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Abstract

When a Giant Molecular Cloud (GMC) collapses to form a stellar core,

conservation of angular momentum will lead to the formation of a protoplanetary

disc, with an initial mass potentially of the order of its stellar host. If a massive

disc forms, then the disc’s self-gravity will play a crucial role in the earliest

stages of its evolution; driving its viscous evolution, and potentially leading

to the formation of wide orbit, giant planets and brown dwarfs through disc

fragmentation.

I begin this thesis by placing improved constraints on the conditions required

for disc fragmentation, specifically focusing on how the disc’s environment may

influence its evolution and eventual fate.

Recent results from direct imaging surveys suggest that wide orbit giant planets

and brown dwarfs are found more frequently around higher mass stars. I use

Smoothed Particle Hydrodynamics (SPH) simulations to show that a disc’s

susceptibility to fragmentation is dependent on the mass of its host star. I

demonstrate that discs around higher mass stars may fragment for lower disc-

to-star mass ratios, making them favourable sites for the formation of wide orbit,

massive objects, such as those found in direct imaging surveys. Low mass stars

may support high mass discs, in principle providing large reservoirs of material

for core accretion planet formation.

Results from direct imaging surveys also find that stars hosting close in giant

planets or brown dwarfs display an excess of outer binary companions, with

indications that some of these objects may have formed through the gravitational

instability (GI). I use SPH to simulate a suite of self-gravitating discs with a

binary companion, and show that there is a narrow region of parameter space

where intermediate separation companions may trigger fragmentation. Short

separation encounters are destructive, whilst wide orbit companions have little
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effect. The range of binary separations found to favour the formation of short

period, giant planets is consistent with results from direct imaging surveys.

Although numerical models suggest that GI may dominate a disc’s early

evolution, it is still unclear from observations whether massive, self-gravitating

discs exist in nature. Recent high-resolution infrared imaging of protoplanetary

discs have given rise to unparalleled observations of their substructure, including

rings, gaps and spirals, providing us with crucial insights to the earliest stages of

planet formation.

Observations of the protoplanetary disc surrounding AB Aurigae have revealed

the possible presence of two massive planets in the process of forming. The

young measured age for the system places strict time constraints on the planet’s

formation histories. I use analytic core accretion models to show that their

expected core accretion formation timescales are longer than the system’s current

age. Using SPH and viscous evolution models of self-gravitating discs, I show that

a proto-AB Aurigae disc could have been massive enough to fragment in the past,

with typical fragment masses consistent with the masses of the protoplanets which

have been observed in the disc.

Finally, I use Monte Carlo radiative transfer models to generate observational

predictions of self-gravitating discs using ALMA. I develop an existing 3D semi-

analytic model to include a prescription for dust trapping in the disc’s spirals. I

make predictions about the disc properties which may drive spirals that could be

visible to ALMA, in particular focusing on the impact of dust trapping. I also

use these models to analyse 3 discs from the DSHARP survey, and discuss the

plausibility of their observed spirals being the result of GI.

ii



Lay Summary

Throughout human history we have attempted to understand the Universe around

us. Some of the earliest astronomical theories focused on making sense of the

objects which are nearest to us and the most easily visible; those being the

Sun, the Moon and the nearby Solar System planets. Initially, motivated by the

observation that these objects move across the night sky in an elliptical motion,

astronomers believed that all of the Solar System objects orbited around the

Earth, and that the Earth was at the center of the Universe. It wasn’t until

after the 16th century it became widely accepted that, in fact, all of the Solar

System planets were in orbit around the Sun. As it was also true that the planets

orbit the Sun in the same plane and in the same direction as each other, it was

hypothesised they must have all formed in some sort of disc-like structure around

the young, newly-formed Sun.

These protoplanetary discs are what we now believe to be the formation sites of

all of the known planets. The most widely accepted theory of how planets form,

known as the core accretion theory, suggests that grains of dust within these discs

will collide with each other, stick together and slowly grow over millions of years

to form planets potentially more massive than Jupiter. Core accretion theory is

generally successful in explaining the formation of all of the planets in our Solar

System, as well as most of the known planets which we have discovered around

other stars, known as exoplanets. However, to date we have discovered over 5,000

exoplanets, lots of which have very different properties to the planets in our Solar

System, and whose origins can be challenging to explain through core accretion

theory.

Of particular importance to the work in this thesis is the formation of giant

planets (with masses greater than that of Jupiter) at large distances from their

stars (often much further than the outer reaches of our Solar System). The

formation of these wide-orbit, giant planets is difficult to explain through core
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accretion theory. The time that it would take for them to form would be much

longer than the typical lifetimes of protoplanetary discs, as discs are only expected

to survive for around 10 million years before all of the material has either been

accreted onto the star or has been blown away by the star’s radiation.

The gravitational instability theory is a complementary model of planet formation

to core accretion theory, and it may be able to explain the origin of these wide-

orbit, giant planets. It suggests that the outer regions of a protoplanetary disc

may collapse (or fragment) to form gravitationally bound clumps of gas, which

may go on to become gas giant planets. This gravitational collapse of the disc

may only occur if the disc has a mass comparable to the mass of its host star,

such that the gravitational potential of the disc is comparable to that of the star.

Hence it is only likely to occur whilst the disc is very young and before its mass

has been depleted.

However, this mode of planet formation is still very poorly understood. Firstly,

it is uncertain whether discs will ever be massive enough to be gravitationally

unstable, as we are still yet to find concrete evidence of gravitationally unstable

discs existing in nature. Even if sufficiently massive discs do exist, it is uncertain

how often, if at all, fragmentation can occur and the specific disc conditions which

would be required, such as their masses, sizes and temperatures. Further, if the

disc does fragment, it is uncertain whether the clumps which form will go on

to become planets, or whether instead they can only ever become objects too

massive to be planets but too low mass to be stars, known as Brown Dwarfs.

Throughout this thesis I will use computer simulations to study the role of

the gravitational instability in the early evolution of protoplanetary discs. In

Chapters 1 and 2 I will describe in detail our current understanding of star

and planet formation, derive some key equations and outline some important

numerical methods which will be used throughout the research here. In Chapters

3 and 4 I will place improved constraints on the disc’s environmental factors

which may provide favourable conditions for the disc to undergo fragmentation.

In Chapter 5 I will analyze the AB Aurigae system, focusing on the formation

histories of the two protoplanets which have recently been observed in the disc and

evaluating the possibility that they may have formed through the gravitational

instability. Finally, in Chapter 6 I will generate simulated observations of

gravitationally unstable discs with the aim of providing improved predictions

of the disc conditions required if we are to successfully observe these systems

with today’s telescopes.
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Chapter 1

An overview of star and planet

formation

1.1 Introduction

Astronomy is generally believed to be the oldest of the sciences, and can be traced

back to most ancient civilisations. The earliest astronomical records date back

to around 5000 years ago as humans attempted to use the motions of the stars,

planets and the moon to keep track of things such as the yearly seasonal changes

(of crucial importance for farming and agriculture) as well as for navigational

purposes. Clear evidence of ancient civilisations utilising the motions of the

heavenly bodies can still be seen today. Monolithic structures such as Stonehenge,

dating back to∼ 3000 BC, demonstrate how the motion of the Sun was potentially

used as an astronomical clock, whilst the ancient Egyptian pyramids, also dating

to around the same time, are aligned to point directly north - a feat presumably

only achievable through utilisation of the positions of the stars.

Fast forward a few millenia past huge astronomical milestones such as Copernicus’

development of the heliocentric model of the Solar System in the 16th century, the

invention of the telescope in the early 17th century, and Newton’s theory of gravity

in the late 17th century, and astronomers were beginning to piece together the

origins of our Solar System and how we got here. The earliest modern theories of

star and planet formation can be traced back to the works of Kant and Laplace

in the 18th century, in what is now known as the nebular hypothesis. In 1755

Immanuuel Kant proposed that the Solar System formed from a dispersed cloud
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of particles which would slowly coalesce and grow as they collided with each other.

In 1756 Pierre-Simon Laplace took this further. Realising that all of the planets

orbit the Sun in the same direction and in the same plane, he proposed that

their formation must have occurred in a rotating disc-like structure. The nebular

hypothesis suggested that the Sun was initially much larger, with an atmosphere

extending beyond the outer Solar System, and that it was rotating. As the

Sun cooled and contracted, conservation of angular momentum would result in

the formation of a heliocentric disc, within which the collisional accumulation of

particles proposed by Kant would ensue.

Since then, modern theories of star and planet formation have built on this.

We now know that star formation occurs in extremely large, gravitationally

bound clouds of gas and dust, know as Giant Molecular Clouds (GMCs). These

structures can span anywhere between a few and a few hundred parsecs, with

masses up to a few million solar masses. The most massive clouds may potentially

form thousands of stars which may later exist as constituents of dense stellar

clusters. Famous examples include the Perseus and Orion molecular clouds, which

are pictured in Figure 1.1.

GMCs are typically cold, with temperatures ∼ 10 K, hence their constituent gas

will exist in its molecular form, of which the vast majority will be molecular

hydrogen, H2. The distribution of this gas within each cloud will be non-

homogenous, consisting of complex filametary structures as can be seen in the

clouds in Figure 1.1. At the knots of these filaments exist the densest regions

of GMCs and the actual sites of star formation, molecular cores, with typical

sizes ∼ 0.1 pc. If a molecular core becomes massive enough it may begin to

contract under the influence of its self-gravity to form a dense, central protostar,

as illustrated in Figure 1.2. As it does so, and the core becomes progressively

smaller, conservation of angular momentum dictates that the forming protostar’s

rotational velocity must increase. As the rotational velocity of the protostar

continues to increase, centrifugal acceleration will drive the formation of a large,

extended disc structure which rotates coincident with the axis of rotation of the

collapsing region.

These protostellar or protoplanetary discs1 are what will go on to become the

1Note: throughout this thesis I will use these terms somewhat interchangeably. Protostellar
disc will generally refer to discs in their earliest stages of formation, whilst existing around a
protostar. Protoplanetary disc will generally be used to refer to slightly more evolved systems,
within which the planet formation process has begun to take place.
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Cluster IC348

NGC 1333

Clusters with a range of stellar ages

Figure 1.1 Top: Perseus molecular cloud with some notable features highlighted.
The cloud is ∼ 150 pc wide and contains ∼ 104 M� of gas and
dust (Credit: NASA/JPL-Caltech). Bottom left: Orion molecular
cloud, located in the constellation of Orion, with the location of the
famous Orion nebula highlighted (Image credit: Rogelio B. Andreo,
RBA Premium Astrophotography). Bottom right: Orion nebula.
The image spans ∼ 4 pc and contains ∼ 3000 stars in different
stages of formation (Image credit: NASA,ESA, M. Robberto (Space
Telescope Science Institute/ESA) and the Hubble Space Telescope
Orion Treasury Project Team).
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Prestellar Core Star-disc systemEmbedded 
star-disc system

Figure 1.2 An illustration of star-disc formation. Dense regions of a cloud may
collapse to form the first prestellar cores. Conservation of angular
momentum during the collapse results in the formation of extended
protostellar discs (Image credit: M.V. Persson).

sites of planet formation, and are consequently the primary research focus of

this thesis. The first observational evidence for the existence of circumstellar

discs came in 1984 when Aumann et al. (1984) found a large Infrared excess

when observing Vega, indicative of there being a shell of solids surrounding the

star. Shortly after, the first published image of a disc also came in 1984, when

Smith & Terrile (1984) observed an edge-on disc-like structure around the star

β-Pictoris, shown in Figure 1.3. Since then, our capabilities of observing these

discs has vastly improved, with collaborations such as the Disc Substructures

at High Angular Resolution Project (DSHARP) (Andrews et al., 2018b) having

recently published some of the most spectacular images of protoplanetary discs to

date (see Figure 1.4), revealing complex substructures indicative of the presence

of planets and various instabilities.

Throughout this chapter I will outline some of the key processes which take place

throughout the course of star and planet formation, beginning with the collapse

of a molecular cloud to form a star-disc system, and concluding with our current

understanding of how planets form within the resultant protoplanetary discs.

1.2 Gravitational collapse of a GMC and the

formation of prestellar cores.

Over 50 years ago, Larson (1969) performed the first numerical simulations of a

collapsing cloud, outlining the key phases of star formation. An initial phase of
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Figure 1.3 First published image of a circumstellar disc obtained in 1984.
Image shows β−Pictoris at the centre surrounded by an edge-on
disc-like structure extending ∼ 400 AU from the star. Image credit:
Smith & Terrile (1984)

Figure 1.4 The 20 discs imaged in the DSHARP data release (Andrews et al.,
2018b). Rings, gaps and spirals can be seen in many of the discs,
some of which are indicative of the presence of young planets which
may have carved out such substructures.
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isothermal collapse will occur as the cloud contracts under its own gravitational

potential. Collapse will continue until the density at the centre of the collapsing

region increases such that the gas becomes optically thick, heats up, and halts

any further contraction. These dense, optically thick central regions are known

as the first cores. This process typically proceeds in a hierarchical manner, and

the initial collapsing region will fragment to form many cores. The first cores

will continue to accrete mass from the surrounding gas, and a phase of second

collapse may occur once the first core heats up sufficiently to dissociate molecular

hydrogen, thus proceeds the formation of the second cores. Collapse will continue

in a manner similar to before, until most of the molecular hydrogen has been

dissociated and collapse is halted again. The dense second cores will continue

to accrete material, and their formation is followed by a long period of accretion

and contraction as they evolve toward stellar densities.

The initial collapse of a cloud may occur if the mass within a given region exceeds

some threshold value, known as the Jeans mass, MJ (Jeans, 1902). As a region of

the cloud contracts, the gas density will increase thus providing pressure support

acting to stabilise the region. However, if the mass within the collapsing region

exceeds the Jeans mass, the timescale on which the cloud collapses (known as

the free fall timescale, tff) will be shorter than the timescale on which pressure

support is able to prevent it (given by the sound crossing timescale, ts) hence

collapse may continue to form the first prestellar cores.

The Jeans mass can be derived by considering the ratio of the free fall timescale

and the sound crossing timescale. Beginning with Newton’s second law for a

uniform density cloud of mass, M , size, R, and density, ρ, we have,

d2R

dt2
= −GM

R2
= − G

R2

4πR3
0ρ

3
. (1.1)

Substituting,

d2R

dt2
=

dv

dt
=

dR

dt

dv

dR
= v

dv

dR
, (1.2)

and rearranging, we have,

∫
v dv = −4πGR3

0ρ

3

∫
dR

R2
, (1.3)
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1

2
v2 =

4πGR3
0ρ

3R
+ C. (1.4)

Using the boundary conditions that v = 0 when R = R0, we find that,

C = −4πGR3
0ρ

3
, (1.5)

hence, rearranging gives,

|v| =
√

8πGR2
0ρ

2

3

(R0

R
− 1
)
. (1.6)

This velocity represents the velocity with which the cloud would collapse if in

free fall and subject to no opposing forces. The free fall timescale on which this

collapse would happen can be calculated as,

tff =

∫ R0

0

dr

|v|
, (1.7)

which gives,

tff =

√
3π

32Gρ
. (1.8)

However, as the cloud collapses its density and pressure will increase, and sound

waves will propagate through the cloud to re-establish pressure balance. These

will travel at the gas sound speed, cs, on a timescale given by the sound crossing

time, ts = R/cs. Collapse will only be able to continue if tff < ts, hence when,

R

cs

<

√
3π

32Gρ
, (1.9)

which gives,

RJ = cs

√
3π

32Gρ
, (1.10)

Here, we have arrived at the Jeans length, which represents the maximum size

7



of a density perturbation within a cloud of uniform density, ρ, which can be

maintained by pressure support. Any region of the cloud smaller than this will

continue to collapse to form the first prestellar cores. From the Jeans length, we

can also calculate the Jeans mass as the mass of gas contained within the volume

defined by the Jeans length,

MJ =
4

3
πR3

Jρ. (1.11)

1.3 The formation of protoplanetary discs

Observations of GMCs find that their internal velocity dispersions, σ, follow

approximate scaling relations with their masses and radii. These are known as

Larson’s scaling relations (Larson, 1981), which approximately give σ ∝ M0.25

and σ ∝ R0.5. The velocity dispersions within GMCs are dominated by

turbulence, with turbulent eddys which operate on a large range of size scales.

Turbulence is inherently rotational, so any turbulent region will posses some

angular momentum which must be conserved as the region collapses to form

stellar cores.

For a collapsing, rotating spherical cloud, its pre-collapse angular momentum will

be,

Jc = McR
2
cωc, (1.12)

where Mc and Rc are the masses and radii of the cloud and ωc is the cloud’s

angular velocity. The cloud will also have a rotational energy equal to,

Erot =
1

2
Icω

2
c =

1

5
McR

2
cω

2
c , (1.13)

and a gravitational potential energy,

Egrav = −3

5

GM2
c

Rc

. (1.14)

Measurements of molecular cores reveal that the ratio of their rotational to
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gravitational potential energies, commonly characterised as β, have typical values

β ∼ 0.02 (Goodman et al., 1993). Hence, rearranging Equations 1.12, 1.13 and

1.14, and substituting β = Erot/Egrav gives,

Jc =
√

3βGM3
cRc. (1.15)

Using typical values for a collapsing region of mass 1 M� and size 0.1 pc, we

find that a collapsing cloud will have angular momentum, Jc ≈ 1054 g cm2 s−1 - 4

orders of magnitude higher than the total angular momentum of the solar system,

which has J ≈ 1050 g cm2 s−1.

In what is commonly referred to as the angular momentum problem, the question

then remains - how is this excess angular momentum lost? Assuming that a

cloud collapses at constant angular momentum, the spin required to form an

isolated stellar core would be sufficient to tear it apart. Instead, an extended

circular disc of material will form around the protostar acting as a vessel for

angular momentum transport outwards and the transport of material inwards for

further stellar accretion. We can equate the angular momentum of the collapsing

cloud to that of the eventual disc which forms. Assuming that a disc forms with

radius, Rdisc, and the gas within the disc orbits at Keplerian velocities with orbital

frequency,

ΩK =

√
GMc

Rdisc
3 , (1.16)

then,

Jdisc = McR
2
discΩK =

√
GM3

cRdisc. (1.17)

Equating this to the angular momentum obtained above, we find the when Mc =

1 M�, Rdisc ≈ 100 AU. The formation of large rotating gaseous discs around

newly formed stars is therefore a natural outcome of cloud collapse and angular

momentum conservation.

Of course, the solution to the angular momentum problem is a combination of

other processes, as cloud collapse will occur in a dynamic environment of magnetic

fields, turbulence, interactions with other forming stars and tidal forces, hence
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the values derived above are approximate. Observations of discs through their

mm continuum emission suggest they may have sizes anywhere between ≈ 101 −
103 AU (e.g. Andrews et al., 2018a,b; Eisner et al., 2018; Hendler et al., 2020),

although these are typically for evolved systems, as young, newly formed discs

will be embedded within their optically thick natal environments, making them

challenging to observe. Equally, or potentially more challenging to measure is

the typical masses of these newly formed systems. Again we are only able to

observe evolved systems whose masses will have been significantly depleted since

formation, and in addition we rely on uncertain conversion factors between a

disc’s mm dust emission and its gas mass (e.g. Dutrey et al., 2014; Andrews,

2020, and references therein). As will be discussed in detail in the next section,

the masses of these newly formed discs will be of crucial importance to their very

early evolution, and their potential susceptibility to gravitational instabilities.

1.4 Young self-gravitating discs

One-dimensional models (Lin & Pringle, 1990; Rice et al., 2010) and numerical

simulations (Machida et al., 2010) suggest that when a star-disc system forms,

the disc will have a mass comparable to that of the newly formed star. When

this is the case, the disc’s self-gravity will be of crucial importance to its early

evolution. Such systems are said to be prone to the gravitational instability (GI),

which will act to drive spiral density waves through the disc (as can be seen in

Figure 1.5), acting as a key source of viscosity for driving the disc’s early angular

momentum transport and potentially leading to the direct formation of gas giant

planets and brown dwarf stars through disc fragmentation. In this section, I will

derive some of the key quantities associated with GI, and describe how the disc’s

self-gravity may influence its evolution.

1.4.1 The Toomre parameter

We can understand the stability of a self-gravitating, rotating disc by beginning

with the WKB dispersion relation for a razor-thin disc, originally derived in Lin &

Shu (1964) in the context of galactic dynamics. Considering for now axisymmetric

perturbations, and assuming that the radial wavelength of a perturbation is much

less than the radial extent of the disc, the dispersion relation is given by,
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Figure 1.5 Snapshot of a self-gravitating protoplanetary disc obtained from a
Smoothed Particle Hydrodynamics simulation. The disc was set up
with a mass of 0.2 M�, an outer radius of 100 AU, and a central
star mass of 1 M�. Spiral substructure can be seen propagating
throughout the disc as consequence of the gravitational instability.
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ω2 = c2
sk

2 − 2πGΣ|k|+ κ2, (1.18)

which will have a solution of the form ei(kx−ωt), where ω is the wave frequency,

k is the radial wavenumber, Σ is the disc’s surface density, cs is the sound speed

and κ is the epicyclic frequency, which will be equal to the Keplerian frequency

in a rotationally supported disc. On the right hand side (RHS) of the equation,

the first and third terms, which are positive, represent pressure and rotation

respectively, whilst the central, negative term represents the disc’s self-gravity.

When the RHS is positive we get ω2 > 0, hence ω will be real and the disc will

be stable. However when the RHS is negative we get ω2 < 0, hence ω will be

imaginary giving a solution to the wave equation, e±|ω|t, meaning any instability

will grow exponentially. It then follows that the pressure and rotation terms in

Equation 1.18 act to stabilize the disc as they drive the RHS up, whilst self-

gravity will push the disc towards instability, and Equation 1.18 embodies the

balance between these forces.

Defining the limit for stability as being when ω = 0, we are left with a quadratic

equation in terms of k,

c2
sk

2 − 2πGΣ|k|+ κ2 = 0. (1.19)

If we consider Equation 1.18 to be a parabola in ω2 and k, then the most unstable

wavelength, kmin, is the value of k at the parabola minimum which can be obtained

by setting dω2/dk = 0, giving,

kmin =
πGΣ

c2
s

. (1.20)

It then follows that the disc is stable when ω2(kmin) > 0 and unstable when

ω2(kmin) < 0. Substituting kmin into Equation 1.18 gives the criterion for stability

as,

Q =
csκ

πGΣ
> 1. (1.21)

Hence we have arrived at the Toomre stability criterion, where Q is commonly

12



known as the Toomre parameter (Toomre, 1964). The limit for stability derived in

Equation 1.21 represents that for axisymmetric perturbations, such as rings. For

non-axisymmetric perturbations, such as the development of spiral density waves

which are characteristic of GI, it has been shown through numerical simulations

that the limit for stability is Q < 1.5− 1.7 (Durisen et al., 2007). Equation 1.21

again demonstrates the balance between rotational support, thermal support, and

self-gravity. Assuming that the orbital frequency remains fixed at the Keplerian

frequency, we see that hotter discs (higher cs) will increase Q acting to stabilize

the system, whilst more massive discs (higher Σ) will drive Q down toward the

threshold for instability.

We can take this derivation further to obtain a more intuitive expression for

instability in terms of the disc-to-star mass ratio. If we substitute,

Mdisc =

∫ R

0

2πrΣ(r)dr, (1.22)

and assume that the surface density follows some radially negative power-law

distribution,

Σ(r) = Σ0

(
r

R0

)−q
, (1.23)

then we get that,

Mdisc =
2πΣ0

(2− q)R−q0

R2−q. (1.24)

Substituting Equations 1.23 and 1.24 back into Equation 1.21, noting that cs =

HΩ (will be derived later in Chapter 2), and κ is the Keplerian orbital frequency

where κ = Ω =
√

GM∗/R3, we get the limit for stability as,

Q = f
M∗
Mdisc

H

R
, (1.25)

where H is the disc’s vertical scale height, and f(= 2/(2 − q)) is a numerical

factor of order unity which depends on the specific surface density profile. From

Equation 1.25 we see that, for a fixed disc-to-star mass ratio, thinner discs will

13



be more unstable. Observations of discs find that they are generally thin, with

H/R ≈ 0.05− 0.2 (Andrews et al., 2010), hence we expect discs with & 5− 20%

the mass of their parent star to be gravitationally unstable. As mentioned at the

beginning of the section, models of star and disc formation predict initial disc-to-

star mass ratios which easily exceed this (Lin & Pringle, 1990; Rice et al., 2010;

Machida et al., 2010), hence we may reasonably expect discs to be gravitationally

unstable when they are young.

1.4.2 Marginal stability and self-regulation

Through the Toomre parameter and the demonstrated balance between the disc

mass and temperature, we can understand how a disc close to the limit for

instability will evolve. A massive disc at a high temperature will be stable, and

will radiatively cool. As the disc temperature decreases so does its sound speed,

hence Q will decrease. If the disc is massive enough and able to cool efficiently

enough, Q may approach unity, at which point the disc will become susceptible

to the growth of spiral density waves. The presence of spirals will cause disc

heating as they drive shock waves, hence the disc temperature will increase, Q

will increase, and the disc will move back toward a state of stability. The spirals

then become weakened as the instability is quenched, and the disc will begin to

cool again, driving Q back down toward instability. Paczynski (1978) originally

showed that GI discs can reach this state of self-regulation, where heating is

balanced by cooling and the disc remains close to the limit for instability. Such a

disc is said to be in a marginally stable state, where the spirals act to thermally

regulate the system. In a marginally stable disc, spirals will propagate with a

range of length scales and timescales which acts to generate turbulence in the

disc. This gravito-turbulence will provide the dominant source of viscosity at

early times when the disc is massive enough to be gravitationally unstable, and

too cold to be significantly magnetized such that magnetohydrodynamic (MHD)

turbulence is not important. The importance of viscosity to angular momentum

transport, and the effective viscosity associated with the gravitational instability

will be formalised in more detail in Chapter 2.

14



1.5 Observational properties of protostars and

protostellar discs

Formation of stars and discs and the subsequent evolution of star-disc systems

can be understood through observations of star forming regions. When these

objects are young they will be heavily embedded within envelopes of optically

thick gas, hence emission will mostly be at far-IR and mm wavelengths. To

gain a good understanding of the different phases of star and disc formation

requires observations of many systems, such that we can derive a strong statistical

sample. However, spatially resolving discs at these wavelengths and at distances

which can be in the 100s of parsecs is challenging, and has only recently become

possible with the advent of long baseline interferometeres such as the Atacama

Large Millimeter/submillimeter Array (ALMA) and the Square Kilometer Array

(SKA).

Prior to this being possible it has been convention to classify Young Stellar

Objects (YSOs) through their unresolved spectral energy distribution (SED)

(Lada, 1987; Andre et al., 1993; Andre & Montmerle, 1994). More specifically,

YSOs are classified by the slope of their SED in the near- to mid-IR, between

wavelengths ∼ 2− 20µm, where the slope is calculated as,

αIR =
∆log(λFλ)

∆λ
. (1.26)

This classification scheme is generally made up of 4 key stages, which are outlined

below and illustrated in Figure 1.6

• Class 0: A compact, dense object has formed within the prestellar core.

The protostar is heavily embedded in an optically thick circumstellar

envelope, where the envelope mass is comparable to that of the protostar.

This phase is likely prior to any disc formation. The SED peaks in the

far-IR/mm, with very little/no emission in the near-IR at wavelengths

λ . 10µm. Typical ages of Class 0 protostars are ∼ 104 − 105 yrs.

• Class I: The protostar is less embedded within the now less massive

envelope, and a protostellar disc is now present. The SED consists of

protostellar blackbody emission, with a large amount of excess emission

in the far-IR, representing reprocessed stellar radiation from the envelope
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Class I

Class 0

Class III

Class II

Figure 1.6 An illustration of the classification scheme for Young Stellar Objects.
Image credit: Adapted from an image originally found in Armitage
(2010) and another image by Magnus Vilhelm Persson.

16



and disc. The SED is now flat, or slightly rising, between near and mid-IR

wavelengths, with αIR > 0. The protostar is highly accreting, hence a large

amount of its luminosity comes from accretion, and outflows and jets are

often detected. These objects typically represent ages of a few 105 yrs.

• Class II: The circumstellar envelope is now mostly depleted, and a

protostar surrounded by a protostellar disc remains. The SED now consists

of stellar blackbody combined with IR excess due to reprocessing in the

disc, with −1.5 < αIR < 0. These objects are often referred to as Classical

T Tauri stars, and have ages ∼ 3 × 106 yrs. The protostar is still strongly

accreting by means of the protostellar disc.

• Class III: The final phase of star formation, before the protostar evolves

onto the main sequence. The disc is now mostly depleted, hence the

protostar is no longer strongly accreting, and the SED is mostly that of

stellar blackbody. These are often referred to as Weak-lined T Tauri stars,

with ages ∼ 107 yrs. The spectral index is now αIR < −1.5.

These classes broadly represent the key stages of star and disc formation. To

date, observations of discs typically represent older, Class I and Class II sources,

when the disc is no longer embedded within the envelope. Famous examples

include the images of the Class I disc HL-Tau (ALMA Partnership et al., 2015a)

and the Class II disc Elias 2-27 (Pérez et al., 2016; Huang et al., 2018b) from

which substructure in clearly observable, possibly indicative of the presence of

planets, or the gravitational instability in the case of Elias 2-27 (see Figure 1.7).

However younger, possibly Class 0, sources have also been imaged, such as L1448

IRS 3B (Tobin et al., 2016) which shows a triple protostar system where the disc

is possibly in the process of fragmentation (also see Figure 1.7). Disc self-gravity

is likely only important during the Class 0 and Class I phases whilst the disc is

still massive and being replenished through accretion from the envelope.

Crucially, and of central importance to this thesis, throughout these stages of

star and disc formation the formation of planets is also slowly taking place. I will

now outline our current understanding of planet formation, and how it fits into

the picture of star formation laid out thus far.
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Figure 1.7 Images of protoplanetary discs obtained with ALMA. Top left: HL
Tau. Top right: Elias 2-27. Bottom: L1448 IRS 3B. Image
credit for all 3 images: B. Saxton (NRAO/AUI/NSF); ALMA
(ESO/NAOJ/NRAO)
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1.6 Planet formation

Early theories of planet formation (e.g. Safronov, 1969) were developed long

before the first exoplanets were discovered in 1992, when two terrestrial mass

planets were found in orbit around a pulsar (Wolszczan & Frail, 1992). Hence,

the theories being developed were primarily concerned with explaining the

architecture of our own Solar System, where we have rocky, terrestrial planets in

the inner Solar System and gas/ice giant planets in the outer Solar System. As

we began to discover more systems through large exoplanet surveys (e.g. Borucki

et al., 2010; Howell et al., 2014; Ricker et al., 2015) we found that, perhaps

unsurprisingly, there exists a rich diversity of exoplanets and exoplanetary

architectures different to what we have in the Solar System. For example,

radial velocity surveys such as the Kepler mission (Borucki et al., 2010) have

so far revealed hundreds of planets classified as hot-Jupiters ; planets of masses

comparable to that of Jupiter, on very short orbits with periods less than 10

days. We are constantly discovering systems which challenge our understanding

of planet formation, such as the Trappist-1 system (Gillon et al., 2017) where 7

terrestrial planets were found orbiting a 0.08 M� star all within 0.062 AU, which

would require an extremely high planet formation efficiency if the planets were

to have formed at their current locations.

As it stands, there are two complementary theories of planet formation, namely

the core accretion theory (Pollack et al., 1996; Mordasini et al., 2010) and the

gravitational instability theory (Kuiper, 1951; Boss, 1997) of planet formation

(see also Papaloizou & Terquem, 2005; Brandner, 2006; Armitage, 2020, for

comprehensive overviews of both). It is widely accepted that the terrestrial

planets, and probably most of the gas giant planets, formed through core

accretion; where smaller bodies steadily grow through collisions and accumulation

of other smaller bodies to form progressively larger bodies. However core accretion

theory struggles to explain the existence of the most massive planets which are

often found on wide orbits from their host stars. The gravitational instability

model of planet formation can potentially help with this, as it predicts that giant

gaseous planets may form directly through the gravitational collapse of dense

regions of the disc. The research undertaken throughout this thesis will focus

primarily on the gravitational instability model, however a discussion of planet

formation would not be complete without first discussing core accretion theory.
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1.6.1 Core Accretion theory of planet formation

Core accretion theory consists of 3 general phases; the formation of planetesimals

of ∼ km scales from dust grains of ∼µm scales, the formation of terrestrial mass

protoplanets from planetesimals, and the eventual possible formation of gas giant

planets.

In the first stage it is thought that micron sized dust grains are able to grow

through random collisional accumulation of other dust grains, which will steadily

coagulate to form planetesimals (for an overview of dust evolution in discs see

Testi et al., 2014). The initial phase of growth up to particles of meter sizes is

thought to occur fairly rapidly, on timescales 103−104 yrs for particles at distances

of a few AU from their parent star (Weidenschilling, 1980; Nakagawa et al., 1981).

However growth beyond meter scales to form planetesimals presents a number of

challenges, and is not currently well understood, in what is commonly referred to

as the meter-barrier.

A protoplanetary disc will generally have a gas pressure gradient which decreases

between regions of high gas density in the inner disc and low gas density in

the outer disc. Thus the gas component of the disc is subject to an additional

outward pressure force, such that gas at a given radius is able to orbit with

slightly sub-Keplerian velocities whilst remaining in a stable orbit (with v ≈
0.996 vkep). Smaller, micron-sized dust grains will be strongly coupled to the gas

in the disc and will also orbit with sub-Keplerian velocities. However, as the dust

grains grow toward meter-sizes they will become less strongly coupled and try

to orbit at Keplerian velocities which generates a resultant gas-dust drag. This

drag results in deceleration of the dust and inward radial migration. It becomes

most effective when dust grains reach meter-sizes, and may generate large radial

velocities resulting in either accretion onto the star or destruction of the solids as

they rapidly migrate through the disc (Weidenschilling, 1977). This is commonly

referred to as the radial drift barrier.

Equally, as smaller particles will have small relative velocities, when they collide

they will likely coalesce in a hit-and-stick process. However as they grow toward

meter sizes and their Stokes number, which can be used to quantify the gas-dust

coupling, approaches unity, particle’s relative velocities will increase. Hence as

particles grow, their impact velocities will increase accordingly and collisions will

result in particles either bouncing off each other, compacting their densities in the

process (Güttler et al., 2010; Zsom et al., 2010), or shattering into several smaller
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fragments (Brauer et al., 2008; Birnstiel et al., 2010). These two growth barriers

are known as the bouncing barrier and the fragmentation barrier respectively.

How particles overcome the meter-barrier is still not well understood, and an

active area of research. Solutions often invoke various instabilites which can

generate regions of high particle densities and accelerated planetesimal growth,

such as the streaming instability (Youdin & Goodman, 2005; Youdin & Johansen,

2007), or dust-trapping in the spirals of self-gravitating discs (Rice et al., 2004). It

has also been proposed that these instabilities may be capable of generating local

regions of extremely high particle densities, which may then undergo gravitational

collapse to form the first 100 – 1000 km planetesimals directly (Rice et al., 2006;

Johansen et al., 2007).

Sidestepping this issue for now, and assuming that growing dust grains are able

to overcome the meter barrier to form planetesimals, we now enter the next stage

of core accretion as the planetesimals go on to form terrestrial mass protoplanets.

Once planetesimals of km sizes have formed, their subsequent evolution is largely

dictated by their gravitational influence on the dust in the disc and other

nearby planetesimals. Mutual collisions between planetesimals may result in

them sticking together or shattering into several fragments, with either outcome

dependent on the energy of the collision. For massive collisions, shattering may

result in re-accretion of the fragments if they remain gravitationally bound. As

they grow, the most massive planetesimals will enter a phase of runaway growth,

where their gravitational cross sections exceed their geometric cross sections,

and their escape velocities exceed their relative velocities, hence gravitational

focussing of other nearby planetesimals results in a phase of rapid growth. During

this phase it is the most massive planetesimals which will grow fastest, and usually

one dominant mass will form locally, hence it is often referred to as oligarchic

growth. Many oligarchs will form across the disc, each feeding on their own local

material.

This phase will generally continue until the protoplanet core, or oligarch, has

depleted the solid material from its local feeding zone, or it becomes massive

enough to accrete a massive gaseous envelope. If the protoplanetary core has

depleted all the material from its local region of the disc, growth may still continue

in a chaotic manner as oligarchs interact with each other, collide, and scatter other

objects through large radial distances.

If a protoplanetary core is able to grow to a mass ∼ 10 M⊕, then it may enter the
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phase of giant planet formation as the core’s high mass will trigger the onset of

rapid gas accretion (Mizuno, 1980; Bodenheimer & Pollack, 1986; Pollack et al.,

1996). The core will accrete all the gas within its local feeding zone, referred to

as its Hill sphere, which is defined as the local region of the disc where the core’s

gravitational potential exceeds the global potential generated by the star. Gas

accretion will halt when either the protoplanet has depleted all of its local supply

of gas, at which point it will have opened a gap in the disc, or when the global

disc has dissipated through photoevaporation.

Models of core accretion are generally able to successfully explain the formation of

Jupiter-mass planets at Jupiter-like distances of a few AU from their parent star

(e.g. Rice & Armitage, 2003; Lissauer et al., 2009). However the formation of giant

planets on wider orbits than this at a few 10s of AU, which are often found through

direct imaging surveys, present challenges to core accretion theory. At such

distances the disc surface density will be low, thus the mass reservoir available to

the forming protoplanet will be low, and formation timescales will be long. The

observed lifetimes of protoplanetary discs are typically found to be a few Myrs

(e.g. Haisch, Lada & Lada, 2001), whilst core accretion formation timescales of

giant planets beyond 10 AU are generally predicted to far exceed these timescales

(e.g. Pollack et al., 1996). It is possible that there exists mechanisms which

may allow for such planets to form through core accretion, whether they act to

speed up formation timescales (e.g. pebble accretion, Johansen & Lambrechts

(2017), streaming instabilities Youdin & Goodman (2005)), or allow for planets

to form elsewhere in the disc and migrate outwards later. However, for systems

as challenging to explain as HR 8799, where four wide-orbit, massive planets

(with semi-major axes in the range 15 AU and 70 AU and masses in the range

5.7 MJupiter and 9.1 MJupiter) have been directly imaged (Marois et al., 2008, 2010),

it is tempting to look toward alternative planet formation theories, such as the

gravitational instability model.

1.6.2 Gravitational Instability theory of planet formation

In an attempt to explain the origin of the Solar System’s gas giant planets, Kuiper

(1951) first theorised that planet formation may proceed in a manner similar to

how stars form in GMCs, where a dense region of the disc may fragment to form

gravitationally bound gaseous clumps, which may then go on to become gas giant

planets. With the advent of the first exoplanet discoveries, including observations
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of a number of giant planets, Boss (1997) later revived this idea, evaluating the

possibility that GI may be a plausible mechanism for the formation of these

obejcts. An illustration of disc undergoing fragmentation is shown in Figure 1.8.

This work sparked interest and research into the conditions necessary for a disc to

undergo fragmentation. In Section 1.4 I discussed the conditions required for the

onset of the gravitational instability. If a disc is sufficiently massive, such that Q

(Equation 1.21) is of order unity, a phase of linear instability may set in which

manifests in the formation of spiral density waves. A disc may enter a phase

of marginal stability if it is unable to rapidly radiate away the heat generated

by the spirals, such that they have the effect of thermally regulating the disc

and maintaining Q close to unity. However, if the disc is able to cool efficiently

then another outcome may occur, whereby a phase of exponential growth of the

perturbations sets in and the spirals may break up to form gravitationally bound

fragments.

This leads us to our second requirement for a disc to undergo fragmentation: the

critical cooling rate. Consider a gravitationally unstable disc where the thermal

timescale can be approximated by the disc dynamical timescale, tdyn ∼ 1/Ω (e.g.

Pringle, 1981). This is the timescale on which shock waves driven by the spirals

will act to heat the disc, and the disc will radiatively cool. If the cooling rate is

balanced by the heating rate then the disc will enter a phase of marginal stability.

However if the disc is able to cool at a rate faster than the heating rate, such

that tcool . tdyn, then the instability will grow and the disc may fragment. Early

work considered this condition by introducing a dimensionless cooling parameter,

β, such that the critical cooling rate can be described by some critical value of β

(Gammie, 2001; Rice et al., 2003),

tcoolΩ = β < βcrit. (1.27)

This was later taken further, where the local equation of state was also taken into

account, and the critical cooling rate was described in terms of a critical rate of

angular momentum transport (Rice, Lodato & Armitage, 2005),

α =
4

9

1

γ(γ − 1)β
. (1.28)

Here, α is the Shakura-Sunyaev viscous-α (Shakura & Sunyaev, 1973) which is
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Figure 1.8 Evolution of a Smoothed Particle Hydrodynamics simulation showing
a self-gravitating disc undergoing fragmentation. The disc was set
up with a mass of 0.3 M�, an outer radius of 100 AU, and a central
star mass of 1 M�. Strong spiral features initially form (top panel)
which later become unstable and start to form high density clumps
(middle panel). In the final state of the disc, many fragments have
formed which may go on to become giant planets or brown dwarf
stars (bottom panel).
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used here to parameterise the effective viscosity resulting from GI (which will

be introduced in more detail in Chapter 2) and γ is the ratio of specific heats.

Typically it is thought that a disc may be thermally regulated if β ≈ 10–20 (i.e.

if the cooling time is 10–20× the dynamical timescale), and that fragmentation

may occur when β . 3, or when α ∼ 0.06 (Gammie, 2001; Rice et al., 2003,

2005).

Hence we have arrived at the two main conditions necessary for fragmentation to

occur. If a disc is massive enough such that Q ≈ 1 and able to cool fast enough,

gravitationally bound gaseous clumps will begin to form and condense at a rate

faster than the disc is able to disperse them through heating or dynamical shear.

Having derived the conditions necessary for fragmentation we can now also ask:

what type of objects might form through fragmentation? We can use the critical

cooling rate criterion to understand where in the disc fragmentation is likely to

occur. In the dense, inner regions of disc the gas will typically be optically thick

thus rapid cooling isn’t possible. Additionally, stellar irradiation will generate

high temperatures, hence any instability will be quenched (Rafikov, 2005). We

would therefore only expect fragmentation to be possible in the outer disc (R &

50 − 100 AU), where the gas is cooler and surface densities are lower such that

rapid radiative cooling may occur (Clarke, 2009; Rice & Armitage, 2009; Rice

et al., 2010).

To understand the typical fragment masses which may form, we begin by noting

that the most unstable wavelength of GI (when Q = 1) is of the order of the disc

scale height, when λ = 2πH. We can then take the Jeans mass of a fragment as

being the mass enclosed within this wavelength, such that,

Mfrag = Σλ2 = Σ(2πH)2. (1.29)

If we assume that fragmentation may occur when Q = 1, then we can rearrange

Equation 1.21 for Σ. Also substituting that H = cs/Ω (will be derived later in

Chapter 2), we get that,

Mfrag = 4πM∗

(
H

r

)3

. (1.30)

For a disc around a solar mass star, with H/r = 0.1 we therefore expect typical
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fragments to have masses Mfrag = 13.2 MJup.

To conclude this chapter, we have derived that planet formation through the

gravitational instability will likely only form the most massive planets on wide

orbits from their parent star. It has been argued that subsequent growth of

fragments may lead to the majority of GI-born objects going on to exceed the

deuterium burning limit, thus planets formed through GI will be rare as most

fragments will become brown dwarfs (Kratter et al., 2010). It has also been argued

that fragments will enter a phase of tidal downsizing after formation, where mass

stripping, thermal contraction, sedimentation of solids at the fragment’s core and

migration can lead to the formation of all planetary types, including terrestrial

planets (Nayakshin, 2010a). Throughout this thesis my research will primarily

focus on the conditions necessary for discs to undergo fragmentation, with less

focus on the subsequent evolution of fragments.
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Chapter 2

Fundamental physics and useful

numerical methods

2.1 Fundamental physics

2.1.1 Hydrodynamics

I will begin this section by deriving the fluid equations, which are fundamental

to the work undertaken here. Protoplanetary discs consist primarily of large

reservoirs of gas which can be treated as a compressible, Newtonian1 fluid, hence

the equations derived below will be essential in both understanding and in

modelling the evolution of these systems. The derivations outlined below are all

standard results, but are primarily based on the derivations presented in Chorin

& Marsden (1993).

These derivations are based on three basic principles, namely the conservation of

mass, the conservation of momentum and the conservation of energy.

2.1.1.1 The continuity equation

We can derive the equation for the conservation of mass by first considering a

volume element, V , which contains some fluid of density, ρ, such that the mass

contained inside the volume is given by
∫
V
ρ dV . If we define S as the surface of

1where the viscous stresses are linearly proportional to the strain

27



the volume element and let dA denote the surface area of the volume element we

can state that the net flow of mass, m, in the volume element is,

m =

∮
S

ρv · dA , (2.1)

where v represents the fluid’s velocity. Defining the rate of change of mass in the

volume element as,

m = − ∂

∂t

∫
V

ρ dV , (2.2)

conservation of mass then dictates that these two equations must be equal,

∮
S

ρv · dA = − ∂

∂t

∫
V

ρ dV . (2.3)

Using the divergence theorem we can substitute the surface integral for a volume

integral as,

∫
V

∇ · ρv dV =

∮
S

ρv dA . (2.4)

Equation 2.3 then becomes,

∫
V

∇ · ρv dV = − ∂

∂t

∫
V

ρ dV , (2.5)

hence,

∫
V

(
∇ · ρv +

∂ρ

∂t

)
dV = 0. (2.6)

Recognising that this must hold true for all V , this gives,

∇ · ρv +
∂ρ

∂t
= 0. (2.7)

Hence we have arrived at the continuity equation which embodies the conservation
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of mass, stating that the rate of change of mass within the volume element must

be equal to the mass flowing in or out of the volume element.

2.1.1.2 The momentum equation

We can use the same volume element to construct a similar equation which

represents the conservation of momentum within a fluid. The force, F, exerted

on the surface of the volume element is given by,

F = −
∮
S

P dA = −
∫
V

∇P dV , (2.8)

where we have again used the divergence theorem to convert the surface integral to

a volume integral. For now, we will assume that we are dealing with an ideal fluid2

where the pressure force acts perpendicular to the surface of the volume element

only. We can then appeal to Newton’s second law to construct an equation for

the force balance, where the force per unit area on a mass element is given by,

F = ρ
dv

dt
, (2.9)

hence,

ρ
dv

dt
= −∇P. (2.10)

The above derivative is Lagrangian, meaning that v represents the path followed

by an individual particle within the fluid. The particle’s velocity is therefore a

function of position and time, such that v = v(x(t), y(t), z(t), t), and,

dv

dt
=
∂v

∂x

∂x

∂t
+
∂v

∂y

∂y

∂t
+
∂v

∂z

∂z

∂t
+
∂v

∂t
, (2.11)

which can be rewritten as,

dv

dt
=
∂v

∂t
+ v · ∇v. (2.12)

2an incompressible, inviscid, non-turbulent fluid. A simplification for the purposes of our
derivations here. Ideal fluids do not exist in nature.
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This is known as the material derivative, which in its most general form can be

expressed as,

D

Dt
=

∂

∂t
+ v · ∇. (2.13)

Substituting Equation 2.12 back into Equation 2.10 and rearranging, we arrive

at the momentum equation,

∂v

∂t
+ v · ∇v = −1

ρ
∇P. (2.14)

In the presence of some external force, F, (such as gravity) this becomes,

∂v

∂t
+ v · ∇v = −1

ρ
(∇P + F). (2.15)

2.1.1.3 The Navier-Stokes equation

Until now, in our derivation of Equation 2.15 we have assumed that we are

dealing with an ideal fluid where all the forces acting on the surface are being

applied perpendicular to the surface plane. More generally, when considering a

viscous fluid, the surface will be subject to additional stress forces which act both

perpendicular and parallel to the surface plane.

A schematic diagram which illustrates these additional stress forces is shown in

Figure 2.1, where the forces can be expressed in the form of a viscous stress

tensor,

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.16)

This can be broken down into two parts. The volumetric stress tensor which

consists of forces which act to change the volume of the body (i.e. the pressure

forces), and the stress deviator tensor which consists of forces which act to change

the shape of the body (i.e. the viscous shear stresses). The stress tensor then

becomes,
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Figure 2.1 Illustration of the viscous stress tensor from Equation 2.16 acting
on a volume element. Image credit: Sanpaz

σ = −

P 0 0

0 P 0

0 0 P

+

σ11 + P σ12 σ13

σ21 σ22 + P σ23

σ31 σ32 σ33 + P

 (2.17)

equivalent to,

σ = −P I + T. (2.18)

Substituting this into our form of the Navier-Stokes equation gives,

∂v

∂t
+ v · ∇v = −1

ρ
∇P +

1

ρ
∇ · T + F. (2.19)

The specific form of T will depend on the type of fluid we are considering. For

an incompressible, Newtonian fluid,

∇ · T = ν∇2v, (2.20)

where ν is the fluid viscosity. Hence, Equation 2.19 becomes,
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∂v

∂t
+ v · ∇v = −1

ρ
∇P +

1

ρ
ν∇2v + F, (2.21)

2.1.1.4 The energy equation

Finally, we can derive the equation for the conservation of energy by first stating

that the total energy of the fluid within a volume element is the sum of its kinetic

and internal energies,

Etotal = Ekinetic + Einternal. (2.22)

Here we will consider an isentropic fluid, whereby both the kinetic and internal

energies are affected by work done on the system, which may be a result of

pressure or other body forces such as gravity or magnetic fields. If we define u as

the internal energy per unit mass and e as the total energy per unit mass, then

Equation 2.22 can be rewritten as,

E = ρe =
1

2
ρ|v|2 + ρu. (2.23)

The rate of change of energy is then,

dE

dt
=

1

2
ρ
D

Dt
|v|2 + ρ

du

dt
, (2.24)

where we have again used the material derivative from Equation 2.13 when

differentiating v with respect to time. This gives,

dE

dt
= ρ

[
v ·

(
∂v

∂t
+ (v · ∇)v

)]
+ ρ

du

dt
. (2.25)

We can substitute for the rate of change of internal energy using the First Law

of Thermodynamics, which states,

dU = T dS − P dV . (2.26)
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where U is internal energy, T is temperature and S is entropy. Converting these

to quantities per unit mass, where u and s are the internal energy and entropy

per unit mass, we get,

du = T ds− P d
(1

ρ

)
= T ds+

P

ρ2
dρ , (2.27)

where 1/ρ is equivalent to the volume per unit mass. Taking the derivative with

respect to time then gives,

du

dt
= T

ds

dt
+
P

ρ2

dρ

dt
. (2.28)

As stated earlier, we are considering an isentropic flow, which by definition will

have constant entropy, hence ds
dt

= 0, and we are left with,

du

dt
=
P

ρ2

dρ

dt
. (2.29)

Substituting this back into Equation 2.25 we get,

dE

dt
= ρ

[
v ·

(
∂v

∂t
+ (v · ∇)v

)]
+
P

ρ

dρ

dt
. (2.30)

Using the continuity equation (Equation 2.7) this can be rewritten as the energy

equation for an isentropic flow,

dE

dt
= ρ

[
v ·

(
∂v

∂t
+ (v · ∇)v

)]
− P (∇ · v). (2.31)

2.1.2 Gravity

Of the external forces mentioned in Equation 2.15, the influence of gravity will

dominate the early evolution of protoplanetary discs, with contributions primarily

from the mass of the central star, but also from the mass of the disc material

itself when the system is young.

Newton’s law of gravitation gives that the gravitational force between two masses,
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M1 and M2, is inversely proportional to square of their separation, R, as,

Fg =
GM1M2

R2
, (2.32)

where the force is related to the gravitational potential, Φ, as,

Fg = −∇Φ. (2.33)

In a system where the gravitational potential is dominated by the mass of the

star,

Φ = −GM∗
R

. (2.34)

Hence, including this in Equation 2.21 the Navier-Stokes equation becomes

∂v

∂t
+ v · ∇v = −1

ρ
∇P +

1

ρ
ν∇2v −∇Φ. (2.35)

2.1.3 The equation of state

The sound speed is defined as the rate at which a medium can respond to

disturbances, and can be expressed as,

c2
s =

dP

dρ
. (2.36)

In an adiabatic, ideal gas we can express the equation of state as,

P = Kργ, (2.37)

where K is some constant of proportionality and γ is the ratio of specific heats.

We then obtain that the sound speed in a medium is,

c2
s =

γP

ρ
. (2.38)
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2.1.4 Radiative transfer

Another process fundamental to the work undertaken in this thesis is that of

radiative transfer. Radiative transfer describes the transport of energy through

a medium, such as the radiation emitted from a star which then travels through

the gas and dust in a protoplanetary disc. The star’s radiation will contribute

thermal energy to the disc, thus understanding how this energy is transported

allows us to understand and model the disc’s thermodynamics. The following

equations are again standard results, but have been primarily derived following

Rybicki & Lightman (1986).

Consider a beam of radiation travelling through a cylinder of material with surface

area, dA, in time, dt, at an angle of incidence, θ, and solid angle, dΩ. The beam

(or photon packet, consisting of photons with frequencies in the range ν → ν+dν)

will carry energy,

dEν = Iνcos(θ) dA dt dν dΩ . (2.39)

Here, Iν is the specific intensity of the photon packet which describes the rate

of radiation transport through a medium. As a photon packet travels through a

medium, such as some gas, it will be subject to absorption and scattering as it

interacts with the atoms in the gas. Equally, the medium itself may contribute

to the radiation field through emission as excited atoms de-excite. Following how

the specific intensity of a photon packet changes along its trajectory is a highly

complex, high dimensional problem and challenging to model in full. Picture

the number of photons emitted from a radiation source, such as a star, per unit

frequency per unit time, and trying to model the individual interactions of those

photons with all of the atoms in a 3D volume of gas in, say, a protoplanetary disc.

The problem quickly grows out of hand. Instead, useful numerical approximations

to radiative transfer are usually employed when modelling systems such as a star-

disc system, some of which will be discussed in Sections 2.4.1.4 and 2.4.2.

Throughout this section I will outline some of the fundamental processes of

radiative transfer, namely emission, absorption and scattering, and derive the

equation of radiative transfer which encapsulates it all.

Emission:

The energy emitted by the medium can be described by defining an emission
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coefficient, jν , which represents the energy emitted per unit volume per unit solid

angle per unit time per unit frequency. The change in energy of the radiation

field due to emission is then,

dEν = jν dV dΩ dt dν . (2.40)

Equating this to Equation 2.39 gives,

dIν dA = jν dV . (2.41)

If we again consider radiation travelling through a cylinder of material with

surface area, dA, length, ds and volume, dV , we can substitute that dV = dA ds

which gives,

dIν = jν ds . (2.42)

Hence, emission contributes to the specific intensity of a beam by an amount

equal to the emission coefficient multiplied by the path length.

Absorption:

As a beam interacts with the atoms in a medium it will be subject to absorption

which acts to remove energy from the beam. Absorption is generally formalised

by introducing an absorption coefficient, αν . This is defined as the amount of

absorption which occurs per unit length, and will be equal to αν = naσν , where

na is the number of absorbers per unit volume and σ is their cross sectional areas.

For astrophysical problems it is common to write this in terms of the medium’s

density, ρ, and its opacity, κν , as,

αν = ρκν . (2.43)

The change in the specific intensity of a beam due to absorption is then,

dIν = −ανIν ds . (2.44)
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Scattering:

As well as being absorbed, photons may bounce off atoms in the medium,

changing their direction of travel but not affecting their frequencies. Whether

a photon packet is scattered or absorbed can be determined by the medium’s

albedo,

a =
nsσs

nsσs + naσa
, (2.45)

where ns and na are the number densities of scatterers and absorbers respectively,

and σs and σa are their respective cross sections. From Equation 2.45 we can

see that photons will be scattered with a probability a and absorbed with a

probability 1− a when interacting with atoms in the medium. When a photon is

scattered, their new directions will follow some angular probability distribution

function, P (cosθ), which is normalised such that,

∫
P (cosθ)

dΩ

4π
= 1. (2.46)

Scattering will act to deflect photons out of the cylinder of material we are

considering, thus reducing the specific intensity in that region.

Equation of radiative transfer:

Putting this all together into the equation of radiative transfer, we can say that

the change in specific intensity of a photon packet as it travels through a medium

is,

dIν
ds

= jν − ανIν , (2.47)

where for simplicity we have considered absorption and emission only and have

neglected the effects of scattering. We can rewrite this by introducing a new

term, the source function, defined as the ratio of the emission and absorption

coefficients, Sν = jν/αν , which gives,

dIν
αν ds

= Sν − Iν . (2.48)
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It is also useful to introduce another new term here, the optical depth of a medium,

defined as,

τν = αν ds = ρκν ds . (2.49)

Hence, we can rewrite Equation 2.48 as,

dIν
dτν

= Sν − Iν , (2.50)

which has the solution,

Iν(τν) = Iν(0)e−τν +

∫ τν

0

S(τν)e
−τν dτν . (2.51)

In the limit where the medium is optically thick such that τν →∞ we obtain that

Iν(τν) = Sν . In other words, the specific intensity is equal to the ratio of emission

and absorption coefficients, with no dependence on the initial intensity of the

beam. When the medium is optically thin, such that τν → 0 and e−τν ≈ 1 − τν ,
we obtain that Iν(τν) = Iν(0)− (Iν(0)− Sν)τν . Hence when τν = 0 the intensity

of the beam will remain unchanged.

2.2 Protoplanetary disc structure

From the equations derived above we can derive analytic equations for the

structure and evolution of discs, allowing us to build semi-analytic models as well

as use these equations in fully hydrodynamical models. The equations of disc

structure and disc physics outlined below have primarily been derived following

(Pringle, 1981).

2.2.1 The thin disc approximation

A common simplifying approximation invoked when modelling accretion discs is

to assume they are razor-thin, such that their radial extents, R, are much greater

than their vertical extents,
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r

R
z

Figure 2.2 Schematic of the geometry of a protoplanetary disc, highlighting
various values for use in the derivations in Section 2.2.2.

H

R
� 1, (2.52)

where H is the disc scale height. This thin disc approximation will prove very

useful in the subsequent derivations of a disc’s vertical and radial structure. In

addition to being useful, observations of young protoplanetary discs suggest that

it is likely a reasonable assumption, with typical measured values close to H/R ∼
0.1 (e.g. Andrews et al., 2010).

2.2.2 Equations of vertical disc structure

Consider a thin, non-self-gravitating disc which is in hydrostatic equilibrium such

that,

∂P

∂z
= −ρ∂Φ

∂z
. (2.53)

The above equation expresses the balance in the z-direction between pressure

(LHS) and gravitational forces (RHS). Substituting for Φ, and using the disc

geometry illustrated in Figure 2.2 gives,

∂P

∂z
= −ρGM∗

R2
ẑ = −ρGM∗z

R3
, (2.54)

where R =
√
r2 + z2, and we are assuming a thin disc where z � r such that

R ≈ r. Using Equation 2.36 we can substitute,
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∂P

∂z
=
∂P

∂ρ

∂ρ

∂z
= c2

s

∂ρ

∂z
. (2.55)

hence,

1

ρ
dρ = −GM∗z

c2
sR

3
dz , (2.56)

which has the solution,

ρ = ρ0exp

[
−GM∗z

2

2c2
sR

3

]
. (2.57)

Here, ρ0 is a constant which represents the midplane density of the disc. This can

be rewritten by substituting Ω2 = GM∗/R
3, and introducing a variable called the

disc scale height, H, where,

H =
cs
Ω
, (2.58)

such that,

ρ = ρ0exp

(
−z2

2H2

)
. (2.59)

Thus we have derived that the vertical density profile of a disc can be

approximated by a Gaussian function, where H represents the length scale over

which the disc’s density will decrease by a factor e. In the case of a self-gravitating

disc, where we now include the disc’s mass in the calculation of the gravitational

potential, the vertical density profile is given by (Spitzer, 1942),

ρ =
ρ0

cosh2( z
Hsg

)
, (2.60)

where the self-gravitating scale height is,

Hsg =
c2
s

πGΣ
. (2.61)
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2.2.3 Equations of radial disc structure

We can understand the radial structure of a protoplanetary disc by first

considering the radial component of the Navier-Stokes equation for an inviscid

fluid,

∂vr

∂t
+ vr

∂vr
∂t

+
vφ
r

(
∂vr
∂φ
− vφ

)
+ vz

∂vr
∂z

= −1

ρ

∂P

∂r
− ∂Φ

∂r
, (2.62)

where we have made use of the material derivative of a vector in cylindrical polar

coordinates.

In a radially stable disc we can assume that the radial drift velocity will be

highly subsonic (vr � cs). Using the equation for the disc scale height (Equation

2.58), substituting Ω = vφ/R, and making use of the thin disc approximation

(H/R � 1) then gives that vr � cs � vφ. Thus we can discount the vr terms

from Equation 2.62 as being negligible. In doing so we arrive at,

v2
φ

r
=

GM∗
r2

+
1

ρ

∂P

∂r
. (2.63)

If we assume that the radial pressure gradient is negligible, then we arrive at the

standard equations for the Keplerian orbital velocity and orbital frequency,

vφ = vK =

√
GM∗
r

, (2.64)

Ω =
vK

r
=

√
GM∗
r3

. (2.65)

More accurately, the pressure gradient term in Equation 2.63 will be small,

but not negligible. As the gas pressure will generally be a decreasing function

of radius, the pressure gradient term will be negative, hence the gas in the

disc will orbit at slightly sub-Keplerian velocities. This will become important

when considering the gas’ interaction with the dusty component of the disc in

later chapters, as aerodynamic drag between the gas and dust results in radial

migration of the solids.
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Assuming that the pressure gradient follows some radial power-law,

P = P0

(
r

r0

)−n
, (2.66)

and substituting P0 = ρ0c
2
s, Equation 2.63 can be rearranged to give,

vφ = vK

(
1− n c

2
s

v2
K

)1/2

. (2.67)

For a thin disc, where H/R � 1, our definition of the disc scale height from

Equation 2.58 gives that cs/vK � 1, hence any deviation from Keplerian velocities

will be small, typically with vφ & 0.99vK.

2.3 Protoplanetary disc evolution

2.3.1 Surface density evolution of a disc

The evolution of a protoplanetary disc’s surface density can be derived from the

continuity and momentum equations derived in Section 2.1.1. Starting with the

conservation of mass within a radial annulus of the disc of width, ∆r, such that

the mass within the annulus is, m = 2πr∆rΣ, we can rewrite Equation 2.7 as,

∂

∂t
(2πr∆rΣ) = 2πrΣ(r)vr(r)− 2π(r + ∆r)Σ(r + ∆r)vr(r + ∆r). (2.68)

Dividing by 2π∆r, noting that neither r nor ∆r are varying with time, and taking

the limit ∆r → 0, we get,

r
∂Σ

∂t
+

∂

∂r
(rΣvr) = 0. (2.69)

Now considering the conservation of angular momentum within the annulus,

where the angular momentum is L = mvφr and the azimuthal velocity of the

gas is vφ = rΩ, we get that L = 2πr∆rΣr2Ω. Hence the rate of change of angular

momentum within the annulus is,
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∂L

∂t
= 2πr∆r

∂

∂t
(Σr2Ω). (2.70)

Similarly, we can also state that the rate of change of angular momentum within

an annulus is equal to rate of change of surface density between the inner and

outer edges of the annulus, plus the difference in the viscous torque, Γ, exerted

at the inner and outer edges, such that,

∂L

∂t
= 2πrΣ(r)r2Ω(r)vr(r)−

2π(r + ∆r)Σ(r + ∆r)(r + ∆r)2Ω(r + ∆r)vr(r + ∆r)+

Γ(r)− Γ(r + ∆r). (2.71)

Again, dividing by 2π∆r and taking the limit ∆r → 0 we get,

1

2π∆r

∂L

∂t
= − ∂

∂r
(rΣr2Ωvr) +

1

2π

∂

∂r
Γ. (2.72)

For a viscous fluid with viscosity, ν, the viscous torque exerted on a radial annulus

can be calculated from the circumference of the annulus (2πr) the viscous force

per unit length (νΣr dΩ
dr

) and the length of the moment arm, r, as,

Γ = 2πr · νΣr
dΩ

dr
· r. (2.73)

Substituting this into Equation 2.72 and equating Equations 2.70 and 2.72 gives,

∂

∂t
(Σr2Ω) +

1

r

∂

∂r
(rΣr2Ωvr) =

1

r

∂

∂r

(
νΣr3∂Ω

∂r

)
. (2.74)

We can then use Equations 2.69 and 2.74 to eliminate vr (where we note that
∂
∂t

(Σr2Ω) = r2Ω∂Σ
∂t

as r and Ω don’t vary with time). After some rearranging we

find,

vr =
2

r2ΩΣ

∂

∂r

(
νΣr3∂Ω

∂r

)
. (2.75)
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Substituting this equation for vr into Equation 2.69, and assuming Keplerian

rotation with Ω =
√

GM/r3, we arrive at the final form of our equation for the

surface density evolution of a viscous disc,

∂Σ

∂t
=

3

r

∂

∂r

(
r1/2 ∂

∂r
(νΣr1/2)

)
. (2.76)

2.3.2 Steady state solution for mass accretion

Solving the equations of surface density evolution for a disc which has settled

into a state with a constant mass accretion rate will prove useful in later chapters

when modelling the instantaneous state of a disc. This is known as the steady

state solution, and can be derived beginning with Equation 2.74 noting that in

the steady state solution the ∂/∂t terms go to zero. Hence we have,

∂

∂r
(Σr3Ωvr) =

∂

∂r

(
r3νΣ

∂Ω

∂r

)
. (2.77)

Taking the mass within a radial annulus as, M = 2πr∆rΣ, hence the rate of

change of mass travelling out from the inner edge of the annulus is,

Ṁ = −2πrΣvr = constant. (2.78)

Rearranging for Σvr and substituting into Equation 2.77 gives,

∂

∂r

(
−Ṁ
2π

r2Ω

)
=

∂

∂r

(
r3νΣ

∂Ω

∂r

)
. (2.79)

Integrating from the inner edge of the disc, rin, to an arbitrary location in the

outer disc, r, and assuming that there is no torque exerted on the inner edge of

the disc such that ∂Ω
∂rin

= 0, we get,

−Ṁ
2π

r2Ω +
Ṁ

2π
r2

inΩ = r3νΣ
∂Ω

∂r
. (2.80)

Substituting Ω =
√

GM/r3, hence ∂Ω
∂r

= −3
2

√
GM/r5, and rearranging for Ṁ
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gives,

Ṁ = 3πΣν

(
1−

√
rin

r

)
. (2.81)

When r � rin this can be simplified to the more common expression for the

steady state mass accretion rate of a protoplanetary disc,

Ṁ = 3πΣν. (2.82)

2.3.3 Viscosity and α−discs

The equations derived in Section 2.3.1 and Section 2.3.2 demonstrate the

importance of viscosity in carrying away angular momentum whilst allowing

material to move inwards and accrete onto the central star. Hence to understand

the evolution of a disc and solve the above equations requires consideration of

the nature of the viscosity within a disc, which we have so far alluded to.

Kinetic viscosity is the simplest and immediately obvious choice to consider. This

arises from particle-particle collisions, and can be characterised by the mean

free path of particles, λ, and their typical collisional velocities, which may be

approximated by the local sound speed, cs. Hence we can state that,

νkin ∼ csλ =
cs
nσ

, (2.83)

where n is the number density of particles and σ is their collisional cross section.

More generally, viscosity can be written as ν = l · v = l2/t, where l is the

characteristic length. Hence we can state that the viscous timescale of a disc,

which represents the timescale on which angular momentum will be redistributed

under the effect of viscous torques, is,

tν =
l2

ν
. (2.84)

Assuming typical values for a protoplanetary disc, consisting mostly of molecular

Hydrogen with σ ≈ 2× 10−15 cm2, n = 1012 cm−3, and a sound speed at 10 AU of

cs ≈ 500 ms−1, we obtain that tν ≈ 1013 yrs - longer than the age of the Universe,

45



and around 6 orders of magnitude larger than typical disc lifetimes. Consequently

we must look elsewhere for an appropriate source of viscosity in discs.

It is interesting to consider the Reynolds number implied if molecular collisions

are the dominant source of disc viscosity. The Reynolds number is defined as the

ratio of inertial forces to viscous forces within a fluid,

Re =
|Finterial|
|Fviscous|

=
|dv/dtdyn|
|dv/dtvisc|

=
vl

ν
. (2.85)

Fluids with low viscosities imply a large Reynolds number, where any pertur-

bation to a flow will be able to persist with little viscous resistance. Hence

the flow may become unstable and turbulent. Substituting typical values for a

protoplanetary disc at 10 AU into Equation 2.85, approximating that v = cs and

l = H = 0.1R, gives Re ∼ 1010. At such high Reynolds numbers it is thought that

a fluid will be highly turbulent, hence it is commonly thought that protoplanetary

discs are turbulent.

The presence of a turbulent flow may provide an effective turbulent viscosity,

whereby turbulent eddies give rise to mixing of the fluid which generates friction in

a manner similar to kinetic viscosity except on a macroscale. We can approximate

the magnitude of the turbulent viscosity within a disc by appealing to dimensional

constraints. Assuming that the length scale of any turbulent eddies must be of the

order of the disc scale height, whilst the characteristic velocity of any turbulent

eddies must not exceed the sound speed, we can state that,

ν = αcsH, (2.86)

where α is a dimensionless coefficient of value less than 1. This was first proposed

by Shakura & Sunyaev (1973), and has since become commonly known as the

Shakura-Sunyaev α−disc model, characterised by the viscous−α parameter. This

model is convenient, as it allows us to contain all of our uncertainty about

the source of the turbulence within the α coefficient, where we now need to

only approximate a reasonable value for the effective α. The value of α can

be measured through observations of discs, which has traditionally been done

through measuring how disc accretions rates decrease with disc age, allowing us to

measure the disc viscous timescale hence also allowing us to estimate α (Hartmann

et al., 1998). Recently using high resolution spectroscropy with ALMA, it has also

been possible to measure turbulence in discs through measurements of molecular
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emission line widths, again allowing us to estimate α (Teague et al., 2016; Flaherty

et al., 2015, 2017, 2018, 2020). Typical values are found to be in the range

α = 10−1 − 10−3, with a strong dependence on the phase of disc evolution

being considered. In the early phases of disc evolution whilst the disc-to-star

mass ratio is high, GI may generate an effective gravito-turbulent viscosity.

In the later stages of disc evolution when the disc density is lower and more

optically thin to stellar radiation, the gas may become highly ionised resulting in

magnetohydrodynamic (MHD) turbulence (for a review see Lesur et al., 2022).

Throughout this thesis we will generally be concerned with young, self-gravitating

discs which aren’t highly ionised, hence when gravito-turbulence is effective.

2.4 Useful numerical methods

2.4.1 Smoothed Particle Hydrodynamics

In order to understand the 3-dimensional evolution of protoplanetary discs

we require sophisticated numerical methods which model the system’s fluid

dynamics. Historically two main methods have been employed to approach this,

namely grid-based and particle-based methods.

In grid-based methods the simulation domain is set up within a 3 dimensional box

which is further sub-divided into many smaller grid cells. The system is evolved

by solving the equations of hydrodynamics at grid cell interfaces and calculating

the flux of mass density moving between neighbouring cells. When grid-based

methods were first developed, the grids were set up at the start of the simulation

and remained fixed throughout the remainder of the system’s evolution. However

this approach was subject to resolution issues, which led to the development of

Adaptive Mesh Refinement (AMR) grid-based approaches where the grid cells are

dynamically refined based on some mass density resolution criteria.

Particle-based methods were developed later. Instead of splitting the computa-

tional domain into a set of grid cells, the fluid being simulated (which is continuous

in nature) is discretised into a set of N pseudo-particles which move with the flow

of the fluid, and have properties equal to the fluid properties at each particle’s

location. In order for the particles to more accurately represent a continuous

fluid the properties of each particle are smoothed over a finite volume centered

on the particle’s location. Each particle’s mass, density, velocity and internal
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energy (and any other fluid properties desired to be determined) are calculated

as a weighted average over the properties of the nearest neighbouring particles,

defined as any other particles located within the particle’s smoothing kernel. Such

a method has become known as Smoothed Particle Hydrodynamics (SPH) and was

initially developed by Lucy (1977) and Gingold & Monaghan (1977) for use in

astrophysical problems (also see Hernquist & Katz, 1989; Benz, 1990; Monaghan,

1992). It has since been adopted by a wide range of fields involving the modelling

of fluid mechanics, such as biology and engineering.

It would be incorrect to say that either grid-based or particle-based approaches

are better than the other. Instead, the two methods are better suited to different

astrophysical problems. Grid-based approaches aren’t optimised for problems

with a large dynamical range. They can be subject to resolution issues when,

for example, simulating star formation and a parsec-sized cloud collapses to

form an object of scale ∼ 105 km, or region of a protoplanetary disc collapses

to form a protoplanet as we consider in this thesis. Although this has become

less problematic since the introduction of AMR grids, grid-based codes would

still require extremely large parent cells to be defined in order to capture the

full computational domain in such scenarios. SPH naturally deals with this by

following the motions of particles, hence the computational domain and spatial

resolution are naturally adaptable.

Throughout this thesis we use the SPH method when considering 3-dimensional

hydrodynamical models. In the following section I will outline some of the

fundamental principles of SPH as well as some of the specific SPH algorithms

utilised here.

2.4.1.1 The SPH smoothing kernel

For the research throughout this thesis, I use the phantom SPH code (Price

et al., 2018), hence the following discussion will be with reference to the specific

prescriptions which phantom uses.

Each SPH pseudo-particle has an associated mass, velocity, position and

internal energy, from which all other necessary quantities can be calculated and

subsequently evolved using the equations of hydrodynamics derived in Section

2.1.1. The density of particle a is equal to the fluid’s density at the location,

ra, and is calculated by summing over the masses of the nearest neighbouring
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particles as,

ρ(ra) =
∑
b

mbW (ra − rb, ha), (2.87)

where W is the SPH smoothing kernel, and h is the smoothing length. The

smoothing kernel defines the volume in which the sum is performed, while also

weighting the density sum so that neighbouring particles at the edge of the kernel

volume contribute less than those near the centre. An illustration of this is shown

in Figure 2.3. Typically the functional form of the kernel will be spherically

symmetric, monotonically decreasing and continuous so that derivatives can

be calculated. An immediately obvious choice would be a Gaussian function,

however a Gaussian would be impractical in practise as at no point is it equal to

zero. In the case of phantom, we use an M4 cubic B-spline of the form,

W (ra − rb, ha) =
1

πh3
a


1− 3

2
q2 + 3

4
q3, 0 ≤ q < 1;

1
4
(2− q)3, 1 ≤ q < 2;

0, q ≥ 2,

(2.88)

,

where q = (ra − rb)/ha. From this, it is clear that any particles at q ≥ 2 won’t

contribute to the local fluid properties, i.e.

W = 0 for |ra − rb| > 2ha. (2.89)

The smoothing length is set to be dynamic and a function of the local density

so that the kernel volume always contains the same number of neighbouring

particles. This is desirable to ensure that the simulation remains resolved at

both high and low particle densities. When considering a 3D simulation domain

we use a smoothing length of the form,

ha = hfact

(
ma

ρa

)1/3

, (2.90)

where hfact is a normalisation constant.

For the smoothing kernel to make physical sense it must be normalised as,
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Figure 2.3 An illustration of how the SPH smoothing kernel is used to determine
the state variables of particle i as a weighted sum over the properties
of its nearest neighbouring particles, defined as those which lie within
the extent of the kernel’s radius. Image credit: Jlcercos

∫
W (ra − rb, ha) drb = 1, (2.91)

and converge to a delta-function in the limit h→ 0,

lim
h→0

W (ra − rb, ha) = δ(ra − rb). (2.92)

A more general form of Equation 2.87 for calculating any arbitrary function,

f(ra), in terms of the smoothing kernel is,

f(ra) =
∑
b

mb

ρb
fbW (ra − rb, ha), (2.93)

where mb/ρb represents the effective volume of particle b. From this we can

also calculate derivatives of any function in terms of the smoothing kernel

straightforwardly. As W (ra − rb, ha) is the only term in Equation 2.93 which

explicitly depends on r we get that,

∇f(ra) =
∑
b

mb

ρb
fb∇W (ra − rb, ha). (2.94)
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2.4.1.2 Equations of hydrodynamics in SPH

Having introduced the smoothing kernel we can now write the equations of

hydrodynamics in the form that they take in SPH.

The continuity equation: The equation of mass continuity can be derived

straightforwardly from Equation 2.87. Abbreviating W (ra − rb, ha) to Wab, we

can state,

dρa
dt

=
∂

∂t

(∑
b

mbWab

)
. (2.95)

As the mass of each pseudo-particle remains constant we need to only consider

the time derivative of the smoothing kernel, which is equal to,

dWab

dt
=
∂Wab

∂rab

∂rab
∂t

= vab · ∇aWab, (2.96)

where vab is the relative velocity of particles a and b, and ∇a is the gradient of

the kernel at the location of particle a. Hence we have that,

dρa
dt

=
∑
b

mbvab · ∇aWab. (2.97)

Equation 2.97 is not directly solved in SPH when calculating the particle density.

As the particle masses don’t change, mass is conserved naturally in SPH. In

the case of phantom, Equation 2.97 is only really used to reduce the number of

iterations required when predicting the smoothing length at the next timestep, as

h and ρ have a mutual dependence so they must be determined simultaneously

through an iterative, rootfinding procedure (described in more detail in Price

et al. (2018)).

The momentum equation: Starting with Equation 2.10 we can state that in

the absence of any external forces,
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dva
dt

= −∇Pa
ρa

=
−1

ρa

∑
b

mb

ρb
Pb∇aWab, (2.98)

where we have substituted for ∇Pa using Equation 2.94. However if we consider

the pairwise force between particles a and b,

Fab =

(
ma

dva
dt

)
b

= −ma

ρa

mb

ρb
Pb∇aWab (2.99)

Fba =

(
mb

dvb
dt

)
a

= −mb

ρb

ma

ρa
Pa∇bWba =

mb

ρb

ma

ρa
Pa∇aWab, (2.100)

we can see that when Pa 6= Pb (which in general will be the case) we have that

Fa 6= −Fb, hence momentum will not be conserved. Instead, we can derive the

symmetrized version of the momentum equation. Starting by using the product

rule as,

∇P
ρ

= ∇

(
P

ρ

)
+
P

ρ2
∇ρ. (2.101)

We can substitute this into Equation 2.94 to obtain that,

dva
dt

= −∇Pa
ρa

= −
∑
b

mb

ρb

Pb
ρb
∇aWab −

Pa
ρ2
a

∑
b

mb

ρb
ρb∇aWab. (2.102)

Hence,

dva
dt

= −
∑
b

mb

(
Pa
ρ2
a

+
Pb
ρ2
b

)
∇aWab, (2.103)

which conserves momentum as the pressure term is symmetric in a and b, so that
dva
dt

= −dvb
dt

.

The energy equation: The internal energy equation can be derived straight-

forwardly, starting with Equation 2.29,
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dua
dt

=
Pa
ρ2
a

dρa
dt

=
Pa
ρ2
a

d

dt

(∑
b

mbWab

)
, (2.104)

Substituting the time derivative for Equation 2.96 then gives the energy equation

in SPH,

dua
dt

=
Pa
ρ2
a

∑
b

mbvab · ∇aWab. (2.105)

2.4.1.3 Including artificial viscosity to capture shocks

Regions of steep pressure or density gradients in the fluid, known as shocks,

present a problem in SPH. They appear as a discontinuity in the flow on scales

smaller than the smoothing length, meaning that the differential equations which

govern the particle motions cannot be solved. On very small scales (i.e. the

mean free path of the gas particles) shock fronts will be continuous, but these

scales will be much smaller than any realistically achievable resolution in our

simulations. Equally, if the shock front’s length scale is smaller than our particle

resolution, there is no way of knowing where the shock should be inserted between

neighbouring particles.

A common solution for dealing with shocks in SPH is to introduce an additional

term which acts to smooth the discontinuity over a length scale which can be

resolved by the smoothing kernel. This is achieved by including an artificial

viscosity term into the momentum and energy equations, which are modified to

be:

The momentum equation

dva
dt

= −
∑
b

mb

(
Pa
ρ2
a

+
Pb
ρ2
b

+ Πab

)
∇aWab. (2.106)

The energy equation

dEa
dt

=
Pa
ρ2
a

∑
b

mbvab · ∇aWab +
1

2

∑
b

mbΠabvab · ∇aWab, (2.107)
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where,

Πab =


−αcabµab+βµ2ab

ρab
, vab · rab ≤ 0;

0, vab · rab > 0,
(2.108)

where cab is the average sound speed, ρab is the average density, and,

µab =
hvab · rab
r2
ab + εh

2

ab

. (2.109)

α and β in Equation 2.108 are free parameters which characterise the artificial

viscosity. The α term is linear in the particles’ velocity differences so contributes

a bulk and shear viscosity. The β term is quadratic in vab so dominates in cases

of large velocity differences, thus preventing particle-particle interpenetration. It

is generally recommended that β = 2α, although the exact values for α and β

vary between different works. Throughout the work in this thesis we use α = 0.1

and β = 0.2.

2.4.1.4 Radiative transfer in SPH

Accurate modelling of radiation transport within our simulations is essential to

the work undertaken here. As discussed in Section 1.4 the growth of gravitational

instabilities, and ultimately whether the disc undergoes fragmentation, is sensitive

to the balance of heating and cooling within the disc. We therefore want to

model the disc’s thermodynamics as accurately as possible. However, as always,

there is a compromise to be struck between the accuracy of our model and

the computational expense we can feasibly afford. Full treatment of radiation

transport is currently beyond our capabilities. Highly accurate methods exist,

such as Monte Carlo radiative transfer (which will be discussed in Section 2.4.2),

but would take far too long to compute at each SPH timestep to be a viable

option.

Early work studying gravitationally unstable discs considered the cooling pre-

scription mentioned in Section 1.6.2, where the fluid’s radiative cooling rate is

proportional to the disc’s dynamical timescale. Whilst this is a convenient and

computationally efficient method to model disc evolution, it doesn’t really capture

any of the actual thermodynamics of the disc.
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Throughout the work undertaken in this thesis we generally model radiative

transfer in SPH using the hybrid method developed in Forgan et al. (2009), where

the disc thermodynamics are modelled through a combination of hydrodynamics,

u̇i,hydro, (such as P dV work) radiative cooling, u̇i,cool, and diffusive energy

exchange between neighbouring particles, u̇i,diff , as,

u̇i,total = u̇i,hydro + u̇i,cool + u̇i,diff . (2.110)

In this formalism, we calculate the radiative cooling term using the polytropic

cooling approximation from Stamatellos et al. (2007), where each SPH particle is

treated as a spherically symmetric, polytropic pseudo-cloud, of polytropic index

n = 2. Each particle’s density, ρi, temperature, Ti and gravitational potential,

Φi, are used to calculate the mean column density, Σi, opacity, κi, and mass

weighted opacity, κi, from which the cooling term can be calculated as,

u̇i,cool = − 4σ(T 4
i − T 4

0 )

Σ
2

iκi(ρi, Ti) + κ−1
i (ρi, Ti)

, (2.111)

where T0 represents the minimum disc temperature set by background irradiation.

From Equation 2.111 we see that there are two limiting cases:

1. When we are in a region of large column density, hence also a high optical

depth so that Σ
2

iκi(ρi, Ti)� κ−1
i (ρi, Ti), and the cooling term reduces to,

u̇i,cool = −4σ(T 4
i − T 4

0 )

Σ
2

iκi(ρi, Ti)
(2.112)

2. When we are in a region of low optical depth so that Σ
2

iκi(ρi, Ti) �
κ−1
i (ρi, Ti), the cooling term reduces to,

u̇i,cool = −4σ(T 4
i − T 4

0 )κi(ρi, Ti) (2.113)

From 1 and 2 it is clear that cooling becomes inefficient in both the optically

thick and optically thin regimes, as u̇cool becomes small in both scenarios.

Stamatellos et al. (2007) outlines two main limitations to this polytropic

approximation, the first being that it assumes each particle is a spherically

symmetric pseudo-cloud, which may not always be accurate for regions of the
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simulation where the geometry is not so. The other main limitation is that the

model doesn’t deal with energy exchange between neighbouring particles.

This second point is addressed by the diffusion term in Equation 2.110. Forgan

et al. (2009) use the flux limited diffusion approximation (e.g. Bodenheimer et al.,

1990; Cleary & Monaghan, 1999; Mayer et al., 2007b) to calculate u̇i,diff , as,

u̇i,diff =
∑
b

4mb

ρiρb

kikb
ki + kb

(Ti − Tb)
rib · ∇W
|rib|2

. (2.114)

Here, the subscript b refers the nearest neighbours of particle i, hence the diffusion

term is calculated by summing over the energy exchange from all neighbouring

particles. The thermal conductivity, k, is calculated as,

ki =
16σ

ρiki
λiT

3
i , (2.115)

where λi is the flux limiter, described by the local radiation field,

λi(Ri) =
2 +Ri

6 + 3Ri +R2
i

(2.116)

where,

Ri =
|∇ui(ri)|
ui(ri)ρiκi

. (2.117)

Again, we find two limiting cases for u̇i,diff :

1. In optically thick regions of high density, ρi and κi are large, hence Ri

is small, λi reduces to 1/3 and the thermal conductivity reduces to the

Rosseland diffusion approximation, ki =
16σT 3

i

3ρiki
.

2. In optically thin regions where ρi and κi are small, Ri becomes large and

λi → 0. Therefore the conductivity terms and u̇i,diff also go to zero, hence

we have no diffusive energy exchange between neighbouring particles.

On its own, the flux limited diffusion approximation models energy exchange

between particles well in optically thick regions, but breaks down in regions of
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low optical depths where the equation reduces to zero. It also doesn’t allow

the system to radiatively lose energy, as it only accounts for diffusive energy

exchange. The hybrid method in Equation 2.110 combines both the polytropic

cooling approximation and the flux limited diffusion approximation to form a

complimentary method which is able to model the disc thermodynamics well at

both high and low optical depths.

In the chapters of this thesis which represent earlier work (Chapters 3 and

6) we note that the full hybrid method had not yet been implemented into

phantom, hence radiation transport in SPH was modelled using only the

polytropic approximation from Stamatellos et al. (2007). By the time of the

later chapters (Chapters 4 and 5) we had implemented the full hybrid method

into the code.

2.4.2 Monte Carlo radiation transport

In Chapter 6 we generate synthetic observations of self-gravitating discs, which

requires accurate calculation of the dust temperatures throughout the system so

that continuum images can be produced. In situations such as this, where we

consider an instantaneous snapshot of a disc, we can afford a more expensive

treatment of radiation transport than was discussed in Section 2.4.1.4. Monte

Carlo radiation transport (MCRT) (Lucy, 1999) is a probabilistic approach to

radiative transfer, where a fixed number of photon packets are iteratively emitted

from a radiation source, such as the star at the center of the disc. Photons are then

followed along their trajectories from the star to the edge of the computational

domain. As they interact with the gas they will either be absorbed and re-

emitted, or scattered through some angle. This will continue until all of the

photons which were initially emitted from the source have reached the edge of

the computational domain, at which point dust temperatures can be calculated.

Another set of photon packets will then be emitted from the star with the updated

dust temperatures, and the process is repeated until the dust temperatures

converge.

To do this, we begin by constructing a disc within an AMR grid. The grid initially

consists of a singular parent cell which is centred on the disc centre and encloses

the full computational domain. It is then repeatedly subdivided from parent cells

into 2D child cells based on some mass resolution criteria, where D represents the

dimensions of the computational domain (3 dimensional here). If the mass within
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a cell exceeds the resolution criteria then a parent cell will be divided into 2D

child cells such that child cells then become parent cells. This continues until the

mass in each cell is less than or equal to our predefined mass resolution criteria.

Once the grid has been constructed, N photon packets are emitted instanta-

neously and isotropically from the star, and their trajectories are followed through

the grid, as illustrated in Figure 2.4. Once a photon is emitted it will travel a

random optical depth through the disc, calculated using a random number, r,

τν = −ln(1− r), (2.118)

which, combined with the medium’s density and opacity can be translated to

a physical distance (see Equation 2.49). After travelling through a depth, τν ,

the photon will either be absorbed (and re-emitted) or scattered through some

angle. Which of these outcomes occurs is determined probabilistically using the

albedo of the material, which is simply the ratio of the scattering opacity to the

scattering plus absorption opacities. If the photon is absorbed and re-emitted

then its new frequency and direction will also be randomly sampled from the

disc emissivity, and if it is scattered then the new direction of travel will also be

randomly sampled from some angular probability distribution function.

Once all of the photons have reached the edge of the computational domain dust

temperatures can be calculated. A photon will contribute to the energy of each

grid cell by an amount proportional to the time which it spent within the cell,

εδt/∆t, where δt = l/c (the distance travelled over the photon velocity) and ∆t

is the total duration of the iteration. At the end of each iteration the energy

density in a cell of volume, V , contributed to by photons in the frequency range

ν and ν + dν is given by,

Uν dν =
ε

c∆t

1

V

∑
l. (2.119)

Dust temperatures can be calculated assuming radiative equilibrium (where the

absorption rate equals the emission rate) as,

Td =

(
Ȧ

4σαP

)1/4

, (2.120)
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Figure 2.4 Illustration of a photon packet’s trajectory through an AMR grid
during MCRT, highlighting the processes of absorption/re-emission
and scattering. Image credit: Harries et al. (2019)

where αP is the Planck mean absorption coefficient and Ȧ is the absorption rate

given by,

Ȧ =
ε

∆t

1

V

∑
ανl. (2.121)

The temperatures calculated at the end of each iteration are then used as a

starting point for the next iteration, when another set of N photon packets are

emitted from the star. The process is repeated until the temperature within each

grid cell changes by an amount smaller than some user-defined tolerance between

subsequent iterations. The final dust temperatures can then be used to generate

continuum images of the disc or spectral energy distributions.
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2.5 Concluding remarks

I have introduced some of the key equations, physical processes and numerical

methods which will be used and referred back to throughout this thesis when

modelling self-gravitating protoplanetary discs. In the following 4 chapters I will

detail the research undertaken throughout the past 3 and a half years of my PhD.

In Chapters 3 and 4 I focus on using SPH simulations to identify trends in the

parameter space of star-disc systems which may provide favourable conditions

for disc fragmentation. In Chapter 5 I use SPH and various 1D models to try

and understand the formation histories of the protoplanets recently identified in

the AB Aurigae disc. Finally, in Chapter 6 I use MCRT models to generate

observational predictions of self-gravitating discs, focusing on the impact of dust-

trapping in the discs’ spiral arms.
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Chapter 3

Fragmentation favoured in discs

around higher mass stars

This chapter primarily contains work from Cadman et al. (2020a), with some

references to work from a companion paper, Haworth et al. (2020). Whilst

Cadman et al. (2020a) was led by myself, the project was undertaken in

collaboration with various listed co-authors, hence some parts of the text may

contain contributions from these co-authors.

Specifically, Section 3.7 was led by K. Rice.

3.1 Motivation

Early results from radial velocity surveys suggested that giant planets are found

more frequently around higher-mass hosts (Johnson et al., 2007; Bowler et al.,

2010), although Lloyd (2011) express some concerns regarding how accurately

the mass of these host stars can be measured. These results stimulated large-

scale searches for directly imaged exoplanet companions around high-mass hosts

(primarily A stars, Janson et al., 2011; Vigan et al., 2012; Nielsen et al., 2013),

even though intrinsically higher contrasts are needed to detect companions around

these bright stars relative to solar analogues. Recently, considering the first 300

stars observed during the Gemini GPIES survey, Nielsen et al. (2019) found a

higher frequency of wide-orbit (R = 10−100 AU) giant planets (M = 5−13 MJup)

around higher mass stars (M > 1.5 M�) than around lower mass stars (M <

1.5 M�), while direct imaging surveys of low mass stars (M stars) have not yielded
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any companion detections (Lannier et al., 2016).

As already discussed in Section 1.6 giant planet formation through GI will likely

only operate in the outer disc, whilst core accretion struggles to explain the

formation of giant planets on wide orbits. Hence the preference for finding more

wide-orbit, giant planets around higher mass stars may suggest that discs around

higher mass stars are favourable sites for planet formation through GI.

It has previously been shown that GI in discs around low-mass stars is quenched

by a combination of viscous heating and stellar irradiation, making planet

formation through fragmentation unlikely (Matzner & Levin, 2005). Kratter &

Matzner (2006) found a critical disc outer radius of R ≈ 150 AU, above which

discs around massive stars may become prone to fragmentation. This critical

radius is set by two competing factors; increased stellar irradiation with increasing

stellar mass pushing the radius out, whilst the increased rate of accretion around

the more massive stars favours fragmentation. Kratter & Lodato (2016) used

the scaling of Q with disc-to-star mass ratio to suggest analytically that we may

expect some scaling of instability with stellar mass. Recently this relation has

been further explored by Haworth et al. (2020).

Haworth et al. (2020) demonstrated that low-mass stars are able to maintain

discs with high disc-to-star mass ratios, with masses comparable to that of the

central protostar, without becoming gravitationally unstable and fragmenting.

The large mass reservoirs which these discs could in principle support may have

important consequences for planet formation through core accretion, and may

help to explain the origin of multi-planet systems around very low-mass stars,

such as Trappist-1 (Gillon et al., 2017) whose formation would require extremely

high planet formation efficiencies given the canonical disc-to-star mass ratio of

q = 0.1.

The work we present here builds on the work from Haworth et al. (2020),

but conversely aims to investigate how the critical disc-to-star mass ratio for

fragmentation varies with increasing stellar mass around higher mass stars. To

approach this, 1D disc models for various stellar masses have been used to

calculate the effective viscous-α values (Shakura & Sunyaev, 1973; Lodato &

Rice, 2004) for a range of disc radii and accretion rates. These models are used

to estimate the critical disc-to-star mass ratios for fragmentation given a range

of disc parameter space, which are then used to inform the setup parameters for

a suite of 3D SPH simulations where we determine the critical disc-to-star mass
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ratios more reliably.

This chapter is organised as follows. In Sections 3.2 and 3.3 we describe the

setup of our 1D disc models and 3D SPH simulations respectively, and present the

results of these in Sections 3.4 and 3.5. In Section 3.6 we analyse the Jeans masses

in self-gravitating discs, allowing us to predict the planet masses we might expect

to form through disc fragmentation. In Section 3.7 we discuss the timescales over

which we might expect the conditions for fragmentation to be satisfied. Finally,

in Sections 3.8 and 3.9 we summarise our results and discuss the implications for

planet formation through disc fragmentation.

3.2 Methods - 1D disc models

To investigate how disc stability against fragmentation varies with stellar mass,

we have implemented the 1D disc models first presented by Clarke (2009) and then

further developed by Forgan & Rice (2011). Specifically, we use the formalism in

which external irradiation is also included (Forgan & Rice, 2013a). We consider

two cases; one in which irradiation leads to a constant background temperature

of Tirr = 10 K and another in which the stellar irradiation is based on the MIST

stellar models for 0.5 Myr stars (Dotter, 2016; Choi et al., 2016).

The four stellar masses considered in this analysis are 0.25 M�, 0.5 M�, 1.0 M�

and 2.0 M�. For host-star masses greater than 2 M�, these models become

complicated as the outer disc becomes optically thick and dynamical heating

may become important. We therefore choose not to model stellar masses greater

than this. For each stellar mass we have generated a suite of 1D disc models and

investigated the conditions necessary for fragmentation to occur, assuming that

fragmentation is possible for α & 0.1 (Rice, Lodato & Armitage, 2005).

A self-gravitating disc is constructed by assuming that it settles into a state with

a steady mass accretion rate given by (Pringle, 1981),

Ṁ =
3παc2

sΣ

Ω
, (3.1)

where α is the Shakura-Sunyaev viscous−α. Note that this equation is the same

as the one derived in Equation 2.82, where we have used Equations 2.86 and 2.58

in place of ν. We use Equation 1.28 to calculate α, where we use that βc = (u/u̇)Ω
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where,

u =
c2
s

γ(γ − 1)
, (3.2)

and the cooling function is given by,

u̇ =
σSBT

4

τ + 1/τ
, (3.3)

where σSB is the Stefan-Boltzmann constant, T is the disc temperature and τ is

the optical depth. We can estimate the optical depth using τ = Σκ(ρ, cs), where

Σ = 2Hρ and κ is the opacity. Values of γ, T and κ are obtained from ρ and cs

using a look up table and the equation of state from Stamatellos et al. (2007).

The scaling of this cooling function with optical depth as τ + 1/τ allows us to

account for both optically thin regimes, where the 1/τ term will dominate, and

optically thick regimes, where the τ term will dominate (Levin, 2003, 2007).

Assuming that the disc is gravitationally unstable at all radii, with Q = 2, and

specifying a mass accretion rate (which is assumed to be constant at all radii)

Equations 1.21, 1.28 and 3.1 allow us to calculate the values of three unknown

quantities: α, Σ and cs.

A disc is constructed by solving these equations at successive radial intervals. By

summing the mass within each radial bin we can determine the total disc mass

for a given Ṁ and Rout. In this way we can construct discs which span a wide

range of parameter space in Ṁ and Rout, where here we use values in the range

10−10 − 10−1 M� yr−1 and 1− 200 AU respectively.

In the case where irradiation is modelled using a constant background tempera-

ture, the disc is prevented from dropping below a floor temperature of Tirr = 10 K.

In the case of stellar irradiated discs we model the irradiation temperature as,

Tirr =
( L∗

4πσR2

)1/4

, (3.4)

where L∗ is obtained from the MIST stellar evolution tracks at 0.5 Myr (Dotter,

2016; Choi et al., 2016). These tracks are plotted in Fig. 3.1 and the values of

L∗ used here for the cases of 0.25 M�, 0.5 M�, 1.0 M� and 2.0 M� stellar masses

are 0.44 L�, 1.19 L�, 3.40 L� and 10.11 L� respectively.
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This modelling of stellar irradiation assumes the disc to be optically thin and thus

passively irradiated. In reality there will be significant self-shielding in the inner

disc and the true disc heating will lie somewhere in between these two cases.

An initial assessment on the impact of self-shielding finds the mid-plane dust

radiative equilibrium temperature to be a factor ≈ 3− 4 smaller than that from

Equation 3.4. We therefore might expect the true critical disc-to-star mass ratios

to be closer to the predictions of the Tirr = 10 K discs than the stellar irradiated

discs.

When calculating the resultant temperatures due to stellar irradiation in the

outer regions of a Rout = 150 AU disc, we find that the systems with a 0.25 M�,

0.5 M�, 1 M� and 2 M� stellar host have temperatures 26.1K, 33.5 K, 43.6 K and

57.2 K respectively. These higher disc temperatures in the presence of stellar

irradiation will further suppress fragmentation as it will both provide greater

pressure support against gravitational collapse and also reduce the disc effective-

α.

The 1D disc models presented here assume local angular momentum transport

in which the disc viscosity can be represented by a local α−parameter (e.g.

Equation 1.28). This assumption may be violated in some cases where global

effects become important. Forgan et al. (2011) found the local approximation

to be valid up to disc-to-star mass ratios of q ≈ 0.5, above which global effects

become important and the effective viscosity is not well represented by this local

parameterisation. We should therefore proceed with caution when interpreting

the results of these models at high disc-to-star mass ratios. However, they do

provide useful information that informs the 3D SPH simulations which follow.

3.3 Methods - SPH simulations

To extend the results from the 1D disc models we have produced a suite of 3D

SPH simulations using the phantom SPH code (Price et al., 2018). We use the

polytropic cooling approximation introduced in Stamatellos et al. (2007) to model

radiation transport in each disc, as outlined in Section 2.4.1.4.

The gas discs are represented by 500,000 SPH particles, allowing us to simulate

a large number of discs spanning a wide range of parameter space. The stellar

masses are the same as those from the 1D models: M∗ = 0.25 M�, 0.5 M�, 1.0 M�
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Figure 3.1 MIST stellar evolution tracks (see Dotter, 2016; Choi et al., 2016).
The 0.5Myr luminosities extracted from these plots have been used
in these analyses.

and 2.0 M�. Each disc has an initial surface density profile of Σ ∝ R−1.5, and

an initial sound speed profile of cs ∝ R−0.5, with an inner disc radius of 1 AU in

each case. Any gas particles falling within this inner radius will be accreted

onto the central protostar, represented here as a point mass. These surface

density and sound speed profiles were chosen to be consistent with those resulting

from the 1D models. The steep surface density profile also avoids artificially

inducing fragmentation by initially putting too much mass in the outer disc. In

Haworth et al. (2020) shallower surface density and sound speed profiles have been

used, with the authors finding consistent results to what we find here. Artificial

viscosity is modelled using the standard α−β viscosity parameters, where we use

αSPH = 0.1 and βSPH = 0.2.

Again, we assume two cases of disc irradiation in line with the 1D models:

one where irradiation leads to a constant background temperature of 10 K, and

another where the disc is being passively irradiated by the star.

For the cases of 10 K and stellar irradiation, a total of 192 and 58 discs have been

simulated respectively. The specific disc masses and radii were selected from

inspection of the 1D model results, considering disc parameters which lie close to

the α = 0.1 contour.

Each disc has been allowed to evolve for 5 outer orbital periods, assuming that if
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it has not fragmented by this point then it will not fragment in the future. Discs

are considered to have not fragmented if they initially appear to form clumps,

but these clumps are then rapidly destroyed by dynamical effects within the 5

orbital periods.

3.4 Results - 1D disc models

Throughout this subsection I will refer only to the contours in Figures 3.2 and

3.3, which represent the results of the 1D models. I will then go on to discuss

the overplotted dots and crosses in Section 3.5, which represent the results of the

SPH simulations.

In Figures 3.2 and 3.3, the blue contours show how the disc-to-star mass ratio, q,

varies with accretion rate as a function of disc outer radius. For example, in Figure

3.2 for a 0.25 M� stellar host, a disc with an accretion rate Ṁ = 10−7 M� yr−1

and a radius Rout = 80 AU will have a disc-to-star mass ratio, q = 0.520.

The black contours show the Shakura-Sunyaev effective viscous-α values from

Equation 1.28. We show contours for α = 0.01 and α = 0.1. As discussed

in section 1.6.2, the canonical fragmentation boundary is typically taken to be

α = 0.06. There is, however, some uncertainty in this exact value, partly due to

convergence issues in the simulations (Meru & Bate, 2011), partly due to possible

stochasticity (Paardekooper, 2012), and partly because there is some evidence

for an alternative mode of fragmentation (Young & Clarke, 2015). It seems

likely, though, that fragmentation will occur somewhere in the region between

the α = 0.01 and α = 0.1 contours. Figures 3.2 and 3.3 illustrate that this will

require discs with masses that are a significant fraction of the mass of the central

protostar.

3.4.1 Tirr = 10 K

Figure 3.2 shows the scenario in which we assume that background irradiation

prevents the disc temperature from dropping below T = 10 K. It shows that as

we increase the host star mass from 0.25 M� to 2 M� the critical mass ratio for

the discs to become unstable against fragmentation generally decreases. If we

consider the α = 0.1 contour in Figure 3.2, for a 0.25 M� stellar host the disc-to-
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Figure 3.2 Results of the 1D models (contours) and 3D SPH simulations (dots
and crosses) for the case of 10 K irradiated discs. The 2D contour
plots show how the disc-to-star mass ratio (blue contours) varies
as a function of accretion rate and disc outer radius for the cases
of 0.25 M� (top left), 0.5 M� (top right), 1.0 M� (bottom left) and
2.0 M� (bottom right) host star masses. The effective Shakura-
Sunyaev viscous-α values from the 1D models are shown as black
contours. The results of the 3D SPH simulations are shown by
the dots and crosses, representing fragmenting and non-fragmenting
discs respectively.
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Figure 3.3 Results of the 1D models (contours) and 3D SPH simulations
(dots and crosses) for the case of 0.5 Myr MIST Stellar irradiated
discs. The 2D contour plots show how the disc-to-star mass ratio
(blue contours) varies as a function of accretion rate and disc outer
radius for the cases of 0.25 M� (top left), 0.5 M� (top right), 1.0 M�
(bottom left) and 2.0 M� (bottom right) host star masses. The
effective Shakura-Sunyaev viscous-α values from the 1D models are
shown as black contours. The results of the 3D SPH simulations are
shown by the dots and crosses, representing fragmenting and non-
fragmenting discs respectively.
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star mass ratio needs to exceed q = 1 before the disc’s viscous-α values exceed

α = 0.1. We would therefore expect these discs to avoid fragmenting even for

very large disc-to-star mass ratios. As stellar mass is increased to 2 M�, the disc’s

viscous−α exceeds α = 0.1 for mass ratios of around q = 0.4−0.5. The minimum

radius for fragmentation also tends to shift outwards with increasing stellar mass.

Fragmentation is only expected in discs larger than R ≈ 90 AU in the case of a

2 M� stellar host, compared to R ≈ 50 AU in the case of a 0.25 M� stellar host.

3.4.2 Tirr = Stellar

When considering the case of stellar irradiation, shown in Figure 3.3, the critical

mass ratios are now shifted to even higher masses compared to when Tirr = 10 K.

This is due to the now higher disc temperatures suppressing GI. For a 0.25 M�

stellar host we now require q & 1.4 before the disc’s viscous-α values exceed

α = 0.1. Increasing the stellar mass to 2 M� reduces the required disc-to-star

mass ratio to q & 0.7. The minimum radii at which fragmentation is likely

to occur has also been pushed outward compared to the 10 K irradiated discs.

Fragmentation will now only occur in discs larger than R ≈ 100 AU for a 2 M�

stellar host, and R ≈ 60 AU for a 0.25 M� stellar host.

These models suggest that fragmentation is favourable in discs around higher

mass stars compared to those around lower mass stars, as the disc-to-star mass

ratios required for fragmentation may be lower. When including the effects of

stellar irradiation we find that discs become less prone to fragmentation, as we

now require far higher disc-to-star mass ratios before the discs’ viscous−α values

exceed α = 0.1. We note again that above q ≈ 0.5, global effects may become

important which are not accounted for in these 1D models. However, we do not

expect this to invalidate the general trends demonstrated by these results.

3.5 Results - SPH simulations

In Figures 3.2 and 3.3, we also show the results of the 3D SPH simulations. These

are represented by the markers over-plotted on the mass-ratio contours. Each

marker represents an individual simulation, which has been set up as described in

Section 3.3. Red crosses show discs that have not fragmented after 5 outer orbital

periods and green circles show discs in which a bound fragment has formed.
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Figure 3.4 3D SPH results demonstrating how discs become more gravitation-
ally unstable and prone to fragmentation as we increase the disc-to-
star mass ratio and the disc outer radius. The discs shown here are
for a 2 M� host star and Tirr = 10 K. Each disc has been allowed
to evolve for 5 outer orbital periods, with only the largest and most
massive discs having formed bound fragments.
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Figure 3.5 3D SPH results showing how the final states of the discs vary with
stellar mass in the case of Tirr = 10 K. The discs shown have mass
ratios, q = 0.5, and outer radii, Rout = 140 AU, with stellar masses,
from left to right, of 0.25 M�, 0.5 M�, 1.0 M� and 2.0 M�.
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Figure 3.6 Results of the 3D SPH simulations in the case of 0.5 Myr MIST
Stellar irradiated discs. The discs shown have mass ratios, q = 1.0,
and outer radii, Rout = 200 AU, with stellar masses, from left to
right, of M∗ = 0.25 M�, 0.5 M�, 1.0 M� and 2.0 M�.

Example plots of the final states of these simulated discs are displayed in

Figure. 3.4. The discs shown are for a 2 M� host star when Tirr = 10 K, and

demonstrate how discs become increasingly gravitationally unstable and prone to

fragmentation as we increase the disc’s outer radius and mass. Bound fragments

have clearly formed in the largest and most massive discs, whilst the smaller and

less massive discs display spiral arm structure only.

As we mentioned previously, our 1D models assume local angular momentum

transport which may not be valid at high disc-to-star mass ratios. The effect of

this can be clearly seen in Figure 3.2 when comparing the 1D predictions to the

3D results at the highest disc-to-star mass ratios (q ≥ 0.5). In the 0.25 M� case

for example, the SPH simulations find that fragmentation can occur for much

lower q values than initially predicted by the 1D models. When comparing the

1D predictions to the 3D results for slightly lower mass ratio discs, for example

in the calculations involving the 2.0 M� stars, we find the results to be far

more consistent with the 1D models as they are now more reliable. Despite

this, the SPH results shown in Figures 3.2 and 3.3 display the same general

trend as suggested by the 1D disc models; the critical disc-to-star mass ratio for

fragmentation generally decreases with increasing stellar mass, and the critical

radius steadily shifts outward.

In Figure 3.2, for a 0.25 M� host star with Tirr = 10 K, discs are able to fragment

for mass ratios q ≥ 0.7. This is lower than suggested by the α = 0.1 contour but

still broadly consistent with the 1D models. For the discs around the 2 M� host

star, we find that fragmentation occurs for mass ratios q ≥ 0.4. Discs as small as

Rout = 30 AU are able to fragment around a 0.25 M� host star, with this value

increasing to Rout = 110 AU for a 2 M� stellar host.
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In Figure 3.3, when considering stellar irradiated discs, only the 2 M� stellar hosts

produce fragments after 5 orbital periods. Fragmentation can occur for q ≥ 0.7

in these systems. All other stellar masses show no fragmentation for discs with

masses up to q = 1.0, with these being the highest mass discs modelled in our

SPH simulations. We have chosen to not model discs with mass ratios greater

than this as it is unclear whether these would exist as disc-star systems at all,

or whether the system would instead be deeply embedded in an envelope. The

critical radii at which we expect discs to fragment has again shifted outward with

respect to the 10 K irradiated discs, with discs around a 2 M� star only being

able to fragment when Rout & 140 AU.

Figures 3.5 and 3.6 further illustrate the effects of increasing stellar mass on disc

instability. It can be seen that as we increase the star mass for discs with constant

Rout and q, they become increasingly gravitationally unstable. In Figure 3.5 the

discs with a 1 M� and a 2 M� host star have formed bound fragments, whilst in

the disc with a 0.5 M� host star we observe spiral structure, and for the 0.25 M�

host star we observe almost no spiral structure at all. A similar trend can be seen

when considering stellar irradiated discs in Figure 3.6, with only the 2 M� host

star case forming bound fragments here.

3.6 Jeans mass in a spiral wave perturbation

When a region of a gravitationally unstable disc fragments, it will collapse to form

bound clumps of mass comparable to the local Jeans mass. Hence calculation of

the Jeans mass allows us to place constraints on the type of objects which may

be produced through disc fragmentation. To derive an analytical expression for

the Jeans mass in a spiral density perturbation of a self-gravitating disc, we begin

with the equation derived in Section 1.2,

MJ =
4

3
πR3

Jρpert =
4

3

( 3

32

)3/2

π5/2 c3
s

G3/2ρ
1/2
pert

(3.5)

Where ρpert represents the density of the spiral perturbation. The scale height,

H, and local surface density of the perturbation, Σpert are related to ρpert as,

ρpert = Σpert/2H, (3.6)
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where,

Σpert = Σ
(

1 +
∆Σ

Σ

)
. (3.7)

Here, ∆Σ
Σ

represents the fractional amplitude of the spiral wave perturbation.

Rearranging Equation 1.21 in terms of G and Σ gives,

(GΣ)1/2 =
(csΩ
πQ

)1/2

. (3.8)

Substituting Equations 3.7, 3.8 and H = cs/Ω into Equation 3.5 gives,

MJ =
4
√

2

3

( 3

32

)3/2π3

G

Q1/2c2
sH

(1 + ∆Σ
Σ

)1/2
(3.9)

In the presence of external irradiation Rice et al. (2011) showed that,

〈ΣRMS

Σ
〉 = 4.47

√
α, (3.10)

where α is the self-gravitating viscous-α. Substituting this into Equation 3.9 gives

the expression for the Jeans mass in an irradiated self-gravitating disc,

MJ =

√
3

32G

π3Q1/2cs
2H

(1 + 4.47
√
α)1/2

. (3.11)

Note that this equation differs slightly from the equation derived previously in

Forgan & Rice (2013a). We now have a different prefactor and the 1 + 4.47
√
α

term is now square-rooted.

Figure 3.7 shows the calculated Jeans masses from the 1D disc models for a 2 M�

stellar host, considering both 10 K and stellar irradiation. We consider here the

case of a 2 M� host star as we are primarily concerned with fragmentation around

the more massive stellar hosts. The Jeans mass for each value of Ṁ and Rout has

been calculated using Equation 3.11 and plotted as the green contours in Figure

3.7.

The minimum Jeans masses in the 10 K and stellar irradiated discs are 1.10 MJup

and 6.18 MJup respectively, assuming fragmentation is only possible above the
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Figure 3.7 Predicted Jeans masses from Equation 3.11 in discs around a 2 M�
host star for the cases of Tirr = 10 K (left) and stellar irradiation
(right).

α = 0.1 contour. The tendency for the Jeans mass to increase with the level of

irradiation is a consequence of higher disc temperatures reducing the effective-α

thus causing discs to be more massive for a given Ṁ and Rout. Equally, the higher

temperatures provide greater pressure support against gravitational collapse, as

previously discussed in Forgan & Rice (2013a).

The analysis in Forgan & Rice (2013a) considered the case of a 1 M� stellar host,

and the values found here remain similar to those found previously despite the

changes made to Equation 3.11. For the case of a 1 M� stellar host, we find

minimum Jeans masses of 1.10 MJup and 4.60 MJup when using 10 K and stellar

irradiation respectively, compared to values of 4.1 MJup and 11.2 MJup found in

Forgan & Rice (2013a) previously.

3.7 Timescale for fragmentation

Our results indicate that fragmentation is preferred in discs around higher mass

stars, and could potentially be completely suppressed in very-low-mass stars

if the level of irradiation is sufficient. However, another factor to consider is

the timescale over which a disc may sustain the conditions that are suitable for

fragmentation. This is not possible to assess using the results from the 1D model

and the 3D SPH simulations, since the 1D models are not time-dependent and

the 3D SPH simulations are simply sampling regions of parameter space.

To consider this, we use the time-dependent models presented in Rice & Armitage
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Figure 3.8 Figure showing the evolution of disc-to-star mass ratio, q, in
discs in which the gravitational instability is the dominant angular
momentum transport mechanism, for host star masses of M∗ =
0.25, 0.5, 1 and 2 M�. The markers show the disc-to-star mass
ratios above which disc fragmentation is possible, based on the results
presented in Figure 3.2.

(2009), which assume that angular momentum transport is predominantly driven

by GI. Given that we don’t actually know what the initial conditions will be,

we assume that all discs start with an outer radius of Rout = 100 AU and with a

disc-to-star mass ratio of q = 1. We also only consider the case where Tirr = 10 K.

Figure 3.8 shows the time evolution of the disc-to-star mass ratio for the same

host star masses as considered before (M∗ = 0.25, 0.5, 1 and 2 M�). The markers

show, for each host star, the disc-to-star mass ratio above which fragmentation is

possible, based on the results presented in Figure 3.2. What Figure 3.8 illustrates

is that, in conjunction with the required disc-to-star mass ratio decreasing with

increasing stellar mass, the timescale over which fragmentation could occur also

increases.

Of course, Figure 3.8 does assume that sufficiently massive discs can indeed exist,

but - if they can - the conditions for fragmentation would only persist around a

0.25 M� host star for a few 100 kyr. Around a 2 M� host star, however, the

timescale for fragmentation could be much longer, potentially a Myr, or longer.

However, this does assume that GI is the dominant mass transport mechanism,

which may not be the case once the disc mass, and mass accretion rate, have
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become low enough for other mechanisms to become more important (Rice et al.,

2010).

3.8 Discussion

The results presented here illustrate that disc fragmentation is potentially

favoured around higher-mass stars. If we consider the case where Tirr = 10 K, and

assume that the fragmentation boundary is at α = 0.1, fragmentation requires

a disc-to-star mass ratio of close to unity for a 0.25 M� host star, but requires

q & 0.4 around a 2 M� host. If we then consider stellar irradiation (e.g. Figure

3.3), fragmentation around a 0.25 M� host star would then require disc masses

that exceed the mass of the central protostar, while fragmentation around a

2 M� host could still occur for mass ratios of q & 0.6. This might suggest that

stellar irradiation could completely suppress fragmentation around lower-mass

host stars.

However, the simple modelling of stellar irradiation used in these models does

not account for these being young, massive discs and there likely being a large

amount of material in the inner disc regions. We therefore neglect factors such

as self-shielding by material in the inner disc that could lead to stellar irradiation

having less of an impact at large radii than we’ve assumed here. We expect that

the true heating to be somewhere in between the two irradiation cases we’ve

considered, (possibly being closer to the Tirr = 10 K as already mentioned in

section 3.2) and that the critical mass ratio where fragmentation can occur is

probably somewhere within the range we’ve presented. We don’t expect, however,

that this will influence the trend that fragmentation is preferred around higher-

mass host stars.

In general, discs with mass ratios of order unity, or above, are probably unrealistic.

For Class II sources we expect the disc mass to be small compared to the stellar

mass, usually no more than 10%. Higher mass-ratio systems would likely be in

the Class I phase whilst there is still a large amount of material in the envelope.

For even higher mass ratio systems, with q approaching unity, we would expect

them to still be in the Class 0 phase where the source is deeply embedded. In

this phase it is uncertain if there would be a star-disc system at all, or if instead

there would be a massive envelope or torus. Additionally, even if such a system

could exist, it would probably evolve very rapidly. It’s, therefore, unclear if there
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would be sufficient time for fragmentation to actually occur in a disc with q > 1.

A full discussion for the implications of lower mass stars being capable of hosting

high-mass-ratio discs before becoming susceptible to gravitational instabilities can

be found in Haworth et al. (2020). The key points to note are that the results

suggest these systems may potentially have very large mass reservoirs available to

them for planet formation through core accretion, thus loosening the constraint

that any formation scenario (e.g. for the Trappist-1 system, Gillon et al. 2017)

must involve highly efficient dust growth. They also find that the high mass ratio

discs (q & 0.3) required from photoevaporation models of the formation of the

Trappist-1 system (Haworth et al., 2018) to be entirely plausible, with our models

also finding discs to be gravitationally stable with masses greater than this.

It is intriguing that Morales et al. (2019) recently discovered a 0.46 MJup planet

orbiting a very low mass, 0.12 M�, M dwarf on a 204 day period, with the authors

proposing GI as the likely formation scenario. The results presented here suggest

that only very massive discs around these very low mass stars may be permitted

to be gravitationally unstable, thus indicating that such massive discs may indeed

exist. We also require that these discs be optically thick to stellar irradiation,

which would likely be the case for such a massive disc.

Several direct imaging surveys for companions around M > 1.5 M� stars have

tentatively pointed to a higher fraction of exoplanet and brown dwarf companions

to higher mass stars relative to solar analogues or very-low-mass stars (Janson

et al., 2011; Nielsen et al., 2013; Vigan et al., 2012). Recently, considering the

first 300 stars observed during the Gemini GPIES survey, Nielsen et al. (2019)

demonstrates this more conclusively, finding a higher frequency of wide-orbit

(R = 10 − 100 AU) giant planets (M = 5 − 13 MJup) around higher mass

stars (M > 1.5 M�) than around lower mass stars (M < 1.5 M�). Nielsen

et al. (2019) find an occurrence rate for wide-orbit (10 − 100 AU) giant planets

(M = 5 − 13 MJup) of 9+5
−4% for their high mass stellar sample, vs. a brown

dwarf occurrence rate (M = 13 − 80 MJup, 10 − 100 AU) of 0.8+0.8
−0.5% around

all survey stars. The mass divisions adopted in (Nielsen et al., 2019) do not

straightforwardly map to a specific formation mechanism – the brown dwarfs

they detect could likely have formed via gravitational instability, whereas some

of the planets in their cohort (e.g. 51 Eri b, for instance) are likely lower

than the Jeans masses we have calculated here, and thus not as likely to be

disc instability objects. However, these results imply that the total companion

frequency (M = 5−80 MJup, 10−100 AU) must be higher for their high mass vs.
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low mass stellar sample, qualitatively consistent with the work presented here.

Although our analysis does indicate that disc fragmentation is more likely around

higher-mass stars, it also suggests that it will probably occur at radii & 100 AU,

with this critical radius moving outward with increased levels of irradiation. We

might also expect the fragments to have initial masses above 5 MJup and to

undergo further growth. However, since we expect GI to act when the disc is

young (< 0.1 Myr) and massive, we would expect these fragments to undergo

significant inward radial migration and potentially tidal downsizing after they

form (e.g. see Nayakshin, 2010a; Forgan & Rice, 2013a).

3.9 Conclusions

In this chapter we have used a set of 1D disc models followed by a suite of 3D

SPH simulations to investigate how the conditions necessary for gravitational

instability in protoplanetary discs vary with host star mass. In these models

we have varied the disc masses and radii, focusing on determining the critical

disc-to-star mass ratio at which fragmentation is able to occur for stellar masses

M∗ = 0.25 M�, 0.5 M�, 1 M� and 2 M�. We have run models for both Tirr = 10 K

and for stellar irradiation, with the true disc irradiation likely lying somewhere

in between these two cases.

The primary conclusions drawn from this work are that,

1. Discs become more susceptible to GI as we increase the host star mass,

with discs around higher mass stars being prone to fragmentation which

will tend to produce wide-orbit giant planets and brown dwarfs.

2. Discs around lower mass stars (M ≤ 1.0 M�) are able to host very

high mass-ratio discs whilst still remaining gravitationally stable. When

considering discs which are passively irradiated by their stellar host we find

fragmentation to be completely suppressed in discs up to mass ratios of

order unity. This may have important implications for core accretion, since

it may be possible for these discs to have larger mass reservoirs available

for planet formation than previously thought.

3. Discs around higher-mass stars M ≥ 2 M� are more susceptible to GI and

fragmentation. For a 2 M� host star, we find that discs may fragment for
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mass ratios q ≥ 0.4 and q ≥ 0.7 in the cases of Tirr = 10 K and stellar

irradiated discs respectively. We find that fragmentation will only likely

occur at radii & 100 AU, with this critical radius increasing with increased

irradiation and with increasing host star mass. Fragment masses are found

to be strongly dependent on disc irradiation with hotter discs producing

more massive planets, as inferred through analytical calculations of their

Jeans masses. Fragmentation in discs around 2 M� stars will produce

objects of masses ≥ 1.10 MJup and ≥ 6.18 MJup in discs with Tirr = 10 K

and stellar irradiation respectively, thus preferentially producing wide-orbit,

giant planets and brown dwarfs.

4. Discs around 2 M� stars are able to sustain the conditions necessary for

fragmentation for far longer timescales than discs around lower mass stars

are. This is due to these discs becoming unstable against fragmentation for

lower disc-to-star mass ratios, thus the conditions necessary for discs to be

unstable against fragmentation will be satisfied for longer.
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Chapter 4

Binary companions triggering

fragmentation in self-gravitating

discs

This chapter contains work from Cadman et al. (2022). Whilst Cadman et al.

(2022) was led by myself, the project was undertaken in collaboration with various

listed co-authors, hence some parts of the text may contain contributions from

these co-authors.

Specifically, Section 4.4.3 was led by C. Fontanive.

4.1 Motivation

It is generally accepted that if GI is a viable mode of planet formation it will likely

only operate in the outer parts of extended protoplanetary discs (Stamatellos &

Whitworth, 2009; Vorobyov & Basu, 2010), potentially explaining the origin of

some directly-imaged, wide-orbit planetary-mass and brown dwarf companions

(Nero & Bjorkman, 2009; Kratter et al., 2010; Cadman et al., 2021; Humphries

et al., 2021). It has also been suggested that objects that form via GI on wide

orbits could migrate inwards rapidly (Baruteau et al., 2011) and potentially

undergo tidal stripping (Nayakshin, 2010a; Boley et al., 2010) to produce close-in

planets with a wide range of masses (Nayakshin & Fletcher, 2015). However,

hydrodynamics simulations of such systems show that these objects either stay
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on wide orbits or are destroyed during the migration process (Hall et al., 2017).

Population synthesis models also suggest that such an outcome is relatively rare,

and that most objects that form via GI will remain on wide-orbits as giant planets,

or brown dwarfs (Forgan & Rice, 2013b; Forgan et al., 2018).

Such objects could, though, still be scattered onto highly eccentric orbits that can

then tidally circularise onto close-in orbits (Rice et al., 2015). This will tend to

form gas giant planets, or brown dwarfs, with very close-in circular orbits (with

orbital properties similar to those of “hot” Jupiters) or eccentric orbits that are

still undergoing tidal circularisation.

Given that the scatterer is likely to be a companion to the host star, this motivated

a search for companions to systems with close-in (< 1 AU) massive planets or

brown dwarfs (M > 7 MJup) (Fontanive et al., 2019). The results of this search

did indeed indicate a binary fraction twice as high as for field stars on projected

separations between 20–10,000 AU. However, only about half of these systems

were consistent with high eccentricity migration through secular interactions

with the outer stellar companion, the others being on orbits where the tidal

circularisation timescale was far too long to explain their origin (Fontanive et al.,

2019).

Nonetheless, even if the close-in objects were not scattered onto their current

orbits, the high binary fraction for these systems suggests that the existence

of a companion may still influence their formation. There are also indications

that some of these objects may have formed via GI. The sample of stars studied

in Fontanive et al. (2019), hosting close-in companions with masses between 7–

60 MJup, has a mean metallicity of 〈[Fe/H]〉 = −0.12, consistent with the mean

field metallicity (Moe et al., 2019). This is substantially lower than the mean

metallicity for hosts to genuine hot Jupiters (0.2–4 MJup) of 〈[Fe/H]〉 = 0.23

(Santos et al., 2004; Fischer & Valenti, 2005), which also do not show the same

excess in multiplicity frequency (Ngo et al., 2016; Moe & Kratter, 2021).

This lower-mass planetary population is thought to have formed via the

alternative scenario for planet formation, core accretion (Pollack et al., 1996).

This formation mechanism shows a strong metallicity dependence in the formation

of giant planets with masses above a few Jupiter masses (Mordasini et al., 2012;

Jenkins et al., 2017). In contrast, the GI formation process has no metallicity

dependence (Meru & Bate, 2010), and preferentially forms massive planets or

brown dwarfs (Kratter et al., 2010; Forgan & Rice, 2011), with a transition at
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around ∼4–10 MJup between the two mechanisms (Schlaufman, 2018).

This suggests that only the most massive planetary and brown dwarf companions,

likely forming via GI, are effected by wide-orbit stellar binarity. Fontanive

& Bardalez Gagliuffi (2021) recently confirmed this idea, finding that close-in

exoplanets and substellar companions with masses of several Jupiter masses and

above are almost exclusively observed in binary star systems with separations of

a few hundred AU or less. In contrast, sub-Jovian and wide giant planets are less

frequently seen in multiple-star systems, mostly observed in binaries with wider

separations, and show similar planet properties when compared to the population

of planets orbiting single and binary stars (Fontanive & Bardalez Gagliuffi, 2021).

We therefore investigate how the presence of a companion at a few hundred AU

can influence the likelihood of a disc undergoing fragmentation and forming such

high-mass planetary systems.

There is little agreement in the literature as to whether binary companions or

stellar flyby events can trigger fragmentation in a disc which would be marginally

stable in isolation. Early work considering isothermal discs suggested that

encounters during a flyby event could trigger fragmentation (Boffin et al., 1998;

Watkins et al., 1998a,b). Boss (2006) also found that a binary star will act to

promote fragmentation, as the spiral arms driven by the companion will typically

go on to form self-gravitating clumps. Other authors, however, found that

tidal heating during the binary orbit generally acts to stabilise the disc against

fragmentation (Nelson, 2000; Mayer et al., 2005; Lodato et al., 2007; Forgan &

Rice, 2009). Whilst none of their simulations resulted in fragmentation, and

the majority of their results suggest that the effect of encounters is to prohibit

fragmentation, Forgan & Rice (2009) find that, for some orbital parameters, their

discs become more unstable over a larger range of radii, suggesting that there may

be some region of parameter space which is favourable to fragmentation. It has

also been shown that once a fragment forms in a GI disc, further fragmentation

may be triggered as material is channelled inward causing the inner spirals to

become sufficiently dense to fragment (Meru, 2015).

In this chapter we present a suite of SPH simulations of binary star systems. We

extensively test the parameter space of binary orbital properties for configurations

which may trigger fragmentation in discs which would be marginally stable in

isolation. We evolve a total of 62 discs which, to our knowledge, represents the

most thorough search of this parameter space to date, and in each simulation we

model realistic cooling through the Forgan et al. (2009) hybrid radiative transfer
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method. Section 4.2 details the various disc setups explored in our simulations.

Section 4.3 presents the results obtained, which we discuss in Section 4.4. Our

conclusions are presented in Section 4.5.

4.2 Methods – SPH simulations

We simulate a three-dimensional gaseous disc using the phantom SPH code

(Price et al., 2018), which has been modified to include the hybrid radiative

transfer method introduced in Forgan et al. (2009) and outlined in Section 2.4.1.4.

We also include the standard SPH artificial viscosity, with parameters αSPH = 0.1

and βSPH = 0.2.

Each disc is initialised with N = 1 × 106 SPH particles, distributed such

that the initial surface density profile of the disc is Σ(R) = Σ0(R/R0)−1.5

and the temperature profile is T (R) = T0(R/R0)−1.0 between R0 = 1 AU and

Rout = 100 AU. In each disc T0 and Σ0 are determined self-consistently, with

T0 = 374 K for all discs set up here, and Σ0 varying with the disc mass being

considered. Any particles that fall within R0 are accreted onto the central star,

which is represented as a point mass particle. When considering binary star

systems, we set up circumprimary discs only, and the companion star behaves as

a gravitationally bound point mass, modelled using a sink particle.

4.2.1 Suite of SPH models

To effectively explore the parameter space in binary star separation, a, orbital

eccentricity, e, orbital inclination, i, and companion star mass, M∗,companion, we

set up 4 suites of discs – one for studying each variable individually. In each case,

the disc setup parameters are selected to be close to where we find the limit for

disc fragmentation to be, identified during our reference run of discs which are

detailed below.

4.2.1.1 Reference run of discs with no companion

We initially set up a reference run of discs with no companion. This allows us

to understand how our discs would evolve in isolation, whilst also being able
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NSPH Rout,disc M∗ Mdisc

1× 106 100 AU 1 M� [0.1, 0.2, 0.3, 0.4] M�

Table 4.1 SPH disc setup parameters for the reference run of discs with no
companion star. Final states of these discs are shown in Figure 4.1

M∗,primary M∗,companion a Mdisc e i

1 M� 0.2 M� [100, 250, 500, 1000] AU [0.1, 0.2, 0.3, 0.4] M� 0 0◦

Table 4.2 SPH disc setup parameters for the initial suite of discs, where we
explore the parameter space in binary semi-major axis and disc mass.
Final states of these discs are shown in Figure 4.2.

M∗,primary M∗,companion a Mdisc e i

1 M� 0.2 M� [150, 200, 325, 400] AU 0.2 M� 0 0◦

Table 4.3 SPH disc setup parameters where we probe the parameter space in
binary semi-major axis further, considering small changes in binary
semi-major axis and keeping the disc mass constant. Final states of
these discs are shown in Figure 4.4.

M∗,primary M∗,companion a Mdisc e i

1 M� 0.2 M� [150, 200, 250, 325, 400, 500] AU 0.2 M� [0.25, 0.5, 0.75] 0◦

Table 4.4 SPH disc setup parameters where we explore the parameter space in
binary semi-major axis and orbital eccentricity. Final states of these
discs are shown in Figure 4.5.

M∗,primary M∗,companion a Mdisc e i

1 M� 0.2 M� [100, 150, 200, 250] AU 0.2 M� 0 [30◦, 60◦, 90◦]

Table 4.5 SPH disc setup parameters where we explore tha parameter space in
binary semi-major axis and binary inclination. Final states of these
discs are shown in Figure 4.6.

M∗,primary M∗,companion a Mdisc e i

1 M� [0.1, 0.5] M� [150, 250, 325, 400] AU 0.2 M� 0 0◦

Table 4.6 Additional SPH disc setup parameters where we explore the parameter
space in binary semi-major axis and companion mass. Final states
of these discs are shown in Figure 4.7.
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to identify the region of parameter space where our discs are near to the limit

for fragmentation. We set up 4 discs here with masses Mdisc = 0.1, 0.2, 0.3 and

0.4 M�, and a parent star of mass M∗ = 1.0 M�. The value of Σ0 for each of these

discs, and all subsequent discs of the same mass, are 322, 644, 966, 1288 g cm−2,

respectively. A summary of these setup parameters can be found in Table 4.1.

4.2.1.2 Varying binary star separation

In the first of our suites which include a companion star, we aim to determine

how binary separation affects a disc’s susceptibility to fragmentation. We set up

a grid of 16 systems in which we vary a between 100–1000 AU and Mdisc between

0.1–0.4 M�. We then explore 4 additional cases of a with finer steps in binary

separation between a = 150–400 AU and a fixed disc mass Mdisc = 0.2 M�. In

all the setups we consider a primary star with mass M∗,primary = 1.0 M� and

a companion star with mass M∗,companion = 0.2 M�, hence a stellar mass ratio

qbinary = 0.2. For this initial suite we set up binaries on circular orbits in the

plane of the disc, with e = 0 and i = 0. These disc setups are summarised in

Tables 4.2 and 4.3.

Results from this initial suite of discs, where we vary the companion’s semi-major

axis, were then used to inform the range of semi-major axes considered for the

subsequent suites of disc simulations.

4.2.1.3 Varying orbital eccentricity

We then wish to study the effect of varying the orbital eccentricity of the binary

orbit. 18 new discs are setup where we introduce eccentricities, e = 0.25, 0.5 and

0.75. We vary the binary separation between a = 150–500 AU whilst keeping the

disc mass constant at Mdisc = 0.2 M�. In all cases we consider a primary star

mass, M∗,primary = 1.0 M�, a companion star mass, M∗,companion = 0.2 M�, and

binary orbits in the plane of the disc, with i = 0. A summary of these disc setups

is outlined in Table 4.4.
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4.2.1.4 Varying orbital inclination

A third suite of discs is set up where we study the effect of varying the companion

star’s orbital inclination relative to the plane of the disc. We set up 12 new discs

which include inclinations i = 30◦, 60◦ and 90◦. We consider binary separations

in the range a = 100–250 AU, whilst keeping the disc mass constant at Mdisc =

0.2 M�. In each case we consider a primary star mass, M∗,primary = 1.0 M�,

a companion star mass, M∗,companion = 0.2 M�, and circular binary orbits with

e = 0. A summary of these disc setups is outlined in Table 4.5.

4.2.1.5 Varying companion star mass

Finally, we set up a suite of discs to explore the effect of varying the mass of

the companion star. We set up a grid of discs which includes 8 new setups,

where we introduce companion star masses M∗,companion = 0.1 M� and 0.5 M�.

We vary the binary separation between a = 150–400 AU, whilst keeping the disc

mass constant at Mdisc = 0.2 M�. For all disc setups we consider a primary star

mass, M∗,primary = 1.0 M�, and circular binary orbits in the plane of the disc,

with e = 0 and i = 0. A summary of these disc setups is outlined in Table 4.6.

4.3 Results

Results from the final states of all the discs simulated here are summarised in

Table 4.7. In all cases we allow the discs to evolve for at least 5 orbital periods

at the disc outer edge (Rout = 100 AU), equivalent to t = 5000 yrs, or until

fragmentation occurs. In the case of the wide orbit binary systems, for which

the binary orbit is longer than 5 orbital periods at Rout = 100 AU, we allow the

simulations to evolve for at least a full binary orbit. We define a simulation as

having fragmented when a local clump forms where the density is significantly

higher than the surrounding disc gas. Typically, these clumps have densities that

are a few orders of magnitude greater than the surrounding gas.
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Figure 4.1 Final states of the reference run of disc setups with no companion
star included. A summary of the disc setup parameters laid out
in Table 4.1, and outlined in detail in Section 4.2.1.1. Blue boxes
are included to highlight the reference run discs which resulted in
fragmentation.

4.3.1 Reference run of discs with no companion

Figure 4.1 shows the final states of the reference run of discs with no companion

star included. Setup parameters for these discs are outlined in Section 4.2.1.1 and

summarised in Table 4.1. We find the lower mass limit for disc fragmentation

to be in the range 0.2 < Mdisc < 0.3 M�. The disc with Mdisc. = 0.2 M� is able

to evolve for the full simulation time without fragmenting, whilst the disc with

Mdisc = 0.3 M� fragments quickly, after 700 yrs of evolution.

In Figure 4.3 we plot the azimuthally averaged midplane disc properties from

some of the systems simulated here. We include plots of the Toomre parameter,

Q, the disc cooling time, tcool(= u/u̇), from Forgan et al. (2009), and the

dimensionless cooling parameter, βcool = tcoolΩ, where Ω =
√

GM∗/r3 is the

Keplerian frequency at a given radius. Early work has shown that fragmentation

may occur if the disc is able to cool on dynamical timescales, with βcool . 3

(Gammie, 2001; Rice et al., 2003).

From Figure 4.3, we find that the system with Mdisc = 0.2 M� reaches a

marginally stable final state with Qmin = 1.06 at R = 74 AU, and βcool,min = 9.75

at R = 100 AU.

In order to ensure that the fragmentation threshold found here is independent of

the discs’ initial setup, we also ran each disc such that Q ≈ 1 at R = Rout, by

adjusting the value of the disc aspect ratio (H/R) at R = Rout. Again, we found

the limit for fragmentation to be in the range 0.2 < Mdisc < 0.3 M�.

88



4.3.2 Varying binary separation

4.3.2.1 Initial suite of discs

Results from the initial suite of discs where we vary binary separation and disc

mass are displayed in Figure 4.2. Setup parameters for these discs are outlined

in Section 4.2.1.2 and summarised in Table 4.2. As with the results in Section

4.3.1, we also ran each of these discs with slightly different initial Q−profiles to

ensure our conclusions remain consistent.

When comparing the results in Figure 4.2 to those from the reference run in Figure

4.1, we find one disc configuration, with Mdisc = 0.2 M� and a = 250 AU, where

the simulation results in fragmentation, and its analog from the reference run,

with Mdisc = 0.2 M� and no companion star, did not. The companion star’s initial

eccentricity is e = 0, however energy exchange with disc material throughout the

companion’s orbit results in a periastron binary separation of rperi,actual = 186 AU.

As the companion approaches and passes through periastron, an m = 2 spiral

mode propagates through the disc generating a bump in the surface density at

R ≈ 60 AU.

This can be seen in the plots of azimuthally averaged disc properties shown in

Figure 4.3. When comparing the disc properties for the system where a = 250 AU

and Mdisc = 0.2 M� immediately before fragmentation occurs (at t ≈ 2700 yrs),

and the properties from the final state of the analog disc from the reference run

(where Mdisc = 0.2 M�), we can see how the surface density increases in the disc

of the a = 250 AU system, consistent with the location of the spirals driven by

the companion. Efficient cooling, evident from the drop in tcool between ≈ 60–

90 AU, is able to prevent the disc temperature from increasing significantly at

the spiral location. Hence Q can drop to below Q = 1 and fragmentation ensues.

Immediately before this disc fragments we find βcool,min = 2.92 at R = 75 AU.

Binaries on wide orbits (a = 500, 1000 AU) converge to the single star solution,

where the mass limit for fragmentation is 0.2 M� < Mdisc < 0.3 M�. In Figure

4.3 we also plot the azimuthally averaged midplane disc properties for the setup

where Mdisc = 0.2 M� and a = 500 AU at the time of periastron passage. The

temperature profile and Q−profile are almost identical to the analog disc from the

reference run, with Qmin = 1.05 at R = 75 AU. Similarly, we find no significant

bump in the surface density profile which would be consistent with a spiral being

driven by the companion star. The Mdisc = 0.3 M� system with a companion at
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a = 500 AU fragments quickly, as it did around a single star.

Binaries with small semi-major axes, whose orbits result in the companion

star passing through the disc (a = 100 AU), are found to be prohibitive

to fragmentation. In Figure 4.3 we plot the azimuthally averaged midplane

properties for the disc with a = 100 AU and Mdisc = 0.2 M�, at the point of

periastron passage (where rperi,actual = 78 AU). As the companion moves through

the disc the midplane temperature increases, whilst material is simultaneously

ejected from the outer disc and channeled toward the inner disc. The final surface

density profiles for the a = 100 AU discs, set up with Mdisc = 0.1 M� and 0.2 M�,

are consequently truncated at a ≈ 40 AU, with final disc masses Mdisc = 0.06 M�

and 0.12 M� respectively. Hence no fragmentation can occur. The massive discs

with Mdisc ≥ 0.3 M� are still able to fragment quickly, before completing a full

binary orbital period, in a spiral arm which trails the path of the companion star.

4.3.2.2 Further probing the parameter space in binary separation

As the results in Figure 4.2 indicate that there may be a sweet spot in binary

separation at a ≈ 250 AU which can trigger fragmentation, we ran an additional

set of discs where we probe this region of parameter space with greater granularity.

This consists of 4 additional discs with Mdisc = 0.2 M� and a = 150, 200, 325

and 400 AU. Setup parameters for these are outlined in Section 4.2.1.2 and

summarised in Table 4.3. Final states of these discs are shown in Figure 4.4.

We find that the disc setups with binary semi-major axes between 150 AU≤
a ≤ 250 AU all result in fragmentation. In the configuration with a = 150 AU,

the companion narrowly avoids passing through the outer extent of the disc, with

rperi,actual = 116 AU. As the companion approaches and passes through periastron,

an m = 2 spiral mode propagates through the disc causing a significant drop in

Q at the inner regions of one of these spirals, between 30 AU≤ R ≤ 50 AU, and

4 fragments initially form. All 4 of these fragments survive as the companion

travels back towards apastron, as can be seen in the final state of the disc in

Figure 4.4. A similar process occurs in the system with a = 200 AU.

As we increase the binary separation beyond a = 250 AU the influence of the

companion star becomes progressively weaker. Once a ≥ 325 AU the companion

star can no longer trigger fragmentation in the disc. The spiral mode induced by

the a = 325 AU companion is much weaker than in the a = 250 AU disc. We find
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Figure 4.2 Final states of the discs where we vary the disc mass and the
semi-major axis of the companion star. Disc setup parameters
are summarised in Table 4.2 and outlined in detail in Section
4.2.1.2. Blue boxes are included to highlight discs which resulted
in fragmentation when their reference run analogs also fragmented.
Green boxes are included to highlight disc configurations which
resulted in fragmentation when their reference run analog did not
fragment.
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Figure 4.3 Azimuthally averaged midplane disc properties calculated from the
Mdisc = 0.2 M� discs from the initial suite which includes a binary
companion (setup parameters in Table 4.2, final states in Figure
4.2). We plot the reference run final state, the a = 100 AU run at
periastron, the a = 250 AU run immediately before fragmentation,
and the a = 500 AU run at periastron.
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a = 100 AU a = 150 AU a = 200 AU

a = 250 AU a = 325 AU a = 400 AU

Figure 4.4 Final states of the discs where we keep the disc mass constant and
consider small changes in the semi-major axis of the companion star.
Disc setup parameters are summarised in Table 4.3 and outlined in
detail in Section 4.2.1.2. Green boxes are included to highlight disc
configurations which resulted in fragmentation, when their reference
run analog did not.

that Q drops slightly in the outer disc of the a = 325 AU system when compared

to its analog from the reference run (with Mdisc = 0.2 M� and no companion), but

not enough to push the disc over the fragmentation threshold. Once we increase

the binary semi-major axis to a = 400 AU we find a similar result as with the

a = 500 AU system in the previous section. The surface density profile, Q−profile

and temperature profile at periastron passage become increasingly similar to the

final state of the reference run disc with Mdisc = 0.2 M�.

4.3.3 Varying orbital eccentricity

So far we have only considered companion stars on circular orbits, with e = 0. In

reality it is likely that there will be some orbital eccentricity. Hence in this section

we simulate 18 new discs, introducing eccentricities, e = 0.25, 0.5 and 0.75. We

consider setup parameters found to be near to the limit for fragmentation, keeping

the disc mass constant at Mdisc = 0.2 M�, and varying a and e only. These setups

are outlined in Section 4.2.1.3 and summarised in Table 4.4. Final states of these

discs are shown in Figure 4.5.
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In the previous section we found that companion stars with semi-major axes

150 AU≤ a ≤ 250 AU (116 AU ≤ rperi,actual ≤ 186 AU) may induce fragmentation

in a disc which would not fragment in isolation. When including eccentricity

we find a wider range of semi-major axes are capable of inducing fragmentation,

given that rperi,actual falls roughly within the same range as found previously.

When including an eccentricity of e = 0.5 we find that disc setups with

a = 325 AU and a = 400 AU now also result in fragmentation. The periastron

distances observed in these simulations are rperi,actual = 134 AU and rperi,actual =

163 AU respectively. Fragmentation occurs in a similar manner here to what

was found in the previous section; an m = 2 spiral which is generated as the

companion approaches and passes through periastron becomes unstable and forms

bound, self-gravitating clumps.

We find that fragmentation occurs in this suite for a slightly lower rperi,actual than

was found in the previous section. In the configuration with a = 150 AU and

e = 0.25, corresponding to rperi,actual = 92 AU, the companion passes through the

very outer edge of the disc and a single fragment forms in the spiral 180◦ from

the companion’s location. Disc heating at periastron is much less here than was

the case when a = 100 AU and e = 0 (rperi,actual = 78 AU), which was found to

inhibit fragmentation. The amount of mass ejected is also significantly less here,

with a final disc mass Mdisc = 0.18 M�. What remains is a slightly more compact

disc, truncated at R ≈ 75 AU.

For any companion which passes closer than rperi,actual = 92 AU, the disc-star

interaction becomes destructive. Disc material is dispersed as the companion

passes through the disc, ejecting a significant amount of mass, leaving a compact,

lower mass disc, thus entirely preventing fragmentation. All configurations here

with e = 0.75 suffer this fate.

An interesting case is the disc setup with a = 500 AU and e = 0.75. Despite

this system’s actual periastron distance of rperi,actual = 104 AU falling within the

sweet spot found which may induce fragmentation, no fragmentation occurs here.

As the companion passes through periastron a self-gravitating clump begins to

form at the inner edge of one of the spirals but immediately disperses as the

companion quickly moves away from periastron. As the companion moves back

toward apastron the disc stabilizes again.
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Figure 4.5 Final states of the discs where we vary the orbital eccentricity and
the semi-major axis of the companion star. Disc setup parameters
are summarised in Table 4.4 and outlined in detail in Section
4.2.1.3. Green boxes are included to highlight disc configurations
which resulted in fragmentation, when their reference run analog
did not.
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4.3.4 Varying orbital inclination

We now consider systems with some orbital inclination relative to the plane of

the disc. We introduce inclinations i = 30◦, 60◦ and 90◦, once again keeping the

disc mass constant at Mdisc = 0.2 M� and varying the binary separation close to

the limit for fragmentation. Disc setup parameters are outlined in Section 4.2.1.4

and summarised in Table 4.5. Final states of these discs are shown in Figure 4.6.

In the short orbit system, with a = 100 AU, we find that including an inclination

i ≥ 60◦ results in a less destructive disc-star interaction than when the companion

orbits in the plane of the disc, hence fragmentation can occur. Despite their

rperi,actual being similar, the resulting surface density profile after the companion

has passed through the plane of the disc is much less truncated when i = 60◦

than was the case when i = 0◦, extending to Rout ≈ 80 AU after several binary

orbital periods. An m = 2 spiral mode forms quickly, and a fragment forms at

the inner edge of one the spirals, at R = 55 AU. The fragment’s orbit is initially

slightly inclined relative to the disc, with i ≈ 8◦, but it quickly settles into the

plane of the disc after an orbital period. The final state of the i = 60◦ disc is

more flared compared to when i = 0◦, with H/R = 0.15 at R = 100 AU compared

to H/R = 0.10 at R = 100 AU.

In the wider orbit systems, with a = 200 AU and 250 AU, we find that including

an inclination can weaken the disc-star interaction compared to when i = 0◦ such

that disc fragmentation no longer occurs. Considering the discs with a = 250 AU,

as we increase the companion’s inclination from i = 0◦ to i = 90◦ we find that the

m = 2 spiral mode generated by the companion becomes progressively weaker.

When i = 30◦, we observe a much smaller bump in the surface density profile

when compared to the system with i = 0◦. Hence the Q−profile remains relatively

flat, and no fragmentation occurs. For the discs with a = 200 AU, only a single

fragment forms when i = 60◦, and increasing the inclination to i = 90◦ prevents

fragmentation from happening altogether.

4.3.5 Varying companion mass

The gravitational influence of the companion star on the disc will vary with the

star’s mass. Hence we setup 8 new discs where we explore the parameter space in

M∗,companion and a for configurations which result in fragmentation. In particular,

we focus on how varying the companion star’s mass affects the binary separations
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Figure 4.6 Final states of the discs where we vary the orbital inclination and
the semi-major axis of the companion star. Disc setup parameters
are summarised in Table 4.5 and outlined in detail in Section
4.2.1.4. Green boxes are included to highlight disc configurations
which resulted in fragmentation, when their reference run analog
did not.
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which are capable of inducing fragmentation.

Discs are setup with parameters close to the fragmentation limit found until

now, keeping the disc mass constant at Mdisc = 0.2 M� and varying M∗,companion

and a only. We introduce new companion masses M∗,companion = 0.1 M�

and M∗,companion = 0.5 M�. These setups are outlined in Section 4.2.1.5 and

summarised in Table 4.6. The final states of these discs are shown in Figure 4.7.

Considering the discs with a = 150 AU, we find that both of the new setups,

with M∗,companion = 0.1 M� and M∗,companion = 0.5 M�, result in fragmentation,

with a trend for the discs to fragment faster with increasing M∗,companion. We find

tfrag = 900, 750 and 550 yrs when M∗,companion = 0.1, 0.2 and 0.5 M� respectively.

When a = 250 AU we find that fragmentation no longer occurs after decreasing

M∗,companion from 0.2 M� to 0.1 M�. A weaker m = 2 spiral mode is driven by the

0.1 M� companion, which results in an increase in Σ and a decrease in Q at the

spiral location, but the change is not significant enough to induce fragmentation.

Instead, the spiral mode persists for two full binary orbits until the simulation

ends. For the discs which do fragment, we again find a trend for discs to fragment

earlier with increasing companion mass, finding tfrag = 3050 and 1550 yrs for

M∗,companion = 0.2 and 0.5 M� respectively.

Considering the discs with a = 325 AU we find that increasing M∗,companion

from 0.2 M� to 0.5 M� causes the disc to fragment, as the more massive star

generates a stronger spiral mode. A single fragment forms after 4000 yrs in the

disc with a = 325 AU and M∗,companion = 0.5 M�. Of all the discs simulated here,

this is the widest periastron separation (rperi,actual = 256 AU) for which we find

fragmentation can be triggered.

None of the configurations where a = 400 AU result in fragmentation, for any of

the new companion star masses considered here.

4.4 Discussion

4.4.1 Summary of results

We have identified a “sweet spot” in the orbital parameter space of binary stars

which may trigger fragmentation in a disc which does not fragment in isolation.
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Figure 4.7 Final states of the discs where we vary the mass and the semi-major
axis of the companion star. Disc setup parameters are summarised
in Table 4.6 and outlined in detail in Section 4.2.1.5. Green
boxes are included to highlight disc configurations which resulted in
fragmentation, when their reference run analog did not.
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We find that the disc-star interaction for intermediate separation binaries can be

beneficial for fragmentation, with the exact range of ideal semi-major axes being

a function of the orbital eccentricity, inclination and companion star mass. A

plot summarising the companion’s orbital parameters which are found to trigger

fragmentation is included in Figure 4.8, where we also highlight the minimum

radius at which fragments formed in each disc.

In general, the companion will drive an m = 2 spiral through the disc, and

fragmentation occurs at the inner region of one, or both, of the spirals as a result

of the enhanced surface density pushing the disc over the fragmentation threshold.

Heating of the disc induced by the companion is balanced by efficient cooling (see

Figure 4.3) and the instability is able to grow until fragmentation occurs.

We find that this is true for intermediate separation binaries with 150 AU ≤ a ≤
250 AU (116 AU ≤ rperi,actual ≤ 186 AU), when considering circular binary orbits

in the plane of the disc.

For wide orbit binaries the spiral induced by the companion becomes progressively

weaker with increasing binary separation. When a & 400 AU and Mdisc = 0.2 M�,

the disc’s final surface density profile and Q−profile are almost identical to the

counterpart disc from the reference run with no companion.

Very short separation binary encounters, where the companion passes through the

outer edge of the disc, become prohibitive to fragmentation. As the companion

star passes through the disc, material is ejected and the remaining surface density

profile is modified to be much steeper in the inner disc, and truncated at a

distance slightly smaller than the distance of periastron passage. Hence a much

more compact and lower mass disc remains, and no fragmentation can occur.

When including an eccentricity in the binary orbit, we find a similar range in

rperi,actual capable of triggering fragmentation. From the suite considering non-

circular orbits with moderate eccentricities (e = 0.25, 0.5) we find that semi-

major axes 150 AU ≤ a ≤ 400 AU (92 AU ≤ rperi,actual ≤ 163 AU) can induce

fragmentation. When considering highly eccentric orbits, with e = 0.75, none of

our simulations fragment. This is generally because the high eccentricity causes

the companion to pass through the disc at periastron passage.

When including an orbital inclination for the companion, we find its influence to

become progressively lesser as we move its orbit away from the plane of the disc.

When i = 60◦ we find the sweet spot in binary semi-major axis to be between
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Figure 4.8 Summary of model parameters found to trigger fragmentation
throughout this work, including the minimum radius at which
fragments formed in each disc. A total of 20 systems presented
here resulted in fragmentation. Companion orbital eccentricities are
distinguished by different colors. Companion orbital inclinations are
distinguished by different plot markers.

100 AU ≤ a ≤ 200 AU (74 AU ≤ rperi,actual ≤ 152 AU), which is reduced to being

between 100 AU ≤ a ≤ 150 AU (75 AU ≤ rperi,actual ≤ 116 AU) when considering

companions with i = 90◦. High inclination binary companions (i = 60◦, 90◦)

which pass through the disc outer edge are less destructive than when the binary

orbit is in the plane of the disc, hence fragmentation can occur for slightly shorter

separations when i = 60◦ and i = 90◦ compared to when i = 0◦.

The sweet spot found in binary separation is broadened as we increase the

companion star’s mass from 0.2 M� to 0.5 M�, as the higher mass companion

drives a stronger spiral mode through the disc. We find companions with semi-

major axes as wide as a = 325 AU (rperi,actual = 256 AU) can trigger fragmentation

when M∗,companion = 0.5 M�. Equally, when considering less massive companions,

the sweet spot in binary separation is narrowed. Only one of our simulations, with

a = 150 AU (rperi,actual = 110 AU), results in fragmentation when M∗,companion =

0.1 M�. In the disc configurations which fragment for more than one value of

M∗,companion (when a = 150 AU and 250 AU), we find that the discs fragment

faster with increasing companion mass.
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4.4.2 Comparison to previous theoretical work

Previous work considering the possibility of fragmentation induced by the

presence of a binary star companion consists of three key papers in Nelson (2000),

Mayer et al. (2005) and Boss (2006), with their results discussed in the review

paper Mayer et al. (2007a). Nelson (2000) and Mayer et al. (2005) found that the

presence of a companion suppresses any instability due to significant tidal heating

in spiral shock waves, thus stabilising the disc. Boss (2006), however, concluded

that binary companions may promote fragmentation, finding that spiral waves

generated from the tidal interaction between the disc and the companion would

typically go on to form dense, self-gravitating clumps. In Mayer et al. (2007a)

the authors largely attribute the differences in their results to the use of an

artificial viscosity in Nelson (2000) and Mayer et al. (2005), which isn’t included

in Boss (2006), and would contribute significantly toward heating of the disc in

the presence of a shock wave, given a sufficiently large artificial viscosity was

included.

Various authors have also investigated the role of stellar flyby events in promoting

or suppressing fragmentation in discs which would be marginally stable in

isolation. The early work of Boffin et al. (1998), Watkins et al. (1998a) and

Watkins et al. (1998b) found that, when considering isothermal discs, previously

non-fragmenting discs would fragment during star-disc and disc-disc interactions.

However later models which included more realistic cooling found that heating

of the disc during the stellar encounter was sufficient to stabilise it against

fragmentation (Lodato et al., 2007; Forgan & Rice, 2009).

Until now, most work has considered either simple cooling prescriptions, where

the cooling time is proportional to the local orbital time (β−cooling, Equation

1.27), isothermal discs, or have not included an artificial viscosity which will

capture heating from shocks. Including a more realistic algorithm to approximate

radiation transport in our models allows us to model disc cooling more accurately,

hence we can capture whether the disc is able to radiate away the additional

energy generated through tidal heating during the binary encounter.

The aforementioned works generally also considered much more compact discs

than we have modelled here (in the case of Nelson, 2000; Mayer et al., 2005; Boss,

2006; Lodato et al., 2007), or discs with Rout = 1000 AU (in the case of Boffin

et al., 1998; Watkins et al., 1998a,b). However, owing to the simpler methods used

to model disc cooling, their models are scale-free and can be scaled to different
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physical units for comparison with the results here. Hence when comparing to

the works of Boffin et al. (1998); Watkins et al. (1998a,b); Nelson (2000); Mayer

et al. (2005); Boss (2006); Lodato et al. (2007) we can use their ratios rperi/rout,disc

for direct comparison to our results. This is not the case for the results from

Forgan & Rice (2009), who use the Forgan et al. (2009) hybrid radiative transfer

method, and considered Rout = 40 AU discs. For the coplanar binary encounters

considered here, we find that companions with 0.92 ≤ rperi/rout,disc ≤ 1.86 trigger

fragmentation. Only Lodato et al. (2007) considered binary encounters within

this range, finding that no fragmentation occurred in their simulations.

Of the previous works which include a similar cooling approximation as we

use here, we find that our results broadly indicate the same thing. Forgan &

Rice (2009) find that small separation, disc-penetrating encounters heat the disc

material, whilst angular momentum transport and mass stripping result in a more

stable disc configuration after the encounter. Large separation encounters have

very little effect, becoming less significant as the periastron distance increases.

However intermediate separation encounters may modify the surface density

profile of the disc, without causing significant heating, such that the disc is more

unstable over a larger range of radii after the encounter. None of the discs in

Forgan & Rice (2009) fragment, but the authors suggest that there could be

some region of parameter space in periastron distance which may act to promote

fragmentation.

Meru (2015), who used the flux-limited diffusion approximation (e.g. Mayer et al.,

2007b), also found that further fragmentation may be triggered in a disc which

has fragmented already. The fragment which has initially formed causes material

to be channelled inwards, increasing the density of the inner spirals, causing

fragmentation.

Here, we have presented a suite of simulations which model realistic cooling using

the Forgan & Rice (2009) radiative transfer approach. We find that efficient

cooling is able to prevent the disc temperature from increasing significantly during

the binary’s periastron passage, and fragmentation can occur in the spiral regions

of enhanced surface density which are driven by the companion.

103



4.4.3 Comparison to observations

Binaries are often neglected from observational and theoretical exoplanetary

science, as they complicate the modelling of planet formation, as well as the

detection and characterisation of planetary systems. Most of the work (theoretical

and observational) conducted so far on planets in binaries has focused on close-in

binaries (separations of tens of AU), generally agreeing that tight binaries (< 50–

100 AU) hinder planet formation (Bergfors et al., 2013; Kraus et al., 2012, 2016;

Kaib et al., 2013). However, the first planets discovered in binary systems showed

distinct orbital and physical properties from the rest of the planetary population,

hinting at the possibility that binary companions could dramatically reorient the

orbital configuration of planetary systems (Zucker & Mazeh, 2002). Observations

of binary star systems suggest that stellar multiplicity at wider separations may

play a key role in the formation of high-mass gas giant planets and brown dwarfs.

Various surveys have found an excess of outer companions to stars with massive

hot Jupiters or short-period stellar and substellar companions when compared to

field stars, suggesting that binary star systems on separations of a few hundred

AU may be favourable sites for the formation of these inner companions.

Beginning with their survey of solar-type spectroscopic binaries (SB), Tokovinin

et al. (2006) found an excess of wide tertiary stellar companions for SBs with

periods from 1–30 days, rising to a frequency of 96% for SBs with periods< 3 days.

In their series of “Friends of hot Jupiters” papers, Ngo et al. (2016) searched for

stellar companions to 77 systems hosting hot Jupiters. They found that 47± 7%

of stars hosting hot Jupiters have a binary companion with separations between

50–20,000 AU (a value 3 times higher than found for field stars), although Moe

& Kratter (2021) concluded that this excess was not significant after accounting

for remaining statistical biases. Nonetheless, Ngo et al. (2016) still observed

a significant deficit of tight binary companions, with separations 50–100 AU,

compared to wider systems, consistent with the idea that shorter-period binaries

may be detrimental to planet formation (Wang et al., 2014; Kraus et al., 2016).

Using direct imaging data, Fontanive et al. (2019) searched for wide-orbit binary

companions to 38 stars known to host very massive hot Jupiters or brown dwarfs

(7–60 MJup) on short periods (<1 AU), finding a binary fraction close to 80%

for these systems on separations of 20–10,000 AU, twice as high as for field

stars, with a significance confirmed in Moe & Kratter (2021). Again, they

observed a lack of binaries with separations of tens of AU, and instead found
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an excess of intermediate separation binaries, with a peak in binary separation at

∼250 AU. The binary frequency for massive giant exoplanets and brown dwarfs

(M > 7 MJup) was found to be higher than for lower mass hot Jupiters (0.2–

4 MJup), suggesting that the stellar companion’s influence may facilitate the

formation of high-mass giant planets and brown dwarfs. The systems probed

in Fontanive et al. (2019) also have a lower mean metallicity, consistent with that

of the field (Moe et al., 2019), compared to hosts to genuine hot Jupiters like those

studied in Ngo et al. (2016). Given the strong correlation seen between metallicity

and the ability to form gas giant planets via core accretion (Mordasini et al.,

2012; Jenkins et al., 2017), the high-mass inner substellar companions targeted

in Fontanive et al. (2019) are therefore likely to have formed via GI rather than

core accretion as for the lower-mass hot Jupiters.

Recently, Fontanive & Bardalez Gagliuffi (2021) reached similar conclusions,

finding that giant planets have a substantially larger raw stellar multiplicity

fraction than sub-Jovian planets, and that this trend further increases up to

a ∼30% raw binary fraction for massive planet and brown dwarfs (M > 7 MJup)

on very short orbital separations (< 0.5 AU), with the most massive and

shortest-period substellar companions almost exclusively observed in multiple-

star environments. These systems thus appear to follow the architectures of

stellar spectroscopic binaries, systematically observed as part of hierarchical triple

systems (Tokovinin et al., 2006). Notably, Fontanive & Bardalez Gagliuffi (2021)

showed that these extreme inner companions, with few analogues in (seemingly)

single-star systems, were predominantly found to be in binaries with separations

of a few hundred AU, and mostly on separations < 250 AU (despite a strong

incompleteness at these separations) for substellar companions with masses above

7 MJup, consistent with results from Fontanive et al. (2019). In comparison, they

found a peak around 600 AU (subject to the same incompleteness biases) for

binaries hosting lower-mass planets or warm and cool gas giants on wider orbital

separations, and these systems showed similar planet properties to the population

of exoplanets orbiting single stars.

These results suggest that very wide binaries have no meaningful impact on the

architectures of planetary systems, and confirm the idea that very tight binary

systems have a negative impact on planet formation. In particular, it appears that

binaries with tens to a few hundred AU separations prevent planet formation for

sub-Jovian and giant planets with masses up to a few MJup, while wider binaries

can harbour such planets but without affecting their orbital properties. This
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indicates that the exoplanet population issued from core accretion only exists

in binary configurations that are not disruptive to planet formation and do not

influence the resulting planet properties. On the other hand, the higher-mass

population of giant planets and brown dwarfs on short-period orbits, likely formed

via GI, are predominantly seen in intermediate separation binaries of few hundred

AU separations (Fontanive & Bardalez Gagliuffi, 2021), which must thus play a

role in their existence.

Here, we show with simulations of self-gravitating discs that such intermediate

separation binary companions may assist in the formation of giant planets through

means of the gravitational instability. We find that when introducing a stellar

companion at a few hundred AU into a disc configuration which would previously

not fragment, fragmentation may be induced as the companion drives strong

spirals which push the disc over the limit for instability. We find this to be

true for binaries with semi-major axes between ∼100–400 AU for the explored

parameter space, with some dependency on binary orbital eccentricity, inclination

and companion mass. This is consistent with the binary projected separations

observed by Fontanive et al. (2019) and Fontanive & Bardalez Gagliuffi (2021),

a peak in the observed distribution at around 250 AU. We also note that in

our simulations the orbital properties of these intermediate separation binaries

remain mostly unchanged after a full orbital period, as the companions do not

pass directly through the disc hence the drag that they experience from the disc

material is minimal.

Shorter-period binaries and highly-eccentric systems inhibit fragmentation as the

disc-star interaction becomes destructive. As the companion passes through

periastron it will pass through the disc, leaving a compact, lower mass disc

remaining. Hence we would expect a lower frequency of GI-born planets within

tight binary systems on separations of tens of AU, which is also consistent with

the shortfall of such systems in observations (Wang et al., 2014; Kraus et al.,

2016; Ngo et al., 2016; Fontanive et al., 2019).

4.4.4 Outlook and implications for short-period, massive

planets

Our work provides a viable formation pathway for the high-mass giant planets and

brown dwarfs observed around components of multiple star systems (Fontanive
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et al., 2019; Fontanive & Bardalez Gagliuffi, 2021). However, these substellar

companions are actually observed on very short orbital periods (<1 AU), much

tighter than the typical formation locations from disc fragmentation.

In some cases, these objects could have been scattered by the binary stellar

companion onto highly eccentric orbits and then been tidally circularised onto

their current orbits (Rice et al., 2015). However, as discussed earlier, this is only

possible for a subset of the systems presented in Fontanive et al. (2019).

Another possibility is that these objects may have naturally migrated to their

current locations. Baruteau et al. (2011) showed that fragments forming in

young, massive discs will undergo rapid, type I migration before having chance

to open a gap, and may be able to reach the inner disc within a few orbital

periods. However, it is uncertain as to what fraction of fragments will survive

this migration, and what their eventual masses will be after tidal downsizing

(Nayakshin, 2010a; Boley et al., 2010).

We also find indications that fragmentation triggered by the binary companion

may be occurring closer in than is usually found for discs in isolation. In Figure

4.3, considering the disc with an a = 250 AU companion, the Q−profile reaches

a minimum of Q = 0.79 at R = 63 AU, hence the first fragment initially forms at

R = 56 AU. In Figure 4.8, we plot the minimum separation at which fragments

form in each of our discs, including all systems with Mdisc = 0.2 M� which resulted

in fragmentation. Of the 20 discs included in the plot, we find 9 systems produce

fragments within R = 50 AU, and 2 form fragments within R = 30 AU.

It may then be that a combination of scattering, fragments forming close in,

and rapid inward migration can produce the giant planets and brown dwarfs

observed on very short orbital periods. Whilst Baruteau et al. (2011) considered

the subsequent migration of single fragments forming in a self-gravitating discs,

it is not known how a binary companion or the formation of multiple fragments

may affect this. We leave this question as subject of future work.

4.5 Conclusions

Observations of systems with close-in massive planetary and brown dwarf com-

panions suggest that almost all host a binary stellar companion on a wider orbit

(Fontanive et al., 2019). Also, the properties of the close-in objects are consistent
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with them having formed via fragmentation in a gravitationally unstable disc

(Fontanive & Bardalez Gagliuffi, 2021). However, disc fragmentation is only

likely to operate in the outer parts of such discs, requiring that these objects

somehow move from where they formed onto the close-in orbits they now occupy.

In some cases, the close-in object could have been scattered by the binary stellar

companion and then undergone tidal circularisation onto its current close-in orbit

(Rice et al., 2015; Fontanive et al., 2019). However, in many cases the tidal

circularisation timescale is far too long for this to be a viable pathway for these

systems. That such systems still typically host binary stellar companions suggests

that these stellar companions still play a role in their formation.

To investigate this, we have conducted a series of 3D SPH simulations of self-

gravitating discs with a binary stellar companion, exploring the companion’s

orbital parameter space for configurations which may trigger fragmentation in

a marginally gravitationally unstable disc. We find a “sweet spot” in which

intermediate separation binaries can induce fragmentation, with the exact set of

ideal orbital parameters being a function of the companion’s semi-major axis,

eccentricity, inclination and mass.

Radiation transport is modelled using the Forgan et al. (2009) hybrid approach.

For the discs modelled here, with outer radii Rout = 100 AU, we find that efficient

cooling during intermediate separation (100 AU . a . 400 AU) binary encounters

allows disc fragmentation to occur in a spiral region of enhanced surface density

driven by the companion star. Short separation disc-penetrating (a . 100 AU)

encounters are generally destructive, as mass stripping and disc heating entirely

wipe out any instability. This is also true of highly eccentric binary orbits, which

result in the companion passing through the disc. However, highly inclined

(i & 60◦) disc-penetrating encounters can be less destructive, allowing shorter

separation encounters to trigger fragmentation than when the binary orbit is in

the plane of the disc. Wide orbit binary encounters (a & 500 AU) have little effect

on the disc properties, with the companion’s influence becoming progressively

lesser with increasing binary separation.

The range of binary separations found to promote fragmentation is consistent

with the projected separations of the systems which display an excess of close-

in giant planets and brown dwarfs (Wang et al., 2014; Kraus et al., 2016; Ngo

et al., 2016; Fontanive et al., 2019; Fontanive & Bardalez Gagliuffi, 2021). As

our results show that intermediate separation binary systems could be favourable
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sites for the formation of massive substellar objects, we suggest that triggered

fragmentation may contribute to the excess of massive planets and brown dwarfs

observed around these systems. The question now remains how these fragments,

initially formed on wide orbits, might have migrated to the very short separations

(< 1 AU) where they are now currently observed, and will be the subject of future

work.
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Chapter 5

AB Aurigae: possible evidence of

planet formation through the

gravitational instability

This chapter contains work from Cadman et al. (2021). Whilst Cadman et al.

(2021) was led by myself, the project was undertaken in collaboration with various

listed co-authors, hence some parts of the text may contain contributions from

these co-authors.

5.1 Motivation

Owing to recent advances in high resolution infrared (IR) imaging we are now

capable of observing the planet formation process taking place. Observations of

these discs have revealed substructures indicative of the presence of planetary

companions, such as rings (ALMA Partnership et al., 2015b; Andrews et al.,

2016; Avenhaus et al., 2018; Bertrang et al., 2018; Dipierro et al., 2018; Huang

et al., 2018a), gaps (Andrews et al., 2011; Perez et al., 2015; Ginski et al., 2016;

van Boekel et al., 2017) and spirals (Garufi et al., 2013; Grady et al., 2013;

Benisty et al., 2015; Pérez et al., 2016; Tang et al., 2017; Huang et al., 2018b;

Dong et al., 2018), and recently it has even become possible to directly image

giant protoplanets which are still forming (Keppler et al., 2018; Müller et al.,

2018; Haffert et al., 2019; Boccaletti et al., 2020). Study of these systems may

reveal crucial insights into the underlying physics governing the planet formation
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process.

AB Aurigae is a 2.4 ± 0.2 M�, Herbig Ae/Be star (DeWarf et al., 2003), at a

distance d ≈ 162.9 ± 1.5 pc (Gaia Collaboration et al., 2018). Various authors

find an age for the star-disc system to be somewhere between 1− 4 Myr (van den

Ancker et al., 1997; DeWarf et al., 2003; Piétu et al., 2005). Measurements of the

disc surrounding AB Aurigae find an extended, Rout = 400 − 500 AU, low-mass

disc, where Md = 0.01 M�, with up to a factor ≈ 10 uncertainty on the mass

estimate (DeWarf et al., 2003; Andrews & Williams, 2005; Corder et al., 2005;

Semenov et al., 2005). The stellar accretion rate of Ṁ = 1.3 × 10−7 M�yr−1

(Salyk et al., 2013) is unusually high for a 1− 4 Myr old system, as the depleted

disc mass at this late stage limits the available amount of accretable material.

The AB Aurigae disc has been studied extensively owing to its complex

substructure, with authors reporting multiple rings (Piétu et al., 2005; Hashimoto

et al., 2011; Tang et al., 2012, 2017), bright inner spirals (Piétu et al.,

2005), extended CO spirals (Tang et al., 2012), and the possible presence of

multiple, planetary-mass companions (Piétu et al., 2005; Tang et al., 2012, 2017).

Recent high resolution, scattered light observations of AB Aurigae performed by

Boccaletti et al. (2020) using SPHERE provide some of the most spectacular

images of a protoplanetary disc to date, revealing detailed spiral features, and

placing new constraints on the properties of any potential companions (see Figure

5.1). A kink in the inner spiral at R ≈ 30 AU is found to be consistent with the

presence of a protoplanet with a mass of 4−13 MJup (hereafter referred to as planet

P1), which is also consistent with conclusions from previous authors (Piétu et al.,

2005; Tang et al., 2012, 2017). The authors also report a point-source located at

the outer edge of the inner disc, which is characterised by a gas and dust cavity

at R ≈ 140 AU, for which they tentatively derive a planetary mass of 3 MJup

(hereafter referred to as planet P2). Throughout this chapter we aim to explore

the likely formation history of planet P1.

In the core accretion model of giant planet formation (Mizuno, 1980; Pollack

et al., 1996), growth proceeds through the steady collisional accumulation of

planetesimals onto a rocky core, which may eventually become massive enough

for the onset of accretion of a gaseous envelope. Currently this model provides

the most popular explanation for the formation of giant planets. However, it has

been shown that formation timescales, which may be anywhere up to 10 Myr,

may exceed typical disc lifetimes (Haisch, Lada & Lada, 2001). This is especially

problematic for giant planets on wide orbits (such as those observed in the
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Figure 5.1 Image of the disc surrounding AB Aurigae obtained using VLT’s
SPHERE instrument. The locations of the possible protoplanets
which have been identified by Boccaletti et al. (2020) are highlighted.
Image credit: ESO/Boccaletti et al. (2020).
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AB Aurigae disc) where the planetesimal surface densities will be low, hence

formation timescales will be long.

In the GI model of planet formation (Boss, 1997), unstable regions of the disc

may directly collapse to rapidly form giant gaseous protoplanets or brown dwarfs.

Fragmentation may occur if the disc is sufficiently massive and able to cool

quickly, hence the conditions for fragmentation will likely only be satisfied in

the outer disc where the gas is optically thin (Clarke, 2009; Rice & Armitage,

2009). Analytical calculations of the Jeans mass in self-gravitating discs (e.g.

Section 3.6, Forgan & Rice, 2011, 2013a; Cadman et al., 2020a) suggest that

fragmentation may initially form objects with masses between a few and a few

10s of Jupiter masses. Hence wide-orbit, giant planets and brown dwarfs (such

as those observed in the AB Aurigae disc) are expected to be the most likely

outcome of disc fragmentation. Subsequent dynamical evolution, migration, tidal

stripping and growth may then follow, during which the fragment may contract

to form a compact planetary/brown dwarf mass object, or be entirely torn apart

and destroyed (Nayakshin, 2010a,b, 2011; Forgan & Rice, 2013b; Nayakshin &

Fletcher, 2015; Forgan et al., 2018; Humphries et al., 2019).

We find ourselves in a unique position with the protoplanets observed in the AB

Aurigae disc, as most of the exoplanets discovered to date have already undergone

significant migration and dynamical evolution since their formation making it

more challenging to probe their formation histories. The young age of AB Aurigae

places strict time constraints on the possible formation histories of the observed

planets, thus it provides a good testbed for planet formation theories. In this

chapter we focus on the formation history of planet P1 (core accretion vs. GI), and

whether the AB Aurigae system could be evidence of planet formation through

GI. This chapter is organised as follows. In Section 5.2 we calculate the likely

timescale for planet P1 to form through core accretion, and in Section 5.3 we

evaluate the possibility that the planet may have formed directly through GI

during AB Aurigae’s early evolution. We determine the critical disc-to-star mass

ratio for fragmentation in Section 5.3.1, and use viscous evolution models in

Section 5.3.2 to predict whether the disc may have ever been massive enough

to fragment at some point in the recent past. We place new constraints on the

current mass of the disc in Section 5.3.2.2, and in Section 5.3.3 we calculate the

Jeans mass in a gravitationally unstable, AB Aurigae-like disc. We discuss our

results and draw conclusions in Sections 5.4 and 5.5 respectively.
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5.2 Formation through core accretion

5.2.1 Core accretion timescale

5.2.1.1 Methods

To model the formation timescale of a gas giant planet through core accretion,

we use a similar approach to that outlined in Ida & Lin (2004). We begin by

assuming that either a Mcore,init = 0.01 M⊕ or a Mcore,init = 0.1 M⊕ core, with

density ρcore = 3.2 gcm−2, has formed at a semi-major axis, a, which we vary

between 5 AU and 50 AU. For simplicity, we consider planet growth in-situ and

neglect any migration through the disc, an assumption which is discussed in

Section 5.4.

Core growth proceeds at a rate (Safronov, 1969),

Ṁcore = πR2
cΣpΩfg, (5.1)

where Rc is the radius of the core, Σp is the local planetesimal surface density, Ω is

the angular frequency and fg is the gravitational enhancement factor, calculated

using the equations from Greenzweig & Lissauer (1992). The local planetesimal

surface density, Σp, is defined as the surface density of dust within a radial annulus

defined by the protoplanet’s Hill radius, RH, where,

RH = a

(
Mp

3M∗

)1/3

, (5.2)

where M∗ is the mass of the host star and Mp is the total planet mass, equal to

the sum of the core and envelope masses.

Whilst the core mass is still low, growth initially proceeds through planetesimal

accretion, and we update Mp using Equation 5.1 at each timestep. A planet may

begin to retain a gaseous envelope if the core exceeds the critical mass for the

onset of gas accretion, Md,crit, where (Ikoma et al., 2000),

Md,crit = 10

(
Ṁcore

10−6M⊕yr−1

)0.25(
κ

1gcm−2

)0.25

M⊕, (5.3)
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where κ is the planetesimal opacity, for which we use κ = 1 gcm−2.

We use a simple approach to calculate the accretion rate of a gaseous envelope

onto the core, Ṁgas, based on the Kelvin-Helmholtz cooling timescale, τKH, of the

protoplanet, where,

τKH = 109

(
Mp

M⊕

)−3

years, (5.4)

and,

Ṁgas =
Mp

τKH

. (5.5)

This approximation is only valid provided that there is sufficient disc gas present

for the planet to accrete, and envelope accretion will cease if the planet is able to

deplete all the gas available within its feeding zone. This can be defined in terms

of an upper mass limit for in-situ formation, known as the gas isolation mass,

Mg,iso, where,

Mg,iso = 50

(
Σg

2400gcm−2

)1.5(
a

1AU

)3(
M∗
M�

)−1/2

M⊕, (5.6)

where Σg is the local gas density. We prevent further growth once Mp ≥Mg,iso.

We set up the gas component of the disc with a total mass Mgas = 0.6 M�, hence

a disc-to-star mass ratio, q = 0.25, and with Σg ∝ R−1. The surface density

profile of the gas disc is evolved using the one dimensional model outlined in

Rice & Armitage (2009), where we assume a radially constant, fixed value for

the Shakura-Sunyaev viscous-α of α = 10−3 (Shakura & Sunyaev, 1973). The

planetesimal component of the disc is set up as,

Σp = fdustηice

(
R

R0

)−1

, (5.7)

where fdust is a scale factor such that we set Σp at 5 AU to be 2 gcm−2, 3 gcm−2,

5 gcm−2 and 10 gcm−2, and ηice is a constant where,
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ηice =

4.2, if a ≥ aice

1, if a < aice,
(5.8)

and aice is the ice line located at,

aice = 2.7

(
M∗
M�

)2

AU. (5.9)

In each case, we allow the planets to evolve in the disc for a maximum of 10 Myr.

5.2.1.2 Results

Figure 5.2 shows the resultant planet growth tracks using this formalism,

considering the setups with Mcore,init = 0.01 M⊕. Planet formation begins with

a phase of core growth, which may either be slow or rapid depending on the

local planetesimal surface density. This phase tends to plateau once the local

planetesimal surface density is depleted, at which point the planet mass remains

approximately constant. The critical core mass for the onset of gas accretion is

proportional to the planetesimal accretion rate onto the core, and as the heating

from accretion ceases the contraction of a gas envelope may ensue. Wide-orbit,

giant planet formation is generally favoured near to, and just beyond the ice line

due to the enhancement in the local planetesimal surface density (Equation 5.8).

We calculate aice ≈ 15.6 AU for a star of mass 2.4 M�. If the local planetesimal

surface density is particularly high, for example near to the ice line in Figure 5.2c,

the core mass may pass straight through the critical mass without plateauing. If

the local planetesimal surface density is low, for example at a large semi-major

axis in Figure 5.2d, the core may never experience significant growth.

In Table 5.1 we show the results of 32 runs, where we measure the time for

the core to have accreted a significant envelope, of mass equal to the core mass

(Mp > 2Mcore), and to reach a total planetary mass of MP1 = 4 MJup, equal to

the lower limit of the estimated mass for planet P1. We find it challenging to

produce a planet of at least 4 MJup in an AB Aurigae-like disc in . 1 − 4 Myr.

In the majority of setups considered here the planet will either reach its isolation

mass before reaching the mass of planet P1, as seen in Figure 5.2a, or will not grow

rapidly enough to reach MP1 within the duration modelled here. To rapidly form
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a planet this massive generally requires a significant core has initially formed, in

a disc with an extremely high planetesimal surface density, with a planet on a

shorter orbit than where planet P1 is currently located.

The planetesimal surface densities considered here, with ΣP,5AU = 2 gcm−2,

3 gcm−2, 5 gcm−2 and 10 gcm−2 correspond to total planetesimal masses across

the disc of 0.012 M�, 0.024 M�, 0.048 M� and 0.072 M�. These are equivalent to

initial dust-to-gas ratios of 0.01, 0.02, 0.04 and 0.06 if we assume that the dust

and gas in the disc decoupled when the gas mass was 1.2 M� (therefore when

q = 0.5), and that all of this dust then went on to form planetesimals. However,

if any of the dust was depleted by some other mechanism or did not go on to

form planetesimals, which would likely be the case, then the planetesimal surface

densities used here would demand much higher initial dust-to-gas ratio prior to

decoupling. Therefore given the generously high planetesimal surface densities

used here, we would consider these core accretion timescales as optimistic lower

limits to what we might expect in a realistic disc.

Mechanisms which may be capable of speeding up these core accretion timescales

and have not been included in the models here, such as pebble accretion, are

discussed in Section 5.4.2.

5.3 Formation through the Gravitational Insta-

bility

5.3.1 Critical mass limit for fragmentation

5.3.1.1 Methods

We use the phantom (Price et al., 2018) SPH code to determine the critical

mass limit for fragmentation in a disc around a 2.4 M� star, analogous to AB

Aurigae. We represent the disc with N = 1 × 106 SPH particles, distributed

between Rin = 2.5 AU and Rout = 400 AU with a surface density profile Σ ∝
R−1 and sound speed profile cs ∝ R−0.25. We modify phantom such that we

model radiative cooling using the hybrid radiative transfer method (Forgan et al.,

2009) outlined in Section 2.4.1.4. We assume that disc irradiation leads to a

constant background temperature, which we represent as, Tirr = 10 K. Artificial
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Figure 5.2 Evolution of planet core masses (solid line) and core + envelope
masses (dashed lines) for in-situ core accretion planet formation
at radii R = 5 AU (5.2a), 10 AU (5.2b), 20 AU (5.2c) and 30 AU
(5.2d) from the stellar host. In each case the models begin with
an initial core mass Mcore,init = 0.01 M⊕ at t = 0. We vary
the planetesimal surface densities in the disc such that ΣP,5AU =
2 gcm−2, 3 gcm−2, 5 gcm−2 and 10 gcm−2, which correspond to
total planetesimal masses across the disc of 0.012 M�, 0.024 M�,
0.048 M� and 0.072 M�.
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Mcore,init R Σp,5AU tenv tP1

M⊕ AU gcm−2 Myr Myr
(1) (2) (3) (4) (5)

0.01 5 2 - -
0.01 5 3 - -
0.01 5 5 - -
0.01 5 10 6.43 -
0.01 10 2 - -
0.01 10 3 - -
0.01 10 5 - -
0.01 10 10 3.14 -
0.01 20 2 - -
0.01 20 3 9.56 -
0.01 20 5 6.33 -
0.01 20 10 3.16 3.18
0.01 30 2 - -
0.01 30 3 - -
0.01 30 5 - -
0.01 30 10 8.77 8.82
0.1 10 2 - -
0.1 10 3 - -
0.1 10 5 - -
0.1 10 10 1.88 -
0.1 20 2 6.81 -
0.1 20 3 3.95 4.05
0.1 20 5 2.60 2.66
0.1 20 10 1.30 1.32
0.1 30 2 - -
0.1 30 3 9.92 -
0.1 30 5 6.61 6.72
0.1 30 10 3.33 3.38
0.1 50 2 - -
0.1 50 3 - -
0.1 50 5 - -
0.1 50 10 - -

Table 5.1 Results of the core accretion models. (1) Initial core mass. (2) Semi-
major axis of core. (3) Planetesimal surface density at 5 AU. (4)
Time before the planet reaches runaway growth, where the envelope
mass exceeds the core mass. (5) Time before the planet mass reaches
4 MJup
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disc viscosity is modelled using the standard α− β viscosity prescription, where

we use αSPH = 0.1 and βSPH = 0.2.

Each disc is allowed to evolve for a maximum of t = 15, 550 yrs, equal to 3

orbital periods at Rout = 400 AU, or until fragments form and the computational

timestep becomes prohibitively long for the simulations to continue. We calculate

the thermalisation timescale, ttherm,i, from Forgan et al. (2009) for each of our

disc final states, which represents the time for the disc material to reach thermal

equilibrium. We find that in the discs that don’t fragment within 15, 550 yrs,

max(tttherm,i) � 1 kyr. It is therefore reasonable to assume that if these discs

have not fragmented by this point, they will likely not do so in the future.

5.3.1.2 Results

Final states of these SPH simulations are shown in Figure 5.3, where we vary

the initial disc mass between 0.2 M� − 0.35 M�, which correspond to disc-to-star

mass ratios q = 0.08− 0.15.

The final states of these disc models show that we expect a disc similar to AB

Aurigae to fragment and form multiple clumps if Md ≥ Md,crit = 0.3 M� (q ≥
0.125), and to display non-axisymmetric substructure if Md ≥ 0.25 M� (q ≥ 0.1).

For Md ≤ 0.2 M� (q ≤ 0.08), it is unlikely that the gravitational instability will

lead to the growth of significant spirals and, in the absence of a perturber, it

should be almost entirely axisymmetric. Therefore given the current low mass

state of the AB Aurigae disc we predict that it should be gravitationally stable,

as expected.

When also considering a set of discs with outer radii Rout = 300 AU and Rout =

500 AU we find that this critical disc-to-star mass ratio has some dependence on

disc size, with more extended discs being more stable. When Rout = 500 AU we

find the critical disc mass for fragmentation to be Md,crit = 0.35 M� (qcrit = 0.15),

and when Rout = 300 AU we find Md,crit = 0.3 M� (qcrit = 0.125).

5.3.1.3 Subsequent migration of the clumps

Fragmentation will only occur if the disc is able to radiate energy away at a

rate faster than the clump will collapse, hence primarily operates at large radii

from the central star where the disc opacity is low thus it can cool efficiently. In
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the disc with q = 0.125, the fragment forms at a ≈ 200 AU, much further out

than the current semi-major axis of planet P1. 2D hydrodynamical simulations

indicate that once fragments form in a gravitationally unstable disc they will

rapidly migrate to the inner regions within a few orbital periods (Baruteau

et al., 2011). Computation times become prohibitively long for us to model

the long-term migration of clumps using SPH, as to resolve the high densities

at the clump centres requires long integration times. Instead we can use the

analytic calculations from Nayakshin (2010a) to get an idea for the approximate

migration timescales of a protoplanet formed in an AB Aurigae-like disc. For

type I migration, the time to move between radii aout to ain will be,

∆tmig,I =

∫ ain

aout

tmig,I(a)

a
da, (5.10)

where,

tmig,I(a) =
(Mp

M∗
Ω
)−1H

a
, (5.11)

and for type II migration,

∆tmig,II =

∫ ain

aout

tmig,II(a)

a
da, (5.12)

where,

tmig,II(a) =
1

αΩ

(H
a

)−2

, (5.13)

where H is the disc scale height at R = a.

Whether a planet is in the type I or type II regime can be established in terms of a

transition mass, Mt, which roughly corresponds to the mass at which protoplanets

become capable of gap-opening. For M ≤ Mt (lower-mass, faster migrating

protoplanets) the planet will be in the type I regime, and for M ≥ Mt (higher-

mass, slower migrating protoplanets) the planet will be in the type II regime,

where,

Mt = 2M∗

(H
R

)3

. (5.14)
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We can calculate the time for planet P1 to migrate from aout = 200 AU to ain =

30 AU, by substituting M∗ = 2.4 M�, Mp = 4 MJup, α = 0.06 for a saturated

disc, and calculating the azimuthally averaged disc scale height, taken from the

SPH disc where Md = 0.3 M�. Integrating Equations 5.10 and 5.12 we calculate

∆tmig,I = 6.9 kyr and ∆tmig,II = 1.0 Myr. Note that the value of α used here

should be considered an upper limit as α will decrease as the planet migrates.

Thus the calculated tmig,II would be a lower limit.

From Equation 5.14 we calculate the transition mass for gap opening to be

Mt = 2.4 MJup, which would place planet P1 comfortably in the type II regime.

Baruteau et al. (2011) however suggest that GI protoplanets will migrate inwards

much faster than the gap opening timescale, and that their migration may be

better explained in the type I regime. ∆tmig,I and ∆tmig,II are likely more

representative of lower and upper limits on the migration timescale of planet

P1, and the subsequent migration of a GI protoplanet will be best explained

by a combination of both regimes. In either case, these simple calculations

demonstrate that, to a first approximation, it should be entirely possible for

a fragment formed on a wide orbit to migrate inward to the current location of

planet P1 within the current lifetime of the AB Aurigae disc.

5.3.2 Viscous evolution models of AB Aurigae

Despite AB Aurigae’s disc mass being too low to be gravitationally unstable

currently, it will likely have been much more massive in the past prior to mass

depletion through stellar accretion and photoevaporative winds, as massive discs

will rapidly evolve away from an initially high mass state (Hall et al., 2019).

Viscous evolution models use analytic prescriptions to calculate the evolution

history of a protoplanetary disc’s surface density profile. We use them here to

calculate the likely mass evolution history of AB Aurigae, and predict whether

the disc mass may have previously exceeded the critical mass for fragmentation

found in Section 5.3.1.

5.3.2.1 Methods

Full details of the model used here to calculate the evolution of a disc whose

primary source of viscosity is provided by self-gravity can be found in Rice &

Armitage (2009). We also outline the basic equations here.
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Figure 5.3 SPH models of an AB Aurigae-like disc. Each disc is set up with
M∗ = 2.4 M�, Rout = 400 AU, N = 1 × 106 and Σ ∝ R−1, cs ∝
R−0.25. We vary the disc-to-star mass ratios within the range q =
0.08 − 0.15 (Md = 0.2 − 0.35 M�). We find the critical disc-to-
star mass ratio for fragmentation in an AB Aurigae-like disc to be
qcrit = 0.125 (Md,crit = 0.3 M�).
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Viscous evolution of the surface density, Σ(r, t), can be modelled using the one-

dimensional prescription from Lynden-Bell & Pringle (1974); Pringle (1981),

which is also derived in Section 2.3.1,

∂Σ

∂t
=

3

r

∂

∂r

[
r1/2 ∂

∂r

(
νΣr1/2

)]
− Σ̇wind, (5.15)

where we now also include Σ̇wind which represents the photoevaporative mass

loss due to irradiation from the central star. Here we implement the x-

ray photoionization model described in detail in Owen et al. (2011) and

assume a moderate x-ray luminosity of 1 × 1030 erg s−1, noting that the rate of

photoevaporative mass loss scales linearly with x-ray luminosity. Disc viscosity,

ν(r, t), is modelled using the Shakura-Sunyaev viscous−α prescription (Equation

2.86; Shakura & Sunyaev, 1973). The sound speed, cs, is calculated by solving

Equation 1.21, where we force the disc to be in a marginally unstable state with

Q = 1.5.

The volume density can then be calculated as ρ = Σ/2H, and the temperature, T ,

optical depth, τ , and ratio of specific heats, γ, can be determined by interpolation

of the equation of state table from Stamatellos et al. (2007) using the Rosseland

mean opacities from Bell & Lin (1994).

To calculate the viscous-α term from Equation 2.86, we must first determine the

disc cooling time, which requires that we calculate the radiative cooling term

(Hubeny, 1990),

Λ =
16σ

3
(T 4 − T 4

irr)
τ

1 + τ 2
, (5.16)

and determine the local cooling time as tcool = U/Λ, where the energy per unit

surface area is,

U =
c2

sΣ

γ(γ − 1)
. (5.17)

In a disc where the primary source of viscosity comes from self-gravity, the

effective viscous-α term can be calculated using Equation 1.28. We set a lower

limit, αmin, below which we assume that GI is no longer the dominant source

of viscosity but instead, in a sufficiently ionized disc, MRI may dominate, for
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example. If α < αmin we set α = αmin and recalculate the disc properties, now

no longer requiring the disc to be gravitationally unstable with Q = 1.5.

Equations 1.21 and 1.28 can then be solved to calculate cs and α, from which we

can use Equation 2.86 to calculate ν. Equation 5.15 can then be integrated to

determine the time evolution of the disc’s surface density profile, hence its mass

evolution.

5.3.2.2 A note on the current mass of the AB Aurigae disc

Protoplanetary disc masses are notoriously challenging to measure. They often

rely on empirical conversions between a disc’s flux density and its mass, which

require uncertain assumptions about the disc optical depth, metallicity, dust-to-

gas ratio and grain size distribution. Combined with uncertainties in the flux

measurement and distance toward the system, mass estimates may be uncertain

by up to an order of magnitude, and are usually considered to represent lower

bounds. Estimates of the disc mass surrounding AB Aurigae find a low mass disc,

with Md = 0.01 M� and uncertainty up to a factor ≈ 10 (Andrews & Williams,

2005; Corder et al., 2005; Piétu et al., 2005; Semenov et al., 2005).

The accretion rate onto the star may also provide us a with rough estimate of

the disc mass, as it is indicative of the mass reservoir available to the star from

the disc. A protoplanetary disc is expected to settle into a steady-state with a

constant mass accretion rate given by Equation 3.1. This can be rearranged to

show that a disc with sound speed profile, cs = cs,0R
−0.25, and surface density

profile, Σ = Σ0R
−1, may have a radially constant viscous-α given by,

α =
1

3π

Ṁ
√
GM∗

c2
s,0Σ0

. (5.18)

We can substitute in for cs,0 by assuming a flattened disc with H/R = 0.1 at

R = 100 AU, and substituting H = cs/Ω, where H is the local disc scale height.

Similarly, we can substitute Σ0 for the disc outer radius, Rout = 400 AU and disc

mass to obtain an equation in terms of α and Md,

α =
200

3

ṀRout√
GM∗

√
100AU

Md

. (5.19)
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Figure 5.4 Viscous−α vs. disc mass for a steady-state disc with Ṁ = 1.3 ×
10−7 M�yr−1, equal to the mass accretion rate measured in AB
Aurigae. We calculate α as a function of disc mass using Equation
5.19, which assumes that the disc has a radially constant viscous−α.

We plot this equation in Figure 5.4 for a star of mass 2.4 M� and mass accretion

rate Ṁ = 1.3×10−7 M�yr−1 (Salyk et al., 2013). In Table 5.2 we show calculated

disc masses corresponding to α values 0.1, 0.01 and 0.001.

From Figure 5.4 we see that for a very-low mass disc (Md ≤ 0.1 M�) to have an

accretion rate Ṁ = 1.3×10−7 M�yr−1 would require a disc viscosity much higher

than we would usually expect from a quasi-stable disc, with α ≥ 0.1. If instead

the disc is still massive, with Md ≥ 0.1 M�, the viscous-α required to explain

the high accretion rate decreases significantly. In a quasi-stable disc we might

typically expect α ≈ 10−2 − 10−4 (Hartmann et al., 1998; Rafikov, 2017).

We do not attempt to propose an exact disc mass for AB Aurigae here, but

instead wish to highlight that in order to explain the system’s high accretion rate

may require that the disc is more massive than has previously been suggested,

and that it is likely at least as massive as the upper bound of the current disc

mass estimates.
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5.3.2.3 Results

With this in mind we use these viscous evolution models to predict how long ago

the AB Aurigae disc may have been massive enough to exceed the critical mass

limit for fragmentation, where Md = Md,crit = 0.3 M�, assuming the system to

have a current disc mass approximately equal to the upper bound on the mass

estimate, Md = 0.1 M�.

In order to do this, we set up discs with initial masses Md = Md,crit = 0.3 M�

and evolve them forward in time until their mass has been depleted to Md =

0.1 M�, assuming αmin values in the range 0.01 − 0.05. Discs are set up with

initial parameters similar to what we might expect in a young AB Aurigae disc,

with M∗ = 2.4 M�, Rout,init = 400 AU, surface density profile Σ ∝ R−1 and

temperature profile T ∝ R−0.75. We assume again that irradiation leads to a

constant background temperature Tirr = 10 K.

The results of these models are shown in Figure 5.5. To illustrate how long in the

recent past the AB Aurigae disc may have been massive enough to exceed the

fragmentation threshold, we have plotted the disc mass evolution in reverse order.

Hence t = 0 represents the disc in its current state, with Md = 0.1 M�, and the

x-axis measures Myrs in the past. For example, in the case of the αmin = 0.05

model, we predict that the AB Aurigae disc may have been more massive than

Md,crit = 0.3 M� approximately 1.3 Myrs ago.

Discs with higher viscous−α values will evolve at a faster rate, hence the time

between the disc mass being in its current state, with Md = 0.1 M�, and exceeding

the critical mass limit, Md,crit = 0.3 M�, will be shorter.

These models again reiterate how it is challenging to reconcile the current low

estimated disc mass with the high measured accretion rate, leading us to conclude

that AB Aurigae is either currently more massive than observations suggest, or

was almost certainly so in its recent past. In the most highly accreting case,

α Md (M�)

0.1 0.04
0.01 0.36
0.001 > 1.2

Table 5.2 Disc masses corresponding to α = 0.1, 0.01 and 0.001 in Figure 5.4.
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Figure 5.5 Mass evolution of a disc similar to AB Aurigae, calculated using
the viscous evolution models outlined in Section 5.3.2.1. The plot
begins with a disc mass equal to the current mass of AB Aurigae,
with Md = 0.1 M� at t = 0, and illustrates how long in the
recent past the disc mass may have exceeded the critical mass limit
for fragmentation, Md,crit = 0.3 M�. Hence the x-axis measures
Myrs in the past. We vary the value of αmin, which represents a
background viscous-α value generated by some process other than
disc self-gravity.

with αmin = 0.05, we find the accretion rate when Md = 0.1 M� to be Ṁ =

4.80 × 10−8 M�yr−1, and in the lowest accreting case with αmin = 0.01 we find

Ṁ = 9.0× 10−8 M�yr−1, both of which are significantly lower than the currently

measured value of Ṁ = 1.3× 10−7 M�yr−1 (Salyk et al., 2013).

Crucially though, the plots in Figure 5.5 demonstrate how we can trace the AB

Aurigae disc back to a previously higher mass state, and how the disc mass may

have exceeded the fragmentation threshold in the recent past. When assuming a

moderate background αmin we find that the disc mass may have exceeded Md,crit

within the past ≈ 1.25− 4 Myr (i.e. within the current estimated lifetime of the

disc). Thus it is plausible that a young AB Aurigae disc may have fragmented to

form one or multiple giant gaseous protoplanets during its early evolution.
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5.3.3 Jeans mass in an AB Aurigae-like disc

The local Jeans mass in a self-gravitating disc can be used, in the case where a

region of the disc fragments, to estimate the masses of the bound clumps that will

form. In Chapter 3 and Cadman et al. (2020a) we derived a revised equation for

the Jeans mass in an irradiated self-gravitating disc, which is stated in Equation

3.11. We can use this equation, and use the same approach as in Section 5.3.2.1

to calculate how the Jeans mass varies as a function of Ṁ and Rout. We assume

the disc to be marginally unstable, with Q = 1.5, and use Equation 1.21 to obtain

cs, and solve equation 1.28 to obtain α for use in Equation 3.1, allowing us to

calculate the Jeans mass for a range of disc outer radii and accretion rates.

In Figure 5.6 we plot Equation 3.11, for a disc around a 2.4 M� star, with

Ṁ between 1 × 10−9 M�yr−1 and 1 × 10−4 M�yr−1, and Rout between 50 AU

and 500 AU. We assume that disc irradiation leads to a constant background

temperature, and consider two cases where Tirr = 10 K and Tirr = 50 K. Higher

disc temperatures reduce the effective viscous−α, whilst also providing greater

pressure support against direct collapse, thus stabilising the system against

GI. Hence, for a given Ṁ and Rout the Jeans mass increases as a function of

irradiation.

A gravitationally unstable disc may fragment if a collapsing clump is able to

cool and radiate energy away at a rate faster than the local dynamical time.

This condition can be expressed in terms of a critical value of the dimensionless

cooling parameter, βc = tcoolΩ, which in turn can be expressed in terms of a

critical viscous−α. We typically expect this value to be somewhere between

αcrit ≈ 0.06− 0.1 (Gammie, 2001; Rice et al., 2005; Baehr et al., 2017), thus we

include contours of α = 0.01 and α = 0.1 in Figure 5.6 to indicate regions of the

parameter space that may fragment.

These plots reiterate that at an earlier stage of AB Aurigae’s evolution, when the

mass accretion rate was likely higher than it currently is, it is entirely plausible

that the disc may have been gravitationally unstable and may have fragmented,

as these higher accretion rate states lie in an unstable region of parameter space.

For a given disc radius the minimum Jeans mass doesn’t vary much whether

we assume fragmentation can only occur for α ≥ 0.01 or α ≥ 0.1. Assuming

that αcrit = 0.1 we find the minimum Jeans masses at R = 200 AU, 300 AU and

400 AU to be 1.6 MJup, 2.5 MJup and 3.4 MJup respectively when Tirr = 10 K, and
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Figure 5.6 Jeans mass in a self-gravitating disc surrounding a 2.4 M� star. We
consider two values for the disc irradiation temperature,Tirr = 10 K
(left) and Tirr = 50 K (right). We expect a disc to be unstable against
fragmentation for αcrit ≈ 0.06 − 0.1, thus we plot contours of α =
0.01 and α = 0.1 to indicate regions of parameter space which would
likely be unstable against fragmentation.

to be 10.3 MJup, 12.4 MJup and 13.3 MJup respectively when Tirr = 50 K, roughly

coinciding with what we observe from the mass of planet P1.

5.4 Discussion

5.4.1 Implications for formation through core accretion

Significant fine tuning of the model parameters is required in Section 5.2 to form

planet P1 through core accretion within the strict time constraint of the system’s

measured age. To form a planet of 4 MJup within 1 − 4 Myr generally requires a

planetesimal surface density much higher than would usually be expected, with

a total planetesimal mass across the disc ≥ 0.072 M� when Mcore,init = 0.01 M⊕,

and ≥ 0.024 M� when Mcore,init = 0.1 M⊕. When Σp,5AU = 2 gcm−2, hence with

a total planetesimal mass across the disc of 0.012 M�, we generally see very slow

planet growth.

It is important to note however that we have only considered a simple formalism

for our modelling of core accretion here, and that processes not included in our

models, such as planet migration, pebble accretion and disc instabilities, may be

capable of accelerating initial growth. We discuss the effect of these next.
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5.4.2 Limitations of the core accretion models

Migration allows the planet to sample a wider region of the disc, therefore

preventing the local planetesimal surface density becoming depleted as rapidly

as when it grows in-situ. When we include core migration in Section 5.2 the

planets generally grow at a faster rate. However we chose to only consider in-situ

formation here, as including migration causes all the cores to migrate to the inner

disc (a . 3 AU) away from the location where we currently find planet P1, and

toward the regions of higher planetesimal surface density where they accrete at a

faster rate. Some other mechanism, such as planet-planet scattering, would then

be required to explain planet P1’s subsequent migration back out to a ≈ 30 AU.

When modelling in-situ formation at the current semi-major axis of planet P1,

we see only slow growth when Mcore,init = 0.1 M⊕, and almost no growth when

Mcore,init = 0.01 M⊕.

Instabilities in discs may be capable of generating large over-densities of

solids, hence they have been suggested as possible mechanisms for accelerated

planetesimal growth and, in extreme cases, fragmentation of the disc solids

under their self-gravity. The spiral arms of young, GI discs have been shown

to cause strong dust-trapping (Rice et al., 2004), whilst the gravitational collapse

of filaments generated in the streaming instability (Youdin & Goodman, 2005;

Youdin & Johansen, 2007) may form planetesimals of radii 100 − 1000 km

(Johansen et al., 2007, 2011, 2012), thus providing a possible mechanism for the

initial formation of rocky cores. Whilst refraining from modelling the detailed

physics of dust trapping through disc instabilities, we can crudely represent

local grain enhancements by simply increasing the total dust-to-gas ratio in the

disc, which by default will increase the planetesimal surface density local to the

accreting core. We account this by increasing the total planetesimal surface

density by up to a factor of 6 in Section 5.2.

Mechanisms for accelerated growth and rapid core formation become necessary as

core accretion faces challenges when establishing how the first planetesimals are

able to grow beyond metre sizes. The initial stages of growth are believed to be

slow, as dust grains may encounter growth barriers beyond metre sizes (Brauer

et al., 2008; Mordasini et al., 2010). It has been shown, as consequence of intrinsic

gas-dust drag in the disc, that grains of a critical size will radially migrate and be

accreted onto the star within a fraction of the disc lifetime (the radial drift barrier,

Weidenschilling, 1977). Further, solids of millimetre to centimetre sizes, with
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Stokes number close to 1, are expected to have high relative azimuthal velocities,

hence grain-grain collisions may become destructive, resulting in shattering (the

fragmentation barrier, Birnstiel et al., 2012), or neutral and result in recoiling (the

bouncing barrier, Zsom et al., 2010), both of which prevent a positive outcome

of coagulation. In our model we assume that a core of mass 0.01 M⊕ or 0.1 M⊕,

with Rcore,init = 1.6×103 km and Rcore,init = 3.5×103 km respectively, has already

formed at t = 0, therefore avoiding the detailed physics of this initial phase of

core growth. Note that these initial core sizes are consistent with, but slightly

larger than, the planetesimals expected to form through direct collapse of the

dust disc during the streaming instability (Johansen et al., 2007, 2011, 2012).

Possibly most importantly, we note that we do not include a prescription for

pebble accretion in our model (for a review see Johansen & Lambrechts, 2017).

Accretion of millimetre to centimetre sized pebbles onto planetesimal cores

may have the potential to generate significantly faster growth rates than the

planetesimal-planetesimal accretion we consider here. Pebbles are thought to

be abundant in protoplanetary discs, since it is a natural outcome from the

fragmentation and bouncing barriers. Pebbles of millimetre-centimetre sizes are

coupled to the gas in the disc. The gas component orbits at sub-Keplerian

velocities due to the outward gas pressure. The solids, which are orbiting at

Keplerian velocities, will experience a drag force which, in a smooth, laminar

disc, will cause them to radially drift inward. This migration of pebbles can lead

to them being transported to within the path of the growing planetesimal core,

constantly replenishing the pebbles within the planetesimal’s feeding zone and

preventing it from reaching its isolation mass as quickly as they do in Section

5.2. If the planetesimal is gravitationally massive and capable of perturbing

the velocities of nearby solids, the pebbles may enter into complex trajectories,

orbiting and eventually settling down into its gravitational potential well. If

the planetesimal’s gravitational cross section exceeds its geometric cross section,

pebble accretion may become the dominant growth mechanism. In their review

paper Johansen & Lambrechts (2017) show that pebble accretion may be capable

of resolving many of the timescale problems associated with core accretion, whilst

being able to explain the formation of all planet types.
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5.4.3 Implications for formation through GI

In Section 5.3.1 we used SPH simulations to determine the critical mass limit

for fragmentation in a disc surrounding a 2.4 M� star, finding that for a Rout =

400 AU disc, Md,crit = 0.3 M� (qcrit = 0.125). Whilst we have mostly focused our

discussion on the case of single fragment formation from our SPH simulations, it

is also likely that multiple clumps may form in a disc with a mass slightly higher

than Md,crit (see Figure 5.3). The initial formation of multiple protoplanets may

then also provide an explanation for the wider-orbit planet P2 which has also been

inferred, located at a distance a ≈ 140 AU from the parent star (Boccaletti et al.,

2020). We have refrained from analysing the formation history of planet P2, due

to its slightly more tentative detection, choosing instead to focus on planet P1.

However it would seem that the formation of a 3 MJup planet at a ≈ 140 AU may

be even more challenging to explain in the core accretion paradigm than is the

case for planet P1, as the gas and dust surface densities in the disc will drop off

as Σ ∝ R−1, hence will be exceedingly low at such a large radius. As we see

only minimal core growth at R = 30 AU in Figure 5.2d, it is likely that growth

at R = 140 AU would be near-negligible. It may then be the case that in fact

planets P1 and P2 represent two survivors from several fragments which could

have initially formed.

Despite the AB Aurigae disc being far too low mass to be gravitationally unstable

currently, models of the system’s viscous evolution in Section 5.3.2 suggest that it

may have been much more massive when it was younger, potentially exceeding the

critical mass limit for fragmentation. It seems reasonable to expect that the disc

might have previously fragmented in an extended system such as AB Aurigae,

as previous studies suggest that fragmentation is inevitable in GI discs at radii,

R & 50− 100 AU (Rafikov, 2005; Whitworth & Stamatellos, 2006; Clarke, 2009;

Forgan & Rice, 2011). Further, in Chapter 3 and Cadman et al. (2020a); Haworth

et al. (2020) we used hydrodynamic simulations to demonstrate that, whilst lower

mass stars may support gravitationally stable massive discs, susceptibility to

fragmentation increases as a function of stellar mass, and that discs around higher

mass stars (M∗ ≥ 2 M�) may fragment for relatively low disc-to-star mass ratios.

AB Aurigae being an extended disc around a higher mass star therefore seems to

be an ideal candidate system to search for surviving products of GI.

If the disc had been able to fragment whilst it was young, it is not necessarily true

that the clumps will have survived the 1−4 Myr lifetime of the AB Aurigae system.
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We find that fragments may initially form on wide-orbits with R & 200 AU, and

use analytic calculations to predict initial clump masses 1.6−13.3 MJup. However

subsequent evolution is inevitable, and the fragments will rapidly migrate through

the disc (Baruteau et al., 2011).

In the tidal downsizing hypothesis of planet formation (Nayakshin, 2010a,b, 2011)

GI embryos will cool and contract as they migrate. Dust sedimentation may lead

to the formation of a solid core, potentially of mass comparable to that of a

terrestrial planet (Boss, 1998). If the embryo’s outer layers contract slowly whilst

migration occurs rapidly then tidal stripping from the parent star may occur once

the embryo reaches the inner disc, as its physical radius may exceed its Hill sphere

(Nayakshin, 2010a). It is possible that many of the initially formed fragments may

be entirely destroyed during this tidal downsizing process (Nayakshin & Fletcher,

2015; Humphries et al., 2019). Population synthesis calculations find this may

be the true of ≈ 50% of GI protoplanets, with the remaining objects eventually

residing at a & 20 AU (Forgan & Rice, 2013b), although when including fragment-

fragment scattering this survival fraction may be significantly less (Forgan et al.,

2018). The initial formation of multiple clumps would then be necessary if any

are to survive beyond this early phase of evolution. Accretion of material onto

the protoplanets will also occur as they migrate through the disc. Kratter et al.

(2010) showed that most GI fragments will grow well beyond the mass limit for

Deuterium burning, and that any GI-born planets likely represent the low mass

tail of the eventual GI fragment mass distribution. The Jeans mass estimates that

we present in Section 5.3.3 therefore represent those shortly after collapse only,

as dynamical evolution will significantly influence the embryo’s eventual mass.

We also tentatively suggest that the previous disc mass estimates (Md ≈ 0.01 M�)

(DeWarf et al., 2003; Andrews & Williams, 2005; Corder et al., 2005; Semenov

et al., 2005) appear too low to be consistent with the high stellar accretion rate

(Salyk et al., 2013), which is indicative of the presence of a large mass reservoir.

1D calculations which assume the disc to be in a quasi-steady state with a radially

constant viscous−α suggest a lower limit for the current disc mass asMd & 0.1 M�

(see Fig. 5.4). This rough lower limit is in fact consistent with the upper bound of

the uncertainty on the current disc mass estimates. However even when assuming

this slightly higher disc mass, we still find the calculated accretion rates from our

viscous evolution models in Section 5.3.2.3 to be significantly lower than the

accretion rate measured from the system. On the unusually high stellar accretion

rate, Tang et al. (2012) suggest a possible explanation is the presence of an inner
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disc, characterised by a gas/dust cavity observed at R ≈ 100 AU, which is being

replenished through accretion from the remnant envelope above and below the

disc midplane. This would suggest that the measured accretion rate does not

represent that of a settled, Rout = 400 AU disc as we have assumed here, and

would allow for the existence of a low mass disc whilst being consistent with

a high accretion rate. We only attempt to further highlight this discrepancy

between the measured disc mass and accretion rate, and note that the current

mass of the disc does not significantly affect the overall conclusions from this

chapter in regards to the formation history of planet P1.

Since the writing of this chapter, Currie et al. (2022) published a direct imaging

result of a protoplanet in the AB Aurigae disc at ∼ 93 AU, also suggesting that

this may be indicative of planet formation through GI. This recent result adds

further strength to our hypothesis that the AB Aurigae disc may have been

potentially massive enough to undergo fragmentation in its recent past, possibly

forming multiple clumps which may still be present and evolving in the disc today.

5.5 Conclusions

In this chapter we have analysed the possible formation history of the 4−13 MJup

planet observed at a ≈ 30 AU within the protoplanetary disc surrounding AB

Aurigae (Piétu et al., 2005; Tang et al., 2012, 2017; Boccaletti et al., 2020). The

young age of the star-disc system places strict constraints on the core accretion

formation timescale, which we find challenging to explain within its 1 − 4 Myr

measured age. The planet’s high mass and wide-orbit are indicative of a planet

which may have instead formed through gravitational instability in the natal AB

Aurigae disc.

The key results are as follows.

1. Typical in-situ core accretion formation timescales for planet P1 exceed the

system’s measured age. Fine tuning of the model parameters is required

in order to form a planet of 4 MJup within 1 − 4 Myr, including significant

enhancement of the planetesimal surface density in the disc, and, in most

cases, that a large planetesimal core with Mcore,init = 0.1 M⊕ has already

formed near to the snow line at t = 0. At the current semi-major axis of

planet P1 (a = 30 AU) we find extremely slow in-situ growth due to the
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low disc surface densities at wide orbits. We do not include a prescription

for pebble accretion in our models here, but note that it may be capable of

speeding up planet growth.

2. A disc surrounding a 2.4 M� star, analogous to young AB Aurigae, would

have fragmented if its initial mass exceeded Md,crit = 0.3 M� (qcrit = 0.125).

If the disc mass is slightly higher than Md,crit several fragments may form.

Formation of multiple fragments would allow margin for some fragment

destruction, which is likely inevitable during their subsequent dynamical

evolution of GI protoplanets.

3. Viscous evolution models of the AB Aurigae disc suggest that it may have

been massive enough to exceed Md,crit during its early lifetime whilst the

disc was still young and massive. We find that a 0.1 M� disc may have been

more massive than Md,crit = 0.3 M� approximately 1.25− 4 Myr ago.

4. Fragments will initially form on wide orbits and then rapidly migrate

inwards. Typical migration timescales of a GI protoplanet which formed at

R ≈ 200 AU within a young AB Aurigae disc are found to be shorter than

the current age of the system. We use analytic calculations to determine

type I and type II migration timescales, finding that for migration from

Rout = 200 AU to Rin = 30 AU, ∆tmig,I = 6.9 kyr and ∆tmig,II = 1.0 Myr

when considering disc conditions taken from our hydrodynamic simulations.

5. Calculations of the Jeans mass in a moderately irradiated proto-AB

Aurigae disc represent what the initial fragment masses might have been

immediately after formation. We find that MJ = 1.6 − 13.3 MJup, which

is consistent with the masses of the planets P1 and P2 in the AB Aurigae

disc.

6. Although we focus our discussion on the formation history of planet P1,

we highlight that planet P2 found at a ≈ 140 AU with an estimated mass

MP2 = 3 MJup may be even more challenging to reconcile with formation

through core accretion.

We therefore propose that planets P1 and P2 which have been discovered through

scattered light observations of the AB Aurigae disc (Boccaletti et al., 2020) may

stand as evidence of planet formation through GI.
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Chapter 6

The observational impact of dust

trapping in self-gravitating discs

This chapter contains work from Cadman et al. (2020b). Whilst Cadman et al.

(2020b) was led by myself, the project was undertaken in collaboration with various

listed co-authors, hence some parts of the text may contain contributions from

these co-authors.

6.1 Motivation

Discs around very young stars are typically heavily embedded and optically

thick at optical wavelengths (Dunham et al., 2014). They will, however, emit

thermal infrared (IR) radiation and may be resolved by high-resolution, sub-

mm observations with ALMA. Thanks to recent observational advances, spiral

substructure, characteristic of massive self-gravitating protoplanetary discs, is

now within our observing capabilities. For example, the Disk Substructures at

High Angular Resolution Project (DSHARP) ALMA survey recently performed

an in depth analysis of 20 nearby protoplanetary discs (see Figure 1.4), 3 of which

exhibit possible spiral substructure resembling GI (Pérez et al., 2016; Andrews

et al., 2018b; Huang et al., 2018b).

Non-axisymmetric disc features are, however, not unique to GI, and may be

explained through alternative mechanisms such as planet-disc interactions (Lin

& Papaloizou, 1986; Tanaka et al., 2002). It may be possible to distinguish

between planet and GI induced spiral structure through scattered light vs. sub-
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mm observations, as dust trapping in spiral regions is likely to be more effective

in gravitationally unstable discs (Rice et al., 2004; Dong et al., 2015a; Juhász

et al., 2015).

As was shown in Section 2.2.3, the negative gas pressure gradient in discs results

in gas-dust drag and inward radial migration of the faster orbiting dust grains.

Micron-sized grains will typically be strongly coupled to the gas, hence will orbit

with the same sub-Keplerian velocities as the gas, hence they will closely trace

the gas distribution. Objects larger than metre sizes will be decoupled from the

gas and will orbit with approximately Keplerian velocities. Intermediate, ∼mm-

sized grains will however experience a large drag and undergo significant radial

drift.

In smooth, laminar discs radial drift results in migration toward the disc centre

where gas pressure is maximum. However, the propagation of GI induced spiral

density perturbations will generate a non-axisymmetric pressure gradient where

the peaks of the spirals behave as local pressure maxima. Dust grains will migrate

and concentrate at the peaks of the spirals resulting in enhanced emission and

potential accelerated planetesimal growth (Rice et al., 2004, 2006). Dipierro

et al. (2014, 2015) have previously shown that GI induced spiral structure

should be detectable with ALMA at moderate distances (d ∼ 140 pc), and that

dust trapping in the spirals will produce detectable signatures in their observed

spectral index maps.

In this chapter we build on previous work by Hall et al. (2016) who developed

a semi-analytic formalism for determining the structure of self-gravitating

protoplanetary discs, performed 3D Monte Carlo radiative transfer on these

models and produced synthetic disc images using the ALMA simulator. We add

to these models by including a prescription for dust grain enhancement in the

spiral density waves. These models allow us to produce a suite of discs at little

computational expense when compared to approaches such as SPH. Therefore we

are able to efficiently explore a wide range of disc parameter space and produce

observational predictions for telescopes such as ALMA.

In Sections 6.2 and 6.3 we present our disc models, and describe the radiative

transfer approach as well as how we used the ALMA simulator in our analysis.

In Section 6.4 we use SPH to model the extent to which we might expect grains

to be enhanced in self-gravitating discs, allowing us to inform our semi-analytic

prescription. In Section 6.5 we discuss grain growth and the grain fragmentation
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threshold. In Section 6.6 we discuss our disc parameter setup and in Section 6.7

we use our models to generate synthetic observations of self-gravitating discs at

distances comparable to the Taurus star-forming region. In Section 6.8 we apply

our models to three discs from the DSHARP survey, analysing whether or not

their observed substructure may be the result of self-gravity. In Section 6.9 we

discuss and draw conclusions.

6.2 Disc models - Setup

We setup our discs using the 1D models introduced by Clarke (2009) (see also Rice

& Armitage, 2009; Forgan & Rice, 2013c) and further developed by Hall et al.

(2016) to include 3D structure such as the spiral density waves characteristic of

self-gravitating discs. These models are described in detail in Hall et al. (2016)

and summarised in Section 6.2.1. We refer the reader to Hall et al. (2016) for

a comparison of this formailsm’s ability to accurately reproduce self-gravitating

spiral shape and amplitudes from SPH simulations. Dust grain enhancement is

imposed semi-analytically, in line with what we might expect from spiral density

structure in self-gravitating discs, and is described in Section 6.2.2.

6.2.1 Self-gravitating disc models

To set up our disc models we begin by using the same formalism as the 1D

models outlined in Section 3.2. We assume that irradiation leads to a constant

background temperature of Tirr = 10 K here.

These are then developed into 3D models in the same way as is described in detail

in Hall et al. (2016). We assume that the azimuthal location of the spirals, θspiral,

will be logarithmic in shape as,

θspiral =
1

b
log
(r
a

)
, (6.1)

where a and b are constants defining the shape of the spirals. Here we use a = 13.5

and b = 0.38, in line with that used in Hall et al. (2016).

At each azimuthal location in the disc, θx,y, we calculate a fractional over-density,

δΣ/Σ, characterised by a spiral amplification factor, S, such that (Cossins et al.,
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2009),

〈δΣ〉
〈Σ〉

= Sα1/2, (6.2)

where here we define S = 2.

This fractional over-density is imposed sinusoidally at each azimuthal location in

the disc, θx,y such that,

δΣ(φ) = 〈δΣ〉cos(mφ). (6.3)

Here, m is the azimuthal wavenumber (i.e. the number of spiral arms) and φ is

the phase difference between the location of the spiral arms and each azimuthal

position in the disc,

φ = θspiral − θx,y. (6.4)

We expect that the azimuthal wavenumber will be roughly related to the disc-to-

star mass ratio, q, as (Cossins et al., 2009; Dong et al., 2015b),

m ≈ 1/q. (6.5)

We use this in Equation 6.3 to impose an azimuthal wavenumber in a disc of mass-

ratio, q, assuming a symmetrical response (with m = 2, 4, 8...) and rounding m

to the nearest appropriate value.

Finally, the disc’s vertical density profile is calculated using Equation 2.60, where

the self-gravitating scale height is calculated using Equation 2.61.

6.2.2 Grain concentration

In the presence of spiral density waves, dust grains will radially migrate and

concentrate at their density maxima (Rice et al., 2004). The extent of this radial

migration will be strongly dependent on grain size, a. Small grains of ∼ µm scale

will be strongly coupled to the gas in the disc, will experience very little radial
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drift and will closely trace the gas distribution. The largest particles of ∼ m

scale will be decoupled and will be unaffected by the disc gas pressure, therefore

orbiting with approximately Keplerian velocities.

For intermediate-sized dust grains of ∼ mm− cm scale, the impact of the gas

drag will be significant. Radial drift velocities will be large and, hence, grain

concentration at the spiral pressure maxima will be high. The gas-dust coupling

is characterised by the Stokes number,

St =
aρsΩ

ρcs

, (6.6)

where ρs is the internal density of the dust grains and ρ is the local gas density.

The solution of the momentum equation suggests that the radial drift velocity

has a 1/(St+St−1) relation (Weidenschilling, 1977). We therefore propose a grain

enhancement factor of the form,

ηi = 1 +
2d

Sti + St−1
i

− Sti
200

, (6.7)

where d is a constant, to be determined later, that represents the peak dust

concentration factor in spirals. Here, ηi is defined as the local grain enhancement

factor relative to the mean dust-to-gas ratio in the disc for the ith grain size. The

local dust surface density for the ith grain size, Σd,i, will then be enhanced as,

Σd,i = 〈εi〉(Σ0 + ηiδΣ), (6.8)

where 〈εi〉 is the average dust-to-gas ratio for each grain size in the disc. Here we

use the canonical value of 〈ε〉 = 0.01 to represent the total dust-to-gas ratio over

all grain sizes.

Particles with Sti � 1 will be strongly coupled to the gas, experience minimal

radial drift and will therefore have ηi ≈ 1. The dust surface density will exactly

trace the gas distribution in this case, with Σd,i = 〈εi〉(Σ0 + δΣ). Large solids

with Sti � 1 will be entirely decoupled from the gas and will have constant

surface density across the disc, with ηi ≈ 0 and Σd,i = 〈εi〉Σ0. Note that we set

a lower limit of ηi = 0 here. Intermediate sized grains with Sti ≈ 1 will generate

peak enhancement factors of ηi ≈ 1 + d, and therefore dust surface densities,
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Σd,i = 〈εi〉(Σ0 + (1 + d)δΣ).

From Equation 6.3, regions coincident with the spiral peaks, where mφ = 0◦, will

experience maximum enhancement by a factor Σ0 +ηi〈δΣ〉, as δΣ = 〈δΣ〉 in these

regions. Dust surface density in inter-arm regions, where mφ = 180◦, will equally

be depleted by a factor Σ0 − ηi〈δΣ〉, as δΣ = −〈δΣ〉 here.

To avoid Σd,i becoming negative in inter-arm regions, we employ a correction

factor,

Σd,i,corr =

ηi〈δΣ〉 − Σ0, if Σ0 + ηiδΣ < 0

0, otherwise.
(6.9)

Thus our resultant dust surface density becomes,

Σd,i =
〈εi〉(Σ0 + ηiδΣ + Σd,i,corr)Σ0

Σ0 + Σd,i,corr

. (6.10)

This ensures Σd > 0 by increasing our dust distribution by a factor Σd,i,corr in

cases where Σ0 + ηiδΣ < 0. The denominator is a normalisation which ensures

our mean dust surface density remains unchanged by Σd,i,corr, thus ensuring mass

conservation.

6.2.3 Monte Carlo Radiative Transfer

The dust temperatures are calculated using the torus radiation transfer code

(Harries et al., 2019). Radiative equilibrium is calculated using the Monte

Carlo technique originally described in Lucy (1999) and outlined in Section

2.4.2. Our discs are illuminated by a central star, whose radiation field is

here represented by 109 photon packets. These photon packets are emitted

from the star isotropically and proceed to undergo a random walk through

the grid, experiencing both absorption and scattering, until they escape the

computational domain and the dust temperatures can be calculated assuming

radiative equilibrium. Another cycle of 109 photon packets are then emitted,

now with these updated temperatures, until the dust temperatures are found to

converge and continuum images can be produced.

Our disc is constructed within a mesh of grid cells, where we use a mass resolution
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Figure 6.1 Surface density structure of self-gravitating SPH discs with Rout =
100 AU after evolving for 5 outer orbital periods (t = 31420 yrs).
Discs are constructed with 500,000 SPH gas particles and have mass
ratios q = 0.2, 0.3, 0.4 from left to right.

criteria of 1 × 10−4 M� when subdividing parent cells into 2D child cells, where

D = 3 for our 3-dimensional domain.

6.3 ALMA simulations

The output continuum images from torus are then used as inputs to the ALMA

simulator in the Common Astronomy Software Application (casa) package

(version 5.1) (McMullin et al., 2007) to produce synthetic ALMA images from

our disc models. We use ALMA cycle 7 array configurations to produce these

images, exploring various array sizes and resolutions in order to find optimal

configurations for each observing frequency.

We apply unsharp image masking (Malin, 1977) to generate residual images from

our synthetic observations by subtracting a smoothed radial profile of the image

flux from itself. This technique highlights any non-axisymmetric features in

our images, specifically spiral arms, by reducing the image flux range without

reducing its dynamical range. We subtract a 2D Gaussian profile of FWHM

closely matched to the beam size of our simulated images (we use 0.05”x0.05”

here), and scaled with the peak image flux.
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6.4 SPH models - Determining peak grain en-

hancement

Our semi-analytic prescription of dust trapping in Equation 6.7 requires that we

determine the expected peak dust concentration factor, d, in disc spiral arms. To

do this we employ the 3D SPH code phantom (Price et al., 2018) to numerically

model the behaviour of dust particles in self-gravitating discs.

We set up three sets of discs with mass ratios q = 0.2, 0.3 and 0.4 around a central

star of mass M∗ = 1 M�. Each disc has initial inner and outer radii Rin = 1 AU

and Rout = 100 AU, and are set up with initial surface density profiles Σ ∝ R−1.5

and initial sound speed profiles cs ∝ R−0.5. We use artificial viscosity terms

αSPH = 0.1 and βSPH = 0.2. Cooling is modelled using the polytropic cooling

approximation introduced in Stamatellos et al. (2007) and outlined in Section

2.4.1.4.

We use 500,000 SPH particles to represent the gas disc and initially evolve the

discs for 5 outer orbital periods without adding any dust particles. We then add

125,000 dust SPH particles and allow the discs to evolve for a further orbital

period. The final states of the gas-only discs are shown in Figure 6.1. For each

set of discs we run 20 separate simulations for 20 different grain sizes distributed

log-normally between 0.1µm and 200 cm. To minimise computational expense,

we neglect the self-gravity of these dust particles and treat them as test particles

only.

Dust-gas mixtures are modelled using two evolution models; the two-fluid method

where the dust and gas are represented by two distinct particle populations

coupled by a drag term (Laibe & Price, 2012a,b), and the one-fluid method

where the mixture is represented by gas particles only and the grain fraction is

evolved along with the gas density for each particle (Price & Laibe, 2015). The

one-fluid method is implemented for smaller particle sizes at which the terminal

velocity approximation is valid (i.e. when the stopping time is shorter than the

computational timestep, see Youdin & Goodman, 2005), thus it is not appropriate

for modelling larger grains. We find an appropriate grain size boundary at which

to switch between these two methods at a ≈ 2 mm. We therefore model all discs

with a ≤ 2 mm using the one-fluid method, and discs with a > 2 mm using the

two-fluid method.
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After evolving the dusty discs for a further orbital period, peak dust-to-gas ratios

are determined by taking a radial slice of the disc, of azimuthal width 5◦, and

fitting a Gaussian distribution to the dust mass fraction at the spiral location. A

demonstration of this is shown in Figure 6.2; we fit curves to a radial slice of the

q = 0.4 disc, where the spiral’s peak is located at ≈ 60− 70 AU. In Figure 6.3 we

fit log-normal curves to the best-fit dust-to-gas ratio peaks from the q = 0.3 and

q = 0.4 discs. We exclude the q = 0.2 disc from the remainder of this analysis

as only weak spiral structure develops, therefore we observe only moderate grain

enhancement.

Grain enhancement generally increases with increasing disc mass, primarily due to

stronger spiral structure as we increase the disc-to-star mass ratio. This results in

larger density gradients, greater radial drift velocities, and stronger concentration

of grains. It is possible that grain concentration may continue to increase with

increasing disc mass above q = 0.4. However, for mass ratios q & 0.5 discs become

susceptible to fragmentation for the stellar mass considered here. This will act to

disrupt any spiral arm structure thus limiting grain concentration. We therefore

only model disc masses up to q = 0.4.

Grains become most concentrated for sizes a ≈ 200 − 500 mm, with peak dust-

to-gas ratios ε ≈ 0.06 and ε ≈ 0.07 in the q = 0.3 and q = 0.4 discs respectively,

giving values of d ≈ 5 and d ≈ 6 respectively for Equation 6.7. For the discs

generated in Section 6.6, with disc masses q . 0.3, we assume a maximum value

of d = 5 in our models.

6.5 Grain growth and the fragmentation thresh-

old

Appropriate maximum grain sizes for use in the grain size distributions from

the equations in Section 6.2 can be obtained using models of grain growth in

protoplanetary discs. Grain growth proceeds through steady coagulation and

accumulation during grain-grain collisions (Testi et al., 2014). The tendency for

grains to stick together and grow during these collisions will depend on their

collisional velocities. Particles with St < 1 (i.e. smaller grains) have smaller

relative azimuthal velocities, hence when they collide they will likely coalesce in

a so-called hit-and-stick process (Chokshi et al., 1993; Dominik & Tielens, 1997).
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Figure 6.2 Gaussian fits to the dust-to-gas mass ratios taken from a radial slice
of the q = 0.4 disc, setup as described in Section 6.4. We plot
how the dust-to-gas ratios vary for grain sizes a = 20 mm, 50 mm,
100 mm, 200 mm, 400 mm and 2000 mm. Grains sizes a ≈ 200 −
500 mm become highly concentrated reaching peak dust-to-gas ratios
ε ≈ 0.07 here.
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Figure 6.3 Best-fit dust-to-gas ratios in SPH discs with mass ratios q = 0.3, 0.4
and Rout = 100 AU. Each disc consists of 500,000 gas particles,
125,000 dust particles and has been allowed to evolve for 6 outer
orbital periods (t = 37700yrs). We show the points with 1σ error
bars obtained from their best-fit values. Log-normal curves are fitted
to the data.

Larger particles will have higher relative azimuthal velocities, reaching a constant

maximum value for St ≥ 1. Kothe et al. (2013) find a power-law mass dependence

for the affinity of solids, vth ∝ m−3/4, with less massive solids having a greater

threshold velocity for sticking. As particles grow, their impact velocities will

increase accordingly and collisions will result in particles either bouncing off each

other, compacting their densities in the process (Güttler et al., 2010; Zsom et al.,

2010), or shattering into several smaller fragments. These two growth barriers,

known as the bouncing barrier and the fragmentation threshold respectively, may

consequently limit the maximum size to which grains are able to grow through

collisional accumulation, therefore limiting our value of amax.

The particle size at which the bouncing barrier is reached will depend on a number

of factors such as particle porosity, density and material, and is therefore non-

trivial to calculate analytically. Instead, we reason that the wealth of smaller,

micron-sized solids dominating the dust-mass budget in discs (see Williams

& Cieza, 2011) requires regular replenishment through a cycle of growth and

fragmentation, as otherwise these smaller grain sizes would quickly be depleted

as they grow (Dullemond & Dominik, 2008; Brauer et al., 2008; Birnstiel et al.,

2010). This indicates that particles are able to grow to at least as large as the
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Figure 6.4 Radial distribution of the fragmentation threshold from Equation
6.11 for mass accretion rates Ṁ = 1 × 10−6 M� yr−1, 5 ×
10−7 M� yr−1, 1 × 10−7 M� yr−1, 5 × 10−8 M� yr−1 and 1 ×
10−8 M� yr−1, and where vfrag = 10 ms−1.

fragmentation threshold, and we therefore use this to define amax in our models.

Dipierro et al. (2015) show that the fragmentation threshold leads to a maximum

grain size of,

amax =
4〈Σg〉
3παρs

v2
frag

〈cs〉2
, (6.11)

where vfrag is the fragmentation threshold velocity representing the maximum

relative velocity that particles can withstand before collisions result in shattering.

We use the azimuthally averaged gas surface density, 〈Σg〉, and sound speed,

〈cs〉, as spiral features are short lived and grain growth timescales typically

exceed these. We can estimate the viscous−α here by assuming that in a quasi-

steady, self-gravitating disc dominated by turbulent motion, the viscous stress

will saturate at a maximum value α = 0.06 (Rice et al., 2005), therefore defining

the limiting maximum grain size.

We use this to set our value of amax in our disc models assuming two cases of

vfrag = 10 ms−1 and vfrag = 30 ms−1. The mid-plane distributions of afrag are

plotted in Figures 6.4 and 6.5 for discs of outer radius, Rout = 100 AU, and mass

accretion rates ranging from Ṁ = 1× 10−8 M� yr−1 to Ṁ = 1× 10−6 M� yr−1.
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Figure 6.5 Radial distribution of the fragmentation threshold from Equation
6.11 for mass accretion rates Ṁ = 1 × 10−6 M� yr−1, 5 ×
10−7 M� yr−1, 1 × 10−7 M� yr−1, 5 × 10−8 M� yr−1 and 1 ×
10−8 M� yr−1, and where vfrag = 30 ms−1.

The fragmentation threshold decreases with increasing Ṁ (i.e. with increasing

disc mass), and becomes smallest in the outer disc where afrag is comparable for

all disc masses. In the most massive discs when vfrag = 10 ms−1, grains can only

grow to ∼mm sizes before collisions become destructive, with this maximum

grain size in the inner disc decreasing by a factor of ∼ 5 as we increase the disc

mass from q = 0.1 to q = 0.31. For the higher threshold of vfrag = 30 ms−1 the

value of afrag increases by a factor v2
frag for all disc masses (a factor 9), and grains

can grow to amax ∼ cm sizes here.

6.6 Disc models - Setup parameters

With the additional information from Sections 6.4 and 6.5, it is now possible to

use our models to predict for which disc parameters we expect self-gravitating

disc substructure will be observable with ALMA. We setup discs as described in

Section 6.2 exploring a range of parameter space in disc masses, grain sizes and

observing frequencies.

Our central star is modelled with M∗ = 1 M�, R∗ = 2.325 R� and Teff = 4350 K.

We assume a canonical dust-to-gas ratio of 0.01, and represent our grains as
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Ṁ (M�yr−1) Mdisc/M∗ m
(1) (2) (3)

1× 10−6 0.31 4
5× 10−7 0.25 4

2.81× 10−7 0.22 4
1.58× 10−7 0.19 4

1× 10−7 0.16 8
5× 10−8 0.14 8

2.81× 10−8 0.12 8
1.58× 10−8 0.11 8

1× 10−8 0.10 8

Table 6.1 (1) Mass accretion rates used for the discs setup in Section 6.6 and
analysed in Section 6.7. (2) Calculated disc-to-star mass ratios. (3)
Number of input spiral modes for each disc.

Draine & Lee (1984) silicates with size distribution,

n(a) ∝ a−q, (6.12)

distributed between minimum and maximum grain sizes amin and amax, and

assume q = qism = 3.5 (Mathis et al., 1977). We set amin = 0.1µm and vary

the value of amax to represent different stages of grain growth, using values

amax = 10µm (minimal grain growth), 1 mm, 10 cm, 100 cm, afrag,10ms−1 and

afrag,30ms−1 (the grain fragmentation thresholds as described in Section 6.5). We

use 50 dust grain sizes distributed logarithmically between 0.1µm and 2×106 µm,

and set the grain fraction for any grain size greater than amax in each case to be

zero.

We generate discs with 9 different mass accretion rates (Equation 3.1), where an

increase in Ṁ roughly corresponds to an increase in disc mass. We use values

of Ṁ = [1 × 10−6, 5 × 10−7, 2.81 × 10−7, 1.58 × 10−7, 1 × 10−7, 5 × 10−8, 2.81 ×
10−8, 1.58× 10−8, 1× 10−8] M�yr−1, which correspond to disc-to-star mass ratios,

q ≈ 0.31, 0.25, 0.22, 0.19, 0.16, 0.14, 0.12, 0.11 and 0.10 respectively. Using the

relation between mass ratio and the number of spiral modes in Equation 6.5, and

assuming a symmetrical response where we have an even number of modes, each

of these discs are set up with m = 4 and m = 8 for the more massive and less

massive discs respectively. A summary of these disc setups is laid out in Table

6.1.

Continuum images of these discs are generated for observing frequencies 115 GHz
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fobs tobs Antenna Config PWV Level
(1) (2) (3) (4)

115 GHz 1800 s alma.cycle7.8 5.186 mm

230 GHz 1800 s alma.cycle7.8 1.796 mm

690 GHz 1800 s alma.cycle7.6 0.472 mm

Table 6.2 Input parameters used here for generating synthetic images with
casa. (1) ALMA observing frequency. (2) Simulated observing
time. (3) ALMA antenna configuration used. (4) Precipitable Water
Vapour (PWV) level.

(λ = 2.6 mm), 230 GHz (λ = 1.3 mm) and 690 GHz (λ = 0.4 mm), corresponding

to ALMA observing bands 3, 6 and 9 respectively. We consider discs at a distance

of 140 pc, comparable to those in the Taurus star forming region. Example torus

output images produced in this way are shown in Figure 6.6 for discs with amax =

1 mm and accretion rates from Table 6.1.

We then use these continuum disc images as inputs to the casa tasks simobserve

and simanalyze and generate synthetic ALMA observations. Observing times,

antenna configurations and PWV values used as inputs to casa are laid out in

Table 6.2. Unsharp image masking is applied to these synthetic observations

in order to highlight any non-axisymmetric disc features present, as described

in Section 6.3. We demonstrate the process of generating synthetic ALMA

observations and then unsharp masked residual images from torus continuum

profiles in Figure 6.7.

6.7 Disc models - Results

Our focus here is to analyse the parameter space in which self-gravitating disc

structure may be observable with ALMA. We present our results in this section

considering the effects of varying disc mass, grain size distribution and observing

frequency on our ability to distinguish spiral structure in our disc model. Galleries

of unsharp masked synthetic disc images where we explore this parameter space

can be found in Section 6.10.
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Figure 6.6 torus disc continuum images at 230GHz (λ = 1.3 mm). Discs are
set up with Rout = 100 AU, grain size distributions n(a) ∝ a−3.5 with
amin = 0.1µm and amax = 1 mm, and mass accretion rates (from
left to right) Top: Ṁ = 1× 10−6 M� yr−1, 5× 10−7 M� yr−1, 2.81×
10−7 M� yr−1. Middle: 1.58× 10−7 M� yr−1, 1× 10−7 M� yr−1, 5×
10−8 M� yr−1. Bottom: 2.81× 10−8 M� yr−1, 1.58× 10−8 M� yr−1,
1× 10−8 M� yr−1.
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Figure 6.7 Demonstration of the process generating unsharp masked disc images
from torus radiation transfer continuum profiles. Left: Output
continuum disc image from torus. Middle: Synthetic ALMA
observation using casa. Right: Unsharp masked residual image.
Discs have properties Ṁ = 5 × 10−7 M�yr−1, Rout = 100 AU,
amax = 1 mm and are observed at fobs = 115 GHz (λ = 2.6 mm)
with observation exposure time, array configuration and PWV level
laid out in Table 6.2.

6.7.1 Analysing the impact of grain enhancement

We begin this section by first demonstrating the impact of grain enhacement on

observability. We showed in Section 6.4 that dust trapping of ∼cm sized grains

significantly enhances dust-to-gas ratios in spiral arm regions, therefore equally

acting to remove dust from interarm regions. Spiral structure consequently

becomes sharper and more distinct, producing higher flux ratios between arm

and interarm regions due to enhanced and depleted emission at these locations

respectively.

We illustrate our grain enhancement prescription in Figure 6.8 by plotting how

dust-to-gas ratio varies across our disc model for grains with sizes of a = 10µm,

1 mm and 10 cm, in a disc with Ṁ = 1× 10−6 M�yr−1, Rout = 100 AU and grain

size distribution n(a) ∝ a−3.5 with amin = 0.1µm and amax = 100 cm. Grains of

a = 10µm with St� 1 exactly trace the gas distribution and display an entirely

uniform dust-to-gas ratio across the disc. The Stokes number, and therefore also

grain concentration factor, η, scales with grain size up to St = 1. As we consider

larger grain sizes up to a = 10 cm, grains become enhanced in the spiral arms

and clear non-axisymmetric dust-to-gas ratios start to emerge.

It is useful here to quantify observability of spiral structure in terms of the ratio

of the RMS fluxes in the disc arm and interarm regions (i.e. FRMS,arm/FRMS,iarm).

Arm and interarm regions in our resultant disc images can be located using
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Figure 6.8 Plotted are the dust-to-gas ratios for individual grain species of
different sizes in a disc with Ṁ = 1 × 10−6 M�yr−1, Rout =
100 AU and grain size distribution n(a) ∝ a−3.5 with amin =
0.1µm and amax = 100 cm. We plot the distributions for grains
of sizes a = 10µm (Left), a = 1 mm (Middle) and a = 10 cm
(Right). We demonstrate the impact of our grain enhancement
prescription outlined in Section 6.2.2 as ∼cm sized grains become
highly concentrated in the disc spiral arms. Note that the colourbars
are scaled to the maximum dust-to-gas mass ratio in each respective
grain size bin, εi,max.

Equation 6.1, and we calculate the RMS fluxes between radii 70− 100 AU where

we find spiral structure to be most prominent. In Figure 6.9 we plot how these flux

ratios vary with mass accretion rate, and show comparison plots for models that

do not include dust grain enhancement in Figure 6.10. Flux ratios are calculated

using the synthetic ALMA observations prior to unsharp masking. Example like-

for-like unsharp masked disc images are also included for reference in Figure 6.11.

For the same disc parameters we calculate considerably higher flux ratios when

including dust trapping in our model, most notably when the dust mass budget

is dominated by millimetre/centimetre grains (i.e. when amax = mm−cm sizes).

Previously blurred arm and interarm regions become distinct as millimetre

emission is concentrated in the spiral peaks. The key implication here is that

with grain enhancement generating stronger spiral structure for the same mass

discs, we should expect to detect self-gravitating disc structure for lower disc

masses than previously predicted, if sufficient grain growth has occurred. In

discs with no grain growth, or in which grains have grown well beyond centimetre

sizes, the lack of dust mass in millimetre/centimetre aggregates is detrimental to

the observability of disc substructure.

Given the short potential lifetime of a disc’s self-gravitating phase its important to
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Figure 6.9 Ratios of RMS fluxes in spiral arm regions to RMS fluxes
in interarm regions (FRMS,arm/FRMS,iarm) plotted against mass
accretion rate, log10(Ṁ), for the discs modelled in Section 6.6 and
presented in Section 6.10. These plots are generated using the
synthetic ALMA observations prior to performing unsharp image
masking.
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Figure 6.10 Ratios of RMS fluxes in spiral arm regions to RMS fluxes
in interarm regions (FRMS,arm/FRMS,iarm) plotted against mass
accretion rate, log10(Ṁ), for the discs modelled in Section 6.6.
Here we do not account for grain enhancement in spiral arm
regions, therefore reducing the prominence of spiral structure in
discs compared to their counterparts in Figure 6.9. These plots
are generated using the synthetic ALMA observations prior to
performing unsharp image masking.
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note how fast grains can actually grow, and thus what likely maximum grain size

would be present in young, self-gravitating discs. Models of grain growth predict

that millimetre and centimetre-sized grains form rapidly on timescales . 105 yrs

(Dullemond & Dominik, 2005; Laibe et al., 2008). It therefore seems reasonable

to expect grains to have grown to at least as large as the fragmentation threshold

before the end of a disc’s self-gravitating phase, and that enhanced emission in

spiral regions from these larger grains may be significant.

Multi-wavelength observations of discs allow us to probe grain growth and dust

trapping through calculation of the disc opacity spectral index, β (Dipierro et al.,

2015). In the Rayleigh-Jeans limit of an optically thin disc the dust opacity at

sub-mm wavelengths will approximately scale as κ ∝ νβ, where for interstellar

dust grains βism ≈ 1.7. Observations of discs show βdisc < βism (e.g. Testi et al.,

2003; Ricci et al., 2010) which can be naturally accounted for by the presence of

larger grains in the disc and therefore grain growth (Draine, 2006). In Figure 6.12

we calculate the β-parameter from our synthetic ALMA observations, considering

fluxes ν1 = 460 GHz and ν2 = 100 GHz, and discs with Ṁ = 5 × 10−7 M�yr−1

and amax = 1 mm and 10 cm. The pixelwise β can be calculated as,

β =
lnF1 − lnF2

lnν1 − lnν2

− 2, (6.13)

where F1 and F2 are the pixelwise fluxes at frequencies ν1 and ν2 respectively.

Spiral regions display the lowest β values due to dust trapping of larger

grains, whilst depletion of these same grains in inter-spiral regions produces

comparatively higher β values. Inner disc regions are optically thick and

consequently also display low β values. We calculate mean β-values 1.197 and

0.525 for amax = 1 mm and amax = 10 cm respectively, where the higher β value

is consequence of less grain growth in the amax = 1 mm disc. Note that both of

these discs display βdisc < βism.

Through calculation of the β−parameter in our disc model we therefore demon-

strate how it is possible to retrieve information about the underlying grain

distribution in discs, and how our model may be used to probe grain properties

in discs which have been observed at multiple wavelengths.
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Figure 6.11 Unsharp masked disc images for Ṁ = 1 × 10−6 M� yr−1 and
amax = vfrag,30ms−1, observed at frequencies Top: 115 GHz (λ =
2.6 mm), Middle: 230 GHz (λ = 1.3 mm) and Bottom: 690 GHz
(λ = 0.4 mm). We compare like for like disc models with our
prescription for grain enhancement included (right column) and
not included (left column) in the disc models.
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Figure 6.12 Pixelwise opacity spectral index, β, derived from synthetic
observations of discs with Ṁ = 5 × 10−7 M�yr−1 and grain size
distributions n(a) ∝ a−3.5 where amax = 1 mm (Left) and amax =
10 cm (Right).

6.7.2 Observing self-gravitating discs in Taurus

We now wish to make observational predictions of self-gravitating discs, consider-

ing those at a distance d ∼ 140 pc comparable to the Taurus star-forming region.

We setup a suite of discs as described in Section 6.6 and refer the reader to the

unsharp masked disc images presented in Section 6.10 for this discussion.

Spiral amplitude in our models increases as δΣ/Σ ∝ α−1/2 (Equation 6.2), hence

is an increasing function of accretion rate (see equation 3.1). This is illustrated

in Figure 6.13 for discs with amax = 1 mm observed at fobs = 115 GHz. Low Ṁ

discs generally exhibit no observable substructure for any grain size distribution,

whilst the most massive discs tend to be capable of generating detectable spirals

at all frequencies considered here. This does however depend on how much grain

growth has occurred, as we require that the dust mass budget is dominated

by millimetre/centimetre grains (amax = mm–cm sizes) if we are to resolve any

spirals.

Dust emissivity peaks for λ ≈ 2πa (Armitage, 2010), therefore emission from

millimetre grains will peak at ≈mm wavelengths. The corresponding wavelengths

to the observing frequencies considered here are 2.6 mm, 1.3 mm and 0.4 mm for

frequencies of 115GHz, 230GHz and 690GHz respectively. When the dust mass

budget is dominated by micron grains or metre-sized objects (i.e. amax = 10µm

or amax = 100 cm) disc substructure becomes invisible at the ALMA bands

considered here as the arm-interarm contrast is low. We illustrate this in

Figure 6.14 which shows how emission from spiral regions varies with grain size
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Figure 6.13 Unsharp masked disc images observed at fobs = 115 GHz (λ =
2.6 mm) in casa. Each disc model has maximum grain size
amax = 1 mm, Rout = 100 AU and Ṁ = 5 × 10−8 M�yr−1 (Left),
Ṁ = 1.58×10−7 M�yr−1 (Middle), Ṁ = 1×10−6 M�yr−1 (Right).
Observation exposure time, array configuration and PWV level
used for these observations are laid out in Table 6.2.

Figure 6.14 Unsharp masked disc images observed at fobs = 115 GHz (λ =
2.6 mm) in casa. Each disc has Ṁ = 5 × 10−7 M�yr−1, Rout =
100 AU and we vary amax in the grain size distributions as 10µm
(Left), 1 mm (Left middle), 10 cm (Right middle) and 100 cm
(Right). Observation exposure time, array configuration and PWV
level used for these observations are laid out in Table 6.2.

distribution in discs with Ṁ = 5 × 10−7 M�yr−1 observed at fobs = 115 GHz.

Substructure only becomes recognisable in discs with unfavourable grain size

distributions when we observe at shorter wavelengths (fobs = 690 GHz, λ =

0.4 mm), but only in the most highly accreting cases.

Without including dust trapping in their model, Hall et al. (2016) previously

found a narrow region of parameter space within which self-gravitating discs

would display spirals observable with ALMA. They predicted a 100 AU disc must

be accreting in the range 1 × 10−7 M�yr−1 . Ṁ . 1 × 10−6 M�yr−1, where the

maximum accretion rate here is set by the limit at which discs become susceptible

to fragmentation. We suggest that in fact spiral emission may be distinct for lower

accretion rates than previously predicted, if sufficient grain growth has occurred.
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The discs in Figures 6.20 and 6.21 observed at 230 GHz and 690 GHz respectively

continue to display detectable spiral structure down to the lowest Ṁ considered

here, as long as the dust mass budget is dominated by millimetre/centimetre

grains. Note however that we are observing these discs face-on and therefore in

favourable conditions for resolving spiral features. Inclining and rotating these

discs may well obscure them. However, we would still expect to be able to detect

spirals to lower Ṁ than previously suggested.

It is also intriguing that we calculate the fragmentation threshold to fall almost

exactly coincident with the ideal amax values for detecting spirals (see Figures 6.4

and 6.5). We should therefore not be surprised if we find that in fact the grain

size distributions of self-gravitating discs fall within this ideal region of parameter

space.

6.8 Analysing discs from the DSHARP sample

We now turn our model to analysing real observational data of potentially self-

gravitating discs. The recent DSHARP survey studied 20 nearby protoplanetary

discs using ALMA, with 3 of these discs exhibiting spiral substructure (Andrews

et al., 2018b; Huang et al., 2018b). The ALMA continuum images from this

survey of the Elias 2-27, WaOph 6 and IM Lup discs are shown in Figure 6.15.

We use our models to investigate if the observed spiral substructure in these 3

systems can be explained through the gravitational instability.

Although well within the capability of our models, a complete examination of the

potential parameter space of these discs is beyond the scope of the work presented

here. Instead, we simply model these 3 systems using the disc parameters derived

in Andrews et al. (2018b) and Huang et al. (2018b), and make predictions as

to whether we should expect these systems to produce self-gravitating spiral

substructure observable with ALMA. The disc parameters used are laid out in

Table 6.3. We setup these discs with dust size distribution n(a) ∝ a−3.5, with

amin = 0.1µm and set amax as the fragmentation threshold where vfrag = 10 ms−1

(Equation 6.11), and use the canonical dust-to-gas ratio of 0.01.

Residual images in Huang et al. (2018b) are produced by deprojecting the discs

and subtracting their median axisymmetric radial profiles. We do the same here

by binning each disc into 1 AU-wide radial bins and subtracting the median
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Figure 6.15 ALMA 240GHz (1.3mm) continuum images of Elias 2-27 (Left),
WaOph 6 (Middle) and IM Lup (Right) (Andrews et al., 2018b).
ALMA antenna configurations, observing times and PWV levels
for these observations are laid out in Table 6.4.

azimuthal fluxes. We re-derive the residual images for each of the original

DSHARP observations in this way, as well as for our disc models. For each

disc observation and model, we show deprojected continuum and residual images

(with PA = 0◦ and i = 0◦), presenting our results in Figures 6.16, 6.17 and 6.18.

In each case we provide reference colorbars for direct comparison between the

fluxes of the disc models and observations, and each disc model and counterpart

observation is plotted between the same flux range for ease of comparison.

Logarithmic spiral structure is imposed in each disc model using values of a and

b (Equation 6.1) derived by Huang et al. (2018b). The values of a and b used

here are laid out in Table 6.3.

We produce synthetic observations of each disc using casa with observing setups

consistent with those outlined in Andrews et al. (2018b). We observe each disc

for tobs = 3600 s using array configuration C40-8. For each observation we use

PWV values at the upper bound of the quoted range in Andrews et al. (2018b),

setting values 1.35 mm, 1.30 mm and 1.05 mm for Elias 2-27, IM Lup and WaOph

6 respectively. Input parameters for casa used for each disc are laid out in Table

6.4.

6.8.1 Elias 2-27

Elias 2-27 is a 0.8 Myr M0 star located in the ρ Oph star forming region at a

distance d = 116+19
−10 pc (Gaia Collaboration et al., 2018; Andrews et al., 2018b).

The residual profile of the Elias 2-27 continuum image (Figure 6.16) shows two

symmetric spiral arms extending from Rin ∼ 50 AU to Rout ∼ 230 AU, with
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Disc logM∗ R∗ logTeff Rspirals logṀ d i PA a b
(M�) (AU) (K) (AU) (M� yr−1) (pc) (◦) (◦) (AU)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Elias 2-27 −0.31+0.15
−0.11 2.3 3.59± 0.03 50-230 −7.2± 0.5 116+19

−10 56.2 118.8 110.9 -0.282

WaOph 6 −0.17+0.17
−0.09 3.2 3.62± 0.03 25-75 −6.6± 0.5 123±2 47.3 174.2 45.9 0.238

IM Lup −0.05+0.09
−0.13 2.5 3.63± 0.03 25-110 −7.9± 0.4 158±3 47.5 144.5 43 -0.181

Table 6.3 Disc model parameters used in our modelling of the DSHARP discs
in Section 6.8. Columns are as follows. (1) Disc being modelled. (2)
Log stellar mass. (3) Stellar radius. (4) Log effective temperature of
the star. (5) Spiral inner and outer radii considered here. (6) Log
mass accretion rate. (7) Distance to the system. (8) Disc inclination.
(9) Disc position angle. (10) Best-fit logarithmic spiral a (Equation
6.1). (11) Best-fit logarithmic spiral b (Equation 6.1).

Disc fobs tobs Antenna Config PWV Level
(1) (2) (3) (4)

Elias 2-27 240 GHz 3600 s C40-8 1.35 mm

WaOph 6 240 GHz 3600 s C40-8 1.30 mm

IM Lup 240 GHz 3600 s C40-8 1.05 mm

Table 6.4 Input parameters used here for generating synthetic images with casa
for the modelled DSHARP discs. (1) ALMA observing frequency. (2)
Simulated observing time. (3) ALMA antenna configuration used. (4)
Precipitable Water Vapour (PWV) level.
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PA = 118.8◦ and i = 56.2◦ (Huang et al., 2018b).

The spiral structure of Elias 2-27 is probably the most well-studied of the three

discs here. The system has previously been modelled using both both grid-based

and SPH simulations, with authors such as Meru et al. (2017), Tomida et al.

(2017) and Hall et al. (2018) all finding GI to be a plausible explanation for the

observed morphology. Estimates of the Toomre parameter in the disc however

suggest that Elias 2-27 should be gravitationally stable at all radii (Pérez et al.,

2016), but this comes with the caveat that estimates of Q are subject to high

levels of uncertainty. Further research where the constraints on the disc mass

and temperature are improved may lead to different conclusions.

We set up our disc model with logM∗(M�) = −0.31, R∗ = 2.3 AU, logTeff(K) =

3.59 and logṀ(M�yr−1) = −7.2 (Andrews et al., 2018b; Huang et al., 2018b).

Logarithmic spiral structure is imposed with a = 76.0 AU and b = −0.29

extending from R = 50 − 230 AU, where we use a mask to remove the inner

50 AU from our observations to avoid the spirals being washed out by the brighter

central region.

Our model calculates Elias 2-27 to have a disc mass Mdisc = 0.13 M� inside

Rout = 230 AU, and therefore q = 0.27. Figure 6.16 shows the resultant synthetic

observations generated from our models, exhibiting clear self-gravitating spiral

structure in both the deprojected continuum and residual images.

6.8.2 WaOph 6

WaOph 6 is a 0.3 Myr K6 star located in the ρ Oph star forming region at a

distance d = 123± 2 pc (Gaia Collaboration et al., 2018; Andrews et al., 2018b).

After subtracting the axisymmetric radial profile, two compact spiral arms are

revealed which extend from Rin ∼ 25 AU to Rout ∼ 75 AU, with PA = 174.2◦ and

i = 47.3◦ (Huang et al., 2018b).

In their analysis of the morphology of gravitationally unstable discs, Dong et al.

(2015b) suggest that for a disc to be gravitationally unstable it must be compact

(R ≤ 100 AU) and highly accreting at a rate Ṁ ≥ 10−6 M�yr−1. WaOph 6 has

the highest accretion rate and the most compact spiral structure of the 3 discs in

question here, both of which are close to matching these suggested criteria.

We setup our disc model with logM∗(M�) = −0.17, R∗ = 3.2 AU, logTeff(K) =
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Figure 6.16 Elias 2-27 discs images. Top: Deprojected ALMA continuum
image (left) and residual profile (right). Bottom: Deprojected disc
model continuum image (left) and residual profile (right). Input
properties for the disc models and observation parameters are laid
out in Tables 6.3 and 6.4.
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Figure 6.17 WaOph 6 discs images. Top: Deprojected ALMA continuum
image (left) and residual profile (right). Bottom: Deprojected disc
model continuum image (left) and residual profile (right). Input
properties for the disc models and observation parameters are laid
out in Tables 6.3 and 6.4.

3.62 and logṀ(M�yr−1) = −6.6 (Andrews et al., 2018b; Huang et al., 2018b).

Logarithmic spirals are imposed with a = 34.0 AU and b = 0.24 extending from

R = 25− 75 AU, where again we mask the inner 25 AU of the disc images.

We calculate WaOph 6 to have a disc mass Mdisc = 0.16 M� and therefore q =

0.24. Our models reproduce distinct observable, self-gravitating spiral structure

in both the deprojected continuum and residual images shown in Figure 6.17.

6.8.3 IM Lup

IM Lup is a 0.5Myr K5 star in the Lupus II cloud at a distance d = 158 ± 3 pc

(Gaia Collaboration et al., 2018; Andrews et al., 2018b). Residual profiles of

the IM Lup continuum images reveal two spirals extending from Rin ∼ 25 AU to

Rout = 110 AU, with PA= 144.5◦ and i = 47.5◦ (Huang et al., 2018b).

Previous detection of any spiral structure in the IM Lup system has been

minimal, with observed substructures being classified as two concentric rings at
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Figure 6.18 IM Lup discs images. Top: Deprojected ALMA continuum image
(left) and residual profile (right). Bottom: Deprojected disc
model continuum image (left) and residual profile (right). Input
properties for the disc models and observation parameters are laid
out in Tables 6.3 and 6.4.

R ≈ 95 AU and R ≈ 320 AU, and only tenuous reports of the possibility of tightly

wound spirals (Avenhaus et al., 2018). Cleeves et al. (2016) report a massive,

gravitationally stable disc with a minimum Toomre parameter Qmin = 3.7 at

R = 70 AU and an extended CO disc to R = 970 AU, making IM Lup one of the

largest protoplanetary discs detected to date.

We model the disc here out to Rout = 110 AU, consistent with the radial extent of

the observed spiral structure reported in Huang et al. (2018b). Our disc model is

setup with logM∗(M�) = −0.05, R∗ = 2.5 AU, logTeff(K) and logṀ(M�yr−1) =

−7.9 (Andrews et al., 2018b; Huang et al., 2018b). We impose logarithmic spiral

structure with a = 59.0 AU and b = 0.18 extending from R = 25− 110 AU.

We calculate IM Lup to have a disc mass Mdisc = 0.098 M� and q = 0.11 within

R = 110 AU, and therefore the lowest disc-to-star mass ratio of the three discs

modelled here. The deprojected disc images in Figure 6.18 show tightly wound

spiral structure in the continuum and residual images, with geometry and spiral

fluxes closely matching those observed in the inner disc of the IM Lup system.
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6.8.4 Conclusions on DSHARP sample

We present the results of our semi-analytic analysis of the observed spiral

structure in the Elias 2-27, WaOph 6 and IM Lup systems. We note again

that the purpose of this simple functional formalism is not to exactly reproduce,

but to approximate, the likely spiral morphologies and fluxes of the 3 systems

in question, and to investigate whether systems of their quoted disc and

stellar properties should be capable of generating detectable non-axisymmetric

substructure when observed with ALMA. We do this by imposing logarithmic

spiral structure characteristic of GI, with self-consistently calculated spiral

amplitudes and realistic grain distributions. All 3 of the models presented here

produce detectable spirals of comparable structure and fluxes to their observed

DSHARP counterparts, indicating that GI may be the dominant mechanism

responsible for the observed substructure in these discs.

For Elias 2-27, WaOph 6 and IM Lup we derive disc massesMdisc = 0.13 M�, 0.16 M�

and 0.098 M� and disc-to-star mass ratios q = 0.27, 0.24 and 0.11 within their

respective outer radii. Common assumption is that GI requires q & 0.5,

therefore rendering these discs too low mass to generate prominent self-gravitating

structure. However it may be possible for discs to display self-gravitating spirals

for much lower mass ratios than previously thought, with the critical mass ratio

having a strong dependence on the host star mass and disc opacity (Veronesi

et al., 2019; Cadman et al., 2020a; Haworth et al., 2020). We therefore should

caution against discarding GI as a plausible mechanism based off this criterion

alone.

It is important to note here that whilst we shouldn’t be surprised that our

models accurately reproduce the spiral form of the systems considered here, as

the geometry is imposed in Equation 6.1, we should be more concerned with

how accurately our models are able the reproduce the spiral flux amplitudes

of the observed systems, as these are determined self-consistently from the disc

mass accretion rate and the viscous-α. The self-consistently calculated spiral

amplitudes in our models all generate comparable fluxes to their counterpart

observations, indicating that self-gravity may be a plausible explanation to these

3 systems.

In our model we assume that some grain growth has occurred up to the

fragmentation threshold. We note again here that models of grain growth

generally suggest that centimeter aggregates form rapidly on timescales ∼ 105 yrs
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(Dullemond & Dominik, 2005; Laibe et al., 2008), therefore given the ages of

these 3 systems our assumption seems reasonable. If, however, we modelled

these systems assuming no grain growth, it is likely that we would not find any

signatures of GI. Therefore, if these discs are indeed gravitationally unstable, our

models suggest that significant grain growth must have also occurred. Future

multi-wavelength observations of these systems, and derivation of the discs’ β-

parameter (Equation 6.13), will help to establish if this is the case.

An alternative explanation for the observed spiral structure in the DSHARP

discs may be the presence of a stellar or planetary-mass companion. Planet-

disc gravitational interactions can generate disc perturbations, and massive

companions may be capable of triggering two-armed symmetric spiral responses

similar to those observed in DSHARP (e.g. Dong et al., 2015a, 2016; Bae &

Zhu, 2018a,b; Kurtovic et al., 2018). However in order to drive the spiral

modes observed, for example in the Elias 2-27 system, would require a wide-

orbit companion of potentially tens of Jupiter masses, thus rendering any

companion likely detectable at sub-mm/IR wavelengths (Meru et al., 2017). To

our knowledge no companion has as yet been detected in any of the 3 discs

observed here. More commonly associated features of planet-disc interactions are

the presence of annular substructures such as rings and planet-driven gaps. Elias

2-27, WaOph 6 and IM Lup all display these features, as do a total of 18 discs in

the DSHARP sample (Huang et al., 2018a). The DSHARP collaboration report

no companion detections in any of these 18 discs despite many of the observed

features being suggestive of massive companions which ought to be observable at

such high angular resolution. It may then be the case that either massive planets

are fainter than previously thought (Dong et al., 2018), or that the observed rings

are driven by lower mass, fainter planets which remain invisible to the DSHARP

survey. If the latter, then these lower mass companions may not be capable of

driving the observed spiral structure in Elias 2-27, WaOph 6 and IM Lup alone,

but a combination of both GI and planet-disc interactions may be a plausible

scenario (e.g. Pérez et al., 2016).

More detailed analysis of these systems, investigating the effect of varying

accretion rate, disc irradiation, the dominant spiral mode and grain size

distribution will be the subject of future work.
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6.9 Summary and conclusion

We present our updated self-consistent, semi-analytic model of self-gravitating

discs that also includes a prescription for dust trapping. We make use of

the efficient nature of the model by generating a suite of disc models at little

computational expense, and examine the parameter space within which we

predict self-gravitating discs will generate spiral structure that can be resolved

when imaged with ALMA. Monte-Carlo radiative transfer is employed here to

produce synthetic observations of these model discs, allowing us to make realistic

predictions about the strength of the perturbations and the grain size distribution

required to generate observable spiral structure.

Realistic dust trapping is modelled using a semi-analytic prescription in which

particles with St = 1 may reach grain concentration factor η ≈ 6 at the density

peaks of the spiral perturbations, where η represents the local dust enhancement

relative to the mean dust-to-gas ratio in the disc, assumed to be 0.01 in all

the models considered here. We find that particles of millimetre and centimetre

sizes concentrate most strongly in spiral arms resulting in significantly enhanced

millimetre emission in these regions. When the dust mass budget is dominated

by these millimetre and centimetre sized grains we find self-gravitating structure

to be observable in much lower mass discs than previously predicted. Through

calculation of the grain fragmentation threshold in the discs modelled here we

find that grains may only grow to as large as a few centimetres before grain-

grain collisions become destructive. Therefore it may be the case that grain size

distributions in self-gravitating discs satisfy this dust mass budget criterion.

Our synthetic unsharp masked images of discs in the Taurus star forming region

(d ∼ 140 pc) exhibit distinguishable spiral structure for disc masses as low as

q = 0.1 given that sufficient grain growth has occurred. These images are

generated using realistic ALMA observing setups with reasonable observing times

and PWV levels. We do however note that we only consider face-on discs

during this evaluation and that inclining and rotating them may well obscure any

substructure, likely most adversely in low mass discs with the weakest spirals.

Through multi-wavelength observations and derivation of the β−parameter we

show how it is possible to retrieve information about grain growth and the dust-to-

gas ratio distribution from our model discs. Through comparison of our predicted

β−values to those calculated from future multi-wavelength observations of self-
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gravitating discs, it may be possible to utilise our disc model to examine grain

distributions in the observed discs.

Applying our disc model to systems from the DSHARP sample, we find the

quoted disc parameters for Elias 2-27, WaOph 6 and IM Lup suggest that they

are all capable of driving observable, self-gravitating spiral structure providing

that grains have grown to as large as the fragmentation threshold. We calculate

disc-to-star mass ratios q = 0.27, 0.24 and 0.11, within their published outer radii,

respectively for the 3 systems. A more detailed analysis exploring the potential

parameter space of the DSHARP sample will be left to future work.

6.10 Gallery of discs
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Chapter 7

Outlook

7.1 Thesis summary

The gravitational instability model of planet formation provides a promising

pathway for the formation of wide-orbit, giant planets whose formation histories

remain puzzling to today’s models of core accretion. At the time of writing, the

jury is still out as to whether planets can form through GI, although promising

strides are being made toward settling this debate. Today’s surveys are capable

of imaging discs at the earliest stages of their formation, revealing systems with

substructures resembling GI (Pérez et al., 2016; Andrews et al., 2018a; Huang

et al., 2018b), as well as discs which may be in the process of fragmenting (Tobin

et al., 2016; Boccaletti et al., 2020). Results such as these allow us to test our

theories, and help us to understand how commonplace GI systems and GI-born

planets may be in nature.

The research undertaken throughout this thesis aims to contribute to our

understanding of GI’s role in protoplanetary disc evolution. I began by modelling

how a disc’s susceptibility to fragmentation may be influenced by the mass of its

parent star. Using SPH simulations to explore the disc-star parameter space I

found that discs become more susceptible to fragmentation as the star’s mass is

increased. This is because the critical disc-to-star mass ratio for fragmentation

decreases with increasing stellar mass. This indicates that wide-orbit, giant

planets and brown dwarfs should be more commonly found around higher mass

stars, consistent with results from recent observational surveys (Vigan et al.,

2012; Nielsen et al., 2013; Lannier et al., 2016; Nielsen et al., 2019). Additionally,
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these results predict that low mass stars can support high mass discs which don’t

fragment, allowing for large mass reservoirs to be available for core accretion

planet formation in these systems, hence higher planet formation efficiencies.

In Chapter 4 I used SPH to explore the parameter space of self-gravitating discs

which are part of binary star systems. Recent observations suggest that close-in,

massive planets and brown dwarfs are almost always accompanied by an outer

stellar companion (Fontanive et al., 2019), suggesting that the companion may

play an important role in the formation of these systems. Such planets/BDs

are distinct from “hot Jupiters” (M ≈ 0.2 − 4 MJup) as they are more massive

(M > 7 MJup), and their stellar hosts exhibit a significantly lower mean metallicity

than hosts of hot Jupiters; a possible telltale sign that these planets formed

through GI. Using SPH I identified a sweet spot in the binary companion’s

parameter space where the companion can trigger fragmentation in a disc that

did not fragment in isolation. Intermediate separation binaries may drive a

spiral arm through the disc, and combined with efficient cooling the spiral may

fragment. The range of identified favourable binary separations is consistent

with the projected separations of the systems which are found to have an excess

of close-in, giant planets, suggesting that this triggered fragmentation may have

played a role in the formation of these systems. The question remains how these

GI-born fragments, initially formed on wide orbits, might then migrate to the

short orbits on which they are currently observed if GI is to be a viable formation

mechanism for these systems.

I then use SPH combined with 1D models to analyse the young disc surrounding

AB Aurigae, focusing on the formation histories of the protoplanets which have

recently been identified in the disc through high resolution imaging. AB Aurigae

has an estimated age of 1 − 4 Myr and shows strong evidence that at least 2

wide-orbit, massive protoplanets are in the process of forming within the disc.

Focusing on the formation history of the 4 − 13 MJup protoplanet observed at

R ≈ 30 AU from the star, I show that core accretion models struggle to form such

a planet within the current lifetime of the disc. Instead I show that, given the

current properties of the system, the disc was likely massive enough to undergo

fragmentation in the not-so-distant past, and the expected properties of a GI

fragment are consistent with the properties of the observed protoplanet. These

results indicate that the AB Aurigae may be the first system to show evidence

of ongoing GI planet formation. Since writing this thesis observations of AB

Aurigae have detected further ongoing clump formation in the disc, revealing
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another super-Jupiter mass object at R ≈ 93 AU which is indicative of planet

formation through GI (Currie et al., 2022).

Finally, I use semi-analytic models combined with synthetic disc imaging to make

observational predictions of self-gravitating discs, focusing on the impact of dust-

trapping in the disc’s spiral arms. I use SPH to show that dust-to-gas ratios may

be enhanced by a factor d ≈ 5− 6 at the peaks of GI spirals, leading to enhanced

millimeter emission in these regions thus improving our prospects of observing

GI discs. The results indicate that systems with disc-to-star mass ratios as low

as q = 0.1 may be capable of driving spirals which are detectable with ALMA, as

long as sufficient grain growth up to ∼mm-cm sizes has already occurred in the

disc. These disc masses are lower than have been previously predicted by models

which don’t consider the effect of dust trapping. We also use these models to show

that the amplitudes of the observed spirals in the discs around Elias 2-27, WaOph

6 and IM Lup are all consistent with spirals driven by GI. Future high resolution,

multi-wavelength observations and improved mass constraints for these discs will

help to reveal whether this is in fact the case.

7.2 Ongoing work

The research in chapters 3 and 4 focuses on the disc conditions required for

fragmentation during the very early phases of the disc’s evolution. However,

it is currently not possible to compare these predictions to systems in nature,

as observations of very young, gravitationally unstable discs are rare as the GI

phase is short lived hence challenging to observe. Understanding the long term

evolution of these systems and the fragments which form through GI will help

us to make predictions as to what the resultant planetary systems containing

GI-born planets should look like, and identify and distinguishable features from

non-GI planets.

Modelling the long term evolution of systems is computationally expensive using

full hydrodynamic treatments such as SPH. Instead, 1D population synthesis

codes such as those in Forgan & Rice (2013b); Forgan et al. (2018) can be used to

generate population statistics of planets which formed through GI, which can

be compared to synthetic populations of planets which formed through core

accretion (e.g. Mordasini, 2018), and used to determine any telltale signatures

of GI planetary systems.
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Of particular interest to the work in Chapter 3, we expect the eventual planetary

systems which form around higher mass stars to look different to those which form

around lower mass stars as we predict that a higher frequency of GI planets will

form. Models such as those in Forgan & Rice (2013b); Forgan et al. (2018) allow

us to generate synthetic population statistics which can be compared to observed

population statistics to test this theory. Currently work is being done to build on

the models in Forgan & Rice (2013b); Forgan et al. (2018) before progressing with

this, where a stage of disc formation through cloud collapse is being incorporated,

and the disc is now being evolved with the planets simultaneously.

Equally, highly parallelisable grid-based hydrodynamic codes such as fargo

(Beńıtez-Llambay & Masset, 2016), which can be run on GPUs, can be used

to follow the long term evolution of GI systems. Of interest to the work in

Chapter 4, following how a companion influences the migration rates of GI

fragments may help us to understand the frequency with which wide-orbit, giant

protoplanets evolve to become close-in, giant planets/brown dwarfs like those

found in Fontanive et al. (2019). Whilst we demonstrated that the companion’s

influence can trigger fragmentation, suggesting that GI planets and brown dwarfs

may be more common in binary systems, we still need to understand how they

might have migrated to the short orbits on which the observed population

of planets are currently found. It has already been shown that scattering of

fragments onto eccentric orbits followed by tidal circularisation can account

for around half of the systems observed in Fontanive et al. (2019), however

other mechanisms which may accelerate migration must be explored if triggered

fragmentation is to explain the full excess of close-in, giant planets which are

found in these binary systems.

7.3 Conclusion

With the advent of the James Webb Space Telescope (JWST)-era of observational

astronomy upon us, high resolution images of potentially self-gravitating discs will

hopefully only become more frequent. Telescopes such as ALMA and the VLT

have already provided us with some mind-blowing images, such as the DSHARP

sample shown in Figure 1.4 and AB Aurigae shown in Figure 5.1. Equally, large

scale surveys of planetary systems are steadily building a more coherent picture

of population statistics. These observational insights inspire and inform theorists,

providing them with a testbed to examine their ideas, as has often been the case
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in the research throughout this thesis.

As things stand, the general consensus is that planet formation probably primarily

occurs through core accretion. If planet formation through GI is possible, it is

likely that it only occurs at large distances from the host star, forming only

the most massive planets. There is now growing observational evidence that

gravitationally unstable discs and GI-born planets do exist in nature. Wide-orbit,

giant planets are now often being discovered through direct imaging surveys, some

of which have characteristics indicative of formation through GI (e.g. Vigan et al.,

2017; Nielsen et al., 2019; Vigan et al., 2021). Equally, direct imaging surveys of

close-in, giant planets which find an excess of outer binary companions (Fontanive

et al., 2019) indicate that triggered fragmentation may play an important role in

their formation histories. With the recent observations of L1448 IRS3B (Tobin

et al., 2016) and AB Aurigae (Boccaletti et al., 2020; Currie et al., 2022) we may

now have the first direct evidence of discs undergoing fragmentation. There is

also now mounting evidence that the spirals observed in systems such as Elias

2-27 can be successfully explained through GI (Hall et al., 2018; Paneque-Carreño

et al., 2021).

We therefore find ourselves in an exciting time for exoplanet discovery, proto-

planetary disc imaging and theories of planet formation. GI is emerging as a

very promising complimentary theory to core accretion where the growing wealth

of data combined with theoretical developments will only serve to improve our

understanding of the earliest stages of planet formation. Whilst many unanswered

questions of course still remain, I hope that this body of work acts to at least

answer some of them, and that it may inspire future research in protoplanetary

disc theory.
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