =0 for all p € C such that p(z) =0 for |z| < R
for all ¢ € [0, T], which implies
ui =0 for dr-almost every z € {x € R |z| > R} for all t € [0,7] (IV.6.80)
for each e € (0,&). To prove (ii) and (iii), note first that

sup [uf|g, < RV sup [uf],, < o (as.).
te[0,T] te[0,T]

It is not difficult to see that o\, p{, b and B! are bounded and Lipschitz
continuous in z € RY, uniformly in w € Q, t € [0,7] and ¢ € (0,&,). Moreover,
for £ € (0, )

1) (2,30)] < Ko€(Go), 167 (2, 51)] < Kof(31),

0 (2, 30) — 1 (0, 30)| < 7Go) |z —yl, 167 (2,31) — €2y, 31)] < EGa)|z — v,

for all z,y e RY, we Q, te [0,T], 3i € 35, i = 0,1. Hence by Lemma IV.5.5 for
e € (0,e09) we have

Eluz s + ]E(J

0

T
ity dt)"" < Busf, + TE sup [l < NEJ,
te[0,T7]
(IV.6.81)
for all ¢ > 1 with a constant N = N(d,p, T, K, K¢, K, R, |1l|L,, |€|1,). By virtue
of (IV.6.81) there exists a sequence ¢, | 0 such that u** converges weakly in L, ,

to some u € L, , for every integer ¢ > 1 and uy" converges weakly to some g
in L, (Fr), the space of L,-valued Fr-measurable random variables Z with the
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norm (E\Z!’ip)l/p < oo0. From (IV.6.81) we get
Elgl7, + [l , < NE[¢[; ~ for every integer ¢ > 1 (IV.6.82)

with the constant N in (IV.6.81). Taking €, in place of ¢ in equation (IV.6.77)
then multiplying both sides of the equation with an F;-optional bounded process
¢ and integrating over  x [0, 7] against P ® dt we obtain

5
F(u™) = F(y™) + > Fen(u), (IV.6.83)
i=1
where F' and F} are linear functionals over L, ,, defined by

T oo
Fv) ::EJO bolvn o) dt,  FE(0) ::EL QStL(US,Ei(p)dsdt,

T t
Fe(v) :—EL " JO (00, M) dVF dt,

Fy(v)

T t
E f " f f (09, T 0) vo(d3)ds dt.
0 0 J3o
T t .
Fi(v) = E f " j L (09, JE ) 11 (d3)ds dt,

T t ~
Fi(v) :=E f ¢ f L (00, I ) N (d3, ds) dt

for a fixed ¢ € Cj°. Define also F; as I} for ¢ = 1,2,...,5, with L. ME i Jé
and I§ in place of £, MZ*, J7 | J& and I¢, respectively. It is an casy exercise
to show that F' and F; and F;, i = 1,2,3,4,5 are continuous linear functionals
on L, , for all ¢ > 1 such that

lim sup |Fi(v)— Fi(v)|=0 foreveryq> 1.

el lvlLp,q=1

Since u®" converges weakly to @ in L, ,, and F;™ converges strongly to F; in
¥ , the dual of L, ,, we get that F;"(u") converges to F;(u) for i = 1,2,3,4,5.

p,q’

Therefore letting € | 0 in (IV.6.83) we obtain

ELT b Ty, ) dt = ELT@(@Z),@) dt+ELT¢t f(as,ﬁs@) ds dt

T t T t
+EJ gbtf(us,/\/l’;go) dI/;kdtJrEJ gbtjf (@, J10) vo(d3)ds dt  (IV.6.84)
0 0 0 0 J3o
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T t T t
E j b f f (@, J0) v (d3)ds dt + E f " f f (1, I0) Ny (ds, dis) dt.
0 0 J3; 0 0 J3

Since this equation holds for all bounded F;-optional processes ¢ = (¢;)e[o,r] and
functions ¢ € C° we conclude that @ is a V-solution to (IV.3.8). Letting n — oo
in equation (IV.6.77) after taking e, in place of €, T' in place of ¢, multiplying
both sides of the equation with an arbitrary Fr-measurable bounded random
variable p and taking expectation we get

T
Ep(g,¢) = Ep(¢¥, ¢) + EPL (s, Lsp) ds

T
+EpJ (us,ngp)deJrEpr Us, J1@) vo(d3)ds
30

+]Epf J U, JS@) v1(d3) ds—HEpf f U, IS0) Ny (d3, ds),
31 31

which implies that almost surely

T

(9,¢) = (¥, ) + JT(awZ )d8+f (s, MEp) dVF

J J Us, JIo) vo(d3 ds—i—J J Us, Sgp v1(d3 ds—i—f J Ug, I gp N1 (d3,ds).
30 1 31

Letting ¢ — o0 in (IV.6.82) we get

Eesssup |y, < NE[Y[; < oo
te[0,7] i

Consequently, by virtue of Lemma IV.5.8 we get the existence of a P ® dt-
modification u of @, which is an L,-solution to (IV.3.8), and hence

E sup |ul7, < NE[] . (IV.6.85)

te[0,T]

By (IV.6.80) almost surely u;, = 0 for dz-almost every r € {z € R? : |z| > R},
for all ¢ € [0, T'], which due to (IV.6.85) by Hoélder’s inequality implies

E sup |wlp, < NRICVPE[Y|, < oo.
te[0,T7]

Hence by (IV.5.50) in Lemma IV.5.5 the uniqueness of the L,-solution follows,

which completes the proof of the lemma. O

Corollary 1V.6.5. Let Assumptions [V.2.1, IV.2.2 and 1V.2.4 hold with K; =
0. Assume, moreover, that the “support condition” (IV.6.74) holds for some R >
0. Then for every p = 2 there is a linear operator S defined on L, such that S
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admits a P ® dt-modification u = (ut)te[oga] which is an Ly-solution to equation
(IV.3.8) for every ¢ € L,, with initial condition uy = 1, and

E sup |ul7, < NE[Y7 (IV.6.86)

te[0,T7]

with a constant N = N(d,p, T, K, K¢, K,, L, \, |€|1,, 71| 1,). Moreover, if ¥ € L,
such that almost surely (z) = 0 for |x| = R, then there is a constant R =
R(R, K, Ky, K¢, K,)) such that almost surely uy(x) = 0 for dz-a.e. x € {x e R?:
lz| = R} for all t € [0,T].

Proof. If p is an even integer, then the corollary follows from Lemma IV.6.4.
Assume p is not an even integer. Then let py be the greatest even integer
such that py < p and let p; be the smallest even integer such that p < p;. By
Lemma I'V.6.4 there are linear operators S and St defined on By such that Sy :=
(u¢)efo,r) 1s the unique L, -solution of equation (IV.3.8) with initial condition
ug = 1 € By and Srtp = up. for i = 0,1. Moreover, by (IV.6.76) we have

‘ST’LMLI%‘ + |S¢‘H‘pi,q < N|¢|]Lpi for i = 0,1

for every q € [1,00) with a constant N = N(d,p, T, K, K¢, K,,, L, A, |€|1,, 1711, )-
Hence by a well-known generalization of the Riesz-Thorin interpolation theorem
we have

Srpl, < N, S|, < N[, for every g e [1,0), (IV.6.87)

for ¢ € By with a constant N = N(d,p, T, K, K¢, K,), L, \, |€|1,, 71| 1,). Assume
1 € L,. Then there is a sequence (¢")x_, < By such that " — ¢ in L, and
u” = S¢Y" has a P ® dit-modification, again denoted by u™ = (u})w[o,r7 Which is
an L,-solution for every n with initial condition u{ = ¥". In particular, for each
p € CF almost surely

(uf, ) = (6", >+f< £s¢>ds+J< MEg)dvF + fLu J1) volds) ds

f J uy, Jép) vi(ds) d8+f f ul, 180) Ny (d3, ds), (IV.6.88)
31 31

holds for all ¢ € [0, T']. By virtue of (IV.6.87) u™ converges in LL,, , to some u € L,, ,
for every ¢ > 1, and u} converges in L, to some g € IL,,. Hence, letting n — o0
in equation (IV.6.88) (after multiplying both sides of it with any bounded F-
optional process ¢ = (¢;)eo,r] and integrating it over  x [0, T] against P ® dt)
we can see that u is a V,-solution such that (IV.6.87) holds. Letting n — oo in
equation (IV.6.88) with ¢ := T (after multiplying both sides with an arbitrary

99



Fr-measurable bounded random variable p and taking expectation) we get

T

T
Ep(g, ¢) = Ep(v, @) + Epf (s, Lstp) ds + ]Epf (s, MEp) AV}
0 0

T T
+Epj J (as, JTp) vo(d3) ds + Epf J (s, Jfgp) v1(d3) ds
0 J3g 31

+Epj J u37 90 Nl d57d5>
31

which implies

T T

(U, Z:SQO) ds + J (U, ngo) de

0

+LT LO(uS,Jggo) uo(dg)ds+fT Ll(us,J&p) vi(d3) ds

f f (tis, I8¢) N1(d3,ds) (a.s.).
31

Letting ¢ — oo in (IV.6.87) we get

(9,9) = (¢,¢)+J

0

Eesssup |uly, < N7
te[0,T P

Hence by virtue of Lemma IV.5.8 the process u has a P ® dt modification
u = (Ut )se[o,r] Which is an L,-solution to equation (IV.3.8) and (IV.6.86) holds.
Finally the last statement of the corollary about the compact support of u can be
proved in the same way as it was shown for u° in the proof of Lemma IV.6.4. [

IV.7 Proof of Theorem IV.2.1

To prove Theorem IV.2.1 we want to show that for p > 2 equation (IV.3.8) has
an Ly-solution which we can identify as the unnormalised conditional density of
the conditional distribution of X; given the observation {Y; : s < t}. To this end
we need some lemmas. To formulate the first one, we recall that W denotes
the space of W)"-valued Fo-measurable random variables Z such that

2Ly, = EIZfy,. < 0.

Lemma IV.7.1. Let (X,Y) be an Fy-measurable R*? -valued random variable
such that the conditional density m = P(X € dz|Y)/dz exists. Assume (€2, Fo, P)
is “rich enough” to carry an R*-valued random variable ¢ which is independent
of (X,Y) and has a smooth probability density g supported in the unit ball centred
at the origin. Then there exists a sequence of Fy-measurable random variables
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(X)), such that the conditional density m, = P(X, € dz|Y)/dx exists, almost

n=1

surely mp(x) = 0 for |x| = n + 1 for each n,

lim X,, = X for every w € (),

n—0o0

and, if m € Wi for some p =1, m =0, then m, € W' for every n =1, and
lim |, — 7|wm = 0.

n—0o0

Moreover, for every n = 1 we have
E|X,|?< N(1+E|X|?) for every q € (0,0)

with a constant N depending only on q.

Proof. For ¢ € (0,1) define
X = X1x< + ¢ for integers n > 1.

Let g. denote the density function of €(, and let u; be the regular conditional
distribution of Zj := X1,x<x given Y. Then

i) = | sl =) awd 2@ = | ole—prdy, seRe

are the conditional density functions of X} and X + €, given Y, respectively.
Clearly, if m € W', then u,(f) and 7() belong to W for every k and . Moreover,
by Fubini’s theorem, for each multi-index o = (ay, ..., aq), such that 0 < |a| <
m we have

Do) - D, |

Rd

D%g.(x —y)pur(dy) J D% (x—y)m dy‘ dx
(IV.7.1)

R4

- fRd E‘ y D%g.(z — y)(dy) — fRd D%g.(z — y)m(y)

- JRd E[E(D%g.(z — Z) — D*ge(x — X)|V)P da

< f E‘Dage(x_zk>_Daga<x_X)‘p dx = ]EJ \Dags(x_Zw_Daga(x_X)‘p dl‘,
R4 Rd

where the inequality is obtained by an application of Jensen’s inequality. Clearly,
for every 0 < |a] < m,

f ‘Do‘gg(:p—Zk) D%g.(z— X‘ dr < 2P|g:[lym < oo for every we Q and k > 1.
Rd
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Hence by Lebesgue’s theorem on dominated convergence, for each 0 < |a| < m,

lim EJ |D%g-(z — Zy) — D%g(z — X)|" dz
R4

k—o0

=Elim | [D%.(z - Z) — D%g.(x — X)[" dz = 0.
k— Jpd

Consequently, by virtue of (IV.7.1) we have limy_, | ,uff) — W(E)|W;n = 0 for every
e € (0,1). Since almost surely [1&) — 7lym — 0 as e | 0, and |1 — 7|y, <
27wy for every w e 2, we have lim, g |m(€) — T|wpn = 0 by Lebesgue’s theorem
on dominated convergence. Hence there is a sequence of positive integers k,, 1 o
such that for 7, := ,uki/") we have lim,,_, |7Tn—7T|WgL = 0. Clearly, for X,, := X"
with e, = 1/n we have lim, ., X,, = X for every w € ). Moreover, for every
integer n > 1

E| X, |7 < N(E|X1|X‘<kn\q + EZLE]CP) < N(E|X|?+1) for ge (0,0)
with a constant N = N(q), which completes the proof of the lemma. O

To formulate our next lemma let x be a smooth function on R such that
x(r) =1for r e [-1,1], x(r) = 0 for |r| = 2, x(r) € [0,1] and /(1) = d%x(r) €
[—2,2] for all r € R.

Lemma IV.7.2. Let b = (b) be an Ré-valued function on R™ such that for a
constant L
|b(v) —b(2)| < Llv — 2| for allv,z e R™. (IV.7.2)

Then for b,(z) = x(|z|/n)b(z2), z € R™, for integers n = 1 we have

b (2)| < 2nL+1b(0)], |bn(v) —bn(2)] < (BL+2[b(0)])|v—2| for all v,z e R™.
(IV.7.3)

Proof. We leave the proof as an easy exercise for the reader. O

We will truncate the coefficients £ and 1 of the system‘ (1.0.2) by the help of
the following lemma, in which for each fixed R > 0 and € > 0 we use a function
k2 defined on R? by

K@) = [ o p)kty) dy. (IV.7.4)
R
17 |$| < R + 17
o (x) = 1—|—€log(R|;r|1), R+ 1< |z| < (R+1)e,
0, 2] = (R + 1)eY/,

where k is a nonnegative C* mapping on R? with support in {z € R?: |z| < 1}
and unit integral. Notice that k' € Ci° for each R, e > 0, such that if z,y € R?
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and |y| < |z|, then

R R elz —y|
and hence
R R R R €|I —y|
)= < [ el a0 -ulbw du < Lt (v.Ts)

Lemma IV.7.3. Let £ : R — R? be such that for a constant L > 1 and for
every 0 € [0, 1] the function 1y(x) = x + 0¢(x) is L-biLipschitz, i.e.,

L™z —y| < |mo(z) — 7o(y)| < Lz —y| (IV.7.6)

for all z,y € RY. Then for any M > L and any R > 0 there is an ¢ =
e(L, M, R, |£(0)]) > 0 such that with k% := k2 the function &% = kB¢ van-
ishes for |x| = R for a constant R = R(L, M, R,|£(0)]) > R, |€F| is bounded by
a constant N = N(L, M, R, |£(0)|), and for every 0 € [0, 1] the mapping

7 (z) =z + 0% (x), weR?
18 M -bilaipschitz.

Proof. To show 7/t is M-biLipschitz, we first note that if z,y € R? with |z| >
ly| then 70%(z) — 75'(y) = A + B where A = Tgr()() — Tour(w)(y) and B =
0¢(y) (kT (z) — k¥ (y)). The biLipschitz hypothesis (IV.7.6), with  replaced by
0x®(z), implies L™z —y| < |A| < L|z — y|. Due to (IV.7.5) and since ¢ has
linear growth, we can choose a sufficiently small € = €(L, M, R,|£(0)|) to get
|B| < (L™' — M~1)|z — y| and hence

MMz =yl < |7 (2) = 77 ()] < Mz — |

as required. Finally the boundedness of [¢%| follows from the fact that it vanishes
for |x| > Re'/ and that & has linear growth. O

Remark TV.7.1. Note that if 7 is a continuously differentiable L-biLipschitz func-
tion on RY then
L™ < |det(D7(x))] < LY for x € RY.

Proof. This remark must be well-known, since for d = 1 it is obvious, and for
d > 1 it can be easily shown by using the singular value decomposition for the
matrices D7, D77}, or by applying Hadamard’s inequality to their determinants.

m

Proof of Theorem IV.2.1. The proof is structured into three steps. First we
prove the theorem for the case where p = 2. As second step we prove the results
for all p > 2 for compactly supported coefficients and compactly supported initial
conditional densities. The third step then involves an approximation procedure

103



to obtain the desired results for coefficients and initial conditional densities with
unbounded support.

Step I: Let Assumptions IV.2.1, IV.2.2 and IV.2.4 hold. Then by Theorem
ITI.1.1, the process (Pt)te[O,T] of the regular conditional distribution P, of X,
given F, and pu = (1e)eefor] = (Pe(*) " ieo,r], the “unnormalised” (regular)
conditional distribution process, are measure-valued weakly cadlag processes,
and p is a measure-valued solution to equation (IV.3.3). (Note that ()0,
is the positive normalising process which we recall in 1V.3.6.) Assume that
ug = P(Xo € dr|Yp)/dr exists almost surely such that Eluolj < o for p = 2.
In order to apply Lemma IV.5.7 if K; # 0, we need to verify that

G(p) = sup f |z|? py(dz) < 0o almost surely. (IV.7.7)
te[0,7] Jra

For integers k > 1 let Q := [|Yo| < k] € FY. Then Q 1 Q as k — co. Taking
r > 2 from Assumption IV.2.3, by Doob’s inequality, and by Jensen’s inequality
for optional projections we get

E sup (E(|1X*10,|7)))"* <E sup (E( sup |X,[*1q,|F)))"
te[0,T] te[0,T] s€[0,T]

< NE(E( sup |X,[*1q,[F}))"* < NE sup [X,[ "1,
SE[O,T] SE[O’T]

for all £ with a constant N depending only on r. Thus, by Fubini’s theorem and
Holder’s inequality, if K # 0, for all & we have

Gr(p) :=E sup f 2| (dz) 1,
te[0,7] Jrd

= E sup E(|X,[*|F) (%) 1o, = E sup E(IX[*10,[F)(%); "

t€[0,T7 t€[0,T7]
<E sup E(|X;[*10,|F)) sup (%);!
t€[0,T] te[0,T]

< (E sup (E(|Xt|219k|.7'?/))T/2)2/T(E sup (ofyt)—w)l/r/
te[0,T] t€[0,T1]
< N(E sup |X,['10,)"",

te[0,T]

where 2/r+1/r' =1, N = N(r,d,C) is a constant, and we use that by Jensen’s
inequality for optional projections and the boundedness of | B|

E sup (%,) " <E sup v, :=C < (IV.7.8)
te[0,T] te[0,T]

with a constant C' only depending on the bound in magnitude of |B| and r.
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Hence, using (IV.2.1) with ¢ = r we have

Ge(p) < N(1+E sup |Xi|'1g,) < N'(K" + E|X,|") < 0,
te[0,T7]

for constant N = N(r,d,C) and N’ = N'(d, d',r, K, Ko, K1, K¢, K,), T, |€| 15, |77 1,)-
Since for all £ > 1 we have that G () < oo we can conclude that (IV.7.7) holds.
Hence, by Lemma IV.5.7, almost surely dpu,/dx exists, and there is an Lo-valued
weakly cadlag stochastic process (u¢)epo,r] such that almost surely w, = dy,/dx
for all ¢t € [0, T] and

E sup |wl|7, < NE|mol|7, (IV.7.9)

te[0,T]

for every T with a constant N = N(d,d', K, K¢, K,, L, T, |€| 15, |7 £,, ). Thus
m = dPy/dr = w %, t € [0,T], is an Lo-valued weakly cadlag process, which
proves Theorem IV.2.1 for p = 2.
Step II. Let the assumptions of Theorem IV.2.1 hold with K; = 0 in Assumption
IV.2.1. Assume that mp = P(X, € dz|Yy)/dx € L, for some p > 2, such that
almost surely ug(z) = 0 for |x| = R for a constant R. Assume moreover, that
the support condition (IV.6.74) holds. Then by Corollary IV.6.5 there is an
Ly-solution (vt)se[o,r) to (IV.3.8) with initial condition vy = 7y such that

E sup |u|] < NE[p[} (IV.7.10)
te[0,T]

with a constant N = N(d,d’, K, L, K¢, K,), T, p, \, [€|1,, 71|1,), and almost surely
v(z) =0 for dov-a.e. e {xeR?:|z| > R} for all t € [0, T]

with a constant R = R(R, K, Ko, K¢, K,)). Hence (Vt)te[o,1] 1s also an Lay-solution
to equation (IV.3.8), and clearly,

pd(p—1
sup |vglp, < RUVP sup ||y, < oo
te[0,T'] te[0,T7]

Since in particular E"/To‘%2 < o0, by Step I there is an Lo-solution (u)seqo,r] to
equation (IV.3.8) such that almost surely w; = du,/dx for all t € [0,T], where
pe = Py(°y¢) ™! is the unnormalised (regular) conditional distribution of X; given
FY. Clearly,

sup |wln, = sup (%) ! < o (as.).

te[0,T7] te[0,T]
Hence by virtue of (IV.5.50) in Lemma IV.5.5 we obtain sup,e(o 7y [ur — velz, = 0
(a.s.), which completes the proof of Theorem IV.2.1 under the additional as-
sumptions of Step II.
Step III. Finally, we dispense with the assumption that the coefficients and
the initial condition are compactly supported, and that K; = 0 in Assumption
IV.2.1. Define the functions b" = (b"(t, z)), B™ = (B"(t, z2)), o" = (6™ (¢, 2)),
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N = (n"(t, 2,30)) and £" = (§"(t, 2,31)) by
(bn,Bn’On’pn) = (b,B,O, p)Xm (Un,fn) = (7775)9_@

for every integer n > 1, where x,(2) = x(|z|/n) and x,.(z,y) = &™(z)x(|ly|/n),
with x defined before Lemma IV.7.2 and with " stemming from Lemma IV.7.3
applied to & and 1 as functions of z € R?. By Lemma IV.7.2, Assumptions
IV.2.1 and IV.2.2 hold for b*, B", o", p", n™ and £", in place of b, o, p,
n and &, respectively, with K; = 0 and with appropriate constants K; =
K{(n,K, Ky, K1, K,, K¢, L)) and L' = L'(K, Ky, K1, L, K¢, K,)) in place of K
and L. Moreover, by Lemma IV.7.3, Assumption 1V.2.4 is satisfied with a con-
stant \' = N'(Ko, K7, K¢, K, A) in place of A\. Since my = P(X, € dz|Yp)/dx € L,
for p > 2 by assumption (the case p = 2 was proved in Step I) and clearly
7o € Ly, by Holder’s inequality we have

|7TO|]L2 < |7T0|I1L:0‘7T0|]?Ap < oo with§ = 2(pp_1) € (07 1)

Thus by Lemma IV.7.1 there exists a sequence (X{)%_; of Fy-measurable random
variables such that the conditional density 73 = P(XJ € dx|F))/dx exists,
mg(xz) =0 for |z| = n + 1 for every n, lim,,_,, XJ = Xy for every w € Q,

lim |7 — mo|r, =0 for r =2,p, (IV.7.11)

n—o0

and
E|XJ? < N(1+ E|Xo|?) forany ¢ >0

with a constant N = N(q). Let (X', Y")w[o,r] denote the solution of equation
(1.0.2) with initial value (X, Yy) and with b, o™, p™, £, " and B" in place of
b, o, p, &, n and B. Define the random fields,

b (x) =0"(t,x, V"), of(x) =0o"(t,z, V"),
pi(x) =" (t, 2, V%), B(x)=B"(t,z,Y/")
77?(15730) = nn(tv'ray;riaﬁ())a g?(‘ruél) = 5%@%%&31)7 61? = Bn(tJXtTL’YZi)

(IV.7.12)
forweQ,t=>0,zeR 3 €3, i=0,1. Consider the equation

dul! =L u dt + Ml dViF + f T uy vo(dg)dt
30

+f JE U vy (dp)dt + J I8 u? Ny(d, dt),  with u? = 70, (IV.7.13)
31 31

where for each fixed n and k = 1,2, ...,d’

Ll = a” Dij + bV D; + Br*p* Dy + BrEBrF . MK = kD, 4 B
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i = %Z nik n]k 12 nik an” = B"(t, X", Y]"), i,j7=1,2,...4d,
k

the operators J/' and J¢ are defined as J¢ in (IV.3.1) with 5 and & in place

of n; and &, respectively, and the operator I; " is defined as I; in (IV.3.1) with

& in place of &. For each n let v denote the solution to dv;' = —% 1Bt dvy,

7 = 1. By virtue of Step II (IV.7.13) has an Ly-solution u™ = (u}')sefo,r], which

is also its unique Lsy-solution, i.e., for each ¢ € Cgo almost surely

(o) =) + [ s Erp)ds + [ ) av + H3 (") volds)ds

ff (u, J¢" ) vy (d; ds+Jf (u®, 15" p) Ny(d3, ds) (IV.7.14)
31 31

for all ¢ € [0, T]. Moreover, almost surely u}" = duy'/dx for all t € [0,T], where
= P(%)~! is the unnormalised conditional distribution, P/ is the regular

conditional distribution of X given FY", and %™ denotes the JF}"-optional

projection of 4™ under P. Furthermore, for sufficiently large n we have

E sup |u|;, < Nlmgl., < Nimo|p, forr =p,2 (IV.7.15)
te[0,T]

with a constant N = N(d,d',p, K, K¢, K, L, T, |€|1,, 7|1, A), which together
with (IV.7.11) implies

sup(|up|e, + [u"|L,,) <o for r =2,pand every ¢ > 1.

n=1

Hence there exist a subsequence, denoted again by (u™)_,, u € ﬂZOZQ L,, and
g € L, for r = 2, p such that

u" — u weakly in L, , for r = p,2 and all integers ¢ > 1, (IV.7.16)

and
wp — g weakly in L, for r = p, 2. (IV.7.17)

One knows, see e.g. [20], that (X[, Y;"):>o converges to (X3, Y;)i=o in probability,
uniformly in ¢ in finite intervals. Hence it is not difficult to show (see Lemma
3.8 in [21]) that there is a subsequence of Y, denoted for simplicity also by Y,
and there is an JF;-adapted cadlag process (Ut)te[o,T], such that almost surely
Y™ + |Yi| < Uy for every t € [0,T] and integers n = 1. For every integer m > 1
define the stopping time

= inf{t € [0,T] : Uy = m}

To show that @ is a V,-solution for r = p,2 to (IV.3.8) with initial condition
up = mo, we pass to the limit «* — @ in equation (IV.7.14) in a similar way
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to that as we passed to the limit u*» — @ in equation (IV.6.77) in the proof of
Lemma IV.6.4. We fix an integer m > 1 and multiply both sides of (IV.7.14)
with (¢4 Le<r,, Jiefo,r], where (¢¢)sefo,r] is an arbitrary bounded F;-optional process
¢ = (gzﬁt)te o,r]- Then we integrate both sides of the equation we obtained over
Q x [0,T] against P ® dt to get

F(u") = F(ny) + i F*(u™), (IV.7.18)

where F' and F}* are linear functionals over L, ,, defined by

T ATm
¢

T ATm t N
Fv) ::EJ bu(vn o) b, F(v) ::EJ tJO(vs,L’;go) ds dt,

0 0

T ATm t
Fr(v):=E f o f (vg, M™ ) dVF dt,
0

0

T ATm t
Fr(v) = E j " f L (0s, J7"0) vo(d3)ds dt.

T ATm
Fi(v) := J f L vy, J& ) v1(d3)ds dt,
1

T ATm
FZ'(v) —EJ JL v, 18" ) Ny (d3, ds) dt
1

for a fixed p € C°. Define also F; as F/" for i = 1,2,...,5, with L., MEJn s
and I¢ in place of L7, M™* J1" J&" and 1", respectively. It is an easy exercise
to show that hat ' and F}*, i = 1,2,3,4, 5, are continuous linear functionals on
L,, for r = p,2 and all ¢ > 1. We are going to show now that for r = p, 2

lim sup |F;(v)— F'(v)] =0 forevery ¢ > 1, fori=12,..5  (IV.7.19)

n—w |U|Lr,q:1
Let " = r/(r — 1), ¢ = q/(¢ — 1). Then for v € L, , by Hélder’s inequality we
have o

Fy(v) = F0)] < KTl | (£ — £, (1V.7.20)

with K = sup,eq SUpsejo 1 [¢¢| < 0. Clearly, limy, o (L5 — L) () = 0 almost
surely for all s € [0,T] and z € R%, and there is a constant N independent of n
and m such that

(L. = E)p(@)] < N1+ [o + 2m) 1 (Iv.7.21)

forwe Q, s €[0,T ATy,] and x € RY where R is the diameter of the support of ¢.
Hence a repeated application of Lebesgue’s theorem on dominated convergence
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gives

lim |(£— L"), , =0,
n—0o0 4

and by (IV.7.20) proves (IV.7.19) for i = 1. By the Davis inequality and Holder’s
inequality we have

L"'vq

T ATm 1/2
Fao) = )| < 3KTE( [ B o (ME - Mol as) < 0Pl
k

with

T ATm

e =srr(B( [ (DI - Ml ) as) ")
0 k

Clearly, lim,, . (M* — M"™)p(z) = 0, and with a constant N independent of n
and m we have

D IME = MIF) ()] < N(1+ [a] + 2m) 1 <n
k
for all w € Q, s € [0,T A 7,,,] and x € R% Thus repeating the above argument
we obtain (IV.7.19) for i = 2. By Holder’s inequality we have
|Fa(v) = F(v)] < KT|olz, ,CYY

with

T ATm,

o = (( f 1= T ) vol )] ds )
0 30

where we have suppressed the variable 3 € 3 in the integrand. Clearly,

r’/q’>1/r’

)

lim (J7 — J")p(x) =0 almost surely for all s € [0,7], = € R? and 3 € 3.

n—o0

By Taylor’s formula

[ ()] < Sup |[D*p(w + 6 (2,5))Ins(x,5)I",
€Y,

| J2p(x)| < S |D*p(x + Ony(z,3))||ns(,3)]%,
€[y,

and by Lemma IV.7.3 with X' from above we have
Na| < |+ 0(nd(x,3) = 17(0,5)] < o+ 0n7(z,3)| + 7 (0, 3)],

Na| < |z +0(ns(x,3) = 14(0,3))] < & + Onu(z,5)] + [1:(0,3)]

for all § € [0,1], w € Q, s € [0,T A 7,]. Hence, taking into account the the
linear growth condition on 7, see Assumption (IV.2.1) (ii), for any given R > 0
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we have a constant R = R(R, Ky, K, K, m) > R such that
o+ 0ny(z,3)| = R, |o+60n)(x,3)] = R for |z] > R,

for all 6 € [0,1], w e 2, s € [0,T A 7,,]. Taking R such that p(x) =0 for |z| = R
we have
[ p(@) = Jp(@)] < |1 e(@)| + | Tp(@)] < 2sup |D*0(@)[77(3) 1 51<
zeR

forx e R, we Q, se|[0,T A7,| and 3 € 39. Hence by Lebesgue’s theorem

on dominated convergence lim,_,, C&) = 0 which gives (IV.7.19) for i = 3. We
get (IV.7.19) for ¢ = 4 in the same way. By the Davis inequality and Hélder’s
inequality we have

T ATm N 1/2
- B <3KTE([ [ Jon U - BoPud)ds) < P,
0 31

with

T ATm

. fa-2) N (a-2)/2aN 17
C£5)=3KT<E(J ( (15 —f§>90!i,m(d3>)q q ds) q q> '
0 31 '

Clearly, lim,, o (I$" — I$)p(x) = 0 almost surely for all s € [0,T], z € R? and
3 € 31. By Taylor’s formula

115" p(x)| < S |Dg(z + 082 (2, 3))||€s (2, 3)],

[Isp(2)| < sup [Do(a + 0,(2,35))[€ (2, 3)]-
0<[0,1]
Hence, using Assumptions IV.2.1, IV.2.2 and IV.2.4 in the same way as above,
we get a constant R = R(R, Ky, K1, K, m) such that

|15 () — Iip()] < [If p(x)] + [ Ifp(x)| < 2sup [De()[6(5)110<

zeRd

forre R,weQ, se[0,TA7,] and 3 € 39. Consequently, by Lebesgue’s theorem
on dominated convergence we obtain (IV.7.19) for ¢ = 5, which completes the
proof of (IV.7.19). Since u™ converges weakly to @ in L, ,, and F* converges
strongly to Fj in ILj , the dual of L, ;, we get that F}*(u") converges to Fi(u) for
for i = 1,2,3,4,5. Therefore letting n — o0 in (IV.7.18) we obtain

E T o) dt = B | T ) dt + B | T | (1, L) ds i

0 0 0 0

T ATm t T ATm t
E f " f (@, Mb ) AV dt + E j " f f (1, J70) vo(d3)ds dt
0 0 J3o

0 0
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T ATm T ATm N
—i—EJ f J tis, JSp) vy (d3)ds dt—l—EJ J J ts, I5¢) Ny(d3, ds) dt.
31 31

Since this equation holds for all bounded Fi-optional processes ¢ = (¢)sefo,7];
we get

Licr, (U, ) = li<s,, ((1/1 ©) + ft(ﬂs,ﬁsw) ds + Jt(ﬂs,M%) de)

0

+1i<r,, (JJ Us, JI0) vo(d ds—l—JJ Ug, J gp v1(d3 ds+ff Ug, I gp N1 (d3, ds))
30 31 31

for P ® dt-almost every (t,w) € [0,T] x € for every ¢ € Ci° and integer m > 1,
which implies that @ is a V,-solution to (IV.3.8) for r = 2,p. In the same way
as in the proof Lemma IV.6.4 we can show first that almost surely

1. -7(9,9) = 1, -1 (W ©) + J{)T(as,ésw) ds + LT(as,Mkcp) dv’“>
(IV.7.22)

1, UOT Lo(as,m) vo(d3)ds + LT LI@S,JS&@) ul(dg,)ds>

T
+1Tm>Tf f (s, ISp) N1(d3, ds)
0 1

for every m > 1. Hence taking into account P(U¥X_{r, > T}) = 1, we get
that equation (IV.7.22) remains valid if we omit 1, -7 everywhere in it. From
(IV.7.15) we get that for all n,

u"lL,, < N|mglL, for r =2,p, for integers ¢ > 1

with a constant N = N(d,d',p, K, K¢, K,), L, T, |€|1,, |1|1,, A). Letting here n —
o and taking into account (IV.7.11) and (IV.7.17) we obtain

|y, <liminf ||, < N lim |75|L, < N|mly, for r = 2,p and integers ¢ > 1.
’ n—00 ’ n—00

Letting here ¢ — o0 we get

Eesssup ||y, < N"E|moly, , forr=2,p.
te[0,T]

Hence, taking into account (IV.7.22), by Lemma IV.5.8 we get a P®dt-modification
w of 4, which is an L,-solution for r = 2, p to equation (IV.3.8) with initial con-
dition uy = my. As the limit of P ® dt ® dzx-almost everywhere nonnegative
functions, w is also P ® dt ® dr almost everywhere nonnegative. We now show
that u satisfies
G(u) := sup f |z|?u, (dz) < o0 (a.s.). (IV.7.23)
Rd

te[0,T]
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To show this recall that for each n and ¢ € CZ, by Theorem III.1.1, Remark IV.3
and by what we have proven above,

up (@) = PMp)pui (1) = E(o(X)IF ) ()~

where u'(dx) = u?(x)dz, P*(dr) = n7"(x)dz and %" denotes the F, -optional
projection of (77" )se[o,r7. Further, for integers m > 1 let again €2,,, := [|Yo| < m] €
FY. Thus by Doob’s inequality and Jensen’s inequality for optional projections,
for r > 1 we have, in the same way as in Step I,

Gon(u") = E sup | foul(o) drlo, = E sup E(X7FIZ ")) 1o,
te[0,T] JRd te[0,T]

< N(E sup |th|r19m)2/r for t € [0,T]
te[0,T]
with a constant N = N(r,C), where C is the constant from (IV.7.8), which
depends only on K, r and T. Taking r from Assumption IV.2.3, by Young’s
inequality, (IV.2.1) for all m and n we have

Gpn(u") < N(m" + E|X{|")) < N(m" + supE|X{|") =: N'(m) < 0. (IV.7.24)

By Mazur’s theorem there exists a sequence of convex linear combinations v* =

Zle cipu' converging to u (strongly) in L,, as k — co. Thus there exists a
subsequence, also denoted by (v¥)% , which converges to u for P ® dt ® da-
almost every (w,t,z). Then, by Fatou’s lemma and (IV.7.24),

Gm(u) =E sup |22 lim inf v (z) dzlg,, < liminf G,,(v")
te[0,T] JR k—o0 " k—0

k

= lim ian criGm(u') < N'(m) for each integer m > 1,
k—o0 o1

which proves (IV.7.23). Next, due to Lemma IV.3.1, using |B"| < |B| < K, we

have
supE sup |uy|r, < N, (IV.7.25)
neN  te[0,7]
for a constant N = N(d, K,T). The estimate above implies that u" € L, , for
all ¢ > 1. Returning to the sequence (v"“) ken < Ly 4 nIL, , converging point-wise
to u for P ® dt ® dz-almost every (w,t,z), we can compute by use of Fatou’s
lemma

Eesssup |u;|r, = Eesssup |liminf of|;, < liminfE sup |vf|z,
t[0,7] tefo, 7] ko k—oo  tef0,1]
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k
< lim ian cixE sup |uf|p, < N, (IV.7.26)
k—w = (0,7
with the constant N from (IV.7.25). As also (IV.7.23) holds and since u is in
particular an Lo-solution to (IV.3.8) we can apply Lemma IV.5.5, in particu-
lar the uniqueness of Lo-solutions (satisfying (IV.7.23) if K; # 0, as well as
€8s SUPyeo,r) [Ue|r, < o0 (as.)) implied by the supremum estimate (IV.5.50) of
Lemma IV.5.5. Hence we see that indeed for all ¢ € [0,T], uy = du;/dx almost
surely and thus 7 = u:%,, or in other words, the Ls-solution constructed above
coincides with the Lo-solution from Step I. This finishes the proof. O
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Chapter V

Regularity of the filtering density

V.1 Introduction

In this chapter we are interested in the regularity (in the Sobolev sense) of the
filtering density ()0, associated to the signal-observation system (I1.0.2).
Again we assume the measurability conditions on the coefficients, given in the
introduction to Chapter I, to hold. This chapter is based on the article [18].

In Chapter IV we showed that if the coefficients of equation (1.0.2) satisfy
natural linear growth and Lipschitz conditions, the drift coefficient of the obser-
vation process is bounded, 7¢ = x4+ 0&(z), 77 = x + On(x) are bijective mappings
on R? they have Lipschitz continuous inverses with a Lipschitz constant inde-
pendent of t,y, 3 and ¥ € [0, 1], and their derivatives in x are equicontinuous in z,
uniformly in ¢, y, 3, then for p > 2 the conditional density m; exists almost surely
for each ¢ and (m;):>0 is a weakly cadlag L,-valued process, whenever the initial
conditional distribution Fy has a density m almost surely such that IE|7T0|]‘L'p < 0.

For partially observed diffusion processes, i.e., when £ = n = 0 and the
observation process Y does not have jumps, the existence and the regularity
properties of the conditional density 7; have been extensively studied in the
literature. In [39], an early work on the regularity of the filtering density for
continuous diffusions, it was shown that if the coefficients are bounded, o, p
admit m + 1 bounded derivatives in z € R?, b, B admit m bounded derivatives
in z, the functions o, p satisfy a nondegeneracy condition and my € W n W37,
then the filtering density (7)o, is weakly continuous as W-valued process,
where p > 2 and m > 0. In [51] it was proven that the nondegeneracy condition
can be dropped if one imposes m + 2 bounded derivatives on o, p in x, as well as
m+1 derivatives on b, B in x, to obtain the same result under otherwise the same
assumptions. The results for m = 2 from [39] were later strengthened in [32],
for bounded coefficients, Lipschitz in space and such that o, p are differentiable
with respect to = € R%, such that the differential is continuous in y € R? and
Lipschitz in z. Similarly, in [35], it was shown that if the derivatives in x of
b, B satisfy a certain Lipschitz condition, o, p are bounded and 7y belongs to a
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certain subspace of WI} for p = 2, then m; belongs almost surely to L,, r € [1, p]
for all time. In a later work, [36], for Lipschitz (in space), bounded coefficients,
as well as under a nondegeneracy condition it was shown that if 7y belongs to a
fractional Sobolev space with integrability index p > 2, then m; belongs to W;}
for all time.

To the best of the author’s knowledge, the Sobolev regularity of filtering
densities associated to jump diffusion systems has not been considered yet. Our
article [18], which serves as a basis for this chapter, provides a first result in this
direction.

More precisely, in the present chapter we show that if the coefficients ad-
mit m + 1 continuous bounded derivatives in x € RY, have linear growth in
z = (z,y) € R the jump coefficients are biLipschitz in z, the initial condi-
tion together with a Lévy measure have finite r-th moment for some r > 2, and if
E|7T0|€V;n < o0, then for all time 7; remains in that Sobolev space W with p > 2
and integer m > 1. Moreover it is weakly cadlag as W"-valued process and, if
m = 1 and K; = 0, then it is strongly cadlag as W, -valued process, for s € [0,m).

This chapter is structured as follows. Section V.2 contains the main results
along with the required assumptions. In section V.3 we state some important re-
sults from Chapters IIT and IV which we build on. Section V.4 contains Sobolev
estimates necessary to obtain a priori estimates for the smoothed filtering equa-
tions. In section V.5 we investigate some solvability properties of the Zakai
equation. Section V.6 finally contains the proof of our main theorem, as well as
some auxiliary results.

V.2 Formulation of the main results

We fix nonnegative constants Ky, K1, L, K and functions ¢ € Ly(31) = Ly(31, Z1,v1),
N € La(30) = L2(30, 20, o), used throughout the paper, and make the following
assumptions.

Assumption V.2.1. (i) For z; = (z;,y;) e R*? (j =1,2), ¢t >0 and 3, € 3,
(1=0,1),

|b(t7 Zl) - b(t722)| + ‘B(tu zl) - B(t,22)| + |O'(t721) - 0<ta 22)|
+’p(t721) - p(t722)| < L|Zl - 22|7

|77(t721750) - n(t722730)| < ﬁ(30)|21 - Z2|7
‘f(t, Zlaél) - §(t7z2731)’ < 5(31)’21 - ZQ“

(ii) For all z = (z,y) e R®¥ ¢t >0 and 3; € 3; for i = 0,1 we have

b(t, o)+ lo(t, 2)|+olt 2)| < Kot Kalzl, |B(t o)l <K, | [P malds) < K2,
31
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n(t, z,30)| < 7(30) (Ko + Kilz]),  [€(t, 2,51)| < &(31) (Ko + Kilz|).

(iii) The initial condition Zy = (Xo, Yp) is an Fy-measurable random variable
with values in R4*¢"

Assumption V.2.2. The functions 7 € Ly(30, 20, 10) and & € Ly(31, 21, 11)
are such that for nonnegative constants K, and K¢ we have [7(30)| < K, and
|§(51)| < Kg for all 3i € 32 (Z = 0, 1)

Assumption V.2.3. For some r > 2 let E|X|" < o0 and the measure vy satisfy

K, = | [3]"v(d3) < .
31

We recall that by Theorem I1.2.1 and Theorem I1.2.2, Assumption V.2.1
ensures the existence and uniqueness of a solution (Z;);=0 = (X4, Y;)i=0 to (1.0.2)
and for every T > 0,

Esup(|X,|7 + |Y;]*) < N(1 + E|Xo|' + E[Yp|*) (V.2.1)
t<T

holds for ¢ = 2 with a constant N = N (Ko, K1,d,d', T, L, || 1,, |7|1,) and if ad-
ditionally Assumptions V.2.2 and V.2.3 hold, then the moment estimate (V.2.1)
holds with ¢ := r for every T' > 0, where now /N depends also on r, K, K, and
K,

n-
Assumption V.2.4. (i) For a constant A > 0 we have

for all 0 € [0,1], t € [0,T], y e RY, 2,2 e RY, 3, € 35,7 = 0, and fo(t,x,y,30) =
77(75, T, y730)7 fl(ta T, yaﬁl) :/ S(ta T, yaél)'

(ii) For all (t,y) e Ry x RY and all 2, 25 € R,

((pB)(t, 21,) — (pB)(t, 22, y)| < L]y — x2].
(iii) The functions fo(t,z,y,3) := &(t,x,y,3) and fi(t,x,y,3) = n(t,z,y,3) are
continuously differentiable in z € R for each (t,y,3) € Ry x RY x 3;, for i = 0

and ¢ = 1, respectively, such that

lim sup sup sup sup |Dxfz'(t>1'ay>3) - Dmfi(ﬂ@%é)‘ =0
€10 4e[0,7] 3€3: |y|<R |z|<R,|Z|<R,|z—2'|<e

for every R > 0.
Assumption V.2.5. Let m > 0 be an integer.
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(i) The partial derivatives in x € R? of the coefficients b, B, o, p, (pB), n and
& up to order m + 1 are functions such that

m—+1
D 1Di(b,B,o,p,(pB))| < L forallte[0,T], zeR’ yeR.
k=1

(ii) Moreover,
m+1 m+1

DDl < Li, ] |DEE| < LE,
k=1 k=1

for all t € [0,7], v € RY, y e RY and 3, € 3;,i = 0, 1.

Remark V.2.1. Note that Assumption V.2.4(i), together with Assumptions V.2.2
and V.2.1(i), implies that for a constant ¢ = ¢(\, K¢, K,,) we have for all § € [0, 1],
yeRY te[0,T]) and 3;,€ 3,1 =0,1,

C_1|l' - J_f| < |ZE — I+ e(fl(t7x7y731) - f(taj"?yazz))‘ < C’l’ - j'| for ZE,i’ € Rdu

with fO(ta L, y:éO) = 77(75’ T, %30) and fl(t) Z, y)31> = §(t7 L, yaél)' ThiS, togethe/r
with Assumption V.2.4(iii) in particular implies that for all 8 € [0,1], y € R?,
te[0,7] and 3; € 3;, @ = 0,1 the mappings

(@) =+t 2, y,50) and TH(2) =2+ (L 2,y,51)

are C'-diffeomorphisms.

Let FY denote the completion of the o-algebra generated by (V) s<:.

Theorem V.2.1. Let Assumptions V.2.1, V.2.2, V.2.4 and V.2.5 hold. If K; #
0 in Assumption V.2.1, then let additionally Assumption V.2.3 hold. Assume
the conditional density Ty = P(Xo € dx|FY)/dx exists almost surely and for
some p = 2 and integer m = 0 we have E|7r0|€vy < . Then almost surely
P(X; € da|F))/dx exits and belongs to W) for every t € [0,T].

Moreover, there is an W;l—valued weakly cadlag process m = (Wt)te[oj] such that
for each t almost surely m; = P(X; € dx|FY)/dx. If Ky =0 and m > 1, then 7
is strongly cadlag as W -valued process for s € [0,m).

V.3 Preliminaries

As this chapter is a direct continuation of Chapters III and IV, we ask the reader
to recall their main results, which we rely on in the following sections, as well as
the notions of solutions to the Zakai equation, which we introduced earlier. A
summary of the aforementioned matters was provided in Section I'V.3.

We also recall that that if the unnormalised conditional distribution p; has a
density such that u; = du/dz (a.s.) for each ¢ € [0,T'] for an L,-valued weakly
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cadlag process (u)se[o,r] for some p > 2, then it satisfies for each ¢ € C® almost
surely

(e 0) w¢>f%%am@+f

(g, ME ) AV + f f (g, T7) vo(d3)ds
0 30

ffu&wm%%+ff%,wNMMQt€Mﬂ
31 31

(V.3.1)
for all ¢ € [0, T'], which formally, we may write as the Cauchy problem
duy =LFuy dt + M#Fu, dVF + L ™y vo(d3)dt
0
+ L JE g vy (d3)dt + L I u,_ Ny (d3, dt), (V.3.2)

Uo Zw

for a given .
Additional to the concept of L,-solution defined in Definition IV.3.2, we
introduce the following.

Definition V.3.1. Let integers m > 0 and p > 2. Let ¢ be an W "-valued Fo-
measurable random variable. Then we say that a W"-valued F;- adapted weakly
cadlag process (us)ee[o,r] is a W)"-solution of (V.3.2) with initial condition 1, if
for each ¢ € Cf° almost surely (V.3.1) holds for every ¢ € [0, 7.

Notice that for m = 0, a W -solution is the same as an Lj,-solution. We
summarize some important results from Chapter IV
As in Chapter IV, we are interested in solutions that satisfy

esssup |uglr, < oo and  sup J [y |uc(y)| dy < o0 (a.s.). (V.3.3)
te[0,T] te[0,T] JRd

For the following theorem we denote again by (ft)epo,r] and (P;)seqo,r] the
unnormalised and normalised conditional distribution, respectively, of X given
FY from Theorem II1.1.1.

Theorem V.3.1. Let Assumptions V.2.1, V.2.2 and V.2./ hold. If K; # 0, then
let additionally Assumption V.2.3 hold for some r > 2. Assume the conditional
density mo = dFy/dx exists almost surely and El|mo|7 < o for some p = 2.

(1) The unnormalized conditional density (u;)wefo,r] evists almost surely and is
an Ly-valued weakly cadlag process such that for each t € [0,T] almost surely
uy = dyg/dz and

E sup |uly, < NE[moly .
te[0,7] b
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for a constant N = N(d,d',p, K, K¢, K,), L, T, \, |€| 1, 71| 1,). Moreover, u is the
unique Lo-solution to (V.3.2) satisfying the conditions in (V.3.3).

(11) For each t € [0,T] the conditional density dP,/dx exists and belongs to L,
almost surely. Moreover, there is an Ly-valued weakly cadlag process (Wt)te[oyT]
such that for each t € [0,T] almost surely m; = dP,/dx and almost surely m; =
w?y; for all t € [0,T], where (%), s the optional projection of (Vt)seqor
under P with respect to (F} )iefo.1]-

Proof. See Lemma IV.5.7 and Theorem IV.2.1. O

Lemma V.3.2. Let 1 < p < o0 and let (v¢)epo,r) be a weakly cadlag L,-valued
process. Assume moreover that for anm = 0 almost surely ess supepo 7y [velw <
w0 and vy € W' Then v is weakly cadlag as W -valued process.

Proof. Let €' be the set of those w € Q such that (v;(w))se[o,r) is weakly cadlag
as an Ly-valued function, vr(w) € W and esssupiejor [ve(w)|wm < 0. Then
P(Y) = 1, and for each w € Q' there exists a dense subset T, in [0,7] such
that super, [vi(w)[wp < 00 Ifwe Q and ¢ ¢ Ty, t # T, then there exists a
sequence (t,);_; < T, such that ¢, | t. Since super,, [v¢(w)|wy < o0 there exists
a subsequence, also denoted by (t,);_,, such that v, (w) converges weakly in W"
to some element v € IV". However, as v is weakly cadlag as an L,-valued process,
we know that v, — v, weakly in L, as n — o0 and hence v = v, € Wg”. Thus
clearly also supyeo r [vi(w)|wp < 0 if w € . To see that v is weakly cadlag
as a W"-valued process, note first that since W is a reflexive space, which is
embedded continuously and densely into L,,, we have that the dual (L,)* = L,
q = p/(p—1), is embedded continuously and densely into (W}")*. Therefore, for
each € > 0 and ¢ € (W,")* there is an ¢, € L, such that [¢ — ¢c|wpm)» < e. Fix
ate|0,T) and a sequence t,, | t. Then

|V @) = (Vi D) < (Vis @ = Do) | + | (V1 @) = (V1 O2)| + [(vr, @ = @)

< 2¢ sup \vt\wgn + |(vt,,, @) — (vg, &)
te[0,T]

Recalling that v is weakly cadlag as an L,-valued process finishes the proof. [

In this following we show that, for p > 2 and integers m > 1, if K1 = 0 in
Assumption V.2.1, then a W -solution of (V.3.2) is strongly cadlag as L,-valued
process, using an It6 formula from [21], see Theorem 2.2 therein. For this purpose
we first rewrite the Zakai equation (V.3.2) in the form used in [21] to apply the
Ito6 formula proved therein. To derive the required form of the J operators,
consider on a measurable o-finite space (3, 2Z,v) a function ¢ : R? x 3 — RY,
smooth in x € R? such that for all # € [0,1], 3 € 3 the mapping

To4(1) 1= 75 (1) i= v + 0((2,3), wzeR
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is a C'-diffeomorphism on R?. Then, for smooth functions ¢ and ¢ on R,

(0. | sotarviay) = | | oot drvidy

N f ,[Rdf o(x)(1 = 0)(Dijp)(x + 0¢(,3))C (w,3)¢ (2,3) dO dz v (d3)

- [ L[ otmiona-0p,eictn, o). 963, @) 9l de D )| b e via),
Hence, integrating by parts, we get that
fﬁ = (J%6, Dip) + (T, Dig)
where
7o) =~ [ [ Do)l 0Dy 0 - 0) (V.3.4)

(5 (2):3)¢ (g5 (2),3)| det Dy ()| dO v(d3),

Féig( JJ¢%3 - 0)

D;[¢ (14 (2),3)¢ (g (2),3)| det Dy ()| dO v(d3).

Moreover, we ask the reader to recall the form of I¢*, the adjoint operator to

I¢, derived in (IV.6.63).

Lemma V.3.3. Let Assumptions V.2.1, V.2.2, V.2./ and V.2.5 hold with K; =
0 and some integer m = 1. Let p > 2 and let w = (uy)epo,r) be @ Wm—solutwn to
(V.3.1). Then u is strongly cadlag as an L,-valued process.

Proof. We apply Theorem 2.2 in [21]. In order to do so, we rewrite equation
(V.3.1) into the form used therein. For that purpose, note first that the adjoint
operator to M¥ k=1,...,d forve W is

MFv(z) = =Di(p (x)v(x)) + B (x)v(z).

Similarly, with 8s = Bs(X;) we notice that with ¢ € Ci°,

(Ua ‘CSQO) = _(DJ'(aijU)a DZ@) - (Dl(bzv>7 QO) + Bf('/\/l:kq}? QO)
Since n and § satisfy Assumption V.2.5 with m = 1, we can define the operators

JE JE and J JM i =1,...,d, as in (V.3.4), only with & and 5, in place
of {, accordingly, with the C’2 dlffeomorphisms on R (for we Q,t e [0,T],0 ¢
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[0, 1],31 S 3Z for i = O, 1)
729’30 () :=ax + On(x,30) and 759’31(:15) =+ 0&(x, 31).

From (IV.6.63) in Chapter IV we know that with the mappings (note that = 1
below)

& (w,31) o= =2+ (r8y,) "M 2) and c(w,31) = det(I+ DE (2,51)) — 1
and the translation operator TS v(z) = v(x + £ (x,31)), the adjoint operator to
If is

IFo(x) = IF (@) + ez, 30)TF v(z), ve W (V.3.5)
Then, rewriting equation (V.3.1) yields that for all ¢ € C§° almost surely
t

Dj(a”uy), Dip) ds — D;(bius) + BEMEFug, ) ds
I\Ts ¥ s 5 s 7
0

t

(e 9) = (6.0) ~ |

0

t t
+J (M ug, ) dVE + f (T ug + Ty, Dig) ds
0

0

t t
n f (FSus + TSy, Dip) ds + f f (IS, ) Ny (ds, ds)
0 0 J3

for all £ € [0,T]. Hence, to apply Theorem 2.2 from [21], it remains to verify
that almost surely, for ¢ =1,....d,

T T
Ap = J f |D;(a¥u,) P deds < o0, Ay = J J |— D (biug)+BEMFu P deds < oo,
0 JRd 0 JRrd
. T ~ . ~ . T ~ A
Al = f f | T g+ T ulP dads < o0, Ap = J J | T& g+ T us|P dods < oo,
0 Jrd 0 Jre
T
B := f J (Z \(/\/l’s“‘us)(av)]2)?/2 dxds < 0,
0 Jre " F
T
G := J f |(I8*us) (2, 3)[F v1(d3)dads < oo,
0 JR? J3

T /2
H ;:J f ( \(]f*us)(x,5)|2y1(d5)>p drds < 0.
0 JRd 31

By the boundedness of the coefficients and their derivatives up to order m + 1
and due to SE)F us|pys ds < o0 (as.) clearly Ap+ Ay + B < o0 (a.s.). Suppressing
P

the superscript i,

T T
A, < f f |jsv7us|p dx ds + J J |jsnus|p drds = Ay + Apo.
0 Jrd 0 JRI
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Using that by Lemma IV.6.1 (i) & (ii), for all w € Q,t € [0,T],3 € 30 and z € RY,

(L =)D (7 )~ (@DIIn((7lp,,) " (x),3)[*| det D(ry )~ (@) < Nij*(5)

for a constant N = N(d, Ky, L, K, ), we can apply Minkowski’s inequality to

compute
J LOJ J |(Dus)( 9())!pﬁ2p(3)d:c>1/pd9y0(dg,))pds

T
< N//J us[pyy ds < o0 (as.),
0 P

for constants N’ and N” depending on d,p, Ko, K,, A and |7|,,. Using that by
the Lemma’s assumption, together with Lemma IV.6.1, for all s € [0,7],0 €
[0,1],2 € R? and 3 € 3,

|D[ne(75,(2),5)00 (1,9, (x),3)| det D7y (2)[]| < Nii*(3), 4,5 =1,...,d,

for a constant N = N(d, Ky, K, A\, L), we get A, 2 < o in the same way, proving
Aj'? < o almost surely, i = 1,...,d. Analogously also Aé < o almost surely,
i=1,...,d. Next, using the form (V.3.5),

T
G| || 10wl s
0 JRI I3

T
] e )@ ) ) o) dads
0 JR4 J3;
Z:Gl + GQ.
To treat the first term, we define
72:079(:1:) =1+ 0nf(z,30), forweQzeRtel0,T],30€ 30 and 6 e [0,1],
and use that by Lemma IV.6.1 (ii) almost surely
| det(77 )7 (x)] < | det(I + Dry(x,3))| " < o0

for we Q, 2 € Rt e [0,7],30 € 30 and 0 € [0,1]. Thus, by Taylor’s theorem,
Minkowksi’s inequality and Lemma IV.6.1,

Grs [ ([ ([ [, 10utess enles o vasaz) “an)’as

NJ s |3y ds<oo
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almost surely, for a constant N = N(d,p, \, Ko, K¢, |€|1,). Using that by Lemma
IV.6.1 |cs(z,3)] < NE(3) with a constant N = N(d, L, \, Ko, K¢) we get Gy < o0
(a.s.) in the same way, proving G < o (a.s.). Using Taylor’s theorem and
Minkowski’s inequality in a very similar way we also obtain H < oo almost
surely. Therefore we can apply Theorem 2.2 in [21] to know that there exists a
stochastic modification u of w, such that for P ® dt-a.e. (w,t) € Q x [0,T] we
have u; = u, and such that @ is strongly cadlag as L,-valued process. Finally, by
Lemma V.3.2 4 is also weakly cadlag as W"-valued process, and therefore we
have that almost surely u; = @; for all ¢ € [0,T], i.e., u and @ are almost surely
identical. This finishes the proof. O

V.4 Sobolev estimates

Here we present some estimates which are needed in the subsequent sections.
We use the same notations that were introduced in Section IV .4, in particular
the Gaussian density function k. on R? with mean 0 and variance ¢, as well as
the function

_ _ 2
p(y) = J I he(w—yy) do = ¢ ce Disrassy Wr—wsl?/C2e) gy = (L y,) € RP
R

(V.4.1)
for e > 0, with the constant c,. = ¢,.(d) = p~¥?(2me)17P42 We recall that p.
satisfies, for every r =1,2,...,pand i =1,2,....d

P
Qype(y) = D W —v)po=(v), v = (W1, ) €RY g = (yhoy ) € R,
s=1
(V.4.2)
gps Z& ipe(y) forr=1 ..pandj=12...4d, (V.4.3)
S#T

as well as, for ¢ = 1,2 with a constant N = N(d, p, q)

e s — [P (y) < Npac(y), ye R (V.4.4)

SFT

The case of @« = 0 in the following Lemmas in this section are proven in
Section IV.4 and hence this case will be omitted in the proofs.

In the following we present estimates for p € 9t with a density v = du/dz €
W, form = 0 and p > 2 even. In order for the left-hand side of these estimates
to be well-defined, we require that

Klf |z)? |u(z)| dx < oo, (V.4.5)
R4
where we use the formal convention that 0 -0 = 0, i.e. if Ky = 0, then the
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second moment of |u(dx)| = |u(x)|dx is not required to be finite.

Lemma V.4.1. Consider integers m = 0 and p > 2 even. Let o = (o) be
a Borel function on R? with values in RY*  such that for some nonnegative
constants Ko and L

m+1
lo(z)| < Ko, Z |DFo(x)| < L, (V.4.6)
k=1

for all x,y € R, Set a¥ = o™*ai%/2 fori,j =1,2,...,d. Let ue 9 such that it
admits a density u = du/dv € W which satisfies (V.4.5). Then for e > 0 we
have

A =p((D* =1, D (0" Diy)* 1))
n p(p2—1) ((Da,u(g))p_2Da((UikDi)*,u)(E), Da((ajij)*u)(a)) < NLQ‘u’p ;n
(VAT)

for multi-indices o = (au, ..., oq) such that 0 < |a| < m, where N is a constant
depending only on d, m and p.

Proof. Note first that using

m+2 m+2

sup Z |D¥k.(z)| < o0, sup Z |DFp.(z)| <o, foralle >0  (V.4.8)
zeRd k=0 zeRd k=0
and
J (1+ |2 + [2]?) [u(z)|(dz) < oo, (V.4.9)
Rd

as well as the conditions on o, it is easy to verify that the left-hand side of
(V.4.7) is well-defined. Changing the order of taking derivatives and integrals,
then writing integer powers of integrals as iterated integrals and using

nga(x - y) = (_1>‘OCID;(;]{:E('T - y),

we have
.
(D*p (@)~ = o 22 DS ke(x — yo) pu(dyn) - pu(dyp—1)
JR(p—1
:
= (=1)p=Dlelpe Do TPk (2 — y,) p(dys)...pu(dyy—1),
Jrp-1)a Y1 Yp—1
. [ .
D*((a" Dy)*p) ) (z) = )00 Dk — ) iy,
J
r\ ..
= JRd(—l)“"'a” (4p) 0y 0,3 Dy ke (@ — ) (),
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and hence for their product we get

(DY D (D) 10 a) = [ ()00, DT kel = )y (dly)
RP

where Dgo‘ = D¢

(V.4.10)
oDy and p(dy) = p(dyr)..

4(dyp). Similarly,
(D20 (0D, 1) D*((07 D, ) (o)
= J 0 yp1)0 )0y 0y DT ke (= )iy (dy)
RP
Adding this to (V.4.10), then integrating against dz over R? and using (V.4.1)
we obtain

A= (paij (yp)ayéﬁyz + @Oik(yp—l)ajk(yp)ay 1ayp) Dp Pe(y) pip(dy).
Rpd

Using here the symmetry of D'*p.(y) and p,(dy) in y € R and then inter-
changing differential operators we get

de@ DR+ Y

1<r<s<p

o () () D100, ) ) ()
Using

Jpa ZaJPe

SF#T

see (V.4.3), we have

Z aij(yr)Dzl/mayf«ayipa(y) = Z (aij(yr) + aij(ys» aa a pr( ),

1<r<s<p
and due to a” = 0**¢7* /2 we have
_QCLU(ymys) = _Z(CLU

(yr) + a” (ys) + 0™ (yr) o (ys) + 0™ (ys) o™ ()

_(Uik(yr) - Uik(ys»(‘jjk(yr) - Ujk(Z/S))-

Hence

__ZJ ymys Dp a ajp@( ),up(dy),
r#S

(V.4.11)
that by integration by parts gives

r;«és

= _% 2 2 Cﬁ 'yJ 2 aﬁ»y yr)ys & iaygpa(y)uB(yr)uﬁ(ys)nq#r,qsﬁsua(yq) dy,
BLaysa

(V.4.12)
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where ay (z,r) 1= 0207’ (z,7) and us(z) := Pu(z) for z,r € RY, for multi-
indices S, 7 and 4, 6 := a — § for multi-indices § < a (i.e. & < a; for i =
1,2,....d), ¢y = I ¢§" with binomial coefficients ¢} for integers 0 < k <n

uw(y) = w(yr)... u(y,) fory=(y1,....,yp) € R,

and dy = dy;...dy, is the Lebesgue measure on RP?. For each < « and v < «
we are going to estimate the integrand

Py = 3 @ (g 9) s 0,00 (1) (5 n () Ly rgistia(ye), y R, By <a
r#S

in the integral in (V.4.12). Because of the Symmetry in # and 7y, we need only
consider the following cases: (i) |8| = 1 and |y| = 1, (ii) || = 1 and v = 0
and (iii) 8 = v = 0. To proceed with the calculations in each of these cases, for
functions h = h(y) and g = (y) of y € RP* we will use the notations h ~ g if the
integral of g — h against dy over RP? is zero. In case (i) by integration by parts

we have A
By By
>

j=1
with

167 2 yJ agq, Yr Ys) P () (Yr )ty (Ys) Hgrer. 25t (Yq),
T#S

= Z Oyl agy (s ys)pe(y) Oyt (Y )ty (Ys) Mg er gz stia (Yg),
r#S

= Z ayiag»y(yry ys)ps (y)uﬁ(yr)aygUW(QS)Hq#r,q?ﬁsu& (yq)a
T#S

= Z a’ﬂ'y Yry Ys)P=(Y) Oyiuz (Z/r)ayg s (Ys ) Mg r, g st (Yq)-
T#S

By
2
By
3
[ﬂ
4

(V.4.13)

It is easy to see that for j = 1,2,3,4

£ < NEpe(y) 35 Tus()l- D5 Tus(p)l, (91,32, p) € R

|6|<m [6|l<m

with a constant N = N(d, m,p). Hence in the case (i) we get

fR dfﬁ”(y) dy <NL? JR D7 syl Y Tus(yp)lpe(y

P 151<m |8]<m

N2 S sl 3 s bl = ) de dy

|0|<m [d]<m
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<N'L? ) || Dul )

[6|l<m

with constants N and N’ depending only on d, m and p. Integrating by parts

in the case (ii) we have
A0 B0 _ g0
1 2

with

0 i
J = Z ayia[g()(yra ys)aygpa(y)uﬁ (yr)Hq;ﬁruoa (yq)
r#S

Z aﬂo Yr, ys Jpa (y)ayﬁuﬂ (yr)Hq#ruoz (yq)
r#S

Clearly, for r # s we have
Oy (Y ys) = 9% (Yo, ys) + 17 (3),
with

977 (Y, ys) =005 0™ (4 ) (07 (yr) — 07 (ys)) + 0y: 0 7" (9, ) (™ () — 0™ (),
Wiy = Y G o™ ()0l gk (y,),

1<6],3<A()

where the multi-index 3(i) is defined by 0°(®) = Oyi agr. Thus

= 11 + f
with
0= Z 1977 W ), 0 ()15 (Y ) Hgertia (yg)
Tpls#r
T = 21 DB (4)2 5 p-(0) 1 () gt (yg) -
o (V.4.14)
Since

1977 (e ys)l < NLJy, — sl 5 =1,2,..p,
for some N = N(d, m,p), taking into account (V.4.2) we have

p

9% (s 9500l < 25 X0 Ty — wilPp(y) < N'pac(y)

1<k<I<p

AT < Npac(y) D Tus()l D) Jus(yp)]

[0|<m [6|<m

and hence
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with a constant N’ = N’(d, m,p). Remembering (V.4.3) by integration by parts
we obtain

p
= = 25 W (900, p=()us (9 ) grtta(g) ~ fi) + fizo
r=1
with
20 = Z W27 () p(y)0,5u5 (Y ) Mg tia (Yy),

r=1

122 = Z 0, h" (yr)pa(y)uﬁ(yr)HqsérUa(yq)

r=1

Hence noting that ‘ .
7 (y,)| + 10,07 (y)] < NL?

with a constant N = N(d, m,p), we get

|51+ fisl < NL?p:(y) Z |us(y1)] Z |us(Yp)]

|6|l<m |6]<m

Consequently, for a constant N’ = N'(d, m, p),

) dy <NL? D lus(y)l D) Tus(yp)lpoc (y

d d
R RET51<m |6]<m

<N'L? Y ||ID%|®f < N'L* Y |[D%u|Of . (V.A4.15)

|6]<m [0|<m
Now we are going to estimate the integral of fgﬁ 0 1If 5| =1, then

’&igjo(yrays)’ < NLQ‘yr - ys’a

and taking into account (V.4.2), we get

1201 < NL?poc(y) Y Jus(y)le Y Jus(yp)|

|6|<m |6|<m

with N = N(d,p,m) in the same way as |f1| is estimated. Hence, as above,

£y dy < NL* Y7 ||Du|® < NL* Y ||D%u|@) - (V.4.16)

d
RP 15|<m 15|<m

for |5] = 1. If |B| = 2, then

oW ys) = 977 (e, ys) + B2V (y,)
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with

9" (e ys) =05, 0™ () (07 (yr) — 0" (ys)) + 0 7 () (0™ (yr) — o™ (ys))
BB (y,) = Z cgagTO'ik(yr>(35:50'jk(yr>'

1<|6],6<B

Noticing that for a constant N = N(d, m, p),

N 1959 (g )| < Ny, — .|

and
> R ()| + 10,85 (y,)] < NL?,

ij ij
we obtain (V.4.16) for |8| = 2 in the same way as the integral of f7° is estimated.
It remains to consider the case (iii), i.e., to estimate the integral of f%. Since

lago(yrs ys)| < NL2[y, — y,|*
with a constant N = N(d, m,p) and

p P 1
é’ @Jpg = 2 ZZ _ys) pEéij,

k=11=1

we have for a constant N’ = N'(d, m, p),

|agh (Ur, Ys) 030,30 (y)] %L e — wil o) + EL* YT |y — wilp-(y)

<k<I<p 1<k<I<p

<N’L2pge( ) fory = (y1, ..., yp) € R

Hence
1P (y)] < NLpoe ()2 [ua (yr)],
that gives

| sy < NIHDr g, < NI DO,

with a constant N = N(d,m,p), and we finish the proof of (V.4.7) by using
vz, < |vl, for ve Ly(RY). O

Corollary V.4.2. Let the conditions of Lemma V.4.1 hold for integers m = 0
and p = 2 even. Then for e > 0 we have

(DO, D*((a Dy 1)) < NL2Jully,
for multi-indices o = (..., aq) such that 0 < |a] < m, where N is a constant
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depending only on d, m and p.
Proof. As in the proof of Corollary 1V 4.2, it suffices to note that

(D*u®P=2D* (0™ D) 1)), D* (07" Dy) 1))

:J (D Z |D*((c"™ D;)* )(x)|2dac =0
R4

O

Lemma V.4.3. Let p = 2 and m > 0 be integers, and let o = (0) and b be
Borel functions on R? with values in R? and R respectively. Assume the partial
deriwatives of o and bo up to order m are functions such that there exist constants
K > L > 1 such that

m—+1
DD ()| < K, |o(z)] < Ko,

m—+1

_—
Z |+Z|Dkba ) < L

for all z,y € RY. Then for finite signed Borel measures p on R with density
u = dp/dr € W, satisfying (V.4.5), we have

(D20 (b)), D* () ©) < NEJuffy. (V.4.17)

(D)2, D* (0" Di)* ) O D (b)) < NK Llulfy, (V.4.18)

fore > 0 and multi-indices o such that |o| < m, where N is a constant depending
only on d, p, m

Proof. First note that by (V.4.8) and (V.4.9), as well as the conditions on ¢ and
b, the left-hand sides of (V.4.17) and (V.4.18) are well-defined. Interchanging
the order of integration and the differential operator D, rewriting the product
of integrals as multiple integral, using Fubini’s theorem and the identity

Doke(x — 2) = (-1)*ID%k.(z — 2), x,yeR’,

as well as (V.4.1), for the left-hand side F, of (V.4.17) we compute
- j | b, Db ) sy ldy) o
Rd JRprd
1y | f (Y by T, D2 kel — ) ppldy)
Rd JRrd

p‘o‘l f b ys DpaJ‘ H?Z]_k/'g(l‘ - y]) dl’ Mp(dy)
Rpd R4
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= (—1)P! Lw b(yr)b(ys) Db pe (y)IT_  u(y;) dy

for any r,s € {1,2,...,p} such that r # s, where recall that dy = dy;...dy, and
Dy = H§:1D3j . Hence by integration by parts we obtain

P 33 [ b ) s o s 0 T 0

B<ay<a

where vs := D% and ¢ := a — § for functions v on R? and multi-indices § < a.
Using here (V.4.1) and the boundedness condition on |b] and |D°b| we have

PN S [ [ Ik = gpluson) e 0T 0

BLav<a

N Y [ sl s o 0P 2 do < Nl

pa /R ’
with constants N and N’ depending only on p, d and m, where the last inequality
follows by Young’s inequality and the boundedness of the mollification operator

in L,. Now we are going to prove (V.4.18). By the same way as we have rewritten
F* we can rewrite the left-hand side R of the inequality (V.4.18) as

R* = fk:rr(y) dyv (V419)

Rdp

for any r, k € {1,2,..,p} such that r # k, where

fkrs(y> = (_1)p|a‘b(yk)oj(yr)ayngaps(y) H?:lu(yj)a y= (yla L) yp) € de

for k,r,s € {1,2,...,p}. As in the proof of Lemma V.4.1, for real functions f
and g we write f ~ g if they have the same (finite) Lebesgue integral against
dy = dyy...dy, over RP. We write f < g if the integrals of f and g against dy
over R? are finite, and the integral of f — g can be estimated by NKL|u|WZ§n for
all uw € W with a constant N = N(d, m, p), independent of u. By integration

by parts we have
fkrr ~ 2 Z fl;yrﬁr

Y<a f<a

with
Zfs (y) == Cfé,cgbw(yk)ff% (yr)é’yg pe(Y) Uy (yk)UB (U)o puia ()

If 8 # 0 then by integration by parts (dropping 0,: from p. to the other terms),
and using the boundedness of b, its derivatives up to order m + 1, and the
boundedness of the derivatives of ¢ up to order m + 1, we see that f,ZfT <0

for any k = 1,2,.p, 7 # kand v < a. If 8 = 0 and v = 0, then f° can be
estimated by an exact repetition of the proof of Lemma 4.2 in [17], by replacing
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p therein with u,dy, to yield f2° < 0. Consequently,

Frrr < 2 f12 forevery k=1,...,pand r € {1,2, ..., p}\{k}.

0#y<a
Writing £,° (y) = g7,..(y)h3(y), with
Ires () = by (ye) o () Oy p(y), MY (y) = s (yi) yria (),

we get

p
p(p—1)(p—2)R Z ZZ ZJ g (WA (y dy+NKL|u|Wm, (V.4.20)
#FY<a s=

0 1r#s k#s,r

and by (V.4.3),

po- VR <= B NN a0l da + N Ll

= iZZJ s (W) (y) dy

0#y<a s=1r#s k#s,r

- ZZJ Gars NI (y) dy + N K Lfulyy,, (V.4.21)

O0#v<a s=1r#s

with a constant N = N(d, m,p). Summing up (V.4.20) and (V.4.21) we obtain

o< 3 NS S [ o)~ L) dy + NK

0#y<a s=1r#s k#r,s

-3 S N Ll (V.122)

O0#v<a s=1r#s

where ¢, = p(p — 1)?, and

(Tss (W) — Gl () = by () (0" (ys) — 0 (yr)) Oy pe ()15 (Y ) 1L it (y).

By the boundedness of |b,| and the Lipschitz condition on o, using (V.4.4) we
get

(G —gh )l <0, forall0#y<a,s=1,2,..,pandr #s, k#1,s.
By integration by parts we have for the last term in (V.4.22),

gl ,hl <0, forO0#y<aands=1,...,p, 7 # s,
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which finishes the proof of (V.4.18). O

For vectors & = &(z) € RY, depending on 2z € R? we consider the linear
operators I¢ and J¢ defined by

To(z) = p(x + &(x)) (V.4.23)

() = T(x) — p(a), J(x) = I'(x) - &(x) Dy (),

x € R, acting on functions ¢ and differentiable functions 1) on R

Lemma V.4.4. Let £ = £(x,3) be an R¥%-valued function of x € R for every
3 € 3 for a set 3. Assume that for an integer m > 1 the partial derivatives of
€ in x € R? up to order m are functions on R? for each 3 € 3, such that for a
constant A\ > 0, a function € on 3 and a constant K¢ > 0 we have

€(2,3)| <€) < Ke,

m—+1

D 1Dk )l < €G), [ det(I+0D,E(w,3))| = A7 (V.4.24)
k=1

for all z,y e RY, 3 € 3 and 6 € [0,1]. Let p = 2 be an even integer. Then for
every finite signed Borel measure p with density u = du/dx € W, satisfying
(V.4.5), we have

C i | p(Dzy D3 () d
Rd
+ | (D2 4+ D@ = (D2~ p(D2 DI ) d
Rd
< NE(G3)|ulf o for3e3 e>0 (V.4.25)
for multi-indices o, 0 < |a| < m with a constant N = N(d,p,m, \, K¢).

Proof. Again we note that by (V.4.8) & (V.4.9), together with the conditions on
&, it is easy to verify that C' is well-defined. Notice that

Dgp® + Dg (1% )® = Dy (T )

and
p(Dgp P D (I )& — p(Dg )P D (15 1)

= —p(Dgu)P D ((€'Di)* ),

Hence
€ = | (DT Oy — (D2 — p(D2 P DR D) ) . (V420
Rd
First we change the order of D¢ and the integrals and operators Ty£ and _75 acting
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in the variable y € R, then we use
Dok (z —y) = (—1)'0“D;‘k5(a¢ —y)

to get
DT = (<17 | TEDGkl =) uld),

Dep® = (=) | Dok (2 — y) u(dy),

Rd

D((E'Dy)* ) = (1) 51( )0y Dyke(x = y) p(dy).

Thus rewriting the product of integrals as multiple integrals, and using the prod-
uct measure p,(dy) := pu(dyy)...u(dy,) on R% by Fubini’s theorem we get

(DT @) = | (T D5 bl = 30)) )
- | T DI e = ) (),
D2y = | (Dbl = 1)) )
- | DTk = ) () (V.4.27)

and
p(D2 )1 DE((6D,) 1) =p f DG kel = )€ ()0, D, kel = i)

=p | E(Yp)0y DITL_ ke (x — ) pip(dy)
]RP

JR ZSZ (yr) 0y DY TI_ ke — ) pip(dy),

d
P =1

(V.4.28)

where again
Dy =11, Dy for y = (y1,...,yp) € R,

and the last equation is due to the symmetry of the function HleD; k-(x —y,)
and the measure p,(dy) in y = (y1,...,y,) € RP% Thus from (V.4.26) we get

C= | | Dk = ) () da
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with the operator
p
Lf, = HleTyET —I- Z 5Z(yr)ay£>
r=1

defined by

Lo (y) = o +EWn), - tp+E W) —0(y) = > &' ), Y= (U1, yp) € R

r=1

for differentiable functions ¢ of y = (yi,....,y,) € RPY. Using here Fubini’s
theorem then changing the order of the operator Lngo‘ and the integration
against dx, by virtue of (V.4.1) we have

C= | mop | mke - demldn) = | LDF0 )l
Rpd R4 Rpd

(V.4.29)
By Taylor’s formula

1

LD 0.(0) = [ (1= 00 e (00, D7) + 9E(w) d0

0

wherey = (y1,...,9,) € Ry e Rifork = 1,2,...,p, and £(y) == (E(y1), ..., E(vp))
for y = (y1,...,y,) € R?”. Thus by changing the order of integrals and then

changing the variables y, with y + V€(yx) for k = 1,2,...,p, from (V.4.29) we
obtain

C = Jl(l —9)C(¥) dY (V.4.30)
0
with b b
() - f D) D I 02 D)
pd he11=1
where, with 7y(x) := x + 9¢(x),

A .

E(x) = E(ry (2), a(z) = u(ry(2))|det D7yl (z)|, zeRY i=1,2,...4d,
(V.4.31)
and dy := dy,dy,...dy, denotes the Lebegue measure on RP?. Clearly,

C(0) = Ci(0) + Ca(0)

with

p
f 2 E W& (r)ay 0,0 D p(y)TE_ u(y, ) dy,

Rrd 7

p
0) = | 3 S I 0)0y 0 D )y dy

RPd 71 12k

o

Bl
—_
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Using (V.4.3) and the symmetry in y, and y;, we have

Ci(¥) = -} f D) STE ) () + € ()€ ()2 0,y Do ()i, dy.

k=11#k

Ca(¥) =3 Jde 20 2 EWRE ) + EWE (k)20 D3 pe(y) Ty iyr) dy.

k=11#k
(V.4.32)
Hence
p
) - J SS9 i, 1)y 0, DI pe () Ty (g, dy (V.4.33)
RP 027 sr
with

0" (yr,ys) = —5(E () — € () (E (yr) =€)
Notice that the right-hand side of equation (V.4.33) is the same as the right-
hand side of (V.4.11) with £ in place of o% for each ¢ = 1,2,...,d and with @

in place of u. It is easy to verify, see Lemma 3.3 in [42], that for a constant
N = N(d, \,m, K¢) we have

m+1

Z |DF(7;1(x))| < N, for each ¥ € [0,1],5 € 3,7 € R™
k=1

Thus also for each ¢ € [0, 1],

m+1

ST [DM(w,3) < NEG) forw e RY e 3, (V.4.34)
k=1

with a constant N = N(d, m, A\, K¢), i.e., for each ¥ € [0, 1] and 3 € 3 the function
¢ of x € R? satisfies the condition (V.4.6) on ¢ in Lemma V.4.1, with N¢(3) in

place of L. Consequently, copying the calculations which lead from equation
(V.4.11) to the estimate (V.4.7) in the proof of Lemma V.4.1, we obtain

C(9) < NE*(3)|alh o for each J e [0,1],3€ 3

with a constant N = N(d, m,p, A\, K¢). Note that due to the condition (V.4.24)
there is a constant N = N(d, p, m, A, K¢) such that

|alwm < Nlulwyp for all ¥ € [0,1]. (V.4.35)

Hence by virtue of (V.4.30) the estimate (V.4.25) follows. O
Corollary V.4.5. Let the conditions of Lemma V.4.4 hold. Then for every
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finite signed Borel measure p with density u = du/dx € W', satisfying (V.4.5),
we have

f (Dep WD I 1) de < NE(3)|ulbym  forze3,e>0  (V.4.36)
Rd P

for multi-indices o, 0 < |a| < m with a constant N = N(d,p,m, A, K¢).

Proof. By the convexity of the function f(a) = a? for even p > 2 we know that
(a +b)P — a? — paP~'b = 0 for all a,b € R?. Applying this with a = D) and
b = D*(I%u)®) shows that (V.4.25) implies (V.4.36). O
Lemma V.4.6. Let the conditions of Lemma V.4.4 hold. Then for every finite

signed Borel measure p with density u = du/dx € Wi, satisfying (V.4.5), we
have

|| (Do 4 DO — (DO da] < NEGulh (V43T
Rd P

for a constant N = N(d,p,m,\, K¢) for 3 € 3, where the argument x € R? is
suppressed in the integrand.

Proof. Define

F = J (Du® + D(Iu) )P — (D*u)YP du
Rd

_ J (D (Tu) @) — (Dou@Y da,
Rd

where we use the operator T" defined in (V.4.23). As in the proof of Lemma 4.5
in [17] we define the operator

€ _ 3
ME =107 1

where [ is the identity operator. Observe that using Fubini’s theorem and the
notation DF* = TI7_ D¢, dy = dyy - - - dyp, y = (Y1, - .., Yp) € RP,

F = f ) J ) (Dgal'[quiH?:lke(x—yj)Hizlu(yk)—D£QH§=1k€(a:—yj)Hizlu(yk)) dy dz
Rd Jrdp

= fRd J}de (M DI e (a—yy) )T () dy e = JR . (MEDp () ) TI7_ () dy.

Next, note that by Taylor’s formula with £(y) = (£(y1), ..., &(y,)) € R,
P ol ) ‘
MEDF0.0) = X [ (@ D)o+ 08 0 € )
k=1
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Thus, by a change of variables, Fubini’s theorem and the functions defined in
(V.4.31),

e ZJJ Oy Dy pe fl(yk) L (y;) dy do,

which by integration by parts gives, with multi-indices f < «, 3 := a — 8 and
constants cg,

F = Z CBZJ f Oyi P=(y £ﬁ (yn) g (y) 1Y tia (y;) dy dO

B<a

FL W) = ! Oyt = (1) (i) e (i T2 i (y7) dy

and where i, (yr) = Dy @(yx) for v = a, 3. We consider two cases. In the
first case, let § < « and hence || = 1. Then by integration by parts, for all
k=1,...,pand a constant N = N(d,p,m,\),

W) = - JW P () (0§ (i) Vita (i) + €5 (i) (81 1 () ) IT7 it (y) dy 9

< NEG)[uliyy

where we used (V.4.34) and (V.4.35). In the second case 3 = a so that 8 = 0
and we have

2= 20| Qe )€ )Ty ia(yy) dy,

—

as well as by using (V.4.3) and the symmetry in s and k,

p
D= Z > f Oyi P= ()& (Ys) T _ 0 (y5) dy.
k=1 k=1 sk
Therefore also, with a constant N = N(d, p, m, A, K¢),

Z +P2=3fk;

hS]

| 2 (E) ~ € 0) ay) dy| < N3)
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where we used (V.4.34) together with (V.4.4), as well as (V.4.35). This proves
the lemma. ]

V.5 Solvability of the filtering equations in Sobolev
spaces

The following two lemmas are essentially Lemma IV.5.3 in Chapter IV, where
instead of D%k, the kernel k. is considered. However, keeping this difference
in mind, the arguments in the proofs of Lemma IV.5.3 can easily be adapted.
Hence we only provide an outline and refer the reader to Chapter IV for full
details.

Lemma V.5.1. Let the Assumption V.2.1 hold. Let w be an L,-solution of
(V.3.2), p = 2, and assume moreover that esssupejo 1) ||z, < 00. If Ky # 0 in
Assumption V.2.1 (ii), then assume additionally

ess supf [y} |ue(y)| dy < oo,  almost surely. (V.5.1)
te[0,T] JR4
Then for each € > 0 and integer m = 0, for any multi-index o = (v, ..., aq),

la| < m, for all x € R almost surely

t t
Du () = D*u (z) + L D*(L*u,) ) (2) ds + L D (M) (z) dVF
t

¢
+ J Da(Jg*us)(e) () vo(d3)ds + J D"‘(Jf*us)(a) (x) 11(d3)ds
30 0 J31
¢
" f DA (150, ) () Ny (ds, ds),
31
(V.5.2)

for all t €[0,T].

Proof. The case of a = 0 is Lemma IV.5.3. The case of a # 0 such that 0 <
|a| < m works exactly in the same way. We first define for a 1) € C§°(R) such that
P(0) = 1, 9(r) = 0 for |r] = 2, for n = 1, ¥, (x) := ¥(|z|/n) € CP(RY). Setting
0r(Yy) = kool — y)n(y) € Cgo in (V.3.2), where k. o(z —y) = DSk(z —y),
yields that for each z € R? almost surely

t

(e = V) = (Kol = Y0) + [ (s Lol =)o) ds

0

¥ j (1t ME (k= )i0)) dVE+ j L (e TRl ) v (o) (V53

0
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+ Jot Ll (s, JE (Fe,a(x—-)tbn)) yl(dg)d5+LtJ (e, I (kea(w—)0)) Ni(d3, ds)

31
for all £ € [0, T]. Then we notice that

|ke,oc(x - y)| < 2 |DWII{55('r - y)’ < Nk%(x - y)? (V54)

[y|<m+2

as well as that by Assumption for all z,y € R%, s e [0,T], 3, € 3;. i = 0,1 and
n = 0 we have

sup | D¥1,| = n*sup |D¥1p| < oo, for ke N,.
R4

zeR4

Lo (keaz = y)tnly |+Z|M kea( —y)a(y))[* < N(K§ + Eilyl* + KT Y, [),

|77 (Kea(@ = 9)n())| < sup [ Dy (kea(z — v)en(0)l[ns(y, 30)* < Nns(y, 30)I*

veRd
< Ni(30) (K + Kily|* + K7|YL[?),
and
| TS (ke (2 = 9)Un ()] + |15 (ke (2 — y)tbn(y))
< sup | D (ke o(z — 0)Un(0)1€:(y, 31) 17 + sup |Dy (ke o (@ — 0)hn (0))P|€: (5, 31)

veR4 veRd
< N&s(y 30)° < NE (1) (Kg + K7[y|* + KT|YL[),
for a constant N = N(e,m,d, Ko, K1, K, K¢, K,;). Using

essup [ (L [yl + Vi) u(w)l dy < 2, (as)
tefo,1] Jra

together with the estimates above, we can apply Lebesgue’s theorem on Domi-
nated Convergence to get that for all z € RY,

(s, koo (w = )tPn) = (g, kea(2 =), (w0, ko (2 =-)tn) = (uo, ko —-)) and

t

Jt (us,As(kg,a(x — Wn)) ds — J (g, Aske oz —-)) ds

0 0
as n — o0, almost surely uniformly in time, as well as that

t

iny [ (e Mo = 0 () V5 = | (e MEca =) V2

n—0o0 0

n—0o0

limJJ Ug—, S keo(z—"))) N1 (dj,ds) = ff Ug_ ,I keo(z—- ))Nl(dg,ds)
31 1

in probability, uniformly in time. Thus, letting n — oo in (V.5.3) it remains to
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note that since A acts in the y variable,

(USvAska,a(Jf - )) = fRd us(y)AsD;ks(x - y) dy

= D% [ o)Ak o ) dy = D*(A20) )
Rd
for all (w, s,2) € @ [0,T] x R if A = L, M* or the identity, as well as for

all (w,s,7,3;) € Qx[0,T] x RY x 3; if A = J" or A = I¢,J¢ with i = 0,1
respectively.

]

Lemma V.5.2. Let the Assumptions V.2.1 and V.2.2 hold. Let u be an L,-
solution of (V.3.2), p > 2 and assume moreover that esssup,epo 7y [ut|r, < 0. If
Ky # 0 in Assumption V.2.1 (ii), then assume additionally (V.5.1). Then for
each ¢ > 0 and integer m = 0, for any multi-inder o = (ay,...,aq), || < m,
almost surely

t
D, = D, | (DD, D)) ds
0
t
+pf (’Dauga)‘p—2Daug€)’Da(MISc*uS)(E)) d‘/sk
0
t
ez Y f (ID*uE P2, |D* (M us) ) ds
k 0
t
+pJ J (|1D*u® [P2D*uE), D*(J7u,) ) vo(d3)ds (V.5.5)
0 J3¢
t
+pj f (|Do‘u§)|p—2Daug€),Da(Jg*us)(s)) v1(d3)ds

0 J31

t

wp | | (DD, DI 0 ) ) (s, d)
0 J31
t
+ f J f {|Dau§i) + D18 u, YO — | Do
0 J3; JR4
— p|D*u® |P*2Dau§_)Da(1§*us,)<€>} N, (dj, ds)

holds for all t € [0,T].

Proof. We apply the It6 formula from Chapter IV, Theorem IV.5.1, to ]Do‘uf) VEP.
In order to do that, we need to verify that almost surely for each z € R? and «,
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such that 0 < |a| < m,
T 5 T
| @) O@lds <o, [ Y I0mMEw) O w)ds <
0 0 k

T T
[ [ ipeme@ins s <o [ [ p20Eu) O @)ln@)ds < =
0 30 0 31

T
| [ 10z a) @ P nds)as < .
0 J31

that for every finite set I' € B(R?), almost surely

T 5 T 1/2
f f D (£ru)@ (2)] duds < o, f ( f S D (M u) @) Pds) " da < o,
I JO T 0

T T
f f D (T u)E (2)] vo(d3) dads < o0, f f DT 0,) ) (1) 14 (d3) davds < 0,
I Jo 30 rJo 31

1/2

L (JT |Da(]§*u5)(6)(;p)|2 yl(da)ds> dx < o0,

0 J31
as well as that almost surely

T
A:=J J D (£%0) O (2)|P dads < oo,
0 Rd
i

rT
A, = Da(Jg*us)(s)(x)uo(dg)‘pda:ds < o,
Jo JRr4 'J3,
rT r p
A¢ 1= Da(Jg*us)@(x)yl(d;,)‘ drds < oo,
Jo Jrd'J3,
rT r /2
B:= (O ID*(ME*u) & () P)" dads < oo,
Jo JR4 L

T
Gi= [ [ [ 10su) O P va(ds)ands <
0 JR4J3,;

T /2
H = J J < | DY(I8%u,) ) (z,3) ul(dg)) dxds < o0.
0 JRd 31

For @ = 0 the claim is Lemma IV.5.2 and the estimates can be found in the
proof thereof. To prove the case where 0 < |a| < m, we note that for A4 =

L, M, I¢, J¢, J1 we have

DA W) = | DE(Aka(z — y))uly) dy = j (Ayhea( — 9))uly) dy,

R4 R
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for k. o(x) = D*k.(x). Hence, a word for word repetition of the proof of Lemma
5.2 & 5.4 in [17], where we replace k. by k., and recall (V.5.4), yields the desired
result. O]

Lemma V.5.3. Let Assumptions V.2.1, V.2.2, V.2.4 andV.2.5 hold with an
integer m = 0 and let p = 2 be even. Let u be an W) -solution to (V.3.2), such
that Elugl} < 00 and almost surely ess supep ]ut|L1 < . Then

E sup |wl} o < NE|ug[Fym (V.5.6)
t€[0,T] P

for a constant N = N(m,d,p, K, K,,, K¢, L, T, A, |§\L2(31), ML0(31)) -

Proof. For m = 0 the claim is Lemma IV.5.5. We proceed similarly here. For
the present case, fix a multi-index « such that 0 # |a| < m, and define

Q,(a,b,0,p,B,u, k) = p((Dau(a))p_l, Da(ﬁ*u)(a)) (V.5.7)
+ EZUN ((Du@)r2 (DY (MM u)@)?),  (V.5.8)
k

QZ()O)(O(,”(Z’O)’U’ ke) = p((Dau(a))p—l’ Da(Jn(éo)*u)(E))’
O (@, €(51), u, ko) = p((Du®)P=t, Do (JE6V* )@, (V.5.9)

Ryl EGr), u, ko) = [Du® 4 D (160 )@
— (DO~ p((Du P, D)),

for u e W, 8 € R? functions b, o and p on R%, with values in R¢, R4

and R™*? | respectively, and R%valued functions 1(39) and £(31) for each 3; € 3;,
i = 0,1, where 8, = By(X,),

L = %(O_ilo.jl +plkp]k)DzJ _|_ﬁlpilDi +ﬁlBl, Mk _ pszl —|—Bk, k= 172’ ...,d/.
By Lemma V.5.2 almost surely

d|DaU£6)|§p = Qp(a, by, o1, pr, B wr, ke) dt + ; Q (Oé 1:(3), e, ke) vo(d3) dt
0

. (0, &4(3), ur, k) 11 (d) dt + 3 Ro(cv, &(5), w, ko) Ni(d3, dt) (V.5.10)

+dC1 (Oé, t) + dCQ(Oé, t),
for all ¢t € [0, T] and

t
Gulant) =p [ (D" DM ) @) v (V.5.11)
0
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Glayt) = JJ ((D*uE )P, D*(I5*u,) @) Ny(dz, ds) te[0,T]
31
are local martingales under P. We write

Rp(aa ft(ﬁl)a Ug—, ks) N1<d57 dt) = Rp((% 51&(51)7 Ut—, ka) Vl(dﬁ)dt + dCS((% t)

31 31
(V.5.12)
with

Gl ) J Ryl 03) ) Ny ) J Ry (s €4(3), s, ko) v (d3)ds,

which we can justify if we show
T
A ::J Ry (c, €(3), e, k)| 1 (d3) ds < o (a.5.). (V.5.13)
0 J31

To this end observe that by Taylor’s formula

Ro(,&(3), 1, ko)) < N | (D) =2(D (180 0,)©)2 1 (DO (186*0,) €)Y d

Rd
(V.5.14)
with a constant N = N(d,p). Hence

; Ryp(a, §(3), ue, ke)) v1(d3)

<N [ DD ) O+ 1D ) O, d

< N'(IDuf; + Ai(t) + As(t))
with

A(t) = f D ) Oy, dv, As(t) = f DI ), de

(V.5.15)
and constants NV and N’ depending only on d and p. By Minkowski’s inequality
and using again that D*I*k.(x — y) = [*D%.(z — y),

D, - |
Rd

p
<[ [k, bl o] < Dok ik, (V50
R

p
Dikifa = y) wily) dy da
R

/2
)p dx

Ailt) = JRd

L | y (Do) (x—y—&(y,3))—(D°k:) (w—y) ) uey) dy| v
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<\L Dk =y = 605:0)) = (DR = 9)lfaly) "

<\f
31

p
< DRI, 31)<JRd(K0+K1|y + KV u(y)ldy),  (V.5.17)

2
Lle(dZ?)

_ 2 p/2
\fd\z>a+1k4Lp5@1>akb-%frny\+—frm1@0»uxy>rdy]u1«Q>]
R

where D! = D D® and similarly, using Assumption V.2.2,

w- L
f

o _ P
< K7D +1k5|1£,,|5|%2(31)(JRd(K0 + Kily| +K1\Yt|)\ut(y)|dy) . (V.5.18)

pl/1<d3>dl’

(DR~ = 6(0.8) ~ (D) — ) )

| D" = = 6:50) = (D) = ) o) )

By (V.5.14)-(V.5.18) we have a constant N = N(p,d, e, ||1,(3,), K¢) such that

NJ e, dt+NJ f (Ko -+ Faly| + K |Yi ) () dy) "t < o0 (a.5).
Next we claim that, with the operator T¢ defined in (V.4.23), we have
Gala, t) + (o 1)
_ f 3 DTS u) O — (D[, Ny(ds, ds) = C(a, 1) (V.5.19)
0 J3
fort € [0, 7). For that purpose not first that D%u(®) 4+ D (1861*)(&) = D(T¢* ),

To see that the stochastic integral ((«,t) is well-defined as an Itd integral note
that by Lemma V.4.6,

T
f DS, — D s
0 1

T
< N|§|%2(31)f |u5|%,f;;n ds < oo (a.s.) (V.5.20)
0

with a constant N = N(d,p,m, A, K¢). Since 3; is o-finite, there is an increasing
sequence (31,)%_1, 31n € 21, such that v4(31,) < oo for every n and U*_; 3y, =
31. Then it is easy to see that

Conlar, t) = J f 13, (3) ((D*uE)P~t, D*(15*u,) @) N(d3, ds),
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Canln, ) j L 15, () (D™ul)P 1, D*(I€1,)()) b1 (d3)ds,
CSTL «, t J L 131n O‘ fs( ) Us—, )Nl(d37d8)>

Conls) f |, 1500 5) e k) w1
31
are well-defined, and
€2(a7 t) = 7111_1)130(52n(057 t) - é?n(Oé7 t))7 Cg(O{, t) = 7}1_1}30 53%(057 t) - JI_I)IC}O 6371(057 t)a

where the limits are understood in probability. Hence

Gl t) + Gl 1) = lim (Gl t) + Ganlat) = (Gn(®) + Canla1)))

t
- i (| L L5, (3) (1D (T u) O, — (D" ) Ny (d3.ds)) = C(av 1),

n—0o0

which completes the proof of (V.5.19). Consequently, from (V.5.10)-(V.5.12) we
have

d|Dau§6)|ip = Qp(a7 bta Oty Pt, /8t7 U, ka) dt + 5 Qz(;O) (Oé, 77t(30>, Ut, ka) VO(dz) dt
0

+ Qg(yl)(aa St(jl)a U, ki) + Rp(&, 675(31)7 U, kf) I/l(dj) dt + dgl(a’ t) + dC(OZ, t)
31

(V.5.21)
By Lemma V.4.1, Corollary V.4.2 and Lemma V.4.3 we have

Qp(,bs, 05, pis, By s ) < N(L? + K2)|us iy (V.5.22)

with a constant N = N(d,p, m), and by Lemma V.4.4 and Corollary V.4.5, using
that £ < K¢ and ) < K,

O (5), s k) < N3y
(Q +Ry) (@, &(5), us, ko) < NE () lusliyye

with a constant N = N(K¢, K, d,p, \,m). Thus from (V.5.21) we obtain that
for all @ with |a|] < m almost surely

(V.5.23)

\Dauf 7, 0 Wy T NJ |us| Dy o ds + m{? forall t e [0, 7]

with a constant N = N(m,p,d, K, K¢, K;;, L\, [€] 1,31, |7]10(30)) and the local
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martingale m®) (o, t) = (i (a, t) + ¢(a,t). Summing over all |a| < m gives
t
[uf? By < Jug” [ + NJ [l ds +mi” forallte[0,T]  (V.5.24)
0

with another constant N = N(m,p,d, K, K¢, K, L\, |€]1,631)s |7 22(30)) 2nd an-
other local martingale, denoted again by m'®). For integers n,k > 1 and ¢ > 0
set 75, = Tn A Tf, where (7;);_, is a localising sequence of stopping times for
m() and

t
7, = inf {te [0, 7] :f [us|hym ds = n}
0 p

Then from (V.5.24), using also [Du® |, = |(Du)®)|;, < [D%lr, for multi-
indices « < m and £ > 0 we get

t/\'rj;,k
Bl [ < Bluolly + NE [ fufhy ds

JO

tATH
< Elug[yym + NE [‘ |ws|pym ds
P Jo P

)
~+

< E|u0|€V£n + NIEJ [Ug p 7, €V1g" ds < oo,

[e=]

for ¢ € [0,7] and integers n > 1. Applying Fatou’s lemma, first for the limit
k — oo and then for the limit ¢ — 0, followed by Gronwall’s lemma gives

E|wipr, 5 < NEuol} o forte [0, 7] and integers n > 1

with a constant N = N(m,p,d, T, K, K¢, K,;, L, \, |€|1,, |7 1,). Letting here n —
oo, by Fatou’s lemma we obtain

sup E|ui[yym < NE|uglFym. (V.5.25)
te[0,T] P P

To prove (V.5.6) we define a localizing sequence of stopping times (75 )2 for
the local martingale m®, as well as

¢
pn, = inf {t e[0,7T]: J |us|%,€£n ds = n}, and  p . = P A P
0

Using the Davis inequality and Lemma V.4.3 by standard calculations for every
n = 1 we get for each |a| < m for the Doob-Meyer process of (i,

1/2

TApP, &
Esup [(1(a,t A p5 )] < 3]E<ZJ ((Dauga))p—17 Da(,/\/lls~<r>l<u$)(s))2 ds)
t<T ' k 0

(V.5.26)
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T/\p

1/2
gN]E(f |uS|Wm ds> < oo,
0

and similarly, for each || < m, the Doob-Meyer process of ((«,-) is

t
e, )(t) = J S 1D (T uy) 9}, — D[] [Pra(3)ds, te0,T].
0 1

Using the Davis inequality and Lemma V.4.6,

TAP3 K 1/2
|u5\12,{}gz ds) < o,
) (V.5.27)
with a constant N = N(m,d,p, K, K¢, L, A, |€|153,)). Thus, due to (V.5.25)
together with (V.5.26) and (V.5.27), we get from (V.5.24), with constant N
depending only on m, p, d, T, K, K¢, K,, L, \, |{|1, and |7]L,,

Esup [G(asnp5,0] < 3EC(0, ) AT ) < NE( |

s<T 0

E sup [uge [ < NEluoli+ D) Esup|Gila,tap; )+ Y] EsuplC(astaps,,)]

te[0,T] ajem  <T ajem =T

T 1/2
<NE|UO|P;;1 +NIE<J |u5Apn|12,I’};1 ds>
0

Letting here k — o0 and then £ — 0, we obtain by Fatou’s lemma with constants
N"and N” only depending on m, p, d, T, K, K¢, K, L, A, [€]1,3,) and |7],(30),

T ) 1/2
E sup furas, e < NBluoffps + NE( [ ey ds)
te[0,77] P 0 i

T 1/2
< NE|ug[Yym + N]E( sup ]umpn\wmf s n s By ds)
v t€[0,T] 0 P

T
< NE|uqly m IE sup ‘ut/\pn|Wm + N/Ef [tsnp, 1‘3"5" ds
te[0,T 0

N”E|u0|Wm + 3E sup [ugnp, [y,
te[0,7] P

where we used Young’s inequality. Thus also, we get for all n,

B sup ity g < 2N "Bl

te[0,T7]
Using Fatou’s lemma we get the desired result. O
For an integer m > 0, let B’ denote the space of those functions ¢ € ﬂp>1 wm
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such that

Z sup sup | D*(x)| < oo and almost surely ¢(z) = 0 for |z| > R
=0 we zeRd

for some constant R depending on 1. It is easy to see that B[’ is a dense subspace
of W for every p € [1,00). For & > 0 let in the following proposition v denote
the convolution

W) = [ xele = ooty dy

of a Borel function v on R?, where y is a smooth, symmetric function of unit
integral on R?, such that y(x) = 0 for |z| > 1 and x.() := e %x(-/¢). Let

ME = "D+ B, k=14,

Z = Q4 l]DU—i_b(E D +65M§k7 515 (thhY;)?

ai = %Z(at( )zkat(a) + pﬁa)“‘“pﬁa)ﬂ“), i,7=1,2,..,d

k
and let 17, J¢ and J7 be defined as I¢, J¢ and J", only with £ and n(®) instead
of £ and 7, respectively.
Consider for € € (0,1) the equation

duj =L dt + MG dV) + f T vo(d3)dt
30

+ f JEUE vy (d3)dt + J IE U Ny(d3, dt),  with uf = 0. (V.5.28)
31 31

Lemma V.5.4. Let Assumptions V.2.1, V.2.2, V.2./ and V.2.5 hold with K; =
0. Consider integers m = 0 and p = 2 even. Assume there is some R > 0 such
that

(bt(x)vBt<x)7O't<x>7pt(x)ant($750>7€t(x751)) =0 (V.5.29)
forweQ, t=0, 30 € 30, 31 € 31 and x € R? such that |z| = R. Let ¢ € By such
that ¢(x) = 0 if |z| = R. Then there exists a unique W)"-solution (u;)ejo,r) to
equation (V.3.2) with initial condition ug = 1. Moreover, almost surely ug(x) =0

for dz-almost every x € {x € RY : || = R} for every t € [0,T] for a constant
R = R(R,K, Ko, K¢, K,), and

E sup |wl} o NIEW]p;n (V.5.30)

t€[0,7

with a constant N = N(m,d,p,T, K, K¢, K, L\, |€| 1, 7] 1,) -

Proof. By Lemma IV.6.4 (i) for ¢ > 0 sufficiently small there exists a W-valued
weakly cadlag Fi-adapted process (uf)sefo,r], such that for each ¢ € C° almost
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surely
t
(5, 0) =), p) + f@Lﬁ@@+juwa v + fj (s, 7" 0) volds) ds
30

JJ (us, J& ) v1(d3) ds+ff (us, IS ) Ny(d3, ds), (V.5.31)
31 31

holds for all ¢ € [0,7]. By Lemma IV.6.4 (ii), since almost surely u; = 0 for
|z] = R for all t € [0,T] for a constant R = R(R, K, K, K¢, K,)), we also have

E sup |uf|r, < RY(E sup |ufl} )l/p <
t€[0,7 te[0,7]

for ¢ = p/(p—1). Next, note that the smoothed coefficients b(5), B () pe) ¢()
and n®) are bounded and satisfy Assumptions V.2.1, V.2.2, V.2.5 and Assump-
tion V.2.4 (iii) with the same constants Ko, L, K¢ and K,, independent of ¢, as
well as Assumption V.2.4 (ii) with a constant L' = L'(L, Ky, K). By Remark
V.2.1 we have that for all ¢ € [0,7],0 € [0,1],y € RY and 3; € 3;, i = 0,1, the
mappings

Tos(@) =+ 007 (2,30), and 7l (1) =z + 067 (2,51)

are O'-diffeomorphisms. Moreover, by Corollary IV.6.3, we know that for e
sufficiently small we have that for all ¢t € [0,7],0 € [0,1] and 3, € 3;, i = 0,1,
the mappings

) 15 () g
= (@) = 00,7 (,30) and () = iy (@) = 24067 (@, 31)
are also C''-diffeomorphisms such that
| det D t”é; ()] =X and |detD f(;; (z)] = X,

with a X' = N(\, K¢, K, Ky) independent of . Moreover, by Remark V.2.1 we
then know that Assumption V.2.4 (i) is satisfied with (another) A" = \"(\, K¢, K, Ko)
independent of . Hence by Lemma V.5.3 for each ¢ > 0 also

T T
E|uZ[3ym —I—E(J |5 | Tym dt)p/ < E|ulfy o +TP'E sup [us by < NE|o [0y
p 0 P t€[0,T P
(V.5.32)
for a constant N = N(m,d,p, K, K, K¢, L, T, \,|€]1,(31): [T12(31)) independent
of € for all integers r > 1. Letting (en) , be the sequence from Lemma IV.6.4

(iii), we know that
u — up weakly in L,(Fr) and «™ — u weakly in L, , for integers r > 2 as n — o0

where w is the unique L,-solution to (V.3.2) and, if necessary by passing to a

150



subsequence,
up' — ur  weakly in W'(Fr) and  u™ — u  weakly in W' for integers r > 2.
Letting r — o0 in (V.5.32) yields

Elur|[Yym + Eesssup [ufym < NE|Y[V 0.
P te[0,T7] P P

By Lemma V.3.2 u is weakly cadlag as W"-valued process. Thus we can replace
the essential supremum above by the supremum to obtain (V.5.30). By Lemma
IV.6.4 (ii) we also have that almost surely ui(z) = 0 for dz-almost every z €
{r € R?: |z| = R} for every t € [0,T] for a constant R = R(R, K, Ko, K¢, K,,).
This finishes the proof. O

Corollary V.5.5. Let Assumptions V.2.1, V.2.2, V.2.} and V.2.5 hold with an
integer m = 0. Assume, moreover that the support condition (V.5.29) holds for
some R > 0. Then for every p > 2 there is a linear operator S defined on W'
such that SY admits a P®dt-modification u = (uy)sefo,r) which is a W-solution
to equation (V.3.2) for every v € W with initial condition uy = 1, and

P’

E sup |uhym < NE[Y[m (V.5.33)
t€[0,T P P

with a constant N = N(m,d,p,T, K, K¢, K,), L, \, |€| 1y, |11]1,). Moreover, if 1 €
Wit such that almost surely 1(x) = 0 for |z| = R, then almost surely us(x) = 0
for|z| = R forte[0,T] for a constant R = R(R, K, Ky, K¢, K,).

Proof. By Corollary 1V.6.5 we know that there exist linear operators S and Sp
on L, such that S¢ admits a P ® dt-modification u = (u;)we[o,r) that is an L,-
solution to (V.3.2) such that ur = Sp satisfies equation (V.3.2) for each p € Cf°
almost surely with uy in place of u; and ¢t := T'. By an abuse of notation we
refer to this stochastic modification u whenever we write S¢) in the following.
It remains to show that if ¢» € W', then u is in particular a Wj"-solution to
(V.3.2), i.e. it is weakly cadlag as W) -valued process.

If p is an even integer, then this follows from Lemma V.5.4. Assume p is not an
even integer. Then let py be the greatest even integer such that py < p and let
p1 be the smallest even integer such that p < p;. By Lemma V.5.4, in particular
(V.5.30), we get that

‘STw’WE(fT) + ’Sw‘wgz,r < NJMW;’; fOI‘ 1= O, 1 (V534)
for every r € [1, 0) and constants N; = N;(m,d,p;, T, K, K¢, K, L, A, |§\L2, 17lL,),

t = 0,1, independent of r. Hence, by a well-known generalization of the Riesz-
Thorin interpolation theorem we also get for all » > 1,

Srlw(Fr) + [SY|wy, < Nlws  for i =0,1, (V.5.35)
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for (another) constant N = N(m, d,p, T, K, K¢, K,), L, \, || 1,, || 1, ). Consider a
sequence (")), < Bf' such that )" — ¢ in W', For each n, u™ = S¢" is the
unique W)"-solution to (V.3.2), 4 = 0,1, with initial condition ¢". By virtue of
(V.5.35), using that [¢)" — 9|wm — 0, as n — o0 we know that also

u" —u  weakly in W' for every integer r > 2 and uy — up weakly in W'(Fr),

where u = St is the unique L,-solution introduced in the beginning of the proof,
satisfying (V.5.35). To see that u is weakly cadlag as W}"-valued process, note
that by letting » — o0 in (V.5.35) or St = u and Spip = ur yields

E|ur|? o )~|—]Eesssup\ut\p m NIEW]@V;,L,
te[0,T7]
for (another) constant N = N(m,d, p,T, K, K¢, K,), L, \, |€|1,, 71| 1,). By Lemma
V.3.2 we then know that u is weakly cadlag as I¥"-valued process. Thus we can
replace the essential supremum above with the supremum, to obtain (V.5.33).
To prove the claim about the support of u, note that if ¢(z) = 0 for || > R,
for a constant R, and " — ¢ in W, then for sufficiently large n we have
Y™(x) = 0 for |z| = 2R. By Lemma V.5.4 (ii) thus also u}'(z) = 0 for dz-almost
every z € {x € R : [z[ = R} for every t € [0,T] and n sufficiently large, for
a constant R = R(R, K, Ko, K¢, K,)). This is clearly preserved in the limit as
n — o0. This finishes the proof. O

V.6 Proof of Theorem V.2.1

Let x be a smooth function on R such that x(r) = 1 for r € [—1,1], x(r) = 0
for [r| = 2, x(r) € [0,1] and Y72 |d*/(dr¥)x (r )\ < Cforallr € R and a
real nonnegatlve constant C'. For integers n > 1 we define the function y,, by
Xu(z) = x(|z]/n), v € R™.

Lemma V.6.1. Let b = (b°) be an R¥-valued function on R™ such that for a
constant M > 0,

Z |Db(z)| < M, for all z € RY. (V.6.1)

Then by, := xnb satisfies (V.6.1) in place of b for a constant M’ = M'(M, C,m,|b(0)])
i place of M.

Proof. A straight forward calculation yields the result. O]

We recall from Chapter IV that to preserve the diffeomorphic property of the
mappings

ngo’e(x) =z + 0n(x,3) and Tt%h@(x) =z + 0&(x, 31) (V.6.2)
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(for all we Q, t € [0,T], 6 € [0,1] and 3; € 3;, i = 0,1) as a function of z € R,
when the functions £ and 7 are truncated, we introduced, for each fixed R > 0
and € > 0, the function k® defined on R by

@) = [ o= (o) dy. (v.63)
R
1, lz| <R +1,
) L+elog (B5), R+1<la| < (R+1)e",
0, 2] = (R + 1)ells

where k is a nonnegative C* mapping on R? with support in {z € R? : |z| < 1}.

We summarize the results of Lemmas IV.7.1, IV.7.2, IV.7.3 and some facts
from the proof of Theorem IV.2.1 in Section IV.7 in the following proposition.
For that purpose, define the functions b® = (b™(t,2)), B® = (B"(t, z)), o™ =
(ij(t?z))a n" = (U”i(t>zvéo)) and " = (gm(tv 2731)) by

(bn’Bn’O_n’pn> = (b,B,O’, p)XTu (77n>fn) = (77,5))271 (V64>

for every integer n > 1, where y, and Y, are functions on R defined by
Xn(2) = x(|2]/n) and Yu(z,y) = &"(J]/n)x(ly|/n) for z = (z,y) € R, with x
introduced at the beginning of this section and with k" = Kln) defined in V.6.3,
such that, by the L-biLipschitzness of the mappings in (V.6.2), for all n > 1 the
mappings

T o(@) =z +0n)(z,30) and 7 (2) =z + 0 (2,5)

are biLipschitz (for all we Q, t € [0,T], # € [0,1] and 3; € 3;, i = 0, 1).

Proposition V.6.2. Let the conditions of Theorem IV.2.1 hold for some p = 2.
Assume the initial conditional density mo = P(Xo € dx|FY)/dx additionally
satisfies E|7T0|€Vgt < oo for some integer m = 0. Then there exist sequences

(Xg)nzr, (XY epory)nzrs as well as (ng)zy and - (77 )iefo.r)) 1

such that the following are satisfied:

(i) For each n = 1 the coefficients b", B", a", p", &" and 1", defined in (V.6.4),
satisfy Assumptions V.2.1 and V.2.2 with K1 = 0 and constants

K| = K{n,L K, Ky, Ki,K¢, K,;) and L' = L'(K, Ky, Ky, L, K¢, K,)) in place of
Ky and L, as well as Assumption V.2.4 with X' = XN'(\, Ko, K1, K¢, K,)) in place
of \. Moreover, for each n = 1 they satisfy the support condition (V.5.29) of
Lemma V.5.4 with some R > 0 depending only on n.

(ii) For each n =1 the random variable X' is Fo-measurable and such that

lim X =Xy, weQ, and E|X]|"<N(1+E|X,|"),

n—o0
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for r >0 with a constant N = N(r) independent of n.

(i) Z = (X}, Y/") is the solution to the SDE (1.0.2) with the coefficients
b, B™, a", p" £ and 0™ in place of b, B, o, p,& and 1, respectively, and with ini-
tial condition Z§ = (X, Y0).

(iv) For each n = 1 we have 7} = P(X{ € dz|F))/dx, 7 (x) =0 for |z| =n+1
and

: 0 _
&Lr’rolo\wo molwm = 0.

(v) For eachn > 1 there exists an L,-solution u" to (V.3.2), r = 2,p, with initial
condition w(, such that u" is the unnormalised conditional density of X" given
Y almost surely

u(z) =0 for dr-a.e. e {xeR?: |x| = R} for allte[0,T]
with a constant R = R(n, K, Ko, K¢, K,)) and

E sup |upl} < NE|mg[; (V.6.5)
t[0,T P P

with a constant N = N(d,d', K, L, K¢, K, T, p, \, || 1, ||1,). Moreover,
u" —u  weakly in L, for r = p,2 and all integers ¢ > 1,

where u is the unnormalised conditional density of X given'Y, satisfying (V.6.5)
with the same constant N and u,m, in place of u", 7.
(vi) Consequently, for each n =1 and t € [0,T] we have

7 = P(X e dz|F)")/dv = ul(2)%?, almost surely,
as well as
7 = P(X, € do|F))/dx = uy(x)%:, almost surely,
where %™ and %y are cadlag positive normalising processes.

Now we are in the position to prove our main result.

Proof of Theorem V.2.1. Step I. Assume first that the support condition (V.5.29)
holds with some R > 0 and that the initial conditional density 7y is such that
mo(x) = 0 for [x| = R. By Corollary V.5.5 we know that there exists a W"-
solution (uy)sepo,r) to (V.3.2) with initial condition 7, satisfying

E sup |ufyym < NE|molfym (V.6.6)
t€[0,T] P P

with a constant N = N(m,d,p,T, K, K¢, Ky, L, A, €|1,, |7|L,). Moreover, we
have u; = 0 for |z| = R, for a constant R = R(R, K, Ky, K1, K¢, K,;), and hence

154



clearly

sup |ug|z, < RY® sup |u|;, and  sup J [y |us(y) | dy < oo (a.s.),
te[0,T] te[0,T] te[0,T] JR4

with ¢ = p/(p — 1). Since also Ty = P(Xy € dz|F])/dz € Ly, then in particular
o € Ly and hence
E sup |wl|7, < NE|mo|7,, (V.6.7)
te[0,T7]
with a constant N = N(d,p, T, K, K¢, K,), L, \, |€|1,, |1|1,). By Lemma V.5.4
u is the unique Ly-solution and therefore by Theorem V.3.1, u is in particular
the unnormalised conditional density, i.e., u; = dy;/dz for all ¢t € [0,T"], almost

surely, with p the unnormalised conditional distribution from Theorem III.1.1.
Thus also for each t € [0, 77,

T = P(X; € dv|F))/dx = u%,, almost surely,

where %, is the FY-optional projection of the normalizing process v under P
introduced in Chapter III.
Step II. Finally, we dispense with the assumption that the coefficients and the
initial condition are compactly supported. Define the functions b,,, B, 0., pn, &n
and 7, as in (V.6.4). Note that by Proposition V.6.2, as well as Lemma V.6.1,
the truncated coefficients satisfy Assumptions V.2.1 and V.2.2 with K; = Ky =0
and constants K, = K{(n, K, Ko, K1, K¢, K,)) and L' = L'(K, Ky, K1, L, K¢, K),)
in place of Ky and L, the coefficients b,,, B, 0,,, p,, satisfy Assumption V.2.5 with
a constant K’ = K'(m, Ky, K1) in place of L, and moreover that the coefficients
N, and &, satisfy Assumption V.2.5 with K'7 and K'¢ instead of 77 and € respec-
tively. Furthermore, by Lemma IV.7.3, for each n > 1 the coefficients 7, and &,
satisfy Assumption V.2.4 with a constant \' = X'(\, Ko, K1, K, K¢) in place of
A. Note that K’, L' and X do not depend on n. Moreover, for each n > 1 they
satisfy the support condition (V.5.29) of Lemma V.5.4 for some R = R(n) > 0.
By assumption, my = P(X, € dz|F))/dx exists almost surely and ]E’ﬂ'g’];v;n < 0.
Then let (Xg);2; and (73);-; = W) be the sequences from Proposition V.6.2
such that

711_1)120 ™5 — molwm = 0, (V.6.8)
mi(x) = 0 for |z| = R(n) and 7§ = P(XP € dx|F))/dz (a.s.), where (X[, Yp)
is the initial condition to the system (1.0.2), and (R(n))"_, is the sequence of
positive numbers from the support condition for the coefficients (o™, ...,£"). By
Step I we know that there exists a W -solution (uy)sefo,r) to (V.3.2) with initial
condition 7}, which is the unnormalized conditional density of X" = (X}")ic[0,1]
given Y = (Y;")tefo,7], Where Z" = (X", Y™) is the solution to (1.0.2) with initial
condition (X{,Yp). By Proposition V.6.2 (v) we know moreover that

u" — u weakly in L, , for r = p,2 and all integers ¢ > 1,
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where u is the unnormalised conditional density of X given Y from Theorem
V.3.1, satisfying
E sup |uf2, < NElmf2,,
te[0,T]

with a constant N = N(d,p, T, K, K¢, K,), L, \, |€| 15, |11]1,) independent of n.
Moreover, u is an L,-solution to (V.3.2) and by Theorem V.3.1 (i), it is the
unique Ly-solution to (V.3.2). It remains to show that u is also a W)"-solution to
(V.3.2), as well as that it is strongly cadlag as W -valued process, for s € [1,m).
To prove the former, by (V.6.6) together with (V.6.8) we get that for n sufficiently
large,

T p/r

Eluz [y +E (J Juf [y dt) < Efuz[jy, +TP"E sup |ul W < 2NE|mo[fy..
0 te[0,T]

(V.6.9)

Hence we know that
wp — ur, weakly in W* and " —u weakly in W' for any r > 1,

where u satisfies for all » > 1,

T p/r
E‘UTV) m ]E (J |ut|’{/VI;n dt> § 2NE|7TO’WZ§n
P 0

Letting » — o0 above yields

Elur|m + Eesssup [u[fym < 2NE|mo|pwm.
» te[0,T] » P

By Lemma V.3.2 we then know that u is weakly cadlag as an W)"-valued process,
i.e. it is a W "-solution to (V.3.2). Clearly, by Proposition V.6.2 (vi), also for
each t € [0,T]

m(z) = P(X; € dz|F))/dx = u(z)%;, almost surely,

with % from Theorem V.3.1. We now show that if m > 1 and K; = 0, then u
is strongly cadlag as Wj-valued process for s € [0,m). For that purpose, recall
first that by Lemma V.3.3, u is a strongly cadlag L,-valued process, as well
as weakly cadlag as an W]"-valued process. By interpolation we then have a
constant N = N(d,m, s,p) such that

lue — g, [ws < Nlug — g, lwype [ue — w2, < 2NClue — ug, |1,

|y, — ur—|W; < Nluy, — ur—‘W;”WTn - ur—|Lp < 2N(luy, — uT_|Lp

for any t € [0,T), r € (0, T], any strictly decreasing sequences t,, — ¢ and strictly
increasing sequences r,, — r with r,,t, € (0,7), where u,_ denotes the weak
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limit in W of u at 7 from the left, and ¢ := sup,cp 7 [wilwy < o0 (a.s.). Letting
here n — oo we finish the proof. m
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