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Lay summary

Consider a system we would like to observe to determine its current state, using
some form of measurement. In many situations, the system may exhibit complex
behaviour and depend on many variables. The observations we can obtain may
be limited, as well as subject to errors and uncertainty, due to our imperfect
measurement method. In such a case, filtering aims to give the best possible
estimate of the system’s state, while accounting for the flaws in the information
we obtain.
To give an example, let us imagine we want to track weather parameters in a
given region. In order to do so, we have to come up with a model, which we
think describes their dynamics well and which usually depends on a number of
variables. Let us assume that, among them, we are interested in the air pressure,
the temperature and the humidity. The sensors we are given can only measure
the latter two. Moreover, they cannot do so everywhere, but only in certain
locations and with some error. With methods from filtering theory we can make
an estimate on the weather and its other parameters, for instance the air pres-
sure, given the flawed temperature and humidity measurements we have.
In many cases, it is desirable to know how likely a certain state of the system is,
given partial information, i.e. the probability of the system having said state.
Mathematically, this means we have to analyse the distribution of the state
conditioned on partial observations. In our example, we could be interested in
how likely the air pressure is between certain values, based on our temperature
and humidity measurements. We refer to this as the conditional distribution, i.e.
the distribution of the air pressure conditional on the temperature and humidity.

In our work, we consider a class of systems which has received a lot of interest
in mathematics lately, referred to as jump-diffusions. They model phenomena
that experience instantaneous changes in their dynamics, in such a way, that
their parameters exhibit jumps in their values. We prove that, if at the start of
our experiment, the conditional distribution is well-behaved in a certain sense
and if our model satisfies certain assumptions, then the conditional distribution
remains well-behaved at all future times as well.
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Abstract

In this thesis, we study the filtering problem for a partially observed jump diffu-
sion pZtqtPr0,T s “ pXt, YtqtPr0,T s driven by Wiener processes and Poisson martin-
gale measures, such that the signal and observation noises are correlated. We de-
rive the filtering equations, describing the time evolution of the normalised condi-
tional distribution pPtpdxqqtPr0,T s and the unnormalised conditional distribution
of the unobservable signal Xt given the observations pYsqsPr0,ts. We prove that if
the coefficients satisfy linear growth and Lipschitz conditions in space, as well as
some additional assumptions on the jump coefficients, then, if E|π0|

p
Lp
ă 8 for

some p ě 2, the conditional density π “ pπtqtPr0,T s, where πt “ dPt{dx, exists and
is a weakly cadlag Lp-valued process. Moreover, for an integer m ě 0 and p ě 2,
we show that if we additionally impose m ` 1 continuous and bounded spatial
derivatives on the coefficients and if the initial conditional density E|π0|

p
Wm

p
ă 8,

then π is weakly cadlag as a Wm
p -valued process and strongly cadlag as a W s

p -
valued process for s P r0,mq.
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Chapter I

Introduction

Since its early developments in the mid-twentieth century, filtering theory has
been a heavily researched area in a number of mathematical and more applied
disciplines. The primary objective of stochastic filtering is to develop meth-
ods that allow us to infer properties of the state of a system, given partial,
noisy or otherwise corrupted information of it. More precisely, most often we
are concerned with two random dynamical systems, one modeling a (partially)
unobservable signal X “ pXtqtPr0,T s and the other representing the observation
Y “ pYtqtPr0,T s on some time interval r0, T s. In most cases, the “best” estimate
of Xt at time t given past observations tYs : s ď tu is considered to be the
mean-square estimate and it is well-known that for each time t, this is given by
the conditional expectation EpXt|tYs : s ď tuq. Thus, in a more general sense,
the classic task of filtering theory is to calculate for a real-valued Borel function
f the conditional expectation

EpfpXtq|tYs, s ď tuq “

ż

Rd

fpxqPtpdxq, t P r0, T s, (I.0.1)

and hence it is of interest to study the properties of Ptpdxq, the conditional dis-
tribution of Xt given tYs, s ď tu.
This has been done for a variety of dynamical systems Z “ pX, Y q and to give
an overview of the corresponding literature would exceed the scope of this work;
instead, we refer the reader to [11] for a historical account, to [3] for an exposi-
tion of various methods and approaches, as well as to the references therein for
further reading.

In this thesis, we consider a d`d1-dimensional stochastic process pZtqtPr0,T s “
pXt, YtqtPr0,T s on a given complete filtered probability space pΩ,F , pFtqtě0, P q,
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satisfying the stochastic differential equation (SDE)

dXt “ bpt, Ztqdt` σpt, ZtqdWt ` ρpt, ZtqdVt

`

ż

Z0

ηpt, Zt´, zq Ñ0pdz, dtq `

ż

Z1

ξpt, Zt´, zq Ñ1pdz, dtq,

dYt “ Bpt, Ztqdt` dVt `

ż

Z1

z Ñ1pdz, dtq,

(I.0.2)

on the interval r0, T s for a given F0-measurable initial value Z0 “ pX0, Y0q,
where pWt, Vtqtě0 is d1 ` d1-dimensional Ft-Wiener process, and Ñipdz, dtq “
Nipdz, dtq´νipdzqdt, i “ 0, 1, are independent Ft-Poisson martingale measures on
R`ˆZi with σ-finite characteristic measures ν0 and ν1 on separable measurable
spaces pZ0,Z0q and pZ1,Z1q “ pRd1zt0u,BpRd1zt0uqq, respectively. The mappings
b “ pbiq, B “ pBiq, σ “ pσijq and ρ “ pρilq are Borel functions of pt, zq “
pt, x, yq P R` ˆ Rd`d1 , with values in Rd, Rd1 , Rdˆd1 and Rdˆd1 , respectively, and
η “ pηiq and ξ “ pξiq are Rd-valued BpR` ˆ Rd`d1q b Z0-measurable and Rd-
valued BpR` ˆ Rd`d1q b Z1-measurable functions of pt, z, z0q P R` ˆ Rd`d1 ˆ Z0

and pt, z, z1q P R` ˆ Rd`d1 ˆ Z1, respectively.
As in (I.0.1) we consider X to be the signal process and Y the observation
process, governed by (I.0.2) on the finite time interval r0, T s. The primary aim
of this thesis is to study the filtering density π “ pπtqtPr0,T s, satisfying for each
t P r0, T s and bounded Borel function f ,

πt “
P pXt P dx|tYs : s P r0, tsuq

dx
and

ż

Rd

fpxqPtpdxq “

ż

Rd

fpxqπtpxq dx,

(I.0.3)
almost surely.

The novelty of this thesis is threefold. Firstly, we derive the filtering equa-
tions, the Kushner-Shiryaev equation and the Zakai equation, associated to our
model (I.0.2). The former describes the time evolution of the conditional dis-
tribution pPtpdxqqtPr0,T s satisfying (I.0.1). We obtain it by a change of measure
method and first deriving the Zakai equation for the “unnormalised” condi-
tional density pµtpdxqqtPr0,T s, related to P via a normalising multiplicative pro-
cess. While the filtering equations for models with jumps have also been derived
in the recent works [2,5,9,10,19,47,49,50], to the best of the author’s knowledge,
they have not previously been derived for a model as general as (I.0.2). We refer
the reader to the introduction of Chapter III for a more detailed comparison
of our model to SDEs considered by other authors and related results on the
derivation of the filtering equations.
Secondly, we prove the existence of density valued processes associated to pPtqtPr0,T s
and pµtqtPr0,T s. We show that if the coefficients in (I.0.2) have linear growth in
z “ px, yq P Rd`d1 and are Lipschitz continuous in z, uniformly in the other
variables, if the measure ν1 admits an r-th moment for some r ą 2, if η, ξ satisfy
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some additional regularity condition in terms of a Jacobian and if the initial
condition satisfies E|X0|

r ă 8, then so long as E|π0|
p ă 8 for some p ě 2, the

conditional distribution pPtpdxqqtPr0,T s admits a density process pπtqtPr0,T s, which
is weakly cadlag as Lp-valued process, satisfying (I.0.3) almost surely for each
t P r0, T s and bounded Borel function f . As a special case we obtain that if
p “ 2, it is enough to assume r “ 2. Our methods rely on some existence and
regularity results from [23] as well as Itô formulas for jump processes (in Lp-
spaces) from [21, 22]. These articles provide very recent results on Lp-calculus
for jump processes. While there are results on L2-valued density processes for
jump-diffusions, see [6,44,50], we obtained first results for existence of Lp-valued
densities for our more general jump diffusion model (I.0.2) for p ě 2.
Thirdly and finally, we investigate the regularity (in the Sobolev sense) of pπtqtPr0,T s
under additional regularity assumptions on the coefficients. More precisely, we
show that if in addition to the assumptions described above for the Lp-case, we
assume the coefficients of (I.0.2) admit m ` 1 continuous and bounded deriva-
tives in x P Rd, then for an integer m ě 0 and p ě 2, the filtering density π is
a Wm

p -valued weakly cadlag process, so long as E|π|pWm
p
ă 8, where by Wm

p we

mean the space of functions with generalised derivatives in Lp, up to order m.
Moreover, π is strongly cadlag as W s

p -valued process, for s P r0,mq. There have
been pioneering works, see [39,41,51], as well as some extensions [32,35,36], on
the regularity of filtering densities for the case of no jumps, i.e. when ξ “ η “ 0
in (I.0.2) and if Y contains no jumps. However, to the best of the authors
knowledge, these investigations have not previously been extended to systems
with Lévy noise. This thesis provides a first extension of such results on regu-
larity (in the Sobolev sense) to jump diffusions.
Our results, both on the conditional distribution P as well as its density pro-
cess π, are obtained by first studying the Zakai equation. Its linearity makes it
easier to analyse in our case and we first obtain results on existence and regu-
larity of the unnormalised conditional density u “ putqtPr0,T s, satisfying for each
t, ut “ dµt{dx almost surely. Through multiplication with a normalising process
we then get the desired results also for π.

For more details on related results, relevant literature and the methods we
have employed, we refer the reader to the introductions to Chapters III, IV and
V. Moreover, the reader may also consult the articles [16], [17] and [18], which
provide the bases for the Chapters III, IV and V, respectively. The articles [16]
and [18] are joint work with István Gyöngy, and the article [17] is joint work
with Alexander Davie and István Gyöngy.

Structure of the thesis

While the reader will find a more detailed outline of the individual Chapters
III, IV and V at their respective beginnings, we include a concise description of
them here.
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In Chapter II we first collect and review some important results on jump
processes and related calculus. While it provides the reader with some back-
ground knowledge for results used in this thesis, it is meant to motivate our
choice of model, in particular its form (I.0.2). Finally, we state useful results on
existence, uniqueness and moment estimates for solutions to (I.0.2).

In Chapter III we derive the filtering equations associated to (I.0.2). We
generalise some necessary concepts from filtering theory and, using optional pro-
jections, derive first the Zakai equation. By multiplication with a normalising
process we then also obtain the Kushner-Shiryaev equation.

In Chapter IV we are concerned with the existence of an Lp-valued density
process π. We first generalise some estimates originally presented in [41] and
obtain a supremum estimate for the Lp-norm of the smoothed unnormalised
conditional density. A limit argument directly yields our result for the case of
L2. To obtain the result for Lp, with general p ě 2, we first prove it for the case
of compactly supported coefficients and then show the general case by using a
limit procedure.

In Chapter V we prove the existence of a Wm
p -valued density process. We

show this by relying on results for the Lp-case from Chapter IV and first estab-
lishing existence and regularity for compactly supported coefficients. As before,
a limit argument yields the desired result for general coefficients.
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I.1 Notation

We conclude with some notions and notations used throughout the paper.

Spaces of continuous functions

For an integer n ě 0 the notation Cn
b pRdqmeans the space of real-valued bounded

continuous functions on Rd, which have bounded and continuous derivatives up
to order n. (If n “ 0, then C0

b pRdq “ CbpRdq denotes the space of real-valued
bounded continuous functions on Rd). We use the notation C80 “ C80 pRdq for
the space of real-valued compactly supported smooth functions on Rd.

Signed measures and related notions

We denote by M “ MpRdq the set of finite Borel measures on Rd and by M “

MpRdq the set of finite signed Borel measures on Rd. For µ P M we use the
notation

µpϕq “

ż

Rd

ϕpxqµpdxq

for Borel functions ϕ on Rd. We say that a function ν : Ω ÑM is G-measurable
for a σ-algebra G Ă F , if νpϕq is a G-measurable random variable for every
bounded Borel function ϕ on Rd. An M-valued process pνtqtě0 is said to be
adapted to a filtration pGtqtPr0,T s if νtpϕq is a Gt-measurable random variable for
every t P r0, T s and bounded Borel function ϕ on Rd. An M-valued stochastic
process ν “ pνtqtPr0,T s is said to be weakly cadlag if almost surely νtpϕq is a
cadlag function of t for all ϕ P CbpRdq. An M-valued process pνtqtPr0,T s is weakly
cadlag, if it is the difference of two M-valued weakly cadlag processes.

σ-algebras and filtrations

A measurable space pZ,Zq, or a measure space pZ,Z, νq, is called separable if
the σ-algebra Z is countably generated. For processes U “ pUtqtPr0,T s we use the
notation FU

t for the P -completion of the σ-algebra generated by tUs : s ď tu.
By an abuse of notation, we often write FU

t when referring to the filtration
pFU

t qtPr0,T s, whenever this is clear from the context. For σ-algebras Gi Ă F ,
i “ 1, 2, the notation G1 _ G2 means the P -completion of the smallest σ-algebra
containing Gi for i “ 1, 2.

Sobolev and Bessel potential spaces

For a measure space pZ,Z, νq and p ě 1 we use the notation LppZq for the
Lp-space of R-valued Z-measurable processes defined on Z. However, if not oth-
erwise specified, the function spaces are considered to be over Rd. We always use
without mention the summation convention, by which repeated integer valued
indices imply a summation. For a multi-index α “ pα1, . . . , αdq of nonnegative
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integers αi, i “ 1, . . . , d, a function ϕ of x “ px1, . . . , xdq P Rd and a nonnegative
integer k we use the notation

Dαϕpxq “ Dα1
1 Dα2

2 . . . Dαd
d ϕpxq, as well as |Dkϕ|2 “

ÿ

|γ|“k

|Dγϕ|2,

where Di “
B

Bxi
and | ¨ | denotes an appropriate norm. We also use the notation

Dij “ DiDj. If we want to stress that the derivative is taken in a variable x,
we write Dα

x . If the norm | ¨ | is not clear from the context, we sometimes use
appropriate subscripts, as in |ϕ|Lp for the LppRdq-norm of ϕ. For p ě 1 and
integers m ě 0 the space of functions from Lp, whose generalized derivatives up
to order m are also in Lp, is denoted by Wm

p . The norm |f |Wm
p

of f in Wm
p is

defined by

|f |pWm
p

:“
m
ÿ

k“0

ż

Rd

|Dkfpxq|p dx ă 8.

For real-valued functions f and g defined on Rd the notation pf, gq means the
Lebesgue integral of fg over Rd whenever it is well-defined. Throughout the
paper we work on the finite time interval r0, T s, where T ą 0 is fixed but
arbitrary, as well as on a given complete probability space pΩ,F , P q equipped
with a filtration pFtqtě0 such that F0 contains all the P -null sets. For p, q ě 1
and integers m ě 1 we denote by Wm

p “ LpppΩ,F0, P q,W
m
p pRdqq and Wm

p,q Ă

LppΩ, Lqpr0, T s,W
m
p pRdqqq the set of F0bBpRdq-measurable real-valued functions

f “ fpω, xq and Ft-optional Wm
p -valued functions g “ gtpω, xq such that

|f |pWm
p

:“ E|f |pWm
p
ă 8 and |g|pWm

p,q
:“ E

´

ż T

0

|gt|
q
Wm

p
dt
¯p{q

ă 8,

respectively. If m “ 0 we set Lp “ W0
p and Lp,q “ W0

p,q. When instead of F0

we consider the measurability with respect to another σ-algebra G, we write this
explicitly as LppGq or Wm

p pGq. If m ě 0 is not an integer and p ą 1, then Wm
p

denotes the space of real-valued functions h on Rd such that

|h|Wm
p

:“ |p1´∆qm{2h|Lp ă 8.
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Chapter II

Jump processes and related
stochastic calculus

In this chapter we collect important notions and results on stochastic calculus
related to Lévy processes as well as on stochastic differential equations driven
by Lévy noise, i.e., when they are driven by both Wiener processes and Poisson
random measures. We start by introducing random measures more generally and
finally conclude that the jumps of a cadlag semi-martingale can by expressed in
terms of Poisson random measures, yielding the semi-martingale decomposition.
We then state the decompositon of a particular semi-martingale, a Lévy process,
to motivate the form of stochastic differential equation considered as model in
this thesis. More precisely, we outline how a Lévy process can be decomposed
into a continuous drift, an integral against a Wiener process and an integral
against a Poisson random measure.
Having justified the type of SDE models we investigate, we provide some useful
results on existence of solutions to them, their uniqueness, as well as some mo-
ment estimates which are used in later sections.
While these results are well-known, we provide some sketches of proofs for the
reader’s convenience.

Throughout this chapter we consider a filtered probability space
pΩ,F , pFtqtě0, P q such that F0 contains all the P -null sets and a separable mea-
surable space pZ,Zq.

II.1 Lévy processes and random measures

Definition II.1.1. [1, p. 43] An Rd-valued Ft-adapted stochastic process
pXtqtě0 is called Lévy process if

(i) X0 “ 0 almost surely,
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(ii) it is stochastically continuous, i.e. for all ε ą 0 and s, t ě 0,

lim
tÑs

P p|Xt ´Xs| ě εq “ 0,

(iii) it has stationary and independent increments, i.e. for all t ą s ě 0, the
random variable Xt ´Xs is independent of the σ-algebra Fs and has the
same distribution as Xt´s.

In the following we will refer to an Ft-adapted Lévy process as Ft-Lévy
process.

Proposition II.1.1. [25, Thm. 2.68] Let X be an Ft-Lévy process. Then it
has an Ft-adapted cadlag stochastic modification.

Henceforth we always mean the cadlag modification whenever we introduce a
Lévy process. Note that then, the Lévy process is in particular a semi-martingale.

Definition II.1.2. [25, Def. 8.1] An Ft-adapted process X is called a semi-
martingale if it admits the decomposition

X “M ` A,

where M is a local Ft-martingale and A is an Ft-adapted process with finite
variation.

We say a martingale M is locally square integrable if there exists a sequence
of stopping times pτnq

8
n“1, such that τn Ñ 8 and for each n ě 1, pMτn^tqtě0

is a square integrable martingale. For two square integrable martingales M1

and M2 there exists a unique predictable locally integrable increasing process
xM1,M2y “ pxM1,M2ytqtě0, such that M1M2 ´ xM1,M2y is a locally square
integrable martingale starting at 0. In this case xM1,M2y is referred to as Doob-
Meyer process of M1M2. For the following theorem, we recall further the defini-
tion of the quadratic variation of two semi-martingales X, Y ,

rX, Y s “ X0Y0 ` xX
c, Y c

y `
ÿ

sď¨

∆Xs∆Ys,

where Xc and Y c denote the continuous (locally square integrable) martingale
part of their semi-martingale decomposition (see [25]), ∆Xs :“ Xs ´ Ys´, s ě 0
with X0´ :“ X0 and ∆Y is defined analogously.

Theorem II.1.2. [25, Thm. 11.43] Let X1 and X2 be Ft-Lévy processes. If
their quadratic variation rX1, X2s “ 0 almost surely, then they are independent.

Theorem II.1.3. [25, Thm. 13.44] Let X be an Ft-Lévy process. Let pFX
t qtě0

be the natural filtration of X and denote by N the P -null sets. Then

FX
t´ _N “ FX

t _N “ FX
t` _N , t ě 0,

8



where
FX
t´ :“

ł

săt

FX
s , and FX

t` :“
č

rąt

FX
r .

Definition II.1.3. A mapping µ : Ω ˆ BpR`q ˆ Z ÞÑ R` Y t8u is called a
random measure if

(i) for all ω P Ω, µpω, ¨q is a σ-finite measure on BpR`q b Z,

(ii) for all B P BpR`q b Z, µp¨, Bq is a random variable on pΩ,Fq.

We set
pΩ̃, F̃q “ pΩˆ R` ˆ Z,F b BpR`q b Zq.

Define further
Õ “ O b Z and P̃ “ P b Z,

referred to as optional and predictable σ-algebra on Ω̃ respectively, where O and
P are the usual optional and predictable σ-algebras on Ω ˆ R`. In accordance
with this, we call a measurable function f on pΩ̃, Õq (resp. pΩ̃, P̃q) optional
(resp. predictable).

In the usual way, we define the stochastic integral of an optional function f
on pΩ̃, Õq against µ as (see [28, equ. II.1.6])

pf ˚ µqt “

#

şt

0

ş

Z
fps, zqµpdz, dsq, if

şt

0

ş

Z
|fps, zq|µpdz, dsq ă 8

8, otherwise
t ě 0.

Definition II.1.4. [28, Def. II.1.6] A random measure is called optional (resp.
predictable) if for every optional (resp. predictable) function f on pΩ̃,Oq (resp.
pΩ̃,Pq) the process

pf ˚ µqt “

ż t

0

ż

Z

fps, zqµpdz, dsq, t ě 0,

is optional (resp. predictable). Moreover, we say that µ is finite, if µpΩ̃q ă 8.
Finally, a random measure µ is P̃-σ-finite, or predictably σ-finite, if there exists
a P̃-measurable partition pAnq

8
n“1 of Ω̃, such that Ep1An ˚ µq8 ă 8 for each n.

Theorem II.1.4. [28, Thm. II.1.8] Let µ be a P̃-σ-finite optional random
measure on pΩ̃, F̃q. Then there exists a predictable random measure µp on pΩ̃, P̃q,
unique up to a P -null set, such that for every nonnegative P̃-measurable function
f we have

E
ż 8

0

ż

Z

fpt, zqµpω, dz, dtq “ E
ż 8

0

ż

Z

fpt, zqµppω, dz, dtq.

In this case, µp is referred to as (predictable) compensator of µ.
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We recall a few properties of µ and µp. If µ is already a predictably σ-finite
random measure, then µp “ µ almost surely. Moreover, for any P̃-measurable
function f on Ω̃, such that |f | ˚ µ is a locally integrable increasing process, we
have that f ˚ µp is the compensator of f ˚ µ and therefore, with the random
measure µ̃ :“ µ´ µp we have that

ż t

0

ż

Z

fps, zqµpdz, dsq ´

ż t

0

ż

Z

fps, zqµppdz, dsq

is a local martingale (see [28, Prop. II.1.28].
The random measures in this theses will only be integer-valued random mea-

sures, as well as integrals against the latter, so that we henceforth focus our
exposition thereon.

Integer-valued random measures

Definition II.1.5. [25, Def. II.1.13] We say that an optional P̃-σ-finite random
measure µ is an integer-valued random measure (on pΩ̃,Oq), if

(i) µpω,Z, ttuq P t0, 1u for all pω, tq P Ωˆ R`,

(ii) for eachA P BpR`qbZ the random variable µpω,Aq takes values in NYt8u.
For a stopping time τ we denote by JτK the graph of τ , that is JτK “

tpω, τpωqq P Ωˆ R` : ω P Ωu.
If µ is an integer-valued random measure, then there exists a sequence of

stopping times pτnq
8
n“1, satisfying JτnK X JτmK “ H for n ‰ m, and a Z-valued

optional process β “ pβtqtě0 such that with D “
Ť8

n“1JτnK we have

µpω, dz, dtq “
ÿ

sě0

1Dpω, sqδpβspωq,sqpdz, dsq, (II.1.1)

with δ denoting the Dirac measure.

Example II.1.1. [28, Prop. II.1.16] Consider an Ft-adapted cadlad Rd-valued
process X “ pXtqtě0 and consider the “jump-measure” µX associated to X, i.e.
for ∆Xt :“ Xt ´Xt´, t ě 0 and X0´ :“ X0,

µXpω,Aˆ ps, tqq “ |t∆Xrpωq P A : r P ps, tqu|. (II.1.2)

Then we can write µX as in (II.1.1) with D :“ r∆X ‰ 0s Ă Ω ˆ R`, β :“ ∆X
and Z :“ Rd.

If g “ gpω, t, xq is an optional real-valued function and µ an integer-valued
random measure with D, pτnq

8
n“1 and β as described above, then we can write,

see [28, equ. 1.15],

ż t

0

ż

A

gps, xqµpdx, dsq “
8
ÿ

n“1

1Aˆr0,tspβn, τnqgpβτn , τnq “
ÿ

sďt

1Dpsq1Apβsqgpβs, sq.
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If a set A is such that 0 R Ā, the closure of A, then we say it is bounded
below.

Proposition II.1.5. [1, Lemma 2.3.4] Consider X and µX as in Example
II.1.1. If A P BpRdq is bounded below, then we have µXpA ˆ p0, tsq ă 8 almost
surely for all t ě 0.

Proof. Define the sequence of stopping times

τn :“ inftt ě 0 : µpAˆ p0, tsq ě nu,

n ě 1, where we observe that for t ě 0,

∆µXpAˆ p0, tsq ą 0 ô ∆Xt P A.

First, note that due to the continuity of X from the right at 0, almost surely
τ1 ą 0. Similarly we see that τn Ñ 8 as n Ñ 8. If not, and τn Ñ τ ă 8

on some set Ω1 of positive probability, X would not have left limits at τ on Ω1.
Thus for each t ě 0 we have

µXpAˆ p0, tsq “
8
ÿ

n“1

1p0,τnsptq ă 8, (a.s.).

Though we do not use the following theorem, Theorem II.1.6, in its full gen-
erality, but only for Lévy processes appearing in later sections, we include it here
to outline the role of random measures in semi-martingale decompositions. The
respective special case of Theorem II.1.6, the decomposition of Lévy processes
presented later in this section, motivates our choice of model in this thesis.

Theorem II.1.6. [25, Thm. 11.25] Let X “ pXtqtě0 be an Rd-valued semi-
martingale, let µX be its jump measure and νX the predictable compensator of
µX . The X can be written as

Xt “ X0`αt`X
c
t`

ż t

0

ż

|x|ď1

x pµX´νXqpdx, dsq`

ż t

0

ż

|x|ą1

xµXpdx, dsq, (II.1.3)

where pαtqtě0 is a predictable process with finite variation and M c is the con-
tinuous (locally square integrable) martingale part of X with M c

0 “ α0 “ 0.
Moreover, we have the properties

(i) νXpRd ˆ t0uq “ νXpt0u ˆ R`q “ 0,

(ii) pp|x|2 ^ 1q ˚ νXt qtě0 is increasing with locally integrable variation,

(iii) ∆αt “
ş

|x|ď1
x νXpdx, ttuq.

11



Definition II.1.6. Consider a semi-martingale X with representation as in
(II.1.3) of Theorem II.1.6. Then we call the processes α, the Doob-Meyer process
β “ xXcy and the predictable compensator νX the predictable characteristics of
X, or simply characteristics in short, often written as triple pα, β, νXq.

Proposition II.1.7. [25, Cor. 11.28] A semi-martingale with predictable char-
acteristics pα, β, νXq is stochastically continuous if and only if for all t ě 0 we
have νXpRd ˆ ttuq “ 0 almost surely.

Similarly, if we consider a cadlag process with stationary and independent
increments, then one can see that the distribution of the random variables ∆Xt,
with t ě 0 does not depend on t and hence X cannot have a fixed time of
discontinuity.

Theorem II.1.8. [25, Thm. 11.36] A stochastically continuous semimartingale
X is an Ft-Lévy process if and only if its predictable characteristics pα, β, νXq
are non-random. Then we have moreover that

(i) α is continuous with finite variation and

(ii) β is continuous and monotone increasing, with β0 “ 0.

We recall that a random variable N is Poisson distributed with intensity λ if

P pN “ kq “
λk expp´kq

k!
, for k “ 0, 1, 2, . . . .

Analogously we say that N “ pNtqtě0 is a Poisson process with intensity λ if N
is a Lévy process taking values in NY t0u and if for each t the random variable
Nt has a Poisson distribution with intensity tλ.

Definition II.1.7. [30, Def. 19.1] Consider a σ-finite measure space pH,H, ν̃q.
A family of N Y t8u-valued random variables pNpAqqAPF is called a Poisson
random measure (on H) with characteristic measure ν̃ if

(i) for each A P H the random variable NpAq has a Poisson distribution with
intensity ν̃pAq,

(ii) NpA1q and NpA2q are independent whenever A1 X A2 “ H and

(iii) for each ω P Ω, Npω, ¨q is a measure on H.

Proposition II.1.9. [30, Prop. 19.4] Consider a σ-finite measure space pH,H, ν̃q.
Then there exists a probability space pΩ1,F 1, P 1q and a random measure N on
H, such that it is a Poisson random measure with characteristic measure ν̃.

We consider now the case when pH,Hq “ pR` ˆ Rd,BpR` ˆ Rdqq and show
that the jumps of a Lévy process can be described by a Poisson random measure.

12



Theorem II.1.10. Consider an Rd-valued Ft-Lévy process X on Ω ˆ R` and
let N denote the measure of its jumps. Then N is a Poisson random measure
on pR`ˆpRdzt0uq,BpR`qbBpRdzt0uqq, such that with a σ-finite measure ν, the
characteristic measure of N is given by ν̃pdx, dtq “ νpdxq b dt.

Proof. We provide a rough sketch of a proof and refer to [1, Thm. 2.2.13] for full
details. For a set A P BpR`q with 0 R Ā, pNA

t qtě0 :“ pNpA ˆ p0, tsqqtě0 is given
by the right-hand side of (II.1.2), with s :“ 0. First, one can show that NA is
also a Lévy process. Clearly NA

0 “ 0 almost surely and it is not difficult to see
that, due to the independent and stationary increments of X and its stochastic
continuity, NA shares these properties. Next we show that NA is a Poisson
process. Taking a version of X with cadlag sample paths, we know that X has
at most countably many jumps of size in A, to which we assign the ordered set
of stopping times

τ1 :“ inftt ě 0 : ∆Xt P Au, τn :“ inftt ą τn´1 : ∆Xt P Au, n ě 2.

Using the stationary and independent increments of X, one can show that the
random variables

pτ1, τ2 ´ τ1, τ3 ´ τ2, . . . q

are independent and identically distributed. Further, we see immediately that
f1ptq :“ P pτ1 ą tq is decreasing. Moreover, f1p0q “ 1, as otherwise there would
be a set F of positive probability such that on F we have ∆X0 ą 0. By the
same argument one can see that f is right-continuous at 0. Further, by due to
the independent and stationary increments,

f1pt` sq “ P pNA
s “ 0|NA

t`s ´N
A
s “ 0q “ f1ptqf1psq.

Hence one can deduce that there exists λ ą 0 such that f1ptq “ expp´λtq, and
that as sum of exponentially and identically distributed random variables,

τn “ τ1 ` pτ2 ´ τ1q ` ¨ ¨ ¨

has a gamma distribution. Finally, one can use induction to see that NA is a
Poisson process with intensity tλ.

If the compensator ν̃ of a Poisson random measure N on pR`ˆZ,BpR`qbZq
admits the decomposition ν̃pdz, dtq “ νpdzqbdt for a σ-finite measure ν on pZ,Zq,
then we also refer to ν as the characteristic measure of N . This will always be
clear from the context. Moreover, we often write νpdzq b dt “ νpdzqdt.

Theorem II.1.11. [25, Thm. 11.45] [1, Thm. 2.4.16] Let X be an Ft-Lévy
process, Npds, dxq its associated jump measure, with predictable compensator
dsbνpdxq and compensated martingale measure Ñpdx, dtq “ Npdx, dtq´νpdxqdt.

13



Then it admits the representation

Xt “ αt`

ż t

0

σk dW k
s `

ż t

0

ż

|x|ă1

x Ñpdx, dsq `

ż t

0

ż

|x|ě1

xNpdx, dsq, t ě 0,

where α P Rd, σ “ σij P Rdˆm for some m ě 1 and W an m-dimensional Wiener
process.

Finally, we see that a Lévy process X exhibits a certain structure that allows
us to analyse it efficiently. This decomposition motivates our choice of model
(I.0.2) in investigating jump-diffusion processes, i.e., SDEs driven by Lévy pro-
cesses.

We finish with some integral properties of Poisson (martingale) random mea-
sures. For details and proofs we refer the reader to [27], in particular Section
II.3 therein.

Proposition II.1.12. Let f “ fpω, t, zq be a P̃-measurable real-valued function
and let moreover Npds, dzq be a Poisson random measure on pR`ˆZ,BpR`qbZq
with compensator νpdzqdt. Then we have the following properties.
(i) If for T ą 0,

E
ż T

0

ż

Z

|fps, zq|q νpdzqds ă 8, (II.1.4)

with q :“ 1, then we have

E
ż T

0

ż

Rd

|fps, zq|Npdz, dsq “ E
ż T

0

ż

Z

|fps, zq| νpdzqds.

Moreover, we know that

ż t

0

ż

Z

fps, zq Ñpdz, dsq :“

ż t

0

ż

Z

fps, zqNpdz, dsq ´

ż t

0

ż

Z

fps, zq νpdzqds (II.1.5)

is an Ft-martingale.
(ii) If for q :“ 1 and q :“ 2 (II.1.4) holds, then the right-hand side of (II.1.5) is
a square integrable Ft-martingale and the Doob-Meyer process

@

ż ¨

0

ż

Z

fps, zq Ñpdz, dsq
D

t
“

ż t

0

ż

Z

|fps, zq|2 νpdzqds, t P r0, T s.

(iii) If (II.1.4) holds with q :“ 2, then there exists a sequence of P̃-measurable
real-valued functions pfnq

8
n“1, such that for each fn we have (II.1.4) with q :“ 1, 2

and fn in place of f , fn Ñ f as n Ñ 8 for P b dt b dz-almost every pω, t, zq P
Ωˆ R` ˆ Z and

ż t

0

ż

Z

fnps, zq Ñpdz, dsq, t ě 0, n “ 1, 2, . . . ,
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is a Cauchy sequence in M2, the space of square integrable Ft-martingales. Then
we define its limit by

ż t

0

ż

Z

fps, zq Ñpdz, dsq, t ě 0. (II.1.6)

(iv) Finally, if f is such that for a sequence of stopping times pρnq
8
n“1 going to

8, for each n ě 1 (II.1.4) holds for q :“ 2 and f1tďρn in place of f , then (II.1.6)
is defined as the unique locally square integrable Ft-martingale M , such that for
each n ě 1,

Mt^ρn “

ż t

0

ż

Z

1sďρnfps, zq Ñpdz, dsq, t P r0, T s.

It is worth noting that in case (iii) above the equality (II.1.5) may no longer
hold, as the integrals on the right-hand side thereof may not be well-defined.

II.2 Some results on Itô-Lévy processes

Consider again a complete filtered probability space pΩ, pFtqtě0, P q, a separable
σ-finite measure space pZ,Z, νq and the stochastic differential equation

dZt “ bpt, Ztq dt` σpt, Ztq dWt `

ż

Z

ηpt, Zt´, zq Ñpdz, dtq, (II.2.7)

where b “ pbiq, σ “ pσijq are BpR`q bBpRdq measurable functions, η “ pηiq and
is a BpR`q b BpRdq b Z-measurable function, for i “ 1, . . . , d, j “ 1, . . . , d1, W
is a d1-dimensional Ft-Wiener process, Ñpdz, dtq :“ Npdz, dtq ´ νpdzqdt with N
an Ft-Poisson random measure with characteristic measure νpdzqdt, the initial
condition Z0 is Rd-valued and F0-measurable and Z0,W and N are independent.
We impose the following assumption on the coefficients.

Assumption II.2.1. There are nonnegative constants K0, K1 and L such that

(i) for all t ě 0 and z P Rd,

|bpt, zq|2 ` |σpt, zq|2 `

ż

Z

|ηpt, z, zq|2 νpdzq ď K0 `K1|z|
2,

(ii) for all t ě 0 and z1, z2 P Rd

|bpt, z1q ´ bpt, z2q|
2
` |σpt, z1q ´ σpt, z2q|

2

`

ż

Z

|ηpt, z1, zq ´ ηpt, z2, zq|
2 νpdzq ď L|z1 ´ z2|

2.
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Though the following theorem is well known, we provide a partial proof of
it for the reader’s convenience. For the full proof we refer the reader to [1], or
to [20] for a more general exposition.

Theorem II.2.1. Let Assumption II.2.1 hold. Then there exists a unique Ft-
adapted cadlag solution Z to (II.2.7).

Proof. We only outline the case E|Z0|
2 ă 8. For the other case, a truncation

argument can be applied and we refer the reader to [1] for full details. We define

a sequence by Z
p0q
t ” Z0 and

Z
pn`1q
t “ bpt, Z

pnq
t q dt` σpt, Z

pnq
t q dWt `

ż

Z

ηpt, Z
pnq
t´ , zq Ñpdz, dtq, n “ 1, 2, . . .

Clearly (a modification of) Z1 is cadlag and by an inductive argument we see
that this holds for Zpnq for all n ě 1. First observe that by Doob’s martingale
inequality,

E sup
0ďsďt

ˇ

ˇ

ˇ

ż s

0

σpr, Z0q dWr

ˇ

ˇ

ˇ

2

ď 4E
ż t

0

|σpr, Z0q|
2 dr,

E sup
0ďsďt

ˇ

ˇ

ˇ

ż s

0

ż

Z

ηpr, Z0, zq Ñpdz, drq
ˇ

ˇ

ˇ

2

ď 4E
ż t

0

ż

Z

|ηpr, Z0, zq|
2 νpdzqdr

and hence, due to the linear growth conditions on the coefficients,

E sup
0ďsďt

|Z
p1q
t ´ Z

p0q
t |

2
ď 2E sup

0ďsďt

ˇ

ˇ

ˇ

ż s

0

bpr, Z0q| dr
ˇ

ˇ

ˇ

2

` 2E sup
0ďsďt

ˇ

ˇ

ˇ

ż s

0

σpr, Z0q dWr

ˇ

ˇ

ˇ

2

`2E sup
0ďsďt

ˇ

ˇ

ˇ

ż s

0

ż

Z

ηpr, Z0, zq Ñpdz, drq
ˇ

ˇ

ˇ

2

ď 2t2pK0 `K1E|Z0|
2
q ` 16tpK0 `K1E|Z0|

2
q ď NptqtpK0 `K1E|Z0|

2
q,

withNptq “ maxt2t, 16u. By induction we get that for each n, E sup0ďsďt |Z
pnq
s |2 ă

8 and using also the Lipschitz property of the coefficients, in a similar way, using
also Fubini’s theorem

E sup
0ďsďt

|Zpn`1q
s ´ Zpnqs |

2
ď 2E sup

0ďsďt

ˇ

ˇ

ˇ

ż s

0

pbpr, Zpnqr q ´ bpr, Zpn´1q
r qq dr

ˇ

ˇ

ˇ

2

`2E sup
0ďsďt

ˇ

ˇ

ˇ

ż s

0

pσpr, Zpnqr q ´ σpr, Zpn´1q
r qq dWr

ˇ

ˇ

ˇ

2

`2E sup
0ďsďt

ˇ

ˇ

ˇ

ż s

0

ż

Z

pηpr, Z
pnq
r´ , zq ´ ηpr, Z

pn´1q
r´ , zqq Ñpdz, drq

ˇ

ˇ

ˇ

2

ď NptqLE
ż t

0

sup
0ďrďs

|Zpnqr ´ Zpn´1q
r |

2 dr “ NptqL

ż t

0

E sup
0ďrďs

|Zpnqr ´ Zpn´1q
r |

2 dr.
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Inductively we then get that

E sup
0ďsďt

|Zpn`1q
s ´ Zpnqs |

2
ď Nn`1

ptqLn
tn`1

pn` 1q!
pK0 `K1E|Z0|

2
q,

which converges to 0 as nÑ 8. Using the triangle inequality it is then easy to
show that

E|Zpnqt ´ Z
pmq
t |

2
Ñ 0, for each t ě 0 as n,mÑ 8,

i.e. pZ
pnq
t q8n“1 is a Cauchy sequence in L2pΩq and we denote Z as the limit

process. Indeed, using the same kind of estimates, it is not difficult to show that
Z is the almost surely limit of the cadlag processes pZ

pnq
t q8n“1 and hence itself

cadlag. It remains to see that Z satisfies the SDE (II.2.7). To see this, one can
define a process Z̃ as the right-hand side of (II.2.7), with Z as the limit process
constructed above and use the same arguments to verify that for each t we have
limnÑ8 Z

pnq
t “ Z̃t in mean square. By the uniqueness of the limit it then follows

that Z̃ “ Z. Uniqueness of solution can be by shown by standard techniques.
deriving similar estimates as above for the difference of two solutions Z1 ´ Z2

and finally applying Gronwall’s lemma.

Assumption II.2.2. For a p ě 2 and nonnegative constants K0, K1 let η satisfy,
for all t ě 0, z P Rd,

ż

Z

|ηpt, z, zq|p νpdzq ď K0 `K1|z|
p.

The following can be found in [12, Lm. 2.2].

Theorem II.2.2. Let Assumptions II.2.1 and II.2.2 hold for a p ě 2 and let
E|Z0|

p ă 8. Then the solution Z of (II.2.7) satisfies

E sup
0ďtďT

|Zt|
p
ď Np1` E|Z0|

p
q,

for a constant N “ Npd, d1, p,K0, K1, T q.

We provide a sketch of the proof.

Proof. First, we know by Theorem II.2.1 that Z is the unique Ft-adapted cadlag
process satisfying (II.2.7). Fix a T ą 0. By Itô’s formula, see [22, Cor. 2.4], we
have almost surely

|Zt|
p
“ |Z0|

p
` p

ż t

0

|Zs|
p´2Zi

sσ
ij
s dW

j
s

`
p
2

ż t

0

`

2|Zs|
p´2Zi

sb
i
τn^s ` pp´ 2q|Zs|

p´4
d1
ÿ

j“1

|Zi
sσ

ij
s |

2
˘

ds (II.2.8)
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`
p
2

ż t

0

|Zs|
p´2

d
ÿ

i“1

d1
ÿ

j“1

|σijs |
2 ds` p

ż t

0

ż

Z

|Zs´|
p´2Zi

s´η
i
spzq Ñpdz, dsq

`

ż t

0

ż

Z

`

|Zs´ ` ηspzq|
p
´ |Zs´|

p
´ p|Zs´|

p´2Zi
s´η

i
spzq

˘

Npdz, dsq

for all t P r0, T s, where we define, for t ě 0 and z P Z,

bs :“ bps, Zsq, σs :“ σps, Zsq, ηspzq :“ ηps, Zs´, zq.

Due to the linear growth conditions on the coefficients, by using Young’s in-
equality, the third and fourth terms in (II.2.8) can be estimated by

N `N

ż t

0

|Zs|
p ds (II.2.9)

for a constant N “ Npd, d1, p,K0, K1, T q. For the fourth term in (II.2.8), we can
use Taylor’s formula to rewrite its integrand as

0 ď

ż 1

0

p1´ θqp
`

pp´ 2q|Zs´|
p´4Zi

s´Z
j
s´ ` |Zs´|

p´2δij
˘

ηispzqη
j
spzq dθ

:“ Aspzq

where δij denoted the Dirac delta symbol and where we nonnegativity stems
from the fact that, with p ě 2, we have |a ` b|p ´ |b|p ´ p|a|p´2ab ě 0. Hence,
applying Proposition II.1.12 and using Assumptions II.2.1 and II.2.2 as well as
Young’s inequality, we have, with the stopping times τn :“ inftt ě 0 : |Zt|

p ě nu,
for each n ě 1,

E
ż t

0

ż

Z

Aτn^spzqNpdz, dsq “ E
ż t

0

ż

Z

Aτn^spzq νpdzqds ď N `NE
ż t

0

|Zτn^s|
p ds,

for a constant N “ Npd, d1, p,K0, K1, T q. Moreover, one can see that for each
n ě 1, the second and fourth term in (II.2.8) are local martingales, which dis-
appear after taking the expectation, using the stopping times τn. Hence, from
(II.2.8) we get, for (another) constant N “ Npd, d1, p,K0, K1, T q,

E|Zτn^t|p ď E|Z0|
p
`N `N

ż t

0

E|Zτn^s|p ds,

so that by Gronwall’s inequality and Fatou’s lemma, for a constant N 1 depending
only on d, d1, p, K0, K1 and T ,

sup
tPr0,T s

E|Zt|p ď N 1E|Z0|
p.
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Further, for the martingale terms in (II.2.8), by Doob’s and Young’s inequalities,

E sup
0ďsďt^τn

ˇ

ˇ

ˇ

ż s

0

ż

Z

|Zr´|
p´2Zi

r´η
i
rpzq Ñpdz, drq

ˇ

ˇ

ˇ

ď E
´

ż t^τn

0

ż

Z

|Zs´|
2p´2

|ηspzq|
2 νpdzqds

¯1{2

ď E
´

ż t

0

ż

Z

|Zτn^s|
2p´2

|ητn^spzq|
2 νpdzqds

¯1{2

ď N `NE
´

ż t

0

|Zτn^s|
2p ds

¯1{2

ď N `NEp sup
0ďsďt

|Zτn^s|
p
q
1{2
´

ż t

0

|Zτn^s|
p ds

¯1{2

ď N ` 1
4
E sup

0ďsďt
|Zτn^s|

p
` 4NE

ż t

0

|Zτn^s|
p ds,

for a constant N “ Npp,K0, K1, T q. Similarly, also for the second term in
(II.2.9),

E sup
0ďsďt^τn

ˇ

ˇ

ˇ

ż s

0

|Zs|
p´2Zi

sσ
ij
s dW

j
s

ˇ

ˇ

ˇ
ď N ` 1

4
E sup

0ďsďt
|Zτn^s|

p
` 4NE

ż t

0

|Zτn^s|
p ds

for another constant N “ Npp,K0, K1, T q. Hence, taking the supremeum on
the left and right-hand side of (II.2.9), and the expectation, as well as using the
above estimates yields for all n ě 1,

E sup
tďτn^T

|Zt|
p
ď N `NE|Z0|

p
` 1

2
E sup
tďτn^T

|Zt|
p,

for another constant N “ Npd, d1, p,K0, K1, T q. Rearranging the above equa-
tions and using Fatou’s lemma yields the desired result.
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Chapter III

The filtering equations

In this chapter, based on the article [16], we derive the filtering equations for the
signal-observation system (I.0.2), with its coefficients satisfying the measurability
properties described in the introduction of Chapter I. More precisely, we aim to
derive an equation for the conditional distribution pPtpdxqqtPr0,T s of Xt given the
observations tYs : s P r0, tsu, such that for real-valued Borel functions f we have

EpfpXtq|tYs, s P r0, tsuq “

ż

Rd

fpxqPtpdxq, almost surely for t P r0, T s.

As we mentioned, there has been an immense interest in the development of
filtering theory due to its wide applicability in various disciplines, be they of
theoretical or applied nature. A vast amount of research has been done on filter-
ing of partially observed processes governed by stochastic differential equations
driven by Wiener processes, i.e., when η “ ξ “ 0 in (I.0.2) and when Y contains
no jumps, and a quite complete nonlinear filtering theory was built up, see for
instance [11] for a historical account.
In this case it is well-known that pPtpdxqqtPr0,T s satisfies a nonlinear stochas-
tic PDE (SPDE), often called the Kushner-Shiryayev equation in filtering the-
ory. It is also well-known that this equation can be transformed into a linear
SPDE, called Zakai equation, or Duncan-Mortensen-Zakai equation for µtpdxq “
λtPtpdxq, the unnormalised conditional distribution, where pλtqtPr0,T s is a positive
normalising stochastic process.

There exist several known methods of deriving the filtering equations for par-
tially observed diffusion processes, three prominent of which are the “innovation
method”, the “reference measure method” and a “direct approach”. The innova-
tion method is based on “innovation process” representations, (see [43] and [15]),
and the direct approach is based on suitable existence and uniqueness theorems
for stochastic PDEs (see [40]). The reference probability method is employed in
this paper, where we make use of the fact that by Girsanov’s theorem one can
introduce a new measure under which the observation σ-algebra, σpYs : s ď tq, is
the product σ-algebra of three independent σ-algebras: the σ-algebra generated
by the initial observation Y0 and the σ-algebras generated by a Wiener process
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with the stochastic differential Bpt, Ztqdt`dVt, and the Poisson random measure
N1pdz, dtq on Z1ˆr0, ts, respectively. This structure of the observation σ-algebra
makes it possible to calculate conditional expectations of functions of the process
Z given the observations. (See, e.g., [7] for descriptions of various methods used
in filtering theory.)

Recently, also filtering for jump diffusion systems has been intensively stud-
ied, which are most often modeled as SDEs driven by Wiener processes as well as
random jump measures, a classical case of which are Poisson random measures.
In an early article thereon, [47], the filtering equations were derived for uncorre-
lated continuous observations, as well as an observation process driven only by a
jump process that has no common jumps with the signal. A similar system with
continuous uncorrelated observations has also been considered in [48]. A more
general nonlinear system with jumps in the observation process was considered
in [5]. In [2] the filtering equations for a large class of uncorrelated linear sys-
tems with jumps are derived. In [19] a very general model is considered and a
representation for optional projection of the signal process is derived. However,
due to the generality a number of additional assumptions are imposed on their
model and equations for the filtering measures are not obtained.
In [9] and [10] the authors deal with a one-dimensional jump diffusion where
observation and signal may have common jumps, by introducing a new random
measure, nonzero only for observable jumps, relying on a construction in [8].
However, they impose a finiteness condition on the support of the integrand in
front of the jump term, which translates to observing only finitely many jumps
almost surely. In such a case, the jump measure and the associated predictable
compensator, also referred to as dual predictable projection, allow for a spe-
cific decomposition, see for instance [25, Sec. XI.4]. The filtering equations
have been derived for a class of jump diffusion systems [50], later generalised
to include correlated Wiener process noises in [49], however, it seems to us that
certain important results needed for this derivation, including Lemma 3.2 in [50],
also used in [49], do not hold, for instance if one considers the case of vanishing
coefficients. A model where a correlation structure between the Lévy process
noises in signal and observation is described using copulas is used in [14] to de-
rive the Zakai equation.

In this chapter we obtain the filtering equations for a jump diffusion system
driven by correlated Wiener process noises, as well as correlated Poisson mar-
tingale measure noises. We impose common linear growth conditions. We do
not assume any non-degeneracy conditions and allow for the number of jumps in
any component of pZtqtě0 to be infinite over finite intervals. In order to obtain
the equations, we generalise some results from filtering theory and in particular
prove a “projection theorem” for a wide class of functions.

In Section III.1 a fairly general condition for Girsanov’s transformation and
our main result are presented. In Section III.2 a projection theorem covering
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a wide class of processes is proven, and thereby in the last section the filtering
equations are derived.

Conditions and results on the existence and regularity of the filtering density
are presented in the subsequent chapters of this thesis.

We conclude by asking the reader to recall the notation presented in Section
I.1.

III.1 Formulation of the main results

We consider on a given finite interval r0, T s a d`d1-dimensional stochastic process
Z “ pZtqtPr0,T s “ pXt, YtqtPr0,T s carried by a complete probability space pΩ,F , P q,
equipped with a filtration pFtqtě0 such that F0 contains the P -null sets of F . We
assume that Z satisfies the stochastic differential equation (I.0.2) on the interval
r0, T s, with an F0-measurable initial value Z0 “ pX0, Y0q.

Besides the natural measurability conditions on the coefficients b, σ, ρ, ξ, η
and B, described in the Introduction, we assume the following conditions.

Assumption III.1.1. (i) There are nonnegative constants K0, K1 and K2,
as well as nonnegative real-valued functions η̄ P L2pZ0,Z0, ν0q and ξ̄ P
L2pZ1,Z1, ν1q, such that

|bpt, zq|2 ď K0 `K1|z|
2, |σpt, zq|2 ` |ρpt, zq|2 ` |Bpt, zq|2 ď K0 `K2|z|

2,

|ηpt, z, z0q|
2
ď η̄pz0qpK0 `K1|z|

2
q, |ξpt, z, z1q|

2
ď ξ̄pz1qpK0 `K1|z|

2
q,

ż

Z1

|z|2 ν1pdzq ď K0

for all z “ px, yq P Rd`d1 , zi P Zi, i “ 0, 1 and t P r0, T s, and we have

(ii)
K1E|X0| `K2E|X0|

2
ă 8. (III.1.1)

Note that in (III.1.1) we use the convention that 0 ˆ8 “ 0, i.e., if K2 “ 0,
then the finiteness of the second moment of |X0| is not required, and if K1 “

K2 “ 0 then Assumption III.1.1 (ii) clearly holds.
The following moment estimate is known and can be easily proved by the

help of well-known martingale inequalities.

Remark III.1.1. If Assumption III.1.1(i) holds, then for every p P r1, 2s and
A P F0 we have

E sup
tďT

1A|Zt|
p
ď Np1` E1A|Z0|

p
q (III.1.2)

with a constant N depending only on p, T , K0, K1, K2 and d` d1.

We make also the following assumption.
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Assumption III.1.2. We have EγT “ 1, where

γt “ exp

ˆ

´

ż t

0

Bps,Xs, Ysq dVs ´
1
2

ż t

0

|Bps,Xs, Ysq|
2 ds

˙

, t P r0, T s.

(III.1.3)

This assumption implies that the measure Q, defined by dQ “ γTdP on F , is
a probability measure equivalent to P , and hence by Girsanov’s theorem under
Q the process

Ṽt “

ż t

0

Bps,Xs, Ysq ds` Vt, t P r0, T s, (III.1.4)

is an Ft-Wiener process.
To describe the evolution of the conditional distribution Ptpdxq “ P pXt P

dx|Ys, s ď tq for t P r0, T s, we introduce the random differential operators

Lt “ aijt pxqDij ` b
i
tpxqDi, Mk

t “ ρikt pxqDi `B
k
t pxq, k “ 1, 2, ..., d1,

where

aijt pxq :“ 1
2

d1
ÿ

k“1

pσikt σ
jk
t qpxq `

1
2

d1
ÿ

l“1

pρilt ρ
jl
t qpxq, σikt pxq :“ σikpt, x, Ytq,

ρilt pxq :“ ρilpt, x, Ytq, bitpxq :“ bipt, x, Ytq, Bk
t pxq :“ Bk

pt, x, Ytq

for ω P Ω, t P r0, T s, x “ px1, ..., xdq P Rd, and Di “ B{Bx
i, Dij “ B

2{pBxiBxjq for
i, j “ 1, 2..., d. Moreover for every t P r0, T s and z P Z1 we introduce the random
operators Iξt and Jξt defined by

Iξt ϕpx, zq “ ϕpx`ξtpx, zq, zq´ϕpx, zq, Jξt φpx, zq “ Iξt φpx, zq´
d
ÿ

i“1

ξitpx, zqDiφpx, zq

(III.1.5)
for functions ϕ “ ϕpx, zq and φ “ φpx, zq of x P Rd and z P Z1, and furthermore
the random operators Iηt and Jηt , defined as Iξt and Jξt , respectively, with ηtpx, zq
in place of ξtpx, zq, where

ξtpx, z1q :“ ξpt, x, Yt´, z1q, ηtpx, z0q :“ ηpt, x, Yt´, z0q

for ω P Ω, t P r0, T s, x P Rd and zi P Zi for i “ 0, 1 (Y0´ :“ Y0). Now we are in
the position to formulate our main result. Recall that we denote by pFY

t qtPr0,T s

the completed filtration generated by pYtqtPr0,T s.

Theorem III.1.1. Let Assumptions III.1.1 and III.1.2 hold. Then there exist
measure-valued FY

t -adapted weakly cadlag processes pPtqtPr0,T s and pµtqtPr0,T s such
that almost surely

Ptpϕq “ µtpϕq{µtp1q, for all t P r0, T s and
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Ptpϕq “ EpϕpXtq|FY
t q, µtpϕq “ EQpγ´1

t ϕpXtq|FY
t q (a.s.) for each t P r0, T s,

for bounded Borel functions ϕ on Rd, and for every ϕ P C2
b pRdq almost surely

µtpϕq “µ0pϕq `

ż t

0

µspLsϕq ds`
ż t

0

µspMk
sϕq dṼ

k
s `

ż t

0

ż

Z0

µspJ
η
sϕq ν0pdzqds

`

ż t

0

ż

Z1

µspJ
ξ
sϕq ν1pdzqds`

ż t

0

ż

Z1

µs´pI
ξ
sϕq Ñ1pdz, dsq,

(III.1.6)

and

Ptpϕq “P0pϕq `

ż t

0

PspLsϕq ds`
ż t

0

`

PspMk
sϕq ´ PspϕqPspB

k
s q
˘

dV̄ k
s

`

ż t

0

ż

Z0

PspJ
η
sϕq ν0pdzqds`

ż t

0

ż

Z1

PspJ
ξ
sϕq ν1pdzqds

`

ż t

0

ż

Z1

Ps´pI
ξ
sϕq Ñ1pdz, dsq

(III.1.7)

for all t P r0, T s, where pṼtqtPr0,T s is given in (III.1.4), and the process pV̄tqtPr0,T s
is defined by

dV̄t “ dṼt ´ PtpBtq dt “ dVt ` pBtpXtq ´ PtpBtqq dt, V̄0 “ 0.

Remark III.1.2. Clearly, V̄ “ pV̄tqtPr0,T s is a continuous process, starting from
zero, and by the help of Lemma III.3.2 below it is easy to see that it is FY

t -
adapted. Moreover, it is not difficult to see that V̄ is a martingale (under P ) with
respect to pFtqtě0, with quadratic variation process rV̄ st “ t, t P r0, T s. Hence by
Lévy’s theorem, V̄ is an FY

t -Wiener process. It is called the innovation process
in the case when the observation process does not have a stochastic integral
component with respect to Poisson measures, i.e., when ν1 “ 0. In this case it
was conjectured that pV̄sqsPr0,ts together with Y0 carry the same information as
the observation pYsqsPr0,ts, i.e., that the σ-algebra generated by pV̄sqsPr0,ts and Y0

coincides with the σ-algebra generated by pYsqsPr0,ts for every t. An affirmative
result concerning this conjecture, under quite general conditions on the filtering
models (but without jump components) was proved in [31] and [26]. For our
filtering model we conjecture that pV̄sqsPr0,ts, together with Y0 and tÑpp0, ssˆΓq :
s P r0, ts,Γ P Z1u carry the same information as the observation pYsqsPr0,ts, if
Assumption III.1.1 holds and the coefficients of (I.0.2) satisfy an appropriate
Lipschitz condition.

Remark III.1.3. For an M-valued weakly cadlag process pνtqtPr0,T s (in the sense
introduced in the Introduction) there is a set Ω1 Ă Ω of full probability and there
is a uniquely defined (up to indistinguishability) M-valued process pνt´qtPp0,T s
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such that for every ω P Ω1

νt´pϕq “ lim
sÒt

νspϕq for all ϕ P CbpRd
q and t P p0, T s, (III.1.8)

and for each ω P Ω1 we have νt´ “ νt, for all but at most countably many
t P p0, T s.

Proof. First we show that pνt´qtPr0,T s defined by the right-hand side of (III.1.8)
defines a measure-valued process. Since ν is weakly cadlag, there exists a set
Ω1 of full probability such that for all ω P Ω1 and ϕ P C0 “ C0pRdq, the space
of continuous and compactly supported functions, the function pνtpϕqqtPr0,T s is
cadlag. Hence we can see that, for ω P Ω1,

F pϕqpωq :“ lim
rÒs

νrpϕqpωq

defines a positive linear functional on C0. By the Riesz-Markov-Kakutani theo-
rem, see for instance [24, Thm. D], we then know that, for each ω P Ω1, there
exists a measure, denoted by νs´pωq, such that

F pϕqpωq “ νs´pϕqpωq, for all ω P Ω1 and ϕ P C0pRd
q.

Finally, since for each ω P Ω1 and ϕ P Φ, for a countable measure determining
subset Φ Ă Cb, we have that νt´pϕq “ νtpϕq for all but countably many t P r0, T s,
we conclude that also νt´ “ νt for all but countably many t P r0, T s.

We will prove Theorem III.1.1 by deducing equation (III.1.7) from equation
(III.1.6), which we obtain by taking, under Q, the conditional expectation of the
terms in the equation for γ´1

t ϕpXtq, given the observation tYs : s ď tu.

There are several known conditions ensuring that Assumption III.1.2 is satis-
fied. For a simple proof for the well-known Novikov condition and Kazamaki con-
dition, and their generalisations we refer to Exercise 6.8.VI in [33], [34] and [38].
These conditions, are clearly satisfied if |B| is bounded, but it does not seem to
be easy to reformulate them in terms of the coefficients of the system of equa-
tions (I.0.2), if |B| is unbounded. Here we give a condition, which together with
Assumption III.1.1(i) ensures that Assumption III.1.2 holds.

Assumption III.1.3. There is a constant K such that

´xiρikpt, zqBk
pt, zq ď Kp1` |z|2q for all t P r0, T s, z “ px, yq P Rd`d1 .

Remark III.1.4. Define the Rpd`d1qˆd1-valued function ρ̂ by ρ̂jk :“ ρjk for j “
1, 2, ..., d, k “ 1, 2, ..., d1 and ρ̂jk :“ 0 for j “ d`1, ..., d`d1, k “ 1, 2, ..., d1. Then
Assumption III.1.3 means that the “one-sided linear growth” condition

zfpt, zq ď Kp1` |z|2q, t P r0, T s, z P Rd`d1 ,
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holds for the Rd`d1-valued function f “ ´ρ̂B, where zf denotes the standard
inner product of the vectors z, f P Rd`d1 . Clearly, this condition is essentially
weaker then the linear growth condition on f (in z P Rd`d1), which obviously
holds if one of the functions ρ and B is bounded in magnitude and the other
satisfies the linear growth condition in Assumption III.1.1 (i).

The following theorem provides a condition under which Assumption III.1.2
holds. A more comprehensive investigation on absolutely continuous changes of
measures associated to jump diffusion processes, including a generalisation of
the following theorem, can be found in [29].

Theorem III.1.2. Let Assumptions III.1.1(i) and III.1.3 hold. Then EγT “ 1,
i.e., Assumption III.1.2 holds.

Proof. We want to prove EpγT1|Z0|ďRq “ P p|Z0| ď Rq for every constant R ą 0,
since by monotone convergence it implies

EγT “ lim
RÑ8

EpγT1|Z0|ďRq “ lim
RÑ8

P p|Z0| ď Rq “ 1.

To this end we fix a constant R ą 0 and set γ̄t :“ γt1|Z0|ďR. By Itô’s formula

dγ̄t “ ´γ̄tBpt, Ztq dVt,

that shows that γ̄ is a local Ft-martingale. Thus Eγ̄T^τn “ P p|Z0| ď Rq for
an increasing sequence pτnq

8
n“1 of stopping times τn such that τn converges to

8 as n Ñ 8, and pγt^τnqtPr0,T s is a martingale for every n. Consequently, if we
can show E suptďT γ̄t ă 8, then we can use Lebesgue’s theorem on dominated
convergence to get Eγ̄T “ P p|Z0| ď Rq. Define the stopping times

τn “ inftt P r0, T s : rγ̄st ě nu for integers n ě 1,

where

rγ̄st “

ż t

0

γ̄2
s |Bps, Ztq|

2 ds.

Then by standard estimates, using the Davis inequality, we have

E sup
tďT

γ̄t^τn ď 1` 3Erγ̄s1{2T^τn
ď1` 3E sup

tďT
γ̄

1{2
t^τn

´

ż T^τn

0

γ̄t|Bpt, Ztq|
2 dt

¯1{2

ď1` 1
2
E sup
tďT

γ̄t^τn ` 5E
ż T

0

γ̄t|Bpt, Ztq|
2 dt,

which, after we subtract 1
2
E suptďT γ̄t^τn and let nÑ 8, by Fatou’s lemma gives

1
2
E sup
tďT

γ̄t ď 1` 5E
ż T

0

γ̄t|Bpt, Ztq|
2 dt ď 1` 5E

ż T

0

γ̄tpK0 `K2|Zt|
2
q dt.

Since Eγ̄t ď 1, to show that the right-hand side of the last inequality is finite we
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need only prove that if K2 ‰ 0 then

sup
tďT

Eγ̄t|Zt|2 ă 8. (III.1.9)

To this end we apply Itô’s formula to Ut :“ γ̄t|Zt|
2 and use Assumptions III.1.1

(ii) and III.1.3 to get

dUt “γ̄tp2Xtbpt, Ztq ` 2YtBpt, Ztq ` |σpt, Ztq|
2
` |ρpt, Ztq|

2
` 1q dt

´ 2γ̄tpXtρpt, ZtqBpt, Ztq ` YtBtpt, Ztqq dt` γ̄t

ż

Z0

|ηpt, Zt, zq|
2 ν0pdzqdt

` γ̄t

ż

Z1

|ξpt, Zt, zq|
2 ν1pdzqdt` γ̄t

ż

Z1

|z|2 ν1pdzqdt` dmt

ďNγ̄t dt`NUt dt` dmt (III.1.10)

with a constant N and a cadlag local martingale m starting from zero. Hence by
a standard stopping time argument and Gronwall’s inequality we get a constant
N such that

sup
tďT

EUt^τn ď Np1` Ep1|Z0|ďR|Z0|
2
qq ă 8

for an increasing sequence of stopping times τn Ò 8. Letting here n Ñ 8 by
Fatou’s lemma we get (III.1.9), which finishes the proof of the theorem.

III.2 Preliminaries

The following lemma is our main tool for calculating conditional expectations of
Lebesgue and Itô stochastic integrals of simple processes under Q given FY

t .

Lemma III.2.1. Let X and Y be random variables such that E|X| ă 8, E|Y | ă
8 and E|XY | ă 8. Let G1, G2 and G be σ-algebras of events such that G1 Ă G,
G2 is independent of G, X is G-measurable and Y is independent of G_G2. Then
almost surely

EpXY |G1
_ G2

q “ EpX|G1
qEY.

Proof. The right-hand side of the above equation is a G1-measurable random
variable, hence it is obviously G1 _ G2-measurable. Let H denote the family of
G P G1 _ G2 such that

EY EpEpX|G1
q1Gq “ EpXY 1Gq.

Then H is a λ-system, and for G “ G1 XG2, Gi P Gi we have

EY EpEpX|G1
q1Gq “ EY EpEp1G1X|G1

q1G2qq “ EY EpEp1G1X|G1
qqE1G2

“ EY Ep1G1XqE1G2 “ EpXY 1Gq,
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that shows that H contains the π-system tG1XG2 : Gi P Gi, i “ 1, 2u. Hence, by
Dynkin’s monotone class lemma H “ G1 _ G2, which completes the proof.

To formulate a theorem on conditional expectations of Lebesgue and Itô
integrals we consider a complete filtered probability space pΩ,F , P,Ftq carrying
independent Ft-Wiener processes W i “ pW i

t qtě0 and independent Ft-Poisson
random measures Ni “ Nipdz, dtq with σ-finite characteristic measures νi on
separable measurable spaces pZi,Ziq for i “ 0, 1, respectively. We denote by
Gt the P -completion of the σ-algebra generated by the events of a σ-algebra
Y0 Ă F0 together with the random variables W 1

s and N1pp0, ss ˆ Γq for s ď t
and Γ P Z1 such that ν1pΓq ă 8. The predictable σ-algebras on Ω ˆ r0, T s,
relative to pFtqtě0 and pGtqtě0 are denoted by PF and PG, respectively. The
optional σ-algebras relative to pFtqtě0 and pGtqtě0 are denoted by OF and OG,
respectively.

The following definition will be frequently used.

Definition III.2.1. Given a probability space pΩ,F , P q and a sub-σ-algebra
G Ă F , we say that a random variable f is σ-integrable (with respect to P )
relative to G, if there exists an increasing sequence pΩnq

8
n“1 such that

Ť

n Ωn “ Ω,
Ωn P G and E|f1Ωn | ă 8 for all n.

One knows that for nonnegative random variables f and σ-algebras G Ă F
the conditional expectation Epf |Gq is well-defined, and that for general random
variables f , such that Ep|f ||Gq ă 8 almost surely, the extended conditional
expectation is defined as Epf`|Gq ´ Epf´|Gq on the set Ep|f ||Gq ă 8, and
it is defined to be `8 on Ep|f ||Gq “ 8. It is not difficult to show that we
have Ep|f ||Gq ă 8 almost surely if and only if f is σ-integrable relative to G
(see [25, Thm. 1.17] for a proof), meaning that Epf`|Gq ă 8 and Epf´|Gq ă 8
almost surely.

We consider real-valued F b Bpr0, T sq-measurable Ft-adapted processes f “
pftqtPr0,T s and g “ pgtqtPr0,T s on Ω ˆ r0, T s, real-valued F b Bpr0, T sq b Zi-

measurable functions hpiq “ h
piq
t pω, zq of pω, t, zq P Ωˆr0, T sˆZi for i “ 0, 1, and

a real-valued F b Bpr0, T sq b Z-measurable function h “ htpω, zq of pω, t, zq P

Ωˆr0, T sˆZ, such that for every t P r0, T s the functions h
piq
t and ht are FtbZi-

measurable and Ft b Z-measurable, respectively, for i “ 0, 1, where pZ,Zq is a
separable measurable space, equipped with a σ-finite measure ν. Assume that
almost surely

F :“

ˆ
ż T

0

|fs|
2 ds

˙1{2

ă 8 Hpiq :“

ˆ
ż T

0

ż

Zi

|hpiqs pzq|
2 νipdzqds

˙1{2

ă 8

(III.2.1)

G :“

ż T

0

|gs| ds ă 8, H :“

ż T

0

ż

Z

|hspzq| νpdzqds ă 8 (III.2.2)
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for i “ 0, 1. Then the processes

αt :“

ż t

0

gs ds, δt :“

ż t

0

ż

Z

hspzq νpdzqds, t P r0, T s,

and

β
piq
t “

ż t

0

fs dW
i
s , δ

piq
t “

ż t

0

ż

Zi

hpiqs pzq Ñipdz, dsq, t P r0, T s, (III.2.3)

are well-defined for i “ 0, 1, and we have the following theorem.

Theorem III.2.2. Assume the random variables F r, G, H and |Hpiq|2 for i “
0, 1, for some r ą 1 are σ-integrable (with respect to P ) relative to G0 and that
for every Gt-stopping time τ ď T , z P Z and zi P Zi (i “ 0, 1) the random

variables fτ , gτ , hτ pzq, h
piq
τ pziq (i “ 0, 1) are σ-integrable relative to G0. Then

for t P r0, T s we have

Epβp1qt |Gtq “
ż t

0

f̂s dW
1
s , Epβp0qt |Gtq “ 0, (III.2.4)

Epαt|Gtq “
ż t

0

ĝs ds, Epδt|Gtq “
ż t

0

ż

Z

ĥspzq νpdzqds, (III.2.5)

Epδp1qt |Gtq “
ż t

0

ż

Z1

ĥp1qs pzq Ñ1pdz, dsq, Epδp0qt |Gtq “ 0 (III.2.6)

almost surely for some PG-measurable functions f̂ and ĝ on Ωˆr0, T s, a PGbZ1-
measurable function ĥ1 on Ωˆ r0, T s ˆ Z1, and a PG bZ-measurable function ĥ
on Ωˆ r0, T s ˆ Z such that

f̂t “ Epft|Gtq, ĝt “ Epgt|Gtq (a.s.) for dt-a.e. t P r0, T s, (III.2.7)

ĥ
p1q
t “ Ephp1qt pzq|Gtq (a.s.) for dtb ν1-a.e. pt, zq P r0, T s ˆ Z1, (III.2.8)

ĥt “ Ephtpzq|Gtq (a.s.) for dtb ν-a.e. pt, zq P r0, T s ˆ Z. (III.2.9)

Proof. Since F r is σ-integrable with respect to G0, there is an increasing sequence
Ωn P G0 such that

Ť8

n“1 Ωn “ Ω and Ep1ΩnF
rq ă 8 for every integer n ě 1. By

the definition and elementary properties of (extended) conditional expectations
and stochastic integrals, we have

1ΩnE
´

ż t

0

fs dW
i
s

ˇ

ˇ

ˇ
Gt
¯

“ E
´

1Ωn

ż t

0

fs dW
i
s

ˇ

ˇ

ˇ
Gt
¯

“ E
´

ż t

0

1Ωnfs dW
i
s

ˇ

ˇ

ˇ
Gt
¯

,

1ΩnEpft|Gtq “ Ep1Ωnft|Gtq, t P r0, T s

for i “ 0, 1 and every n ě 1. Thus, taking 1Ωnf in place of f , we may assume
that EF r ă 8. Similarly, we may also assume that EG, EH and E|Hpiq|2 are

29



finite in what follows below. Assume first that f belongs to H0, the set of simple
processes of the form

ft “
k´1
ÿ

i“0

ξi1pti,ti`1sptq, (III.2.10)

where 0 “ t0 ď ¨ ¨ ¨ ď tk “ T are deterministic time instants, and ξi is a bounded
Fti-measurable random variable for every i “ 0, 1, ..., k ´ 1 for an integer k ě 1.
Then we have

E
´

ż t

0

fs dW
1
s

ˇ

ˇ

ˇ
Gt
¯

“
ÿ

i

E
`

ξipW
1
ti`1^t

´W 1
ti^t
q
ˇ

ˇGt
˘

, for t P r0, T s. (III.2.11)

For 0 ď r ď s ď T define the σ-algebra

Gr,s “ σpW 1
v ´W

1
u , N1pΓˆ pu, vsq : r ď u ď v ď s,Γ P Z1, ν1pΓq ă 8q.

Then σ-algebras Gr and Gr,s are independent and Gs “ Gr _ Gr,s. Thus, using
Lemma III.2.1 with X :“ ξi, Y :“ 1, G1 :“ Gti , G :“ Fti and G2 :“ Gti,s for
ti ď s ď T , we have

Epξi|Gsq “ Epξi|Gtiq for i “ 0, 1, 2, ..., k ´ 1. (III.2.12)

Hence for ti ď s ď ti`1 ď t ď T ,

EpξipW 1
ti`1
´W 1

ti
q|Gtq “ Epξi|GtqpW 1

ti`1
´W 1

ti
q “ Epξi|GsqpW 1

ti`1
´W 1

ti
q (III.2.13)

and for tj ď s ď t ď T ,

EpξjpW 1
t ´W

1
tj
q|Gtq “ Epξj|GtqpW 1

t ´W
1
tj
q “ Epξj|GsqpW 1

t ´W
1
tj
q. (III.2.14)

Consequently, defining f̂s “ Epξi|Gsq “ Epfs|Gsq for s P pti, ti`1s, i “ 0, 1, ..., k´1,
the function f̂ on Ω ˆ r0, T s is PG-measurable, and using (III.2.11) we can see
that the first equation in (III.2.4) holds. Assume now that f is F b Bpr0, T sq-
measurable and Ft-adapted such that EF r ă 8. Then there are sequences
pfnq8n“1 and pf̂nq8n“1 such that fn P H0, f̂n is PG-measurable,

lim
nÑ8

E
ˆ
ż T

0

|ft ´ f
n
t |

2 dt

˙r{2

“ 0, (III.2.15)

and almost surely

EpItpfnq|Gtq :“ E
´

ż t

0

fns dW
1
s

ˇ

ˇ

ˇ
Gt
¯

“

ż t

0

f̂ns dW
1
s “: Itpf̂

n
q for all t P r0, T s,

(III.2.16)
f̂nt “ Epfnt |Gtq for dt-a.e. t P r0, T ] (III.2.17)

for all n ě 1. Using the Davis inequality, Doob’s inequality, Jensen’s and
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Burkholder’s inequalities for any r ą 1 we have

E
ˆ
ż T

0

|f̂nt ´ f̂
m
t |

2 dt

˙1{2

ď 3E sup
tďT

|Itpf̂
n
´ f̂mq|

“ 3E sup
tPr0,T sXQ

|E
`

Itpf
n
´ fmq

ˇ

ˇGt
˘

| ď 3E sup
tPr0,T sXQ

pEpsup
sďT

|Ispf
n
´ fmq||Gtq

ď 3
r

r ´ 1

ˆ

E sup
tďT

|Itpf
n
´ fmq|r

˙1{r

ď N

˜

E
ˆ
ż T

0

|fnt ´ f
m
t |

2 dt

˙r{2
¸1{r

,

where Q is the set of rational numbers and N “ Nprq is a constant, which gives

lim
n,mÑ8

E
ˆ
ż T

0

|f̂nt ´ f̂
m
t |

2 dt

˙1{2

“ 0.

Thus there exists a PG-measurable function f̂ on Ωˆ r0, T s, such that

lim
nÑ8

E
ˆ
ż T

0

|f̂t ´ f̂
n
t |

2 dt

˙1{2

“ 0, (III.2.18)

which implies
lim
nÑ8

E sup
tPr0,T s

|Itpf̂q ´ Itpf̂
n
q| “ 0. (III.2.19)

Using Jensen’s and Davis’ inequalities again we have

E|EpItpfq|Gtq ´ EpItpfnq|Gtq| ď EEp|Itpf ´ fnq||Gtq

“ E|Itpf ´ fnq| ď 3E
ˆ
ż T

0

|ft ´ f
n
t |

2 dt

˙1{2

for every t P r0, T s,

i.e., for nÑ 8

EpItpfnq|Gtq Ñ EpItpfq|Gtq in L1pΩq for every t P r0, T s. (III.2.20)

Thus letting nÑ 8 in equation (III.2.16), by virtue of (III.2.19) and (III.2.20)
we get the first equation in (III.2.4). Clearly, (III.2.15) and (III.2.18) imply

lim
nÑ8

ż T

0

E|ft ´ fnt | ` E|f̂t ´ f̂nt | dt “ 0.

Hence there is a subsequence nl Ñ 8 and a set S P Bpr0, T sq of Lebesgue
measure 0 such that for nl Ñ 8,

fnl
t Ñ ft and a f̂nl

t Ñ f̂t in L1pΩq for each t P r0, T szS “: Sc,

and taking into account (III.2.17), we can assume that S is a dt-zero set such
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that we also have f̂nl
t “ Epfnl

t |Gtq (a.s.) for every t P Sc. Thus for nl Ñ 8 we
have Epfnl

t |Gtq Ñ Epft|Gtq in L1pΩq for each t P Sc, which gives

f̂t “ Epft|Gtq almost surely for every t P Sc,

i.e., the first equation in (III.2.7) holds. To prove the second equation in (III.2.4)
we note that for ξi from the expression (III.2.10) we have

EpξipW 0
ti`1^t

´W 0
ti
q|Gtq “ Epξi|GtiqEpW 0

ti`1^t
´W 0

ti
q “ 0 for i “ 1, 2, ..., N ´ 1,

(III.2.21)
by using Lemma III.2.1 with X “ ξi, Y “ W 0

ti`1^t
´W 0

ti^t
G1 :“ Gti Ă Fti “: G

and G2 :“ Gti,t for ti ď t. Hence we get the second equation in (III.2.4) for f
given in (III.2.10), and the general case follows by approximation as above. To
prove the first equation in (III.2.5) assume that g is given by the right-hand side
of (III.2.10). Then using (III.2.12) we can see that

ĝt :“
k´1
ÿ

i“0

Epξi|Gtiq1pti,ti`1sptq “ Epgt|Gtq, t P r0, T s,

and that the first equation in (III.2.5) and the second equation in (III.2.7) hold.
Assume now that g is an F b Bpr0, T sq-measurable Ft-adapted random process
such that EG ă 8. Then there are sequences pgnq8n“1 and pĝnq8n“1 such that
gn P H0, ĝn is PG-measurable,

lim
nÑ8

E
ż T

0

|gt ´ g
n
t | dt “ 0,

and almost surely

E
´

ż t

0

gns ds
ˇ

ˇ

ˇ
Gt
¯

“

ż t

0

ĝns ds for all t P r0, T s,

ĝnt “ Epgnt |Gtq for dt-a.e. t P r0, T ].

Hence noting that by Tonelli’s theorem and Jensen’s inequality

E
ż T

0

|ĝnt ´ ĝ
m
t | dt “

ż T

0

E|Epgnt |Gtq ´ Epgmt |Gtq| dt

ď

ż T

0

EEp|gnt ´ gmt ||Gtq dt “ E
ż T

0

|gnt ´ g
m
t | dt,

and repeating previous arguments we get a PF -measurable ĝ such that the first
equation in (III.2.5) and the second equation in (III.2.7) hold. To prove the
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second equation in (III.2.5) we assume first that

htpzq “
k´1
ÿ

i“0

ξi1pti,ti`1sˆΓi
pt, zq, (III.2.22)

for a partition 0 ď t0 ď t1 ď ... ď tk “ T of r0, T s, bounded Fti-measurable
random variables ξi and sets Γi P Z, νpΓiq ă 8 for i “ 0, ..., k ´ 1. Then

E
´

ż t

0

ż

Z

hspzq νpdzq ds
ˇ

ˇ

ˇ
Gt
¯

“

k´1
ÿ

i“0

Epξi|GtqνpΓiqpti`1 ^ t´ ti ^ tq, t P r0, T s.

Thus, since by virtue of (III.2.12) we have

ĥtpzq :“
k´1
ÿ

i“0

Epξi|Gtiq1pti,ti`1sptq1Γi
pzq “ Ephtpzq|Gtq, t P r0, T s, z P Z,

for ĥ the second equation in (III.2.5) and by definition (III.2.9) hold. Hence we
can get these equations in the general case by a straightforward approximation
procedure in the same way as the first equation in (III.2.5) and the second
equation in (III.2.7) have been proved above.

Now we are going to prove (III.2.6). Assume first that hp1q is a simple func-
tion, given by the right-hand side of equation (III.2.22) with Γi P Z1, ν1pΓiq ă 8,
i “ 0, 1, ..., k ´ 1. Then

E
´

ż t

0

ż

Z1

hp1qs pzq Ñ1pdz, dsq
ˇ

ˇ

ˇ
Gt
¯

“

k´1
ÿ

i“0

E
`

ξiÑ1pΓi ˆ pti ^ t, ti`1 ^ tsq
ˇ

ˇGt
˘

.

In the same way as equations (III.2.13) and (III.2.14) are obtained, by using
(III.2.12) we get

E
`

ξiÑ1pΓiˆpti, ti`1sq
ˇ

ˇGt
˘

“ Epξi|GtiqÑ1pΓiˆpti, ti`1sq “ Epξi|GsqÑ1pΓiˆpti, ti`1sq

for ti ď s ď ti`1 ď t, and

E
`

ξjÑ1pΓj ˆ ptj, tsq
ˇ

ˇGt
˘

“ Epξj|GtjqÑ1pΓj ˆ ptj, tsq “ Epξj|GsqÑ1pΓj ˆ ptj, tsq

for tj ď s ď t ď tj`1. Thus for

ĥ
p1q
t pzq “

k´1
ÿ

i“0

Epξi|Gtiq1pti,ti`1sˆΓi
pt, zq “ Ephp1qt pzq|Gtq,

equations in (III.2.6) and (III.2.8) hold. Assume now that hp1q is FbBpr0, T sqb
Z-measurable such that for every t P r0, T s the function h

p1q
t is FtbZ1-measurable

and E|Hp1q|2 ă 8, where Hp1q is defined in (III.2.1). Then there exist sequences
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phnq8n“1 and pĥnq8n“1, such that hn is a simple function of the form (III.2.22), ĥn

is a PG b Z1-measurable function,

EpĨtphnq|Gtq :“ E
´

ż t

0

ż

Z1

hns pzq Ñ1pdz, dsq
ˇ

ˇGt
¯

“

ż t

0

ż

Z1

ĥns pzq Ñ1pdz, dsq,

(III.2.23)
ĥnt pzq “ Ephnt pzq|Gtq, almost surely, for ν1pdzq b dt-a.e. pz, tq P Z1 ˆ r0, T s,

(III.2.24)
for every n ě 1, and

lim
nÑ8

E
ż T

0

ż

Z1

|h
p1q
t pzq ´ h

n
t pzq|

2 ν1pdzq dt “ 0. (III.2.25)

Hence using Jensen’s inequality we get

lim
n,mÑ8

E
ż T

0

ż

Z1

|ĥnt pzq ´ ĥ
m
t pzq|

2 ν1pdzqdt “ 0,

which implies the existence of a PG b Z1-measurable function ĥp1q such that

lim
nÑ8

E
ż T

0

ż

Z1

|ĥ
p1q
t pzq ´ ĥ

n
t pzq|

2 ν1pdzq dt “ 0. (III.2.26)

Thus letting nÑ 8 in (III.2.23) we obtain (III.2.6). By virtue of (III.2.25) and
(III.2.26) there is a subsequence nl Ñ 8 and a set A P Bpr0, T sq bZ1 such that
dtb ν1pAq “ 0 and for nl Ñ 8

hnl
t pzq Ñ h

p1q
t pzq and ĥnl

t pzq Ñ ĥ
p1q
t pzq in mean square

for every pt, zq P Ac :“ r0, T s ˆ Z1zA. Consequently,

Ephnk
t pzq|Gtq Ñ Ephp1qt pzq|Gtq in mean square for every pz, tq P Ac,

and letting n :“ nl Ñ 8 in (III.2.24) we obtain Ephp1qt pzq|Gtq “ ĥ
p1q
t pzq for

pz, tq P Ac, which proves (III.2.8). To prove the second equation in (III.2.6)
assume first that hp0q is a simple function of the form (III.2.22) with Γi P Z0,
ν0pΓiq ă 8 for i “ 0, 1, ...k´1. Just like (III.2.21) is obtained, by Lemma III.2.1
we get

EpξiÑ0pΓi ˆ pti ^ t, ti`1 ^ tsq|Gtq “ Epξi|GtiqEÑ0pΓi ˆ pti ^ t, ti`1 ^ tsq “ 0

for i “ 0, 1, ..., k ´ 1 and t P r0, T s, that implies the second equation in (III.2.6).
Hence, we obtain the second equation in (III.2.6) for OF -measurable functions
satisfying (III.2.1) by approximation with simple functions.

We can reformulate the above theorem by using the notion of optional pro-
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jections of processes with respect to a given filtration. It is well-known (see for
instance [25, Thm 5.1], [13, Thm 2.43]) that if f “ pftqtPr0,T s is a Bpr0, T sq b F -
measurable process such that fτ is σ-integrable (with respect to a probability
measure P ) relative to the σ-algebra Gτ for every Gt-stopping time τ ď T (with
respect to a P -complete filtration pGtqtPr0,T s), then there exists a unique (up to
evanescence) Gt-optional process of “ pof tqtPr0,T s such that for every Gt-stopping
time τ ď T

Epfτ |Gτ q “ of τ (a.s.).

The process of is called the optional projection of f (under P with respect to
pGtqtPr0,T s). If f is a cadlag process such that almost surely suptďT |ft| ď η for
some σ-integrable random variable η with respect to P relative to G0, then al-
most surely the trajectories of of have left and right limits at every t P p0, T s and
r0, T q, respectively, and moreover, they are also almost surely right-continuous
if pGtqtPr0,T s is right-continuous. Notice that for every t P r0, T s and process f ,
such that fτ is σ-integrable relative to Gτ for every Gt-stopping time τ ď T ,
the extended conditional expectations Epf`t |Gtq and Epf´t |Gtq are almost surely
equal to opf`t q and opf´t q, respectively. Let h “ phtpzqq be an F b Bpr0, T sq bZ-
measurable function on Ωˆr0, T sˆZ such that for every Gt-stopping time τ ď T
and z P Z the random variable hτ pzq is σ-integrable relative to Gτ . Then by the
help of the Monotone Class Theorem it is not difficult to show the existence of
an OGbZ-measurable function, which for each fixed z P Z gives the (possibly ex-
tended) OG-optional projection of hpzq :“ phtpzqqtPr0,T s. We denote this function
by oh, and call it the (extended) OG-optional projection of h.

Corollary III.2.3. Assume the random variables F , Hpiq and G, H, defined in
(III.2.1) and (III.2.2), respectively, are σ-integrable relative to G0 for i “ 0, 1 and
that for every Gt-stopping time τ ď T , z P Z and zi P Zi (i “ 0, 1) the random

variables fτ , gτ , hτ pzq, h
piq
τ pziq (i “ 0, 1) are σ-integrable relative to G0. Assume

moreover that almost surely

ż T

0

|
oft|

2dt ă 8,

ż T

0

ż

Zi

|
oh
piq
t pzq|

2 νipdzqdt ă 8 for i “ 0, 1, (III.2.27)

where of and ohpiq are the (extended) OG-optional projections of f and hpiq, re-
spectively. Then for every t P r0, T s equations (III.2.4), (III.2.5) and (III.2.6)
hold almost surely with the OG-optional projections of , og, ohpiq and oh in place
of f̂ , ĝ, ĥpiq and ĥ, respectively, for i “ 0, 1. Moreover, there is a dt-null set
T0 Ă r0, T s, a dtbν1-null set B0 Ă r0, T sˆZ1 and a dtbν-null set B Ă r0, T sˆZ,
such that

(i) for each t P r0, T szT0 the random variable |ft| ` |gt| is σ-integrable relative
to G0 and

Epft|Gtq “ oft P R, (a.s.), Epgt|Gtq “ ogt P R (a.s.), (III.2.28)
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(ii) for each pt, zq P r0, T s ˆ Z1zB0 the random variable |h
p1q
t pzq| is σ-integrable

relative to G0 and

Ephp1qt pzq|Gtq “ oht
p1q
pzq P R (a.s.), (III.2.29)

(iii) for each pt, zq P r0, T s ˆ ZzB the random variable |htpzq| is σ-integrable
relative to G0, and

Ephtpzq|Gtq “ ohtpzq P R (a.s.q. (III.2.30)

Proof. Just like in the proof of the previous lemma without loss of generality we
may and will assume that F , G, H and Hpiq, i “ 0, 1, have finite expectation.
Thus by Minkowski’s inequality and Tonelli’s theorem we have

ˆ
ż T

0

pE|ft|q2 dt
˙1{2

ď E
ˆ
ż T

0

|ft|
2 dt

˙1{2

ă 8,

ż T

0

E|gt| dt “ E
ż T

0

|gt| dt ă 8,

ż T

0

ż

Z

E|htpzq| νpdzq dt “ E
ż T

0

ż

Z

|htpzq| νpdzq dt ă 8

ˆ
ż T

0

ż

Z1

pE|hp1qt pzq|q2 ν1pdzq dt

˙1{2

ď E
ˆ
ż T

0

ż

Z1

|h
p1q
t pzq|

2ν1pdzq dt

˙1{2

ă 8.

Therefore E|ft|`E|gt| ă 8 for dt-almost every t P r0, T s, E|htpzq| ă 8 for dtbν-

a.e. pt, zq P r0, T s ˆ Z, and E|hp1qt pzq| ă 8 for dtb ν1-a.e. pt, zq P r0, T s ˆ Z1, i.e.,
we get (III.2.28), (III.2.29) and (III.2.30). Hence due to (III.2.7) and (III.2.9)
we have (III.2.5) with og and oh in place of ĝ and ĥ, respectively. We also have
(III.2.4) and (III.2.6) with of and ohp1q in place of f̂ and ĥp1q, provided F r and
|Hpiq|2 are σ-integrable relative to G0 for i “ 0, 1 for some r ą 1. Thus it remains
to prove (III.2.4) and (III.2.6) with of and ohp1q in place of f̂ and ĥp1q, respectively,
under the condition that F and Hpiq are σ-integrable relative to G0 for i “ 0, 1,
and (III.2.27) holds. We show only (III.2.6) under these conditions, because
(III.2.4) can be proven similarly. To this end define hp1qn “ 1Znp´n _ hp1q ^ nq
for integers n ě 1, where pZnq8n“1 is an increasing sequence of sets Zn P Z1 such
that

Ť8

n“1 Z
n “ Z1 and ν1pZ

nq ă 8 for every n ě 1. Then for each t P r0, T s

Epδp1qnt |Gtq “
ż t

0

ż

Z1

ohp1qns pzq Ñ1pdz, dsq (a.s.), (III.2.31)

where δp1qn is defined as δp1q in (III.2.3), but with hp1qn in place of hp1q. Note
that

|
ohp1qn| ď |ohp1q| P b dtb ν1-almost every pω, t, zq P Ωˆ r0, T s ˆ Z1,

and for nÑ we have oh
p1qn
s pzq Ñ oh

p1q
s pzq almost surely for every ps, zq P r0, T sˆZ1
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such that oh
p1q
s pzq ‰ 8. Hence due to condition (III.2.27), by Lebesgue’s theorem

on dominated convergence we have

ż T

0

ż

Z1

|
ohp1qns pzq ´ ohp1qs pzq|

2 ν1pdzqdtÑ 0 (a.s.) as nÑ 8,

which implies

ż t

0

ż

Z1

ohp1qns pzq Ñ1pdz, dsq Ñ

ż t

0

ż

Z1

ohp1qs pzq Ñ1pdz, dsq (III.2.32)

in probability, uniformly in t P r0, T s. Using obvious properties of conditional
expectations, by Davis’ inequality and Lebesgue’s theorem on dominated con-
vergence we get

lim
nÑ8

E|Epδp1qnt |Gtq ´ Epδp1qt |Gtq| ď lim
nÑ8

E|δp1qnt ´ δ
p1q
t |

ď 3 lim
nÑ8

E
ˆ
ż T

0

ż

Z1

|hp1qns pzq ´ hp1qs pzq|
2 ν1pdzqds

˙1{2

“ 0,

which by virtue of (III.2.31) and (III.2.32) finishes the proof of the first equation
in (III.2.6). The second equation in (III.2.6) can be obtained similarly.

Remark III.2.1. We have that almost surely

ż t

0

ż

Zi

|
ohpiqs pzq|

2 νipdzq ds ď

ż t

0

o
p|hpiqs |

2
L2pZiq

q ds (a.s.) for i “ 0, 1,

for all t P r0, T s. Thus

ż T

0

o
p|h

piq
t |

2
L2pZiq

q dt ă 8 (a.s.) for i “ 0, 1 (III.2.33)

implies the assumption on hpiq in (III.2.27).

Proof. Let i P t0, 1u be fixed and let pAnq
8
n“1 be an increasing sequence of sets

from Zi such that Y8n“1An “ Zi and νipAnq ă 8 for every n ě 1. Set

hi,nt pzq :“ p´nq _ p1Anh
piq
t pzqq ^ n.

Then by Jensen’s inequality for the optional projections we have |ohi,ns pzq|
2 ď

op|hi,ns pzq|
2q for every z P Zi, and by an application of Corollary III.2.3 we obtain

ż t

0

ż

Zi

|
ohi,ns pzq|

2 νipdzqds ď

ż t

0

ż

Zi

o
p|hi,ns pzq|

2
q νipdzqds

“ E
ˆ
ż t

0

ż

Zi

|hi,ns pzq|
2 νipdzqds

ˇ

ˇ

ˇ
Gt
˙
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“

ż t

0

o
p|hi,ns |

2
L2pZiq

q ds ď

ż t

0

o
p|hpiqs |

2
L2pZiq

q ds.

Letting here n Ñ 8 and using the Monotone Convergence Theorem and the
properties of extended optional projections on the left-hand side of the first
inequality, we finish the proof of the remark.

Let PpRdq be the space of of probability measures on the Borel sets of Rd,
equipped with the topology of weak convergence of measures. Recall that CbpRdq

denotes the space of bounded continuous real functions on Rd, and as before, let
pZ,Zq be a separable measurable space.

Lemma III.2.4. Let pΩ,F , P q be a complete probability space equipped with a
right-continuous filtration pGtqtě0, Gt Ă F for t ě 0, such that G0 contains all
P -zero sets of F . Let pXtqtě0 be an Rd-valued F b BpR`q-measurable cadlag
process. Then the following statements hold.

(i) There is a PpRdq-valued weakly cadlag process pPtqtě0 such that for every
bounded real-valued Borel function ϕ on Rd and for each t ě 0

Ptpϕq “ EpϕpXtq|Gtq pa.s.q. (III.2.34)

(ii) Let pPtqtě0 be the measure-valued process from (i). Assume f “ fpω, t, z, xq
is a OGbZbBpRdq-measurable real function on ΩˆR`ˆZˆRd such that
for every finite Gt-stopping time τ and px, zq P Rdˆ Z the random variable
fτ px, zq is σ-integrable relative to Gτ . Define

Ptpfpt, zqq :“

#

ş

Rd fpt, z, xqPtpdxq, for pt, ω, zq, if
ş

Rd |fpt, z, xq|Ptpdxq ă 8

8 elsewhere.

Then Ptpfpt, zqq is an OG b Z-measurable (extended) function of pω, t, zq
such that

Epfpt, z, Xtq|Gtq “ Ptpfpt, zqq (a.s.) for each pt, zq P R` ˆ Z. (III.2.35)

Proof. Statement (i) is shown in [52]. Thus (ii) holds if f “ gpt, zqϕpxq for
bounded OG b Z-measurable functions g on Ω ˆ R` ˆ Z and bounded Borel
functions ϕ on Rd. Hence by a standard monotone class argument we get (ii)
under the additional assumption that f is bounded. In the general case, the set
A Ă Ωˆ R` ˆ Z where

ż

Rd

|fpt, z, xq|Ptpdxq “ 8

is in OG b Z. Consequently, Ptpfpt, zqq is OG b Z-measurable in pω, t, zq. We
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have

Ep|fpt, z, Xtq| ^ n|Gtq “
ż

Rd

|fpt, z, xq| ^ nPtpdxq (a.s.)

for every integer n ě 1. Letting here nÑ 8 we get

Ep|fpt, z, Xtq||Gtq “
ż

Rd

|fpt, z, xq|Ptpdxq (a.s.), (III.2.36)

that implies (III.2.35). Since fpt0, z0, Xt0q is σ-integrable relative to Gt0 , there is
an increasing sequence pΩnq

8
n“1 such that Ωn P Gt0 , P pY8n“1Ωnq “ 1, and

1Ωn

ż

Rd

fpt0, z0, xqPt0pdxq “ Ep1Ωnfnpt0, z0, Xt0q|Gt0q

is almost surely finite for every n ě 1.

Corollary III.2.5. Let pΩ,F , P, pGtqtě0q and pXtqtPr0,T s be a filtered probability
space and a stochastic process, respectively, satisfying the conditions in Lemma
III.2.4. Let pFtqtě0 be a filtration such that Gt Ă Ft Ă F for t ě 0. Let Q be
a probability measure on F such that dQ “ γTdP for a FT -measurable positive
random variable γT . Then the following statements hold.

(i) There is an MpRdq-valued weakly cadlag stochastic process pµtqtPr0,T s such
that for every bounded real-valued Borel function ϕ on Rd and for every
t P r0, T s

µtpϕq “ EQpγ´1
T ϕpXtq|Gtq “ EQpγ´1

t ϕpXtq|Gtq pa.s.q. (III.2.37)

(ii) Let f “ fpω, t, z, xq be a OG b Z b BpRdq-measurable real function on
Ωˆr0, T sˆZˆRd such that for every finite Gt-stopping time τ and px, zq P
Rd ˆ Z the random variable fτ px, zq is σ-integrable relative to Gτ . Define

µtpfpt, zqq :“

#

ş

Rd fpt, z, xqµtpdxq, for pt, ω, zq, if
ş

Rd |fpt, z, xq|µtpdxq ă 8

8 elsewhere.

Then µtpfpt, zqq is a OG b Z-measurable function such that for each pt, zq
we have

EQpγ´1
T fpt, z, Xtq|Gtq “ EQpγ´1

t fpt, z, Xtq|Gtq “ µtpfpt, zqq (a.s.).
(III.2.38)

Proof. Considering pFt`qtě0 in place of pFtqtě0 we may assume in the proof that
pFtqtě0 is right-continuous. By Doob’s theorem there is a cadlag Ft-martingale,
pγtqtPr0,T s, such that γt “ EP pγT |Ftq (P -a.s) for each t P r0, T s. Clearly, almost
surely γt ą 0 for all t P r0, T s since

0 “ EP p1γt“0γtq “ EP p1γt“0γT q
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implies P pγt “ 0q “ 0 for every t P r0, T s. Thus pγ´1
t qtPr0,T s is a cadlag process,

and it is an Ft-martingale under Q, because

EQpγ´1
T |Ftq “ 1{EP pγT |Ftq “ γ´1

t almost surely for t P r0, T s.

Since, γ “ pγqtPr0,T s is a (cadlag) Ft-martingale under P , the set tγτu for Ft-
stopping times τ ď T is uniformly P -integrable, and hence one knows that oγ,
the Gt-optional projection of γ under P , is a cadlag process. Due to γ ą 0, we
have oγ ą 0 (a.s.). Define µt :“ poγtq

´1Pt for t P r0, T s, where pPtqtPr0,T s is the
PpRdq-valued Gt-adapted cadlag process (in the topology of weak convergence of
measures) by Lemma III.2.4. Hence, pµtqtPr0,T s is a Gt-adapted cadlag MpRdq-
valued process, and by (III.2.34) for every bounded Borel function ϕ on Rd we
have

EQpγ´1
T ϕpXtq|Gtq “ EP pϕpXtq|Gtq{EP pγT |Gtq

“ EP pϕpXtq|Gtqpoγtq´1
“ p

oγtq
´1Ptpϕq “ µtpϕq (a.s) for each t P r0, T s.

On the other hand, by well-known properties of conditional expectations

EQpγ´1
T ϕpXtq|Gtq “ EQpEQpγ´1

T ϕpXtq|Ftq|Gtq

“ EQpϕpXtqEQpγ´1
T |Ftq|Gtq “ EQpγ´1

t ϕpXtqq|Gtq,

which completes the proof of (i). To prove (ii), note that the function µtpfpt, zqq
is OG b Z-measurable in pω, t, zq, and by (III.2.35) for each pt, zq almost surely

µtpfpt, zqq “ p
oγtq

´1Ptpfpt, zqq “ Eppoγtq´1fpt, z, Xtq|Gtq

“ EQpγ´1
T p

oγtq
´1fpt, z, Xtq|Gtq{EQpγ´1

T |Gtq “ EQpγ´1
T p

oγtq
´1fpt, z, Xtq|Gtqoγt

“ EQpγ´1
T fpt, z, Xtq|Gtq “ EQpγ´1

t fpt, z, Xtq|Gtq,

where the last equation holds because γ´1 is an Ft-martingale under Q. We finish
the proof with the obvious observation that γ´1

t0 fpt0, z0, Xt0q is σ-integrable with
respect to Q relative to Gt0 if fpt0, z0, Xt0q is σ-integrable with respect to P
relative to Gt0 .

III.3 Proof of Theorem III.1.1

Recall that by Assumption III.1.2 the measure Q, defined by dQ “ γTdP is
a probability measure, equivalent to P , and by Girsanov’s theorem under Q
the process pWt, ṼtqtPr0,T s, where pṼtqtPr0,T s is defined by (III.1.4), is a d1 ` d1-

dimensional Ft-Wiener process. Moreover, under Q the random measures Ñ0

and Ñ1 remain independent Ft-Poisson martingale measures, with characteristic
measures ν0 and ν1, respectively, see e.g. [45, Sec. 1.3] for a proof. Clearly,
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pγtqtPr0,T s is an Ft-martingale under P . By Itô’s formula

dγ´1
t “ γ´1

t Bl
tpXtq dṼ

l
t , (III.3.1)

the process γ´1 “ pγ´1
t qtPr0,T s is an Ft-local martingale under Q. Hence, taking

into account EQγ´1
T “ 1, we get that γ´1 is an Ft-martingale under Q. Thus the

Bayes formula for bounded Borel functions ϕ on Rd gives

EpϕpXtq|FY
t q “

EQpγ´1
T ϕpXtq|FY

t q

EQpγ´1
T |FY

t q
“

EQpγ´1
t ϕpXtq|FY

t q

EQpγ´1
t |FY

t q
pa.s.q, (III.3.2)

often also referred as Kallianpur-Striebel formula in the literature. Using Ṽ we
can rewrite system (I.0.2) in the form

dXt “bpt, Ztq dt` σpt, Ztq dWt ` ρpt, Ztq dVt

`

ż

Z0

ηpt, Zt´, zq Ñ0pdz, dtq `

ż

Z1

ξpt, Zt´, zq Ñ1pdz, dtq,

dYt “dṼt `

ż

Z1

z Ñ1pdt, dzq, (III.3.3)

which shows, in particular, that pYtqtPr0,T s is a Lévy process under Q, and hence it
is well-known that the filtration pFY

t qtPr0,T s is right-continuous. Thus we can ap-
ply Lemma III.2.4 and Corollary III.2.5 with the unobservable process pXtqtPr0,T s

and the filtration pGtqtPr0,T s “ pFY
t qtPr0,T s to have a P-valued and M-valued weakly

cadlag FY
t -adapted processes Ptpdxq and µtpdxq, respectively, such that for every

bounded Borel function ϕ on Rd for each t P r0, T s we have

Ptpϕq “ EpϕpXtq|FY
t q, µtpϕq “ EQpγ´1

t ϕpXtq|FY
t q pa.s.q,

and by (III.3.2) it follows that almost surely Pt “ µt{µtp1q for all t P r0, T s. To
get an equation for dµtpϕq for sufficiently smooth functions we calculate first the
stochastic differential dpγ´1

t ϕpXtqq.

Proposition III.3.1. Let ϕ P C2
b pRdq. Then for the stochastic differential of

γ´1
t ϕpXtq we have

d
`

γ´1
t ϕpXtq

˘

“γ´1
t LtϕpXtq dt` γ

´1
t Ml

tϕpXtq dṼ
l
t ` γ

´1
t σikt pXtqDiϕpXtq dW

k
t

` γ´1
t

ż

Z0

Iηt ϕpXt´q Ñ0pdz, dtq ` γ
´1
t

ż

Z1

Iξt ϕpXt´q Ñ1pdz, dtq

` γ´1
t

ż

Z0

Jηt ϕpXtq ν0pdzq dt` γ
´1
t

ż

Z1

Jξt ϕpXtq ν1pdzq dt.

(III.3.4)

41



Proof. By Itô’s formula, see for example in [1] or [27], for ϕ P C2
b pRdq we have

dϕpXtq “
`

LtϕpXtq ´ ρ
il
t B

l
tpXtqDiϕpXtq

˘

dt

` σikt pXtqDiϕpXtq dW
k
t ` ρ

il
t pXtqDiϕpXtq dṼ

l
t

`

ż

Z0

Iηt ϕpXt´q Ñ0pdt, dzq `

ż

Z1

Iξt ϕpXt´q Ñ1pdt, dzq

`

ż

Z0

Jηt ϕpXt´q ν0pdzqdt`

ż

Z1

Jξt ϕpXt´q ν1pdzqdt,

where we use the notations introduced before the formulation of Theorem III.1.1.
Hence using (III.3.1) and the stochastic differential rule for products,

dpγ´1
t ϕpXtqq “ γ´1

t dϕpXtq ` ϕpXt´q dγ
´1
t ` dγ´1

t dϕpXtq,

where
dγ´1

t dϕpXtq “ γ´1
t ρilt B

l
tpXtqDiϕpXtq dt,

we obtain (III.3.4).

To calculate the conditional expectation (under Q) of the terms in the equa-
tion for γ´1

t ϕpXtq, given FY
t , we describe below the structure of FY

t . For each

t ě 0 we denote by F Ñ
t the P -completion of the σ-algebra generated by the

random variables N1pp0, ss ˆ Γq for s P p0, ts and Γ P Z1 such that ν1pΓq ă 8.

Lemma III.3.2. For every t P r0, T s we have

FY
t “ FY

0 _ F Ṽ
t _ F Ñ1

t ,

where FY
0 _ F Ṽ

t _ F Ñ1
t denotes the P -completion of the smallest σ-algebra con-

taining FY
0 , F Ṽ

t and F Ñ1
t .

Proof. From (III.3.3) it immediately follows that

FY
t Ď FY

0 _ F Ṽ
t _ F Ñ1

t .

To prove the reversed inclusion, we claim

NY
pp0, ts ˆ Aq “ N1pp0, ts ˆ Aq almost surely for all t P r0, T s (III.3.5)

for every A P Z1, where NY is the measure of jumps for the process Y . Clearly,
NY pdz, dtq “ NMpdz, dtq, where NM is the measure of jumps for the process

Mt “

ż t

0

ż

Z1

z Ñ1pdz, dtq, t ě 0,

i.e.,
NY
pp0, ts ˆ Aq “

ÿ

0ăsďt

1Ap∆Ysq “
ÿ

0ăsďt

1Ap∆Msq A P Z1.
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To show (III.3.5) let A “ A0 be a set from Z1 such that ν1pA0q ă 8. Then

MA0
t :“

ż t

0

ż

A0

z Ñ1pdz, dsq “
ÿ

0ăsďt

ps1A0ppsq ´ t

ż

A0

z ν1pdzq,

where pptqtPr0,T s is the Poisson point process associated with N1. Hence for
N0pdz, dtq, the measure of jumps of the process MA0 , we have that almost surely

N0
pp0, ts ˆ A0q “ N1pp0, ts ˆ A0q for all t P r0, T s. (III.3.6)

It is not difficult to see that N0pp0, ts ˆ A0q “ NMpp0, ts ˆ A0q. Hence (III.3.5)
for A “ A0 follows.

Since ν1 is σ-finite, for an arbitrary B P Z1 there is a sequence pBnq
8
n“1 of

disjoint sets Bn P Z1 such that B “
Ť8

n“1Bn and ν1pBnq ă 8 for each n ě 1.
Thus for each integer n ě 1 we have (III.3.5) with Bn in place of A, and summing
this up over n ě 1 and using the σ-additivity of NY and N1 we obtain (III.3.5)
with B in place of A. Noting that FY

t contains the σ-algebra generated by

NY pp0, ss ˆ Bq for each s ď t and B P Z, we see that FY
t Ą F Ñ1

t . Clearly,
FY
t Ą FY

0 , and taking into account

Yt ´ Y0 ´

ż t

0

ż

Z1

z Ñ1pdz, dsq “ Ṽt, for t P r0, T s,

we get FY
t Ą F Ṽ

t . Consequently,

FY
t Ě FY

0 _ F Ṽ
t _ F Ñ

t ,

that completes the proof.

The above lemma is an essential tool in obtaining the filtering equations. A
similar lemma in a more general setting in some directions is presented in [50]
and [49] to obtain the filtering equations for the model considered in these papers.
It seems to us, however, that this lemma, Lemma 3.2 in [50], used as well in [49,
p.4], may not hold under the general conditions formulated in these papers,
since it is not true in the simple case of vanishing coefficients in front of the
random measures in the observation process. It is worth noticing that when
instead of the integrand z a stochastic integrand depending on Zt “ pXt, Ytq
is considered in the observation process Y , the integral of such a term against
a Poisson random measure may fail to be a Lévy process, as it may not have
independent increments, which is a crucial property for the filtration generated
by the observation.

Now we are going to get an equation for µpϕq by noting that by Proposition
III.3.1 we have

γ´1
t ϕpXtq “ ϕpX0q ` αt ` α

0
t ` α

1
t ` β

0
t ` β

1
t ` δ

0
t ` δ

1
t , t P r0, T s, (III.3.7)
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where

αt :“

ż t

0

γ´1
s LsϕpXsq ds,

α0
t :“

ż t

0

ż

Z0

γ´1
s JηsϕpXsq ν0pdzqds, α1

t :“

ż t

0

ż

Z1

γ´1
s JξsϕpXsq ν1pdzqds,

β0
t :“

ż t

0

γ´1
s σiks pXsqDiϕpXsq dW

k
s , β1

t :“

ż t

0

γ´1
s Ml

sϕpXsq dṼ
l
s ,

δ0
t :“

ż t

0

ż

Z0

γ´1
s IηsϕpXs´q Ñ0pdz, dsq, δ1

t :“

ż t

0

ż

Z1

γ´1
s IξsϕpXt´q Ñ1pdz, dsq,

for ϕ P C2
b pRdq. We want to take the conditional expectation of both sides of

equation (III.3.7) for each t P r0, T s, under Q, given FY
t . In order to apply

Corollary III.2.3, we should verify that the random variables

G :“

ż T

0

γ´1
s |LtϕpXsq| ds,

Gp0q :“

ż T

0

ż

Z0

γ´1
s |J

η
sϕpXsq| ν0pdzq ds, Gp1q :“

ż T

0

ż

Z1

γ´1
s |J

ξ
sϕpXsq| ν1pdzq ds,

F p0q :“
´

ż T

0

γ´2
s |σ

i
spXsqDiϕpXsq|

2 ds
¯1{2

, F p1q :“
´

ż T

0

γ´2
s

ÿ

l

|Ml
sϕpXsq|

2 ds
¯1{2

,

Hp0q :“
´

ż T

0

ż

Z0

γ´2
s |I

η
sϕpXs´q|

2 ν0pdzqds
¯1{2

,

Hp1q :“
´

ż T

0

ż

Z1

γ´2
s |I

ξ
sϕpXs´q|

2 ν1pdzqds
¯1{2

are σ-integrable with respect to Q relative to FY
0 , and that (III.2.27) holds for

Qf piq in place of of , and for Qhpiq in place of ohpiq, where Qf p0q, Qf p1q, Qhp0q and
Qhp1q are the FY

t -optional projection under Q of

fkp0q :“ pγ´1
s σiks pXsqDiϕpXsqqsPr0,T s, f lp1q :“ pγ´1

s Ml
sϕpXsqqsPr0,T s,

hp0q :“ pγ´1
s IηsϕpXs´qqsPr0,T s and hp1q :“ pγ´1

s IξsϕpXs´qqsPr0,T s,

respectively for each fixed k “ 1, 2, ..., d1 and l “ 1, ..., d1. For a fixed integer
n ě 1 let Ωn “ tω P Ω : |Y0| ď nu. Then due to Assumption III.1.1, the
martingale property of pγtqtPr0,T s and (III.1.2) we have

EQp1ΩnGq ď NE
´

γT

ż T

0

γ´1
t pK0 `K11Ωn |Zt| `K21Ωn |Zt|

2
q dt

¯

“ N

ż T

0

EpγTγ´1
t pK0 `K11Ωn |Zt| `K21Ωn |Zt|

2
q dt
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“ N

ż T

0

EpK0 `K11Ωn |Zt| `K21Ωn |Zt|
2
q dt

ď N 1
pK0 `K1E|X0| `K1Ep1Ωn |Y0|q `K2E|X0|

2
`K2Ep1Ωn |Y0|

2
qq ă 8

with constants N and N 1, which shows that G is σ-integrable with respect to Q
relative to FY

0 . Similarly, using the estimate

|JηϕpXtq| ď sup
xPRd

|Dijϕpxq||η
i
tpXtq||η

j
t pXtq|,

we get

EQp1ΩnG
p0q
q “

ż T

0

E
ż

Z0

1Ωn |J
η
sϕpXsq| ν0pdzqds

ď N

ż T

0

E
ż

Z0

1Ωn |ηps, Zs, zq|
2 ν0pdzq ds ď N 1

ż T

0

EpK0 `K21Ωn |Zs|
2
q ds ă 8

with constants N and N 1. In the same way we get EQp1ΩnG
p1qq ă 8. To prove

that F piq and Hpiq are σ-integrable (with respect to Q) relative to F Y
0 , we claim

first that

An :“ EQ1Ωn sup
tďT

γ´1
t ă 8 for every integer n ě 1. (III.3.8)

To prove this we repeat a method used in proof of Theorem III.1.2. From (III.3.1)
by using the Davis inequality and then Young’s inequality we get

EQ1Ωn sup
tPr0,T s

γ´1
t^τk

ď 1` 3E
ˆ
ż T^τk

0

1Ωnγ
´2
t |Bpt, Ztq|

2 dt

˙1{2

ď 1` 1
2
EQ1Ωn sup

tPr0,T s

γ´1
t^τk

` 5E
ż T

0

1Ωnγ
´1
t |Bpt, Ztq|

2 dt

for stopping times

τk “ inftt P r0, T s : γ´1
t ě ku, for integers k ě 1.

Rearranging this inequality and then letting k Ñ 8 by Fatou’s lemma we obtain

EQ1Ωn sup
tPr0,T s

γ´1
t ď 2` 10

ż T

0

EQ1Ωnγ
´1
t |Bpt, Ztq|

2 dt.

Hence we get (III.3.8) by noticing that using the martingale property of γ, the
estimate in (III.1.2) and K2E|X0|

2 ă 8, for every t P r0, T s we have

EQ1Ωnγ
´1
t |Bpt, Ztq|

2
“ E1ΩnγTγ

´1
t |Bpt, Ztq|

2
“ E1Ωn |Bpt, Ztq|

2

ď K0 `K2E1Ωn |Zt|
2
ď K0 `K2NEp1` |X0|

2
` 1Ωn |Y0|

2
q ă 8.
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Consequently,

EQp1ΩnF
p0q
q ď EQ

ˆ

1Ωn sup
sďT

γ´1{2
s

´

ż T

0

1Ωnγ
´1
s |σ

i
spXsqDiϕpXsq|

2 ds
¯1{2

˙

ď An`Bn,

with An ă 8, and

Bn :“ EQ
ż T

0

1Ωnγ
´1
s |σ

i
spXsqDiϕpXsq|

2 ds “

ż T

0

Ep1ΩnγTγ
´1
s |σ

i
spXsqDiϕpXsq|

2
q ds

“

ż T

0

E|1Ωnσ
i
spXsqDiϕpXsq|

2 ds ď N

ż T

0

EpK0 `K21Ωn |Zs|
2
q ds ă 8.

We get EQp1ΩnF
p1qq ă 8 in the same way. Similarly, EQp1ΩnH

p0qq ď An ` Cn,
with An given in (III.3.8) and

Cn :“ EQ
ż T

0

γ´1
s

ż

Z0

1Ωn |I
η
sϕpXsq|

2 ν0pdzqds “

ż T

0

E
ż

Z0

1Ωn |I
η
sϕpXsq|

2 ν0pdzqds

ď N

ż T

0

E
ż

Z0

1Ωn |ηps, Zs, zq|
2 ν0pdzqds ď N 1

ż T

0

EpK0 `K21Ωn |Zs|
2
q ds ă 8

with constants N and N 1, where we use that by Taylor’s formula we have

|IηsϕpXsq| ď sup
xPRd

|Diϕpxq||η
i
spXsq|.

In the same way we have EQp1ΩnH
p1qq ă 8. For processes h “ phtqtPr0,T s recall

that Qh and oh denote the FY
t -optional projections of h under Q and under P ,

respectively. Then using the formula Qh “ opγhq{oγ, well-known properties of
optional projections and Remark III.2.1 we have

|
Qhp0q|2L2pZ0q

“
|opIηϕpXqq|2L2pZ0q

poγq2
ď

o
`

|IηϕpXqq|2L2pZ0q

˘

poγq2

ď N
opK0 `K2|Z|

2q

poγq2
“ N

K0

poγq2
`NK2

op|X|2q

poγq2
`NK2

|Y |2

poγq2

with a constant N . Remember that since γ “ pγqtPr0,T s is a (cadlag) Ft-
martingale under P , the set tγτu for Ft-stopping times τ ď T is uniformly
P -integrable and hence due to the right-continuity of pFY

t qtPr0,T s, the optional
projection oγ is a cadlag process. Moreover, due to γ ą 0, we have oγ ą 0 (a.s.).
Since by (III.1.2)

K2Epsup
tďT

1Ωn |Xt|
2
q ă 8 for every n ě 1,

(and pFY
t qtPr0,T s is right-continuous), the process K2

op|X|2q is a cadlag process.
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Consequently, K0{|
oγ|2, K2

o
p|X|2q{|oγ|2 and |Y |2{|oγ|2 are cadlag processes. Hence

ż T

0

1

poγsq2
ds`K2

ż T

0

op|X|2qs
poγsq2

ds`K2

ż T

0

|Ys|
2

poγsq2
ds ă 8 pa.s.q,

which proves
ż T

0

ż

Zi

|
Qhpiqs |

2 νipdzq ds ă 8 pa.s.q

for i “ 0, and we get this for i “ 1 in the same way. By the same argument we
have

ż T

0

|
Qf piqs |

2 ds ă 8 pa.s.q for i “ 0, 1.

Thus we can apply Corollary III.2.3 to the processes α, αi, βi and δi (i=0,1),
and then use Corollary III.2.5, to get

EQpαt|FY
t q “

ż t

0

µspLsϕq ds,

EQpα0
t |FY

t q “

ż t

0

ż

Z0

µspJ
η
sϕq ν0pdzqds, EQpα1

t |FY
t q “

ż t

0

ż

Z1

µspJ
ξ
sϕq ν1pdzqds,

EQpβ0
t |FY

t q “ 0, EQpβ1
t |FY

t q “

ż t

0

µspMl
sϕq dṼ

l
s ,

EQpδ0
t |FY

t q “ 0, EQpδ1
t |FY

t q “

ż t

0

ż

Z1

µspI
ξ
sϕq Ñ1pdz, dsq

for t P r0, T s and ϕ P C2
b pRdq almost surely, where pµtqtPr0,T s is an MpRdq-valued

FY
t -adapted weakly cadlag process such that

µtpϕq :“

ż

Rd

ϕpxqµtpdxq “ EQpγ´1
t ϕpXtq|FY

t q pa.s.q for each t P r0, T s,

for every bounded Borel function ϕ on Rd. Using Lemma III.2.1 with random
variables X :“ ϕpX0q, Y :“ 1 and σ-algebras G1 :“ FY

0 , G :“ F0 and G2 :“

F Ṽ
t _ F Ñ1

t we get

EQpϕpX0q|FY
t q “ EQpϕpX0q|FY

0 q “ µ0pϕq pa.s.q.

Consequently, taking the conditional expectation of both sides of equation (III.3.7)
under Q given FY

t , we see that equation (III.1.6) holds for each t P r0, T s and
ϕ P C2

b pRdq almost surely, that implies that for each ϕ P C2
b pRdq equation (III.1.6)

holds almost surely for all t P r0, T s, since we have cadlag processes in both sides
of equation (III.1.6) for each ϕ P C2

b pRdq. To prove (III.1.7) first notice that for
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ϕ :“ 1 equation (III.1.6) gives

dµtp1q “ µtpB
k
t q dṼ

k
t , µ0p1q “ 1.

Since µtp1q “ p
oγtq

´1Ptp1q “ p
oγtq

´1, t P r0, T s, is a continuous process such that
µtp1q “ EQpγ´1

t |FY
t q (a.s.) for each t P r0, T s, it is the FY

t -optional projection
under Q of the positive process pγ´1

t qtPr0,T s. Hence λt :“ µtp1q, t P r0, T s, is a
positive process, and by Itô’s formula

dλ´1
t “ ´λ´2

t µtpB
k
t q dṼ

k
t ` λ

´3
t

ÿ

k

µ2
t pB

k
t q dt.

By Itô’s formula for the product Ptpϕq “ λ´1
t µtpϕq we have

dPtpϕq “ PtpLtϕq dt`PtpMk
tϕq dṼ

k
t `

ż

Z0

PtpJ
η
t ϕq ν0pdzqdt`

ż

Z1

PtpJ
ξ
t ϕq ν1pdzqdt

`

ż

Z1

PtpI
ξ
t ϕq Ñ1pdz, dtq ` λ

´3
t µtpϕq

ÿ

k

µ2
t pB

k
t q dt

´µtpϕqλ
´2
t µtpB

k
t q dṼ

k
t ´ λ

´2
t µtpB

k
t qµtpMk

tϕq dt

Hence noting that

λ´3
t µtpϕq

ÿ

k

µ2
t pB

k
t q “ Ptpϕq

ÿ

k

P 2
t pB

k
t q, µtpϕqλ

´2
t µtpB

k
t q “ PtpϕqPtpB

k
t q

λ´2
t µtpB

k
t qµtpMk

tϕq “ PtpB
k
t qPtpMk

tϕq,

we obtain

dPtpϕq “ PtpLtϕq dt`
`

PtpMk
tϕq ´ PtpϕqPtpB

k
t q
˘

dṼ k
t

´
`

PtpMk
tϕq ´ PtpϕqPtpB

k
t q
˘

PtpB
k
t q dt

`

ż

Z0

PtpJ
η
t ϕq ν0pdzqdt`

ż

Z1

PtpJ
ξ
t ϕq ν1pdzqdt`

ż

Z1

PtpI
ξ
t ϕq Ñ1pdz, dtq.

Since clearly,

`

PtpMk
tϕq ´ PtpϕqPtpB

k
t q
˘

dṼ k
t ´

`

PtpMk
tϕq ´ PtpϕqPtpB

k
t q
˘

PtpB
k
t q dt

“
`

PtpMk
tϕq ´ PtpϕqPtpB

k
t q
˘

dV̄ k
t

with the process pV̄tqtPr0,T s, given by dV̄t “ dṼt ´ PtpBtq dt, V̄0 “ 0, this gives
equation (III.1.7), and finishes the proof of Theorem III.1.1.
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Chapter IV

The filtering density

IV.1 Introduction

In Chapter III we were interested in the equations for the evolution of the condi-
tional distribution Ptpdxq “ P pXt P dx|Ys, s ď tq of the unobserved component
Xt given the observations pYsqsPr0,T s, where Z “ pZtqtPr0,T s “ pXt, YtqtP0,T s is given
by the stochastic differential equation (I.0.2) and where the coefficients satisfy
the measurability conditions, and dimensionality properties, stated in the intro-
duction, Chapter I. In the present chapter we investigate the existence of the
conditional density πt “ dPt{dx of the signal-observation system (I.0.2). More
precisely, we show, under fairly general conditions, that if the conditional distri-
bution of X0 given Y0 has a density π0, such that its LppRdq-norm has a finite
p-th moment, in other words E|π0|

p
Lp
ă 8 for some p ě 2, then Xt for every

t has a conditional density πt given pYsqtPr0,ts, which belongs also to Lp, almost
surely for all t. This chapter is based on the article [17].

We do not assume any non-degeneracy conditions on σ and η, i.e., they
are allowed to vanish. Thus, given the observations, there may not remain any
randomness to smooth the conditional distribution Ptpdxq of Xt, i.e., if the initial
conditional density π0 does not exists, then the conditional density πt for t ą 0
may not exist either. Therefore assuming that the initial conditional density
π0 exists, we are interested in the smoothness and growth conditions which
we should require from the coefficients in order to get that πt exists for every
t P r0, T s as well.

For partially observed diffusion processes, i.e., when ξ “ η “ 0 and the
observation process Y does not have jumps, the existence and the regularity
properties of the conditional density πt have been extensively studied in the lit-
erature. For important results under non-degeneracy conditions see, for exam-
ple, [36], [39], [35], [46], and the references therein. Without any non-degeneracy
assumptions, in [51] the existence of πt is proved if π0 P W

2
p XW

2
2 for some p ě 2,

the coefficients are bounded, σ, ρ have uniformly bounded derivatives in x up to
order 4, and b, B have uniformly bounded derivatives in x up to order 3. Under
these conditions it is also proved that pπtqtPr0,T s is a weakly continuous process
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with values in W 2
p XW 2

2 , and that πt has higher regularity if π0 and the coeffi-
cients are appropriately smoother. In [41] the existence of conditional densities
in L2pRdq was proved using a very nice method, deriving a priori estimates for
an SPDE for the unnormalised conditional distribution smoothed with Gaussian
kernels. More precisely, it was shown, without assuming differentiability condi-
tions on the coefficients, that if they are bounded, Lipschitz continuous in space
and if the initial conditional density π0 satisfies E|π0|

2
L2
ă 8, then πt remains in

L2 for all t.

More recently also filtering densities associated to systems with jumps have
been investigated, i.e. when ξ, η are not zero and the observation may also
contain jump terms. However, to the best of the authors knowledge, most results
treat only the case of L2-valued densities.

Indeed, the result from [41] was also obtained with the same methods in [4]
for the case when the observation is driven by an Ornstein-Uhlenbeck process
independent of the signal. This smoothing approach is used again in [5] to prove
uniqueness of measure-valued solutions for the Zakai equation in the case where
the signal is a diffusion process, the observation contains a jump term and the
coefficients are time-independent, globally Lipschitz, except for the observation
drift term, which contains a time dependence, but is bounded and globally Lip-
schitz. The approach from [41] is extended in [44] to partially observed jump
diffusions when the Wiener process in the observation process Y is indepen-
dent of the Wiener process in the unobserved process, to prove, in particular,
the existence of the conditional density in L2, if the initial conditional density
exists, belongs to L2, the coefficients are bounded Lipschitz functions, the coef-
ficients of the random measures in the unobservable process are differentiable in
x and satisfy a condition in terms of their Jacobian. Another application of this
method, yielding an analogous result in L2, can be found in [6] for the case when
the coefficients satisfy Lipschitz and linear growth conditions, the signal has a
bounded cadlag disturbance with bounded variation, adapted to the filtration
generated by Y , the observation has no jump terms and where additionally π0

has finite third moment. In [50] and [49] the filtering equations for fairly general
filtering models with partially observed jump diffusions are obtained and stud-
ied, but the existence of the conditional density (in L2) is proved only in [50],
in the special case when the equation for the unobserved process is driven by a
Wiener process and an α-stable additive Lévy process, ρ “ 0, the coefficients b
and σ are bounded functions of x P Rd, b has bounded first order derivatives,
σ has bounded derivatives up to second order and B “ Bpt, x, yq is a bounded
Lipschitz function in z “ px, yq.

The main theorem, Theorem IV.2.1, of the present chapter reads as follows.
Assume that the coefficients b, σ, ρ, B, ξ, η and ρB are Lipschitz continuous in
z “ px, yq P Rd`d1 , B is bounded, b, σ, ρ, ξ and η satisfy a linear growth condition,
ξ and η admit uniformly equicontinuous derivatives in x P Rd, x` ξpxq, x` ηpxq
are bijective mappings in x P Rd, and have a Lipschitz continuous inverse with
Lipschitz constant independent of the other variables. Assume, moreover, that
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E|X0|
r ă 8 for some r ą 2 and that ν1 has finite r-th moment. Under these

conditions, if the initial conditional density π0 exists for some p ě 2, then the
conditional density πt exists and belongs to Lp for every t. Moreover, pπtqtPr0,T s
is weakly cadlag as Lp-valued process.

To prove our main theorem we use the Itô formula from [22] and adapt
an approach from [41] to estimate the Lp-norm of the smoothed unnormalised
conditional distribution for even integers p ě 2. Hence we obtain Theorem IV.2.1
for even integers p ě 2. Then we use an interpolation theorem combined with
an approximation procedure to get the main theorem for every p ě 2.

The chapter is organised as follows. In Section IV.2 we formulate our main
result. In Section IV.3 we recall important results from Chapter III together
with the filtering equations obtained therein. In Section IV.4 we prove Lp esti-
mates needed for a priori bounds for the smoothed conditional distribution. In
Section IV.5 we obtain an Itô formula for the Lp-norm of the smoothed condi-
tional distribution and prove our result for the case p “ 2. Section IV.6 contains
existence and uniqueness results for the filtering equation in Lp-spaces. Finally,
in Section IV.7 we prove our main theorem.

IV.2 Formulation of the main results

We fix nonnegative constantsK0, K1, L, K and functions ξ̄ P L2pZ1q “ L2pZ1,Z1, ν1q,
η̄ P L2pZ0q “ L2pZ0,Z0, ν0q, used throughout the paper, and make the following
assumptions.

Assumption IV.2.1. (i) For zj “ pxj, yjq P Rd`d1 (j “ 1, 2), t ě 0 and
zi P Zi (i “ 0, 1) ,

|bpt, z1q ´ bpt, z2q| ` |Bpt, z1q ´Bpt, z2q| ` |σpt, z1q ´ σpt, z2q|

`|ρpt, z1q ´ ρpt, z2q| ď L|z1 ´ z2|,

|ηpt, z1, z0q ´ ηpt, z2, z0q| ď η̄pz0q|z1 ´ z2|,

|ξpt, z1, z1q ´ ξpt, z2, z1q| ď ξ̄pz1q|z1 ´ z2|.

(ii) For all z “ px, yq P Rd`d1 , t ě 0 and zi P Zi for i “ 0, 1 we have

|bpt, zq| ` |σpt, zq| ` |ρpt, zq| ď K0 `K1|z|, |Bpt, zq| ď K,

|ηpt, z, z0q| ď η̄pz0qpK0 `K1|z|q, |ξpt, z, z1q| ď ξ̄pz1qpK0 `K1|z|q,
ż

Z1

|z|2 ν1pdzq ď K2
0 .

(iii) The initial condition Z0 “ pX0, Y0q is an F0-measurable random variable
with values in Rd`d1 .
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Assumption IV.2.2. The functions η̄ P L2pZ0q and ξ̄ P L2pZ1q satisfy η̄pz0q ď

Kη and ξ̄pz1q ď Kξ for all zi P Zi, i “ 0, 1 and some nonnegative constants Kη

and Kξ.

Assumption IV.2.3. For some r ą 2 we have E|X0|
r ă 8, and the measure ν1

satisfies

Kr :“

ż

Z1

|z|r ν1pdzq ă 8.

By Theorem II.2.1 we know that Assumption IV.2.1 ensures the existence
and uniqueness of a solution pXt, Ytqtě0 to (I.0.2) for any given F0-measurable
initial value Z0 “ pX0, Y0q, and for every T ą 0,

E sup
tďT
p|Xt|

q
` |Yt|

q
q ď Np1` E|X0|

q
` E|Y0|

q
q (IV.2.1)

holds for q “ 2 with a constant N depending only on T , K0, K, K1, L, |ξ̄|L2 ,
|η̄|L2 and d` d1. If in addition to Assumption IV.2.1 we have that Assumptions
IV.2.2 and IV.2.3 hold, then by Theorem II.2.2, see also [12], we know that the
moment estimate (IV.2.1) holds with q :“ r for every T ą 0, where now the
constant N depends also on r, Kr Kξ and Kη.

As in the previous chapter, we also need the following additional assumption.

Assumption IV.2.4. (i) The functions f0pt, x, y, z0q :“ ηpt, x, y, z0q and
f1pt, x, y, z1q :“ ξpt, x, y, z1q are continuously differentiable in x P Rd for each
pt, y, ziq P R` ˆ Rd1 ˆ Zi, for i “ 0 and i “ 1, respectively, such that

lim
εÓ0

sup
tPr0,T s

sup
zPZi

sup
|y|ďR

sup
|x|ďR,|x1|ďR,|x´x1|ďε

|Dxfipt, x, y, ziq ´Dxfipt, x
1, y, ziq| “ 0

for every R ą 0.
(ii) There is a constant λ ą 0 such that for θ P r0, 1s, pt, y, ziq P R` ˆ Rd1 ˆ Zi
for i “ 0, 1 we have

λ|x1 ´ x2| ď |x1 ´ x2 ` θpfipt, x1, y, ziq ´ fipt, x2, y, ziqq| for x1, x2 P Rd.

(iii) The function ρB “ pρikBkq is Lipschitz in x P Rd, uniformly in pt, yq, i.e.,

|pρBqpt, x1, yq ´ pρBqpt, x2, yq| ď L|x1 ´ x2|,

for all x1, x2 P Rd and pt, yq P r0, T s ˆ Rd1 .

Recall that FY
t denotes the completion of the σ-algebra generated by pYsqsďt.

Then the main result of the paper reads as follows.

Theorem IV.2.1. Let Assumptions IV.2.1, IV.2.2 and IV.2.4 hold. If K1 ‰ 0
in Assumption IV.2.1, then let additionally Assumption IV.2.3 hold. Assume the
conditional density π0 “ P pX0 P dx|FY

0 q{dx exists and E|π0|
p
Lp
ă 8 for some
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p ě 2. Then for each t P r0, T s the conditional density P pXt P dx|FY
t q{dx exists

almost surely. Moreover, there is an Lp-valued weakly cadlag process pπtqtPr0,T s
such that for each t P r0, T s almost surely πt “ P pXt P dx|FY

t q{dx.

IV.3 The filtering equations revisited

We briefly review the main results needed from Chapter III for the reader’s
convenience, as well as present some new notions and auxiliary facts needed in
later sections of the present chapter.

We recall, for t P r0, T s, the random differential operators

Lt “ aijt pxqDij ` b
i
tpxqDi, Mk

t “ ρikt pxqDi `B
k
t pxq, k “ 1, 2, ..., d1,

where

aijt pxq :“ 1
2

d1
ÿ

k“1

pσikt σ
jk
t qpxq `

1
2

d1
ÿ

l“1

pρilt ρ
jl
t qpxq, σikt pxq :“ σikpt, x, Ytq,

ρilt pxq :“ ρilpt, x, Ytq, bitpxq :“ bipt, x, Ytq, Bk
t pxq :“ Bk

pt, x, Ytq

for ω P Ω, t ě 0, x “ px1, ..., xdq P Rd and i, j “ 1, 2..., d, as well as for z P Z1 the
random operators Iξt and Jξt defined by

Iξt ϕpx, zq “ ϕpx`ξtpx, zq, zq´ϕpx, zq, Jξt φpx, zq “ Iξt φpx, zq´
d
ÿ

i“1

ξitpx, zqDiφpx, zq

(IV.3.1)
for functions ϕ “ ϕpx, zq and φ “ φpx, zq of x P Rd and z P Z1, and furthermore
the random operators Iηt and Jηt , defined as Iξt and Jξt , respectively, with ηtpx, zq
in place of ξtpx, zq, where

ξtpx, z1q :“ ξpt, x, Yt´, z1q, ηtpx, z0q :“ ηpt, x, Yt´, z0q

for ω P Ω, t ě 0, x P Rd and zi P Zi for i “ 0, 1. We recall also the processes

γt “ exp

ˆ

´

ż t

0

BspXsq dVs ´
1
2

ż t

0

|BspXsq|
2 ds

˙

, t P r0, T s,

Ṽt “

ż t

0

BspXsq ds` Vt, t P r0, T s. (IV.3.2)

Since by Assumption IV.2.1 (ii) B is bounded in magnitude by a constant, we
know that Assumption III.1.2 holds and hence, pγtqtPr0,T s is an Ft-martingale
such that, by Girsanov’s theorem, the measure Q defined by dQ “ γTdP is a
probability measure equivalent to P and under Q the process pWt, ṼtqtPr0,T s is a
d1 ` d

1-dimensional Ft-Wiener process.
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By Theorem III.1.1 we know that if Z “ pXt, YtqtPr0,T s satisfies equation
(I.0.2), Assumption IV.2.1(ii) holds and that if E|X0|

2 ă 8 so long as K1 ‰ 0
in Assumption IV.2.1(ii), then there exist measure-valued FY

t -adapted weakly
cadlag processes pPtqtPr0,T s and pµtqtPr0,T s such that almost surely

Ptpϕq “ µtpϕq{µtp1q, for all t P r0, T s,

Ptpϕq “ EpϕpXtq|FY
t q, µtpϕq “ EQpγ´1

t ϕpXtq|FY
t q (a.s.) for each t P r0, T s,

for bounded Borel functions ϕ on Rd, and for every ϕ P C2
b pRdq almost surely

µtpϕq “µ0pϕq `

ż t

0

µspLsϕq ds`
ż t

0

µspMk
sϕq dṼ

k
s `

ż t

0

ż

Z0

µspJ
η
sϕq ν0pdzqds

`

ż t

0

ż

Z1

µspJ
ξ
sϕq ν1pdzqds`

ż t

0

ż

Z1

µs´pI
ξ
sϕq Ñ1pdz, dsq,

(IV.3.3)

for all t P r0, T s. Clearly, equation (IV.3.3) can be rewritten as

µtpϕq “µ0pϕq `

ż t

0

µspL̃sϕq ds`
ż t

0

µspMk
sϕq dV

k
s `

ż t

0

ż

Z0

µspJ
η
sϕq ν0pdzqds

`

ż t

0

ż

Z1

µspJ
ξ
sϕq ν1pdzqds`

ż t

0

ż

Z1

µs´pI
ξ
sϕq Ñ1pdz, dsq,

(IV.3.4)

where L̃s “ Ls ` BspXsqMs. Moreover, if dµt{dx exists for P b dt-a.e. pω, tq P
Ω ˆ r0, T s, and u “ utpxq is an Ft-adapted Lp-valued weakly cadlag process,
for p ą 1, such that almost surely ut “ dµt{dx for all t P r0, T s, then for each
ϕ P C2

b pRdq we have that almost surely

put, ϕq “pu0, ϕq `

ż t

0

pus, L̃sϕq ds`
ż t

0

pus,Mk
sϕq dV

k
s `

ż t

0

ż

Z0

pus, J
η
sϕq ν0pdzqds

`

ż t

0

ż

Z1

pus, J
ξ
sϕq ν1pdzqds`

ż t

0

ż

Z1

pus´, I
ξ
sϕq Ñ1pdz, dsq.

(IV.3.5)

holds for all t P r0, T s.

Finally we recall from Chapter III that there exists a cadlag FY
t -adapted

positive process poγtqtPr0,T s, the optional projection of pγtqtPr0,T s under P with
respect to pFY

t qtPr0,T s, such that for every FY
t -stopping time τ ď T we have

Epγτ |FY
τ q “

oγτ , almost surely. (IV.3.6)

Since for each t P r0, T s, by known properties of conditional expectations, almost
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surely
µtp1q “ EQpγ´1

t |FY
t q “ 1{Epγt|FY

t q “ 1{oγt,

we also have that for each ϕ P C2
b almost surely Ptpϕq “ µtpϕq

oγt for all t P r0, T s.

Definition IV.3.1. An M-valued weakly cadlag Ft-adapted process pµtqtPr0,T s
is said to be an M-solution to the equation

dµt “L̃˚t µtdt`Mk˚
t µt dV

k
t `

ż

Z0

Jη˚t µt ν0pdzqdt

`

ż

Z1

Jξ˚t µt ν1pdzqdt`

ż

Z1

Iξ˚t µt´ Ñ1pdz, dtq (IV.3.7)

with initial value µ0, if for each ϕ P C2
b almost surely equation (IV.3.4) holds

for all t P r0, T s. If pµtqtPr0,T s is an M-solution to equation (IV.3.7), such that it
takes values in M, then we call it a measure-valued solution.

Definition IV.3.2. Let p ě 1 and let ψ be an Lp-valued F0-measurable random
variable. Then we say that an Lp-valued Ft-adapted weakly cadlag process
putqtPr0,T s is an Lp-solution of the equation

dut “L̃˚t utdt`Mk˚
t ut dV

k
t `

ż

Z0

Jη˚t ut ν0pdzqdt

`

ż

Z1

Jξ˚t ut ν1pdzqdt`

ż

Z1

Iξ˚t ut´ Ñ1pdz, dtq (IV.3.8)

with initial condition ψ, if for every ϕ P C80 almost surely (IV.3.5) holds for all
t P r0, T s and u0 “ ψ (a.s.).

Lemma IV.3.1. Let Assumption IV.2.1 hold, and assume also E|X0|
2 ă 8 if

K1 ‰ 0 in Assumptions IV.2.1(ii). Let pµtqtPr0,T s be the measure-valued process
from Theorem III.1.1. Then we have

E sup
tPr0,T s

µtp1q ď N, (IV.3.9)

with a constant N depending only on d, K and T .

Proof. Taking 1 instead of ϕ in the Zakai equation (IV.3.3) yields for pβtqtPr0,T s :“
pBtpXtqqtPr0,T s,

µtp1q “ 1`

ż t

0

µspβ
k
sB

k
s q ds`

ż t

0

µspB
k
s q dV

k
s . (IV.3.10)

Since
şt

0
µspB

k
s q dV

k
s is a martingale we can define

τn :“ inftt ě 0 :

ż t

0

µsp1q ds ě nu, n ě 1,
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and use |B| ď K to compute after taking expectations on both sides,

Eµt^τnp1q ď 1` dK2

ż t

0

Eµs^τnp1q ds.

Using Gronwall’s inequality and Fatou’s lemma, we obtain for each n,

sup
tPr0,T s

Eµtp1q ď N, (IV.3.11)

with a constant N “ Npd,K, T q. Moreover, due to (IV.3.10), the process µtp1q is
continuous almost surely, wherefore c˚t :“ psupsďt µsp1qqtPr0,T s is locally integrable
and there exists a sequence of stopping times ρm Ò 8 such that Ec˚t^ρm ă 8 for
all m ě 1. Hence, by Davis’ and Young’s inequalities as well as (IV.3.11),

E sup
tPr0,T s

ż t^ρm

0

µspB
k
s q dV

k
s ď 3E

´

ÿ

k

ż T^ρm

0

µspB
k
s q

2 ds
¯1{2

ď NE
´

sup
tPr0,T s

µt^ρmp1q

ż T

0

µsp1q ds
¯1{2

ď δE sup
tPr0,T s

µt^ρmp1q `N
1,

for all δ ą 0, n ě 1 and constants N “ Npd,Kq and N 1 “ N 1pδ, d,K, T q. Thus
also

E sup
tPr0,T s

µt^ρmp1q ď N, for all m,

for another constant N “ Npδ, d,K, T q. By Fatou’s lemma we then obtain
(IV.3.9)

IV.4 Lp-estimates

Recall that M “ MpRdq denotes the set of finite measures on BpRdq, and M :“
tµ ´ ν : µ, ν P Mu. For ν PM we use the notation |ν| :“ ν` ` ν´ for the total
variation and set }ν} “ |ν|pRdq, where ν` PM and ν´ PM are the positive and
negative parts of ν. For ε ą 0 we use the notation kε for the Gaussian density
function on Rd with mean 0 and covariance matrix εI. For linear functionals Φ,
acting on a real vector space V containing S “ SpRdq, the rapidly decreasing
smooth functions on Rd, the mollification Φpεq is defined by

Φpεqpxq “ Φpkεpx´ ¨qq, x P Rd.

In particular, when Φ “ µ is a (signed) measure from S˚, the dual of S, or Φ “ f
is a function from S˚, then

µpεqpxq “

ż

Rd

kεpx´ yqµpdyq, f pεqpxq “

ż

Rd

kεpx´ yqfpyq dy, x P Rd,
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and

pL˚µqpεqpxq :“

ż

Rd

Lykεpx´ yqµpdyq, x P Rd,

pL˚fqpεqpxq :“

ż

Rd

pLykεpx´ yqqfpyq dy, x P Rd,

when L is a linear operator on V such that the integrals are well-defined for
every x P Rd. The subscript y in Ly indicates that the operator L acts in the
y-variable of the function k̄εpx, yq :“ kεpx´yq. For example, if L is a differential
operator of the form aijDij ` biDi ` c, where aij, bi and c are functions defined
on Rd, then

pL˚µqpεqpxq “

ż

Rd

paijpyq B2

ByiByj
` bipyq B

Byi
` cpyqqkεpx´ yqµpdyq.

We will often use the following well-known properties of mollifications with kε:

(i) |ϕpεq|Lp ď |ϕ|Lp for ϕ P LppRdq, p P r1,8q;

(ii) µpεqpϕq :“
ş

Rd µ
pεqpxqϕpxq dx “

ş

Rd ϕ
pεqpxqµpdxq “: µpϕpεqq for µ P M and

ϕ P LppRdq, p ě 1;

(iii) |µpδq|Lp ď |µ
pεq|Lp for 0 ď ε ď δ, µ P M and p ě 1. This property follows

immediately from (i) and the “semigroup property” of the Gaussian kernel,

kr`spy ´ zq “

ż

Rd

krpy ´ xqkspx´ zq dx, y, z P Rd and r, s P p0,8q.

(IV.4.1)

The following generalization of (iii) is also useful: for integers p ě 2 we have

ρεpyq :“

ż

Rd

Πp
r“1kεpx´yrq dx “ cp,εe

´
ř

1ďrăsďp |yr´ys|
2{p2εpq, y “ py1, ...., ypq P Rpd,

(IV.4.2)
for ε ą 0, with a constant cp,ε “ cp,εpdq “ p´d{2p2πεqp1´pqd{2. This can be seen
immediately by noticing that for x, yk P Rd and y “ pykq

p
k“1 P Rpd we have

p
ÿ

k“1

px´ ykq
2
“ p

´

x´
ÿ

k

yk{p
¯2

` 1
p

ÿ

1ďkălďp

pyk ´ ylq
2.

Clearly, for every r “ 1, 2, ..., p and i “ 1, 2, ..., d,

Byirρεpyq “
1
εp

p
ÿ

s“1

pyis ´ y
i
rqρεpyq, y “ py1, ..., ypq P Rd, yr “ py

1
r ..., y

d
r q P Rd.

(IV.4.3)
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It is easy to see that

p
ÿ

r“1

Byjr
ρεpyq “ 0 for y P Rpd, j “ 1, 2, ..., d.

We will often use this in the form

Byjr
ρεpyq “ ´

p
ÿ

s‰r

Byjs
ρεpyq for r “ 1, ..., p and j “ 1, 2, ..., d. (IV.4.4)

In order for the left-hand side of the following Lp-estimates for µ PM in this
section to be well-defined, we require that

K1

ż

Rd

|x|2 |µ|pdxq ă 8, (IV.4.5)

where we use the formal convention that 0 ¨8 “ 0, i.e., if K1 “ 0, then condition
(IV.4.5) is satisfied. The following lemma generalises a lemma from [41].

Lemma IV.4.1. Let p ě 2 be an integer. Let σ “ pσikq and b “ pbiq be Borel
functions on Rd with values in Rdˆm and Rd, respectively, such that for some
nonnegative constants K0, K1 and L we have

|σpxq|` |bpxq| ď K0`K1|x| |σpxq´σpyq| ď L|x´ y|, |bpxq´ bpyq| ď L|x´ y|
(IV.4.6)

for all x, y P Rd. Set aij “ σikσjk{2 for i, j “ 1, 2, ..., d. Let µ PM such that it
satisfies (IV.4.5). Then we have

pppµpεqqp´1, ppaijDijq
˚µqpεqq ` ppp´1q

2
ppµpεqqp´2

ppσikDiq
˚µqpεq, ppσjkDjq

˚µqpεqq

ď NL2
||µ|pεq|pLp

, (IV.4.7)

ppµpεqqp´1, ppbiDiq
˚µqpεqq ď NL2

||µ|pεq|pLp
(IV.4.8)

with a constant N “ Npd, pq.

Proof. Let A and B denote the left-hand side of the inequalities (IV.4.7) and
(IV.4.8), respectively. Note first that using

sup
xPRd

2
ÿ

k“0

|Dkkεpxq| ă 8, and

ż

Rd

p1` |x| `K1|x|
2
q |µ|pdxq ă 8, (IV.4.9)

as well as the conditions on on σ and b, it is easy to verify that A and B are
well-defined. Then by Fubini’s theorem and the symmetry of the Gaussian kernel

A “

ż

Rpp`1qd

fpx, yqµppdyq dx
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with

fpx, yq :“
´

paijpypqByipByjp `
ppp´1q

2
σikpyp´1qσ

jk
pypqByip´1

Byjp

¯

Πp
k“1kεpx´ ykq,

where x P Rd, y “ pykq
p
k“1 P Rdp, and yik denotes the i-th coordinate of yk P Rd

for k “ 1, ..., p, and µppdyq :“ µbppdyq “ µpdy1q...µpdypq. Hence by Fubini’s
theorem and symmetry again

A “

ż

Rpd

´

paijpypqByipByjp `
ppp´1q

2
σikpyp´1qσ

jk
pypqByip´1

Byjp

¯

ρεpyqµppdyq

(IV.4.10)

“ 1
2

p
ÿ

r“1

ż

Rpd

´

2aijpyrqByirByjr `
ÿ

s‰r

σikpyrqσ
jk
pysqByirByjs

¯

ρεpyqµppdyq, (IV.4.11)

where ρε is given in (IV.4.2). Using here (IV.4.4) and symmetry of expressions
in yk and yl, we obtain

A “ ´1
2

p
ÿ

r“1

ÿ

s‰r

ż

Rpd

´

2aijpyrqByirByjs ´ σ
ik
pyrqσ

jk
pysqByirByjs

¯

ρεpyqµppdyq

“ ´1
2

p
ÿ

r“1

ÿ

s‰r

ż

Rpd

´

paijpyrq ` a
ij
pysqqByirByjs ´ σ

ik
pyrqσ

jk
pysqByirByjs

¯

ρεpyqµppdyq

“ ´1
2

p
ÿ

r“1

p
ÿ

s“1

ż

Rpd

aijpyr, ysqByirByjsρεpyqµppdyq

“ ´1
2

p
ÿ

r“1

p
ÿ

s“1

ż

Rpd

aijpyr, ysql
ij,rs
ε pyqρεpyqµppdyq,

where

aijpx, zq “
1

2
pσikpxq ´ σikpzqqpσjkpxq ´ σjkpzqq for x, z P Rd (IV.4.12)

and

lij,rsε pyq “ ρ´1
ε pyqByirByjsρεpyq “

1
ppεq2

p
ÿ

k“1

p
ÿ

l“1

pyik ´ y
i
rqpy

j
l ´ y

j
sq `

δij
pε
.

Making use of the Lipschitz condition on σ and using for q “ 1, 2 that

ε´q
ÿ

s‰r

|ys ´ yr|
2qρεpyq ď Nρ2εpyq, y P Rpd, q ě 0 (IV.4.13)
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with a constant N “ Npd, p, qq, we have

ˇ

ˇ

p
ÿ

r“1

p
ÿ

s“1

aijpyr, ysql
ij,rs
ε pyq

ˇ

ˇ ď NL2

ppεq2

ÿ

1ďrăsďp

|yr´ys|
4ρεpyq`

NL2

pε

ÿ

1ďrăsďp

|yr´ys|
2ρεpyq

ď N 1L2ρ2εpyq for y P Rpd

with constants N “ Npd, pq and N 1 “ N 1pd, pq. Hence

A ď N 1L2

ż

Rpd

ρ2εpyq|µp|pdyq “ N 1L2

ż

Rpd

ż

Rd

Πp
r“1k2εpx´ yrq dx|µp|pdyq

“ N 1L2

ż

Rd

Πp
r“1

ż

Rd

k2εpx´ yrq|µ|pdyrq dx “ N 1L2
||µ|p2εq|pLp

.

To prove (IV.4.8) we proceed similarly. By Fubini’s theorem and symmetry

pB “

ż

Rpd

pbipypqByipρεpyqµppdyq “
p
ÿ

r“1

ż

Rpd

bipyrqByirρεpyqµppdyq

“ ´

p
ÿ

r“1

ÿ

s‰r

ż

Rpd

bipyrqByisρεpyqµppdyq “ ´
p
ÿ

r“1

ÿ

s‰r

ż

Rpd

bipysqByirρεpyqµppdyq.

Thus

B “ p´1
p

p
ÿ

r“1

ż

Rpd

bipyrqByirρεpyqµppdyq ´
1
p

p
ÿ

r“1

ÿ

s‰r

ż

Rpd

bipysqByirρεpyqµppdyq

“ 1
p

p
ÿ

r“1

ż

Rpd

ÿ

s‰r

pbipyrq ´ b
i
pysqqByirρεpyqµppdyq

“ 1
εp2

p
ÿ

r“1

ż

Rpd

ÿ

s‰r

pbipyrq ´ b
i
pysqq

ÿ

l‰r

pyil ´ y
i
rqρεpyqµppdyq. (IV.4.14)

Using the Lipschitz condition on b and the inequality (IV.4.13), we obtain

B ď NL
ε

ż

Rpd

ÿ

s‰r

|yr ´ ys|
2ρεpyq|µp|pdyq ď N 1L

ż

Rpd

ρ2εpyq|µp|pdyq “ N 1L||µ|p2εq|pLp

with constants N “ Npp, dq and N 1 “ Npp, dq, which completes the proof of the
lemma.

Corollary IV.4.2. Let the conditions of Lemma IV.4.1 hold for some even
p ě 2. Then we have

ppµpεqqp´1, ppaijDijq
˚µqpεqq ď NL2

||µ|pεq|pLp
´
p´1

2
ppµpεqqp´2

ppσikDiq
˚µqpεq, ppσjkDjq

˚µqpεqq
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ď NL2
||µ|pεq|pLp

for a constant N “ Npd, pq.

Proof. It suffices to observe that always

ppµpεqqp´2
ppσikDiq

˚µqpεq, ppσjkDjq
˚µqpεqq “

ż

Rd

pµpεqqp´2
d
ÿ

k“1

`

ppσikDiq
˚µqpεq

˘2
dx ě 0.

Lemma IV.4.3. Let p ě 2 be an integer and let σ “ pσiq and b be Borel
functions on Rd with values in Rd and R respectively. Assume furthermore that
there exist constants K ě 1, K0 and L such that

|bpxq| ď K, |σpxq| ď K0 `K1|x|, |σpxq ´ σpyq| ` |bσpxq ´ bσpyq| ď L|x´ y|

for all x, y P Rd. Let µ PM such that it satisfies (IV.4.5). Then we have

`

pµpεqqp´2
pbµqpεq, pbµqpεq

˘

ď K2
||µ|pεq|pLp

, (IV.4.15)

`

pµpεqqp´2, ppσiDiq
˚µqpεqpbµqpεq

˘

ď NKL||µ|pεq|pLp
(IV.4.16)

for every ε ą 0 with a constant N “ Npd, pq.

Proof. We note again that by (IV.4.9) together with the conditions on σ and
b, the left-hand sides of (IV.4.15) and (IV.4.16) are well-defined. Rewriting
products of integrals as multiple integrals and using Fubini’s theorem for the
left-hand side of the inequality (IV.4.15) we have

ż

Rdp

bpyrqbpysq

ż

Rd

Πp
j“1kεpx´ yjq dxµppdyq

ď K2

ż

Rdpp`1q

Πp
k“1kεpx´ ykq dx|µp|pdyq “ K2

||µ|pεq|pLp
,

for any r, s P t1, 2, ..., pu, where y “ py1, ..., ypq P Rpd, yj P Rd for j “ 1, 2, ..., p,
and the notation µppdyq “ µpdy1q...µpdypq is used. This proves (IV.4.15).

Rewriting products of integrals as multiple integrals, using Fubini’s theorem,
interchanging the order of taking derivatives and integrals, and using equation
(IV.4.2), for the left-hand side R of the inequality (IV.4.16) we have

R “

ż

Rdp

bpykqσ
i
pyrqByir

ż

Rd

Πp
j“1kεpx´ yjq dxµppdyq

“

ż

Rdp

bpykqσ
i
pyrqByirρεpyqµppdyq (IV.4.17)

61



for any r, k P t1, 2, .., pu such that r ‰ k. Hence

ppp´ 1q2R “
p
ÿ

s“1

ÿ

r‰s

ÿ

k‰s

ż

Rdp

bpykqσ
i
pysqByisρεpyqµppdyq

“

p
ÿ

s“1

ÿ

r‰s

ÿ

k‰r

ż

Rdp

bpykqσ
i
pysqByisρεpyqµppdyq

`

p
ÿ

s“1

ÿ

r‰s

ż

Rdp

pbpyrq ´ bpysqqσ
i
pysqByisρεpyqµppdyq, (IV.4.18)

and using (IV.4.4) from (IV.4.17) we obtain

ppp´ 1qR “ ´
p
ÿ

r“1

ÿ

k‰r

ÿ

s‰r

ż

Rdp

bpykqσ
i
pyrqByisρεpyqµppdyq

“ ´

p
ÿ

s“1

ÿ

r‰s

ÿ

k‰r

ż

Rdp

bpykqσ
i
pyrqByisρεpyqµppdyq (IV.4.19)

Adding up equations (IV.4.18) and (IV.4.19), and taking into account the equa-
tion

pbpyrq ´ bpysqqσ
i
pysq “ bpyrqσ

i
pyrq ´ bpysqσ

i
pysq ´ bpyrqpσ

i
pyrq ´ σ

i
pysqq

we get

p2
pp´ 1qR “

p
ÿ

s“1

ÿ

r‰s

p
ÿ

k“1

ż

Rdp

f ipyk, ys, yrqByisρεpyqµppdyq

`

p
ÿ

s“1

ÿ

r‰s

ż

Rdp

gipyr, ysqByisρεpyqµppdyq (IV.4.20)

with functions

f ipx, u, vq :“ bpxqpσipuq ´ σipvqq, gipu, vq :“ bpuqσipuq ´ bpvqσipvq (IV.4.21)

defined for x, u, v P Rd for each i “ 1, 2, ..., d. By the boundedness of |b| and the
Lipschitz condition on σ and bσ we have

|f ipx, u, vq| ď KL|u´ v|, |gipu, vq| ď L|u´ v| x, u, v P Rd, i “ 1, 2, ..., d.

Thus, taking into account (IV.4.3) and (IV.4.13), from (IV.4.20) we obtain

p2
pp´ 1qR ď KLN

ż

Rdp

ρ2εpyq|µp|pdyq “ KLN ||µ|p2εq|pLp
ď NKL||µ|pεq|pLp

with a constant N “ Npd, pq, that finishes the proof of (IV.4.16).
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For Rd-valued functions ξ on Rd we define the linear operators Iξ, Jξ and T ξ

by
T ξϕpxq “ ϕpx` ξpxqq, Iξϕpxq :“ T ξϕpxq ´ ϕpxq,

Jξψpxq :“ Iξψpxq ´ ξipxqDiψpxq, x P Rd (IV.4.22)

acting on functions ϕ and differentiable functions ψ on Rd. If ξ depends also
on some parameters, then Iξφ and Jξψ are defined for each fixed parameter as
above.

Lemma IV.4.4. Let ξ be an Rd-valued function of x P Rd such that for some
constants λ ą 0, K0 and L

|ξpxq ´ ξpyq| ď L|x´ y| for all x, y P Rd

and

λ|x´ y| ď |x´ y ` θpξpxq ´ ξpyqq| for all x, y P Rd and θ P r0, 1s. (IV.4.23)

Let µ PM such that it satisfies (IV.4.5), let p ě 2 be an integer, and for ε ą 0
set

C :“

ż

Rd

ppµpεqqp´1
pJξ˚µqpεq`pµpεq`pIξ˚µqpεqqp´pµpεqqp´ ppµpεqqp´1

pIξ˚µqpεq dx,

where, to ease notation, the argument x P Rd is suppressed in the integrand.
Then

|C| ď Np1` L2
qL2
||µ|pεq|pLp

for all ε ą 0, (IV.4.24)

with a constant N “ Npd, p, λq.

Remark IV.4.1. Notice that in the special case p “ 2 the estimate (IV.4.24) can
be rewritten as

2pµpεq, pJξ˚µqpεqq ` ppIξ˚µqpεq, pIξ˚µqpεqq ď Np1` L2
qL2
||µ|pεq|2L2

for all ε ą 0.

Proof of Lemma IV.4.4. Again we note that by (IV.4.9), together with the con-
ditions on ξ and that by Taylor’s formula

Iξkεpxq “

ż 1

0

pDikεqpx´ r ´ θξprqq dθ ξ
i
prq,

Jξkεpxq “

ż 1

0

p1´ θqpDijkεqpx´ r ´ θξprqq dθ ξ
i
prqξjprq,

as well as that supxPRd

ř2
k“0 |D

kρεpxq| ă 8, it is easy to verify that C is well-
defined. Notice that

µpεq ` pIξ˚µqpεq “ pT ξ˚µqpεq
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and

ppµpεqqp´1
pJξ˚µqpεq ´ ppµpεqqp´1

pIξ˚µqpεq “ ´ppµpεqqp´1
ppξiDiq

˚µqpεq.

Hence

C “

ż

Rd

ppT ξ˚µqpεqqp ´ pµpεqqp ´ ppµpεqqp´1
ppξiDiq

˚µqpεq dx.

Rewriting here the product of integrals as multiple integrals and using the prod-
uct measure µppdyq :“ µpdy1q...µpdypq by Fubini’s theorem we get

ppT ξ˚µqpεqqppxq “

ż

Rpd

Πp
r“1T

ξ
yrΠ

p
r“1kεpx´ yrqµppdyq,

pµpεqqp “

ż

Rpd

Πp
r“1kεpx´ yrqµppdyq,

ppµpεqqp´1
ppξiDiq

˚µqpεq “p

ż

Rpd

Πp´1
r“1kεpx´ yrqξ

i
pypqByipkεpx´ ypqµppdyq,

“p

ż

Rpd

ξipypqByipΠp
r“1kεpx´ yrqµppdyq

“

ż

Rpd

p
ÿ

r“1

ξipyrqByirΠ
p
r“1kεpx´ yrqµppdyq (IV.4.25)

where the last equation is due to the symmetry of the function Πp
rkεpx´ yrq and

the measure µppdyq in y “ py1, ..., ypq P Rpd. Thus

C “

ż

Rd

ż

Rpd

LyΠ
p
r“1kεpx´ yrqµppdyq dx

with the operator

Lξy “ Πp
r“1T

ξ
yr ´ I´

p
ÿ

r“1

ξipyrqByir .

Using here Fubini’s theorem then changing the order of the operator Lξy and the
integration against dx we have

C “

ż

Rpd

ż

Rd

LξyΠ
p
r“1kεpx´ yrq dxµppdyq “

ż

Rpd

Lξy

ż

Rd

Πp
r“1kεpx´ yrq dxµppdyq

“

ż

Rpd

Lξyρεpyqµppdyq, (IV.4.26)

where, see (IV.4.2),

ρεpyq “ cp,εe
´
ř

1ďrăsďp |yr´ys|
2{p2εpq (IV.4.27)
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with cp,ε “ p´d{2p2πεqp1´pqd{2.

Introduce for ε ą 0 the function

ψεpzq “ cp,εe
´
ř

1ďrăsďp z
2
rs{p2pεq, z “ pzrsq1ďrăsďp P Rppp´1qd{2.

Then clearly, ρεpyq “ ψεpỹq with

ỹ :“ pyrsq1ďrăsďp :“ pyr ´ ysq1ďrăsďp P Rppp´1qd{2,

Πp
r“1T

ξ
yrρεpyq “ ψεpỹ`ξ̃pyqq with ξ̃pyq “ pξ̃rspyqq1ďrăsďp, ξ̃rspyq “ ξpyrq ´ ξpysq,

and by the chain rule

p
ÿ

r“1

ξipyrqByirρε “
p
ÿ

r“1

ξipyrq
ÿ

1ďkălďp

pδkr ´ δlrqpBziklψεqpỹq

“
ÿ

1ďkălďp

p
ÿ

r“1

pδkr ´ δlrqξ
i
pyrqpBziklψεqpỹq “

ÿ

1ďkălďp

pξipykq ´ ξ
i
pylqqpBziklψεqpỹq.

Consequently,

Lξyρεpyq “ ψεpỹ ` ξ̃pyqq ´ ψεpỹq ´
ÿ

1ďkălďp

ξ̃iklpyqpBziklψεqpỹq,

which by Taylor’s formula gives

Lξyρεpyq “

ż 1

0

p1´ θq
ÿ

1ďkălďp

ÿ

1ďrăsďp

pBzikl
Bzjrs

ψεqpỹ ` θξ̃pyqqξ̃
i
klpyqξ̃

j
rspyq dθ,

where the summation convention is used with respect to the repeated indices
i, j “ 1, 2, ..., d. Note that

pBzikl
Bzjrs

ψεqpỹ ` θξ̃pyqq “ ψεpỹ ` θξ̃pyqql
ij,rs,kl
ε pỹ ` θξ̃pyqq

with
lij,rs,klε pzq :“ 1

ppεq2
ziklz

j
rs ´

1
pε
δrkδslδij for z “ pzklq1ďkălďp.

Due to the condition (IV.4.23) there is a constant κ “ κpd, λq ą 1 such that for
θ P r0, 1s

κ´1
|x1 ´ x2|

2
ď |x1 ´ x2 ` θpξpx1q ´ ξpx2qq|

2 for x1, x2 P Rd, (IV.4.28)

which implies

ψεpỹ ` θξ̃pyqq ď Nψεpỹ{κq “ Nρκεpyq, y P Rdp,
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and together with the Lipschitz condition on ξ,

|lij,rs,klε pỹ ` θξ̃pyqq| ď N
ε2
p1` L2

q
ÿ

1ďrăsďp

|yr ´ ys|
2
` N

ε

for all 1 ď r ă s ď p, 1 ď k ă l ď p and i, j “ 1, 2, ..., d with a constant
N “ Npd, p, λq. Moreover,

|ξ̃iklpyqξ̃
j
rspyq| ď NL2

ÿ

1ďrăsďp

|ys ´ yp|
2 for y “ pyrq

p
r“1 P Rpd

with a constant N “ Npd, pq. Consequently, taking into account (IV.4.13) we
have

|Lξyρεpyq| ď
N
ε2
L2
p1` L2

q
`

ÿ

1ďrăsďp

|yr ´ ys|
2
˘2
ρκεpyq `

N
ε
L2

ÿ

1ďrăsďp

|yr ´ ys|
2ρκεpyq

ďN 1L2
p1` L2

qρ2κεpyq for y P Rdp

with constants N “ Npd, p, λq and N 1 “ N 1pd, p, λq. Using this we finish the
proof by noting that (IV.4.26) implies

|C| ď N 1L2
p1` L2

q

ż

Rpd

ρ2κεpyq |µp|pdyq “ N 1L2
p1` L2

q||µ|p2κεq|pLp

ď NL2
p1` L2

q||µ|pεq|pLp
.

Corollary IV.4.5. Let the conditions of Lemma IV.4.4 hold. Then for every
even integer p ě 2 there is a constant N “ Npd, p, λq such that for ε ą 0 and
µ PM we have

ż

Rd

pµpεqqp´1
pxqpJξ˚µqpεqpxq dx ď NL2

p1` L2
q||µ|pεq|pLp

. (IV.4.29)

Proof. Notice that |a ` b|p ´ |b|p ´ p|a|p´2ab ě 0 for p ě 2 for any a, b P R by
the convexity of the function fpaq “ |a|p, a P R. Using this with a “ µpεq and
b “ pIξµqpεq we have

pµpεq ` pIξ˚µqpεqqp ´ pµpεqqp ´ ppµpεqqp´1
pIξ˚µqpεq ě 0 for x P Rd,

which shows that (IV.4.24) implies (IV.4.29), since

ż

Rd

|µpεqpxq|p´1
|pJξ˚µqpεqpxq| dx ă 8.

Lemma IV.4.6. Let the conditions of Lemma IV.4.4 hold. Let p ě 2 be an even
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integer. Then there is a constant N “ Npd, p, λq such that for ε ą 0 and µ PM
we have

ˇ

ˇ

ˇ

ż

Rd

pµpεq ` pIξ˚µqpεqqp ´ pµpεqqp dx
ˇ

ˇ

ˇ
ď Np1` LqL||µ|pεq|pLp

, (IV.4.30)

where the argument x P Rd is suppressed in the integrand.

Proof. By the same arguments as in the proof of Lemma IV.4.4 we see that the
left-hand side of (IV.4.30) is well-defined. Clearly,

D :“

ż

Rd

ppT ξ˚µqpεqqp ´ pµpεqqp dx “

ż

Rd

ż

Rpd

M ξ
yΠp

r“1kεpx´ yrqµppdyq dx

with the operator
M ξ

y “ Πp
r“1T

ξ
yr ´ I,

where µppdyq “ Πp
r“1µpdyrq, y “ py1, ..., ypq P Rpd. Hence by Fubini’s theorem,

then changing the order of the operator M ξ
y and the integration against dx and

by taking into account (IV.4.2) we have

D “

ż

Rpd

ż

Rd

M ξ
yΠp

r“1kεpx´ yrq dxµppdyq “

ż

Rpd

M ξ
y

ż

Rd

Πp
r“1kεpx´ yrq dxµppdyq

“

ż

Rpd

M ξ
yρεpyqµppdyq. (IV.4.31)

As in the proof of Lemma IV.4.4 we introduce for ε ą 0 the function

ψεpzq “ cp,εe
´
ř

1ďrăsďp z
2
rs{p2pεq, z “ pzrsq1ďrăsďp P Rppp´1qd{2,

such that ρεpyq “ ψεpỹq with ỹ :“ pyrsq1ďrăsďp :“ pyr ´ ysq1ďrăsďp P Rppp´1qd{2,
and

Πp
r“1T

ξ
yrρεpyq “ ψεpỹ`ξ̃pyqq with ξ̃pyq “ pξ̃rspyqq1ďrăsďp, ξ̃rspyq “ ξpyrq ´ ξpysq.

By Taylor’s formula

M ξ
yρεpyq “ ψεpỹ ` ξ̃pyqq ´ ψεpỹq “

ż 1

0

ÿ

1ďkălďp

pBzikl
ψεqpỹ ` θξ̃pyqqξ̃

i
klpyq dθ,

where the summation convention is used with respect to the repeated indices
i “ 1, 2, ..., d. Note that

pBzikl
ψεqpỹ ` θξ̃pyqq “ ψεpỹ ` θξ̃pyqql

kl,i
ε pỹ ` θξ̃pyqq

with
lkl,iε pzq :“ 1

pε
zikl for z “ pzklq1ďkălďp P Rppp´1qd{2.
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By (IV.4.28) we have

ψεpỹ ` θξ̃pyqq ď Nψεpỹ{κq “ Nρκεpyq, y P Rdp,

and due to the Lipschitz condition on ξ,

|lkl,iε pỹ ` θξ̃pyqq| ď N
ε
p1` Lq|yk ´ yl|

for all i “ 1, 2, ..., d with constants κpd, λq ą 1 and N “ Npd, p, λq. Moreover,
we get

|ξ̃iklpyq| ď NL|yk ´ yl| for y “ pyrq
p
r“1 P Rpd

with a constant N “ Npd, pq. Consequently, taking into account (IV.4.13) we
have

|M ξ
yρεpyq| ď

N
ε
p1`LqL

ÿ

1ďkălďp

|yk´ yl|
2ρκεpyq ď N 1

p1`LqLρ2κεpyq for y P Rdp

with constants N and N 1 depending only on d, p and λ. Using this, from
(IV.4.31) we obtain

|D| ď N 1
p1`LqL

ż

Rpd

ρ2κεpyq |µp|pdyq “ N 1
p1`LqL||µ|p2κεq|pLp

ď N 1
p1`LqL||µ|pεq|pLp

,

which completes the proof of the lemma.

IV.5 The smoothed measures

We use the notations introduced in Section IV.4. Moreover, we ask the reader
to recall the notations introduced in section I.1, in particular the notion of cad-
lagness employed for M-valued, or M-valued processes.

We present first a version of an Itô formula, Theorem 2.1 from [21], for Lp-
valued processes. To formulate it, let ψ “ pψpxqq, f “ pftpxqq, g “ pgjt pxqq
and h “ phtpx, zqq be functions with values in R, R, Rm and R, respectively,
defined on Ω ˆ Rd, Ω ˆ HT , Ω ˆ HT and Ω ˆ HT ˆ Z, respectively, where
HT :“ r0, T sˆRd and pZ,Z, νq is a measure space with a σ-finite measure ν and
countably generated σ-algebra Z. Assume that ψ is F0 b BpRdq-measurable, f
and g are ObBpRdq-measurable and h is P bBpRdq bZ-measurable, such that
almost surely

ż T

0

|ftpxq| dt ă 8,

ż T

0

ÿ

j

|gjt pxq|
2 dt ă 8,

ż T

0

ż

Z

|htpx, zq|
2 νpdzq dt ă 8

(IV.5.1)

68



for each x P Rd, and for each bounded Borel set Γ Ă Rd almost surely

ż

Γ

ż T

0

|ftpxq| dt dx ă 8,

ż

Γ

´

ż T

0

ÿ

j

|gjt pxq|
2 dt

¯1{2

dx ă 8,

ż

Γ

´

ż T

0

ż

Z

ÿ

j

|htpx, zq|
2 νpdzq dt

¯1{2

dx ă 8. (IV.5.2)

Assume, moreover, that for a number p P r2,8q almost surely

ż

Rd

|ψpxq|p dx ă 8,

ż T

0

ż

Rd

|ftpxq|
p dx dt ă 8,

ż T

0

ż

Rd

´

ÿ

j

|gjt pxq|
2
¯p{2

dx dt ă 8, (IV.5.3)

ż T

0

ż

Rd

ż

Z

|htpx, zq|
p νpdzq dx dt ă 8,

ż T

0

ż

Rd

´

ż

Z

|htpx, zq|
2 νpdzq

¯p{2

dx dt ă 8.

Theorem IV.5.1. Let conditions (IV.5.1), (IV.5.2) and (IV.5.3) with a number
p ě 2 hold. Assume there is an ObBpRdq-measurable real-valued function v on
ΩˆHT such that almost surely

ż

Rd

|vtpxq|
p dx ă 8 for all t P r0, T s (IV.5.4)

and for every x P Rd almost surely

vtpxq “ ψpxq `

ż t

0

fspxq ds`

ż t

0

gjspxq dw
j
s `

ż t

0

ż

Z

hspx, zq π̃pdz, dsq (IV.5.5)

holds for all t P r0, T s, where pwtqtě0 is an m-dimensional Ft-Wiener pro-
cess, πpdz, dsq is an Ft-Poisson measure with characteristic measure ν, and
π̃pdz, dsq “ πpdz, dsq ´ νpdzqds is the compensated martingale measure. Then
pvtqtPr0,T s is an Lp-valued Ft-adapted cadlag process, satisfying almost surely

|vt|
p
Lp
“ |ψ|pLp

` p

ż t

0

ż

Rd

|vs|
p´2vsg

j
s dx dw

j
s

`
p
2

ż t

0

ż

Rd

`

2|vs|
p´2vsfs ` pp´ 1q|vs|

p´2
ÿ

j

|gjs|
2
˘

dx ds

` p

ż t

0

ż

Z

ż

Rd

|vs´|
p´2vs´hs dx π̃pdz, dsq

`

ż t

0

ż

Z

ż

Rd

p|vs´ ` hs|
p
´ |vs´|

p
´ p|vs´|

p´2vs´hsq dx πpdz, dsq (IV.5.6)
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for all t P r0, T s, where vs´ means the left-hand limit in Lp at s of v.

Proof. By a truncation and stopping time argument it is not difficult to see that
without loss of generality we may assume that the random variables in (IV.5.3)
have finite expectation.

Our aim is to use an Itô formula from [21], stated in Theorem 2.1 therein.
First we need to show that there exist “regular” versions of the stochastic inte-
grals in (IV.5.5) such that they are measurable in x P Rd. Indeed, by Lemma
2.6 in [37] we know that there exists a real-valued function m on Ωˆr0, T sˆRd

such that

(i) it is measurable with respect to F b BpR`q b BpRdq,

(ii) for each x P Rd the process pmtpxqqtPr0,T s has continuous paths,

(iii) for each x P Rd the process pmtpxqqtPr0,T s is a local Ft-martingale starting
at zero

and for each x P Rd we have

mtpxq “

ż t

0

gjspxq dw
j
s, almost surely for all t P r0, T s.

By Theorem 3.4 in [21] there exists a function r on Ω ˆ r0, T s ˆ Rd with the
properties (i) & (iii) above, such that for each x P Rd the process prtpxqqtPr0,T s
has cadlag paths, as well as such that for each x P Rd we have

rtpxq “

ż t

0

ż

Z

hspx, zq π̃pdz, dsq, almost surely for all t P r0, T s.

From (IV.5.5) then we get that for each ϕ P C80 almost surely

pvt, ϕq “ pψ, ϕq`

ż t

0

pfs, ϕq ds`

ż t

0

pgjs, ϕq dw
j
s`

ż t

0

ż

Z

phspzq, ϕq π̃pdz, dsq (IV.5.7)

holds for all t P r0, T s. This we can see if we multiply both sides of equation
(IV.5.5) with ϕ and then, making use of our measurability conditions and the
conditions (IV.5.1) and (IV.5.2), as well as the versions m and r of the stochastic
integrals, we integrate over Rd with respect to dx and use deterministic and
stochastic Fubini theorems from [37] and [21] to change the order of integrations.
Due to (IV.5.7), the measurability conditions on ψ, f , g, h and v and to their
integrability conditions, (IV.5.3) and (IV.5.4), by virtue of Theorem 2.1 from [21]
there is an Lp-valued Ft-adapted cadlag process pv̄tqtPr0,T s such that for each
ϕ P C80 almost surely (IV.5.7) holds with v̄ in place of v, and almost surely
(IV.5.6) holds with v̄ in place of v. Moreover, for each ϕ P C80 almost surely
pvt, ϕq “ pv̄t, ϕq for all t P r0, T s, which implies that almost surely v “ v̄ as
Lp-valued processes, and this finishes the proof of the theorem.
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Lemma IV.5.2. Let Assumption IV.2.1 hold. Assume pµtqtPr0,T s is an M-
solution to equation (IV.3.7). If K1 ‰ 0 in Assumption IV.2.1 (ii) then assume
also

ess sup
tPr0,T s

ż

Rd

|y|2 |µt|pdyq ă 8 pa.s.). (IV.5.8)

Then for each x P Rd and ε ą 0,

µ
pεq
t pxq “ µ

pεq
0 pxq `

ż t

0

pL̃˚sµsqpεqpxq ds`
ż t

0

pMj˚
s µsq

pεq
pxq dV j

s

`

ż t

0

ż

Z0

pJη˚s µsq
pεq
pxq ν0pdzq ds`

ż t

0

ż

Z1

pJξ˚s µsq
pεq
pxq ν1pdzq ds

`

ż t

0

ż

Z1

pIξ˚s µs´q
pεq
pxq Ñ1pdz, dsq

(IV.5.9)

holds almost surely for all t P r0, T s. Moreover, for each ε ą 0 and p ě 2

|µ
pεq
t |

p
Lp
“ |µ

pεq
0 |

p
Lp
` p

ż t

0

`

|µpεqs |
p´2µpεqs , pMk˚

s µsq
pεq
˘

dV k
s

`p

ż t

0

`

|µpεqs |
p´2µpεqs , pL̃˚sµsqpεq

˘

ds` ppp´1q
2

ÿ

k

ż t

0

`

|µpεqs |
p´2, |pMk˚

s µsq
pεq
|
2
˘

ds

`p

ż t

0

ż

Z0

`

|µpεqs |
p´2µpεqs , pJη˚s µsq

pεq
˘

ν0pdzqds

` p

ż t

0

ż

Z1

`

|µpεqs |
p´2µpεqs , pJξ˚s µsq

pεq
˘

ν1pdzqds (IV.5.10)

`p

ż t

0

ż

Z1

`

|µ
pεq
s´|

p´2µ
pεq
s´, pI

ξ˚
s µs´q

pεq
˘

Ñ1pdz, dsq

`

ż t

0

ż

Z1

ż

Rd

!

ˇ

ˇµ
pεq
s´`pI

ξ˚
s µs´q

pεq
ˇ

ˇ

p
´|µ

pεq
s´|

p
´p|µ

pεq
s´|

p´2µ
pεq
s´pI

ξ˚
s µs´q

pεq
)

dxN1pdz, dsq

holds almost surely for all t P r0, T s.

Proof. Let ψ P C80 pRdq such that ψp0q “ 1, and for integers r ě 1 define ψr by
dilation, ψrpxq “ ψpx{rq, x P Rd. Then substituting kεpx´ ¨qψrp¨q P C

8
0 in place

of ϕ in (IV.3.4), for each x P Rd we get

µtpkεpx´ ¨qψrq “ µ0pkεpx´ ¨qψrq `

ż t

0

µspL̃spkεpx´ ¨qψrqq ds

`

ż t

0

µspMk
spkεpx´ ¨qψrqq dV

k
s `

ż t

0

ż

Z0

µspJ
η
s pkεpx´ ¨qψrqq ν0pdzqds
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`

ż t

0

ż

Z1

µspJ
ξ
s pkεpx´ ¨qψrqq ν1pdzqds`

ż t

0

ż

Z1

µs´pI
ξ
s pkεpx´ ¨qψrqq Ñ1pdz, dsq,

(IV.5.11)
almost surely for all t P r0, T s. Clearly, limrÑ8 kεpx ´ yqψrpyq “ kεpx ´ yq and
there is a constant N , independent of r, such that

|kεpx´ yqψrpyq| ď N for all x, y P Rd.

Hence almost surely

lim
rÑ8

µtpkεpx´ ¨qψrq “ µtpkεpx´ ¨qq for each x P Rd and t P r0, T s. (IV.5.12)

It is easy to see that for every ω P Ω, x, y P Rd, s P r0, T s and zi P Zi pi “ 0, 1q
we have

lim
rÑ8

Aspkεpx´ yqψrpyqq “ Aspkεpx´ yqq (IV.5.13)

with L̃, Mk, Jη, Jξ and Iξ in place of A. Clearly,

sup
xPRd

|ψrpxq| “ sup
xPRd

|ψpxq| ă 8, sup
xPRd

|Dψrpxq| “ r´1 sup
xPRd

|Dψpxq| ă 8,

sup
xPRd

|D2ψrpxq| “ r´2 sup
xPRd

|D2ψpxq| ă 8,

and there is a constant N depending only on d and ε such that for all x, y P Rd

|kεpx´ yq| ` |Dkεpx´ yq| ` |D
2kεpx´ yq| ď N. (IV.5.14)

Hence, due to Assumption IV.2.1, we have a constant N “ Npε, d,K,K0, K1q

such that

|L̃spkεpx´ yqψrpyqq| ď NpK2
0 `K

2
1 |y|

2
`K2

1 |Ys|
2
q, (IV.5.15)

ÿ

k

|Mk
spkεpx´ yqψrpyqq|

2
ď NpK2

0 `K
2
1 |y|

2
`K2

1 |Ys|
2
q (IV.5.16)

for x, y P Rd, s P r0, T s, r ě 1 and ω P Ω. Similarly, applying Taylor’s formula
to

Aspkεpx´ yqψrpyqq with Jη, Jξ and Iξ in place of A,

we have a constant N “ Npε, d,K0, K1q such that

|Jηs pkεpx´ yqψrpyqq| ď sup
vPRd

|D2
vpkεpx´ vqψrpvqq||ηspy, z0q|

2

ď N |ηspy, z0q|
2, (IV.5.17)

|Jξs pkεpx´ yqψrpyqq| ď sup
vPRd

|D2
vpkεpx´ vqψrpvqq||ξspy, z1q|

2

ď N |ξspy, z1q|
2 (IV.5.18)
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and

|Iξs pkεpx´ yqψrpyqq|
2
ď sup

vPRd

|Dvpkεpx´ vqψrpvqq|
2
|ξspy, z1q|

2

ď N |ξspy, z1q|
2, (IV.5.19)

respectively, for all x, y P Rd, s P r0, T s, zi P Zi, i “ 0, 1 and ω P Ω. Using
(IV.5.13) (with A :“ L), (IV.5.15) and (IV.5.8), by Lebesgue’s theorem on
dominated convergence we get for each x P Rd

lim
rÑ8

ż t

0

µspL̃spkεpx´ ¨qψrqq ds “
ż t

0

µspL̃skεpx´ ¨qq ds almost surely,

uniformly in t P r0, T s. Using Jensen’s inequality, (IV.5.13) (with A :“ M),
(IV.5.16) and (IV.5.8), by Lebesgue’s theorem on dominated convergence we
obtain

lim sup
rÑ8

ż T

0

ÿ

k

|µspMk
spkεpx´ ¨qψrqq ´ µspMk

spkεpx´ ¨qq|
2 ds

ď ess sup
sPr0,T s

}µs} lim sup
rÑ8

ż T

0

ż

Rd

ÿ

k

|Mk
spkεpx´¨qψrqq´Mk

spkεpx´¨qq|
2
|µs|pdyq ds “ 0

almost surely, which implies that for r Ñ 8

ż t

0

µspMk
spkεpx´ ¨qψrqq dV

k
s Ñ

ż t

0

µspMk
skεpx´ ¨qq dV

k
s

in probability, for each x P Rd, uniformly in t P r0, T s. Since by Assumption
IV.2.1(ii) and (IV.5.8)

ż T

0

ż

Rd

ż

Z0

|ηspy, z0q|
2ν0pdz0q |µs|pdyq ds ď 2K2

0 |η̄|
2
L2

ż T

0

}µs} ds

`2K2
1 |η̄|

2
L2

ż T

0

ż

Rd

|y|2 |µs|pdyq ds` 2K2
1 |η̄|

2
L2

ż T

0

ż

Rd

|Ys|
2
|µs|pdyq ds ă 8 (a.s.),

from (IV.5.13) (with A :“ Jη) and (IV.5.17) by Lebesgue’s theorem on domi-
nated convergence we get

lim
rÑ8

ż t

0

ż

Z0

µspJ
η
s pkεpx´ ¨qψrqq ν0pdzqds “

ż t

0

ż

Z0

µspJ
η
s kεpx´ ¨qq ν0pdzqds (a.s.),

uniformly in t P r0, T s. In the same way we obtain this with Jξ, ν1 and Z1 in
place of Jη, ν0 and Z0, respectively. Similarly, using first Jensen’s inequality and
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Fubini’s theorem we have

lim sup
rÑ8

ż T

0

ż

Z1

|µspI
ξ
s pkεpx´ ¨qψrqq ´ µspI

ξ
s pkεpx´ ¨qq|

2 ν1pdzq ds

ď ess sup
sPr0,T s

}µs} lim sup
rÑ8

ż T

0

ż

Rd

ż

Z1

|Iξs pkεpx´yqψrpyqqq´I
ξ
s pkεpx´yqq|

2 ν1pdzq |µs|pdyq ds

“ 0

almost surely, which implies that for r Ñ 8 for each x P Rd we have

ż t

0

ż

Z1

µspI
ξ
s´pkεpx´ ¨qψrqq Ñ1pdz, dsq Ñ

ż t

0

ż

Z1

µspI
ξ
s´pkεpx´ ¨qqq Ñ1pdz, dsq

in probability, uniformly in t P r0, T s. Consequently, letting r Ñ 8 in equation
(IV.5.11), we obtain that (IV.5.9) holds almost surely for each t P r0, T s.

To prove (IV.5.10) we are going to verify that

ftpxq :“ pL̃˚t µtqpεqpxq `
ż

Z0

pJη˚t µsq
pεq
pxq ν0pdz0q `

ż

Z1

pJξ˚t µsq
pεq
pxq ν1pdz1q,

gjt pxq :“ pMj˚
t µtq

pεq
pxq, htpx, zq :“ pIξ˚t µt´q

pεq
pxq, vtpxq :“ µ

pεq
t pxq,

(ω P Ω, t P r0, T s, x P Rd, z P Z1, j “ 1, 2, ..., d1) satisfy the conditions of
Theorem IV.5.1 with the Ft-Wiener process w :“ V and Ft-Poisson martingale
measure π̃ :“ Ñ1, carried by the probability space pΩ,F , Qq equipped with the
filtration pFtqtě0. To see that f , g, h satisfy the required measurability properties
first we claim that for bounded O b BpRdq b BpRdq b Z0-measurable functions
A “ Atpx, y, zq and bounded PbBpRdqbBpRdqbZ0-measurable A “ Atpx, y, zq,
the functions

ż

Rd

Atpx, y, zqµtpdyq and

ż

Rd

Btpx, y, zqµt´pdyq (IV.5.20)

are ObBpRdqbZ0- and PbBpRdqbZ0-measurable, in pω, t, x, zq P Ωˆr0, T sˆ
Rd ˆ Z0, respectively. Indeed, this is obvious if Atpx, y, zq “ αtϕpxqφpyqκpzq and
Btpx, y, zq “ βtϕpxqφpyqκpzq with ϕ, φ P CbpRdq, bounded Z0-measurable func-
tion κ on Z0, and bounded O-measurable function α and bounded P-measurable
β on Ωˆ r0, T s. Thus our claim follows by a standard application of the mono-
tone class lemma for functions. Hence one can easily see that our claim remains
valid if we replace the boundedness condition with the existence of the integrals
in (IV.5.20). Using this and taking into account (IV.5.15) and (IV.5.16) and the
estimates obtained by Taylor’s formula,

|Jηs kεpx´ yq| ď N |ηspy, z0q|
2, |Jξskεpx´ yq| ď N |ξspy, z1q|

2, (IV.5.21)

|Iξskεpx´ yq|
2
ď N |ξspy, z1q|

2 (IV.5.22)
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for x, y P Rd, s P r0, T s, zi P Zi and ω P Ω, where N “ Npε, dq, it is not difficult
to show that pL̃˚t µtqpεqpxq, pMj˚µtq

pεqpxq are O b BpRdq-measurable in pω, tq,
pJη˚t µtq

pεqpxq and pJξ˚t µtq
pεqpxq are PbBpRdqbZ0- and PbBpRdqbZ1-measurable

in pω, t, x, z0q and pω, t, x, z1q, respectively, and pIξ˚t µt´q
pεqpxq is P bBpRdqbZ1-

measurable in pω, t, x, z1q. Finally, integrating pJη˚t µtq
pεqpxq and pJξ˚t µtq

pεqpxq
over Z0 and Z1, respectively, by Fubini’s theorem we get that f is O b BpRdq-
measurable. Using the estimates (IV.5.15), (IV.5.16) together with (IV.5.21)
and (IV.5.22) it is easy to see that due to ess suptPr0,T s |µt|pRdq ă 8 (a.s.) and
(IV.5.8) the conditions (IV.5.1), (IV.5.2) hold. By Minkowski’s inequality for
every x P Rd, t P r0, T s and ω P Ω we have

|µ
pεq
t |

p
Lp
“

ż

Rd

|

ż

Rd

kεpx´ yqµtpdyq|
p dx ď |kε|

p
Lp
|µt|

p
pRd
q ă 8,

which shows that condition (IV.5.4) holds. To complete the proof of the lemma
it remains to show that almost surely

A :“

ż T

0

ż

Rd

|pL̃˚sµsqpεqpxq|p dxds ă 8,

B :“

ż T

0

ż

Rd

`

ÿ

k

|pMk˚
s µsq

pεq
pxq|2

˘p{2
dxds ă 8,

Cη :“

ż T

0

ż

Rd

ˇ

ˇ

ˇ

ż

Z0

pJη˚s µsq
pεq
px, zq ν0pdzq

ˇ

ˇ

ˇ

p

dxds ă 8,

Cξ :“

ż T

0

ż

Rd

ˇ

ˇ

ż

Z1

pJξ˚s µsq
pεq
px, zq ν1pdzq

ˇ

ˇ

p
dxds ă 8,

G :“

ż T

0

ż

Rd

ż

Z1

|pIξ˚s µsq
pεq
px, zq|p ν1pdzqdxds ă 8,

H :“

ż T

0

ż

Rd

´

ż

Z1

|pIξ˚s µsq
pεq
px, zq|2 ν1pdzq

¯p{2

dxds ă 8.

To this end note first that with a constant N “ Npε, dq

|kεpx´ yq| ` |Dkεpx´ yq| ` |D
2kεpx´ yq| ď Nk2εpx´ yq for all x, y P Rd.

(IV.5.23)
Thus, using Minkowski’s inequality and Assumption IV.2.1(ii), we have a con-
stant N , depending on ε, d, K0, K and K1, such that almost surely

A ď

ż T

0

´

ż

Rd

´

ż

Rd

|L̃skεpx´ yq|pdx
¯1{p

|µs|pdyq
¯p

ds

ď N |k2ε|
p
Lp

ż T

0

´

ż

Rd

pK2
0 `K

2
1 |y|

2
`K2

1 |Ys|
2
q|µs|pdyq

¯p

ds.
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Hence taking into account ess supsPr0,T s }µs} ă 8 (a.s.), (IV.5.8) (if K1 ‰ 0), as
well as the cadlagness of pYtqtPr0,T s, we get A ă 8 (a.s.). In the same way we
have B ă 8 (a.s.). By Taylor’s formula and (IV.5.23) for each x P Rd we have

|Jηy kεpx´ yq| ď

ż 1

0

|D2
ykε|px´ y ´ θηpy, zqq|ηpy, zq|

2 dθ,

ď N

ż 1

0

k2εpx´ y ´ θηpy, zqq dθ |ηpy, zq|
2,

for all y P Rd, s P r0, T s, z P Z0 and ω P Ω. Here, and often later on, the variable
s is suppressed, and the subscript y in Jηy indicates that the operator Jη acts in
the variable y. Hence Minkowski’s inequality gives

´

ż

Rd

|Jηy kεpx´ yq|
p dx

¯1{p

ď N |k2ε|Lp |ηpy, zq|
2

with a constant N “ Npd, εq. Thus by the Minkowski inequality and Fubini’s
theorem,

Cη ď

ż T

0

˜

ż

Z0

ż

Rd

ˆ
ż

Rd

|Jηy kεpx´ yq|
p dx

˙1{p

|µs|pdyq ν0pdzq

¸p

ds

ď Np
|k2ε|

p
Lp

ż T

0

´

ż

Z0

ż

Rd

|ηspy, zq|
2
|µs|pdyq ν0pdzq

¯p

ds

ď 2pNp
|η̄|2pL2

|k2ε|
p
Lp

ż T

0

´

ż

Rd

pK2
0 `K

2
1 |y|

2
`K2

1 |Ys|
2
q |µs|pdyq

¯p

ds ă 8 (a.s.).

In the same way we get Cξ ă 8 (a.s.). By Taylor’s formula and (IV.5.23) for
each x P Rd we have

|Iξykεpx´ yq| ď

ż 1

0

|Dykε|px´ y ´ θξpy, zqq|ξpy, zq| dθ,

ď N

ż 1

0

k2εpx´ y ´ θξpy, zqq dθ |ξpy, zq|, (IV.5.24)

for all y P Rd, s P r0, T s, z P Z0 and ω P Ω, with a constant N “ Npd, p, εq.
Hence similarly to above we obtain

G ď NKp´2
ξ |ξ̄|2L2

|k2ε|
p
Lp

ż T

0

´

ż

Rd

pK0 `K1|y| `K1|Ys|q |µs|pdyq
¯p

ds ă 8 (a.s.).

with a constant N “ Npd, p, εq. By Minkowski’s inequality, taking into account
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(IV.5.24) and Assumption IV.2.2 we have

H ď

ż T

0

ˆ
ż

Z1

´

ż

Rd

|pIξ˚t µtq
pεq
|
p dx

¯2{p

ν1pdzq

˙p{2

dt

ď

ż T

0

ˆ
ż

Z1

´

ż

Rd

´

ż

Rd

|Iξt kεpx´ yq|
p dx

¯1{p

|µt|pdyq
¯2

ν1pdzq

˙p{2

dt

ď N |ξ̄|pL2
|k2ε|

p
Lp

ż T

0

´

ż

Rd

pK0 `K1|y| `K1|Yt|q |µt|pdyq
¯p

dt ă 8

almost surely, with a constant N “ Npd, p, εq.

Lemma IV.5.3. Let Assumption IV.2.1 hold. Assume putqtPr0,T s is an Lp-
solution of equation (IV.3.8) for a given p ě 2 such that ess suptPr0,T s |ut|L1 ă 8

(a.s.), and if K1 ‰ 0 in Assumption IV.2.1 (ii), then

ess sup
tPr0,T s

ż

Rd

|y|2 |ut|pdyq ă 8 pa.s.). (IV.5.25)

Then for each x P Rd and ε ą 0,

u
pεq
t pxq “ u

pεq
0 pxq `

ż t

0

pL̃˚susqpεqpxq ds`
ż t

0

pMj˚
s usq

pεq
pxq dV j

s

`

ż t

0

ż

Z0

pJη˚s usq
pεq
pxq ν0pdzq ds`

ż t

0

ż

Z1

pJξ˚s usq
pεq
pxq ν1pdzq ds

`

ż t

0

ż

Z1

pIη˚s us´q
pεq
pxq Ñ1pdz, dsq

(IV.5.26)

holds almost surely for all t P r0, T s. Moreover, for each ε ą 0 and p ě 2

|u
pεq
t |

p
Lp
“ |u

pεq
0 |

p
Lp
`p

ż t

0

`

|upεqs |
p´2upεqs , pMk˚

s usq
pεq
˘

dV k
s `p

ż t

0

`

|upεqs |
p´2upεqs , pL̃˚susqpεq

˘

ds

`
ppp´1q

2

ÿ

k

ż t

0

`

|upεqs |
p´2, |pMk˚

s usq
pεq
|
2
˘

ds`p

ż t

0

ż

Z0

`

|upεqs |
p´2upεqs , pJη˚s usq

pεq
˘

ν0pdzqds

`p

ż t

0

ż

Z1

`

|upεqs |
p´2upεqs , pJξ˚s usq

pεq
˘

ν1pdzqds`p

ż t

0

ż

Z1

`

|u
pεq
s´|

p´2u
pεq
s´, pI

ξ˚us´q
pεq
˘

Ñ1pdz, dsq

`

ż t

0

ż

Z1

ż

Rd

!

ˇ

ˇu
pεq
s´ ` pI

ξ˚
s us´q

pεq
ˇ

ˇ

p
´ |u

pεq
s´|

p
´ p|u

pεq
s´|

p´2u
pεq
s´pI

ξ˚
s us´q

pεq
)

dxN1pdz, dsq

(IV.5.27)
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holds almost surely for all t P r0, T s, where us´ denotes the left limit in Lp.

Proof. Notice that equations (IV.5.26) and (IV.5.27) can be formally obtained
from equations (IV.5.9) and (IV.5.10), respectively, by substituting utpxqdx and
ut´pxqdx in place of µtpdxq and µt´pdxq, respectively. Note, however, that
utpxqdx, defines a signed measure only for P bdt-almost every pω, tq P Ωˆr0, T s.
Thus this lemma does not follow directly from Lemma IV.5.2. We can copy, how-
ever, the proof of Lemma IV.5.2 by replacing µtpdxq and µt´pdxq with utpxqdx
and ut´pxqdx, respectively. We need also take into account that since putqtPr0,T s
is an Lp-valued weakly cadlag process, we have have a set Ω1 of full proba-
bility such that ut´pωq “ utpωq for all but countably many t P r0, T s, and
suptPr0,T s |utpωq|Lp ă 8 for ω P Ω1.

Lemma IV.5.4. Let Assumptions IV.2.1, IV.2.2 and IV.2.4 hold. Let pµtqtPr0,T s
be a measure-valued solution to (IV.3.7). If K1 ‰ 0 in Assumption IV.2.1, then
assume additionally (IV.5.8). Then for ε ą 0 and even integers p ě 2 we have

E sup
tPr0,T s

|µ
pεq
t |

p
Lp
ď NE|µpεq0 |

p
Lp

(IV.5.28)

with a constant N “ Npp, d, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q.

Proof. We may assume that E|µpεq0 |
p
Lp
ă 8. Define

Qppb, σ, ρ, β, µ, kεq “ p
`

|µpεq|p´2µpεq, pL̃˚µqpεq
˘

`
ppp´1q

2

ÿ

k

`

|µpεq|p´2, |pMk˚µqpεq|2
˘

,

Qp0q
p pηpz0q, µ, kεq “ p

`

|µpεq|p´2µpεq, pJηpz0q˚µqpεq
˘

,

Qp1q
p pξpz1q, µ, kεq “ pp|µpεq|p´2µpεq, pJξpz1q˚µqpεqq, (IV.5.29)

Rppξpz1q, µ, kεq “ |µ
pεq
` pIξpz1q˚µqpεq|pLp

´ |µpεq|pLp
´ pp|µpεq|p´2µpεq, pIξpz1q˚µqpεqq,

for µ P M, β P Rd1 , functions b, σ and ρ on Rd, with values in Rd, Rdˆd1 and
Rdˆd1 , respectively, and Rd-valued functions ηpz0q and ξpz1q on Rd for each zi P Zi,
i “ 0, 1, where

L̃ “ 1
2
pσilσjl` ρikρjkqDij ` β

lρilDi` β
lBl, Mk

“ ρikDi`B
k, k “ 1, 2, ..., d1.

(IV.5.30)
Recall that pf, gq denotes the integral of the product of Lebesgue measurable
functions f and g over Rd against the Lebesgue measure on Rd. By Lemma
IV.5.2

d|µ
pεq
t |

p
Lp
“ Qppbt, σt, ρt, βt, µt, kεq dt`

ż

Z0

Qp0q
p pηtpzq, µt, kεq ν0pdzq dt

`

ż

Z1

Qp1q
p pξtpzq, µt, kεq ν1pdzq dt`

ż

Z1

Rppξtpzq, µt´, kεqN1pdz, dtq`dζ1ptq`dζ2ptq,

(IV.5.31)
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where βt “ BtpXtq and

ζ1ptq “ p

ż t

0

`

|µpεqs |
p´2µpεqs , pMk˚

s µsq
pεq
˘

dV k
s , (IV.5.32)

ζ2ptq “ p

ż t

0

ż

Z1

`

|µpεqs |
p´2µpεqs , pIξ˚s µsq

pεq
˘

Ñ1pdz, dsq t P r0, T s

are local martingales under P . We write

ż

Z1

Rppξtpz1q, µt´, kεqN1pdz, dtq “

ż

Z1

Rppξtpz1q, µt´, kεq ν1pdzqdt` dζ3ptq

(IV.5.33)
with

ζ3ptq “

ż t

0

ż

Z1

Rppξspzq, µs´, kεqN1pdz, dsq ´

ż t

0

ż

Z1

Rppξspzq, µs´, kεq ν1pdzqds,

which we can justify if we show

A :“

ż T

0

ż

Z1

|Rppξspzq, µs, kεq| ν1pdzq ds ă 8 (a.s.). (IV.5.34)

To this end observe that by Taylor’s formula

0 ď Rppξtpzq, µt, kεq ď N

ż

Rd

|µ
pεq
t |

p´2
|pI

ξpzq˚
t µtq

pεq
|
2
` |pI

ξpzq˚
t µtq

pεq
|
p dx (IV.5.35)

with a constant N “ Npd, pq. Hence

ż

Z1

Rppξtpzq, µt, kεq ν1pdzq ď N

ż

Rd

|µ
pεq
t |

p´2
|pI

ξpzq˚
t µtq

pεq
|
2
L2pZ1q

`|pI
ξpzq˚
t µtq

pεq
|
p
LppZ1q

dx

ď N 1
`

|µ
pεq
t |

p
Lp
` A1ptq ` A2ptq

˘

with

A1ptq “

ż

Rd

|pI
ξpzq˚
t µtq

pεq
|
p
L2pZ1q

dx, A2ptq “

ż

Rd

|pI
ξpzq˚
t µtq

pεq
|
p
LppZ1q

dx (IV.5.36)

and constants N and N 1 depending only on d and p. By Minkowski’s inequality

|µ
pεq
t |

p
Lp
“

ż

Rd

ˇ

ˇ

ˇ

ż

Rd

kεpx´ yqµtpdyq
ˇ

ˇ

ˇ

p

dx ď
ˇ

ˇ

ˇ

ż

Rd

|kε|Lp µtpdyq
ˇ

ˇ

ˇ

p

ď |kε|
p
Lp
µpt p1q,

(IV.5.37)

A1ptq “

ż

Rd

ˇ

ˇ

ˇ

ż

Z1

ˇ

ˇ

ż

Rd

pkεpx´ y ´ ξtpy, zqq ´ kεpx´ yqqµtpdyq
ˇ

ˇ

2
ν1pdzq

ˇ

ˇ

ˇ

p{2

dx
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ď

ˇ

ˇ

ˇ

ż

Z1

ˇ

ˇ

ˇ

ż

Rd

pkεp¨ ´ y ´ ξtpy, zqq ´ kεp¨ ´ yqqµtpdyq
ˇ

ˇ

ˇ

2

Lp

ν1pdzq
ˇ

ˇ

ˇ

p{2

ď

ˇ

ˇ

ˇ

ż

Z1

ˇ

ˇ

ˇ

ż

Rd

|Dkε|Lp |ξtpy, zq|µtpdyq
ˇ

ˇ

ˇ

2

ν1pdzq
ˇ

ˇ

ˇ

p{2

ď |Dkε|
p
Lp
|ξ̄|pL2pZ1q

´

ż

Rd

pK0 `K1|y| `K1|Yt|qµtpdyq
¯p

, (IV.5.38)

and similarly, using Assumption IV.2.2,

A2ptq “

ż

Rd

ż

Z1

ˇ

ˇ

ˇ

ż

Rd

pkεpx´ y ´ ξtpy, zqq ´ kεpx´ yqqµtpdyq
ˇ

ˇ

ˇ

p

ν1pdzqdx

ď

ż

Z1

ˇ

ˇ

ˇ

ż

Rd

ˇ

ˇkεp¨ ´ y ´ ξtpy, zqq ´ kεp¨ ´ yqq
ˇ

ˇ

Lp
µtpdyq

ˇ

ˇ

ˇ

p

ν1pdzq

ď Kp´2
ξ |Dkε|

p
Lp
|ξ̄|2L2pZ1q

´

ż

Rd

pK0 `K1|y| `K1|Yt|qµtpdyq
¯p

. (IV.5.39)

By (IV.5.35)–(IV.5.39) we have a constant N “ NpKξ, p, d, ε, |ξ̄|L2pZ1qq such that

A ď N

ż T

0

µpt p1q dt`N

ż T

0

´

ż

Rd

pK0 `K1|y| `K1|Yt|qµtpdyq
¯p

dt ă 8 (a.s.).

Next we claim that, with the operator T ξ defined in (IV.4.22),

ζ2ptq ` ζ3ptq “

ż t

0

ż

Z1

|pT ξ˚s µsq
pεq
|
p
Lp
´ |µpεqs |

p
Lp
Ñ1pdz, dsq “: ζptq for t P r0, T s.

(IV.5.40)
To see that the stochastic integral ζptq is well-defined as an Itô integral note that
by Lemma IV.4.6 and (IV.5.37)

ż T

0

ż

Z1

||pT ξ˚s µsq
pεq
|
p
Lp
´ |µpεqs |

p
Lp
|
2 ν1pdzqds ď N |ξ̄|2L2pZ1q

ż T

0

|µpεqs |
2p
Lp
ds (IV.5.41)

ď N |ξ̄|2L2pZ1q
|kε|

2p
Lp

ż T

0

µ2p
s p1q ds ă 8 (a.s.)

with a constant N “ Npd, p, λ,Kξq. Since Z1 is σ-finite, there is an increasing
sequence pZ1nq

8
n“1, Z1n P Z1, such that ν1pZ1nq ă 8 for every n and Y8n“1Z1n “

Z1. Then it is easy to see that

ζ̄2nptq “ p

ż t

0

ż

Z1

1Z1npzq
`

|µpεqs |
p´2µpεqs , pIξ˚s µsq

pεq
˘

N1pdz, dsq,

ζ̂2nptq “ p

ż t

0

ż

Z1

1Z1npzq
`

|µpεqs |
p´2µpεqs , pIξ˚s µsq

pεq
˘

ν1pdzqds,
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ζ̄3nptq “

ż t

0

ż

Z1

1Z1npzqRppξspzq, µs´, kεqN1pdz, dsq,

ζ̂3nptq “

ż t

0

ż

Z1

1Z1npzqRppξspzq, µs´, kεq ν1pdzqds

are well-defined, and

ζ2ptq “ lim
nÑ8

pζ̄2nptq ´ ζ̂2nptqq, ζ3ptq “ lim
nÑ8

ζ̄3nptq ´ lim
nÑ8

ζ̂3nptq,

where the limits are understood in probability. Hence

ζ2ptq ` ζ3ptq “ lim
nÑ8

´

ζ̄2nptq ` ζ̄3nptq ´
`

ζ̂2nptq ` ζ̂3nptq
˘

¯

“ lim
nÑ8

´

ż t

0

ż

Z1

1Z1npzqp|pT
ξ˚
s µsq

pεq
|
p
Lp
´ |µpεqs q|

p
Lp
qÑ1pdz, dsq

¯

“ ζptq,

which completes the proof of (IV.5.40). Consequently, from (IV.5.31)-(IV.5.33)
we have

d|µ
pεq
t |

p
Lp
“ Qppbt, σt, ρt, βt, µt, kεq dt`

ż

Z0

Qp0q
p pηtpz0q, µt, kεq ν0pdzq dt

`

ż

Z1

Qp1q
p pξtpz1q, µt, kεq `Rppξtpz1q, µt, kεq ν1pdzq dt` dζ1ptq ` dζptq. (IV.5.42)

By Lemma IV.4.1, Corollary IV.4.2 and Lemma IV.4.3 we have

Qppbs, σs, ρs, βs, µs, kεq ď NpL2
`K2

q|µpεqs |
p
Lp

(IV.5.43)

with a constant N “ Npd, pq, and by Lemma IV.4.4 and Corollary IV.4.5, using
that ξ̄ ď Kξ and η̄ ď Kη, we have

Qp0q
p pηspzq, µs, kεq ď Nη̄2

pzq|µpεqs |
p
Lp
,

pQp1q
p `Rpqpξspzq, µs, kεq ď Nξ̄2

pzq|µpεqs |
p
Lp

(IV.5.44)

with a constant N “ NpKξ, Kη, d, p, λq. Thus from (IV.5.42) for cεt :“ |µ
pεq
t |

p
Lp

we obtain that almost surely

cεt ď |µ
pεq
0 |

p
Lp
`N

ż t

0

cεs ds`m
ε
t for all t P r0, T s (IV.5.45)

with a constant N “ NpT, p, d,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q and the local martin-
gale mε “ ζ1`ζ. For integers n ě 1 set τn “ τ̄n^ τ̃n, where pτ̃nq

8
n“1 is a localising
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sequence of stopping times for mε and

τ̄n “ τ̄npεq “ inf
!

t P r0, T s :

ż t

0

cεs ds ě n
)

.

Then from (IV.5.45) we get

Ecεt^τn ď E|µpεq0 |
p
Lp
`N

ż t

0

Ecεs^τn ds ă 8 for t P r0, T s and integers n ě 1.

Hence by Gronwall’s lemma

Ecεt^τn ď NE|µpεq0 |
p
Lp

for t P r0, T s and integers n ě 1

with a constant N “ NpT, p, d,K, ,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q. Letting here n Ñ
8, by Fatou’s lemma we obtain

sup
tPr0,T s

E|µpεqt |
p
Lp
ď NE|µpεq0 |

p
Lp
. (IV.5.46)

Hence we follow a standard way to prove (IV.5.28). Clearly, from (IV.5.45), tak-
ing into account (IV.5.46), we have a constantN “ NpT, p, d,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q

such that

E sup
tďT

cεt^τ ď NE|µpεq0 |
p
Lp
` E sup

tďT
|ζ1pt^ τq| ` E sup

tďT
|ζpt^ τq| (IV.5.47)

for every stopping time τ . By estimates in Lemmas IV.4.1 and IV.4.6 for the
Doob-Meyer processes xζ1y and xζy of ζ1 and ζ we have

xζ1yptq “ p2

ż t

0

ˇ

ˇp|µpεqs |
p´2µpεqs , pMk˚

s µsq
pεq
˘

|
2 ds ď N1

ż t

0

|µpεqs |
2p
Lp
ds ă 8,

xζyptq “

ż t

0

ż

Z1

||pT ξ˚s µsq
pεq
|
p
Lp
´ |µpεqs |

p
Lp
|
2ν1pdzqds ď N2

ż t

0

|µpεqs |
2p
Lp
ds ă 8

(IV.5.48)

almost surely for all t P r0, T s, with constants N1 “ N1pd, p, Lq and N2 “

N2pd, p, λ,Kξ, |ξ̄|L2pZ1qq. Using the Davis inequality, by (IV.5.48) and (IV.5.46)
we get

E sup
tďT

|ζ1pt^ τq| ` E sup
tďT

|ζpt^ τq| ď 3Exζ1y
1{2
pt^ τq ` 3Exζy1{2pt^ τq

ď N 1E
´

ż T

0

|µpεqs^τ |
2p
Lp
ds
¯1{2

ď N 1E
´

sup
tďT

|µpεqs^τ |
p
Lp

ż T

0

|µpεqs |
p
Lp
ds
¯1{2
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ď
1

2
E sup
tďT

|µ
pεq
t^τ |

p
Lp
`N

2E
ż T

0

|µpεqs |
p
Lp
ds ď 1

2
E sup
tďT

|µ
pεq
t^τ |

p
Lp
`N

3E|µpεq0 |
p
Lp
,

(IV.5.49)
which by (IV.5.47) gives

E sup
tďT

cεt^τ ď NE|µpεq0 |
p
Lp
` 1

2
E sup
tďT

cεt^τ

with constants N,N 1, N2, N3 depending on T , p, d, K, Kξ, Kη, L, λ, |ξ̄|L2 and
|η̄|L2 Substituting here the stopping time

ρn “ inftt P r0, T s : xζ1yptq ` xζyptq ě nu

in place of τ , from (IV.5.47) by virtue of the Davis inequality we have

E sup
tďT

cεt^ρn ď NE|µpεq0 |
p
Lp
` 1

2
E sup
tďT

cεt^ρn ă 8

for every integer n ě 1. Hence

E sup
tďT^ρn

|µ
pεq
t |

p
Lp
ď 2NE|µpεq0 |

p
Lp
,

and letting here nÑ 8 by Fatou’s lemma we finish the proof of (IV.5.28).

Lemma IV.5.5. Let Assumptions IV.2.1, IV.2.2 and IV.2.4 hold. Let putqtPr0,T s
be an Lp-solution to (IV.3.8) for an even integer p ě 2 such that ess suptPr0,T s |ut|L1 ă

8 (a.s.). If K1 ‰ 0 in Assumption IV.2.1, then assume additionally (IV.5.8).
Then we have

E sup
tPr0,T s

|ut|
p
Lp
ď NE|u0|

p
Lp

(IV.5.50)

with a constant N “ Npp, d, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q.

Proof. We may assume E|u0|
p
Lp
ă 8. By Lemma IV.5.3 for every ε ą 0 equa-

tion (IV.5.27) holds almost surely for all t P r0, T s. Hence following the proof

of Lemma IV.5.4 with u
pεq
t pxq, utpxqdx, ut´pxqdx, |utpxq|dx in place of µ

pεq
t pxq,

µtpdxq, µt´pdxqdx and |µt|pdxq, respectively, and taking into account that almost
surely ut “ ut´ for all but countable many t P r0, T s, we obtain the counterpart
of (IV.5.45),

|u
pεq
t |

p
Lp
ď |u

pεq
0 |

p
Lp
`N

ż t

0

||us|
pεq
|
p
Lp
ds`mε

t

ď |u0|
p
Lp
`N

ż t

0

|us|
p
Lp
ds`mε

t almost surely for all t P r0, T s

(IV.5.51)

with a constant N “ NpT, p, d,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q and a (cadlag) local
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martingale mε
t “ ζε1ptq ` ζ

εptq, t P r0, T s, where

ζε1ptq “ p

ż t

0

`

|upεqs |
p´2upεqs , pMk˚

s usq
ε
˘

dV k
s ,

ζεptq :“

ż t

0

ż

Z1

|pT ξ˚usq
pεq
|
p
Lp
´ |upεqs |

p
Lp
Ñ1pdz, dsq.

Since putqtPr0,T s is a weakly cadlag Ft-adapted process, we have suptPr0,T s |ut|Lp ă

8 (a.s.), and hence
ż t

0

|us|
r
Lp
ds, t P r0, T s

is a continuous Ft-adapted process for every r ą 0. For ε ą 0 and integers n ě 1,
k ě 1 define the stopping times τ εn,k :“ τ̄n ^ τ̃

ε
k , where

τ̄n :“ inf
!

t P r0, T s :

ż t

0

|us|
p
Lp
ds ě n

)

for integers n ě 1, and pτ̃ εkq
8
k“1 is a localizing sequence for the local martingale

mε. Thus from (IV.5.51) for cεt :“ |uεt |
p
Lp

and ct :“ |ut|
p
Lp

we get, using that for

all ε ą 0 we have |upεq|Lp ď |u|Lp ,

Ecεt^τεn,k
ď Ec0 `NE

ż t^τεn,k

0

cs ds

ď Ec0 `NE
ż t^τ̄n

0

cs ds

ď Ec0 `NE
ż t

0

cs^τ̄n ds ă 8

for every t P r0, T s. Letting here first k Ñ 8 and then εÑ 0 by Fatou’s lemma
we obtain

Ect^τ̄n ď Ec0 `NE
ż t

0

cs^τ̄n ds ă 8, t P r0, T s,

which by Gronwall’s lemma gives

Ect^τ̄n ď eNTE|u0|
p
Lp

for t P r0, T s.

Letting now nÑ 8 by Fatou’s lemma we have

sup
tPr0,T s

E|ut|pLp
ď eNTE|u0|

p
Lp
. (IV.5.52)

Hence we are going to prove (IV.5.50) in an already familiar way. Analo-
gously to (IV.5.47), due to Lemmas IV.4.1 and IV.4.6, for the Doob-Meyer
processes of ζε1 and ζε we have with constants N1 “ N1pd, p, Lq and N2 “
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N2pd, p, λ,Kξ, |ξ̄|L2pZ1qq,

xζε1yptq “ p2

ż t

0

ˇ

ˇp|upεqs |
p´2upεqs , pMk˚

s usq
pεq
˘

|
2 ds

ď N1

ż t

0

||us|
pεq
|
2p
Lp
ds ď N1

ż t

0

|us|
2p
Lp
ds,

xζεyptq “

ż t

0

ż

Z1

||pT ξ˚s usq
pεq
|
p
Lp
´ |upεqs |

p
Lp
|
2ν1pzqds

ď N2

ż t

0

||us|
pεq
|
2p
Lp
ds ď N2

ż t

0

|us|
2p
Lp
ds. (IV.5.53)

We define the stopping time ρεn,k “ τ̃ εk ^ ρn, where

ρn “ inf
!

t P r0, T s :

ż t

0

|us|
2p
Lp
ds ě n

)

for every integer n ě 1,

and pτ̃ εkq
8
k“1 denotes, as before, a localizing sequence of stopping times for mε.

Notice that from (IV.5.51), due to (IV.5.52) and (IV.5.53), by using the Davis
inequality we have

E sup
tďT

cεt^ρεn,k
ď N 1E|u0|

p
Lp
` E sup

tďT
|ζ1pt^ ρ

ε
n,kq| ` E sup

tďT
|ζpt^ ρεn,kq|

ď NE|u0|
p
Lp
`NE

´

ż T^ρn

0

|ut|
2p
Lp
dt
¯1{2

ă 8,

where N 1 and N are constants, depending only on p, d, T , K, Kξ, Kη L λ, |ξ̄|L2

and |η̄|L2 . Letting here first k Ñ 8 and then εÑ 0 by Fatou’s lemma we obtain

E sup
tďT

ct^ρn ď NE|u0|
p
Lp
`NE

´

ż T^ρn

0

|ut|
2p
Lp
dt
¯1{2

ă 8 for every n. (IV.5.54)

Hence, in the same standard way as before, by Young’s inequality and (IV.5.52)
we have

E sup
tďT

ct^ρn ď NE|u0|
p
Lp
`NE

´

sup
tďT

ct^ρn

ż T

0

|ut|
p
Lp
dt
¯1{2

ď NE|u0|
p
Lp
` 1

2
E sup
tďT

ct^ρn `
N2

2
E
ż T

0

|ut|
p
Lp
dt

ď N 1E|u0|
p
Lp
` 1

2
E sup
tďT

ct^ρn ă 8,

with a constant N 1 “ N 1pT, p, d,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q, which gives

E sup
tďT

ct^ρn ď 2N 1E|u0|
p
Lp
.

85



Letting here nÑ 8 by Fatou’s lemma we finish the proof of (IV.5.50).

To formulate the next lemma let pS,Sq denote a measurable space, and let
H Ă F b S be a σ-algebra.

Lemma IV.5.6. Let µ “ pµsqsPS be an M-valued function on Ω ˆ S such that
µspϕq is an H-measurable random variable for every bounded Borel function ϕ
on Rd, and Eµsp1q ă 8 for every s P S. Let p ą 1 and assume that for a positive
sequence εn Ñ 0 we have

lim sup
εnÑ0

E|µpεnqs |
p
Lp
“: Np

s ă 8 for every s P S.

Then for every s P S the density dµs{dx exists almost surely, and there is an
LppRdq-valued H-measurable mapping u on Ω ˆ S such that for each s we have

us “ dµs{dx (a.s.). Moreover, limnÑ8 |µ
pεnq
s ´us|Lp “ 0 (a.s.) and E|us|pLp

ď Np
s

for each s P S.

Proof. Fix s P S. Since pµ
pεnq
s q8n“1 is a bounded sequence in Lp :“ LpppΩ,F , P q, LppRdqq

from any subsequence of it one can choose a subsequence, µ
pεn1 q
s , which converges

weakly in Lp to some ūs P Lp. Thus for every ϕ P C80 pRdq and G P F we have

E
ż

Rd

µpεn1 qs pxq1Gϕpxq dxÑ E
ż

Rd

ūspxq1Gϕpxq dx as n1 Ñ 8.

On the other hand, since

E
ż

Rd

ż

Rd

kεnpx´ yq1G|ϕpxq|µspdyqdx ď |µ
pεnq
s |Lp |ϕ|Lq ă 8 with q “ p{pp´ 1q,

we can use Fubini’s theorem, and then, due to Eµsp1q ă 8, we can use Lebesgue’s
theorem on dominated convergence to get

E
ż

Rd

µpεn1 qs pxq1Gϕpxq dx “ E
ż

Rd

1Gϕ
pεn1 qpxqµspdxq Ñ E

ż

Rd

1Gϕpxqµspdxq.

Consequently,

E1G

ż

Rd

ϕpxqµspdxq “ E1G

ż

Rd

ϕpxqūspxq dx for any G P F and ϕ P C80 ,

(IV.5.55)
which implies that dµs{dx almost surely exists in Lp and equals ūs. Notice, that
ūs, as an element of Lp, is independent of the chosen subsequences, i.e., if ũs
is the weak limit in Lp of some subsequence of a subsequence of µ

pεnq
s , then by

(IV.5.55) we have

E1G

ż

Rd

ϕpxqūspxq dx “ E1G

ż

Rd

ϕpxqũspxq dx for any G P F and ϕ P C80 ,
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which means ūs “ ũs in Lp. Consequently, the whole sequence µ
pεnq
s converges

weakly to ūs in Lp for every s, and for each s almost surely ūs “ dµs{dx P

Lp. Hence µ
pεnq
s “ ū

pεnq
s P Lp (a.s.), and thus by a well-known property of

mollifications, limnÑ8 |µ
pεnq
s ´ ūs|Lp “ 0 (a.s.). Set

A :“ tpω, sq P Ωˆ S : µpεnqs is convergent in Lp as nÑ 8u,

and let us denote the limit of 1Aµ
pεnq
s in Lp. Then, since pµ

pεnq
s qsPS is an Lp-

valued H-measurable function of pω, sq for every n, the function u “ pusqsPS is
also an Lp-valued H-measurable function, and clearly, us “ dµs{dx (a.s.) and
E|us|pLp

ď Np
s for each s.

Lemma IV.5.7. Let Assumptions IV.2.1, IV.2.2 and IV.2.4 hold. Let µ “
pµtqtPr0,T s be a measure-valued solution to (IV.3.7). If K1 ‰ 0 in Assumption
IV.2.1, then assume additionally (IV.5.8). Assume u0 “ dµ0{dx exists almost
surely and E|u0|

p
Lp
ă 8 for some even p ě 2. Then the following statements

hold.

(i) For each t P r0, T s the density dµt{dx exists almost surely, and there is
an Lp-valued Ft-adapted weakly cadlag process putqtPr0,T s such that almost
surely ut “ dµt{dx for every t P r0, T s and E suptPr0,T s |ut|

p
Lp
ă 8.

(ii) If µ1 “ pµ1tqtPr0,T s satisfies the same conditions (with the same even integer
p) as µ, then for ut “ dµt{dx and u1t “ dµ1t{dx we have

E sup
tPr0,T s

|ut ´ u
1
t|
p
Lp
ď NE|u0 ´ u

1
0|
p
Lp

for t P r0, T s, (IV.5.56)

with a constant N depending only on d, p, K, Kξ, Kη, L, λ, T , |η̄|L2pZ1q

and |ξ̄|L2pZ0q.

Proof. By Lemma IV.5.4 we have

E sup
tPr0,T s

|µ
pεq
t |

p
Lp
ď NE|µpεq0 |

p
Lp
ă 8 for every t P r0, T s and ε ą 0

with a constant N “ Npd, p,K, T,Kξ, Kη, L, λ, |η̄|L2pZ1q, |ξ̄|L2pZ0qq. Moreover, by
Lemma IV.5.6, there is an Lp-valued Ft-adapted F b Bpr0, T sq-measurable pro-
cess pūtqtPr0,T s such that ūt “ dµt{dx (a.s.) for every t P r0, T s. To prove (i) let
A be a countable dense subset of r0, T s, such that T P A. Then

E sup
tPA
|ūt|

p
Lp
“ E sup

tPA
lim inf
nÑ8

|µ
pεnq
t |

p
Lp
ď E lim inf

nÑ8
sup
tPA
|µ
pεnq
t |

p
Lp

ď lim inf
nÑ8

E sup
tPA
|µ
pεnq
t |

p
Lp
ď NE|dµ0{dx|

p
Lp
ă 8 (IV.5.57)
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for a sequence εn Ó 0, and there is a set Ω1 P F0 of full probability such that

sup
tPA
|ūtpωq|Lp ă 8, dµt{dx “ ūt for every ω P Ω1 and t P A,

and µtpϕq is a cadlag function in t P r0, T s for ω P Ω1 and ϕ P C80 pRdq. Hence,
if t P r0, T s and ω P Ω1, then there is a sequence tn “ tnpωq P A such that tn Ó t
and ūtnpωq converges weakly in Lp to an element, denoted by utpωq. Note that
since ūtnpωq is dx-everywhere nonnegative for every n, the function utpωq is also
dx-almost everywhere nonnegative. Moreover, by property of a weak limit we
have

|utpωq|Lp ď lim inf
nÑ8

|ūtnpωq|Lp ď sup
sPA
|ūspωq|Lp ,

which gives

sup
tPr0,T s

|utpωq|Lp ď sup
sPA
|ūspωq|Lp ă 8 for ω P Ω1. (IV.5.58)

Notice that

putpωq, ϕq “ lim
nÑ8

µtnpω, ϕq “ µtpω, ϕq for ω P Ω1, t P r0, T s and ϕ P C80 ,

(IV.5.59)
which shows that utpωq does not depend on the sequence tn. In particular, for
ω P Ω1 we have ūtpωq “ utpωq for t P A. Moreover, it shows that putpωq, ϕq is
a cadlag function of t P r0, T s for every ϕ P C80 . Hence, due to (IV.5.58), since
C80 is dense in Lq, it follows that utpωq is a weakly cadlag Lp-valued function
of t P r0, T s for each ω P Ω1. Moreover, from (IV.5.59), by the monotone class
lemma it follows that ut “ dµt{dx for every ω P Ω1 and t P r0, T s. Define
utpωq “ 0 for ω R Ω1 and t P r0, T s. Then putqtPr0,T s is an Lp-valued weakly
cadlag function in t P r0, T s for every ω P Ω, and since due to (IV.5.59) almost
surely put, ϕq “ µtpϕq for ϕ P C80 , it follows that ut is an Ft-measurable Lp-
valued random variable for every t P r0, T s. Moreover, by virtue of (IV.5.57)
and (IV.5.58) we have E suptPr0,T s |ut|

p
Lp
ă 8. To prove (ii), notice that by (i)

the process ūt :“ ut ´ u1t, t P r0, T s, is an Lp-solution to equation (IV.3.8) such
that ess suptPr0,T s |ūt|L1 ă 8 (a.s.). Thus we have (IV.5.56) by Lemma IV.5.5.

Definition IV.5.1. Let p ą 1 and let ψ be an Lp-valued F0-measurable random
variable. Then we say that an Lp-valued Ft-optional process v “ pvtqtPr0,T s is a
Vp-solution to (IV.3.8) with initial value ψ if for each ϕ P C80

pvt, ϕq “pψ, ϕq `

ż t

0

pvs, L̃sϕq ds`
ż t

0

pvs,Mk
sϕq dV

k
s `

ż t

0

ż

Z0

pvs, J
η
sϕq ν0pdzqds

`

ż t

0

ż

Z1

pvs, J
ξ
sϕq ν1pdzqds`

ż t

0

ż

Z1

pvs, I
ξ
sϕq Ñ1pdz, dsq

(IV.5.60)
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for P b dt-a.e. pω, tq P Ωˆ r0, T s.

Lemma IV.5.8. Let Assumption IV.2.1 (ii) hold. Let pvtqtPr0,T s be a Vp-solution
for a p ą 1 such that ess suptPr0,T s |vt|Lp ă 8 (a.s.), and there is an Lp-valued
random variable g such that for each ϕ P C80 equation (IV.5.60) for t :“ T
holds almost surely with g in place of vT . Then there exists an Lp-solution
u “ putqtPr0,T s to equation (IV.3.8) such that u0 “ ψ and u “ v, P b dt-almost
everywhere.

Proof. Let Φ P C80 be a countable dense set in Lq for q “ p{pp´ 1q. Then there
is a set Ω1 P Ω of full probability and for every ω P Ω1 there is a set Tω Ă r0, T s
of full Lebesgue measure in r0, T s, such that suptPTω

|vtpωq|Lp ă 8 for ω P Ω1,
and for all ϕ P Φ equation (IV.5.60) holds for all ω P Ω1 and t P Tω. We may
also assume that for each ϕ P Φ and ω P Ω1 equation (IV.5.60) holds for t “ T
with g in place of vT . Since the right-hand side of equation (IV.5.60), which
we denote by Ftpϕq for short, is almost surely a cadlag function of t, we may
assume, that for ω P Ω1 it is cadlag for all ϕ P Φ. Since Tω is dense in r0, T s
and suptPTω

|vtpωq|Lp ă 8 for ω P Ω1, for each ω P Ω1 and t P r0, T q we have a
sequence tn “ tnpωq P Tω such that tn Ó t and vtn Ñ v̄t weakly in Lp for some
element v̄t “ v̄tpωq P Lp. Hence

pv̄tpωq, ϕq “ lim
nÑ8

pvtnpωq, ϕq “ lim
nÑ8

Ftnpωqpω, ϕq “ Ftpω, ϕq for all ϕ P Φ,

(IV.5.61)
which implies that for every sequence tn “ tnpωq P Tω such that tn Ó t the
sequence vtnpωqpωq converges weakly to v̄tpωq in Lp. In particular, v̄tpωq “ vtpωq
for ω P Ω1 and t P Tω. For ω P Ω1 we define utpωq :“ v̄tpωq for t P r0, T q and
uT pωq :“ gpωq, and for ω P ΩzΩ1 we set utpωq “ 0 for all t P r0, T s. Then due
to (IV.5.61) and that almost surely puT , ϕq “ FT pϕq for all ϕ P Φ, the process
u “ putqtPr0,T s is an Lp-valued Ft-adapted weakly cadlag process such that almost
surely (IV.5.60) holds for all ϕ P C80 . Clearly, u “ v (P b dt-a.e.). Thus we also
have that almost surely

ż t

0

ż

Z1

pus´, I
ξ
sϕq Ñ1pdz, dsq “

ż t

0

ż

Z1

pus, I
ξ
sϕq Ñ1pdz, dsq

for all t P r0, T s and hence u satisfies (IV.5.60), with us replaced by us´ in the
last term on the right-hand side, almost surely for all ϕ P C80 for all t P r0, T s,
i.e., u is an Lp solution to (IV.3.8).

IV.6 Solvability of the filtering equations in Lp-

spaces

To show the solvability of the linear filtering equation (IV.3.8), the Zakai equa-
tion, with any F0-measurable Lp-valued initial condition, we want to apply the
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existence and uniqueness theorem for stochastic integro-differential equations
proved in [23]. With this purpose in mind first we assume that the coefficients
σ, b, ρ, B, ξ, η are smooth in x P Rd, and under this additional assumption we
are going to determine the form of the “adjoint” operators L̃˚, Mk˚, Jη˚, Jξ˚

and Iξ˚ as operators acting directly on C80 such that

ż

Rd

A˚ϕpxqφpxq dx “

ż

Rd

ϕpxqAφpxq dx for all ϕ, φ P C80 ,

for L̃, M, Jξ, Jη and Iξ in place of A. The form of L̃˚ and Mk˚ is immediately
obvious by integrating by parts. To find the form of the other operators (defined
in (IV.4.22)), let ζ : Rd Ñ Rd such that

τpxq :“ τ ζpxq :“ x` ζpxq, x P Rd,

is a C1-diffeomorphism on Rd. Then observe that for ϕ, φ P C80 we have

pφ, T ζϕq “

ż

Rd

φpτ´1
pxqq| detDτ´1

pxq|ϕpxq dx “ p| detDτ´1
|T ζ

˚

φ, ϕq

with

ζ˚pxq :“ ´x` τ´1
pxq “ ´ζpτ´1

pxqq, T ζ
˚

φpxq “ φpx` ζ˚pxqq. (IV.6.62)

Similarly,

pφ, Iζϕq “

ż

Rd

`

φpτ´1
pxqq| detDτ´1

pxq| ´ φpxq
˘

ϕpxq dx

“

ż

Rd

`

φpτ´1
pxqq| detDτ´1

pxq| ´ φpτ´1
pxqq ` φpτ´1

pxqq ´ φpxq
˘

ϕpxq dx

“ pcT ζ
˚

φ, ϕq ` pIζ
˚

φ, ϕq,

where
cpxq “ | detDτ´1

pxq| ´ 1,

and

pφ, Jζϕq “ pφ, Iζϕq ´ pφ, ζ iDiϕq

“ pIζ
˚

φ, ϕq ` pcT ζ
˚

φ, ϕq ` pζ iDiφ, ϕq ` ppDiζ
i
qφ, ϕq

“ pJζ
˚

φ, ϕq ` pcIζ
˚

φ, ϕq ` ppc`Diζ
i
qφ, ϕq ` ppζ˚i ` ζ iqDiφ, ϕq

“ pJζ
˚

φ, ϕq ` pcIζ
˚

φ, ϕq ` ppc̄`Diζ
˚i
`Diζ

i
qφ, ϕq ` ppζ˚i ` ζ iqDiφ, ϕq,

where
c̄ “ | detDτ´1

pxq| ´ 1´Diζ
˚i.

90



Consequently, T ζ˚, Iζ˚ and Jζ˚, the formal adjoint of T ζ , Iζ and Jζ , can be
written in the form

T ζ˚ “ | detDτ´1
|T ζ

˚

,

Iζ˚ “ Iζ
˚

` cT ζ
˚

, Jζ˚ “ Jζ
˚

` cIζ
˚

`pζ˚i` ζ iqDi` c̄`Dipζ
˚i
` ζ iq. (IV.6.63)

Lemma IV.6.1. Let ζ be an Rd-valued function on Rd such that for an integer
m ě 1 it is continuously differentiable up to order m, and

inf
θPr0,1s

inf
xPRd

| detpI` θDζpxqq| “: λ ą 0, max
1ďkďm

sup
xPRd

|Dkζpxq| “: Mm ă 8.

(IV.6.64)
Then the following statements hold.

(i) The function τ “ x ` θζpxq, x P Rd, is a Cm-diffeomorphism for each
θ P r0, 1s, such that

inf
θPr0,1s

inf
xPRd

| detDτ´1
pxq| ě λ1, max

1ďkďm
sup
xPRd

|Dkτ´1
| ďM 1

m ă 8,

(IV.6.65)
with constants λ1 “ λ1pd,M1q ą 0 and M 1

m “M 1
mpd, λ,Mmq.

(ii) The function ζ˚pxq “ ´x ` τ´1pxq, x P Rd, is continuously differentiable
up to order m, such that

sup
Rd

|ζ˚| “ sup
Rd

|ζ|, (IV.6.66)

sup
Rd

|Dkζ˚| ďM˚
m max

1ďjďk
sup
Rd

|Djζ|, for k “ 1, 2, ...,m,

(IV.6.67)

inf
θPr0,1s

inf
Rd
| detpI` θDζ˚q| ě λ1 inf

θPr0,1s
inf
Rd
| detpI` θDζq|, (IV.6.68)

with a constant M˚
m “M˚

mpd, λ,Mmq and with λ1 from (IV.6.65).

(iii) For the functions c “ detpI`Dζ˚q ´ 1, c̄ “ c´Diζ
˚i and ζ ` ζ˚ we have

sup
xPRd

|Dlcpxq| ď N max
1ďjďl`1

sup
Rd

|Djζ|, sup
xPRd

|Dk c̄pxq| ď N max
1ďjďk`1

sup
Rd

|Djζ|2

(IV.6.69)

sup
Rd

|Dk
pζ ` ζ˚q| ď N max

1ďjďk`1
sup
Rd

|Djζ|2. (IV.6.70)

for 0 ď l ď m´ 1, 1 ď k ď m´ 1 with a constant N “ Npd, λ,m,Mmq.

Proof. To prove (i) note that (IV.6.64) implies that τ is a Cm-diffeomorphism
and the estimates in (IV.6.65) are proved in [42] (see Lemma 3.3 therein). From
τpxq “ x ` ζpxq, by substituting τ´1pxq in place of x we obtain ζ˚pxq “
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´ζpτ´1pxqq. Hence (IV.6.66) follows immediately, and due to the second es-
timates in (IV.6.65), the estimate in (IV.6.67) also follows. Notice that

x` θζ˚pxq “ τ´1
pxq ` ζpτ´1

pxqq ´ θζpτ´1
pxqq “ τ´1

pxq ` p1´ θqζpτ´1
pxqq.

Hence, by the first inequality in (IV.6.65),

| detpI` θDζ˚q| “ | detpI` p1´ θqDζpτ´1
qq|| detDτ´1

|

ě λ1| detpI` p1´ θqDζpτ´1
qq|,

which implies (IV.6.68). To prove the inequalities in (IV.6.69) notice that for
the function F pAq “ detA, considered as the function of the entries Aij of dˆ d
real matrices A, we have

B

BAij
detA

ˇ

ˇ

A“I “ δij, i, j “ 1, 2, ..., d.

Thus
B

Bθ
detpI` θDζ˚q

ˇ

ˇ

θ“0
“ δijDjζ

˚i
“ Diζ

˚i,

and by Taylor’s formula we get

c “ detpI`Dζ˚q ´ det I “
ż 1

0

B

BAijF pI` θDζ˚q dθDiζ
˚j

and

c̄ “ detpI`Dζ˚q ´ det I´Diζ
˚i
“

ż 1

0

p1´ θq B2

BAijBAklF pI` θDζ˚q dθDiζ
˚jDkζ

˚l.

Hence using the estimates in (IV.6.67) we get (IV.6.69). Note that

ζ ` ζ˚ “ ζpτ´1
´ θζ˚q

ˇ

ˇ

θ“1

θ“0
“ ζ˚i

ż 1

0

pDiζqpτ
´1
´ θζ˚q dθ.

Hence by the second estimate in (IV.6.64) and (IV.6.67) we obtain (IV.6.70).

In this section for ε ą 0 and functions v on Rd we use the notation vpεq for
the convolution of v with κεp¨q “ ε´dκp¨{εq, where κ is a fixed nonnegative C80
function of unit integral such that κpxq “ 0 for |x| ě 1 and κp´xq “ κpxq for
x P Rd.

Lemma IV.6.2. Let τ be an Rd-valued function on Rd with uniformly continu-
ous derivative Dτ on Rd such that with positive constants λ and K

λ ď | detDτ | and |Dτ | ďM on Rd.
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Then
1
2
λ ď | detDτ pεq| on Rd

for ε P p0, ε0q for ε0 ą 0 satisfying δpε0q ď λ{p2d!dMd´1q, where δ “ δpεq is the
modulus of continuity of Dτ .

Proof. Clearly,

sup
xPRd

|Djτ
i
´Djτ

ipεq
| ď δpεq for ε ą 0, i, j “ 1, 2, ..., d.

Hence, for ε ą 0,

sup
xPRd

|Πd
i“1Djiτ

i
´ Πd

i“1Djiτ
ipεq
| ď

d
ÿ

i“1

Md´1 sup
Rd

|Djiτ
i
´Djiτ

ipεq
| ď dMd´1δpεq,

for every permutation pj1, ..., jdq of 1, 2, ..., d. Therefore

sup
xPRd

| detDτ ´ detDτ pεq| ď d! dMd´1δpεq for ε ą 0.

Consequently, choosing ε0 ą 0 such that δpε0q ď λ{p2d!dMd´1q, for ε P p0, ε0q

we have

| detDτ pεq| ě | detDτ | ´ | detDτ ´ detDτ pεq| ě λ{2 on Rd.

Corollary IV.6.3. Let ζ be an Rd-valued function on Rd such that Dζ is a
uniformly continuous function on Rd and

0 ă λ ď inf
Rd

detpI`Dζq, sup
Rd

|Dζ| ďM ă 8 (IV.6.71)

with some positive constants λ and M . Let ε0 ą 0 such that δpε0q ď λ{p2d!dMd´1q.
Then for every ε P p0, ε0q the first inequality in (IV.6.71) holds for ζpεq in place
of ζ with λ{2 in place of λ. Moreover, supRd |Dkζpεq| ď Mk for every integer k
with a constant Mk “Mkpd,M, εq, where M1 “M . Hence Lemma IV.6.1 holds
with ζpεq in place of ζ, for ε P p0, ε0q for every integer m ě 1.

Consider for ε P p0, 1q the equation

duεt “L̃ε˚t uεt dt`Mεk˚
t uεt dV

k
t `

ż

Z0

Jη
ε˚

t uεt ν0pdzqdt

`

ż

Z1

Jξ
ε˚
t uεt ν1pdzqdt`

ż

Z1

Iξ
ε˚
t uεt Ñ1pdz, dtq, with uε0 “ ψpεq, (IV.6.72)

where
Mεk

t “ ρ
pεqik
t Di `B

pεqk
t , k “ 1, . . . , d1,
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L̃εt “ aε,ijt Dij ` b
pεqi
t Di ` β

k
tMεk

t , βt “ Bpt,Xt, Ytq,

aε,ijt :“ 1
2

ÿ

k

pσ
pεqik
t σ

pεqjk
t ` ρ

pεqik
t ρ

pεqjk
t q, i, j “ 1, 2, ..., d,

the operators Jη
ε

t and Jξ
ε

t are defined as Jξt in (IV.3.1) with η
pεq
t and ξ

pεq
t in place

of ξt, and the operator Iξ
ε

t is defined as Iξt in (IV.3.1) with ξ
pεq
t in place of ξt.

(Remember that vpεq denotes the convolution of functions v in x P Rd, with the
kernel κε described above.) We define the Lp-solution puεtqtPr0,T s to (IV.6.72) in
the sense of Definition IV.3.2. Define now for each ω P Ω, t ě 0 and zi P Zi the
functions

τ η
ε
t pxq “ x` η

pεq
t pxq, τ ξ

ε
t pxq “ x` ξ

pεq
t pxq, x P Rd, (IV.6.73)

where, and later on, we suppress the variables zi, i “ 0, 1.

We recall that for p ě 1, Lp denotes the space of Lp-valued F0-measurable
random variables Z such that E|Z|pLp

ă 8, as well as that for p, q ě 1 the no-
tation Lp,q stands for the space of Lp-valued Ft-optional processes v “ pvtqtPr0,T s
such that

|v|pLp,q
:“ E

ˆ
ż T

0

|vt|
q
Lp
dt

˙p{q

ă 8.

Let B0 denote the set of those functions ψ P
Ş

pě1 Lp such that ψpxq “ 0 for |x| ě
R for some constant R ą 0 depending on ψ and such that supωPΩ supxPRd |ψpxq| ă
8. It is easy to see that B0 is a dense subspace of Lp for every p P r1,8q.

Lemma IV.6.4. Let Assumptions IV.2.1, IV.2.2 and IV.2.4 hold with K1 “ 0.
Assume that the following “support condition” holds: There is some R ą 0 such
that

`

btpxq, Btpxq, σtpxq, ρtpxq, ηtpx, z0q, ξtpx, z1q
˘

“ 0 (IV.6.74)

for ω P Ω, t ě 0, z0 P Z0, z1 P Z1 and x P Rd such that |x| ě R. Let ψ P B0

such that ψpxq “ 0 if |x| ě R. Then there exists an ε0 ą 0 and a constant
R̄ “ R̄pR,K,K0, Kξ, Kηq such that the following statements hold for all m ě 1
and even integers p ě 2.
(i) For every ε P p0, ε0q there is an Lp-solution uε “ puεtqtPr0,T s to (IV.6.72),
which is a Wm

p -valued weakly cadlag process. Moreover, it satisfies

E sup
tPr0,T s

|uεt |
p
Wm

p
ă 8 and uεtpxq “ 0, for dx-a.e. x P tx P Rd : |x| ě R̄u,

(IV.6.75)
almost surely for all t P r0, T s.
(ii) There exists a unique Lp-solution u “ putqtPr0,T s to equation (IV.3.8) with
initial condition u0 “ ψ, such that almost surely utpxq “ 0 for dx-almost every
x P tx P Rd : |x| ě R̄u for every t P r0, T s and

E sup
tPr0,T s

|ut|
p
Lp
ď NE|ψ|pLp

(IV.6.76)
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with a constant N “ Npd, p, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q.
(iii) If pεnq

8
n“1 Ă p0, ε0q such that εÑ 0 then we have

uεn Ñ u weakly in Lp,q, for every integer q ě 1.

Proof. To prove (i), we look for a Wm
p -valued weakly cadlag Ft-adapted process

puεtqtPr0,T s such that for each ϕ P C80 almost surely

puεt , ϕq “pψ
pεq, ϕq `

ż t

0

pL̃ε˚s uεs, ϕq ds`
ż t

0

pMεk˚
s uεs, ϕq dV

k
s

`

ż t

0

ż

Z0

pJη
ε˚

s uεs, ϕq ν0pdzq ds`

ż t

0

ż

Z1

pJξ
ε˚
s uεs, ϕq ν1pdzq ds

`

ż t

0

ż

Z1

pIξ
ε˚
s uεs, ϕq Ñ1pdz, dsq, (IV.6.77)

holds for all t P r0, T s, where by virtue of (IV.6.63)

Iξ
ε˚
s “ Iξ

ε˚
s `cξ

ε
sT ξ

ε˚
s , Jξ

ε˚
s “ Jξ

ε˚

s `cξ
ε
sIξ

ε˚
s `pξε˚is `ξpεqis qDi` c̄ξ

ε
t`Dipξ

ε˚i
s `ξpεqis q,

Jη
ε˚

s “ Jη
ε˚

s ` cη
ε
t Iη

ε˚
s ` pηε˚is ` ηpεqis qDi ` c̄η

ε
s `Dipη

ε˚i
s ` ηpεqis q, (IV.6.78)

with the functions

ηε˚t pxq “ ´x` pτ
ηεt q

´1
pxq, ξε˚t pxq “ ´x` pτ

ξεt q
´1
pxq,

cξ
ε
t pxq “ | detDpτ ξ

ε
t q
´1
pxq| ´ 1, cη

ε
t pxq “ | detDpτ η

ε
t q
´1
pxq| ´ 1,

c̄ξ
ε
t pxq “| detDpτ ξ

ε
t q
´1
pxq| ´ 1´Diξ

ε˚i
t pxq,

c̄η
ε
t pxq “| detDpτ η

ε
t q
´1
pxq| ´ 1´Diη

ε˚i
t pxq x P Rd, (IV.6.79)

and clearly,
Mε˚k

s φ “ ´Dipρ
pεqik
s φq `Bpεqks φ,

L̃ε˚s φ “ Dijpa
ε,ij
s φq ´Dipb

pεqi
s φq ´ βksDipρ

pεqik
s φq ` βksB

pεqk
s φ for φ P Wm

p .

Note that by Assumption IV.2.1(i) together with Assumption IV.2.4(i) & (ii),
for each ω P Ω, t P r0, T s and zi P Zi, i “ 0, 1, the mappings

τ ηpxq “ x` ηtpx, z0q, and τ ξpxq “ x` ξtpx, z1q

are biLipschitz and continuously differentiable as functions of x P Rd. Hence, as
biLipschitz functions admit Lipschitz continuous inverses, it is easy to see that
for each ω P Ω, t P r0, T s and zi P Zi, i “ 0, 1,

λ1 ď inf
xPRd

| detDτ ηpxq|, and λ1 ď inf
xPRd

| detDτ ξpxq|
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for some λ1 “ λ1pd, λ, L,Kη, Kξq. Due to Assumption IV.2.4 (i) by virtue of
Corollary IV.6.3 there is ε0 P p0, 1q such that for ε P p0, ε0q the functions τ η

ε
t and

τ ξ
ε
t , defined in (IV.6.73), are C8-diffeomorphisms on Rd for all ω P Ω, t P r0, T s

and zi, i “ 0, 1. Moreover, the functions defined in (IV.6.79) are infinitely
differentiable functions in x P Rd, for all t P r0, T s and zi P Zi, i “ 0, 1.

Hence we can easily verify that for each ε P p0, ε0q equation (IV.6.72) satisfies
the conditions of the existence and uniqueness theorem, Theorem 2.1 in [23].
Hence (IV.6.72) has a unique Lp-solution puεtqtPr0,T s which is weakly cadlag as
Wm
p -valued process and satisfies the first equation in (IV.6.75), for every m ě 1.

Due to the support condition (IV.6.74) and that |ξ| ď K0Kξ, |η| ď K0Kη, there
is a constant R̄ “ R̄pR,K0, K,Kξ, Kηq such that for ε P p0, ε0q and s P r0, T s we
have

L̃εsϕ “Mεk
s ϕ “ Iξ

ε

s ϕ “ Jξ
ε

s ϕ “ Jη
ε

s ϕ “ 0, k “ 1, 2, ..., d1,

for all ϕ P C80 such that ϕpxq “ 0 for |x| ď R̄. Thus from equation (IV.6.77) we
get that almost surely

puεt , ϕq “ 0 for all ϕ P C80 such that ϕpxq “ 0 for |x| ď R̄

for all t P r0, T s, which implies

uεt “ 0 for dx-almost every x P tx P Rd, |x| ě R̄} for all t P r0, T s (IV.6.80)

for each ε P p0, ε0q. To prove (ii) and (iii), note first that

sup
tPr0,T s

|uεt |L1 ď R̄dpp´1q{p sup
tPr0,T s

|uεt |Lp ă 8 (a.s.).

It is not difficult to see that σ
pεq
t , ρ

pεq
t , b

pεq
t and B

pεq
t are bounded and Lipschitz

continuous in x P Rd, uniformly in ω P Ω, t P r0, T s and ε P p0, ε0q. Moreover,
for ε P p0, ε0q

|η
pεq
t px, z0q| ď K0ξ̄pz0q, |ξ

pεq
t px, z1q| ď K0ξ̄pz1q,

|η
pεq
t px, z0q ´ η

pεq
t py, z0q| ď η̄pz0q|x´ y|, |ξ

pεq
t px, z1q ´ ξ

pεq
t py, z1q| ď ξ̄pz1q|x´ y|,

for all x, y P Rd, ω P Ω, t P r0, T s, zi P Zi, i “ 0, 1. Hence by Lemma IV.5.5 for
ε P p0, ε0q we have

E|uεT |
p
Lp
` E

´

ż T

0

|uεt |
q
Lp
dt
¯p{q

ď E|uεT |
p
Lp
` T p{qE sup

tPr0,T s

|uεt |
p
Lp
ď NE|ψ|pLp

(IV.6.81)
for all q ě 1 with a constant N “ Npd, p, T,K,Kξ, Kη, R, |η̄|L2 , |ξ̄|L2q. By virtue
of (IV.6.81) there exists a sequence εn Ó 0 such that uεn converges weakly in Lp,q
to some ū P Lp,q for every integer q ą 1 and uεnT converges weakly to some g
in LppFT q, the space of Lp-valued FT -measurable random variables Z with the
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norm pE|Z|pLp
q1{p ă 8. From (IV.6.81) we get

E|g|pLp
` |ū|pLp,q

ď NE|ψ|pLp
for every integer q ą 1 (IV.6.82)

with the constant N in (IV.6.81). Taking εn in place of ε in equation (IV.6.77)
then multiplying both sides of the equation with an Ft-optional bounded process
φ and integrating over Ωˆ r0, T s against P b dt we obtain

F puεnq “ F pψεnq `
5
ÿ

i“1

F εn
i pu

εnq, (IV.6.83)

where F and F ε
i are linear functionals over Lp,q, defined by

F pvq :“ E
ż T

0

φtpvt, ϕq dt, F ε
1 pvq :“ E

ż T

0

φt

ż t

0

pvs, L̃εsϕq ds dt,

F ε
2 pvq :“ E

ż T

0

φt

ż t

0

pvs,Mεk
s ϕq dV

k
s dt,

F ε
3 pvq :“ E

ż T

0

φt

ż t

0

ż

Z0

pvs, J
ηε

s ϕq ν0pdzqds dt,

F ε
4 pvq :“ E

ż T

0

φt

ż t

0

ż

Z1

pvs, J
ξε

s ϕq ν1pdzqds dt,

F ε
5 pvq :“ E

ż T

0

φt

ż t

0

ż

Z1

pvs, I
ξε

s ϕq Ñ1pdz, dsq dt

for a fixed ϕ P C80 . Define also Fi as F ε
i for i “ 1, 2, ..., 5, with L̃s, Mk

s , J
η
s , Jξs

and Iξs in place of L̃εs, Mεk
s , Jη

ε

s , Jξ
ε

s and Iξ
ε

s , respectively. It is an easy exercise
to show that F and Fi and F ε

i , i “ 1, 2, 3, 4, 5 are continuous linear functionals
on Lp,q for all q ą 1 such that

lim
εÓ0

sup
|v|Lp,q“1

|Fipvq ´ F
ε
i pvq| “ 0 for every q ą 1.

Since uεn converges weakly to ū in Lp,q, and F εn
i converges strongly to Fi in

L˚p,q, the dual of Lp,q, we get that F εn
i pu

εnq converges to Fipūq for i “ 1, 2, 3, 4, 5.
Therefore letting ε Ó 0 in (IV.6.83) we obtain

E
ż T

0

φtpūt, ϕq dt “ E
ż T

0

φtpψ, ϕq dt` E
ż T

0

φt

ż t

0

pūs, L̃sϕq ds dt

` E
ż T

0

φt

ż t

0

pūs,Mk
sϕq dV

k
s dt` E

ż T

0

φt

ż t

0

ż

Z0

pūs, J
η
sϕq ν0pdzqds dt (IV.6.84)
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`E
ż T

0

φt

ż t

0

ż

Z1

pūs, J
ξ
sϕq ν1pdzqds dt` E

ż T

0

φt

ż t

0

ż

Z1

pūs, I
ξ
sϕq Ñ1pdz, dsq dt.

Since this equation holds for all bounded Ft-optional processes φ “ pφtqtPr0,T s and
functions ϕ P C80 we conclude that ū is a Vp-solution to (IV.3.8). Letting nÑ 8

in equation (IV.6.77) after taking εn in place of ε, T in place of t, multiplying
both sides of the equation with an arbitrary FT -measurable bounded random
variable ρ and taking expectation we get

Eρpg, ϕq “ Eρpψ, ϕq ` Eρ
ż T

0

pūs, L̃sϕq ds

`Eρ
ż T

0

pūs,Mk
sϕq dV

k
s ` Eρ

ż t

0

ż

Z0

pūs, J
η
sϕq ν0pdzqds

`Eρ
ż T

0

ż

Z1

pūs, J
ξ
sϕq ν1pdzqds` Eρ

ż T

0

ż

Z1

pūs, I
ξ
sϕq Ñ1pdz, dsq,

which implies that almost surely

pg, ϕq “ pψ, ϕq `

ż T

0

pūs, L̃sϕq ds`
ż T

0

pūs,Mk
sϕq dV

k
s

`

ż T

0

ż

Z0

pūs, J
η
sϕq ν0pdzqds`

ż T

0

ż

Z1

pūs, J
ξ
sϕq ν1pdzqds`

ż T

0

ż

Z1

pūs, I
ξ
sϕq Ñ1pdz, dsq.

Letting q Ñ 8 in (IV.6.82) we get

E ess sup
tPr0,T s

|ūt|
p
Lp
ď NE|ψ|pLp

ă 8.

Consequently, by virtue of Lemma IV.5.8 we get the existence of a P b dt-
modification u of ū, which is an Lp-solution to (IV.3.8), and hence

E sup
tPr0,T s

|ut|
p
Lp
ď NE|ψ|pLp

. (IV.6.85)

By (IV.6.80) almost surely ut “ 0 for dx-almost every x P tx P Rd : |x| ě R̄u,
for all t P r0, T s, which due to (IV.6.85) by Hölder’s inequality implies

E sup
tPr0,T s

|ut|L1 ď NR̄dpp´1q{pE|ψ|Lp ă 8.

Hence by (IV.5.50) in Lemma IV.5.5 the uniqueness of the Lp-solution follows,
which completes the proof of the lemma.

Corollary IV.6.5. Let Assumptions IV.2.1, IV.2.2 and IV.2.4 hold with K1 “

0. Assume, moreover, that the“support condition” (IV.6.74) holds for some R ą
0. Then for every p ě 2 there is a linear operator S defined on Lp such that Sψ
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admits a P b dt-modification u “ putqtPr0,T s which is an Lp-solution to equation
(IV.3.8) for every ψ P Lp, with initial condition u0 “ ψ, and

E sup
tPr0,T s

|ut|
p
Lp
ď NE|ψ|pLp

(IV.6.86)

with a constant N “ Npd, p, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q. Moreover, if ψ P Lp
such that almost surely ψpxq “ 0 for |x| ě R, then there is a constant R̄ “

R̄pR,K,K0, Kξ, Kηq such that almost surely utpxq “ 0 for dx-a.e. x P tx P Rd :
|x| ě R̄u for all t P r0, T s.

Proof. If p is an even integer, then the corollary follows from Lemma IV.6.4.
Assume p is not an even integer. Then let p0 be the greatest even integer
such that p0 ď p and let p1 be the smallest even integer such that p ď p1. By
Lemma IV.6.4 there are linear operators S and ST defined on B0 such that Sψ :“
putqtPr0,T s is the unique Lpi-solution of equation (IV.3.8) with initial condition
u0 “ ψ P B0 and STψ “ uT . for i “ 0, 1. Moreover, by (IV.6.76) we have

|STψ|Lpi
` |Sψ|Lpi,q

ď N |ψ|Lpi
for i “ 0, 1

for every q P r1,8q with a constant N “ Npd, p, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q.
Hence by a well-known generalization of the Riesz-Thorin interpolation theorem
we have

|STψ|Lp ď N |ψ|Lp , |Sψ|Lp,q ď N |ψ|Lp for every q P r1,8q, (IV.6.87)

for ψ P B0 with a constant N “ Npd, p, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q. Assume
ψ P Lp. Then there is a sequence pψnq8n“1 Ă B0 such that ψn Ñ ψ in Lp and
un “ Sψn has a P b dt-modification, again denoted by un “ punt qtPr0,T s which is
an Lp-solution for every n with initial condition un0 “ ψn. In particular, for each
ϕ P C80 almost surely

punt , ϕq “pψ
n, ϕq `

ż t

0

puns , L̃sϕq ds`
ż t

0

puns ,Mk
sϕq dV

k
s `

ż t

0

ż

Z0

puns , J
η
sϕq ν0pdzq ds

`

ż t

0

ż

Z1

puns , J
ξ
sϕq ν1pdzq ds`

ż t

0

ż

Z1

puns , I
ξ
sϕq Ñ1pdz, dsq, (IV.6.88)

holds for all t P r0, T s. By virtue of (IV.6.87) un converges in Lp,q to some ū P Lp,q
for every q ą 1, and unT converges in Lp to some g P Lp. Hence, letting n Ñ 8

in equation (IV.6.88) (after multiplying both sides of it with any bounded Ft-
optional process φ “ pφtqtPr0,T s and integrating it over Ωˆ r0, T s against P b dt)
we can see that ū is a Vp-solution such that (IV.6.87) holds. Letting n Ñ 8 in
equation (IV.6.88) with t :“ T (after multiplying both sides with an arbitrary
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FT -measurable bounded random variable ρ and taking expectation) we get

Eρpg, ϕq “ Eρpψ, ϕq ` Eρ
ż T

0

pūs, L̃sϕq ds` Eρ
ż T

0

pūs,Mk
sϕq dV

k
s

`Eρ
ż T

0

ż

Z0

pūs, J
η
sϕq ν0pdzq ds` Eρ

ż T

0

ż

Z1

pūs, J
ξ
sϕq ν1pdzq ds

`Eρ
ż T

0

ż

Z1

pūs, I
ξ
sϕq Ñ1pdz, dsq,

which implies

pg, ϕq “ pψ, ϕq `

ż T

0

pūs, L̃sϕq ds`
ż T

0

pūs,Mk
sϕq dV

k
s

`

ż T

0

ż

Z0

pūs, J
η
sϕq ν0pdzq ds`

ż T

0

ż

Z1

pūs, J
ξ
sϕq ν1pdzq ds

`

ż T

0

ż

Z1

pūs, I
ξ
sϕq Ñ1pdz, dsq pa.s.q.

Letting q Ñ 8 in (IV.6.87) we get

E ess sup
tPr0,T s

|ūt|
p
Lp
ď N |ψ|pLp

.

Hence by virtue of Lemma IV.5.8 the process ū has a P b dt modification
u “ putqtPr0,T s which is an Lp-solution to equation (IV.3.8) and (IV.6.86) holds.
Finally the last statement of the corollary about the compact support of u can be
proved in the same way as it was shown for uε in the proof of Lemma IV.6.4.

IV.7 Proof of Theorem IV.2.1

To prove Theorem IV.2.1 we want to show that for p ě 2 equation (IV.3.8) has
an Lp-solution which we can identify as the unnormalised conditional density of
the conditional distribution of Xt given the observation tYs : s ď tu. To this end
we need some lemmas. To formulate the first one, we recall that Wm

p denotes
the space of Wm

p -valued F0-measurable random variables Z such that

|Z|pWm
p
“ E|Z|pWm

p
ă 8.

Lemma IV.7.1. Let pX, Y q be an F0-measurable Rd`d1-valued random variable
such that the conditional density π “ P pX P dx|Y q{dx exists. Assume pΩ,F0, P q
is “rich enough” to carry an Rd-valued random variable ζ which is independent
of pX, Y q and has a smooth probability density g supported in the unit ball centred
at the origin. Then there exists a sequence of F0-measurable random variables
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pXnq
8
n“1 such that the conditional density πn “ P pXn P dx|Y q{dx exists, almost

surely πnpxq “ 0 for |x| ě n` 1 for each n,

lim
nÑ8

Xn “ X for every ω P Ω,

and, if π PWm
p for some p ě 1, m ě 0, then πn PWm

p for every n ě 1, and

lim
nÑ8

|πn ´ π|Wm
p
“ 0.

Moreover, for every n ě 1 we have

E|Xn|
q
ď Np1` E|X|qq for every q P p0,8q

with a constant N depending only on q.

Proof. For ε P p0, 1q define

Xε
k :“ X1|X|ďk ` εζ for integers n ě 1.

Let gε denote the density function of εζ, and let µk be the regular conditional
distribution of Zk :“ X1|X|ďk given Y . Then

µ
pεq
k pxq “

ż

Rd

gεpx´ yqµkpdyq and πpεqpxq “

ż

Rd

gεpx´ yqπpyqdy, x P Rd,

are the conditional density functions of Xε
k and X ` εζ, given Y , respectively.

Clearly, if π PWm
p , then µ

pεq
k and πpεq belong to Wm

p for every k and ε. Moreover,
by Fubini’s theorem, for each multi-index α “ pα1, . . . , αdq, such that 0 ď |α| ď
m we have

|Dαµ
pεq
k ´Dαπpεq|pLp

“ E
ż

Rd

ˇ

ˇ

ˇ

ż

Rd

Dαgεpx´ yqµkpdyq´

ż

Rd

Dαgεpx´ yqπpyqdy
ˇ

ˇ

ˇ

p

dx

(IV.7.1)

“

ż

Rd

E
ˇ

ˇ

ˇ

ż

Rd

Dαgεpx´ yqµkpdyq ´

ż

Rd

Dαgεpx´ yqπpyqdy
ˇ

ˇ

ˇ

p

dx

“

ż

Rd

E
ˇ

ˇEpDαgεpx´ Zkq ´D
αgεpx´Xq|Y q

ˇ

ˇ

p
dx

ď

ż

Rd

E
ˇ

ˇDαgεpx´Zkq´D
αgεpx´Xq

ˇ

ˇ

p
dx “ E

ż

Rd

ˇ

ˇDαgεpx´Zkq´D
αgεpx´Xq

ˇ

ˇ

p
dx,

where the inequality is obtained by an application of Jensen’s inequality. Clearly,
for every 0 ď |α| ď m,

ż

Rd

ˇ

ˇDαgεpx´Zkq´D
αgεpx´Xq

ˇ

ˇ

p
dx ď 2p|gε|

p
Wm

p
ă 8 for every ω P Ω and k ě 1.
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Hence by Lebesgue’s theorem on dominated convergence, for each 0 ď |α| ď m,

lim
kÑ8

E
ż

Rd

ˇ

ˇDαgεpx´ Zkq ´D
αgεpx´Xq

ˇ

ˇ

p
dx

“ E lim
kÑ8

ż

Rd

ˇ

ˇDαgεpx´ Zkq ´D
αgεpx´Xq

ˇ

ˇ

p
dx “ 0.

Consequently, by virtue of (IV.7.1) we have limkÑ8 |µ
pεq
k ´ πpεq|Wm

p
“ 0 for every

ε P p0, 1q. Since almost surely |πpεq ´ π|Wm
p
Ñ 0 as ε Ó 0, and |πpεq ´ π|Wm

p
ď

2|π|Wm
p

for every ω P Ω, we have limεÓ0 |π
pεq ´ π|Wm

p
“ 0 by Lebesgue’s theorem

on dominated convergence. Hence there is a sequence of positive integers kn Ò 8
such that for πn :“ µ

p1{nq
kn

we have limnÑ8 |πn´π|Wm
p
“ 0. Clearly, for Xn :“ Xεn

kn

with εn “ 1{n we have limnÑ8Xn “ X for every ω P Ω. Moreover, for every
integer n ě 1

E|Xn|
q
ď N

`

E|X1|X|ďkn |
q
` εqnE|ζ|q

˘

ď NpE|X|q ` 1q for q P p0,8q

with a constant N “ Npqq, which completes the proof of the lemma.

To formulate our next lemma let χ be a smooth function on R such that
χprq “ 1 for r P r´1, 1s, χprq “ 0 for |r| ě 2, χprq P r0, 1s and χ1prq “ d

dr
χprq P

r´2, 2s for all r P R.

Lemma IV.7.2. Let b “ pbiq be an Rd-valued function on Rm such that for a
constant L

|bpvq ´ bpzq| ď L|v ´ z| for all v, z P Rm. (IV.7.2)

Then for bnpzq “ χp|z|{nqbpzq, z P Rm, for integers n ě 1 we have

|bnpzq| ď 2nL`|bp0q|, |bnpvq´ bnpzq| ď p5L`2|bp0q|q|v´ z| for all v, z P Rm.
(IV.7.3)

Proof. We leave the proof as an easy exercise for the reader.

We will truncate the coefficients ξ and η of the system‘ (I.0.2) by the help of
the following lemma, in which for each fixed R ą 0 and ε ą 0 we use a function
κRε defined on Rd by

κRε pxq “

ż

Rd

φRε px´ yqkpyq dy, (IV.7.4)

φRε pxq “

$

’

&

’

%

1, |x| ď R ` 1,

1` ε log
`

R`1
|x|

˘

, R ` 1 ă |x| ă pR ` 1qe1{ε,

0, |x| ě pR ` 1qe1{ε,

where k is a nonnegative C8 mapping on Rd with support in tx P Rd : |x| ď 1u
and unit integral. Notice that κRε P C

8
0 for each R, ε ą 0, such that if x, y P Rd
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and |y| ď |x|, then

|φRε pxq ´ φ
R
ε pyq| ď

ε|x´ y|

maxpR, |y|q
,

and hence

|κRε pxq´κ
R
ε pyq| ď

ż

Rd

|φRε px´uq´φ
R
ε py´uq|kpuq du ď

ε|x´ y|

maxpR, |y| ´ 1q
. (IV.7.5)

Lemma IV.7.3. Let ξ : Rd ÞÑ Rd be such that for a constant L ě 1 and for
every θ P r0, 1s the function τθpxq “ x` θξpxq is L-biLipschitz, i.e.,

L´1
|x´ y| ď |τθpxq ´ τθpyq| ď L|x´ y| (IV.7.6)

for all x, y P Rd. Then for any M ą L and any R ą 0 there is an ε “
εpL,M,R, |ξp0q|q ą 0 such that with κR :“ κRε the function ξR :“ κRξ van-
ishes for |x| ě R̄ for a constant R̄ “ R̄pL,M,R, |ξp0q|q ą R, |ξR| is bounded by
a constant N “ NpL,M,R, |ξp0q|q, and for every θ P r0, 1s the mapping

τRθ pxq “ x` θξRpxq, x P Rd

is M-biLipschitz.

Proof. To show τRθ is M -biLipschitz, we first note that if x, y P Rd with |x| ě
|y| then τRθ pxq ´ τRθ pyq “ A ` B where A “ τθκRpxqpxq ´ τθκRpxqpyq and B “

θξpyqpκRpxq ´ κRpyqq. The biLipschitz hypothesis (IV.7.6), with θ replaced by
θκRpxq, implies L´1|x ´ y| ď |A| ď L|x ´ y|. Due to (IV.7.5) and since ξ has
linear growth, we can choose a sufficiently small ε “ εpL,M,R, |ξp0q|q to get
|B| ă pL´1 ´M´1q|x´ y| and hence

M´1
|x´ y| ď |τRθ pxq ´ τ

R
θ pyq| ďM |x´ y|

as required. Finally the boundedness of |ξR| follows from the fact that it vanishes
for |x| ą Re1{ε and that ξ has linear growth.

Remark IV.7.1. Note that if τ is a continuously differentiable L-biLipschitz func-
tion on Rd then

L´d ď | detpDτpxqq| ď Ld for x P Rd.

Proof. This remark must be well-known, since for d “ 1 it is obvious, and for
d ą 1 it can be easily shown by using the singular value decomposition for the
matrices Dτ , Dτ´1, or by applying Hadamard’s inequality to their determinants.

Proof of Theorem IV.2.1. The proof is structured into three steps. First we
prove the theorem for the case where p “ 2. As second step we prove the results
for all p ě 2 for compactly supported coefficients and compactly supported initial
conditional densities. The third step then involves an approximation procedure
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to obtain the desired results for coefficients and initial conditional densities with
unbounded support.
Step I: Let Assumptions IV.2.1, IV.2.2 and IV.2.4 hold. Then by Theorem
III.1.1, the process pPtqtPr0,T s of the regular conditional distribution Pt of Xt

given FY
t , and µ “ pµtqtPr0,T s “ pPtp

oγtq
´1qtPr0,T s, the “unnormalised” (regular)

conditional distribution process, are measure-valued weakly cadlag processes,
and µ is a measure-valued solution to equation (IV.3.3). (Note that poγtqtPr0,T s
is the positive normalising process which we recall in IV.3.6.) Assume that
u0 :“ P pX0 P dx|Y0q{dx exists almost surely such that E|u0|

p
Lp
ă 8 for p “ 2.

In order to apply Lemma IV.5.7 if K1 ‰ 0, we need to verify that

Gpµq “ sup
tPr0,T s

ż

Rd

|x|2 µtpdxq ă 8 almost surely. (IV.7.7)

For integers k ě 1 let Ωk :“ r|Y0| ď ks P FY
0 . Then Ωk Ò Ω as k Ñ 8. Taking

r ą 2 from Assumption IV.2.3, by Doob’s inequality, and by Jensen’s inequality
for optional projections we get

E sup
tPr0,T s

`

Ep|Xt|
21Ωk

|FY
t q

˘r{2
ď E sup

tPr0,T s

`

Ep sup
sPr0,T s

|Xs|
21Ωk

|FY
t q

˘r{2

ď NE
`

Ep sup
sPr0,T s

|Xs|
21Ωk

|FY
T q

˘r{2
ď NE sup

sPr0,T s

|Xs|
r1Ωk

,

for all k with a constant N depending only on r. Thus, by Fubini’s theorem and
Hölder’s inequality, if K1 ‰ 0, for all k we have

Gkpµq :“ E sup
tPr0,T s

ż

Rd

|x|2µtpdxq1Ωk

“ E sup
tPr0,T s

Ep|Xt|
2
|FY

t qp
oγtq

´11Ωk
“ E sup

tPr0,T s

Ep|Xt|
21Ωk

|FY
t qp

oγq´1
t

ď E sup
tPr0,T s

Ep|Xt|
21Ωk

|FY
t q sup

tPr0,T s

p
oγq´1

t

ď
`

E sup
tPr0,T s

`

Ep|Xt|
21Ωk

|FY
t q

˘r{2˘2{r`E sup
tPr0,T s

p
oγtq

´r1
˘1{r1

ď N
`

E sup
tPr0,T s

|Xt|
r1Ωk

˘2{r
,

where 2{r` 1{r1 “ 1, N “ Npr, d, Cq is a constant, and we use that by Jensen’s
inequality for optional projections and the boundedness of |B|

E sup
tPr0,T s

p
oγtq

´r1
ď E sup

tPr0,T s

γ´r
1

t :“ C ă 8 (IV.7.8)

with a constant C only depending on the bound in magnitude of |B| and r.
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Hence, using (IV.2.1) with q “ r we have

Gkpµq ď N
`

1` E sup
tPr0,T s

|Xt|
r1Ωk

˘

ď N 1
`

kr ` E|X0|
r
˘

ă 8,

for constantN “ Npr, d, Cq andN 1 “ N 1pd, d1, r,K,K0, K1, Kξ, Kη, T, |ξ̄|L2 , |η̄|L2q.
Since for all k ě 1 we have that Gkpµq ă 8 we can conclude that (IV.7.7) holds.
Hence, by Lemma IV.5.7, almost surely dµt{dx exists, and there is an L2-valued
weakly cadlag stochastic process putqtPr0,T s such that almost surely ut “ dµt{dx
for all t P r0, T s and

E sup
tPr0,T s

|ut|
2
L2
ď NE|π0|

2
L2

(IV.7.9)

for every T with a constant N “ Npd, d1, K,Kξ, Kη, L, T, |ξ̄|L2 , |η̄|L2 , λq. Thus
πt “ dPt{dx “ ut

oγt, t P r0, T s, is an L2-valued weakly cadlag process, which
proves Theorem IV.2.1 for p “ 2.
Step II. Let the assumptions of Theorem IV.2.1 hold withK1 “ 0 in Assumption
IV.2.1. Assume that π0 “ P pX0 P dx|Y0q{dx P Lp for some p ą 2, such that
almost surely u0pxq “ 0 for |x| ě R for a constant R. Assume moreover, that
the support condition (IV.6.74) holds. Then by Corollary IV.6.5 there is an
Lp-solution pvtqtPr0,T s to (IV.3.8) with initial condition v0 “ π0 such that

E sup
tPr0,T s

|vt|
p
Lp
ď NE|ψ|pLp

(IV.7.10)

with a constant N “ Npd, d1, K, L,Kξ, Kη, T, p, λ, |ξ̄|L2 , |η̄|L2q, and almost surely

vtpxq “ 0 for dx-a.e. x P tx P Rd : |x| ě R̄u for all t P r0, T s

with a constant R̄ “ R̄pR,K,K0, Kξ, Kηq. Hence pvtqtPr0,T s is also an L2-solution
to equation (IV.3.8), and clearly,

sup
tPr0,T s

|vt|L1 ď R̄dpp´1q{p sup
tPr0,T s

|vt|Lp ă 8.

Since in particular E|π0|
2
L2
ă 8, by Step I there is an L2-solution putqtPr0,T s to

equation (IV.3.8) such that almost surely ut “ dµt{dx for all t P r0, T s, where
µt “ Ptp

oγtq
´1 is the unnormalised (regular) conditional distribution of Xt given

FY
t . Clearly,

sup
tPr0,T s

|ut|L1 “ sup
tPr0,T s

p
oγtq

´1
ă 8pa.s.q.

Hence by virtue of (IV.5.50) in Lemma IV.5.5 we obtain suptPr0,T s |ut´ vt|L2 “ 0
(a.s.), which completes the proof of Theorem IV.2.1 under the additional as-
sumptions of Step II.
Step III. Finally, we dispense with the assumption that the coefficients and
the initial condition are compactly supported, and that K1 “ 0 in Assumption
IV.2.1. Define the functions bn “ pbnipt, zqq, Bn “ pBnjpt, zqq, σn “ pσnijpt, zqq,
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ηn “ pηnipt, z, z0qq and ξn “ pξnipt, z, z1qq by

pbn, Bn, σn, ρnq “ pb, B, σ, ρqχn, pηn, ξnq “ pη, ξqχ̄n

for every integer n ě 1, where χnpzq “ χp|z|{nq and χ̄npx, yq “ κnpxqχp|y|{nq,
with χ defined before Lemma IV.7.2 and with κn stemming from Lemma IV.7.3
applied to ξ and η as functions of x P Rd. By Lemma IV.7.2, Assumptions
IV.2.1 and IV.2.2 hold for bn, Bn, σn, ρn, ηn and ξn, in place of b, σ, ρ,
η and ξ, respectively, with K1 “ 0 and with appropriate constants K 1

0 “

K 1
0pn,K,K0, K1, Kη, Kξ, Lqq and L1 “ L1pK,K0, K1, L,Kξ, Kηq in place of K0

and L. Moreover, by Lemma IV.7.3, Assumption IV.2.4 is satisfied with a con-
stant λ1 “ λ1pK0, K1, Kξ, Kη, λq in place of λ. Since π0 “ P pX0 P dx|Y0q{dx P Lp
for p ą 2 by assumption (the case p “ 2 was proved in Step I) and clearly
π0 P L1, by Hölder’s inequality we have

|π0|L2 ď |π0|
1´θ
L1
|π0|

θ
Lp
ă 8 with θ “ p

2pp´1q
P p0, 1q.

Thus by Lemma IV.7.1 there exists a sequence pXn
0 q
8
n“1 of F0-measurable random

variables such that the conditional density πn0 “ P pXn
0 P dx|FY

0 q{dx exists,
πn0 pxq “ 0 for |x| ě n` 1 for every n, limnÑ8X

n
0 “ X0 for every ω P Ω,

lim
nÑ8

|πn0 ´ π0|Lr “ 0 for r “ 2, p, (IV.7.11)

and
E|Xn

0 |
q
ď Np1` E|X0|

q
q for any q ą 0

with a constant N “ Npqq. Let pXn
t , Y

n
t qtPr0,T s denote the solution of equation

(I.0.2) with initial value pXn
0 , Y0q and with bn, σn, ρn, ξn, ηn and Bn in place of

b, σ, ρ, ξ, η and B. Define the random fields,

bnt pxq “ bnpt, x, Y n
t´q, σnt pxq “ σnpt, x, Y n

t´q,

ρnt pxq “ σnpt, x, Y n
t´q, Bn

t pxq “ Bn
pt, x, Y n

t´q

ηnt px, z0q “ ηnpt, x, Y n
t´, z0q, ξnt px, z1q “ ξnpt, x, Y n

t´, z1q, βnt “ Bn
pt,Xn

t , Y
n
t´q

(IV.7.12)
for ω P Ω, t ě 0, x P Rd, zi P Zi, i “ 0, 1. Consider the equation

dunt “L̃n˚t unt dt`Mnk˚
t unt dV

k
t `

ż

Z0

Jη
n˚

t unt ν0pdzqdt

`

ż

Z1

Jξ
n˚
t unt ν1pdzqdt`

ż

Z1

Iξ
n˚
t unt Ñ1pdz, dtq, with un0 “ πn0 , (IV.7.13)

where for each fixed n and k “ 1, 2, ..., d1

L̃nt :“ anijt Dij ` b
ni
t Di ` β

nk
t ρnikt Di ` β

nk
t Bnk

t , Mnk
t :“ ρnikt Di `B

nk
t ,
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anijt :“ 1
2

ÿ

k

σnikt σnjkt ` 1
2

ÿ

k

ρnikt ρnjkt , βnt :“ Bn
pt,Xn

t´, Y
n
t´q, i, j “ 1, 2, ..., d,

the operators Jη
n

t and Jξ
n

t are defined as Jξt in (IV.3.1) with ηnt and ξnt in place
of ηt and ξt, respectively, and the operator Iξ

n

t is defined as Iξt in (IV.3.1) with
ξnt in place of ξt. For each n let γn denote the solution to dγnt “ ´γnt β

n
t dVt,

γn0 “ 1. By virtue of Step II (IV.7.13) has an Lp-solution un “ punt qtPr0,T s, which
is also its unique L2-solution, i.e., for each ϕ P C80 almost surely

punt , ϕq “pπ
n
0 , ϕq `

ż t

0

puns , L̃nsϕq ds`
ż t

0

puns ,Mnk
s ϕq dV

k
s `

ż t

0

ż

Z0

puns , J
ηn

s ϕq ν0pdzqds

`

ż t

0

ż

Z1

puns , J
ξn

s ϕq ν1pdzqds`

ż t

0

ż

Z1

puns , I
ξn

s ϕq Ñ1pdz, dsq (IV.7.14)

for all t P r0, T s. Moreover, almost surely unt “ dµnt {dx for all t P r0, T s, where
µnt “ P n

t p
oγnt q

´1 is the unnormalised conditional distribution, P n
t is the regular

conditional distribution of Xn
t given FY n

t , and oγn denotes the FY n

t -optional
projection of γn under P . Furthermore, for sufficiently large n we have

E sup
tPr0,T s

|unt |
r
Lr
ď N |πn0 |Lr ď N |π0|Lr for r “ p, 2 (IV.7.15)

with a constant N “ Npd, d1, p,K,Kξ, Kη, L, T, |ξ̄|L2 , |η̄|L2 , λq, which together
with (IV.7.11) implies

sup
ně1
p|unT |Lr ` |u

n
|Lr,qq ă 8 for r “ 2, p and every q ą 1.

Hence there exist a subsequence, denoted again by punq8n“1, ū P
Ş8

q“2 Lr,q and
g P Lr for r “ 2, p such that

un Ñ ū weakly in Lr,q for r “ p, 2 and all integers q ą 1, (IV.7.16)

and
unT Ñ g weakly in Lr for r “ p, 2. (IV.7.17)

One knows, see e.g. [20], that pXn
t , Y

n
t qtě0 converges to pXt, Ytqtě0 in probability,

uniformly in t in finite intervals. Hence it is not difficult to show (see Lemma
3.8 in [21]) that there is a subsequence of Y n, denoted for simplicity also by Y n,
and there is an Ft-adapted cadlag process pUtqtPr0,T s, such that almost surely
|Y n
t | ` |Yt| ď Ut for every t P r0, T s and integers n ě 1. For every integer m ě 1

define the stopping time

τm “ inftt P r0, T s : Ut ě mu

To show that ū is a Vr-solution for r “ p, 2 to (IV.3.8) with initial condition
u0 “ π0, we pass to the limit un Ñ ū in equation (IV.7.14) in a similar way
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to that as we passed to the limit uεn Ñ ū in equation (IV.6.77) in the proof of
Lemma IV.6.4. We fix an integer m ě 1 and multiply both sides of (IV.7.14)
with pφt1tďτmqtPr0,T s, where pφtqtPr0,T s is an arbitrary bounded Ft-optional process
φ “ pφtqtPr0,T s. Then we integrate both sides of the equation we obtained over
Ωˆ r0, T s against P b dt to get

F punq “ F pπn0 q `
5
ÿ

i“1

F n
i pu

n
q, (IV.7.18)

where F and F n
i are linear functionals over Lr,q, defined by

F pvq :“ E
ż T^τm

0

φtpvt, ϕq dt, F n
1 pvq :“ E

ż T^τm

0

φt

ż t

0

pvs, L̃nsϕq ds dt,

F n
2 pvq :“ E

ż T^τm

0

φt

ż t

0

pvs,Mnk
s ϕq dV

k
s dt,

F n
3 pvq :“ E

ż T^τm

0

φt

ż t

0

ż

Z0

pvs, J
ηn

s ϕq ν0pdzqds dt,

F n
4 pvq :“ E

ż T^τm

0

φt

ż t

0

ż

Z1

pvs, J
ξn

s ϕq ν1pdzqds dt,

F n
5 pvq :“ E

ż T^τm

0

φt

ż t

0

ż

Z1

pvs, I
ξn

s ϕq Ñ1pdz, dsq dt

for a fixed ϕ P C80 . Define also Fi as F n
i for i “ 1, 2, ..., 5, with L̃s, Mk

s , J
η
s , Jξs

and Iξs in place of L̃ns , Mnk
s , Jη

n

s , Jξ
n

s and Iξ
n

s , respectively. It is an easy exercise
to show that hat F and F n

i , i “ 1, 2, 3, 4, 5, are continuous linear functionals on
Lr,q for r “ p, 2 and all q ą 1. We are going to show now that for r “ p, 2

lim
nÑ8

sup
|v|Lr,q“1

|Fipvq ´ F
n
i pvq| “ 0 for every q ą 1, for i=1,2,...,5. (IV.7.19)

Let r1 “ r{pr ´ 1q, q1 “ q{pq ´ 1q. Then for v P Lr,q by Hölder’s inequality we
have

|F1pvq ´ F
n
1 pvq| ď KT |v|Lr,q |pL̃´ L̃nqϕ|Lr1,q1

(IV.7.20)

with K “ supωPΩ suptPr0,T s |φt| ă 8. Clearly, limnÑ8pL̃s ´ L̃ns qϕpxq “ 0 almost

surely for all s P r0, T s and x P Rd, and there is a constant N independent of n
and m such that

|pL̃s ´ L̃ns qϕpxq| ď Np1` |x|2 ` 2m2
q1|x|ďR (IV.7.21)

for ω P Ω, s P r0, T^τms and x P Rd, where R is the diameter of the support of ϕ.
Hence a repeated application of Lebesgue’s theorem on dominated convergence
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gives
lim
nÑ8

|pL̃´ L̃nqϕ|Lr1,q1
“ 0,

and by (IV.7.20) proves (IV.7.19) for i “ 1. By the Davis inequality and Hölder’s
inequality we have

|F2pvq ´ F
n
2 pvq| ď 3KTE

´

ż T^τm

0

ÿ

k

|pvs, pMk
s ´Mnk

s qϕq|
2 ds

¯1{2

ď Cp2qn |v|Lr,q

with

Cp2qn “ 3KT
´

E
´

ż T^τm

0

`

ÿ

k

|pMk
s ´Mnk

s qϕ|
2
Lr1

¯q{pq´2q

ds
¯r1pq´2q{2q¯1{r1

.

Clearly, limnÑ8pMk
s ´Mnk

s qϕpxq “ 0, and with a constant N independent of n
and m we have

ÿ

k

|pMk
s ´Mnk

s qϕpxq| ď Np1` |x| ` 2mq1|x|ďR

for all ω P Ω, s P r0, T ^ τms and x P Rd. Thus repeating the above argument
we obtain (IV.7.19) for i “ 2. By Hölder’s inequality we have

|F 3
npvq ´ F

3
pvq| ď KT |v|Lr,qC

p3q
n

with

Cp3qn “

´

E
´

ż T^τm

0

ˇ

ˇ

ż

Z0

|pJηs ´ J
ηn

s qϕ|Lr1
ν0pdzq

ˇ

ˇ

q1
ds
¯r1{q1¯1{r1

,

where we have suppressed the variable z P Z0 in the integrand. Clearly,

lim
nÑ8

pJη ´ Jη
n

qϕpxq “ 0 almost surely for all s P r0, T s, x P Rd and z P Z0.

By Taylor’s formula

|Jη
n

s ϕpxq| ď sup
θPr0,1s

|D2ϕpx` θηns px, zqq||ηspx, zq|
2,

|Jηsϕpxq| ď sup
θPr0,1s

|D2ϕpx` θηspx, zqq||ηspx, zq|
2,

and by Lemma IV.7.3 with λ1 from above we have

λ1|x| ď |x` θpηns px, zq ´ η
n
s p0, zqq| ď |x` θη

n
s px, zq| ` |η

n
s p0, zq|,

λ1|x| ď |x` θpηspx, zq ´ ηsp0, zqq| ď |x` θηspx, zq| ` |ηsp0, zq|

for all θ P r0, 1s, ω P Ω, s P r0, T ^ τms. Hence, taking into account the the
linear growth condition on η, see Assumption (IV.2.1) (ii), for any given R ą 0
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we have a constant R̃ “ R̃pR,K0, K1, Kη,mq ą R such that

|x` θηspx, zq| ě R, |x` θηns px, zq| ě R for |x| ě R̃,

for all θ P r0, 1s, ω P Ω, s P r0, T ^ τms. Taking R such that ϕpxq “ 0 for |x| ě R
we have

|Jη
n

s ϕpxq ´ Jηsϕpxq| ď |J
ηn

s ϕpxq| ` |Jηsϕpxq| ď 2 sup
xPRd

|D2ϕpxq|η̄2
pzq1|x|ďR̃

for x P R, ω P Ω, s P r0, T ^ τms and z P Z0. Hence by Lebesgue’s theorem

on dominated convergence limnÑ8C
p3q
n “ 0 which gives (IV.7.19) for i “ 3. We

get (IV.7.19) for i “ 4 in the same way. By the Davis inequality and Hölder’s
inequality we have

|F5pvq´F
n
5 pvq| ď 3KTE

´

ż T^τm

0

ż

Z1

|pvs, pI
ξn

s ´ I
ξ
s qϕq|

2ν1pdzq ds
¯1{2

ď Cp5qn |v|Lr,q

with

Cp5qn “ 3KT
´

E
´

ż T^τm

0

´

ż

Z1

|pIξ
n

s ´ Iξs qϕ|
2
Lr1
ν1pdzq

¯q{pq´2q

ds
¯r1pq´2q{2q¯1{r1

.

Clearly, limnÑ8pI
ξn

s ´ Iξs qϕpxq “ 0 almost surely for all s P r0, T s, x P Rd and
z P Z1. By Taylor’s formula

|Iξ
n

s ϕpxq| ď sup
θPr0,1s

|Dϕpx` θξns px, zqq||ξspx, zq|,

|Iξsϕpxq| ď sup
θPr0,1s

|Dϕpx` θξspx, zqq||ξspx, zq|.

Hence, using Assumptions IV.2.1, IV.2.2 and IV.2.4 in the same way as above,
we get a constant R̃ “ R̃pR,K0, K1, Kη,mq such that

|Iξ
n

s ϕpxq ´ I
ξ
sϕpxq| ď |I

ξn

s ϕpxq| ` |I
ξ
sϕpxq| ď 2 sup

xPRd

|Dϕpxq|ξ̄pzq1|x|ďR̃

for x P R, ω P Ω, s P r0, T^τms and z P Z0. Consequently, by Lebesgue’s theorem
on dominated convergence we obtain (IV.7.19) for i “ 5, which completes the
proof of (IV.7.19). Since un converges weakly to ū in Lr,q, and F n

i converges
strongly to Fi in L˚p,q, the dual of Lp,q, we get that F n

i pu
nq converges to Fipūq for

for i “ 1, 2, 3, 4, 5. Therefore letting nÑ 8 in (IV.7.18) we obtain

E
ż T^τm

0

φtpūt, ϕq dt “ E
ż T^τm

0

φtpψ, ϕq dt` E
ż T^τm

0

φt

ż t

0

pūs, L̃sϕq ds dt

`E
ż T^τm

0

φt

ż t

0

pūs,Mk
sϕq dV

k
s dt` E

ż T^τm

0

φt

ż t

0

ż

Z0

pūs, J
η
sϕq ν0pdzqds dt

110



`E
ż T^τm

0

φt

ż t

0

ż

Z1

pūs, J
ξ
sϕq ν1pdzqds dt`E

ż T^τm

0

φt

ż t

0

ż

Z1

pūs, I
ξ
sϕq Ñ1pdz, dsq dt.

Since this equation holds for all bounded Ft-optional processes φ “ pφtqtPr0,T s,
we get

1tďτmpūt, ϕq “ 1tďτm

ˆ

pψ, ϕq `

ż t

0

pūs, L̃sϕq ds`
ż t

0

pūs,Mk
sϕq dV

k
s

˙

`1tďτm

ˆ
ż t

0

ż

Z0

pūs, J
η
sϕq ν0pdzqds`

ż t

0

ż

Z1

pūs, J
ξ
sϕq ν1pdzqds`

ż t

0

ż

Z1

pūs, I
ξ
sϕq Ñ1pdz, dsq

˙

for P b dt-almost every pt, ωq P r0, T s ˆ Ω for every ϕ P C80 and integer m ě 1,
which implies that ū is a Vr-solution to (IV.3.8) for r “ 2, p. In the same way
as in the proof Lemma IV.6.4 we can show first that almost surely

1τmąT pg, ϕq “ 1τmąT

ˆ

pψ, ϕq `

ż T

0

pūs, L̃sϕq ds`
ż T

0

pūs,Mk
sϕq dV

k
s

˙

(IV.7.22)

`1τmąT

ˆ
ż T

0

ż

Z0

pūs, J
η
sϕq ν0pdzqds`

ż T

0

ż

Z1

pūs, J
ξ
sϕq ν1pdzqds

˙

`1τmąT

ż T

0

ż

Z1

pūs, I
ξ
sϕq Ñ1pdz, dsq

for every m ě 1. Hence taking into account P pY8m“1tτm ą T uq “ 1, we get
that equation (IV.7.22) remains valid if we omit 1τmąT everywhere in it. From
(IV.7.15) we get that for all n,

|un|Lr,q ď N |πn0 |Lr for r “ 2, p, for integers q ą 1

with a constant N “ Npd, d1, p,K,Kξ, Kη, L, T, |ξ̄|L2 , |η̄|L2 , λq. Letting here nÑ
8 and taking into account (IV.7.11) and (IV.7.17) we obtain

|ū|Lr,q ď lim inf
nÑ8

|un|Lr,q ď N lim
nÑ8

|πn0 |Lr ď N |π0|Lr for r “ 2, p and integers q ą 1.

Letting here q Ñ 8 we get

E ess sup
tPr0,T s

|ūt|
r
Lr
ď N rE|π0|

r
Lr
, for r “ 2, p.

Hence, taking into account (IV.7.22), by Lemma IV.5.8 we get a Pbdt-modification
u of ū, which is an Lr-solution for r “ 2, p to equation (IV.3.8) with initial con-
dition u0 “ π0. As the limit of P b dt b dx-almost everywhere nonnegative
functions, u is also P b dt b dx almost everywhere nonnegative. We now show
that u satisfies

Gpuq :“ sup
tPr0,T s

ż

Rd

|x|2utpdxq ă 8 pa.s.q. (IV.7.23)
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To show this recall that for each n and ϕ P C2
b , by Theorem III.1.1, Remark IV.3

and by what we have proven above,

µnt pϕq “ P n
t pϕqµ

n
t p1q “ EpϕpXn

t q|FY n

t qp
oγnt q

´1,

where µnt pdxq “ unt pxqdx, P n
t pdxq “ πnt pxqdx and oγn denotes the FY n

t -optional
projection of pγnt qtPr0,T s. Further, for integers m ě 1 let again Ωm :“ r|Y0| ď ms P
FY

0 . Thus by Doob’s inequality and Jensen’s inequality for optional projections,
for r ą 1 we have, in the same way as in Step I,

Gmpu
n
q :“ E sup

tPr0,T s

ż

Rd

|x|2unt pxq dx1Ωm “ E sup
tPr0,T s

Ep|Xn
t |

2
|FY n

t qp
oγnt q

´11Ωm

ď N
`

E sup
tPr0,T s

|Xn
t |
r1Ωm

˘2{r
for t P r0, T s

with a constant N “ Npr, Cq, where C is the constant from (IV.7.8), which
depends only on K, r and T . Taking r from Assumption IV.2.3, by Young’s
inequality, (IV.2.1) for all m and n we have

Gmpu
n
q ď N

`

mr
` E|Xn

0 |
r
q
˘

ď N
`

mr
` sup

n
E|Xn

0 |
r
˘

“: N 1
pmq ă 8. (IV.7.24)

By Mazur’s theorem there exists a sequence of convex linear combinations vk “
řk
i“1 ci,ku

i converging to u (strongly) in Lp,q as k Ñ 8. Thus there exists a
subsequence, also denoted by pvkq8k“1 which converges to u for P b dt b dx-
almost every pω, t, xq. Then, by Fatou’s lemma and (IV.7.24),

Gmpuq “ E sup
tPr0,T s

ż

Rd

|x|2 lim inf
kÑ8

vkt pxq dx1Ωm ď lim inf
kÑ8

Gmpv
k
q

“ lim inf
kÑ8

k
ÿ

i“1

ck,iGmpu
i
q ď N 1

pmq for each integer m ě 1,

which proves (IV.7.23). Next, due to Lemma IV.3.1, using |Bn| ď |B| ď K, we
have

sup
nPN

E sup
tPr0,T s

|unt |L1 ď N, (IV.7.25)

for a constant N “ Npd,K, T q. The estimate above implies that un P L1,q for
all q ě 1. Returning to the sequence pvkqkPN Ă L1,q XLp,q converging point-wise
to u for P b dt b dx-almost every pω, t, xq, we can compute by use of Fatou’s
lemma

E ess sup
tPr0,T s

|ut|L1 “ E ess sup
tPr0,T s

| lim inf
kÑ8

vkt |L1 ď lim inf
kÑ8

E sup
tPr0,T s

|vkt |L1
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ď lim inf
kÑ8

k
ÿ

i“1

ci,kE sup
tPr0,T s

|uit|L1 ď N, (IV.7.26)

with the constant N from (IV.7.25). As also (IV.7.23) holds and since u is in
particular an L2-solution to (IV.3.8) we can apply Lemma IV.5.5, in particu-
lar the uniqueness of L2-solutions (satisfying (IV.7.23) if K1 ‰ 0, as well as
ess suptPr0,T s |ut|L1 ă 8 (a.s.)) implied by the supremum estimate (IV.5.50) of
Lemma IV.5.5. Hence we see that indeed for all t P r0, T s, ut “ dµt{dx almost
surely and thus πt “ ut

oγt, or in other words, the L2-solution constructed above
coincides with the L2-solution from Step I. This finishes the proof.
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Chapter V

Regularity of the filtering density

V.1 Introduction

In this chapter we are interested in the regularity (in the Sobolev sense) of the
filtering density pπtqtPr0,T s associated to the signal-observation system (I.0.2).
Again we assume the measurability conditions on the coefficients, given in the
introduction to Chapter I, to hold. This chapter is based on the article [18].

In Chapter IV we showed that if the coefficients of equation (I.0.2) satisfy
natural linear growth and Lipschitz conditions, the drift coefficient of the obser-
vation process is bounded, τ ξ “ x`θξpxq, τ η “ x`θηpxq are bijective mappings
on Rd, they have Lipschitz continuous inverses with a Lipschitz constant inde-
pendent of t, y, z and ϑ P r0, 1s, and their derivatives in x are equicontinuous in x,
uniformly in t, y, z, then for p ě 2 the conditional density πt exists almost surely
for each t and pπtqtě0 is a weakly cadlag Lp-valued process, whenever the initial
conditional distribution P0 has a density π0 almost surely such that E|π0|

p
Lp
ă 8.

For partially observed diffusion processes, i.e., when ξ “ η “ 0 and the
observation process Y does not have jumps, the existence and the regularity
properties of the conditional density πt have been extensively studied in the
literature. In [39], an early work on the regularity of the filtering density for
continuous diffusions, it was shown that if the coefficients are bounded, σ, ρ
admit m ` 1 bounded derivatives in x P Rd, b, B admit m bounded derivatives
in x, the functions σ, ρ satisfy a nondegeneracy condition and π0 P W

m
p XWm

2 ,
then the filtering density pπtqtPr0,T s is weakly continuous as Wm

p -valued process,
where p ě 2 and m ě 0. In [51] it was proven that the nondegeneracy condition
can be dropped if one imposes m` 2 bounded derivatives on σ, ρ in x, as well as
m`1 derivatives on b, B in x, to obtain the same result under otherwise the same
assumptions. The results for m “ 2 from [39] were later strengthened in [32],
for bounded coefficients, Lipschitz in space and such that σ, ρ are differentiable
with respect to x P Rd, such that the differential is continuous in y P Rd1 and
Lipschitz in x. Similarly, in [35], it was shown that if the derivatives in x of
b, B satisfy a certain Lipschitz condition, σ, ρ are bounded and π0 belongs to a
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certain subspace of W 1
p for p ě 2, then πt belongs almost surely to Lr, r P r1, ps

for all time. In a later work, [36], for Lipschitz (in space), bounded coefficients,
as well as under a nondegeneracy condition it was shown that if π0 belongs to a
fractional Sobolev space with integrability index p ě 2, then πt belongs to W 1

p

for all time.
To the best of the author’s knowledge, the Sobolev regularity of filtering

densities associated to jump diffusion systems has not been considered yet. Our
article [18], which serves as a basis for this chapter, provides a first result in this
direction.

More precisely, in the present chapter we show that if the coefficients ad-
mit m ` 1 continuous bounded derivatives in x P Rd, have linear growth in
z “ px, yq P Rd`d1 , the jump coefficients are biLipschitz in x, the initial condi-
tion together with a Lévy measure have finite r-th moment for some r ą 2, and if
E|π0|

p
Wm

p
ă 8, then for all time πt remains in that Sobolev space Wm

p with p ě 2

and integer m ě 1. Moreover it is weakly cadlag as Wm
p -valued process and, if

m ě 1 and K1 “ 0, then it is strongly cadlag as W s
p -valued process, for s P r0,mq.

This chapter is structured as follows. Section V.2 contains the main results
along with the required assumptions. In section V.3 we state some important re-
sults from Chapters III and IV which we build on. Section V.4 contains Sobolev
estimates necessary to obtain a priori estimates for the smoothed filtering equa-
tions. In section V.5 we investigate some solvability properties of the Zakai
equation. Section V.6 finally contains the proof of our main theorem, as well as
some auxiliary results.

V.2 Formulation of the main results

We fix nonnegative constantsK0, K1, L, K and functions ξ̄ P L2pZ1q “ L2pZ1,Z1, ν1q,
η̄ P L2pZ0q “ L2pZ0,Z0, ν0q, used throughout the paper, and make the following
assumptions.

Assumption V.2.1. (i) For zj “ pxj, yjq P Rd`d1 (j “ 1, 2), t ě 0 and zi P Zi
(i “ 0, 1) ,

|bpt, z1q ´ bpt, z2q| ` |Bpt, z1q ´Bpt, z2q| ` |σpt, z1q ´ σpt, z2q|

`|ρpt, z1q ´ ρpt, z2q| ď L|z1 ´ z2|,

|ηpt, z1, z0q ´ ηpt, z2, z0q| ď η̄pz0q|z1 ´ z2|,

|ξpt, z1, z1q ´ ξpt, z2, z1q| ď ξ̄pz1q|z1 ´ z2|.

(ii) For all z “ px, yq P Rd`d1 , t ě 0 and zi P Zi for i “ 0, 1 we have

|bpt, zq|`|σpt, zq|`|ρpt, zq| ď K0`K1|z|, |Bpt, zq| ď K,

ż

Z1

|z|2 ν1pdzq ď K2
0 ,
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|ηpt, z, z0q| ď η̄pz0qpK0 `K1|z|q, |ξpt, z, z1q| ď ξ̄pz1qpK0 `K1|z|q.

(iii) The initial condition Z0 “ pX0, Y0q is an F0-measurable random variable
with values in Rd`d1 .

Assumption V.2.2. The functions η̄ P L2pZ0,Z0, ν0q and ξ̄ P L2pZ1,Z1, ν1q

are such that for nonnegative constants Kη and Kξ we have |η̄pz0q| ď Kη and
|ξ̄pz1q| ď Kξ for all zi P Zi (i “ 0, 1).

Assumption V.2.3. For some r ą 2 let E|X0|
r ă 8 and the measure ν1 satisfy

Kr :“

ż

Z1

|z|r ν1pdzq ă 8.

We recall that by Theorem II.2.1 and Theorem II.2.2, Assumption V.2.1
ensures the existence and uniqueness of a solution pZtqtě0 “ pXt, Ytqtě0 to (I.0.2)
and for every T ą 0,

E sup
tďT
p|Xt|

q
` |Yt|

q
q ď Np1` E|X0|

q
` E|Y0|

q
q (V.2.1)

holds for q “ 2 with a constant N “ NpK0, K1, d, d
1, T, L, |ξ̄|L2 , |η̄|L2q and if ad-

ditionally Assumptions V.2.2 and V.2.3 hold, then the moment estimate (V.2.1)
holds with q :“ r for every T ą 0, where now N depends also on r, Kr Kξ and
Kη.

Assumption V.2.4. (i) For a constant λ ą 0 we have

λ|x´ x̄| ď |x´ x̄` θpfipt, x, y, ziq ´ fipt, x̄, y, ziqq|

for all θ P r0, 1s, t P r0, T s, y P Rd1 , x, x̄ P Rd, zi P Zi, i “ 0, and f0pt, x, y, z0q “

ηpt, x, y, z0q, f1pt, x, y, z1q “ ξpt, x, y, z1q.
(ii) For all pt, yq P R` ˆ Rd1 and all x1, x2 P Rd,

|pρBqpt, x1, yq ´ pρBqpt, x2, yq| ď L|x1 ´ x2|.

(iii) The functions f0pt, x, y, zq :“ ξpt, x, y, zq and f1pt, x, y, zq :“ ηpt, x, y, zq are
continuously differentiable in x P Rd for each pt, y, zq P R` ˆ Rd1 ˆ Zi, for i “ 0
and i “ 1, respectively, such that

lim
εÓ0

sup
tPr0,T s

sup
zPZi

sup
|y|ďR

sup
|x|ďR,|x̄|ďR,|x´x1|ďε

|Dxfipt, x, y, zq ´Dxfipt, x̄, y, zq| “ 0

for every R ą 0.

Assumption V.2.5. Let m ě 0 be an integer.
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(i) The partial derivatives in x P Rd of the coefficients b, B, σ, ρ, pρBq, η and
ξ up to order m` 1 are functions such that

m`1
ÿ

k“1

|Dk
xpb, B, σ, ρ, pρBqq| ď L for all t P r0, T s, x P Rd, y P Rd1 .

(ii) Moreover,
m`1
ÿ

k“1

|Dk
xη| ď Lη̄,

m`1
ÿ

k“1

|Dk
xξ| ď Lξ̄,

for all t P r0, T s, x P Rd, y P Rd1 and zi P Zi, i “ 0, 1.

Remark V.2.1. Note that Assumption V.2.4(i), together with Assumptions V.2.2
and V.2.1(i), implies that for a constant c “ cpλ,Kξ, Kηq we have for all θ P r0, 1s,
y P Rd1 , t P r0, T s and zi P Zi, i “ 0, 1,

c´1
|x´ x̄| ď |x´ x̄` θpfipt, x, y, ziq ´ fpt, x̄, y, ziqq| ď c|x´ x̄| for x, x̄ P Rd,

with f0pt, x, y, z0q :“ ηpt, x, y, z0q and f1pt, x, y, z1q :“ ξpt, x, y, z1q. This, together
with Assumption V.2.4(iii) in particular implies that for all θ P r0, 1s, y P Rd1 ,
t P r0, T s and zi P Zi, i “ 0, 1 the mappings

τ ηpxq “ x` θηpt, x, y, z0q and τ ξpxq “ x` θξpt, x, y, z1q

are C1-diffeomorphisms.

Let FY
t denote the completion of the σ-algebra generated by pYsqsďt.

Theorem V.2.1. Let Assumptions V.2.1, V.2.2, V.2.4 and V.2.5 hold. If K1 ‰

0 in Assumption V.2.1, then let additionally Assumption V.2.3 hold. Assume
the conditional density π0 “ P pX0 P dx|FY

0 q{dx exists almost surely and for
some p ě 2 and integer m ě 0 we have E|π0|

p
Wm

p
ă 8. Then almost surely

P pXt P dx|FY
t q{dx exits and belongs to Wm

p for every t P r0, T s.
Moreover, there is an Wm

p -valued weakly cadlag process π “ pπtqtPr0,T s such that
for each t almost surely πt “ P pXt P dx|FY

t q{dx. If K1 “ 0 and m ě 1, then π
is strongly cadlag as W s

p -valued process for s P r0,mq.

V.3 Preliminaries

As this chapter is a direct continuation of Chapters III and IV, we ask the reader
to recall their main results, which we rely on in the following sections, as well as
the notions of solutions to the Zakai equation, which we introduced earlier. A
summary of the aforementioned matters was provided in Section IV.3.

We also recall that that if the unnormalised conditional distribution µt has a
density such that ut “ dµt{dx (a.s.) for each t P r0, T s for an Lp-valued weakly
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cadlag process putqtPr0,T s for some p ě 2, then it satisfies for each ϕ P C80 almost
surely

put, ϕq “pψ, ϕq `

ż t

0

pus, L̃sϕq ds`
ż t

0

pus,Mk
sϕq dV

k
s `

ż t

0

ż

Z0

pus, J
η
sϕq ν0pdzqds

`

ż t

0

ż

Z1

pus, J
ξ
sϕq ν1pdzqds`

ż t

0

ż

Z1

pus´, I
ξ
sϕq Ñ1pdz, dsq, t P r0, T s.

(V.3.1)

for all t P r0, T s, which formally, we may write as the Cauchy problem

dut “L̃˚t ut dt`M˚k
t ut dV

k
t `

ż

Z0

Jη˚t ut ν0pdzqdt

`

ż

Z1

Jξ˚t ut ν1pdzqdt`

ż

Z1

Iξ˚t ut´ Ñ1pdz, dtq, (V.3.2)

u0 “ψ.

for a given ψ.

Additional to the concept of Lp-solution defined in Definition IV.3.2, we
introduce the following.

Definition V.3.1. Let integers m ě 0 and p ě 2. Let ψ be an Wm
p -valued F0-

measurable random variable. Then we say that a Wm
p -valued Ft-adapted weakly

cadlag process putqtPr0,T s is a Wm
p -solution of (V.3.2) with initial condition ψ, if

for each ϕ P C80 almost surely (V.3.1) holds for every t P r0, T s.

Notice that for m “ 0, a W 0
p -solution is the same as an Lp-solution. We

summarize some important results from Chapter IV

As in Chapter IV, we are interested in solutions that satisfy

ess sup
tPr0,T s

|ut|L1 ă 8 and sup
tPr0,T s

ż

Rd

|y|2|utpyq| dy ă 8 (a.s.). (V.3.3)

For the following theorem we denote again by pµtqtPr0,T s and pPtqtPr0,T s the
unnormalised and normalised conditional distribution, respectively, of X given
FY from Theorem III.1.1.

Theorem V.3.1. Let Assumptions V.2.1, V.2.2 and V.2.4 hold. If K1 ‰ 0, then
let additionally Assumption V.2.3 hold for some r ą 2. Assume the conditional
density π0 “ dP0{dx exists almost surely and E|π0|

p
Lp
ă 8 for some p ě 2.

(i) The unnormalized conditional density putqtPr0,T s exists almost surely and is
an Lp-valued weakly cadlag process such that for each t P r0, T s almost surely
ut “ dµt{dx and

E sup
tPr0,T s

|ut|
p
Lp
ď NE|π0|

p
Lp
.
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for a constant N “ Npd, d1, p,K,Kξ, Kη, L, T, λ, |ξ̄|L2 , |η̄|L2q. Moreover, u is the
unique L2-solution to (V.3.2) satisfying the conditions in (V.3.3).
(ii) For each t P r0, T s the conditional density dPt{dx exists and belongs to Lp
almost surely. Moreover, there is an Lp-valued weakly cadlag process pπtqtPr0,T s
such that for each t P r0, T s almost surely πt “ dPt{dx and almost surely πt “
ut
oγt for all t P r0, T s, where poγtqtPr0,T s is the optional projection of pγtqtPr0,T s

under P with respect to pFY
t qtPr0,T s.

Proof. See Lemma IV.5.7 and Theorem IV.2.1.

Lemma V.3.2. Let 1 ă p ă 8 and let pvtqtPr0,T s be a weakly cadlag Lp-valued
process. Assume moreover that for an m ě 0 almost surely ess suptPr0,T s |vt|Wm

p
ă

8 and vT P W
m
p . Then v is weakly cadlag as Wm

p -valued process.

Proof. Let Ω1 be the set of those ω P Ω such that pvtpωqqtPr0,T s is weakly cadlag
as an Lp-valued function, vT pωq P W

m
p and ess suptPr0,T s |vtpωq|Wm

p
ă 8. Then

P pΩ1q “ 1, and for each ω P Ω1 there exists a dense subset Tω in r0, T s such
that suptPTω

|vtpωq|Wm
p
ă 8. If ω P Ω1 and t R Tω, t ‰ T , then there exists a

sequence ptnq
8
n“1 Ă Tω such that tn Ó t. Since suptPTω

|vtpωq|Wm
p
ă 8 there exists

a subsequence, also denoted by ptnq
8
n“1, such that vtnpωq converges weakly in Wm

p

to some element ṽ P Wm
p . However, as v is weakly cadlag as an Lp-valued process,

we know that vtn Ñ vt weakly in Lp as n Ñ 8 and hence ṽ “ vt P W
m
p . Thus

clearly also suptPr0,T s |vtpωq|Wm
p
ă 8 if ω P Ω1. To see that v is weakly cadlag

as a Wm
p -valued process, note first that since Wm

p is a reflexive space, which is
embedded continuously and densely into Lp, we have that the dual pLpq

˚ “ Lq,
q “ p{pp´ 1q, is embedded continuously and densely into pWm

p q
˚. Therefore, for

each ε ą 0 and φ P pWm
p q

˚ there is an φε P Lq such that |φ ´ φε|pWm
p q

˚ ă ε. Fix
a t P r0, T q and a sequence tn Ó t. Then

|pvtn , φq ´ pvt, φq| ď |pvtn , φ´ φεq| ` |pvtn , φεq ´ pvt, φεq| ` |pvt, φε ´ φq|

ď 2ε sup
tPr0,T s

|vt|Wm
p
` |pvtn , φεq ´ pvt, φεq|.

Recalling that v is weakly cadlag as an Lp-valued process finishes the proof.

In this following we show that, for p ě 2 and integers m ě 1, if K1 “ 0 in
Assumption V.2.1, then a Wm

p -solution of (V.3.2) is strongly cadlag as Lp-valued
process, using an Itô formula from [21], see Theorem 2.2 therein. For this purpose
we first rewrite the Zakai equation (V.3.2) in the form used in [21] to apply the
Itô formula proved therein. To derive the required form of the J operators,
consider on a measurable σ-finite space pZ,Z, νq a function ζ : Rd ˆ Z Ñ Rd,
smooth in x P Rd such that for all θ P r0, 1s, z P Z the mapping

τθ,zpxq :“ τ ζθ,zpxq :“ x` θζpx, zq, x P Rd,
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is a C1-diffeomorphism on Rd. Then, for smooth functions ϕ and φ on Rd,

`

φ,

ż

Z

Jζϕpxq νpdzq
˘

“

ż

Z

ż

Rd

φpxqJζϕpxq dx νpdzq

“

ż

Z

ż

Rd

ż 1

0

φpxqp1´ θqpDijϕqpx` θζpx, zqqζ
i
px, zqζjpx, zq dθ dx νpdzq

“

ż

Z

ż

Rd

ż 1

0

φpτ´1
θ,z pxqqp1´θqDijϕpxqζ

i
pτ´1
θ,z pxq, zqζ

j
pτ´1
θ,z pxq, zq| detDτ´1

θ,z pxq| dθ dx νpdzq.

Hence, integrating by parts, we get that

`

φ,

ż

Z

Jζϕpxq νpdzq
˘

“ pJ̃ ζ,iφ,Diϕq ` pĴ ζ,iφ,Diϕq

where

J̃ ζ,iφpxq “ ´

ż

Z

ż 1

0

pDkφqpτ
´1
θ,z pxqqDjpτ

´1
θ,z pxqq

k
p1´ θq (V.3.4)

ζ ipτ´1
θ,z pxq, zqζ

j
pτ´1
θ,z pxq, zq| detDτ´1

θ,z pxq| dθ νpdzq,

Ĵ ζ,iφpxq “ ´

ż

Z

ż 1

0

φpτ´1
θ,z pxqqp1´ θq

Dj

“

ζ ipτ´1
θ,z pxq, zqζ

j
pτ´1
θ,z pxq, zq| detDτ´1

θ,z pxq|
‰

dθ νpdzq.

Moreover, we ask the reader to recall the form of Iξ˚, the adjoint operator to
Iξ, derived in (IV.6.63).

Lemma V.3.3. Let Assumptions V.2.1, V.2.2, V.2.4 and V.2.5 hold with K1 “

0 and some integer m ě 1. Let p ě 2 and let u “ putqtPr0,T s be a Wm
p -solution to

(V.3.1). Then u is strongly cadlag as an Lp-valued process.

Proof. We apply Theorem 2.2 in [21]. In order to do so, we rewrite equation
(V.3.1) into the form used therein. For that purpose, note first that the adjoint
operator to Mk, k “ 1, . . . , d1 for v P Wm

p is

M˚k
s vpxq “ ´Dipρ

ik
s pxqvpxqq `B

k
s pxqvpxq.

Similarly, with βs “ BspXsq we notice that with ϕ P C80 ,

pv, L̃sϕq “ ´pDjpa
ij
s vq, Diϕq ´ pDipb

i
svq, ϕq ` β

k
s pM˚k

s v, ϕq

Since η and ξ satisfy Assumption V.2.5 with m “ 1, we can define the operators
J̃ ξ,i
s , Ĵ ξ,i

s and J̃ η,i
s , Ĵ η,i

s , i “ 1, . . . , d, as in (V.3.4), only with ξs and ηs in place
of ζ, accordingly, with the C2-diffeomorphisms on Rd (for ω P Ω, t P r0, T s, θ P
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r0, 1s, zi P Zi for i “ 0, 1)

τ ηt,θ,z0pxq :“ x` θηtpx, z0q and τ ξt,θ,z1pxq :“ x` θξtpx, z1q.

From (IV.6.63) in Chapter IV we know that with the mappings (note that θ “ 1
below)

ξ˚t px, z1q :“ ´x` pτ ξt,1,z1q
´1
pxq and ctpx, z1q “ detpI`Dξ˚t px, z1qq ´ 1

and the translation operator T ξ
˚

t vpxq “ vpx` ξ˚t px, z1qq, the adjoint operator to
Iξt is

Iξ˚t vpxq “ Iξ
˚

t vpxq ` ctpx, z1qT
ξ˚

t vpxq, v P Wm
p . (V.3.5)

Then, rewriting equation (V.3.1) yields that for all ϕ P C80 almost surely

put, ϕq “ pψ, ϕq ´

ż t

0

pDjpa
ij
s usq, Diϕq ds´

ż t

0

pDipb
i
susq ` β

k
sM˚k

s us, ϕq ds

`

ż t

0

pM˚k
s us, ϕq dV

k
s `

ż t

0

pJ̃ η,i
s us ` Ĵ η,ius, Diϕq ds

`

ż t

0

pJ̃ ξ,i
s us ` Ĵ ξ,ius, Diϕq ds`

ż t

0

ż

Z1

pIξ˚s us, ϕq Ñ1pdz, dsq

for all t P r0, T s. Hence, to apply Theorem 2.2 from [21], it remains to verify
that almost surely, for i “ 1, . . . , d,

AD :“

ż T

0

ż

Rd

|Dipa
ij
s usq|

p dxds ă 8, AM :“

ż T

0

ż

Rd

|´Dipb
i
susq`β

k
sM˚k

s us|
p dxds ă 8,

Aiη :“

ż T

0

ż

Rd

|J̃ η,i
s us`Ĵ η,i

s us|
p dxds ă 8, Aiξ :“

ż T

0

ż

Rd

|J̃ ξ,i
s us`Ĵ ξ,i

s us|
p dxds ă 8,

B :“

ż T

0

ż

Rd

`

ÿ

k

|pMk˚
s usqpxq|

2
˘p{2

dxds ă 8,

G :“

ż T

0

ż

Rd

ż

Z1

|pIξ˚s usqpx, zq|
p ν1pdzqdxds ă 8,

H :“

ż T

0

ż

Rd

´

ż

Z1

|pIξ˚s usqpx, zq|
2 ν1pdzq

¯p{2

dxds ă 8.

By the boundedness of the coefficients and their derivatives up to order m ` 1
and due to

şT

0
|us|

p
W 1

p
ds ă 8 (a.s.) clearly AD`AM `B ă 8 (a.s.). Suppressing

the superscript i,

Aη ď

ż T

0

ż

Rd

|J̃ η
s us|

p dx ds`

ż T

0

ż

Rd

|Ĵ η
s us|

p dx ds “ Aη,1 ` Aη,2.
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Using that by Lemma IV.6.1 (i) & (ii), for all ω P Ω, t P r0, T s, z P Z0 and x P Rd,

p1´ θq|Dpτ ηt,θ,zq
´1
pxqq||ηppτ ηt,θ,zq

´1
pxq, zq|2| detDpτ ηt,θ,zq

´1
pxq| ď Nη̄2

pzq

for a constant N “ Npd,K0, L,Kη, λq, we can apply Minkowski’s inequality to
compute

Aη,1 ď N 1

ż T

0

´

ż

Z0

ż 1

0

´

ż

Rd

|pDusqpτ
´1
s,θ,zpxqq|

pη̄2p
pzq dx

¯1{p

dθ ν0pdzq
¯p

ds

ď N2

ż T

0

|us|
p
W 1

p
ds ă 8 (a.s.),

for constants N 1 and N2 depending on d, p,K0, Kη, λ and |η̄|L2 . Using that by
the Lemma’s assumption, together with Lemma IV.6.1, for all s P r0, T s, θ P
r0, 1s, x P Rd and z P Z0,

ˇ

ˇD
“

ηispτ
´1
s,θ,zpxq, zqη

j
spτ

´1
s,θ,zpxq, zq| detDτ´1

s,θ,zpxq
ˇ

ˇ

‰

| ď Nη̄2
pzq, i, j “ 1, . . . , d,

for a constant N “ Npd,K0, Kη, λ, Lq, we get Aη,2 ă 8 in the same way, proving
Aiη ă 8 almost surely, i “ 1, . . . , d. Analogously also Aiξ ă 8 almost surely,
i “ 1, . . . , d. Next, using the form (V.3.5),

G ď

ż T

0

ż

Rd

ż

Z1

|pIξ
˚

s usqpx, zq|
p ν1pdzqdxds

`

ż T

0

ż

Rd

ż

Z1

|cspx, zqpT
ξ˚

s usqpx, zq|
p ν1pdzqdxds

“:G1 `G2.

To treat the first term, we define

τ η
˚

t,z0,θ
pxq “ x` θη˚t px, z0q, for ω P Ω, x P Rd, t P r0, T s, z0 P Z0 and θ P r0, 1s,

and use that by Lemma IV.6.1 (ii) almost surely

| detpτ η
˚

s,z0,θ
q
´1
pxq| ď | detpI`Dηtpx, zqq|´1

ă 8

for ω P Ω, x P Rd, t P r0, T s, z0 P Z0 and θ P r0, 1s. Thus, by Taylor’s theorem,
Minkowksi’s inequality and Lemma IV.6.1,

G1 ď

ż T

0

´

ż 1

0

´

ż

Rd

ż

Z1

|pDusqpτ
ξ˚

s,θ,zpxqq|
p
|ξ˚s px, zq|

p νpdzqdx
¯1{p

dθ
¯p

ds

ď N

ż T

0

|us|
p
W 1

p
ds ă 8
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almost surely, for a constant N “ Npd, p, λ,K0, Kξ, |ξ̄|L2q. Using that by Lemma
IV.6.1 |cspx, zq| ď Nξ̄pzq with a constant N “ Npd, L, λ,K0, Kξq we get G2 ă 8

(a.s.) in the same way, proving G ă 8 (a.s.). Using Taylor’s theorem and
Minkowski’s inequality in a very similar way we also obtain H ă 8 almost
surely. Therefore we can apply Theorem 2.2 in [21] to know that there exists a
stochastic modification ū of u, such that for P b dt-a.e. pω, tq P Ω ˆ r0, T s we
have ūt “ ut and such that ū is strongly cadlag as Lp-valued process. Finally, by
Lemma V.3.2 ū is also weakly cadlag as Wm

p -valued process, and therefore we
have that almost surely ut “ ūt for all t P r0, T s, i.e., u and ū are almost surely
identical. This finishes the proof.

V.4 Sobolev estimates

Here we present some estimates which are needed in the subsequent sections.
We use the same notations that were introduced in Section IV.4, in particular
the Gaussian density function kε on Rd with mean 0 and variance ε, as well as
the function

ρεpyq “

ż

Rd

Πp
r“1kεpx´yrq dx “ cp,εe

´
ř

1ďrăsďp |yr´ys|
2{p2εpq, y “ py1, ...., ypq P Rpd

(V.4.1)
for ε ą 0, with the constant cp,ε “ cp,εpdq “ p´d{2p2πεqp1´pqd{2. We recall that ρε
satisfies, for every r “ 1, 2, ..., p and i “ 1, 2, ..., d

Byirρεpyq “
1
εp

p
ÿ

s“1

pyis ´ y
i
rqρεpyq, y “ py1, ..., ypq P Rd, yr “ py

1
r ..., y

d
r q P Rd,

(V.4.2)

Byjr
ρεpyq “ ´

p
ÿ

s‰r

Byjs
ρεpyq for r “ 1, ..., p and j “ 1, 2, ..., d, (V.4.3)

as well as, for q “ 1, 2 with a constant N “ Npd, p, qq

ε´q
ÿ

s‰r

|ys ´ yr|
2qρεpyq ď Nρ2εpyq, y P Rpd. (V.4.4)

The case of α “ 0 in the following Lemmas in this section are proven in
Section IV.4 and hence this case will be omitted in the proofs.

In the following we present estimates for µ PM with a density u “ dµ{dx P
Wm
p , for m ě 0 and p ě 2 even. In order for the left-hand side of these estimates

to be well-defined, we require that

K1

ż

Rd

|x|2 |upxq| dx ă 8, (V.4.5)

where we use the formal convention that 0 ¨ 8 “ 0, i.e. if K1 “ 0, then the
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second moment of |µpdxq| “ |upxq|dx is not required to be finite.

Lemma V.4.1. Consider integers m ě 0 and p ě 2 even. Let σ “ pσikq be
a Borel function on Rd with values in Rdˆk, such that for some nonnegative
constants K0 and L

|σpxq| ď K0,
m`1
ÿ

k“1

|Dkσpxq| ď L, (V.4.6)

for all x, y P Rd. Set aij “ σikσjk{2 for i, j “ 1, 2, ..., d. Let µ PM such that it
admits a density u “ dµ{dx P Wm

p which satisfies (V.4.5). Then for ε ą 0 we
have

Aα :“pppDαµpεqqp´1, Dα
ppaijDijq

˚µqpεqq

`
ppp´1q

2
ppDαµpεqqp´2Dα

ppσikDiq
˚µqpεq, Dα

ppσjkDjq
˚µqpεqq ď NL2

|u|pWm
p

(V.4.7)

for multi-indices α “ pα1, ..., αdq such that 0 ď |α| ď m, where N is a constant
depending only on d, m and p.

Proof. Note first that using

sup
xPRd

m`2
ÿ

k“0

|Dkkεpxq| ă 8, sup
xPRd

m`2
ÿ

k“0

|Dkρεpxq| ă 8, for all ε ą 0 (V.4.8)

and
ż

Rd

p1` |x| ` |x|2q |upxq|pdxq ă 8, (V.4.9)

as well as the conditions on σ, it is easy to verify that the left-hand side of
(V.4.7) is well-defined. Changing the order of taking derivatives and integrals,
then writing integer powers of integrals as iterated integrals and using

Dα
xkεpx´ yq “ p´1q|α|Dα

y kεpx´ yq,

we have

ppDαµpεqpxqqp´1
“

ż

Rpp´1qd

Πp´1
r“1D

α
xkεpx´ yrqµpdy1q...µpdyp´1q

“

ż

Rpp´1qd

p´1qpp´1q|α|Dα
y1
...Dα

yp´1
Πp´1
r“1kεpx´ yrqµpdy1q...µpdyp´1q,

Dα
ppaijDijq

˚µqpεqpxq “

ż

Rd

aijpypqByipByjpD
α
xkεpx´ ypqµpdypq

“

ż

Rd

p´1q|α|aijpypqByipByjpD
α
ypkεpx´ ypqµpdypq,
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and hence for their product we get

pDαµpεqqp´1Dα
ppaijDijq

˚µqpεqpxq “

ż

Rpd

aijpypqByipByjpD
pα
y Πp

r“1kεpx´ yrqµppdyq,

(V.4.10)
where Dpα

y :“ Dα
y1 ...D

α
yp and µpdyq :“ µpdy1q...µpdypq. Similarly,

pDαµpεqqp´2Dα
ppσikDiq

˚µqpεqDα
ppσjkDjq

˚µqpεqpxq

“

ż

Rpd

σikpyp´1qσ
jk
pypqByip´1

Byjp
Dpα
y Πp

r“1kεpx´ yrqµppdyq.

Adding this to (V.4.10), then integrating against dx over Rd and using (V.4.1)
we obtain

A “

ż

Rpd

´

paijpypqByipByjp `
ppp´1q

2
σikpyp´1qσ

jk
pypqByip´1

Byjp

¯

Dpα
y ρεpyqµppdyq.

Using here the symmetry of Dpα
y ρεpyq and µppdyq in y P Rdp and then inter-

changing differential operators we get

A “

ż

Rpd

´

p
ÿ

r“1

aijpyrqD
pα
y ByirByjr

`
ÿ

1ďrăsďp

σikpyrqσ
jk
pysqD

pα
y ByirByjs

¯

ρεpyqµppdyq

Using
Byjr
ρεpyq “ ´

ÿ

s‰r

Byjs
ρεpyq,

see (V.4.3), we have

p
ÿ

r“1

aijpyrqD
pα
y ByirByjr

ρεpyq “ ´
ÿ

1ďrăsďp

paijpyrq ` a
ij
pysqqD

pα
y ByirByjs

ρεpyq,

and due to aij “ σikσjk{2 we have

´2aijpyr, ysq :“ ´2paijpyrq ` a
ij
pysqq ` σ

ik
pyrqσ

jk
pysq ` σ

ik
pysqσ

jk
pyrq

“ ´pσikpyrq ´ σ
ik
pysqqpσ

jk
pyrq ´ σ

jk
pysqq.

Hence

A “ ´1
2

ÿ

r‰s

ż

Rpd

aijpyr, ysqD
pα
y ByirByjs

ρεpyqµppdyq, (V.4.11)

that by integration by parts gives

“ ´1
2

ÿ

βďα

ÿ

γďα

cαβc
α
γ

ż

Rpd

ÿ

r‰s

aijβγpyr, ysqByirByjsρεpyquβ̄pyrquγ̄pysqΠq‰r,q‰suαpyqq dy,

(V.4.12)
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where aijβγpx, rq :“ BβxB
γ
r a

ijpx, rq and uδpxq :“ Bδupxq for x, r P Rd, for multi-

indices β, γ and δ, δ̄ :“ α ´ δ for multi-indices δ ď α (i.e. δi ď αi for i “
1, 2, ..., d), cαδ “ Πd

i“1c
αi
δi

with binomial coefficients cnk for integers 0 ď k ď n,

upyq :“ upy1q....upypq for y “ py1, ..., ypq P Rdp,

and dy “ dy1...dyp is the Lebesgue measure on Rpd. For each β ď α and γ ď α
we are going to estimate the integrand

fβγpyq :“
ÿ

r‰s

aijβγpyr, ysqByirByjsρεpyquβ̄pyrquγ̄pysqΠq‰r,q‰suαpyqq, y P Rdp, β, γ ď α

in the integral in (V.4.12). Because of the symmetry in β and γ, we need only
consider the following cases: (i) |β| ě 1 and |γ| ě 1, (ii) |β| ě 1 and γ “ 0
and (iii) β “ γ “ 0. To proceed with the calculations in each of these cases, for
functions h “ hpyq and g “ pyq of y P Rpd we will use the notations h „ g if the
integral of g ´ h against dy over Rpd is zero. In case (i) by integration by parts
we have

fβγ „
4
ÿ

j“1

fβγj

with

fβγ1 :“
ÿ

r‰s

ByirByjs
aijβγpyr, ysqρεpyquβ̄pyrquγ̄pysqΠq‰r,q‰suαpyqq,

fβγ2 :“
ÿ

r‰s

Byjs
aijβγpyr, ysqρεpyqByiruβ̄pyrquγ̄pysqΠq‰r,q‰suαpyqq,

fβγ3 :“
ÿ

r‰s

Byira
ij
βγpyr, ysqρεpyquβ̄pyrqByjsuγ̄pysqΠq‰r,q‰suαpyqq,

fβγ4 :“
ÿ

r‰s

aijβγpyr, ysqρεpyqByiruβ̄pyrqByjsuγ̄pysqΠq‰r,q‰suαpyqq.

(V.4.13)

It is easy to see that for j “ 1, 2, 3, 4

|fβγj pyq| ď NL2ρεpyq
ÿ

|δ|ďm

|uδpy1q|...
ÿ

|δ|ďm

|uδpypq|, py1, y2, ..., ypq P Rpd

with a constant N “ Npd,m, pq. Hence in the case (i) we get

ż

Rpd

fβγpyq dy ďNL2

ż

Rpd

ÿ

|δ|ďm

|uδpy1q|...
ÿ

|δ|ďm

|uδpypq|ρεpyq dy

“NL2

ż

Rpd

ż

Rd

ÿ

|δ|ďm

|uδpy1q|...
ÿ

|δ|ďm

|uδpypq|Π
p
r“1kεpx´ yrq dx dy
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ďN 1L2
ÿ

|δ|ďm

||Dδu|pεq|pLp
.

with constants N and N 1 depending only on d, m and p. Integrating by parts
in the case (ii) we have

fβ0
„ ´fβ0

1 ´ fβ0
2

with
fβ0

1 “
ÿ

r‰s

Byira
ij
β0pyr, ysqByjsρεpyquβ̄pyrqΠq‰ruαpyqq

fβ0
2 “

ÿ

r‰s

aijβ0pyr, ysqByjsρεpyqByiruβ̄pyrqΠq‰ruαpyqq.

Clearly, for r ‰ s we have

Byira
ij
β0pyr, ysq “ gβ,jpyr, ysq ` h

β,j
pyrq,

with

gβ,jpyr, ysq “ByirB
β
yrσ

ik
pyrqpσ

jk
pyrq ´ σ

jk
pysqq ` ByirB

β
yrσ

jk
pyrqpσ

ik
pyrq ´ σ

ik
pysqq,

hβ,jpyrq “
ÿ

1ď|δ|,δăβpiq

c
βpiq
δ B

δ
yrσ

ik
pyrqB

βpiq´δ
yr σjkpyrq,

where the multi-index βpiq is defined by Bβpiq “ ByirB
β
yr . Thus

fβ0
1 “ fβ0

11 ` f
β0
12

with

fβ0
11 “

p
ÿ

r“1

ÿ

s‰r

gβ,jpyr, ysqByjsρεpyquβ̄pyrqΠq‰ruαpyqq,

fβ0
12 “

p
ÿ

r“1

ÿ

s‰r

hβ,jpyrqByjsρεpyquβ̄pyrqΠq‰ruαpyqq.

(V.4.14)

Since
|gβ,jpyr, ysq| ď NL2

|yr ´ ys| j “ 1, 2, ..., p,

for some N “ Npd,m, pq, taking into account (V.4.2) we have

|gβ,jpyr, ysqByjsρεpyq| ď
N
pε

p
ÿ

1ďkălďp

|yk ´ yl|
2ρεpyq ď N 1ρ2εpyq

and hence
|fβ0

11 | ď N 1ρ2εpyq
ÿ

|δ|ďm

|uδpy1q|...
ÿ

|δ|ďm

|uδpypq|
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with a constant N 1 “ N 1pd,m, pq. Remembering (V.4.3) by integration by parts
we obtain

fβ0
12 “ ´

p
ÿ

r“1

hβ,jpyrqByjrρεpyquβ̄pyrqΠq‰ruαpyqq „ fβ0
121 ` f

β0
122

with

fβ0
121 “

p
ÿ

r“1

hβ,jpyrqρεpyqByjruβ̄pyrqΠq‰ruαpyqq,

fβ0
122 “

p
ÿ

r“1

Byjr
hβ,jpyrqρεpyquβ̄pyrqΠq‰ruαpyqq.

Hence noting that
|hβ,jpyrq| ` |Byjrh

β,j
pyrq| ď NL2

with a constant N “ Npd,m, pq, we get

|fβ0
121 ` f

β0
122| ď NL2ρεpyq

ÿ

|δ|ďm

|uδpy1q|...
ÿ

|δ|ďm

|uδpypq|

Consequently, for a constant N 1 “ N 1pd,m, pq,

ż

Rpd

fβ0
1 pyq dy ďNL

2

ż

Rpd

ÿ

|δ|ďm

|uδpy1q|...
ÿ

|δ|ďm

|uδpypq|ρ2εpyq dy

ďN 1L2
ÿ

|δ|ďm

||Dδu|p2εq|pLp
ď N 1L2

ÿ

|δ|ďm

||Dδu|pεq|pLp
. (V.4.15)

Now we are going to estimate the integral of fβ0
2 . If |β| “ 1, then

|aijβ0pyr, ysq| ď NL2
|yr ´ ys|,

and taking into account (V.4.2), we get

|fβ0
2 | ď NL2ρ2εpyq

ÿ

|δ|ďm

|uδpy1q|...
ÿ

|δ|ďm

|uδpypq|

with N “ Npd, p,mq in the same way as |f11| is estimated. Hence, as above,

ż

Rpd

fβ0
2 pyq dy ď NL2

ÿ

|δ|ďm

||Dδu|p2εq|pLp
ď NL2

ÿ

|δ|ďm

||Dδu|pεq|pLp
. (V.4.16)

for |β| “ 1. If |β| ě 2, then

aijβ0pyr, ysq “ gβ,ijpyr, ysq ` h
β,ij
pyrq
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with

gβ,ijpyr, ysq “B
β
yrσ

ik
pyrqpσ

jk
pyrq ´ σ

jk
pysqq ` B

β
yrσ

jk
pyrqpσ

ik
pyrq ´ σ

ik
pysqq

hβ,ijpyrq “
ÿ

1ď|δ|,δăβ

cβδ B
δ
yrσ

ik
pyrqB

β´δ
yr σjkpyrq.

Noticing that for a constant N “ Npd,m, pq,

ÿ

i,j

|gβ,ijpyr, ysq| ď NL2
|yr ´ ys|

and
ÿ

ij

|hβ,ijpyrq| `
ÿ

ij

|Byjr
hβ,ijpyrq| ď NL2,

we obtain (V.4.16) for |β| ě 2 in the same way as the integral of fβ0
1 is estimated.

It remains to consider the case (iii), i.e., to estimate the integral of f 00. Since

|aij00pyr, ysq| ď NL2
|yr ´ ys|

2

with a constant N “ Npd,m, pq and

ByirByjs
ρεpyq “

1
p2ε2

p
ÿ

k“1

p
ÿ

l“1

pyik ´ y
i
rqpy

j
l ´ y

j
sq `

1

pε
δij,

we have for a constant N 1 “ N 1pd,m, pq,

|aij00pyr, ysqByirByjsρεpyq| ď
N
ε2
L2

ÿ

1ďkălďp

|yk ´ yl|
4ρεpyq `

N
ε
L2

ÿ

1ďkălďp

|yk ´ yl|
2ρεpyq

ďN 1L2ρ2εpyq for y “ py1, ..., ypq P Rpd.

Hence
|f 00

pyq| ď NL2ρ2εpyqΠ
p
r“1|uαpyrq|,

that gives

ż

Rpd

f 00
pyq dy ď NL2

||Dαu|p2εq|pLp
ď NL2

||Dαu|pεq|pLp

with a constant N “ Npd,m, pq, and we finish the proof of (V.4.7) by using
|vpεq|Lp ď |v|Lp for v P LppRdq.

Corollary V.4.2. Let the conditions of Lemma V.4.1 hold for integers m ě 0
and p ě 2 even. Then for ε ą 0 we have

ppDαµpεqqp´1, Dα
ppaijDijq

˚µqpεqq ď NL2
|u|pWm

p

for multi-indices α “ pα1, ..., αdq such that 0 ď |α| ď m, where N is a constant
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depending only on d, m and p.

Proof. As in the proof of Corollary IV.4.2, it suffices to note that

ppDαµpεqqp´2Dα
ppσikDiq

˚µqpεq, Dα
ppσjkDjq

˚µqpεqq

“

ż

Rd

pDαµpεqqp´2
pxq

d
ÿ

k“1

ˇ

ˇDα
ppσikDiq

˚µqpεqpxq
ˇ

ˇ

2
dx ě 0.

Lemma V.4.3. Let p ě 2 and m ě 0 be integers, and let σ “ pσiq and b be
Borel functions on Rd with values in Rd and R respectively. Assume the partial
derivatives of σ and bσ up to order m are functions such that there exist constants
K ě L ě 1 such that

m`1
ÿ

k“0

|Dkbpxq| ď K, |σpxq| ď K0,

m`1
ÿ

k“1

|Dkσpxq| `
m`1
ÿ

k“1

|Dk
pbσqpxq| ď L

for all x, y P Rd. Then for finite signed Borel measures µ on R with density
u :“ dµ{dx P Wm

p , satisfying (V.4.5), we have

`

pDαµpεqqp´2Dα
pbµqpεq, Dα

pbµqpεq
˘

ď NK2
|u|pWm

p
, (V.4.17)

`

pDαµpεqqp´2, Dα
ppσiDiq

˚µqpεqDα
pbµqpεq

˘

ď NKL|u|pWm
p

(V.4.18)

for ε ą 0 and multi-indices α such that |α| ď m, where N is a constant depending
only on d, p, m.

Proof. First note that by (V.4.8) and (V.4.9), as well as the conditions on σ and
b, the left-hand sides of (V.4.17) and (V.4.18) are well-defined. Interchanging
the order of integration and the differential operator Dα, rewriting the product
of integrals as multiple integral, using Fubini’s theorem and the identity

Dα
xkεpx´ zq “ p´1q|α|Dα

z kεpx´ zq, x, y P Rd,

as well as (V.4.1), for the left-hand side Fα of (V.4.17) we compute

Fα
“

ż

Rd

ż

Rpd

bpyrqbpysqΠ
p
j“1D

α
xkεpx´ yjqµppdyq dx

“ p´1qp|α|
ż

Rd

ż

Rpd

bpyrqbpysqΠ
p
j“1D

α
yj
kεpx´ yjqµppdyq dx

“ p´1qp|α|
ż

Rpd

bpyrqbpysqD
pα
y

ż

Rd

Πp
j“1kεpx´ yjq dxµppdyq
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“ p´1qp|α|
ż

Rpd

bpyrqbpysqD
pα
y ρεpyqΠ

p
j“1upyjq dy

for any r, s P t1, 2, ..., pu such that r ‰ s, where recall that dy “ dy1...dyp and
Dpα
y “ Πp

j“1D
α
yj

. Hence by integration by parts we obtain

Fα
“

ÿ

βďα

ÿ

γďα

cαβc
α
γ

ż

Rpd

bβpyrqbγpysqρεpyquβ̄pyrquγ̄pysqΠ
p
j‰s,ruαpyjq dy,

where vδ :“ Dδv and δ̄ :“ α ´ δ for functions v on Rd and multi-indices δ ď α.
Using here (V.4.1) and the boundedness condition on |b| and |Dδb| we have

Fα
ď NK2

ÿ

βďα

ÿ

γďα

ż

Rpd

ż

Rd

Πp
j“1kεpx´ yjq|uβ̄pyrq||uγ̄pysq|Π

p
j‰s,r|uαpyjq| dx dy

“ NK2
ÿ

βďα

ż

Rd

|uβ̄|
pεq
|uγ̄|

pεq
||uα|

pεq
|
p´2 dx ď N 1K2

|u|pWm
p

with constants N and N 1 depending only on p, d and m, where the last inequality
follows by Young’s inequality and the boundedness of the mollification operator
in Lp. Now we are going to prove (V.4.18). By the same way as we have rewritten
Fα we can rewrite the left-hand side Rα of the inequality (V.4.18) as

Rα
“

ż

Rdp

fkrrpyq dy, (V.4.19)

for any r, k P t1, 2, .., pu such that r ‰ k, where

fkrspyq :“ p´1qp|α|bpykqσ
i
pyrqByisD

pα
y ρεpyqΠp

j“1upyjq, y “ py1, ..., ypq P Rpd

for k, r, s P t1, 2, ..., pu. As in the proof of Lemma V.4.1, for real functions f
and g we write f „ g if they have the same (finite) Lebesgue integral against
dy “ dy1...dyp over Rpd. We write f ĺ g if the integrals of f and g against dy
over Rd are finite, and the integral of f ´ g can be estimated by NKL|u|Wm

p
for

all u P Wm
p with a constant N “ Npd,m, pq, independent of u. By integration

by parts we have
fkrr „

ÿ

γďα

ÿ

βďα

fγβkrr

with
fγβkrspyq :“ cαγ c

α
βbγpykqσ

i
βpyrqByisρεpyquγ̄pykquβ̄pyrqΠj‰k,ruαpyjq

If β ‰ 0 then by integration by parts (dropping Byir from ρε to the other terms),
and using the boundedness of b, its derivatives up to order m ` 1, and the
boundedness of the derivatives of σ up to order m ` 1, we see that fγβkrr ĺ 0
for any k “ 1, 2, ..p, r ‰ k and γ ď α. If β “ 0 and γ “ 0, then f 00

krr can be
estimated by an exact repetition of the proof of Lemma 4.2 in [17], by replacing
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µ therein with uαdy, to yield f 00
krr ĺ 0. Consequently,

fkrr ĺ
ÿ

0‰γďα

fγ0
krr for every k “ 1, ..., p and r P t1, 2, ..., puztku.

Writing fγ0
krrpyq “ gγkrrpyqh

γ̄
kpyq, with

gγkrspyq :“ cαγ bγpykqσ
i
pyrqByisρεpyq, hγ̄kpyq :“ uγ̄pykqΠj‰kuαpyjq,

we get

ppp´1qpp´2qRα
ď

ÿ

0‰γďα

p
ÿ

s“1

ÿ

r‰s

ÿ

k‰s,r

ż

Rdp

gγksspyqh
γ̄
kpyq dy`NKL|u|

p
Wm

p
, (V.4.20)

and by (V.4.3),

ppp´ 1qRα
ď ´

ÿ

0‰γďα

p
ÿ

k“1

ÿ

r‰k

ÿ

s‰r

ż

Rpd

gγkrspyqh
γ̄
kpyq dy `NKL|u|

p
Wm

p

“ ´
ÿ

0‰γďα

p
ÿ

s“1

ÿ

r‰s

ÿ

k‰s,r

ż

Rpd

gγkrspyqh
γ̄
kpyq dy

´
ÿ

0‰γďα

p
ÿ

s“1

ÿ

r‰s

ż

Rpd

gγsrspyqh
γ̄
s pyq dy `NKL|u|

p
Wm

p
(V.4.21)

with a constant N “ Npd,m, pq. Summing up (V.4.20) and (V.4.21) we obtain

cpR
α
ď

ÿ

0‰γďα

p
ÿ

s“1

ÿ

r‰s

ÿ

k‰r,s

ż

Rpd

pgγksspyq ´ g
γ
krspyqqh

γ̄
kpyq dy `NKL|u|

p
Wm

p

´
ÿ

0‰γďα

p
ÿ

s“1

ÿ

r‰s

ż

Rpd

gγsrspyqh
γ̄
s pyq dy `NKL|u|

p
Wm

p
(V.4.22)

where cp “ ppp´ 1q2, and

pgγksspyq ´ g
γ
krspyqqh

γ̄
kpyq “ cαγ bγpykqpσ

i
pysq ´ σ

i
pyrqqByisρεpyquγ̄pykqΠj‰kuαpyq.

By the boundedness of |bγ| and the Lipschitz condition on σ, using (V.4.4) we
get

pgγkss ´ g
γ
krsqh

γ̄
k ĺ 0, for all 0 ‰ γ ď α, s “ 1, 2, ..., p and r ‰ s, k ‰ r, s.

By integration by parts we have for the last term in (V.4.22),

gγsrsh
γ̄
s ĺ 0, for 0 ‰ γ ď α and s “ 1, . . . , p, r ‰ s,
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which finishes the proof of (V.4.18).

For vectors ξ “ ξpxq P Rd, depending on x P Rd we consider the linear
operators Iξ and Jξ defined by

T ξϕpxq “ ϕpx` ξpxqq (V.4.23)

Iξϕpxq :“ T ξϕpxq ´ ϕpxq, Jξψpxq :“ Iξψpxq ´ ξpxqDiψpxq,

x P Rd, acting on functions ϕ and differentiable functions ψ on Rd.

Lemma V.4.4. Let ξ “ ξpx, zq be an Rd-valued function of x P Rd for every
z P Z for a set Z. Assume that for an integer m ě 1 the partial derivatives of
ξ in x P Rd up to order m are functions on Rd for each z P Z, such that for a
constant λ ą 0, a function ξ̄ on Z and a constant Kξ ě 0 we have

|ξpx, zq| ď ξ̄pzq ď Kξ,

m`1
ÿ

k“1

|Dk
xξpx, zq| ď ξ̄pzq, | detpI` θDxξpx, zqq| ě λ´1 (V.4.24)

for all x, y P Rd, z P Z and θ P r0, 1s. Let p ě 2 be an even integer. Then for
every finite signed Borel measure µ with density u “ dµ{dx P Wm

p , satisfying
(V.4.5), we have

C :“

ż

Rd

ppDα
xµ

pεq
q
p´1Dα

x pJ
ξ˚µqpεq dx

`

ż

Rd

pDα
xµ

pεq
`Dα

x pI
ξ˚µqpεqqp ´ pDα

xµ
pεq
q
p
´ ppDα

xµ
pεq
q
p´1Dα

x pI
ξ˚µqpεq dx

ď Nξ̄2
pzq|u|pWm

p
for z P Z, ε ą 0 (V.4.25)

for multi-indices α, 0 ď |α| ď m with a constant N “ Npd, p,m, λ,Kξq.

Proof. Again we note that by (V.4.8) & (V.4.9), together with the conditions on
ξ, it is easy to verify that C is well-defined. Notice that

Dα
xµ

pεq
`Dα

x pI
ξ˚µqpεq “ Dα

x pT
ξ˚µqpεq

and
ppDα

xµ
pεq
q
p´1Dα

x pJ
ξ˚µqpεq ´ ppDα

xµ
pεq
q
p´1Dα

x pI
ξ˚µqpεq

“ ´ppDα
xµ

pεq
q
p´1Dα

x ppξ
iDiq

˚µqpεq,

Hence

C “

ż

Rd

pDα
x pT

ξ˚µqpεqqp´pDα
xµ

pεq
q
p
´ ppDα

xµ
pεq
q
p´1Dα

x ppξ
iDiq

˚µqpεq dx. (V.4.26)

First we change the order of Dα
x and the integrals and operators T ξy and Iξy acting
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in the variable y P Rd, then we use

Dα
xkεpx´ yq “ p´1q|α|Dα

y kεpx´ yq

to get

Dα
x pT

ξ˚µqpεq “ p´1q|α|
ż

Rd

T ξyD
α
y kεpx´ yqµpdyq,

Dα
xµ

pεq
“ p´1q|α|

ż

Rd

Dα
y kεpx´ yqµpdyq,

Dα
x ppξ

iDiq
˚µqpεq “ p´1q|α|

ż

Rd

ξipyqByiD
α
y kεpx´ yqµpdyq.

Thus rewriting the product of integrals as multiple integrals, and using the prod-
uct measure µppdyq :“ µpdy1q...µpdypq on Rdp by Fubini’s theorem we get

pDα
x pT

ξ˚µqpεqqppxq “

ż

Rpd

Πp
r“1pT

ξ
yrD

α
yrkεpx´ yrqqµppdyq

“

ż

Rpd

Πp
r“1T

ξ
yrD

pα
y Πp

r“1kεpx´ yrqµppdyq,

pDα
xµ

pεq
q
p
“

ż

Rpd

Πp
r“1pD

α
yrkεpx´ yrqqµppdyq

“

ż

Rpd

Dpα
y Πp

r“1kεpx´ yrqµppdyq (V.4.27)

and

ppDα
xµ

pεq
q
p´1Dα

x ppξ
iDiq

˚µqpεq “p

ż

Rpd

Πp´1
r“1pD

α
yrkεpx´ yrqqξ

i
pypqByipD

α
ypkεpx´ ypqµppdyq

“p

ż

Rpd

ξipypqByipD
pα
y Πp

r“1kεpx´ yrqµppdyq

“

ż

Rpd

p
ÿ

r“1

ξipyrqByirD
pα
y Πp

r“1kεpx´ yrqµppdyq,

(V.4.28)

where again
Dpα
y :“ Πp

r“1D
α
yr for y “ py1, ..., ypq P Rdp,

and the last equation is due to the symmetry of the function Πp
r“1D

α
yrkεpx´ yrq

and the measure µppdyq in y “ py1, ..., ypq P Rpd. Thus from (V.4.26) we get

C “

ż

Rd

ż

Rpd

LξyD
pα
y Πp

r“1kεpx´ yrqµppdyq dx
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with the operator

Lξy “ Πp
r“1T

ξ
yr ´ I´

p
ÿ

r“1

ξipyrqByir ,

defined by

Lξyϕpyq “ ϕpy1`ξpy1q, ..., yp`ξpypqq´ϕpyq´
p
ÿ

r“1

ξipyrqByirϕpyq, y “ py1, ...., ypq P Rpd

for differentiable functions ϕ of y “ py1, ...., ypq P Rpd. Using here Fubini’s
theorem then changing the order of the operator LξyD

pα
y and the integration

against dx, by virtue of (V.4.1) we have

C “

ż

Rpd

LξyD
pα
y

ż

Rd

Πp
r“1kεpx´ yrq dxµppdyq “

ż

Rpd

LξyD
pα
y ρεpyqµppdyq,

(V.4.29)
By Taylor’s formula

LξyD
pα
y ρεpyq “

ż 1

0

p1´ ϑqξipykqξ
j
pylqpByikByjl

Dpαρεqpy ` ϑξ̄pyqq dϑ,

where y “ py1, ..., ypq P Rpd, yk P Rd for k “ 1, 2, ..., p, and ξ̄pyq :“ pξpy1q, ..., ξpypqq
for y “ py1, ..., ypq P Rdp. Thus by changing the order of integrals and then
changing the variables yk with yk ` ϑξpykq for k “ 1, 2, ..., p, from (V.4.29) we
obtain

C “

ż 1

0

p1´ ϑqCpϑq dϑ (V.4.30)

with

Cpϑq “

ż

Rpd

p
ÿ

k“1

p
ÿ

l“1

ξ̂ipykqξ̂
j
pylqByikByjl

Dpα
y ρεpyqΠ

p
r“1ûpyrq dy,

where, with τϑpxq :“ x` ϑξpxq,

ξ̂ipxq :“ ξipτ´1
ϑ pxqq, ûpxq “ upτ´1

ϑ pxqq| detDτ´1
ϑ pxq|, x P Rd, i “ 1, 2, ..., d,

(V.4.31)
and dy :“ dy1dy2...dyp denotes the Lebegue measure on Rpd. Clearly,

Cpϑq “ C1pϑq ` C2pϑq

with

C1pϑq “

ż

Rpd

p
ÿ

k“1

ξ̂ipykqξ̂
j
pykqByikByjk

Dpα
y ρεpyqΠ

p
r“1ûpyrq dy,

C2pϑq “

ż

Rpd

p
ÿ

k“1

ÿ

l‰k

ξ̂ipykqξ̂
j
pylqByikByjl

Dpα
y ρεpyqΠ

p
r“1ûpyrq dy.
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Using (V.4.3) and the symmetry in yk and yl, we have

C1pϑq “ ´
1
2

ż

Rpd

p
ÿ

k“1

ÿ

l‰k

pξ̂ipykqξ̂
j
pykq ` ξ̂

i
pylqξ̂

j
pylqqByikByjl

Dpα
y ρεpyqΠ

p
r“1ûpyrq dy,

C2pϑq “
1
2

ż

Rpd

p
ÿ

k“1

ÿ

l‰k

pξ̂ipykqξ̂
j
pylq ` ξ̂

i
pylqξ̂

j
pykqqByikByjl

Dpα
y ρεpyqΠ

p
r“1ûpyrq dy.

(V.4.32)

Hence

Cpϑq “

ż

Rpd

p
ÿ

r“1

ÿ

s‰r

âijpyr, ysqByirByjsD
pα
y ρεpyqΠ

p
r“1ûpyrq dy (V.4.33)

with
âijpyr, ysq “ ´

1
2
pξ̂ipyrq ´ ξ̂

i
pysqqpξ̂

j
pyrq ´ ξ̂py

j
sqq

Notice that the right-hand side of equation (V.4.33) is the same as the right-
hand side of (V.4.11) with ξ̂i in place of σi¨ for each i “ 1, 2, ..., d and with û
in place of u. It is easy to verify, see Lemma 3.3 in [42], that for a constant
N “ Npd, λ,m,Kξq we have

m`1
ÿ

k“1

|Dk
xpτ

´1
ϑ pxqq| ď N, for each ϑ P r0, 1s, z P Z, x P Rd.

Thus also for each ϑ P r0, 1s,

m`1
ÿ

k“1

|Dkξ̂px, zq| ď Nξ̄pzq for x P Rd, z P Z, (V.4.34)

with a constant N “ Npd,m, λ,Kξq, i.e., for each ϑ P r0, 1s and z P Z the function

ξ̂ of x P Rd satisfies the condition (V.4.6) on σ in Lemma V.4.1, with Nξ̄pzq in
place of L. Consequently, copying the calculations which lead from equation
(V.4.11) to the estimate (V.4.7) in the proof of Lemma V.4.1, we obtain

Cpϑq ď Nξ̄2
pzq|û|pWm

p
for each ϑ P r0, 1s, z P Z

with a constant N “ Npd,m, p, λ,Kξq. Note that due to the condition (V.4.24)
there is a constant N “ Npd, p,m, λ,Kξq such that

|û|Wm
p
ď N |u|Wm

p
for all ϑ P r0, 1s. (V.4.35)

Hence by virtue of (V.4.30) the estimate (V.4.25) follows.

Corollary V.4.5. Let the conditions of Lemma V.4.4 hold. Then for every
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finite signed Borel measure µ with density u “ dµ{dx P Wm
p , satisfying (V.4.5),

we have
ż

Rd

pDα
xµ

pεq
q
p´1Dα

x pJ
ξ˚µqpεq dx ď Nξ̄2

pzq|u|pWm
p

for z P Z, ε ą 0 (V.4.36)

for multi-indices α, 0 ď |α| ď m with a constant N “ Npd, p,m, λ,Kξq.

Proof. By the convexity of the function fpaq “ ap for even p ě 2 we know that
pa ` bqp ´ ap ´ pap´1b ě 0 for all a, b P Rd. Applying this with a “ Dαupεq and
b “ DαpIξuqpεq shows that (V.4.25) implies (V.4.36).

Lemma V.4.6. Let the conditions of Lemma V.4.4 hold. Then for every finite
signed Borel measure µ with density u “ dµ{dx P Wm

p , satisfying (V.4.5), we
have

ˇ

ˇ

ˇ

ż

Rd

pDαupεq `Dα
pIξ˚µqpεqqp ´ pDαupεqqp dx

ˇ

ˇ

ˇ
ď Nξ̄pzq|u|pWm

p
, (V.4.37)

for a constant N “ Npd, p,m, λ,Kξq for z P Z, where the argument x P Rd is
suppressed in the integrand.

Proof. Define

F :“

ż

Rd

pDαupεq `Dα
pIξ˚uqpεqqp ´ pDαupεqqp dx

“

ż

Rd

pDα
pT ξ˚uqpεqqp ´ pDαupεqqp dx,

where we use the operator T defined in (V.4.23). As in the proof of Lemma 4.5
in [17] we define the operator

M ξ
y “ Πp

i“1T
ξ
yi
´ I

where I is the identity operator. Observe that using Fubini’s theorem and the
notation Dpα

y “ Πp
r“1D

α
yr , dy “ dy1 ¨ ¨ ¨ dyp, y “ py1, . . . , ypq P Rpd,

F “

ż

Rd

ż

Rdp

´

Dpα
x Πp

i“1T
ξ
yi

Πp
j“1kεpx´yjqΠ

p
k“1upykq´D

pα
x Πp

j“1kεpx´yjqΠ
p
k“1upykq

¯

dy dx

“

ż

Rd

ż

Rdp

´

M ξ
yD

pα
y Πp

j“1kεpx´yjq
¯

Πp
k“1upykq dy dx “

ż

Rdp

´

M ξ
yD

pα
y ρεpyq

¯

Πp
k“1upykq dy.

Next, note that by Taylor’s formula with ξ̄pyq “ pξpy1q, . . . , ξpypqq P Rdp,

M ξ
yD

pα
y ρεpyq “

p
ÿ

k“1

ż 1

0

pByik
Dpα
y ρεqpy ` ϑξ̄pyqq dϑ ξ

i
pykq.
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Thus, by a change of variables, Fubini’s theorem and the functions defined in
(V.4.31),

F “
p
ÿ

k“1

ż 1

0

ż

Rdp

Byik
Dpα
y ρεpyqξ̂

i
pykqΠ

p
j“1ûpyjq dy dϑ,

which by integration by parts gives, with multi-indices β ď α, β̄ :“ α ´ β and
constants cαβ ,

F “
ÿ

βďα

cαβ

p
ÿ

k“1

ż 1

0

ż

Rdp

Byik
ρεpyqξ̂

i
βpykqûβ̄pykqΠ

p
j‰kûαpyjq dy dϑ

“
ÿ

βďα

cαβ

p
ÿ

k“1

ż 1

0

fβk pϑq dϑ,

where for k “ 1, . . . , p, ϑ P r0, 1s and β ď α,

fβk pϑq :“

ż

Rdp

Byik
ρεpyqξ̂

i
βpykqûβ̄pykqΠ

p
j‰kûαpyjq dy

and where ûγpykq “ Dγ
yk
ûpykq for γ “ α, β̄. We consider two cases. In the

first case, let β̄ ă α and hence |β| ě 1. Then by integration by parts, for all
k “ 1, . . . , p and a constant N “ Npd, p,m, λq,

fβk pϑq “ ´

ż

Rdp

ρεpyq
`

pByik
ξ̂iβpykqqûβ̄pykq ` ξ̂

i
βpykqpByik ûβ̄pykqq

˘

Πp
j‰kûαpyjq dy dϑ

ď Nξ̄pzq|u|pWm
p
,

where we used (V.4.34) and (V.4.35). In the second case β̄ “ α so that β “ 0
and we have

p
ÿ

k“1

f 0
k “

p
ÿ

k“1

ż

Rpd

Byik
ρεpyqξ̂

i
pykqΠ

p
j“1ûαpyjq dy,

as well as by using (V.4.3) and the symmetry in s and k,

p
ÿ

k“1

f 0
k “ ´

p
ÿ

k“1

ÿ

s‰k

ż

Rpd

Byik
ρεpyqξ̂

i
pysqΠ

p
j“1ûαpyjq dy.

Therefore also, with a constant N “ Npd, p,m, λ,Kξq,

ˇ

ˇpp´ 1q
p
ÿ

k“1

f 0
k ` p

p
ÿ

k“1

f 0
k

ˇ

ˇ

“

ˇ

ˇ

ˇ

p
ÿ

k“1

ÿ

s‰k

ż

Rpd

Byik
ρεpyq

`

ξ̂ipykq ´ ξ̂
i
pysq

˘

Πp
j“1ûαpyjq dy

ˇ

ˇ

ˇ
ď Nη̄pzq|u|pWm

p
,
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where we used (V.4.34) together with (V.4.4), as well as (V.4.35). This proves
the lemma.

V.5 Solvability of the filtering equations in Sobolev

spaces

The following two lemmas are essentially Lemma IV.5.3 in Chapter IV, where
instead of Dαkε the kernel kε is considered. However, keeping this difference
in mind, the arguments in the proofs of Lemma IV.5.3 can easily be adapted.
Hence we only provide an outline and refer the reader to Chapter IV for full
details.

Lemma V.5.1. Let the Assumption V.2.1 hold. Let u be an Lp-solution of
(V.3.2), p ě 2, and assume moreover that ess suptPr0,T s |ut|L1 ă 8. If K1 ‰ 0 in
Assumption V.2.1 (ii), then assume additionally

ess sup
tPr0,T s

ż

Rd

|y|2|utpyq| dy ă 8, almost surely. (V.5.1)

Then for each ε ą 0 and integer m ě 0, for any multi-index α “ pα1, . . . , αdq,
|α| ď m, for all x P Rd almost surely

Dαu
pεq
t pxq “ Dαu

pεq
0 pxq `

ż t

0

Dα
pL̃˚susqpεqpxq ds`

ż t

0

Dα
pM˚k

s usq
pεq
pxq dV k

s

`

ż t

0

ż

Z0

Dα
pJη˚s usq

pεq
pxq ν0pdzqds`

ż t

0

ż

Z1

Dα
pJξ˚s usq

pεq
pxq ν1pdzqds

`

ż t

0

ż

Z1

Dα
pIξ˚s us´q

pεq
pxq Ñ1pds, dzq,

(V.5.2)

for all t P r0, T s.

Proof. The case of α “ 0 is Lemma IV.5.3. The case of α ‰ 0 such that 0 ă
|α| ď m works exactly in the same way. We first define for a ψ P C80 pRq such that
ψp0q “ 1, ψprq “ 0 for |r| ě 2, for n ě 1, ψnpxq :“ ψp|x|{nq P C80 pRdq. Setting
ϕxpyq :“ kε,αpx ´ yqψnpyq P C

8
0 in (V.3.2), where kε,αpx ´ yq “ Dα

xkεpx ´ yq,
yields that for each x P Rd almost surely

put, kε,αpx´ ¨qψnq “ pu0, kε,αpx´ ¨qψnq `

ż t

0

`

us, L̃spkε,αpx´ ¨qψnq
˘

ds

`

ż t

0

`

us,Mk
spkε,αpx´¨qψnq

˘

dV k
s `

ż t

0

ż

Z0

`

us, J
η
s pkε,αpx´¨qψnq

˘

ν0pdzqds (V.5.3)

139



`

ż t

0

ż

Z1

`

us, J
ξ
s pkε,αpx´¨qψnq

˘

ν1pdzqds`

ż t

0

ż

Z1

`

us´, I
ξ
s pkε,αpx´¨qψnq

˘

Ñ1pdz, dsq

for all t P r0, T s. Then we notice that

|kε,αpx´ yq| ď
ÿ

|γ|ďm`2

|Dγkεpx´ yq| ď Nk2εpx´ yq, (V.5.4)

as well as that by Assumption for all x, y P Rd, s P r0, T s, zi P Zi. i “ 0, 1 and
n ě 0 we have

sup
xPRd

|Dkψn| “ n´k sup
Rd

|Dkψ| ă 8, for k P N,.

|L̃spkε,αpx´yqψnpyqq|`
ÿ

k

|Mk
spkε,αpx´yqψnpyqq|

2
ď NpK2

0 `K
2
1 |y|

2
`K2

1 |Ys|
2
q,

|Jηs pkε,αpx´ yqψnpyqq| ď sup
vPRd

|D2
vpkε,αpx´ vqψnpvqq||ηspy, z0q|

2
ď N |ηspy, z0q|

2

ď Nη̄2
pz0qpK

2
0 `K

2
1 |y|

2
`K2

1 |Ys|
2
q,

and
|Jξs pkε,αpx´ yqψnpyqq| ` |I

ξ
s pkε,αpx´ yqψnpyqq|

2

ď sup
vPRd

|D2
vpkε,αpx´ vqψnpvqq||ξspy, z1q|

2
` sup

vPRd

|Dvpkε,αpx´ vqψnpvqq|
2
|ξspy, z1q|

2

ď N |ξspy, z1q|
2
ď Nξ̄2

pz1qpK
2
0 `K

2
1 |y|

2
`K2

1 |Ys|
2
q,

for a constant N “ Npε,m, d,K0, K1, K,Kξ, Kηq. Using

ess sup
tPr0,T s

ż

Rd

p1` |y|2 ` |Yt|
2
q|utpyq| dy ă 8, (a.s.)

together with the estimates above, we can apply Lebesgue’s theorem on Domi-
nated Convergence to get that for all x P Rd,

put, kε,αpx´¨qψnq Ñ put, kε,αpx´¨qq, pu0, kε,αpx´¨qψnq Ñ pu0, kε,αpx´¨qq and

ż t

0

`

us,Aspkε,αpx´ ¨qψnq
˘

dsÑ

ż t

0

pus,Askε,αpx´ ¨qq ds

as nÑ 8, almost surely uniformly in time, as well as that

lim
nÑ8

ż t

0

`

us,Mk
spkε,αpx´ ¨qψnp¨qq

˘

dV k
s “

ż t

0

`

us,Mk
skε,αpx´ ¨q

˘

dV k
s ,

lim
nÑ8

ż t

0

ż

Z1

pus´, I
ξ
s pkε,αpx´¨qψnqq Ñ1pdz, dsq “

ż t

0

ż

Z1

pus´, I
ξ
skε,αpx´¨qq Ñ1pdz, dsq

in probability, uniformly in time. Thus, letting n Ñ 8 in (V.5.3) it remains to
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note that since A acts in the y variable,

pus,Askε,αpx´ ¨qq “

ż

Rd

uspyqAsD
α
xkεpx´ yq dy

“ Dα
x

ż

Rd

uspyqAskεpx´ yq dy “ Dα
pA˚susqpεqpxq

for all pω, s, xq P Ω ˆ r0, T s ˆ Rd if A “ L̃,Mk or the identity, as well as for
all pω, s, x, ziq P Ω ˆ r0, T s ˆ Rd ˆ Zi if A “ Jη or A “ Iξ, Jξ with i “ 0, 1
respectively.

Lemma V.5.2. Let the Assumptions V.2.1 and V.2.2 hold. Let u be an Lp-
solution of (V.3.2), p ě 2 and assume moreover that ess suptPr0,T s |ut|L1 ă 8. If
K1 ‰ 0 in Assumption V.2.1 (ii), then assume additionally (V.5.1). Then for
each ε ą 0 and integer m ě 0, for any multi-index α “ pα1, . . . , αdq, |α| ď m,
almost surely

|Dαu
pεq
t |

p
Lp
“ |Dαu

pεq
0 |

p
Lp
` p

ż t

0

`

|Dαupεqs |
p´2Dαupεqs , Dα

pL̃˚susqpεq
˘

ds

`p

ż t

0

`

|Dαupεqs |
p´2Dαupεqs , Dα

pMk˚
s usq

pεq
˘

dV k
s

`
ppp´1q

2

ÿ

k

ż t

0

`

|Dαupεqs |
p´2, |Dα

pMk˚
s usq

pεq
|
2
˘

ds

` p

ż t

0

ż

Z0

`

|Dαupεqs |
p´2Dαupεqs , Dα

pJη˚s usq
pεq
˘

ν0pdzqds (V.5.5)

`p

ż t

0

ż

Z1

`

|Dαupεqs |
p´2Dαupεqs , Dα

pJξ˚s usq
pεq
˘

ν1pdzqds

`p

ż t

0

ż

Z1

`

|Dαu
pεq
s´|

p´2Dαu
pεq
s´, D

α
pIξ˚s us´q

pεq
˘

Ñ1pdz, dsq

`

ż t

0

ż

Z1

ż

Rd

!

ˇ

ˇDαu
pεq
s´ `D

α
pIξ˚s us´q

pεq
ˇ

ˇ

p
´ |Dαu

pεq
s´|

p

´ p|Dαu
pεq
s´|

p´2Dαu
pεq
s´D

α
pIξ˚s us´q

pεq
)

dxN1pdz, dsq

holds for all t P r0, T s.

Proof. We apply the Itô formula from Chapter IV, Theorem IV.5.1, to |Dαu
pεq
t |

p
Lp

.

In order to do that, we need to verify that almost surely for each x P Rd and α,
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such that 0 ď |α| ď m,

ż T

0

|Dα
pL̃˚susqpεqpxq| ds ă 8,

ż T

0

ÿ

k

|Dα
pMk˚

s usq
pεq
pxq|2ds ă 8,

ż T

0

ż

Z0

|Dα
pJη˚s usq

pεq
pxq| ν0pdzq ds ă 8,

ż T

0

ż

Z1

|Dα
pJξ˚s usq

pεq
pxq| ν1pdzq ds ă 8,

ż T

0

ż

Z1

|Dα
pIξ˚s usq

pεq
pxq|2 ν1pdzqds ă 8,

that for every finite set Γ P BpRdq, almost surely

ż

Γ

ż T

0

|Dα
pL̃˚susqpεqpxq| dxds ă 8,

ż

Γ

´

ż T

0

ÿ

k

|Dα
pMk˚

s usq
pεq
pxq|2ds

¯1{2

dx ă 8,

ż

Γ

ż T

0

ż

Z0

|Dα
pJη˚s usq

pεq
pxq| ν0pdzq dxds ă 8,

ż

Γ

ż T

0

ż

Z1

|Dα
pJξ˚s usq

pεq
pxq| ν1pdzq dxds ă 8,

ż

Γ

´

ż T

0

ż

Z1

|Dα
pIξ˚s usq

pεq
pxq|2 ν1pdzqds

¯1{2

dx ă 8,

as well as that almost surely

A :“

ż T

0

ż

Rd

|Dα
pL̃˚susqpεqpxq|p dxds ă 8,

Aη :“

ż T

0

ż

Rd

ˇ

ˇ

ˇ

ż

Z0

Dα
pJη˚s usq

pεq
pxqν0pdzq

ˇ

ˇ

ˇ

p

dxds ă 8,

Aξ :“

ż T

0

ż

Rd

ˇ

ˇ

ˇ

ż

Z1

Dα
pJξ˚s usq

pεq
pxqν1pdzq

ˇ

ˇ

ˇ

p

dxds ă 8,

B :“

ż T

0

ż

Rd

`

ÿ

k

|Dα
pMk˚

s usq
pεq
pxq|2

˘p{2
dxds ă 8,

G :“

ż T

0

ż

Rd

ż

Z1

|Dα
pIξ˚s usq

pεq
px, zq|p ν1pdzqdxds ă 8,

H :“

ż T

0

ż

Rd

´

ż

Z1

|Dα
pIξ˚s usq

pεq
px, zq|2 ν1pdzq

¯p{2

dxds ă 8.

For α “ 0 the claim is Lemma IV.5.2 and the estimates can be found in the
proof thereof. To prove the case where 0 ă |α| ď m, we note that for A “

L̃,M, Iξ, Jξ, Jη we have

Dα
pA˚uqpεq “

ż

Rd

Dα
x pAykεpx´ yqqupyq dy “

ż

Rd

pAykε,αpx´ yqqupyq dy,
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for kε,αpxq “ Dαkεpxq. Hence, a word for word repetition of the proof of Lemma
5.2 & 5.4 in [17], where we replace kε by kε,α and recall (V.5.4), yields the desired
result.

Lemma V.5.3. Let Assumptions V.2.1, V.2.2, V.2.4 andV.2.5 hold with an
integer m ě 0 and let p ě 2 be even. Let u be an Wm

p -solution to (V.3.2), such
that E|u0|

p
Wm

p
ă 8 and almost surely ess suptPr0,T s |ut|L1 ă 8. Then

E sup
tPr0,T s

|ut|
p
Wm

p
ď NE|u0|

p
Wm

p
(V.5.6)

for a constant N “ Npm, d, p,K,Kη, Kξ, L, T, λ, |ξ̄|L2pZ1q, |η̄L2pZ1qq.

Proof. For m “ 0 the claim is Lemma IV.5.5. We proceed similarly here. For
the present case, fix a multi-index α such that 0 ‰ |α| ď m, and define

Qppα, b, σ, ρ, β, u, kεq “ p
`

pDαupεqqp´1, Dα
pL̃˚uqpεq

˘

(V.5.7)

`
ppp´1q

2

ÿ

k

`

pDαupεqqp´2, pDα
pMk˚uqpεqq2

˘

, (V.5.8)

Qp0q
p pα, ηpz0q, u, kεq “ p

`

pDαupεqqp´1, Dα
pJηpz0q˚uqpεq

˘

,

Qp1q
p pα, ξpz1q, u, kεq “ pppDαupεqqp´1, Dα

pJξpz1q˚uqpεqq, (V.5.9)

Rppα, ξpz1q, u, kεq “ |D
αupεq `Dα

pIξpz1q˚uqpεq|pLp

´ |Dαupεq|pLp
´ pppDαupεqqp´1, Dα

pIξpz1q˚uqpεqq,

for u P Wm
p , β P Rd1 , functions b, σ and ρ on Rd, with values in Rd, Rdˆd1

and Rdˆd1 , respectively, and Rd-valued functions ηpz0q and ξpz1q for each zi P Zi,
i “ 0, 1, where βt “ BtpXtq,

L̃ “ 1
2
pσilσjl` ρikρjkqDij ` β

lρilDi` β
lBl, Mk

“ ρikDi`B
k, k “ 1, 2, ..., d1.

By Lemma V.5.2 almost surely

d|Dαu
pεq
t |

p
Lp
“ Qppα, bt, σt, ρt, βt, ut, kεq dt`

ż

Z0

Qp0q
p pα, ηtpzq, ut, kεq ν0pdzq dt

`

ż

Z1

Qp1q
p pα, ξtpzq, ut, kεq ν1pdzq dt`

ż

Z1

Rppα, ξtpzq, ut´, kεqN1pdz, dtq (V.5.10)

`dζ1pα, tq ` dζ2pα, tq,

for all t P r0, T s and

ζ1pα, tq “ p

ż t

0

`

pDαupεqs q
p´1, Dα

pMk˚
s usq

pεq
˘

dV k
s , (V.5.11)
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ζ2pα, tq “ p

ż t

0

ż

Z1

`

pDαupεqs q
p´1, Dα

pIξ˚s usq
pεq
˘

Ñ1pdz, dsq t P r0, T s

are local martingales under P . We write

ż

Z1

Rppα, ξtpz1q, ut´, kεqN1pdz, dtq “

ż

Z1

Rppα, ξtpz1q, ut´, kεq ν1pdzqdt` dζ3pα, tq

(V.5.12)
with

ζ3pα, tq “

ż t

0

ż

Z1

Rppα, ξspzq, us´, kεqN1pdz, dsq´

ż t

0

ż

Z1

Rppα, ξspzq, us´, kεq ν1pdzqds,

which we can justify if we show

A :“

ż T

0

ż

Z1

|Rppα, ξspzq, us, kεq| ν1pdzq ds ă 8 (a.s.). (V.5.13)

To this end observe that by Taylor’s formula

0 ď Rppα, ξtpzq, ut, kεqq ď N

ż

Rd

pDαu
pεq
t q

p´2
pDα

pIξpzq˚utq
pεq
q
2
`pDα

pIξpzq˚utq
pεq
q
p dx

(V.5.14)
with a constant N “ Npd, pq. Hence

ż

Z1

Rppα, ξtpzq, ut, kεqq ν1pdzq

ď N

ż

Rd

pDαu
pεq
t q

p´2
|Dα

pI
ξpzq˚
t utq

pεq
|
2
L2pZ1q

` |Dα
pI
ξpzq˚
t utq

pεq
|
p
LppZ1q

dx

ď N 1
`

|Dαu
pεq
t |

p
Lp
` A1ptq ` A2ptq

˘

with

A1ptq “

ż

Rd

|Dα
pI
ξpzq˚
t utq

pεq
|
p
L2pZ1q

dx, A2ptq “

ż

Rd

|Dα
pI
ξpzq˚
t utq

pεq
|
p
LppZ1q

dx

(V.5.15)
and constants N and N 1 depending only on d and p. By Minkowski’s inequality
and using again that Dα

xI
ξkεpx´ yq “ IξDα

xkεpx´ yq,

|Dαu
pεq
t |

p
Lp
“

ż

Rd

ˇ

ˇ

ˇ

ż

Rd

Dα
xkεpx´ yqutpyq dy

ˇ

ˇ

ˇ

p

dx,

ď

ˇ

ˇ

ˇ

ż

Rd

|Dαkε|Lp |utpyq| dy
ˇ

ˇ

ˇ

p

ď |Dαkε|
p
Lp
|ut|

p
L1
, (V.5.16)

A1ptq “

ż

Rd

ˇ

ˇ

ˇ

ż

Z1

ˇ

ˇ

ż

Rd

`

pDαkεqpx´y´ξtpy, zqq´pD
αkεqpx´yq

˘

utpyq dy
ˇ

ˇ

2
ν1pdzq

ˇ

ˇ

ˇ

p{2

dx
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ď

ˇ

ˇ

ˇ

ż

Z1

ˇ

ˇ

ˇ

ż

Rd

|pDαkεqp¨ ´ y ´ ξtpy, zqq ´ pD
αkεqp¨ ´ yq||utpyq| dy

ˇ

ˇ

ˇ

2

Lp

ν1pdzq
ˇ

ˇ

ˇ

p{2

ď

ˇ

ˇ

ˇ

ż

Z1

ˇ

ˇ

ˇ

ż

Rd

|Dα`1kε|Lp ξ̄pz1qpK0 `K1|y| `K1|Yt|q|utpyq| dy
ˇ

ˇ

ˇ

2

ν1pdzq
ˇ

ˇ

ˇ

p{2

ď |Dα`1kε|
p
Lp
|ξ̄|pL2pZ1q

´

ż

Rd

pK0 `K1|y| `K1|Yt|q|utpyq| dy
¯p

, (V.5.17)

where Dα`1 “ DDα and similarly, using Assumption V.2.2,

A2ptq “

ż

Rd

ż

Z1

ˇ

ˇ

ˇ

ż

Rd

`

pDαkεqpx´ y´ ξtpy, zqq´ pD
αkεqpx´ yq

˘

utpyq dy
ˇ

ˇ

ˇ

p

ν1pdzqdx

ď

ż

Z1

ˇ

ˇ

ˇ

ż

Rd

ˇ

ˇpDαkεqp¨ ´ y ´ ξtpy, zqq ´ pD
αkεqp¨ ´ yqq

ˇ

ˇ

Lp
|utpyq| dy

ˇ

ˇ

ˇ

p

ν1pdzq

ď Kp´2
ξ |Dα`1kε|

p
Lp
|ξ̄|2L2pZ1q

´

ż

Rd

pK0 `K1|y| `K1|Yt|q|utpyq| dy
¯p

. (V.5.18)

By (V.5.14)–(V.5.18) we have a constant N “ Npp, d, ε, |ξ̄|L2pZ1q, Kξq such that

A ď N

ż T

0

|ut|L1 dt`N

ż T

0

´

ż

Rd

pK0 `K1|y| `K1|Yt|q|utpyq| dy
¯p

dt ă 8 (a.s.).

Next we claim that, with the operator T ξ defined in (V.4.23), we have

ζ2pα, tq ` ζ3pα, tq

“

ż t

0

ż

Z1

|Dα
pT ξ˚s usq

pεq
|
p
Lp
´ |Dαupεqs |

p
Lp
Ñ1pdz, dsq “: ζpα, tq (V.5.19)

for t P r0, T s. For that purpose not first thatDαupεq`DαpIξpz1q˚uqpεq “ DαpT ξ˚usq
pεq.

To see that the stochastic integral ζpα, tq is well-defined as an Itô integral note
that by Lemma V.4.6,

ż T

0

ż

Z1

||Dα
pT ξ˚s usq

pεq
|
p
Lp
´ |Dαupεqs |

p
Lp
|
2 ν1pdzqds

ď N |ξ̄|2L2pZ1q

ż T

0

|us|
2p
Wm

p
ds ă 8 (a.s.) (V.5.20)

with a constant N “ Npd, p,m, λ,Kξq. Since Z1 is σ-finite, there is an increasing
sequence pZ1nq

8
n“1, Z1n P Z1, such that ν1pZ1nq ă 8 for every n and Y8n“1Z1n “

Z1. Then it is easy to see that

ζ̄2npα, tq “ p

ż t

0

ż

Z1

1Z1npzq
`

pDαupεqs q
p´1, Dα

pIξ˚s usq
pεq
˘

Npdz, dsq,
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ζ̂2npα, tq “ p

ż t

0

ż

Z1

1Z1npzq
`

pDαupεqs q
p´1, Dα

pIξ˚s usq
pεq
˘

ν1pdzqds,

ζ̄3npα, tq “

ż t

0

ż

Z1

1Z1npzqRppα, ξspzq, us´, kεqN1pdz, dsq,

ζ̂3npα, tq “

ż t

0

ż

Z1

1Z1npzqRppα, ξspzq, us´, kεq ν1pdzqds

are well-defined, and

ζ2pα, tq “ lim
nÑ8

pζ̄2npα, tq ´ ζ̂2npα, tqq, ζ3pα, tq “ lim
nÑ8

ζ̄3npα, tq ´ lim
nÑ8

ζ̂3npα, tq,

where the limits are understood in probability. Hence

ζ2pα, tq ` ζ3pα, tq “ lim
nÑ8

´

ζ̄2npα, tq ` ζ̄3npα, tq ´
`

ζ̂2nptq ` ζ̂3npα, tq
˘

¯

“ lim
nÑ8

´

ż t

0

ż

Z1

1Z1npzqp|D
α
pT ξ˚s usq

pεq
|
p
Lp
´ |Dαupεqs |

p
Lp
q Ñ1pdz, dsq

¯

“ ζpα, tq,

which completes the proof of (V.5.19). Consequently, from (V.5.10)-(V.5.12) we
have

d|Dαu
pεq
t |

p
Lp
“ Qppα, bt, σt, ρt, βt, ut, kεq dt`

ż

Z0

Qp0q
p pα, ηtpz0q, ut, kεq ν0pdzq dt

`

ż

Z1

Qp1q
p pα, ξtpz1q, ut, kεq `Rppα, ξtpz1q, ut, kεq ν1pdzq dt` dζ1pα, tq ` dζpα, tq.

(V.5.21)
By Lemma V.4.1, Corollary V.4.2 and Lemma V.4.3 we have

Qppα, bs, σs, ρs, βs, us, kεq ď NpL2
`K2

q|us|
p
Wm

p
(V.5.22)

with a constant N “ Npd, p,mq, and by Lemma V.4.4 and Corollary V.4.5, using
that ξ̄ ď Kξ and η̄ ď Kη,

Qp0q
p pα, ηspzq, us, kεq ď Nη̄2

pzq|us|
p
Wm

p
,

pQp1q
p `Rpqpα, ξspzq, us, kεq ď Nξ̄2

pzq|us|
p
Wm

p

(V.5.23)

with a constant N “ NpKξ, Kη, d, p, λ,mq. Thus from (V.5.21) we obtain that
for all α with |α| ď m almost surely

|Dαu
pεq
t |

p
Lp
ď |u

pεq
0 |

p
Wm

p
`N

ż t

0

|us|
p
Wm

p
ds`m

pεq
t for all t P r0, T s

with a constant N “ Npm, p, d,K,Kξ, Kη, L, λ, |ξ̄|L2pZ1q, |η̄|L2pZ0qq and the local
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martingale mpεqpα, tq “ ζ1pα, tq ` ζpα, tq. Summing over all |α| ď m gives

|u
pεq
t |

p
Wm

p
ď |u

pεq
0 |

p
Wm

p
`N

ż t

0

|us|
p
Wm

p
ds`m

pεq
t for all t P r0, T s (V.5.24)

with another constant N “ Npm, p, d,K,Kξ, Kη, L, λ, |ξ̄|L2pZ1q, |η̄|L2pZ0qq and an-
other local martingale, denoted again by mpεq. For integers n, k ě 1 and ε ą 0
set τ εn,k “ τ̄n ^ τ̃ εk , where pτ̃ εkq

8
n“1 is a localising sequence of stopping times for

mpεq and

τ̄n “ inf
!

t P r0, T s :

ż t

0

|us|
p
Wm

p
ds ě n

)

.

Then from (V.5.24), using also |Dαupεq|Lp “ |pDαuqpεq|Lp ď |Dαu|Lp for multi-
indices α ď m and ε ą 0 we get

E|upεqt^τεn,k
|
p
Wm

p
ď E|u0|

p
Wm

p
`NE

ż t^τεn,k

0

|us|
p
Wm

p
ds

ď E|u0|
p
Wm

p
`NE

ż t^τ̄n

0

|us|
p
Wm

p
ds

ď E|u0|
p
Wm

p
`NE

ż t

0

|us^τ̄n |
p
Wm

p
ds ă 8,

for t P r0, T s and integers n ě 1. Applying Fatou’s lemma, first for the limit
k Ñ 8 and then for the limit εÑ 0, followed by Grönwall’s lemma gives

E|ut^τn |
p
Wm

p
ď NE|u0|

p
Wm

p
for t P r0, T s and integers n ě 1

with a constant N “ Npm, p, d, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q. Letting here nÑ
8, by Fatou’s lemma we obtain

sup
tPr0,T s

E|ut|pWm
p
ď NE|u0|

p
Wm

p
. (V.5.25)

To prove (V.5.6) we define a localizing sequence of stopping times pτ εkq
8
k“1 for

the local martingale mε, as well as

ρ̃n “ inf
!

t P r0, T s :

ż t

0

|us|
2p
Wm

p
ds ě n

)

, and ρεn,k “ ρ̄n ^ ρ̃
ε
k.

Using the Davis inequality and Lemma V.4.3 by standard calculations for every
n ě 1 we get for each |α| ď m for the Doob-Meyer process of ζ1,

E sup
tďT

|ζ1pα, t^ ρ
ε
n,kq| ď 3E

´

ÿ

k

ż T^ρεn,k

0

`

pDαupεqs q
p´1, Dα

pMk˚
s usq

pεq
˘2
ds
¯1{2

(V.5.26)
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ď NE
´

ż T^ρεn,k

0

|us|
2p
Wm

p
ds
¯1{2

ă 8,

and similarly, for each |α| ď m, the Doob-Meyer process of ζpα, ¨q is

xζpα, ¨qyptq “

ż t

0

ż

Z1

||Dα
pT ξ˚usq

pεq
|
p
Lp
´ |Dαupεqs |

p
Lp
|
2ν1pzqds, t P r0, T s.

Using the Davis inequality and Lemma V.4.6,

E sup
sďT

|ζpα, s^ρεn,kq| ď 3Exζpα, ¨qy1{2pT^ρεn,kq ď NE
´

ż T^ρεn,k

0

|us|
2p
Wm

p
ds
¯1{2

ă 8,

(V.5.27)
with a constant N “ Npm, d, p,K,Kξ, L, λ, |ξ̄|L2pZ1qq. Thus, due to (V.5.25)
together with (V.5.26) and (V.5.27), we get from (V.5.24), with constant N
depending only on m, p, d, T , K, Kξ, Kη, L, λ, |ξ̄|L2 and |η̄|L2 ,

E sup
tPr0,T s

|u
pεq
t^ρεn,k

|
p
Wm

p
ď NE|u0|

p
Wm

p
`

ÿ

|α|ďm

E sup
tďT

|ζ1pα, t^ρ
ε
n,kq|`

ÿ

|α|ďm

E sup
tďT

|ζpα, t^ρεn,kq|

ď NE|u0|
p
Wm

p
`NE

´

ż T

0

|us^ρn |
2p
Wm

p
ds
¯1{2

.

Letting here k Ñ 8 and then εÑ 0, we obtain by Fatou’s lemma with constants
N 1 and N2 only depending on m, p, d, T , K, Kξ, Kη, L, λ, |ξ̄|L2pZ1q and |η̄|L2pZ0q,

E sup
tPr0,T s

|ut^ρn |
p
Wm

p
ď NE|u0|

p
Wm

p
`NE

´

ż T

0

|us^ρn |
2p
Wm

p
ds
¯1{2

ď NE|u0|
p
Wm

p
`NE

´

sup
tPr0,T s

|ut^ρn |
p
Wm

p

ż T

0

|us^ρn |
p
Wm

p
ds
¯1{2

ď NE|u0|
p
Wm

p
` 1

2
E sup
tPr0,T s

|ut^ρn |
p
Wm

p
`N 1E

ż T

0

|us^ρn |
p
Wm

p
ds

ď N2E|u0|
p
Wm

p
` 1

2
E sup
tPr0,T s

|ut^ρn |
p
Wm

p
,

where we used Young’s inequality. Thus also, we get for all n,

E sup
tPr0,T s

|ut^ρn |
p
Wm

p
ď 2N2E|u0|

p
Wm

p
.

Using Fatou’s lemma we get the desired result.

For an integerm ě 0, let Bm0 denote the space of those functions ψ P
Ş

pě1 Wm
p
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such that

m
ÿ

k“0

sup
ωPΩ

sup
xPRd

|Dkψpxq| ă 8 and almost surely ψpxq “ 0 for |x| ě R,

for some constant R depending on ψ. It is easy to see that Bm0 is a dense subspace
of Wm

p for every p P r1,8q. For ε ą 0 let in the following proposition vpεq denote
the convolution

vpεqpxq “

ż

Rd

χεpx´ yqvpyq dy

of a Borel function v on Rd, where χ is a smooth, symmetric function of unit
integral on Rd, such that χpxq “ 0 for |x| ě 1 and χεp¨q :“ ε´dχp¨{εq. Let

Mεk
t “ ρ

pεqik
t Di `B

pεqk
t , k “ 1, . . . , d1,

L̃εt “ aε,ijt Dij ` b
pεqi
t Di ` β

k
tMεk

t , βt “ Bpt,Xt, Ytq,

aε,ijt :“ 1
2

ÿ

k

pσ
pεqik
t σ

pεqjk
t ` ρ

pεqik
t ρ

pεqjk
t q, i, j “ 1, 2, ..., d

and let Iξ
ε
, Jξ

ε
and Jη

ε
be defined as Iξ, Jξ and Jη, only with ξpεq and ηpεq instead

of ξ and η, respectively.

Consider for ε P p0, 1q the equation

duεt “L̃ε˚t uεt dt`Mεk˚
t uεt dV

k
t `

ż

Z0

Jη
ε˚

t uεt ν0pdzqdt

`

ż

Z1

Jξ
ε˚
t uεt ν1pdzqdt`

ż

Z1

Iξ
ε˚
t uεt Ñ1pdz, dtq, with uε0 “ ψpεq. (V.5.28)

Lemma V.5.4. Let Assumptions V.2.1, V.2.2, V.2.4 and V.2.5 hold with K1 “

0. Consider integers m ě 0 and p ě 2 even. Assume there is some R ą 0 such
that

`

btpxq, Btpxq, σtpxq, ρtpxq, ηtpx, z0q, ξtpx, z1q
˘

“ 0 (V.5.29)

for ω P Ω, t ě 0, z0 P Z0, z1 P Z1 and x P Rd such that |x| ě R. Let ψ P B0 such
that ψpxq “ 0 if |x| ě R. Then there exists a unique Wm

p -solution putqtPr0,T s to
equation (V.3.2) with initial condition u0 “ ψ. Moreover, almost surely utpxq “ 0
for dx-almost every x P tx P Rd : |x| ě R̄u for every t P r0, T s for a constant
R̄ “ R̄pR,K,K0, Kξ, Kηq, and

E sup
tPr0,T s

|ut|
p
Wm

p
ď NE|ψ|pWm

p
(V.5.30)

with a constant N “ Npm, d, p, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q.

Proof. By Lemma IV.6.4 (i) for ε ą 0 sufficiently small there exists a Wm
p -valued

weakly cadlag Ft-adapted process puεtqtPr0,T s, such that for each ϕ P C80 almost
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surely

puεt , ϕq “pψ
pεq, ϕq `

ż t

0

puεs, L̃εsϕq ds`
ż t

0

puεs,Mεk
s ϕq dV

k
s `

ż t

0

ż

Z0

puεs, J
ηε

s ϕq ν0pdzq ds

`

ż t

0

ż

Z1

puεs, J
ξε

s ϕq ν1pdzq ds`

ż t

0

ż

Z1

puεs, I
ξε

s ϕq Ñ1pdz, dsq, (V.5.31)

holds for all t P r0, T s. By Lemma IV.6.4 (ii), since almost surely uεt “ 0 for
|x| ě R̄ for all t P r0, T s for a constant R̄ “ R̄pR,K,K0, Kξ, Kηq, we also have

E sup
tPr0,T s

|uεt |L1 ď R̄d{q
`

E sup
tPr0,T s

|uεt |
p
Lp

˘1{p
ă 8

for q “ p{pp´1q. Next, note that the smoothed coefficients bpεq, Bpεq, σpεq, ρpεq, ξpεq

and ηpεq are bounded and satisfy Assumptions V.2.1, V.2.2, V.2.5 and Assump-
tion V.2.4 (iii) with the same constants K0, L,Kξ and Kη, independent of ε, as
well as Assumption V.2.4 (ii) with a constant L1 “ L1pL,K0, Kq. By Remark
V.2.1 we have that for all t P r0, T s, θ P r0, 1s, y P Rd1 and zi P Zi, i “ 0, 1, the
mappings

τ ηt,θ,z0pxq “ x` θη
pεq
t px, z0q, and τ ξt,θ,z1pxq “ x` θξ

pεq
t px, z1q

are C1-diffeomorphisms. Moreover, by Corollary IV.6.3, we know that for ε
sufficiently small we have that for all t P r0, T s, θ P r0, 1s and zi P Zi, i “ 0, 1,
the mappings

pτ ηt,θ,z0q
pεq
“ τ η

pεq

t,θ,z0
pxq “ x`θη

pεq
t px, z0q and pξξt,θ,z1q

pεq
“ τ ξ

pεq

t,θ,z1
pxq “ x`θξ

pεq
t px, z1q

are also C1-diffeomorphisms such that

| detDτ η
pεq

t,θ,z0
pxq| ě λ1 and | detDτ ξ

pεq

t,θ,z1
pxq| ě λ1,

with a λ1 “ λ1pλ,Kξ, Kη, K0q independent of ε. Moreover, by Remark V.2.1 we
then know that Assumption V.2.4 (i) is satisfied with (another) λ2 “ λ2pλ,Kξ, Kη, K0q

independent of ε. Hence by Lemma V.5.3 for each ε ą 0 also

E|uεT |
p
Wm

p
` E

´

ż T

0

|uεt |
r
Wm

p
dt
¯p{r

ď E|uεT |
p
Wm

p
` T p{rE sup

tPr0,T s

|uεt |
p
Wm

p
ď NE|ψ|pWm

p

(V.5.32)
for a constant N “ Npm, d, p,K,Kη, Kξ, L, T, λ, |ξ̄|L2pZ1q, |η̄L2pZ1qq independent
of ε for all integers r ě 1. Letting pεnq

8
n“1 be the sequence from Lemma IV.6.4

(iii), we know that

uεnT Ñ uT weakly in LppFT q and uεn Ñ u weakly in Lp,r for integers r ě 2 as nÑ 8

where u is the unique Lp-solution to (V.3.2) and, if necessary by passing to a
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subsequence,

uεnT Ñ uT weakly in Wm
p pFT q and uεn Ñ u weakly in Wm

p,r for integers r ě 2.

Letting r Ñ 8 in (V.5.32) yields

E|uT |pWm
p
` E ess sup

tPr0,T s

|ut|
p
Wm

p
ă NE|ψ|pWm

p
.

By Lemma V.3.2 u is weakly cadlag as Wm
p -valued process. Thus we can replace

the essential supremum above by the supremum to obtain (V.5.30). By Lemma
IV.6.4 (ii) we also have that almost surely utpxq “ 0 for dx-almost every x P
tx P Rd : |x| ě R̄u for every t P r0, T s for a constant R̄ “ R̄pR,K,K0, Kξ, Kηq.
This finishes the proof.

Corollary V.5.5. Let Assumptions V.2.1, V.2.2, V.2.4 and V.2.5 hold with an
integer m ě 0. Assume, moreover that the support condition (V.5.29) holds for
some R ą 0. Then for every p ě 2 there is a linear operator S defined on Wm

p

such that Sψ admits a P bdt-modification u “ putqtPr0,T s which is a Wm
p -solution

to equation (V.3.2) for every ψ PWm
p , with initial condition u0 “ ψ, and

E sup
tPr0,T s

|ut|
p
Wm

p
ď NE|ψ|pWm

p
(V.5.33)

with a constant N “ Npm, d, p, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q. Moreover, if ψ P
Wm

p such that almost surely ψpxq “ 0 for |x| ě R, then almost surely utpxq “ 0
for |x| ě R̄ for t P r0, T s for a constant R̄ “ R̄pR,K,K0, Kξ, Kηq.

Proof. By Corollary IV.6.5 we know that there exist linear operators S and ST
on Lp such that Sψ admits a P b dt-modification u “ putqtPr0,T s that is an Lp-
solution to (V.3.2) such that uT “ STψ satisfies equation (V.3.2) for each ϕ P C80
almost surely with uT in place of ut and t :“ T . By an abuse of notation we
refer to this stochastic modification u whenever we write Sψ in the following.
It remains to show that if ψ P Wm

p , then u is in particular a Wm
p -solution to

(V.3.2), i.e. it is weakly cadlag as Wm
p -valued process.

If p is an even integer, then this follows from Lemma V.5.4. Assume p is not an
even integer. Then let p0 be the greatest even integer such that p0 ď p and let
p1 be the smallest even integer such that p ď p1. By Lemma V.5.4, in particular
(V.5.30), we get that

|STψ|Wm
pi
pFT q ` |Sψ|Wm

pi,r
ď Ni|ψ|Wm

pi
for i “ 0, 1 (V.5.34)

for every r P r1,8q and constantsNi “ Nipm, d, pi, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q,
i “ 0, 1, independent of r. Hence, by a well-known generalization of the Riesz-
Thorin interpolation theorem we also get for all r ě 1,

|STψ|Wm
p pFT q ` |Sψ|Wm

p,r
ď N |ψ|Wm

p
for i “ 0, 1, (V.5.35)
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for (another) constant N “ Npm, d, p, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q. Consider a
sequence pψnq8n“1 Ă Bm0 such that ψn Ñ ψ in Wm

p . For each n, un “ Sψn is the
unique Wm

pi
-solution to (V.3.2), i “ 0, 1, with initial condition ψn. By virtue of

(V.5.35), using that |ψn ´ ψ|Wm
p
Ñ 0, as nÑ 8 we know that also

un Ñ u weakly in Wm
p,r for every integer r ě 2 and unT Ñ uT weakly in Wm

p pFT q,

where u “ Sψ is the unique Lp-solution introduced in the beginning of the proof,
satisfying (V.5.35). To see that u is weakly cadlag as Wm

p -valued process, note
that by letting r Ñ 8 in (V.5.35) or Sψ “ u and STψ “ uT yields

E|uT |pWm
p pFT q

` E ess sup
tPr0,T s

|ut|
p
Wm

p
ď NE|ψ|pWm

p
,

for (another) constant N “ Npm, d, p, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q. By Lemma
V.3.2 we then know that u is weakly cadlag as Wm

p -valued process. Thus we can
replace the essential supremum above with the supremum, to obtain (V.5.33).
To prove the claim about the support of u, note that if ψpxq “ 0 for |x| ě R,
for a constant R, and ψn Ñ ψ in Wm

p , then for sufficiently large n we have
ψnpxq “ 0 for |x| ě 2R. By Lemma V.5.4 (ii) thus also unt pxq “ 0 for dx-almost
every x P tx P Rd : |x| ě R̄u for every t P r0, T s and n sufficiently large, for
a constant R̄ “ R̄pR,K,K0, Kξ, Kηq. This is clearly preserved in the limit as
nÑ 8. This finishes the proof.

V.6 Proof of Theorem V.2.1

Let χ be a smooth function on R such that χprq “ 1 for r P r´1, 1s, χprq “ 0
for |r| ě 2, χprq P r0, 1s and

řm`2
k“1 |d

k{pdrkqχprq| ď C for all r P R and a
real nonnegative constant C. For integers n ě 1 we define the function χn by
χnpxq “ χp|x|{nq, x P Rd.

Lemma V.6.1. Let b “ pbiq be an Rd-valued function on Rm such that for a
constant M ě 0,

m
ÿ

k“1

|Dkbpxq| ďM, for all x P Rd. (V.6.1)

Then bn :“ χnb satisfies (V.6.1) in place of b for a constant M 1 “M 1pM,C,m, |bp0q|q
in place of M .

Proof. A straight forward calculation yields the result.

We recall from Chapter IV that to preserve the diffeomorphic property of the
mappings

τ ηt,z0,θpxq “ x` θηtpx, z0q and τ ξt,z1,θpxq “ x` θξtpx, z1q (V.6.2)
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(for all ω P Ω, t P r0, T s, θ P r0, 1s and zi P Zi, i “ 0, 1) as a function of x P Rd,
when the functions ξ and η are truncated, we introduced, for each fixed R ą 0
and ε ą 0, the function κRε defined on Rd by

κRε pxq “

ż

Rd

φRε px´ yqkpyq dy, (V.6.3)

φRε pxq

$

’

&

’

%

1, |x| ď R ` 1,

1` ε log
`

R`1
|x|

˘

, R ` 1 ă |x| ă pR ` 1qe1{ε,

0, |x| ě pR ` 1qe1{ε,

where k is a nonnegative C8 mapping on Rd with support in tx P Rd : |x| ď 1u.

We summarize the results of Lemmas IV.7.1, IV.7.2, IV.7.3 and some facts
from the proof of Theorem IV.2.1 in Section IV.7 in the following proposition.
For that purpose, define the functions bn “ pbnipt, zqq, Bn “ pBnjpt, zqq, σn “
pσnijpt, zqq, ηn “ pηnipt, z, z0qq and ξn “ pξnipt, z, z1qq by

pbn, Bn, σn, ρnq “ pb, B, σ, ρqχn, pηn, ξnq “ pη, ξqχ̄n (V.6.4)

for every integer n ě 1, where χn and χ̄n are functions on Rd`d1 defined by
χnpzq “ χp|z|{nq and χ̄npx, yq “ κnp|x|{nqχp|y|{nq for z “ px, yq P Rd`d1 , with χ
introduced at the beginning of this section and with κn “ κnεpnq defined in V.6.3,

such that, by the L-biLipschitzness of the mappings in (V.6.2), for all n ě 1 the
mappings

τ η
n

t,z0,θ
pxq “ x` θηnt px, z0q and τ ξ

n

t,z1,θ
pxq “ x` θξnt px, z1q

are biLipschitz (for all ω P Ω, t P r0, T s, θ P r0, 1s and zi P Zi, i “ 0, 1).

Proposition V.6.2. Let the conditions of Theorem IV.2.1 hold for some p ě 2.
Assume the initial conditional density π0 “ P pX0 P dx|FY

0 q{dx additionally
satisfies E|π0|

p
Wm

p
ă 8 for some integer m ě 0. Then there exist sequences

pXn
0 q
8
n“1, ppXn

t , Y
n
t qtPr0,T sq

8
n“1, as well as pπn0 q

8
n“1 and ppπnt qtPr0,T sq

8
n“1

such that the following are satisfied:
(i) For each n ě 1 the coefficients bn, Bn, σn, ρn, ξn and ηn, defined in (V.6.4),
satisfy Assumptions V.2.1 and V.2.2 with K1 “ 0 and constants
K 1

0 “ K 1
0pn, L,K,K0, K1, Kξ, Kηq and L1 “ L1pK,K0, K1, L,Kξ, Kηq in place of

K0 and L, as well as Assumption V.2.4 with λ1 “ λ1pλ,K0, K1, Kξ, Kηq in place
of λ. Moreover, for each n ě 1 they satisfy the support condition (V.5.29) of
Lemma V.5.4 with some R ą 0 depending only on n.
(ii) For each n ě 1 the random variable Xn

0 is F0-measurable and such that

lim
nÑ8

Xn
0 “ X0, ω P Ω, and E|Xn

0 |
r
ď Np1` E|X0|

r
q,
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for r ą 0 with a constant N “ Nprq independent of n.
(iii) Zn

t “ pXn
t , Y

n
t q is the solution to the SDE (I.0.2) with the coefficients

bn, Bn, σn, ρn, ξn and ηn in place of b, B, σ, ρ, ξ and η, respectively, and with ini-
tial condition Zn

0 “ pX
n
0 , Y0q.

(iv) For each n ě 1 we have πn0 “ P pXn
0 P dx|FY

0 q{dx, πn0 pxq “ 0 for |x| ě n` 1
and

lim
nÑ8

|πn0 ´ π0|Wm
p
“ 0.

(v) For each n ě 1 there exists an Lr-solution un to (V.3.2), r “ 2, p, with initial
condition πn0 , such that un is the unnormalised conditional density of Xn given
Y n, almost surely

unt pxq “ 0 for dx-a.e. x P tx P Rd : |x| ě R̄u for all t P r0, T s

with a constant R̄ “ R̄pn,K,K0, Kξ, Kηq and

E sup
tPr0,T s

|unt |
p
Lp
ď NE|πn0 |

p
Lp

(V.6.5)

with a constant N “ Npd, d1, K, L,Kξ, Kη, T, p, λ, |ξ̄|L2 , |η̄|L2q. Moreover,

un Ñ u weakly in Lr,q for r “ p, 2 and all integers q ą 1,

where u is the unnormalised conditional density of X given Y , satisfying (V.6.5)
with the same constant N and u, π0 in place of un, πn0 .
(vi) Consequently, for each n ě 1 and t P r0, T s we have

πnt “ P pXn
t P dx|FY n

t q{dx “ unt pxq
oγnt , almost surely,

as well as

πt “ P pXt P dx|FY
t q{dx “ utpxq

oγt, almost surely,

where oγn and oγ are cadlag positive normalising processes.

Now we are in the position to prove our main result.

Proof of Theorem V.2.1. Step I. Assume first that the support condition (V.5.29)
holds with some R ą 0 and that the initial conditional density π0 is such that
π0pxq “ 0 for |x| ě R. By Corollary V.5.5 we know that there exists a Wm

p -
solution putqtPr0,T s to (V.3.2) with initial condition π0, satisfying

E sup
tPr0,T s

|ut|
p
Wm

p
ď NE|π0|

p
Wm

p
(V.6.6)

with a constant N “ Npm, d, p, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q. Moreover, we
have ut “ 0 for |x| ě R̄, for a constant R̄ “ R̄pR,K,K0, K1, Kξ, Kηq, and hence
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clearly

sup
tPr0,T s

|ut|L1 ď R̄d{q sup
tPr0,T s

|ut|Lp and sup
tPr0,T s

ż

Rd

|y|2|utpyq| dy ă 8 (a.s.),

with q “ p{pp ´ 1q. Since also π0 “ P pX0 P dx|FY
0 q{dx P L1, then in particular

π0 P L2 and hence
E sup
tPr0,T s

|ut|
2
L2
ď NE|π0|

2
L2
, (V.6.7)

with a constant N “ Npd, p, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q. By Lemma V.5.4
u is the unique L2-solution and therefore by Theorem V.3.1, u is in particular
the unnormalised conditional density, i.e., ut “ dµt{dx for all t P r0, T s, almost
surely, with µ the unnormalised conditional distribution from Theorem III.1.1.
Thus also for each t P r0, T s,

πt “ P pXt P dx|FY
t q{dx “ ut

oγt, almost surely,

where oγt is the FY
t -optional projection of the normalizing process γ under P

introduced in Chapter III.
Step II. Finally, we dispense with the assumption that the coefficients and the
initial condition are compactly supported. Define the functions bn, Bn, σn, ρn, ξn
and ηn as in (V.6.4). Note that by Proposition V.6.2, as well as Lemma V.6.1,
the truncated coefficients satisfy Assumptions V.2.1 and V.2.2 with K1 “ K2 “ 0
and constants K 1

0 “ K 1
0pn,K,K0, K1, Kξ, Kηq and L1 “ L1pK,K0, K1, L,Kξ, Kηq

in place of K0 and L, the coefficients bn, Bn, σn, ρn satisfy Assumption V.2.5 with
a constant K 1 “ K 1pm,K0, K1q in place of L, and moreover that the coefficients
ηn and ξn satisfy Assumption V.2.5 with K 1η̄ and K 1ξ̄ instead of η̄ and ξ̄ respec-
tively. Furthermore, by Lemma IV.7.3, for each n ě 1 the coefficients ηn and ξn
satisfy Assumption V.2.4 with a constant λ1 “ λ1pλ,K0, K1, Kη, Kξq in place of
λ. Note that K 1, L1 and λ1 do not depend on n. Moreover, for each n ě 1 they
satisfy the support condition (V.5.29) of Lemma V.5.4 for some R “ Rpnq ą 0.
By assumption, π0 “ P pX0 P dx|FY

0 q{dx exists almost surely and E|π0|
p
Wm

p
ă 8.

Then let pXn
0 q
8
n“1 and pπn0 q

8
n“1 Ă Wm

p be the sequences from Proposition V.6.2
such that

lim
nÑ8

|πn0 ´ π0|Wm
p
“ 0, (V.6.8)

πn0 pxq “ 0 for |x| ě Rpnq and πn0 “ P pXn
0 P dx|FY

0 q{dx (a.s.), where pXn
0 , Y0q

is the initial condition to the system (I.0.2), and pRpnqq8n“1 is the sequence of
positive numbers from the support condition for the coefficients pσn, ..., ξnq. By
Step I we know that there exists a Wm

p -solution putqtPr0,T s to (V.3.2) with initial
condition πn0 , which is the unnormalized conditional density of Xn “ pXn

t qtPr0,T s

given Y n “ pY n
t qtPr0,T s, where Zn “ pXn, Y nq is the solution to (I.0.2) with initial

condition pXn
0 , Y0q. By Proposition V.6.2 pvq we know moreover that

un Ñ u weakly in Lr,q for r “ p, 2 and all integers q ą 1,
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where u is the unnormalised conditional density of X given Y from Theorem
V.3.1, satisfying

E sup
tPr0,T s

|ut|
2
L2
ď NE|π0|

2
L2
,

with a constant N “ Npd, p, T,K,Kξ, Kη, L, λ, |ξ̄|L2 , |η̄|L2q independent of n.
Moreover, u is an Lp-solution to (V.3.2) and by Theorem V.3.1 (i), it is the
unique L2-solution to (V.3.2). It remains to show that u is also a Wm

p -solution to
(V.3.2), as well as that it is strongly cadlag as W s

p -valued process, for s P r1,mq.
To prove the former, by (V.6.6) together with (V.6.8) we get that for n sufficiently
large,

E|unT |
p
Wm

p
`E

ˆ
ż T

0

|unt |
r
Wm

p
dt

˙p{r

ď E|unT |
p
Wm

p
`T p{rE sup

tPr0,T s

|unt |
p
Wm

p
ď 2NE|π0|

p
Wm

p
.

(V.6.9)
Hence we know that

unT Ñ uT , weakly in Wm
p and un Ñ u weakly in Wm

p,r for any r ą 1,

where u satisfies for all r ě 1,

E|uT |pWm
p
` E

ˆ
ż T

0

|ut|
r
Wm

p
dt

˙p{r

ď 2NE|π0|Wm
p
.

Letting r Ñ 8 above yields

E|uT |pWm
p
` E ess sup

tPr0,T s

|ut|
p
Wm

p
ď 2NE|π0|Wm

p
.

By Lemma V.3.2 we then know that u is weakly cadlag as an Wm
p -valued process,

i.e. it is a Wm
p -solution to (V.3.2). Clearly, by Proposition V.6.2 (vi), also for

each t P r0, T s

πtpxq “ P pXt P dx|FY
t q{dx “ utpxq

oγt, almost surely,

with oγ from Theorem V.3.1. We now show that if m ě 1 and K1 “ 0, then u
is strongly cadlag as W s

p -valued process for s P r0,mq. For that purpose, recall
first that by Lemma V.3.3, u is a strongly cadlag Lp-valued process, as well
as weakly cadlag as an Wm

p -valued process. By interpolation we then have a
constant N “ Npd,m, s, pq such that

|ut ´ utn |W s
p
ď N |ut ´ utn |Wm

p
|ut ´ utn |Lp ď 2Nζ|ut ´ utn |Lp ,

|urn ´ ur´|W s
p
ď N |urn ´ ur´|Wm

p
|urn ´ ur´|Lp ď 2Nζ|urn ´ ur´|Lp

for any t P r0, T q, r P p0, T s, any strictly decreasing sequences tn Ñ t and strictly
increasing sequences rn Ñ r with rn, tn P p0, T q, where ur´ denotes the weak
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limit in Wm
p of u at r from the left, and ζ :“ suptPr0,T s |ut|Wm

p
ă 8 (a.s.). Letting

here nÑ 8 we finish the proof.
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[5] Stefan Blackwood. Lévy processes and filtering theory. PhD thesis, Univer-
sity of Sheffield, 2014.

[6] Alessandro Calvia and Giorgio Ferrari. Nonlinear filtering of partially ob-
served systems arising in singular stochastic optimal control. Applied Math-
ematics & Optimization, 85(2):1–43, 2022.

[7] Thomas Cass, Martin Clark, and Dan Crisan. The filtering equations re-
visited. In Stochastic Analysis and Applications, pages 129–162. Springer,
2014.

[8] Claudia Ceci. Risk minimizing hedging for a partially observed high fre-
quency data model. Stochastics: An International Journal of Probability
and Stochastics Processes, 78(1):13–31, 2006.

[9] Claudia Ceci and Katia Colaneri. Nonlinear filtering for jump diffusion
observations. Advances in Applied Probability, 44(3):678–701, 2012.

[10] Claudia Ceci and Katia Colaneri. The Zakai equation of nonlinear filtering
for jump-diffusion observations: existence and uniqueness. Applied Mathe-
matics & Optimization, 69(1):47–82, 2014.

[11] Dan Crisan. The stochastic filtering problem: a brief historical account.
Journal of Applied Probability, 51(A):13–22, 2014.

158



[12] Konstantinos Dareiotis, Chaman Kumar, and Sotirios Sabanis. On tamed
Euler approximations of sdes driven by Lévy noise with applications to delay
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[17] Fabian Germ and István Gyöngy. On partially observed jump diffusions II.
The filtering density. arXiv:2205.14534, 2022.
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