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Abstract

The e�cient computational solution of linear optimization problems is generally enhanced sig-
ni�cantly by using a �presolve� procedure to process the problem logically in order to reduce
the dimension of the problem to be solved algorithmically. In the absence of other information
about the optimal solution to the problem, it is often worth performing a cheap �crash� proce-
dure to obtain a solution that is near-feasible and, ideally, near-optimal. When a problem has
been presolved, it is essential to be able to deduce the original problem's optimal solution from
the optimal solution of the presolved problem. This thesis provides an analysis of the Idiot
crash algorithm (ICA) for linear programming (LP) problems, and techniques for primal and
dual postsolve corresponding to established presolve techniques. It demonstrates that presolve
yields signi�cant performance enhancement for standard test problems, and identi�es that use
of the ICA enhances the solution process for a signi�cant range of test problems. This is partic-
ularly so in the case of linearisations of quadratic assignment problems that are, otherwise, very
challenging for standard methods of solution. The techniques are implemented in the HiGHS
open-source software system. The use of modern techniques to create robust and e�cient soft-
ware system for HiGHS and its interfaces has been a critical feature of its success. Accordingly,
this thesis sets out the philosophy and techniques of the software engineering underpinning
HiGHS.

5



6



Contents

Abstract 5

1 Introduction 9

2 Mathematical Background 11

2.1 KKT optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The simplex algorithm and basic solutions . . . . . . . . . . . . . . . . . . . . . . 12
2.3 LP Solution process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Presolve background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Crash background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Further solution methods for LP . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Graph Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 First order methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Presolve 17

3.1 A sequence of rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Elimination rules in HiGHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Rules based on available publications . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Modi�cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Postsolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Further analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Further notes on primal and dual postsolve . . . . . . . . . . . . . . . . . . . . . 24
3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Crash 31

4.1 The Idiot crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Preliminary experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Fast approximate solution of LP problems . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Problem characteristics a�ecting the performance of the Idiot crash . . . 37
4.2.2 The Idiot crash on QAPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 ICA on the dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 Crash as an approximate solver . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Levels of approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 iCrash and crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 HiGHS 41

5.1 Design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 The HiGHS Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 The Product & Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusions 47

7



8



Chapter 1

Introduction

Linear programming problems (LP) are formulated in a wide range of practical applications.
LPs can be modelled explicitly in commercially valuable applications, such as resource alloca-
tion, logistics, scheduling and human and animal food formulation. LPs are also generated as
sub- problems during the solution of mixed-integer programming (MIP) problems, and when
solving nonlinear programming problems via sequential linear programming. Hence there is a
very strong motivation for improving the e�ciency of solution techniques.

This thesis examines crucial aspects of the solution process for large-scale sparse linear pro-
gramming problems. An LP is considered sparse if zero entries occur in the constraint matrix
to such an extent that avoiding addition or multiplication by zero when solving the LP problem
improves the solution time meaningfully

Direct solution of LPs is not possible in all but trivial instances or very speci�c problem classes.
For large problems, instead, iterative techniques are used. There are two main classes of solution
techniques, most commonly achieving the best performance: The simplex method and interior
point methods (IPM). Depending on the structure and coe�cients of the problem, a method in
one class may perform better than algorithms from the other class.

This thesis examines preprocessing techniques for LP and outlines how preprocessing is in-
tegrated within the structure of a larger optimization software system, in particular HiGHS.
Before the presolve and crash algorithms can be described, some mathematical background is
introduced in Chapter 2.

In practice, most LP formulations contain redundancies. Regardless of the solution technique
most appropriate for a particular LP, for most problems solved in practice, there exists an
equivalent LP of smaller dimensions. This results from redundancies present in the model,
often introduced as a result of the modelling process that yields the LP. For example, variables
and equations may be introduced to de�ne values used later in the model, or even just for
reporting. Alternatively, a modeller may introduce constraints to guarantee a property that is
implied by other constraints and bounds on variables.

Identifying a smaller, equivalent problem to solve is called a presolve procedure and is a non-
trivial task. It is necessary to recover the primal and dual solution of the original LP using
the solution of the smaller LP. This procedure is called postsolve. Presolve and postsolve are
examined in Chapter 3.

The simplex algorithm is particularly suitable when solving LP problems for which the optimal
solution of a related problem is known. However, in the absence of such information, a heuristic
technique that �nds a solution that is near-optimal, or at least near-feasible, faster than the
simplex method can be extremely valuable.

One such procedure is the �Idiot crash� used in the open-source simplex solver, Clp [11]. The

9



Idiot crash leads to strikingly good performance of Clp on particularly challenging LP prob-
lems citeMittelmannSimplex so, since there was no published scienti�c study of it, Google
funded a research project to carry this out. Chapter 4 gives the �rst analysis of the Idiot crash
algorithm, and discusses the scope for improving it further.

The presolve techniques developed for this thesis were the catalyst for the creation of the open-
source linear optimization software system known as HiGHS. Developed over the past �ve years
by combining the presolve with independently-developed linear programming solvers, HiGHS
is now the world's best open-source linear and mixed-integer optimization software. HiGHS is
gradually becoming the solver of choice in major application interfaces such as SciPy and JuMP.
Critical to its success has been the development of a modern and rigorous software engineering
and testing environment. The underlying philosophy and techniques are discussed in Chapter 5.
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Chapter 2

Mathematical Background

A linear programming (LP) problem in general bounded form is de�ned as

minimize f = cTx subject to L ≤ Ax ≤ U l ≤ x ≤ u. (2.1)

For convenience, discussion and analysis of algorithms in publications are restricted to linear
programming (LP) problems in standard form:

minimize f = cTx subject to Ax = b, x ≥ 0 (2.2)

or in general bounded standard form:

minimize f = cTx subject to Ax = b, l ≤ x ≤ u, (2.3)

where x ∈ Rn, c ∈ Rn, A ∈ Rm×n, b ∈ Rm and m < n. In problems of practical interest,
the number of variables and constraints can be large and the matrix A is sparse. It can also
be assumed that A has full rank of m. The algorithms, discussion and analysis below extend
naturally to more general LP problems, since any problem in general form can be transformed
to standard form.

LP duality

In addition to the solution values for the primal variables, for linear programming problems
information about the optimal dual solutions must also be calculated. The Lagrangian function
for an LP is de�ned using a dual variable yi for each row i of the constraint matrix and also
a dual variable zj for to each column j. The primal and dual solutions of an LP must satisfy
certain conditions at an optimal point.

2.1 KKT optimality conditions

The Karush-Kuhn-Tucker conditions (KKT) are necessary and su�cient conditions for opti-
mality of an optimization problem. When applied to a general bounded LP ((2.1)), the KKT
conditions are as follows:

ATy + z = c
}

Stationarity of Lagrangian

L ≤ Ax ≤ U
l ≤ x ≤ u

}
Primal Feasibility
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yi ≥ 0, for each row i : aT
i x = Li ∧ Li < Ui

yi ≤ 0, for each row i : aT
i x = Ui ∧ Ui > Li

yi = 0, for each row i : Li = −∞∧ Ui = ∞
zj ≥ 0, for each column j : xj = lj < uj

zj ≤ 0, for each column j : xj = uj > lj

zj = 0, for each column j : lj = −∞∧ uj = ∞


Dual Feasibility

yi(a
T
i x− Li) = 0, for each row i : Li > −∞

yi(Ui − aT
i x) = 0, for each row i : Ui < ∞

(xj − lj)zj = 0, for each column j : lj > −∞
(uj − xj)zj = 0, for each column j : uj < ∞

 Complementary Slackness

For reference, the KKT conditions for problem (2.3) are:

ATy + z = c
}

Stationarity of Lagrangian

Ax = b
l ≤ x ≤ u

}
Primal Feasibility

zj ≥ 0, for each column j : xj = lj < uj

zj ≤ 0, for each column j : xj = uj > lj

zj = 0, for each column j : lj = −∞∧ uj = ∞

 Dual Feasibility

(xj − lj)zj = 0, for each column j : lj > −∞
(uj − xj)zj = 0, for each column j : uj < ∞

}
Complementary Slackness.

2.2 The simplex algorithm and basic solutions

The simplex algorithm builds on the property that any LP that is neither infeasible, nor un-
bounded, has an optimal solution at a vertex of the feasible region. A basic feasible solution
is a useful characterisation of a vertex, since it allows optimality to be determined and, if it is
not optimal, allows an improving direction to be identi�ed.

Let m be the number of constraints and n be the number of columns in an LP. Let B and N
be a partition of the index set {1, 2, .., n + m} so that |B| = m and |N | = n. The variables
with indices in B are referred to as basic and the variables with indices in N are nonbasic.
Permuting the variables according to the index sets yields BxB +NxN = b, for problem (2.3).
A basic solution must have B non-singular. At a vertex, the nonbasic variables are at a bound.

Let xN = bN + dN , where bN is the value of the nonbasic variables and dN is any deviation
from this value. This gives

xB = B−1[b−N(bN + dN )] = b̂−B−1NdN ,

where b̂ = B−1(b−NbN ). Substituting this into

f = cTBxB + cTNxN ,

gives

f = cTB(b̂−B−1NdN ) + cTN (bN + dN ).

After reordering the terms,

f = cTB b̂+ cTNbN − cTB(B
−1NdN ) + cTNdN .

12



Let f̂ = cTB b̂+ cTNbN , so

f = f̂ − cTB(B
−1NdN ) + cTNdN

= f̂ + (−cTB(B
−1N) + cTN )dN

= f̂ + (cTN − cTB(B
−1N))dN

= f̂ + (cN −NTB−TcB)dN

= f̂ + ĉNdN .

The reduced costs ĉN = cN − NTB−T cB measure the rate of change in the objective value
for a unit change in a nonbasic variable. Since components of dN have to be non-negative
(non-positive) according to whether the nonbasic variable is at its lower (upper) bound (no sign
requirement if variable is free at zero), optimality follows from the component of the reduced
cost being non-negative (non-positive). At each iteration, simplex chooses one index from the
basic set and one index from the nonbasic set and swaps them. The indices are chosen, so
that the objective at the new iterate is no larger than the objective at the previous iterate.
Partitioning the Lagrangian stationarity equations from Section 2.1 into basic and nonbasic
equations,

AT =

[
BT

NT

]
, so

[
BT

NT

]
y +

[
zB

zN

]
=

[
cB
cN

]
.

Let zB = 0. Then, from the �rst equation, y = B−T cB . From the second equation follows that

zN = cN −NTy = cN −NTB−T cB = ĉN .

At a vertex, for zB = 0, the complementary slackness condition from (2.1) is satis�ed, since
every nonbasic variable is at a bound and for all basic columns the dual is zero.

The simplex algorithm requires a basic feasible solution to start from. If no solution information
is available, simplex is started from the origin. However, a better starting basis can be greatly
bene�cial for performance. It is possible to obtain a basic solution from a general solution to an
LP using a procedure called crossover. Discussion of crossover techniques is beyond the scope
of this thesis.

2.3 LP Solution process

The solution of linear programming problems is most e�ciently achieved using an algorithm
belonging to one of two main classes of solution techniques: the simplex method and the interior
point method (IPM). Depending on the structure and coe�cients of the problem, a method in
one class may perform better than algorithms from the other class.

In practice, most LP formulations contain redundancies. Regardless of the solution technique
most appropriate for a particular LP, for most problems solved in practice, there exists an
equivalent LP of smaller dimensions. This results from the redundancies present in the model,
often introduced as a result of the LP being formulated via a modelling language.

Furthermore, most often, there are many equivalent LPs of smaller dimensions. Depending on
whether simplex or IPM is used for the solution process, one reduced LP formulation may be
preferable over another for a particular instance.

13



Presolve is a procedure which takes an LP and returns an equivalent LP of smaller dimensions.
The goal is to obtain a solution of the reduced LP. Then, a postsolve procedure is applied to
recover the solution to the original LP from the solution of the reduced LP, most commonly
found via simplex or IPM.

Crash start is applied after presolve, once the reduced problem is identi�ed. Not all crashes,
however, �nish with a basic point. In such cases, or when incomplete information about the
solution is available, a crossover is required. A crossover is a procedure, which takes a solution
as a starting point and, if successful, returns another solution, which satis�es the conditions
for a basic solution. This is then used for simplex to start from. Consequently, the sequence of
solution steps is

Presolve LP → Crash → Crossover → Solve reduced LP → Recover original LP solution.

2.3.1 Presolve background

In this section are presented previous works on presolve and postsolve for LP. There are not
many academic publications regarding presolve due to its complexity. The presolve procedure
described in Chapter 3 was originally based on the presolve elimination rules described by
Andersen and Andersen [3]. Presolve in an IPM setting was studied by Jacek Gondzio [21].
Meszaros and Suhl give an overview and introduce a new reduction technique in [37]. Presolve
techniques for MIP are discussed in [1, 19].

An interesting and bene�cial technique for exploiting symmetry is presented by Grohe, Kersting
et al. in [23]. The dimensions of an LP are reduced by applying colour re�nement, an algorithmic
routine for graph isomorphism testing. The number of variables and constraints of the reduced
LP correspond to the number of colour classes of the colour re�nement algorithm.

2.3.2 Crash background

E�cient crash start techniques are presented by Maros and Mitra in [35, 36]. Robert Bixby
outlines an initial basis construction method used in Cplex in [8]. The aim of the techniques is
to obtain a primal feasible point by removing equations and boxed constraints from the basis,
since they are tighter, so less likely to be satis�ed if their slacks are basic. Equations and boxed
constraints are replaced with free variables or one-sided variables, since in general they are
easier to be feasible. The resulting basis matrix is triangular or near-triangular.

The aim of a crash being to �nd a solution that is near-optimal, or at least near-feasible,
faster than the simplex method. Dual simplex has the same aims with crash. The basic dual
variables zB are zero, and nonbasic dual variables are feasible if they correspond to equations
or �xed variables, or boxed constraints/variables. So, dual crash has the same motivation:
remove equations and boxed constraints from the basis and replace them with free variables or
one-sided variables.

Crashes are fast because they do not require matrix factorization, instead, the constraint ma-
trix is examined. Some of the crashes presented by Maros and Mitra, and Bixby, are purely
structural. Others make use of numerical properties, however, the objective function is not
considered. Hence, they are feasibility crashes, not particularly aiming to achieve optimality.
In contrast, the techniques discussed in this thesis aim to reach towards both feasibility and
optimality during the crash procedure.

A note on complexity

In some cases, the solution returned from a crash can be a good approximate solution to the
problem. This approximate solution is obtained quickly and for some applications less accuracy
is su�cient. Examples of such problems are given in Chapter 4, which examines some particular
crash procedures.

In that sense, a crash can be seen as a way to obtain an approximate solution to an LP very fast.
The reason for that is the computational complexity of the crash procedures we investigate.

14



Algorithm 1 The augmented Lagrangian algorithm for problem ((2.4)).

Initialize x0 ≥ 0, µ0, λ0 and a tolerance τ0

For k = 0, 1, 2, . . .
Find an approximate minimizer xk of LA(,̇λ

k, µk), starting at xk

and terminating when ∥∇xLA(x
k,λk, µk)∥ ≤ τk

If a convergence test for (2.4) is satis�ed
stop with an approximate solution xk

End if
Update Lagrange multipliers λ

Set λk+1 = λk + µkr(xk)
Choose new penalty parameter µk+1 so that 0 ≤ µk+1 ≤ µk

Choose new tolerance τk+1

End

Generally, each iteration of the minimization of the subproblem requires a standard vector-
matrix multiplication. Each iteration is so fast because the minimization is done for a single
component at a time. Hence, the function being minimized becomes a quadratic function in
one variable and has a �xed form solution. There are similarities between the crash procedures
in Chapter 4 and two well known classes of algorithms, the quadratic penalty methods and
augmented Lagrangian methods.

Quadratic penalty methods

For the nonlinear equality problem

minimize f(x) subject to r(x) = 0, (2.4)

the quadratic penalty method minimizes

ϕ(x, µ) = f(x) +
1

2µ
r(x)Tr(x), (2.5)

for a decreasing sequence of positive values of µ. If xk is the global minimizer of ϕ(x, µk) and
µk → 0, Nocedal and Wright [32] show that every limit point x∗ of the sequence {xk} is a
global solution of ((2.4)). The subproblem of minimizing ϕ(x, µk) is known to be increasingly
ill-conditioned as smaller values of µk are used [32] and this is one motivation for the use of the
augmented Lagrangian method, for which µ would not need to be as small as machine precision.

Augmented Lagrangian methods

The augmented Lagrangian method, outlined in Algorithm 1, was originally presented as an
approach to solving nonlinear programming problems like ((2.4)). It was �rst proposed by
Hestenes in his survey of multiplier and gradient methods [29] and then fully interpreted and
analysed, �rst by Powell [44] and then by Rockafellar [47]. The augmented Lagrangian func-
tion (2.6) is a combination of the Lagrangian function and the quadratic penalty function [32].
It is the quadratic penalty function with an explicit estimate of the Lagrange multipliers λ:

LA(x,λ, µ) = f(x) + λTr(x) +
1

2µ
r(x)Tr(x). (2.6)

Although originally intended for nonlinear programming problems, the augmented Lagrangian
method has also been applied to linear programming problems [16, 24]. However, neither article
assesses its performance on large-scale practical LP problems.
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2.4 Further solution methods for LP

The simplex method and the interior point methods are widely used and very e�cient on many
problems. Not many algorithms could demonstrate such competitive performance on general
test LP sets. Davis and Hager suggest a strong alternative in [14, 25, 26]. Yen et al. present
another method in [51].

2.4.1 Graph Partitioning

For some larger LP instances, it is bene�cial to exploit the underlying pattern of the nonzeros
in the constraint matrix. Decomposition methods make use of block structure on the diagonal
with linking columns and rows. Identifying block structure and corresponding permutations
of the columns was investigated by Aykanat et al. in [6]. Ferris and Horn present heuristics
in [17]. Rosen and Meier suggest a solution method in [48]. Graph partitioning has been used
for parallel solution of linear programs in [30, 49].

2.4.2 First order methods

The crash presented in this thesis has the complexity of a �rst order method. Recent work on
applying �rst order methods to LP problems was presented by Applegate et al. in [4, 5]. The
techniques can be related to the crash technique in Chapter 4, particularly due to performance
on certain classes of hard problems.

16



Chapter 3

Presolve

As stated in Section 2.3, signi�cant redundancies in an LP model may make the solution process
very ine�cient. Consequently, redundancies must be handled separately, prior to applying
the simplex method. Presolving for LP problems seeks to identify redundant variables and
constraints as well as exploring logical implications of the bounds on variables and constraints.
This identi�es a smaller LP problem with a relatively smaller feasible region which is often solved
much more e�ciently. A postsolve procedure deduces the solution of the original problem from
the optimal solution of the presolved problem.

Ideally, the solution to the original LP that is recovered from the solution of the reduced LP
will be optimal. However, numerical calculations during postsolve may mean that tolerated
primal and dual infeasibilities in the solution of the reduced LP are scaled up to the extent
that the recovered solution is not optimal with respect to the required tolerances. In the case
when the recovered solution does not fully satisfy the LP's feasibility and optimality conditions,
additional simplex iterations may be required to reach optimality for the original problem after
the postsolve procedure.

My work was initially based on the presolve elimination rules described by Andersen and An-
dersen [3]. The initial implementation of the rules was done �rst for equality constrained LPs.
Later, the corresponding rules for an LP problem in general bounded standard form were de-
rived and implemented in the context of a high-performance simplex solver. The resulting
presolve procedure already reduced the dimensions of many test problems signi�cantly. Despite
the good performance on a subset of the test problems, the presolve collection of rules needed
to be expanded to ensure the presolve implementation performance is comparable to good open
source LP solvers. In addition to the rules presented in the publication by the Andersens,
several other rules were implemented.

Presolve for linear programming problems recovers primal as well as dual solutions for the LP
column and row values. It is a non-trivial task to implement dual postsolve correctly due to
the degeneracy of the solution, often observed in practical applications.

It is possible to detect unboundedness or infeasibility of the original problem during presolve as
well. In that case, further presolve or calling the solver are not required or necessary, and the
information is propagated back to the user. It is important to note that dual infeasibility does
not imply primal unboundedness, since the problem could also be primal infeasible. Hence,
there is only one status for infeasible or unbounded, rather than two separate ones.

3.1 A sequence of rules

The presolve procedure itself consists of applying elimination rules to the current LP to eliminate
one or multiple rows or columns of the problem. Each presolve rule has a corresponding
postsolve procedure. Once the reduced LP solution is obtained from the solver, the postsolve
steps are applied in the corresponding order.
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Removing rows

Trivial examples of elimination rules are the empty row and redundant row rules. Empty rows
can be removed from the problem as long as their bounds are consistent. Otherwise, the problem
may be detected as primal infeasible. Redundant rows can be removed from the LP. The dual
row values can be set to zero in both cases, for the eliminated row. Detailed descriptions of
trivial presolve rules are presented in [3].

Removing columns: an example

A trivial example for a column elimination rule is the �xed column. If a column has equal
lower and upper bounds then its primal value can be set to the corresponding bound value and
the column can be eliminated from the problem. The values of all row bounds corresponding
to rows with a non-zero coe�cient of the �xed column would need to be updated. A constant
term is added to keep track of the changes to the objective function of the LP. Dual postsolve
then sets the dual value for this column to be zero, which is su�cient in this case. For a �xed
column j,

lj = uj →

{
xj = lj

zj = 0.

Consequently, such a column j can be substituted out of the problem.

3.2 Elimination rules in HiGHS

Below is presented a list of the presolve elimination rules implemented in HiGHS. The rules
belong to one of several subsets of rules, grouped by characteristics of the elimination rules.
The subsets are as follows:

� Trivial rules

� Singleton column rules

� Implied bounds rules

� Matrix modi�cation rules

3.2.1 Rules based on available publications

As mentioned above, the presolve implementation of HiGHS was originally based on the work
by Andersen and Andersen [3]. Several remarks on the implementation are presented below.

The rules from [3] which are in HiGHS:

Trivial rules

� Empty row

� Empty column

� Fixed column

� Singleton row

� Forcing row

� Redundant row

Singleton column rules

� Free column singleton

� Column singleton in a doubleton equality: a special case of the column singleton inequality
rule implemented in HiGHS. The latter was an extended version of the rule in [3], modi�ed,
so it can handle general bounded LP formulations.
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� Implied free column singleton

Implied bounds rules

� Dominated row

� Dominated column

� Weakly dominated column

A modi�cation of the rules presented in [3] was required for their application to LPs in general
bounded form (2.1). Section 3.2.3 explores such modi�cations, implemented in HiGHS.

3.2.2 Extensions

As mentioned above, additional rules were implemented in order to improve the e�ciency of the
overall solution time. Such rules were selected based on the performance of HiGHS and other
open source solvers, such as Google's glop [22] and Clp, on test problems as well as LP models
arising from industrial applications.

Zero cost column singleton

A column singleton xj , for a column j with zero cost cj = 0, can be eliminated from the
problem. Since the column is not present elsewhere in the matrix, it can be set to any feasible
value within the column bounds, without a change in the obective. In that case, the bounds of
the column j can be transferred to the row bounds.

This rule was observed to perform well in glop, Google's OR Tools simplex solver.

Doubleton equation

The doubleton equation presolve rule handles constraints of the type

aijxj + aikxk = bi,

for a given row i. This is a well known rule, implemented in open source solvers such as glop
and Clp.

The doubleton equation belongs to the subset of rules which may lead to changes in the non-zero
pattern of the matrix.

3.2.3 Modi�cations

This section explores modi�cations of the rules presented in [3] for LPs in general bounded
form (2.1).

Trivial rules

For some rules no modi�cations were necessary. For instance, the presolve and postsolve of a
�xed column are not a�ected by the values of the row bounds in which the �xed column is
present. Some rules, which utilize the row bound value, were modi�ed. For the calculation of
implied bounds the algorithm was modi�ed to only use the �nite ones for calculation of implied
primal and dual values. The postsolve had to be adjusted accordingly in the presence of distinct
bounds.

Column singleton in a doubleton inequality

The doubleton equality rule was generalized to handle inequality constraints as well. In practice,
many LPs would have at least one constraint with a distinct upper and lower bound, possibly
in�nite. It is possible to detect that a column singleton can be removed if the doubleton
inequality leads to tighter bounds on the column. An example is

19



0 ≤ x+ y ≤ 1, x ∈ [0, 1], y ∈ [−5, 5].

We know that x ∈ [0, 1] so adding that to y we obtain x + y ∈ [−5, 6]. The row is limited
between 0 and 1 so it can be deduced that when the constraint is satis�ed, y ∈ [0, 1]. Hence,
the original bounds on y of −5 and 5 would never be reached at a feasible solution and can be
removed from the problem. Then the column would be eliminated along with the row with the
free column singleton rule.

While the rule to eliminate a column singleton in a doubleton equation always removes the
row and column singleton, the generalized version of the rule would only remove the column
singleton if it is found to be implied free.

Parallel rows and columns

Note, that the implementation of HiGHS presolve does not contain all of the rules presented
in [3]. In particular, the parallel row and parallel column elimination rules were omitted. It
was observed that on LP test set instances the performance of HiGHS presolve was satisfactory
even without the parallel row or column elimination rules. Due to the multiple primal and dual
implied bounds' calculations, many of the parallel rows and columns were eliminated due to a
combination of other elimination rules, applied in a suitable order.

3.3 Postsolve

During postsolve, the primal and dual values of the original problem are recovered using the
solution values to the reduced LP, as well as information about the reduction process, stored
during presolve. For some presolve rules, applied to an equality form LP, primal and dual
postsolve are given in [3]. The values should be chosen so that the KKT conditions in section 2.1
are satis�ed, and the basis remains valid and non-singular.

Some examples of the postsolve of trivial rules are given below, to illustrate the idea:

� Empty row
The row dual yi can be set to any value, so set yi = 0,

� Singleton row with aij ̸= 0

yi =
cj −

∑
k ̸=i ykakj

aij
, zj = 0,

� Empty or �xed column
zj = cj −

∑
i

yiaij .

For more sophisticated rules, at each step of postsolve, it is possible to derive bounds on the
row or column duals using information from the current solution. The values should be chosen
so that the KKT conditions are satis�ed, and the solution remains basic.

Doubleton equality

Below are presented the presolve and postsolve steps of the doubleton equation rule. It handles
constraints of the type

aijxj + aikxk = bi,

for a given row i. Suppose, without loss of generality, that column k has nonzeros fewer than
or equal to the number of nonzeros of column j in the constraint matrix.
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The column value of xk must satisfy the constraint, hence

xk =
b− aijxj

aik
.

This is a well known rule, implemented in open source solvers such as glop and Clp.

Presolve

The variable is substituted out of the problem, the presolve procedure performs the following
steps:

� Update bounds on the remaining variable. Suppose, that aij > 0, aik > 0 and both lk
and uk are �nite. Column jk must satisfy its bounds so

lj ≤ xj ≤ uj .

Multiplying by the coe�cient yields

aijxj ∈ [b− aikuk,+b− aiklk].

The column bounds of xj are updated correspondingly in the reduced problem, if neces-
sary.

� Update the cost of the remaining variable.

� Update the bounds and coe�cient of xj at each row where xk is nonzero.

Basis

In addition to satisfying the KKT conditions in Section 2.1, a point returned by postsolve must
also be a basic feasible solution (BFS) in order to hot-start the simplex algorithm. At each
step of postsolve where a new row is introduced, a variable must be identi�ed as basic. Basic
variables can have primal values between their lower and upper bounds but must have a zero
dual value. Nonbasic variables must be at a bound but can have nonzero duals. The sign of
the dual value must correspond to the bound at which the primal value is �xed.

Postsolve

The primal values are postsolved according to the reductions in the presolve step. For dual
postsolve there are several cases, depending on the bound and solution values for the column
remaining in the matrix.

There are several possibilities for the ordering of the reduced solution for the remaining column
and its bounds. Suppose, that lj and rj in the reduced problem are updated to lrj and ur

j ,
respectively, and the solution for the reduced problem for column j is xr

j .

� If lrj < xr
j < ur

j , then the reduced xj is basic. In the postsolved problem it remains basic,
since the column bounds of xj may become tighter after applying the presolve rule, but
would not be looser than the original bounds of column j.

� If lrj = xr
j < ur

j , or similarly lrj < xr
j = ur

j there are two cases:

� If lrj = lj , xj can be either basic or nonbasic.

� Otherwise, lrj > lj and the postsolve depends on the basis status of xj in the reduced
problem.

* If xr
j is nonbasic it must become basic in the postsolved solution. During post-

solve an attempt is made to do that. If the dual value of the eliminated variable
xk is calculated to be infeasible, the dual value is transferred to the row by
making the row basic.
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* If xr
j is basic it must remain basic, since the reduced bounds are tighter than

the original bounds.

� If lrj = xr
j = ur

j there is no restriction on the dual value of column j in the reduced
problem but it may become infeasible in the original one.

If the eliminated variable is strictly between bounds it must be ensured that it is basic in the
postsolved problem. If it is at a bound, the dual value are either non-positive or non-negative,
unless it is an equality. Note that the equality case, when lj = xj would be handled by the
�xed column presolver.

In the cases when xk can be both basic and nonbasic and the current values do not fall into one
of the special cases above, an attempt is made to set it to basic. If that assignment of values is
infeasible, the remaining column xj is selected for the basis.

E�ect of order of elimination rules on performance

The experiments following the implementation of the zero cost column singleton presolve elim-
ination rule con�rmed a high sensitivity of the method to the order in which the elimination
rules are applied. In fact, the HiGHS presolve implementation performed faster than Google's
LP solver glop on many LP test set instances, as a result of modifying the default presolver
order in HiGHS. At the time HiGHS had fewer rules implemented so to ensure the consistency of
the experiment results, glop was used with a corresponding subset of presolve rules.

3.4 Implementation

Despite the fact that many of the elimination rules are not based on challenging or elaborate
mathematical concepts, the e�cient implementation of presolve is far from simple. One reason
there are so few publications on the topic and even fewer implementation details available is the
nature of the algorithm: a subset and order of elimination rules that is bene�cial for a particular
model may not be an appropriate subset or order for another LP model. Additionally, the data
structures most appropriate for presolve may make the corresponding postsolve impossible to
implement e�ciently.

Another challenging aspect in the development is the tracking and removing of bugs in presolve.
An incorrect application of a single presolve rule to an edge case model may lead to a reduced
LP which is no longer equivalent to the original one. Recovering the solution to the original
LP from the calculated solution to the reduced LP will not, in general, result in an optimal
and feasible solution to the original model. However, in practice, it may happen that such an
issue is not triggered on standard LP test sets. Issues naturally may go unnoticed for a long
time, until an attempt is made at solving a new model with numerical properties not previously
tested against.

Assuming that there are no issues in the implementation and mathematical justi�cation and
edge cases for the presolve rules, the reduced LP is equivalent to the original LP. Recovering
the primal values is a relatively straightforward task in contrast to recovering the dual values.
Due to degeneracy and not only, at many steps of postsolve there may be multiple correct
alternatives for primal-dual values which satisfy the optimality conditions. A poor selection
may lead to infeasibilities on subsequent steps of postsolve. Such issues are observed often
during the implementation.

Implied bounds

During presolve, it is essential to keep track of which column was used to deduce an implied
bound on a row and which row was used for an implied bound of a column. This is necessary for
presolve, to ensure the elimination steps are correct and also for postsolve, to deduce accurate
dual values during the postsolve of each rule.
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KKT conditions check

A single primal or dual infeasibility at a particular step of postsolve would get propagated all
the way through to the recovered solution of the original LP. Hence, the implementation of
postsolve rules would not be possible without a way to ensure correctness at each step. This is
achieved by checking that the KKT conditions are satis�ed following each individual postsolve
rule applied to the current problem.

Performance

The improvement of presolve can lead to signi�cant improvement in the overall solution time.
In-depth analysis of particular LP models and classes of problems can be highly bene�cial for
the performance of a solver on the corresponding models or other LPs belonging to a similar
class.

The presolve procedure in HiGHS has been developed and tested on standard LP test prob-
lems and industrial models, results are given in Section 3.7. For all these LP problems, its
computational overhead is not signi�cant relative to the time required to solve the LP.

3.5 Further analysis

After the initial implementation of presolve and postsolve, followed a selection of presolve rules
and an order for the default presolver list. In addition, further analysis of the residuals after
postsolve was required.

Zero cost column singleton

The zero cost column singleton rule was added to HiGHS, however, enabling it led to a reduction
in elimination counts for some test problems, and it was disabled by default. Analysis of the
performance of other presolve implementations on the test instances revealed that a special case
of the zero cost column rule may be particularly bene�cial.

The special case is a zero cost column singleton in a doubleton equality. A necessary presolve
step is to update the row bounds according to the column bounds and matrix coe�cient of
the column singleton. During postsolve, the primal value of the eliminated column singleton is
calculated so the KKT conditions are satis�ed.

Note: Generalizing the zero cost column singleton

Additional experiments were performed with a generalized version of the rule, which handles
general bounded inequality constraints as well as equality constraints. This generalized version
is likely to be part of any presolve implementation since it is bene�cial for many common LPs.
However, allowing the generalized version of the rule may lead to incorrect presolve elimination
steps for some models.

Fixed column update

Analysis of presolve on the test problems revealed that �xed and empty column detection may
be modi�ed to increase the row and column reductions. The code of HiGHS was updated to
identify and remove �xed and empty columns more often during the presolve procedure.

The new rules combined

Experiments were performed combining the �xed column update with the zero cost column
singleton special case. This led to no signi�cant changes when compared with only the �xed
column update. Thus con�rming that the zero cost column singleton rule should not be included
in the default presolver list.
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Order of presolve rules

For some problems the presolve performance is very sensitive to the order in which the rules
are applied. Hence, an analysis of presolve would be incomplete without an investigation of this
e�ect for particular LP instances. Alternative orderings may be more suitable for a problem,
depending on the problem structure.

Modi�cations to HiGHS presolve

The �xed column update has been added to the HiGHS presolve, but the zero cost column
singleton rule and the order modi�cations were not considered bene�cial for general LPs, so
these will not be added to the default settings of HiGHS.

Residual values

The primal and dual values recovered in the HiGHS implementation of postsolve are, in most
cases, accurate within the feasibility tolerance, as demonstrated in Tables 3.2, 3.3 and 3.4. This
can lead to a great performance improvement, for if the values are not accurate, additional
simplex iterations are required to �clean up� the solution. This process can take a signi�cant
amount of time.

3.6 Further notes on primal and dual postsolve

For primal and dual postsolve steps, elimination data from the corresponding presolve steps
must be stored e�ciently and applied correctly.

The dual postsolve is more challenging when compared to the primal postsolve, since, for some
rules, there are multiple feasible solutions. Care must be taken with the choices of a solution,
because a poor choice at a step may lead to an infeasibility later in postsolve.

Additionally, a solution may be feasible within the tolerance at a postsolve step, but may violate
feasibility later in postsolve due to the scaling of the residuals.

Some very high performing commercial solvers, such as Gurobi, for some problems, return
infeasible solutions after postsolve. The addition of more elaborate presolve and postsolve rules
makes that di�cult to avoid at all times. Besides complex presolve rules, the propagation of
residual errors during postsolve, mentioned above, is another cause of violation of the feasibility
of the original problem. Additional simplex iterations after postsolve ensure that the solution
returned to the user is feasible within the desired tolerances.

In Tables 3.2, 3.3 and 3.4 are presented the residual values for primal and dual infeasibility
after HiGHS 's postsolve.

3.7 Results

The e�ectiveness of the presolve and accuracy of postsolve were assessed by running HiGHS

with and without presolve on a large number of LP test problems. Most problems in the
classic Netlib test set [20] are too small to be of interest and, for the problems where presolve
reductions were possible, the geometric mean of the speed-up in total solution time achieved
by presolve was 1.10. For only one problem (pilot87) was it necessary to perform iterations
after postsolve. A more challenging test set of 74 LPs was compiled from the problems used
by Mittelmann in his industry standard benchmarks [40] over recent years, and four industrial
LP problems. Of the latter, dcp1 and dcp2 come from Format International (see Chapter 5),
and the other two (deteq8 and deteq27) are deterministic equivalents of stochastic LPs. In
the experiments, HiGHS was given a time limit of 3600 seconds. Of these 74 problems, for
the 40 listed in Table 3.1, HiGHS achieved some presolve reductions and solved the problem
to optimality both with and without presolve. Of the remaining 34, HiGHS failed to solve 17,
either with or without presolve (generally both), and no presolve reductions were achieved for
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the other 17. It was necessary to perform iterations after postsolve for only two (rail02 and
watson_1) of the 42 problems solved by HiGHS.

Focusing on the results given in Table 3.1, the �rst three columns after the problem name give
the solution time without presolve, the time taken by presolve, and the total solution time for the
problem. Also given are the percentage of the total solution time accounted for by presolve, and
the speed-up in (total) solution time as a consequence of performing presolve. The advantage
of performing presolve is not universal. For three problems, it is signi�cantly slower to solve
the problem by performing presolve. However, for many more the advantage is signi�cant,
and the geometric mean of the speed-up is 1.67. Mittelmann uses a shifted geometric mean
solution time to de-emphasise problems solved faster. Using this measure, the mean solution
time is 111 seconds without presolve, and 82 with presolve, a relative improvement of 1.35.
Remarkable amongst the test problems is sgpf5y6, where presolve accounts for 38% of the
solution time. Rather than indicating ine�ciency of the presolve, this large �gure re�ects its
success in reducing the solution time by a factor of 45!

The results illustrate, similarly to the results in other publications on presolve such as [3], that
presolve in most cases leads to a signi�cant reduction in the overall solution time.

Accuracy

Tables 3.2, 3.3 and 3.4 give the sums of primal infeasibilities, dual infeasibilities and dual resid-
uals when presolve is not used, and after postsolve when presolve is used. The primal residuals
after postsolve are zero. Considering the sums when presolve is used, relative to the sums when
presolve is not used (and is positive), the (geometric) mean values indicate a modest increase
due to accumulation of numerical error.
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Model Original Presolve Total Presolve (%) Speed-up
neos5251015 40.40 0.26 337.00 0.08 0.12
cont4 913.00 0.05 3440.00 0.00 0.27
s250r10 218.00 0.21 317.00 0.07 0.69
rail4284 1690.00 1.21 1820.00 0.07 0.93
savsched1 748.00 0.31 796.00 0.04 0.94
fome12 55.30 0.02 56.60 0.03 0.98
pds-40 13.80 0.07 13.00 0.55 1.06
fome13 143.00 0.04 132.00 0.03 1.08
rail02 1180.00 0.12 1080.00 0.01 1.09
shs1023 92.40 0.32 79.40 0.41 1.16
neos5052403 202.00 0.36 172.00 0.21 1.17
storm-125 2.77 0.07 2.34 3.20 1.18
lp22 9.18 0.00 7.70 0.06 1.19
stat96v4 98.00 0.04 82.20 0.05 1.19
buildingen 49.50 0.08 38.90 0.20 1.27
support10 225.00 0.17 176.00 0.10 1.28
mod2 34.80 0.02 27.10 0.09 1.28
world 46.10 0.02 35.80 0.07 1.29
storm_1000 97.50 1.10 74.00 1.49 1.32
pds-80 50.60 0.18 37.90 0.48 1.34
linf_520c 1740.00 0.06 1290.00 0.00 1.35
fhnw-bin0 2730.00 0.20 1830.00 0.01 1.49
stp3d 191.00 0.20 127.00 0.16 1.50
pds-100 74.60 0.21 49.50 0.42 1.51
psched3-3 1860.00 0.16 1230.00 0.01 1.51
watson_2 135.00 0.24 87.60 0.27 1.54
deteq8 0.41 0.02 0.24 7.99 1.67
watson_1 43.20 0.15 23.70 0.62 1.82
deteq27 2.28 0.07 1.25 5.50 1.82
ex10 265.00 0.10 143.00 0.07 1.85
ns1687037 1190.00 0.08 608.00 0.01 1.96
dcp1 0.62 0.01 0.22 2.44 2.88
ken-18 11.20 0.10 3.17 3.02 3.53
dcp2 8.90 0.03 2.41 1.44 3.69
cre-b 4.89 0.02 1.31 1.56 3.73
brazil3 95.40 0.02 17.00 0.09 5.61
dbic1 689.00 0.08 120.00 0.06 5.74
ns1644855 1080.00 0.11 145.00 0.07 7.45
square41 572.00 0.76 51.50 1.48 11.11
sgpf5y6 133.00 1.12 2.97 37.71 44.78

Table 3.1: E�ect of presolve reductions on solution time for 40 test LP problems.
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Model Without presolve With presolve Relative
brazil3 4.1E-11 2.5E-11 5.9E-01
buildingen 7.9E-14 2.0E-12 2.5E+01
cont4 8.9E-16 2.9E-04 3.3E+11
cre-b 5.4E-13 6.8E-13 1.3E+00
dbic1 3.1E-11 8.8E-11 2.9E+00
dcp1 0 2.1E-12
dcp2 1.8E-15 2.0E-11 1.1E+04
deteq27 0 2.2E-13
deteq8 3.3E-16 5.9E-14 1.8E+02
ex10 1.1E-12 1.6E-11 1.4E+01
fhnw-bin0 0 4.5E-12
fome12 1.4E-10 2.9E-10 2.0E+00
fome13 1.0E-09 1.3E-09 1.2E+00
ken-18 0 0
Linf_520c 5.8E-05 1.2E-05 2.1E-01
lp22 1.8E-13 1.8E-11 9.6E+01
mod2 3.7E-05 2.3E+01 6.3E+05
neos5052403 3.5E-11 2.7E-11 7.5E-01
neos5251015 1.1E-09 4.3E-10 4.0E-01
ns1644855 5.2E-12 2.5E-11 4.9E+00
ns1687037 0 9.9E-04
pds-100 0 0
pds-40 0 0
pds-80 0 1.8E-15
psched3-3 2.1E-11 7.4E-09 3.5E+02
rail02 0 2.6E-13
rail4284 4.4E-14 9.8E-13 2.2E+01
s250r10 4.0E-14 7.0E-15 1.8E-01
savsched1 1.4E-14 9.4E-13 6.9E+01
sgpf5y6 2.9E-10 0 0
shs1023 1.5E-10 1.1E-10 7.2E-01
square41 2.7E-11 4.6E-11 1.7E+00
stat96v4 1.3E-05 2.0E-05 1.5E+00
storm_1000 0 1.4E-10
storm-125 0 1.5E-11
stp3d 6.7E-16 1.0E-13 1.5E+02
support10 0 1.7E-13
watson_1 0 4.5E-10
watson_2 0 4.3E-09
world 3.2E-05 2.3E+01 7.4E+05
Mean 4.6E+01

Table 3.2: Sum of primal infeasibilities without and with presolve.
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Model Without presolve With presolve Relative
brazil3 7.7E-10 5.3E-10 6.9E-01
buildingen 4.9E-17 0 0
cont4 0 0
cre-b 1.0E-10 7.0E-11 6.7E-01
dbic1 0 0
dcp1 4.0E-11 0 0
dcp2 8.3E-11 1.0E-10 1.2E+00
deteq27 7.0E-09 7.0E-09 1.0E+00
deteq8 1.3E-12 1.6E-12 1.2E+00
ex10 1.2E-08 6.0E-09 4.9E-01
fhnw-bin0 8.6E-08 9.3E-08 1.1E+00
fome12 7.1E-09 8.0E-09 1.1E+00
fome13 1.9E-08 1.2E-08 6.7E-01
ken-18 0 0
Linf_520c 0 0
lp22 2.0E-14 1.1E-13 5.6E+00
mod2 0 0
neos5052403 9.9E-12 1.9E-12 1.9E-01
neos5251015 0 0
ns1644855 1.5E-10 1.3E-07 8.8E+02
ns1687037 0 0
pds-100 0 0
pds-40 0 0
pds-80 1.3E-11 1.6E-11 1.2E+00
psched3-3 3.0E-07 5.5E-07 1.8E+00
rail02 2.2E-12 2.7E-05 1.2E+07
rail4284 1.5E-12 1.3E-11 8.7E+00
s250r10 3.3E-14 9.2E-15 2.8E-01
savsched1 0 0
sgpf5y6 2.5E-04 2.5E-04 1.0E+00
shs1023 2.6E-11 2.1E-11 8.2E-01
square41 2.9E-12 7.7E-13 2.7E-01
stat96v4 4.2E-14 0 0
storm_1000 6.9E-13 1.1E-12 1.6E+00
storm-125 1.1E-12 7.7E-13 7.1E-01
stp3d 1.2E-14 1.2E-14 1.0E+00
support10 0 0
watson_1 1.8E-05 1.4E-05 7.5E-01
watson_2 1.2E-06 6.4E-07 5.2E-01
world 0 4.5E-13
Mean 2.3E+00

Table 3.3: Sum of dual infeasibilities without and with presolve.
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Model Without presolve With presolve Relative
brazil3 1.0E-11 1.3E-11 1.3E+00
buildingen 1.1E-10 1.1E-10 1.0E+00
cont4 1.1E-09 1.3E-07 1.2E+02
cre-b 3.9E-09 3.7E-09 9.4E-01
dbic1 0 0
dcp1 2.4E-09 2.8E-09 1.2E+00
dcp2 1.5E-08 1.8E-08 1.2E+00
deteq27 4.3E-11 1.2E-10 2.8E+00
deteq8 2.6E-11 9.8E-11 3.8E+00
ex10 2.6E-10 1.1E-10 4.3E-01
fhnw-bin0 1.5E-09 2.3E-09 1.6E+00
fome12 6.9E-08 7.5E-08 1.1E+00
fome13 1.9E-07 1.1E-07 5.8E-01
ken-18 3.5E-08 4.8E-08 1.4E+00
Linf_520c 0 0
lp22 8.9E-12 1.8E-11 2.0E+00
mod2 1.0E-09 1.1E-09 1.0E+00
neos5052403 5.3E-12 3.8E-12 7.1E-01
neos5251015 0 0
ns1644855 2.0E-10 4.1E-10 2.0E+00
ns1687037 2.8E-10 3.1E-10 1.1E+00
pds-100 0 0
pds-40 0 0
pds-80 4.4E-12 5.7E-13 1.3E-01
psched3-3 7.3E-09 1.3E-08 1.7E+00
rail02 5.1E-12 9.6E-12 1.9E+00
rail4284 8.9E-11 8.6E-11 9.7E-01
s250r10 1.2E-13 1.1E-13 9.1E-01
savsched1 2.8E-14 2.7E-14 9.8E-01
sgpf5y6 1.8E-16 3.3E-16 1.8E+00
shs1023 1.4E-11 2.0E-11 1.5E+00
square41 2.3E-10 8.4E-11 3.6E-01
stat96v4 6.4E-14 5.3E-14 8.3E-01
storm_1000 2.1E-07 2.0E-07 9.5E-01
storm-125 2.9E-08 2.9E-08 9.9E-01
stp3d 9.9E-13 9.2E-13 9.3E-01
support10 4.5E-14 2.4E-14 5.2E-01
watson_1 3.1E-14 3.1E-14 9.9E-01
watson_2 2.5E-14 3.0E-14 1.2E+00
world 1.7E-09 1.8E-09 1.0E+00
Mean 1.2E+00

Table 3.4: Sum of dual residuals without and with presolve.
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Chapter 4

Crash

A crash is a heuristic technique that �nds a solution that is near-optimal, or at least
near-feasible, fast. As mentioned in Chapter 2, such a procedure can be extremely valuable, if
it can �nd a solution faster than the simplex method. The Idiot crash algorithm used in the
Clp open-source simplex solver leads to strikingly good performance on particularly
challenging LP problems [40]. Since there is no published scienti�c study of it, the �rst part of
this chapter gives an analysis of the Idiot crash algorithm. In the second part of this chapter
is presented additional work on crash techniques and crash starting in HiGHS.

4.1 The Idiot crash

This section presents the Idiot crash algorithm (ICA) in Clp, followed by some practical and
mathematical analysis of its behaviour. Experiments assess the extent to which ICA
accelerates the solution of representative LP test problems using the primal simplex method,
and can be used to �nd a feasible and near-optimal solution of the problems. Theoretical
analysis of the limiting behaviour of the algorithm shows that it will solve any LP problem
that has an optimal solution. As such, this section follows closely the work published by
Galabova and Hall in [18].

4.1.1 The algorithm

The general structure of the ICA algorithm is set out in Algorithm 2. The function, being
minimized in each iteration, is

h(x) = cTx+ λTr(x) +
1

2µ
r(x)Tr(x), where r(x) = Ax− b, (4.1)

subject to the bounds x ≥ 0 for sequences of values of parameters λ and µ. The minimization
function (4.1) corresponds to (2.5) of the Quadratic Penalty algorithm and to (2.6) of the
Augmented Lagrangian algorithm. However, the update of the λ parameters and the criterion
for parameter updates di�er between the ICA and Augmented Lagrangian. Another
signi�cant di�erence is the minimization of the subproblem. In classical Augmented
Lagrangian methods the minimization is exact, while in the ICA, the function at each
iteration is minimized approximately.

The minimization is performed with respect to each component of x in turn, with the starting
index of this loop over all components being chosen randomly. Except for the alternative
expression for updating λk and the component-wise minimization of h(x), this algorithm is
very close to that of LANCELOT [13] applied to problem ((2.2)). The number of ICA iterations
is determined heuristically according to the size of the LP and progress of the algorithm.
Unless ICA is abandoned after around 20 �sample� iterations (see below), the number of
iterations performed ranges between 30 and 200. The value of µ0 ranges between 0.001 and
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Algorithm 2 The Idiot crash algorithm for problem ((2.2)), with r(x) = Ax− b.

Initialize x0 = 0, µ0, λ0 = 0
Set µ1 = µ0 and λ1 = λ0

For k = 1, 2, 3, . . .

xk ≈ arg min
x≥0

h(x) = cTx+ λkTr(x) +
1

2µk
r(x)Tr(x)

If a criterion is satis�ed (see 4.1.3) update µk:
µk+1 = µk/ω, for some factor ω > 1
λk+1 = λk

Else update λk:
µk+1 = µk

λk+1 = µkr(xk)
End

1000, again according to the LP dimensions. When µ is changed, the factor by which it is
reduced is typically ω = 0.333. The �nal value of µ is typically a little less than machine
precision.

The version of ICA implemented in Clp has several additional features. If x0 is feasible then
the algorithm is not performed and the value x = x0 is returned. Otherwise, initially, the
approximate component-wise minimization is performed twice. If a 10% decrease in primal
infeasibility is not observed in about 30 iterations, it is considered that ICA would not be
bene�cial and the value x = x0 is returned. Otherwise, ICA continues but the mechanism for
approximate minimization is adjusted. During each subsequent iteration, the function h(x) is
minimized componentwise 105 times. There is no indication why this particular value was
chosen. However, one of the features is the option to decrease this number. From the 50th

minimization onward, a check is performed after the function is minimized componentwise 10
times. Progress is measured with a moving average of expected progress. If it is considered
that not enough progress is being made, the function is not minimized any longer for the same
values of the parameters. Instead, either µ or λ is updated and the next iteration is
performed. Thus, in the cases when it is likely that the iteration would not be bene�cial, not
much unnecessary time is spent. Another feature is that in some cases there is a limit on the
step size for the update of each xj . Additionally, there is a statistical adjustment of the values
of x at the end of each iteration. These features are omitted from this paper because
experiments showed that they have little e�ect on performance. Depending on the problem
size and structure, the weight parameter (µ) is updated either every 3 iterations or every 6.
Again, there is no indication why these values are chosen. To a large extent it must be
assumed that the algorithm has been tuned to achieve a worthwhile outcome when possible,
and terminate promptly when not. The dominant computational cost for each
component-wise minimization of h(x) is about the same as a matrix-vector product Av.

Relation to augmented Lagrangian and quadratic penalty function methods

In form, the augmented Lagrangian function ((2.6)) and the ICA function ((4.1)) are identical
for LP problems and in both methods the penalty parameter µ is reduced over a sequence of
iterations. However, they di�er fundamentally in the update of λ. For ICA, new values of λ
are given by λk+1 = µkr(xk). Since µ is reduced to around machine precision and the aim is
to reduce r(x) to zero, the components of λ become small. Contrast this with the values of λ
in the augmented Lagrangian method, as set out in Algorithm 1. These are updated by the
value µkr(xk) and converge to the (generally non-zero) Lagrange multipliers for the equations.

In ICA, when the values of λ are updated, the linear and quadratic functions of the residual
r(x) in the ICA function ((2.6)) are respectively µkr(xk)Tr(x) and (2µk)−1r(x)Tr(x). Thus,
since the values of µk are soon signi�cantly less than unity, the linear term becomes relatively
negligible. In this way the ICA function reduces to the quadratic penalty function ((2.5)) and
the later behaviour of ICA is akin to that of a simple quadratic penalty method.
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Table 4.1: Test problems, the speed-up of the Clp primal simplex solver when ICA is used, and
the percentage of solution time accounted for by ICA. Only for the problem names in bold does
default Clp use ICA and the primal simplex solver.

Model Speed-up Idiot (%) Model Speed-up Idiot (%)
cre-b 2.6 28.9 pds-40 1.3 5.0
dano3mip 1.4 3.6 pds-80 1.0 0.1
dbic1 1.5 40.6 pilot87 1.3 2.5
dfl001 1.0 0.1 qap12 2.5 0.6
fome12 1.1 0.1 qap15 4.0 0.1
fome13 1.9 3.3 self 6.1 22.7
ken-18 1.0 0.7 sgpf5y6 1.4 4.8
l30 1.9 1.4 stat96v4 1.7 1.2
Linf_520c 9.4 8.2 storm_1000 4.5 0.8
lp22 1.4 1.9 storm-125 4.1 10.1
maros-r7 0.9 7.8 stp3d 6.5 0.9
mod2 1.4 2.7 truss 0.8 17.1
ns1688926 1.4 1.0 watson_1 1.8 8.9
nug15 4.2 0.1 watson_2 1.1 4.4
pds-100 2.5 5.4 world 1.3 2.0

4.1.2 Preliminary experiments

The e�ectiveness of ICA is assessed via experiments with Clp (Version 1.16.10), using a set of
30 representative LP test problems in Table 4.1. This is the set used by Huangfu and Hall
in [31], with qap15 replacing dcp2 because QAP problems are of particular interest and
dcp2 is not a public test problem, and nug15 replacing nug12 for consistency with the
choice of QAP problems used by Mittelmann [38]. The three problems nug15, qap12 and
qap15 are linearizations of quadratic assignment problems, where nug15 and qap15 di�er
only by row and column permutations. The experiments are carried out on an Intel i7-6700T
processor rated at 2.80GHz with 16GB of available memory. In all cases the Clp presolve
routine is run �rst, and is included in the total solution times.

To assess the e�ectiveness of ICA in speeding up the Clp primal simplex solver over all the
test problems, total solution times were �rst recorded for Clp with the -primals option. This
forces Clp to use the primal simplex solver but makes no use of ICA. To compare these with
total solution time when Clp uses the primal simplex solver following ICA, it was necessary to
edit the source code so that Clp is forced to use ICA and the primal simplex solver.
Otherwise, Clp ran in its default state. The relative total solution times are given in the
columns in Table 4.1 headed �Speed-up�. The geometric mean speed-up is 1.9, demonstrating
clearly the general value of ICA for the Clp primal simplex solver. Although ICA is of little
value (speed-up below 1.25) for seven of the 30 problems, for only two of these problems does
it lead to a small slow-down. However, for ten of the 30 problems the speed-up is at least 2.5,
a huge improvement. The columns headed �Idiot (%)� give the percentage of the total solution
time accounted for by ICA, the mean value being 6.2%. For �ve problems the percentage is
ten or more, and this achieves a handsome speed-up in three cases. However, it does include
truss, for which ICA takes up 17% of an overall solution time that is 20% more than with
the vanilla primal simplex solver. For only this problem can ICA be considered a signi�cant
and unwise investment. Of the ten problems where ICA results in a speed-up of at least 2.5,
for only three does it account for at least ten percent of the total solution time. Indeed, for
�ve of these problems ICA is no more than one percent of the total solution time.

This remarkably cheap way to improve the performance of the primal simplex solver is not
always of value to Clp because, when it is run without command line options (other than the
model �le name), it decides whether to use its primal or dual simplex solver. When the former
is used, Clp uses problem characteristics to decide whether to use ICA and, if used, to set
parameter values for the algorithm. Default Clp chooses the primal simplex solver (and
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Table 4.2: Solution times for Cplex-12.8.0, Gurobi-7.5.0, Xpress-8.4.0 and Clp-1.16.10 on �ve
notable problem instances from the Mittelmann benchmarks (29/12/17) [38].

Model Cplex Gurobi Xpress Clp

Linf_520c 495 1057 255 35
nug15 338 14 7 14
qap12 26 1 1 5
qap15 365 14 6 13
self 18 12 15 5

Table 4.3: Residual and relative objective error following ICA in Clp.

Model Residual Objective Model Residual Objective

cre-b 1.3×10-9 6.1×10-2 pds-40 7.0×10-8 3.0×10-2

dano3mip 6.1×10-10 2.0×10-2 pds-80 2.2×10-7 3.4×10-1

dbic1 3.8×10-1 8.5×10-2 pilot87 2.1×100 6.8×10-1

dfl001 1.1×10-9 3.7×10-3 qap12 3.6×10-10 1.7×10-1

fome12 6.4×10-9 4.3×10-3 qap15 2.1×10-10 2.8×10-3

fome13 1.2×10-8 5.2×10-3 self 5.7×10-5 2.4×10-3

ken-18 5.4×10-8 7.1×10-2 sgpf5y6 4.0×10-10 2.1×10-1

l30 1.1×10-9 3.9×100 stat96v4 3.0×10-3 1.0×100

Linf_520c 1.1×10-1 9.1×10-3 storm_1000 5.9×10-6 5.9×10-2

lp22 1.1×10-9 1.3×10-3 storm-125 1.4×100 1.2×10-1

maros-r7 4.0×10-9 2.3×10-5 stp3d 7.0×10-5 2.7×10-2

mod2 3.9×100 2.1×10-1 truss 7.1×10-1 3.2×10-1

ns1688926 2.5×10-9 4.8×105 watson_1 7.7×10-6 8.7×10-1

nug15 2.1×10-10 3.7×10-4 watson_2 1.4×10-10 9.7×10-1

pds-100 7.6×10-10 3.7×10-4 world 4.3×100 5.5×10-1

always performs ICA) for just the ten LP problems whose name is given in bold type. For half
of these problems there is a speed-up of at least 2.5, so ICA contributes signi�cantly to the
ultimate performance of Clp. However, for �ve problems (cre-b, pds-100, storm-125,
storm_1000 and stp3d), ICA yields a primal simplex speed-up of at least 2.5 but, when
free to choose, Clp uses its dual simplex solver. In each case the dual simplex solver is at least
as fast as using the primal simplex solver following ICA, the geometric mean superiority being
a factor of 4.0, so the choice to use the dual simplex solver is justi�ed.

Further evidence of the importance of ICA to the performance of Clp is given in Table 4.2,
which gives the solution times from the Mittelmann benchmarks [38] for the three major
commercial simplex solvers and Clp when applied to �ve notable problem instances. When
solving Linf_520c, Clp is vastly faster than the three commercial solvers. For the three
QAP linearizations (nug15, qap12 and qap15), Clp is very much faster than Cplex. Finally,
for self, Clp is signi�cantly faster than the commercial solvers.

To assess the limiting behaviour of ICA as a means of �nding a point that is both feasible and
optimal, Clp was run with the -idiot 200 option using the modi�ed code that forces ICA to
be used on all problems. The results are given in Table 4.3, where the columns headed
�Residual� contain the �nal values of ∥Ax− b∥2. The columns headed �Objective� contain
values of (f − f∗)/max{1, |f∗|} as a measure of how relatively close the �nal value of f is to
the known optimal value f∗, referred to below as the objective error. This measure of
optimality is clearly of no practical value because f∗ is not known. However, it is instructive
empirically, and motivates later theoretical analysis. The geometric mean of the residuals is
1.2×10-6 and the geometric mean of the objective error measures is 6.1×10-2.

For 17 of the 30 problems in Table 4.3, the norm of the �nal residual is less than 10−7. Since
this is the default primal feasibility tolerance for the Clp simplex solver, ICA can be
considered to have obtained an acceptably feasible point. Among these problems, the objective
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Figure 4.1: Distribution of residual and objective errors.

error ranges between 4.8×105 for ns1688926 and 2.3×10-5 for maros-r7, with only eight
problems having a value less than 10−2. Thus, even if ICA yields a feasible point, it may be
far from being optimal. A single quality measure for the point returned by ICA is convenient,
and this is provided by the product of the residual and objective error, conveniently referred
to as the �solution error�. As illustrated by the distribution of the objective errors and
residual in Figure 4.1, it is unsurprising that there are no problems for which a low value of
this product corresponds to an accurate optimal objective function value but large residual.

The remainder of this chapter addresses the question to what extent does the ICA possess
theoretical optimality and convergence properties. Additionally, it is investigated which
problem features may in�uence the performance of ICA.

4.1.3 Analysis

In analysing ICA, the initial focus is the function ((4.1)). Fully expanded, this is the
quadratic function

h(x) =
1

2µ
xTATAx+ (cT + λTA− 1

µ
bTA)x− λT b+

1

2µ
bT b.

Although convexity of the function follows from the Hessian matrix ATA being positive
semi-de�nite, the Hessian has rank m < n. However, the possibility of unboundedness of h(x)
on x ≥ 0 can be discounted as follows. First, observe that unboundedness could only occur in
non-negative directions of zero curvature, so they must satisfy Ad = 0. Hence
h(x+ αd) = h(x) + αcTd, which, if unbounded below for increasing α, implies
unboundedness of the LP along the ray x+ αd from any point x ≥ 0 satisfying Ax = b.
Thus, as long as the LP is neither infeasible nor unbounded, h(x) is bounded below on x ≥ 0.
For some problems, the size of the residual and objective measures in Table 4.3 indicate that
ICA has found a point that is close to being optimal. It is therefore of interest to know
whether ICA possesses theoretical optimality and convergence properties. With approximate
minimization of the ICA function ((4.1)), it is not conducive to detailed mathematical
analysis. However, Theorem 1 shows that if the ICA function is minimized exactly and an
optimal solution to the LP exists, every limit point of the sequence

{
xk

}
is a solution to the

problem.
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Notes

� During each iteration, at most one of the parameters µ and λ is updated: in Clp, µ is
updated once every few (e.g. 3 or 6) iterations. How often µ is updated does not a�ect
the validity of the proof as long as

{
µk

}
→ 0 as k → ∞ and λ is updated at least once

every W iterations for some constant W ≥ 1.

� In the statement of Algorithm 2 it is said that ω is larger than 1. This is not required
for the proof, which would still hold in the case of non-monotonicity of

{
µk

}
as long as{

µk
}
→ 0 as k → ∞.

Theorem 1. Suppose that xk is the exact global minimizer of hk(x) for each k = 1, 2, . . . and
that

{
µk

}
→ 0 as k → ∞. Then every limit point of the sequence

{
xk

}
is a solution to

problem (2.2).

Proof. Let x̄ be a solution of (2.2) so that, for all feasible x, cT x̄ ≤ cTx. For each k, xk is
the exact global minimizer for

min
x

hk(x) = cTx+ λkTr(x) +
1

2µk
r(x)Tr(x)

s.t. x ≥ 0,
(4.2)

and, since x̄ is feasible for (2.2), it is also feasible for (4.2). Thus, since hk(xk) ≤ hk(x̄) for
each k, it follows that

cTxk + λkTr(xk) +
1

2µk
r(xk)Tr(xk) ≤ cT x̄+ λkTr(x̄) +

1

2µk
r(x̄)Tr(x̄). (4.3)

Since x̄ is a solution of (2.2), r(x̄) = 0 and (4.3) simpli�es to

cTxk + λkTr(xk) +
1

2µk
r(xk)Tr(xk) ≤ cT x̄

=⇒ 1

2µk
r(xk)Tr(xk) ≤ cT x̄− cTxk − λkTr(xk)

=⇒ r(xk)Tr(xk) ≤ 2µk
(
cT x̄− cTxk − λkTr(xk)

)
. (4.4)

At the end of the previous iteration of the loop in Algorithm 2, one of the two parameters µ
and λ was updated. If during the previous iteration the update was of λ, then

λk = µk−1r(xk−1).

Alternatively, during the previous iteration, µ was updated and λ remained unchanged, so
λk = λk−1. Consider iterations k −W, . . . , k − 1 of the loop and let p be the index of the
latest iteration when λ was changed. Then for some p satisfying k −W ≤ p < k,

λk = µpr(xp).

Suppose x∗ is a limit point of
{
xk

}
, so that there is an in�nite subsequence K such that

lim
k∈K

xk = x∗.

Taking the limit in inequality (4.4) gives

lim
k∈K

r(xk)Tr(xk) ≤ lim
k∈K

2µk
(
cT x̄− cTxk − λkTr(xk)

)
. (4.5)

For all k > W there is an index p with k −W ≤ p < k and λk = µpr(xp), so the value of λk
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can be substituted in (4.5) to give

lim
k∈K

r(xk)Tr(xk) ≤ lim
k∈K

2µk
(
cT x̄− cTxk − λkTr(xk)

)
=⇒ r(x∗)Tr(x∗) = lim

k∈K
2µk

(
cT x̄− cTxk − µpr(xp)

T
r(xk)

)
=⇒ ∥r(x∗)∥2 = lim

k∈K
2µk(cT x̄− cTxk)− lim

k∈K
2µkµpr(xp)

T
r(xk) = 0,

since
{
µk

}
→ 0 for k ∈ K, so Ax∗ = b. For each xk, xk ≥ 0, so after taking the limit, x∗ ≥ 0.

Thus, x∗ is feasible for (2.2). To show optimality of r(x∗), from (4.3)

cTxk + λkTr(xk) +
1

2µk
r(xk)Tr(xk) ≤ cT x̄

=⇒ lim
k∈K

(
cTxk + λkTr(xk) +

1

2µk
r(xk)Tr(xk)

)
≤ lim

k∈K
cT x̄

=⇒ cTx∗ + lim
k∈K

λkTr(xk) + lim
k∈K

1

2µk
r(xk)Tr(xk) ≤ cT x̄. (4.6)

For all k > W there is an index p with k −W ≤ p < k and λk = µpr(xp) such that

lim
k∈K

λkTr(xk) = lim
k∈K

µpr(xp)
T
r(xk) = 0,

since
{
µk

}
→ 0 for k = 1, 2, . . . and p → ∞ as k → ∞. This value can be substituted in (4.6)

to give

cTx∗ + lim
k∈K

1

2µk
r(xk)Tr(xk) ≤ cT x̄.

For each k, µk > 0 and r(x)Tr(x) ≥ 0 for each x, so that

1

2µk
r(xk)Tr(xk) ≥ 0 ∀k =⇒ cTx∗ ≤ cTx∗ + lim

k∈K

1

2µk
r(xk)Tr(xk) ≤ cT x̄.

Consequently, x∗ is feasible for (2.2) and has an objective value less than or equal to the
optimal value cT x̄, so x∗ is a solution of (2.2).

4.2 Fast approximate solution of LP problems

Although Theorem 1 establishes an important �best case� result for the behaviour of ICA, the
results in Table 4.3 show that this is far from being representative of its practical performance.
For some problems ICA yields a near-optimal point; for others it terminates at a point that is
far from being feasible. Which problem characteristics might explain this behaviour and, if it
is seen to perform well for a whole class of problems, to what extent is this of further value?

4.2.1 Problem characteristics a�ecting the performance of the Idiot

crash

There is a clear relation between the condition number of the matrix A and the solution error
of the point returned by ICA. The condition number of a rectangular matrix is de�ned as the
ration of the largest and smallest singular value. Of the problems in Table 4.3, all but
storm_1000 are su�ciently small for the condition of A (after the Clp presolve) to be
computed with the resources available to the authors. These values are plotted against the
solution error in Figure 4.2, where the solution error is the product of the residual and
(relative) objective error introduced in Section 4.1.2. Figure 4.2 clearly shows that the
problems solved accurately have low condition number. Notable amongst these are the QAPs
which, with the exception of maros-r7, have very much the smallest condition numbers of
the 29 problems in Table 4.3 for which condition numbers could be computed.
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Figure 4.2: Solution error and LP condition.

Nocedal and Wright [32, p.512] observe that �there has been a resurgence of interest in penalty
methods, in part because of their ability to handle degenerate problems�. However, analysis of
optimal basic solutions of the problems in Table 4.3 showed no meaningful correlation
between their primal or dual degeneracy and accuracy of the point returned by ICA.

4.2.2 The Idiot crash on QAPs

Since ICA yields a near-optimal point for the three QAPs in Table 4.3, it is of interest to
know the extent to which this behaviour is typical of the whole class of such problems, and its
practical value. Both of these issues are explored in this section.

Quadratic assignment problems

The quadratic assignment problem (QAP) is a combinatorial optimization problem, being a
special case of the facility location problem. It concerns a set of facilities and a set of
locations. For each pair of locations there is a distance, and for each pair of facilities there is a
weight or �ow speci�ed, for instance the number of items transported between the two
facilities. The problem is to assign all facilities to di�erent locations so that the sum of the
distances multiplied by the corresponding �ows is minimized. QAPs are well known for being
very di�cult to solve, even for small instances. They are NP-hard and the travelling salesman
problem can be seen as a special case. Often, rather than the quadratic problem itself, an
equivalent linearization is solved. A comprehensive survey of QAP problems and their
solution is given by Loiola et al. [33].

The test problems nug15, qap12 and qap15 referred to above are examples of the Adams
and Johnson linearization [2]. Although there are many specialized techniques for solving
QAP problems, and alternative linearizations, the popular Adams and Johnson linearization is
known to be hard to solve using the simplex method or interior point methods [46]. Table 4.4
gives various performance measures for ICA when applied to the Nugent [43] problems, using
the default iteration limit of Clp. The �rst of these is the value of the residual ∥Ax− b∥2 at
the point obtained by ICA, which is clearly feasible to within the Clp simplex tolerance. The
objective function value and relative error are also given, and the latter is well within 1%.
Finally, the time for ICA is given. Whilst this is growing, ICA clearly obtains a near-optimal
solution for QAP instances nug20 and nug30, which cannot be solved with commercial
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Table 4.4: Performance of the Idiot crash on QAP linearizations.

Model Rows Columns Optimum Residual Objective Error Time

nug05 210 225 50.00 9.4×10-9 50.01 1.5×10-4 0.04
nug06 372 486 86.00 7.8×10-9 86.01 1.2×10-4 0.11
nug07 602 931 148.00 7.9×10-9 148.64 4.3×10-3 0.25
nug08 912 1613 203.50 7.0×10-9 204.41 4.5×10-3 0.47
nug12 3192 8856 522.89 8.8×10-9 523.86 1.8×10-3 2.58
nug15 6330 22275 1041.00 8.9×10-9 1041.38 3.7×10-4 5.13
nug20 15240 72600 2182.00 7.5×10-9 2183.03 4.7×10-4 14.94
nug30 52260 379350 4805.00 1.1×10-8 4811.41 1.3×10-3 82.28

simplex or interior point implementations on the machine used for ICA experiments because
of excessive time or memory requirements.

There is currently no practical measure of the point obtained by ICA that gives any guarantee
it can be taken as a near-optimal solution of the problem. The result of Theorem 1 cannot be
used because the major iteration minimization is approximate, and the major iterations are
terminated rather than being performed to the limit. Clearly the measure of objective error in
Table 4.4 requires knowledge of the optimal objective function value. What can be
guaranteed, however, is that since the point returned is feasible, the corresponding objective
value is an upper bound on the optimal objective function value. With the aim of identifying
an interval containing the optimal objective function value, ICA was applied to the dual of
the linearization. Although it obtained points that were feasible for the dual problems to
within the Clp simplex tolerance, the objective values were far from being optimal, so the
lower bounds thus obtained were too weak to be of value.

4.3 ICA on the dual problem

If the ICA terminates with a primal feasible solution, an upper bound fu on the optimal
objective is obtained. If ICA is applied to the dual problem, and it terminates with a feasible
solution, a lower bound fl on the optimal objective is acquired. Hence, an interval [fl, fu] is
obtained, and the optimal objective value can be proved to belong to that interval.

4.3.1 Crash as an approximate solver

Experiments were performed, with the aim of obtaining a tight interval [fl, fu] as a measure of
the optimality of the primal solution obtained by ICA. Further work could be promising as
the initial experiments successfully yielded a lower bound. However, the bound was not tight
enough for practical applications of the idea outlined above.

4.4 Levels of approximation

One of the main limitations of the ICA algorithm is the accuracy of the component-wise
minimization. While it performs well on some problems, performance is not always so
satisfactory on general LP test instances. One way to improve the accuracy of the
minimization is to select a subset of components at each iteration to minimize over. We can
consider this a generalization of the ICA. As presented in the previous section, ICA can be
seen as a special case, where the size of the subset over which we minimize at each iteration is
of size 1. Another special case is when the size of the subset is equal to n, the number of
columns in the problem. This case is equivalent to solving the subproblem exactly.

Experiments were performed with exact solution of the subproblem. Not surprisingly,
performance was prohibitively slow even with a dedicated bound constrained QP solver.

Minimizing over a smaller subset of size k may prove to be bene�cial, especially if block
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Table 4.5: Solution times for QAPs.

Time iCrash &
Crossover &

Model iCrash Primal Simplex Dual Simplex
qap08 0.0587 0.17 0.48
qap09 0.0778 0.41 4.41
qap10 0.124 1.85 11.62
qap11 0.187 4.87 35.28
qap12 0.257 9.40 123.28
qap13 0.371 39.60 1055.72
qap14 0.545 89.41 267.17
qap15 0.662 150.72 566.69
qap16 0.887 435.05 940.35

structure in the constraint matrix could be exploited. Several algorithms exist, to identify
underlying block structure in LPs and permute the columns correspondingly, some given in
Section 2.4.1.

4.5 iCrash and crossover

Implemented in HiGHS, iCrash is a sequential quadratic minimization algorithm with
approximate subproblem solution. It aims to reach a feasible point, close to optimality, very
fast. It does not provide dual values or a basic solution, so a crossover is required to start
simplex. There is a crossover in HiGHS, originating from the interior point solver, and a
linking of the LP solution steps allowed for a signi�cant improvement in performance on some
problems. Results for QAPs are given in Table 4.5.
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Chapter 5

HiGHS

The development of HiGHS can be traced back to the autumn of 2016, when I combined
Huangfu's serial dual simplex solver [31] with my prototype presolve implementation. This
also enabled Hall to reimplement the Maros and Mitra [36] crash used in his legacy FORTRAN

primal simplex solver EMSOL, which had no presolve. This prototype solver was benchmarked
against EMSOL on Format International's �Multimix� feed formulation test LP problem dcp2.
The e�ect of presolve is seen in Table 5.1, and the in�uence of presolve on the performance of
hsol relative to EMSOL is seen in Table 5.2.

Model Rows Columns Nonzeros
Raw 32388 21087 559390
Presolved 13944 19371 276288

Table 5.1: E�ect of presolve on dcp2.

Speedup
Solver Presolve Solution time Due to presolve Relative to EMSOL

hsol O� 11.13 2.31
On 3.06 3.64 8.83

crash+hsol O� 5.28 4.62
On 2.68 1.97 9.10

Table 5.2: In�uence of presolve on the performance of hsol relative to EMSOL.

Format International Ltd. had been using EMSOL as the LP solver in their software for almost
twenty years, and were very impressed by the prospect of a new LP solver o�ering an order of
magnitude improvement in performance. A three-year ¿46k consultancy contract was signed
to fund the development of an industrial strength presolve and rudimentary MIP solver. This
work reinvigorated the relationship between the University and Format, leading to one of �ve
Impact Case Studies submitted by the School of Mathematics to the 2021 Research Excellence
Framework (REF). This cited the value to Cargill (who had bought Format in the interim) of
the optimization software developed for them. This software blends half the world's
manufactured animal food, worth approximately $50Bn per annum.

The transformation of a computer program, written and used by a single person, into a well
maintained product, used by multiple people, is a non-trivial task. Avoiding mistakes early on
can be of great signi�cance for the future success of a project.
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5.1 Design and architecture

Frederic Brooks, who is best known for managing the development of IBM's System/360
family of computers and the OS/360 software support package, has authored a book called
The Mythical Man Month [9], where many important concepts are noted. To a large extent,
HiGHS was engineered respecting these guidelines.

Given a program, several further components are needed for a scalable, usable product. A
Program here is considered to be the code with some desired functionality. Brooks de�nes a
Programming Product as the code, along with any tools for testing the code, user and
development documentation and build infrastructure. A Systems Program is a program along
with any interfaces and links to integrate the program within other programs and systems.

Combining these two concepts, a Systems Programming Product is the code, along with any
tools for testing the code, documentation and build infrastructure as well as any interfaces
and links to integrate the program within other programs and systems.

In particular, for HiGHS, the transformation of what was previously known as hsol into a
maintainable user product could be de�ned by the following components:

� Program

� Product

� Generalization, Documentation, Testing

� System

� Build, Platforms, Linking, Interfaces

Brooks estimates that transforming a Program into a Product takes 3 times the amount of
resources, in terms of man-hours. A System Program also takes around 3 times the amount of
resources. A Programming System Product takes 9 times the amount of resources, when
compared to the original Program.

A Note on Design

One aspect emphasized in the book is the time spent on di�erent components of the
development. Rather than code close to all of the time, a di�erent approach is suggested:

1/3 design, 1/6 code, 1/4 component test, 1/4 system test.

The reasoning is that the best way to �x issues is to avoid as many as possible from
happening in the �rst place. The second fraction can be seen as getting the parts of the code
to work, and the �nal fraction can be seen as getting the parts to work together.

Conceptual Integrity

One of the main ideas in the book is that of Conceptual Integrity. As new features are added
to the code, it is key to maintain a uni�ed structure in order to avoid future inconsistencies.
The execution of the program must be well-de�ned. It is essential to avoid duplication of
functionality or broken or outdated code facing the user, or in the code repository in the �rst
place. The conceptual integrity idea is what inspired the design decisions in HiGHS.

Project Speci�cation

The speci�cation should be what is documented, what is presented to the user and what is
being tested. The speci�cation includes purpose, environment, domain, I/O, instructions,
options, runtime options, accuracy and checking. Ideally, the project speci�cation would be
the documentation and would serve as a single point of reference.
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Consequently, the preparation and design of HiGHS involved a process of de�ning and
rede�ning the core functionality we would wish to o�er to our users.

5.2 The HiGHS Design Process

In this section are given some details about the design process of HiGHS. The task was to
make HiGHS reliable and maintainable as a software product. What was available was a C++
parallel simplex code.

What we wanted to have eventually:

� interfaces

� light weight, well documented, highly e�cient solver available to a wide range of users.

The problem:

� options / information extraction, functionality modi�cations required by external APIs

� a signi�cant refactoring was required.

Multiple modi�cations to the code were necessary, some of the details are split across the
categories outlined in Section 5.1.

Product: Generalization

Starting with the product features, the generalization includes handling more problem types
and incorporating multiple solvers, such as a MIP solver, QP solver and an interior point
solver as an alternative to simplex for LPs.

Product: Documentation

Prior to the release, HiGHS documentation could be build with Doxygen, there was the
README in the repository and also instructions on the HiGHS website. This setup allowed
for inconsistencies between the instructions on the website and the latest version of HiGHS.

Robert Ramey, one of the boost library authors, shares great insight in his CppCon talk [45].
According to Ramey, the problem with �automated� tools such as Doxygen is that they
produce the illusion of documentation rather than documentation itself. In particular, they
paraphrase the code, which should be readable in the �rst place. Instead, documentation
should aim to guide the user through the setup and usage of a software product, rather than
duplicate what is already in the code base, which, in the open source case, is freely available
to the general public.

Documentation should certainly include a description of what the program is supposed to do
and what is it expected to be used for. What is the user API, how does one use the program,
ideally with examples. Implementation details should not be included, rather found in code
itself. Brooks reasonably states, that documentation preparation should be seen as an aid to
building a coherent design rather than some afterthought to try and �x something that has
been made overcomplicated in the �rst place.

The code itself constitutes documentation - which is an extremely important note, especially
when determining what documentation already exists.

The public documentation for the o�cial release of HiGHS was created using Clang and Julia

and will be hosted at GitHub pages, so it is easily accessible for users. It is automatically
generated from .md �les, allowing developers quick edits and updates to the documentation
page.
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Product: Testing

Testing is necessary, in order to be able to track bugs more easily and to have reliable
information about performance. As the size of the project grows, compile time increases, as
well as the complexity of calls to internal data structures and the linking between them.
Previously, the state of some of the interfaces and platform builds was unclear or untested.

A better design of the testing infrastructure may be time-consuming but can greatly improve
the focus of developers on the algorithmic part, with fewer uncaught bugs and, consequently,
fewer unpleasant surprises in the future.

Sca�olding

The concept of �sca�olding� aims to add structure to testing of software. The goal is to
maintain the conceptual integrity of the code structure. Ideally, one should be able to run test
and development code without modifying the current source code. Thus, it is ensured that
behaviour corresponds to requirements and the documentation is consistent and re�ects that.

A sca�old would contain:

� all programs and data build for debugging purposes but never intended to be in the �nal
product,

� generators for test data,

� special analysis printouts.

In addition to unit tests, more problem instance tests were added to the CMake tests.
Continuous integration is essential for any piece of software, and we developed several scripts
automated by GitHub Actions.

System: Build, Platforms

The CMake code used to build the HiGHS C++ code had to be updated in order to ensure the
success of building and installing the HiGHS library and executable on di�erent platforms.
Additionally, bits of system dependent code had to be removed from HiGHS or handled
properly. Windows, Linux and macOS are all supported now.

Dependencies

Previous solvers have relied on extensive external dependencies to allow generating executable
and library code on a particular platform. This motivated the decision to use CMake initially.
Apart from CMake and a standard threads library for the parallel code, HiGHS is entirely
independent of external libraries. This is very bene�cial for a wide range of users and
practical applications.

System: Interfaces

Currently, there are multiple interfaces allowing HiGHS to be used from di�erent programming
languages such as Python and Julia. At the moment not all interfaces cover all features of
HiGHS. The goal is to develop them further as the user base continues to grow.

Programming languages di�er in the extent to which they can communicate with other
programming languages. For some it is possible to call C++ directly, others require to call a C
wrapper instead. Multiple interfaces introduce a possibility for inconsistencies. For the design
of the Highs class and the C API it was crucial to observe and remove such possibilities from
the beginning, in order to avoid the necessity for a large restructuring of the code later on. A
decision was made on a single external API corresponding to the C++ Highs class and C API.

Extended work on the solver was required, in order to support increased functionality,
required by some interfaces.
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5.2.1 The Product & Resources

As a result of the development process, for the o�cial release of HiGHS, the user would have
access to the following resources, and would be able to build the targets using CMake.

� website [highs.dev] [27],

� github repository [28] | master | latest version | tests passing,

� documentation site (GH Pages); README.md.

Targets:

� executable,

� shared library (optional static),

� interfaces.

A thorough and disciplined approach to software engineering pays o� for both developers and
users alike. Unit tests and continuous integration mean that developers know the
consequences of code changes, and can be con�dent that the software will run on architectures
other than the one used to develop it. It is also clear that, for users large and small, the value
of having open-source software build easily, reliably, and without external dependencies is very
much appreciated. It builds con�dence in the software, and has been instrumental in the
uptake of HiGHS by users. For SciPy [50] and JuMP [15], the two most notable applications
that have embraced HiGHS, the professionalism of the build and support were very welcome.
Indeed, ease of build is a major factor in the successful take-up of linear optimization software
such as GLPK [34] and lp_solve [7], despite their poor performance [41]. Solvers with vastly
better performance such as Clp [11] and Cbc [10] have, historically, been hampered by the
cumbersome build systems resulting from their integration within COIN-OR [12].

Five years after the prototype presolve and Huangfu's dual simplex solver were combined for
an industrial application in relation with Format International, HiGHS now exists as
open-source linear optimization software with the best overall performance in the world [41].
Developing the industrial strength implementation of presolve and postsolve described in
Chapter 3 was a key technical contribution to HiGHS, and led to consultancy work that was
critical to funding the development of the MIP solver.

HiGHS is the only open-source software to o�er simplex and barrier for LP, a MIP solver and a
QP solver, and in most of these categories, HiGHS is the best amongst all open-source software
in Mittelmann's benchmarks [39, 40, 42]. However, performance without users is not su�cient
for a software project to be successful. The thorough and disciplined approach to software
engineering in HiGHS, as described in Chapter 5, has been instrumental in attracting users.
These range from the authors of high-pro�le interfaces such SciPy [50] and JuMP [15], where
the presence of HiGHS represents a vote of con�dence in it as software, to individual
developers who welcome the ease with which they have been able to switch to HiGHS from
alternative solvers such as GLPK [34], lp_solve [7] and Cbc [10].

Looking forward, the future looks very bright for HiGHS. The three key members of the team
are employed by the School of Mathematics and there is an ever-growing base of users. With
the expansion of the code base, scaling becomes crucial to the success of most software
products and computational mathematical software is no exception to this rule. Nevertheless,
with advanced software engineering and e�cient implementation of algorithms, many
practical problems can be solved very fast.
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Chapter 6

Conclusions

The solution of linear programming problems is required in many industry areas and
academic projects. The development of presolve and crash techniques for LP is essential,
allowing larger problems to be handled by the solvers, and solution time to be accelerated.
Preprocessing techniques are required in most practical applications of signi�cant or even
medium scale. Many preprocessing techniques are developed and used commercially and it is
also essential to take them into consideration within the scienti�c academic community.

This thesis presents a novel analysis of a quadratic penalty type algorithm, known to perform
very well on certain classes of optimization problems. The crash was previously of interest to
both the academic community and industrial OR developers. Presolve for LP is examined in
detail, with an additional focus on dual postsolve, some basic rules previously not presented,
and an illustration of the signi�cant reduction of overall solution time.

Software design and scaling is another aspect crucial to the usage of solvers within various
applications. Poor design at any stage of development can lead to numerous problems in the
future and may eventually require large segments of the code to be completely rewritten.
That often takes a signi�cant amount of resources and is a major reason for many software
projects to struggle with performance and maintenance. Integrating solvers and preprocessing
techniques along with utilities, allowing the users to interact with the program, requires
thoughtful consideration of use cases and potential issues. This thesis additionally presents an
examination of the design and engineering of HiGHS, with respect to conceptual integrity.

The optimization software HiGHS, created with careful design and integration of
preprocessing algorithms, is now providing users worldwide with several of the best
performing solvers within the open source community.
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