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Abstract

Characterising microbial communities enables a better understanding of their com-
plexity and the contribution to the environment. Metagenomics has been a rapidly
expanding field since the revolution of next generation sequencing began, and it has
a wide range of application including for medicine, agriculture, forensics, archaeology
and even domestic use [Sarkar et al., 2021, Holman et al., 2017, Khodakova et al.,
2014, Santiago-Rodriguez et al., 2017, Vilanova et al., 2015]. Sequencing amplicon
data, such as 16S rRNA, is now commonly used to characterise the microbiome in
a variety of biological samples. However, their correct taxonomic identification still
remains a challenge, and often short reads are identified, correctly or not, at several
ranks of the taxonomic tree other than species or subspecies level.

Every metagenomic study is designed for specific needs, and it is often complicated
to find a suitable bioinformatics pipeline and reference database. There is currently a
lack of systematic benchmarking of in-house methods for metagenomics. The work
presented in this thesis aims to establish an approach for the in silico validation
of 16S rRNA metagenomic data. A method to generate realistic in silico meta-
genome data that resembles project-specific sequencing data is presented, including
a new process to generate synthetic negative controls for amplicon data, which can
be employed regularly to assess the appropriateness and optimisation of methods for
specific metagenomic projects. To aid the benchmarking process, new metrics have
been defined based on a measure of taxonomic distance.

A k-mer based method with the lowest common ancestor approach was selected
to investigate a range of factors that influence meta-taxonomic classification success.
It includes the comparison of database quality filtered at various levels, and as well
as a comparison of different taxonomic annotation methodologies. The experimental
findings reveal the importance of having highly curated taxonomic annotations of the
genetic sequences in the database, and that a missing fraction of the tree of life
can lead to misclassification of any related or unrelated organisms. In some cases,
it is shown that longer reads can help to improve assignment, with mutations and
sequencing errors having a relatively low negative impact.

The marker gene 16S rRNA has well-defined conserved and variable regions, which
help to distinguish species. Therefore, these regions were studied and also recalculated
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using information theory, to investigate which parts of the sequence are discriminative
for metagenomic taxonomic identification. In addition, linguistics methods, Term
Frequency — Inverse Document Frequency (TF-IDF) coupled with multinomial naive
Bayes, is shown to provide understanding of genetic signatures and is applied to
generate a new method to classify taxonomically metagenomics short reads.

Biological samples were taken from cattle respiratory tract, DNA was extracted
and sequenced to provide metagenomic data. Two sets of experiments were carried
out, (i) to compare sampling and extraction methods and (ii) to characterise the
microbial community observed in young cattle in the different lung lobes and nose.
The data reveal that the composition of the microbial community observed is highly
dependent on the sampling method.
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Lay summary

Microorganisms or microbes are present everywhere in the environment and in living
things. Identifying them in a particular sample involves the use of a technique known
as ‘metagenomics’, which is based on genetic fingerprints (DNA fragments) specific
for each microbe. Metagenomics has been applied to a wide variety of areas, for
example to discover which microbes are responsible for a particular disease, determine
which microbes are beneficial for growing crops, investigate ancient microbes present
in mummies or even to know what is living in your coffee machine. A common way
of identifying them in bacteria involves the analysis of the DNA sequence to look
for a specific marker gene. However, correctly identifying and quantifying all the
microorganisms present in a particular sample is very challenging.

Each metagenomics project is unique, and often it is not a simple task to choose
which set of tools is the most appropriate to analyse the data generated. Also, in
general, these tools are not adequately tested to determine their suitability for the
specific purpose at hand. In this thesis, a method has been developed to simulate
‘real-life’ metagenomic data to improve microorganism identification. In addition,
new ways of measuring the accuracy of the identification has been proposed.

The project has also tried to determine why microbes are sometimes incorrectly
identified. To identify them, data was compared with other genetic information cur-
rently held in public databases. The quality of this data including the associated
taxonomic information (specific identification of the organism and its scientific clas-
sification) was found to be a key factor in the correct identification. Furthermore, it
was determined that longer DNA fragments resulted in greater accuracy. In contrast,
sometimes microorganisms do not have a previously known DNA sequence in the
reference database, thus making identification more difficult. Investigations revealed
that having as many sequences as possible belonging to a wide range of organisms
can also improve the identification of already known organisms.

Genes can contain regions that are identical or almost identical between microor-
ganisms, while others are much more different. These latter ones, depending on the
methods used, can be further investigated to improve microorganism identification,
making use of DNA fragments of length k (k-mers) found in different proportions,
known as genetic signatures, in each microorganism. Thinking of a gene as a sentence
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and a k-mer as a word enables the use of machine-learning methods from linguistics
to create a new approach to identify microorganisms.

Finally, data from cattle lung was collected and analysed. Different methodologies
were explored to improve the quality and quantity of microbe DNA for analysis to
determine which microorganisms were present and in which compartments of the lung
they were found, to enable future exploration of the causes of disease in cattle with
pneumonia.
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Chapter 1

Introduction

1.1 Motivation

The revolution in Next-Generation Sequencing (NGS) technologies has enabled a
step-change in the way that sequence data is collected and used in Biology, including
in metagenomics, the sequencing of mixed source nucleic acid samples. These studies
have profound implications for human, animal and plant health and disease as well
as in diverse areas such as forensic science, environmental pollution monitoring and
climate modelling [Sarkar et al., 2021, Holman et al., 2017, Piombo et al., 2021, James
et al., 2021, Kajale et al., 2021]. Figure 1.1 shows the main application areas for
metagenomics.

Figure 1.1: Ten top metagenomic applications. Top 10 categories on the web of science. Search
terms: metagenomics or metagenomic, 21.366 results on 17/12/2021. They include microbiological
related studies, environmental and ecological sciences. Despite viruses being common, their study
remains complex, and in here it shows in the last position. Source:web of science

Whole-genome shotgun (WGS) metagenomics can, in principle, sequence all ex-
isting organisms present in a sample, as well as functionally characterise them. Tar-
geted or marker gene metagenomics or metagenetics only sequence a highly conserved
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marker gene or part of it [Breitwieser et al., 2019] to determine the taxonomic com-
position of a sample. This works well for samples which contain host genomes, is
often cheaper than WGS, is widely spread and generally faster, and its biases are
well-characterised and understood [Pérez-Cobas et al., 2020, Knight et al., 2018].
The most common marker genes are 16S rRNA for bacteria and archaea and internal
transcribed spacer for fungi. This work focuses on the targeted characterisation of
bacteria and archaea.

1.2 Marker gene 16S rRNA

The 16S rRNA gene is a housekeeping gene found in Bacteria and Archaea. It is
widely used for targeted metagenomic studies and allows multiplexing of samples for
sequencing, which reduces costs significantly. It is approximately 1600 base pairs
(bp) long, and it is well characterised. It has 9 hyper-variable regions, as shown in
figure 1.2. Different variable regions are more suitable to identify certain taxonomic
groups, and therefore may be environment-dependant [Yang et al., 2016, Johnson
et al., 2019]. In-depth studies of the different variable regions of this gene have
revealed that the regions V1-V4 can improve the bacterial biodiversity estimates and
accuracy due to its higher divergence [Kim et al., 2011]. However, some contradictory
results have been obtained: Yang et al. [Yang et al., 2016] found that the regions
V4-V6 are optimal for bacterial phylogenetics and regions V3-V6 are more suitable
for extreme environments. Other studies revealed that a full length 16S rRNA gene
is necessary for improved taxonomic identification [Yarza et al., 2014, Johnson et al.,
2019]. Importantly, it should not be used to identify at the species or strain level
[Bharucha et al., 2020, Knight et al., 2018, Pérez-Cobas et al., 2020] because it is
not specific enough to confidently distinguish them.

The 16S rRNA gene amplification efficiency can vary depending on the primers
used, because affinity varies from sequence to sequence and consequently PCR ampli-
fication bias is introduced [Knight et al., 2018, Sunagawa et al., 2013]. Some primers
can target most of the bacterial species and in some cases a few Eukaryotic species
(close ortholog 18S rRNA with an approximate length of 1800bp) [Kim et al., 2011].
Also, bacterial species often have multiple copies of the 16S rRNA gene, commonly
up to 10 but in some cases as many as 17 [Espejo and Plaza, 2018].

1.3 DNA extraction

The challenge of DNA extraction for metagenomics is to obtain all the genetic material
(DNA) of all organisms present in a given sample. Some types of samples, e.g.
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Figure 1.2: 16S rRNA gene. Secondary structure of the 16S rRNA gene sequence belonging
to E. coli. The conserved and variable regions are marked in bold letters, and the name of the
region (V1-9) is printed nearby. The numbers correspond to the position of the ribonucleic base in
the sequence which is pointing. The colours of the sequences indicate groups of regions, which are
only relevant for the source study. The secondary structure of this gene is complex. The diagram
illustrates the interactions of the bases, from which some are located nearby in the sequence, but
others are distant. An example of this are the positions 17, 18 and 19 which bonds with the position
915, 916 and 917. Source [Yarza et al., 2014]
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clinical, can contain vast amounts of host DNA and also RNA, dominating most of
the recovered material. This can be especially problematic for samples where host
genetic material is much larger than the average microbial genome. In such cases,
additional steps will be required and can consist of depletion of host DNA/RNA,
methylation or selective lysis [Afshinnekoo et al., 2017].

Extraction kits can introduce bias to the composition of the microbiome. Also,
often, contamination is introduced during the extraction process, known as kit-ome.
Levels of contamination can vary hugely across different batches and can have huge
impacts, especially for samples with a low biomass [Salter et al., 2014].

1.4 Sequencing platforms

Several sequencing platforms are available. The current underlying technologies can
be classified by their type of output, either short (second generation) or long read
(third generation). Long read sequencing can generate sequences longer than 10 kilo
bases (kb). However, despite the continuous improvements, sequences still contain
around to 10% of error across each read. In contrast, short-read sequencing is still the
most common for metagenomics [Pérez-Cobas et al., 2020]. It requires more complex
library preparation, but allows multiplexing which reduces costs and the output is more
accurate than for long reads [Hu et al., 2021].

One of the main short read platforms is provided by Illumina. Since Illumina short
read sequencing (2×150 bp) became popular over a decade ago, there was a clear
need to obtain longer sequences to aid in assembly of genomes, closing gaps. It is
particularly useful when there are lots of rearrangements, and also to allow better and
more reliable identification. Illumina currently has on the market platforms that allow
the sequencing of up to 300 bp reads1.

Illumina sequencing has popular for a number of years, which allowed the scientific
community to develop numerous tools specifically designed to understand its sources
of errors in detail. The error rate is estimated to be 0.24 ± 0.06% per base [Pfeiffer
et al., 2018] with a higher concentration towards the end of the reads [Tan et al.,
2019].

1.5 Bioinformatics analysis steps

Sequencing data contain errors, and it is important to make sure to distinguish them
as much as possible from natural variation. Quality control is essential before pro-
ceeding to ensure understanding of the nature of the data and any other potential

1according to specifications from www.illumina.com, on 02/09/2020
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peculiarities. If necessary, reads can be quality trimmed and length filtered. Also, this
step remove contamination, adaptors, and host DNA [Bharti and Grimm, 2021, Pérez-
Cobas et al., 2020]. Several tools are available for quality control, for example one
of the most popular ones is FASTQC [Andrews, 2010], which provides an exhaustive
report including per base quality, GC content and over-represented sequences. Quality
trimming is also a common practice, especially for Illumina data, and includes Sickle
[Joshi NA, 2011], which allows setting a quality threshold and a minimum sequence
length to keep.

There are two main types of taxonomic identification methods, the first Opera-
tional Taxonomic Unit (OTU) is sequence similarity clustering based, and has been
long-established, and the second Exact sequence variants (ESV) also known in some
contexts as Amplicon sequence variants (ASVs) are denoising based [Pereira et al.,
2020]. OTU methods typically cluster sequences at 97% of identity for identification,
which reduces the computation power needed. ASVs taxonomic profilers are designed
for feature exact matching to taxonomically identify sequences [Pérez-Cobas et al.,
2020] and are much more reproducible [Callahan et al., 2017]. For example, there is
no need for rebinning of clusters when datasets are merged [Glassman and Martiny,
2018]. The main difference between OTU and ASVs is the fact the latter methods
have the capability, in theory, to distinguish small natural variations from technical
errors[Joos et al., 2020]. While some claimed that it is better to avoid OTU based
methods [Callahan et al., 2017, Knight et al., 2018, Bharti and Grimm, 2021, Pereira
et al., 2020], their performance clearly depends hugely on the context in which they
are applied. Recent studies demonstrate that OTU and ASVs methods are compa-
rable in some contexts[Glassman and Martiny, 2018], while in others OTU methods
can discriminate better the lower taxonomic ranks [Joos et al., 2020]. Nevertheless,
a more in depth research is needed to disentangle the applicability of each type.

To obtain accurate results, it is important to understand each classifier well.
For example, the abundance estimation can vary significantly, depending on whether
sequence or taxonomic abundance is reported [Sun et al., 2021], and this can have
huge effects for the downstream analysis [Jeske and Gallert, 2022].

1.5.1 Kraken taxonomic profiler

Kraken [Wood and Salzberg, 2014], and its newer version Kraken2[Wood et al., 2019],
is a composition or denoising based method for metagenomic taxonomic identifica-
tion, which splits genetic sequences in fragments of size k or k-mers. To create the
database, it divides sequences into overlapping fragments of length k (k-mer. Default
k=35). These fragments can be unique or in common with several other species, and
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therefore each k-mer is added to the lowest common ancestor (LCA)2, an example
on how this works is shown in figure 1.3. The classification phase for each read is
done by counting the matches of each k-mer against the LCA database and adding
them up for each taxon (the scoring system), and then each individual sequence is
assigned to the highest rated root-to-leave path (RTL). An example of a real Kraken
classification can be found in figure 1.3c, and more examples of Kraken classification
are found in appendix figure B.1.
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Figure 1.3: Kraken taxonomic identification diagram. (a) Kraken creates the classification
database by assigning fragments of length k to the lowest common ancestor. (b) For each k-mer
of the read, the number of hits matching each node are added together. The final assignment is to
the highest weighted root-to-leaf path. In this case, F has a weight of 2 and B of 1. The highest
weighted RTL is B (2+1). (c) This is a real example of a Kraken output. Highlighted in blue, the
origin of the read. On top of the branch there is the taxon name, underneath each node there is the
corresponding taxonomic rank followed by the number of k-mers hitting this taxon. "0" (unknown)
are k-mers not present in the reference database. The read ID127 has 3 potential RTL: unknown
with a total weight of 48, Estrella lausannensis with a RTL weight of 42 (36+6) and Candidatus
Metachlamydia lacustris with an RTL weight of 67 (36+31), which is where it has been assigned.

K-mer based approaches, like Kraken, rely on exact k-mers match. The size of
the k-mer is fundamental: too short might not be specific enough, while too long
is more likely to be affected by sequencing errors or natural variability of the species
[Breitwieser et al., 2019] given genomes tends to accumulate mutations.

Kraken2 is one of the fastest and most efficient taxonomic profilers, and is one
of the most accurate for classifying strains not present in the reference database at
the species level [Meyer et al., 2022]. Moreover, it assigns each read (or pair of
reads) to a taxon while showing the number of hits in each taxon, which allows better
understanding of its classification process.

2A lowest common ancestor method consist of finding the first common ancestor between 2 or
more leaves in a tree.
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1.6 Reference databases

Reference databases are key for taxonomic identification of metagenomic reads. There
are two main components to this; the genomic sequence content and the associated
taxonomic annotation. The genomic databases can be generic, but more often are
specialised, for instance containing a set of genes like rRNA, or marker genes such as
the 16/18S rRNA, full or nearly completed genomes.

1.6.1 Taxonomy reference databases

There are numerous public databases available for taxonomic classification. Most
of them are still based on the Linnaeus taxonomy methods, published in 1753-58
[Miralles et al., 2020], based on physical and other observable traits at the time.
Nowadays, evolutionary and phylogenetic theories are widely used but fail to be inte-
grated systematically and reliably within the taxonomic classification systems. This is
partly due to the fact that it is hard to compare genomes since the content from more
complex organisms, like mammals, to more simple organisms, like bacteria or viruses,
differ greatly in size and content. Recent advances allowed the scientific community
to propose several approaches to solve the problem.

Long-established reference organisms do not reflect the variability amongst species,
and new taxon names have scarcely increased in recent decades officially, however,
many are being proposed and used by specialised database curators. This is due to the
lack of metadata and specimens associated with the available data, which normally
aids the classification [Miralles et al., 2020].

BacDive

An example of a database for bacterial and archaea metadata is BacDive (the Bac-
terial Diversity Metadatabase) [Söhngen et al., 2014, Reimer et al., 2019]. It was
created in 2012 to manually annotate metadata (such as morphology, geographic
location, physiology, metabolism, etc.) for culturable prokaryotes. In 2021 3 it con-
tained 82892 strains belonging to 14350 species. Only about 5% (16,723) of the
entries contain an associated 16S rRNA sequence.The strain description relies on the
information provided by the submitter. However, without strict control, information
from contaminated samples and annotation errors may be included.

Despite being probably the most comprehensive resource of its kind, only one
public release a year is available and the FAIR (Findable, Accessible, Interoperable

3Search on 04 October 2021 https://bacdive.dsmz.de/dashboard
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and Reusable) principles are currently being implemented. Which can make it harder
to use in practice.

Partial genetic sequences are frequently the only source available for unculturable
or newly discovered microorganisms. Their physical and metabolic state are often
extremely hard or impossible to characterise and validate. Phylogenomics is usu-
ally applied to compare and place the newly discovered microbiota in a taxonomic
tree. However, uncertainty due to the quality of sequencing and lack of supporting
phenotypic metadata is not uncommon.

NCBI taxonomy database

The NCBI taxonomy database [Schoch et al., 2020] is one of the most comprehensive
resources for taxonomic classification. It contains 2,367,188 taxonomic nodes of
which approximately 67.0% are eukaryotic organisms, 22.2% bacteria, 9.4% viral,
0.6% archaeal and the rest, 0.8%, is not specified 4.

The NCBI taxonomy database is manually curated, and the annotation system is
based on the guidelines proposed by Linneaus (phenotypic observations such as mor-
phology and physico-chemical properties). However, where possible, 16/18S rRNA
phylogenetic reconstruction is used. Monophyly5 is assumed across all organisms.
With some exceptions, lineages generally contain 7 main ranks (superkingdom, phy-
lum, class, order, family, genus, and species) with additional ones where necessary.
Often there is little correlation with phylogeny.

Some taxonomic lineages are highly likely to be changed and can be identified by
their nomenclature [Schoch et al., 2020]. For example, ’Candidatus’ refers to newly
proposed prokaryotes while ’sp.’ indicates temporary names assigned to prokaryotic
taxa until it is given a valid or published name.

Fungi classification has been challenging since this kingdom was first recognized
by Linneaus. There are a highly diverse group, and moreover there are some closely re-
lated groups of organisms that sometimes can be challenging to discriminate [Naranjo-
Ortiz and Gabaldón, 2019]. Currently, NCBI contains 9 phyla out of a potential
16[Schoch et al., 2020].

Several lineages are poorly annotated and not fully hierarchically assigned [Schoch
et al., 2020]. Normally, these are identified by the terms ’unclassified’ or ’environ-
mental’ in their names.

NCBI taxonomy database downloadable FTP files are updated every 24 hours,
while the metadata (e.g. names, lineages, etc.) on a weekly basis. There is no

4Based on data from 4 October 2021. Source: https://www.ncbi.nlm.nih.gov/Taxonomy/
taxonomyhome.html/index.cgi?chapter=statisticsperiod=from=to=
5Group of organisms descendant from a single ancestor
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versioning system, although some changes are easy to track. For example, TaxNodes
that are removed or merged are simply stated (without a timeframe).

Genome Taxonomy DataBase (GTDB)

The Genome Taxonomy DataBase (GTDB) is probably the most exhaustive phylo-
genetic taxonomy for prokaryotes at present. It compares similarities between 120
and 122 single-copy ubiquitous common genes for bacteria and archaea, respectively,
presented in two separate trees.

Full genomic sequences are obtained from RefSeq and metagenome-assembled
genomes (MAGs) are extracted from the Sequence Read Archive (SRA) metagenomes.
After quality checks for completeness, contamination, multiple sequence alignment
and de-replication, a taxonomic tree was generated from the concatenated bac120
and annotated by the NCBI taxonomy names.

This approach is able to resolve better potentially polyphyletic6 grouping compared
to 16S rRNA phylogenetic, it does not present PCR bias, and also it solves the issue
of copy number variability of the 16S rRNA gene. Although it was first developed
for bacteria and later expanded to include archaea [Parks et al., 2020], but still lacks
greatly in diversity, e.g Eukaryotes.

1.6.2 Genomic databases

There are numerous resources of generic and specialised genomic databases. Some
well-known generic genomic databases belong to the International Nucleotide Se-
quence Database Collaboration (INSDC) [Arita et al., 2021]. Multiple collections for
amplicon data often include their own taxonomies, some of the most well-known are
listed in table 1.1. In addition to these, there are multiple reference genome databases,
which often are a subset of bigger databases with complementary data from other
resources.

Databases generally accumulate data over time, and also guidelines for submission,
storage, and checks change [Breitwieser et al., 2019]. Therefore, different versions
are likely to generate distinctive results even with the exact same algorithms.

Sequences deposited in available resources have errors. Most of the assembled
genomes contain contaminants of all sorts [De Simone et al., 2020] from sequences
belonging to other organisms (mainly human, and also other genomes in human
sequences) and may include fragments from sequencing controls [R. Marcelino et al.,
2020, Breitwieser et al., 2019].

6Group of unrelated organisms descendant from multiple ancestors
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Table 1.1: Selection of publicly available genomic databases for meta-genome analysis.
Description of some of the major and widely used databases that can be used as a reference for
metagenomic identification. They are classified by type.

Type Database Description reference

Generic
European Nu-
cleotide Archive
(ENA)

Nucleotide sequence archive by
the European Molecular Biol-
ogy Laboratory’s European Bioin-
formatics Institute (EMBL-EBI),
INSDC

[Harrison et al., 2021]

GenBank nucleotide sequence archive, Na-
tional Center for Biotechnology
Information (NCBI), USA, INSDC

[Sayers et al., 2020]

DNA DataBank of
Japan (DDBJ)

nucleotide sequence database, the
National Institute of Genetics,
Japan, INSDC

[Kodama et al., 2018]

RNA
Silva small and large subunit (SSU and

LSU) rRNA gene database
[Glöckner et al., 2017]

Greengenes 16S rRNA gene database
chimera-checked.

[DeSantis et al., 2006]

RDP Prokaryotic 16S rRNA and fungal
28S rRNA high-quality annotated
collection.

[Cole et al., 2014]

RNA central non-coding (nc)RNA collection
from multiple sources, includes
2D structure.

[Sweeney et al., 2021]

Genomes

RefSeq Curated high-quality stable ref-
erence genomes, transcripts and
proteins from INSDC. It contains
eukaryotes, prokaryotes, viruses
and organlles.

[O’Leary et al., 2016]

Genomes OnLine
Database (GOLD)

Collection of projects which con-
tain both genomic sequencing and
metadata.

[Mukherjee et al.,
2016]

RefSeq microbial
genomes database

Collection of microbial genomes
submitted at the INSD. Refer-
ence genomes are manually se-
lected from the most reliable and
annotated available.

[Tatusova et al., 2014]

Integrated Microbial
Genomes (IMG)

Partial and complete microbial
genomes (archaea, bacteria and
virus) including plasmidic se-
quences.

[Markowitz et al.,
2012]

Ensembl Bacteria non-redundant prokaryotic
genomes according to UniProt
criteria.

[Howe et al., 2021]
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1.6.3 Silva database

The Silva database [Glöckner et al., 2017] is a collection of Small subunit ribosomal
ribonucleic acid (SSU) and Large subunit ribosomal ribonucleic acid (LSU) rRNA
sequences. For each release, sequences annotated as relevant are retrieved from
EMBL-EBI/ENA releases. rRNA genes are predicted with an HMM model (RNAm-
mer) [Lagesen et al., 2007]. Then sequences are aligned, quality checked and man-
ually curated, and include partial and environmental sequences. These are generally
classified as uncultured, unknown, environmental, and metagenomic.

The Silva accession identifier consists of the original ENA archive ID followed by a
dot, then the position of the first nucleotide of the 16/18S rRNA gene in the original
sequence, followed by another dot and the position of the terminal nucleotide.

LSU and SSU sequences are archived separately. The database consists of Parc,
whole data; Ref, with archaeal sequences of minimum length of 900 bp and bac-
terial and eukarotya of 1200 bp whose alignment score is 50 or higher and identity
above 70%. Finally, the Ref NR is a subset of the Ref which contains the longest
representative of each cluster after clustering at 99% identity with UCLUST [Edgar,
2010].

The SILVA SSU version 138.1 contains 9,469,124 aligned sequences in SSU Parc,
2,224,740 in Ref and 510,508 in Ref NR. Table 1.2 show the number of sequences for
each superkingdom in each subset. In this thesis the SSU Parc will be referred to as
Parc, SSU Ref as Ref and SSU Ref NR as NR99. Silva also has a truncated version
of all them (referred to as Trunc), which consist of the same sequences truncated to
the predicted beginning and end of the gene.

Table 1.2: Silva database version 138.1 content. Number of sequences of the SSU Silva
database version 138.1 and taxonomic content according to silva’s classification.

Subset Bacteria Archaea Eukaryota Total
SSU Parc 8,475,540 347,020 646,567 9,469,124
SSU Ref 1,983,022 69,198 172,520 2,224,740
SSU Ref NR 431,329 20,389 58,790 510,508

Silva has its own taxonomy classification system, adapted from the Bergey’s out-
lines [Yilmaz et al., 2014, Glöckner et al., 2017]. Specialised resources are used for
nomenclature, as well as databases such as the NCBI taxonomy and GTDB (see on
page 9). New taxa are added to the SILVA guide tree based on authors’ description.
A corresponding NCBI taxon ID is provided for each sequence.

Silva database curates their taxonomies up to the genus level. All the names from
species and subspecies ranks are the original provided by the submitter of the sequence.
This can lead to inaccurate or inconsistent lineages as there is no consistency checking
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between genus and species names.

1.6.4 Database limitations for metagenomic taxonomic identification

The content of the database needs to reflect as well as possible the microbial com-
munity to avoid biased results. In fact, using the wrong reference data may be
counterproductive. For instance, [R. Marcelino et al., 2020] generated a mock sam-
ple of only fungal species. When the reference database only contained amphibian
genomes, the vast majority of the sequences were wrongly assigned to some taxon.

Contamination and annotation in the reference databases impact negatively tax-
onomic classification. Viral fragments are commonly found in bacterial genomes,
and more frequently human and sequencing artefacts in many other organisms. It
is estimated that over 2,000,000 sequences in GenBank are contaminated (0.54%,
only considering kingdom level contamination to a different lineage) [Steinegger and
Salzberg, 2020]. Also, sometimes sequences are labelled to the wrong species. There
are currently mechanisms to detect these cases, but some escape the controls.

Some of the main factors that might impact taxonomic identification for metage-
nomic data are:

• Incomplete genes and genomes
Many species genomes are still not complete. Although some individual genes
have been successfully assembled (for instance the housekeeping marker gene
16S rRNA), others have been less successful and only have partial genomic
sequences.

• Contamination
One of the major issues for many genome databases is contamination of the ref-
erence genomes [Steinegger and Salzberg, 2020]. There are two main types of
sources for these problems: computational and experimental. The first ones are
commonly caused by homology-based algorithms and the propagation of past
erroneous annotations [Bagheri et al., 2020]. The second type is frequently
caused by reagents during the genomic extraction and sequencing. The most
prevalent are E. coli and PhiX174, a phage used as Illumina sequencing control,
as well as human genetic fragments and many others [Salter et al., 2014, Bre-
itwieser et al., 2019]. Some laboratories perform contamination checks and
remove these artefacts from the sequence data. However, some might remain
undetected and therefore incorporated into assembled genomes.

• Incorrect annotations
Some genomic sequences available in public databases are assigned to the wrong
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species [Breitwieser et al., 2019]. Existing mechanisms allows the detection of
most of them, and when such issues are detected in GenBank, the submitters are
requested to correct them. However, there is a lack of control as the sequence
is owned by the submitter.

• Number of representatives in the tree of life and databases
There is a huge variability in the number of species and subspecies described in
public resources. The genomic sequences of a significant number of organisms
are not yet know [Pearman et al., 2020], and it is hard to estimate the organismal
missing fraction, especially for unculturable organisms.

For instance, E. coli contains 3,372 subspecies in the taxonomy database7,
5,004,146 entries in INSDC (GenBank)8 and 4,341,804 in RefSeq, whereas the
species Chlamydia abortus contains 3 subspecies in the taxonomy database9,
9,815 entries in INSDC10 and 1,571 in RefSeq. An example of a less known
organism is Fabrella tsugae, which is a fungus (a needle cast pathogen of Larix
spp.) belonging to the phylum of Ascomycota. It has a single entry in the
taxonomy database11 and 3 in the INSDC database12; its first partial sequence
was published in the year 2000, and it is not present in RefSeq.

To address this, there are innovative solutions such as used in GTDB or Pangenomes
project13.

• Highly conserved genomic regions
Many wrongly identified sequences are due to highly conserved genomic frag-
ments across a wide range of organisms. Reference databases that include
an extensive range of organisms have the potential to mitigate the number of
false-positives and have more chances to detect any contamination [Breitwieser
et al., 2019, R. Marcelino et al., 2020].

7Search on https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi with the term "Es-
cherichia coli" [05/08/2021]

8Search on https://www.ncbi.nlm.nih.gov/nuccore/ with the terms (((Escherichia coli) AND
"Escherichia coli"[Organism]) AND E coli) AND E.Coli [05/08/2021]

9Search on https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi with the term
"Chlamydia abortus" [05/08/2021]

10https://www.ncbi.nlm.nih.gov/nuccore/ search term "Chlamydia abortus" [05/08/2021]
11Search on https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi with the term "Fab-

rella tsugae" [05/08/2021]
12https://www.ncbi.nlm.nih.gov/nuccore/ search term "Fabrella tsugae" [05/08/2021]
13https://progenomes.embl.de/

13



1.7 Microbial diversity

Habitats present very diverse microbial communities. Differential abundance, even-
ness, and richness are measures to quantify unequal representation of the community
where there are a few dominant species and many that are rare or of low-abundance.
Other parameters that describe the community are (i) alpha-diversity which measures
the local diversity of the community such as richness (includes Chao1, for estimating
the diversity of true species; phylogenetic metrics (like Faith’s phylogenetic diver-
sity); and evenness (e.g. Shannon index), which makes them less sensitive to the
number of sequences per samples, (ii) gamma-diversity measures the total regional
diversity that includes many communities and (iii) beta-diversity which is a metric
that measures how different the samples are in an area (linking alpha and gamma),
which can be qualitative (Bray-Curtis, Canberra, weighted UniFrac) or qualitative
(binary-Jaccard, unweighted UniFrac), but also there are others like Aitchison dis-
tance (for compositional data)[Knight et al., 2018, Luz Calle, 2019, Escobar-Zepeda
et al., 2015].

Rarefaction curves estimate the maximum number of species or OTU or ASVs
observed in the sample and compares samples with different sizes, which is a nor-
malisation method that consists of subsampling reads such that all samples have the
same number [Luz Calle, 2019, Escobar-Zepeda et al., 2015]. However, this exclusion
process can create biases and high false positives rates[Nearing et al., 2022]

Non-parametric estimators are used to measure heterogeneity: (i) Simpson’s index
(D) is the probability of assigning two independent sequences taken randomly to the
same species, and (ii) Shannon-Weaver index H’ is an entropy measure which increases
with the number of species.

1.8 Abundance comparison

Differential Abundance (DA) analysis of microbial communities tries to identify which
taxa are significantly different (in abundance terms) between groups of samples be-
longing to two or more environments. Many tools are commonly used, some of them
adopted from differential expression methods for other types of omics data, such as
DESeq and EdeR (RNA-seq), which assume negative binomial distribution, while oth-
ers are specifically designed, like the popular tool Linear discriminant analysis effect
size (LEfSe)[Segata et al., 2011].

Given metagenomic samples present large variation in sequencing depth, the rich-
ness can vary drastically. Some tools address this problem by applying rarefaction
prior to DA testing (e.g. LEfSe). Another issue is whether or not to filter out rare
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taxa, which in some contexts and for some statistical methods, this might make sense.
Some methods raised issues with the statistical distributions, like the ones designed
for RNA-seq data [Nearing et al., 2022], because metagenomic samples in general vi-
olate the principle of stable abundance for most species [Weiss et al., 2017]. The data
resulting from aggregating metagenomic samples taxa is often highly dimensional and
sparse, in other words, it is compositional[Nearing et al., 2022, Pérez-Cobas et al.,
2020, Luz Calle, 2019, Knight et al., 2018]. Compositional data analysis employ a
range of techniques to use ratios of read counts within a sample [Nearing et al., 2022].

When several of the previous methods were evaluated with a range of environ-
ments, it revealed caveats in all them, which need to be taken into account when
choosing a tool. For example, some can have high levels of FDR in some cases, and
some compositional methods detected fewer significant taxa (although highly corre-
lated with most of the methods at the top 20 hits). Overall, the effect of filtering
rare taxa remains unclear, and it is not evident so far, whether any type of methods
necessarily outperforms others. [Nearing et al., 2022].

1.9 Benchmarking

Benchmarking metagenomics specifically designed tools is important to establish their
performance. Studies evaluating some of the available methods for metagenomics
[Lindgreen et al., 2016, Mavromatis et al., 2007, McIntyre et al., 2017] are mostly
focused on testing and comparing a limited selection of tools. Their results are not
directly comparable, as they use different mock communities [Capella-Gutierrez et al.,
2017] and numerous types of metrics. There are two essential components to assess
performance and accuracy: gold standards representing ground truth and meaningful
and well-defined metrics.

CAMI (Critical Assessment of Metagenome Interpretation) is a community-driven
assessment to establish gold standards for metagenomics [Sczyrba et al., 2017]. The
second challenge [Meyer et al., 2021] included three types of mock communities (Ma-
rine, high strain diversity and a plant-associated including fungi and host material).
Their results show that all the tools in the study classify better at higher taxonomic
ranks. Kraken2 [Wood et al., 2019] demonstrated the best performance for known
marine species and new strains, and is also the fastest and most efficient taxonomic
profiler.

LEMMI (A Live Evaluation of Computational Methods for Metagenome Investi-
gation) [Seppey et al., 2020] is a containter based repository for independent pipeline
comparison. To be able to compare results, where possible a subset of RefSeq
database from 2018 is employed from organisms that have both DNA and protein
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sequences in the reference. The datasets analysed consist of the CAMI1 data and
two in silico sets (low and medium diversity) specifically designed for the challenge.
Methods are ranked with a performance score, which is a harmonic mean of several
metrics applied.

All of them provide hints on potential methods to choose for metagenomic anal-
ysis. But it is hard for generic synthetic data to reproduce the variability found in
nature [Weber et al., 2019] or account for specific project pitfalls.

In this thesis, the focus is to identify factors that influence metagenomic taxonomic
classification.

1.9.1 Mock communities

Mock microbial communities, employed as ground truth by benchmarkers, can be
generated in vitro or in silico. The work presented here, uses the latter one because it is
cheaper and easier to manipulate. The College of American Pathologists recommends
validating the metagenomic classification pipeline with simulated environments from
previously analysed samples [Schlaberg et al., 2017].

In silico data is created from already known genetic sequences used as templates.
They have to be independent of previous training datasets, reliable, well-curated,
robust [Gardner et al., 2019] and imitating real data. Trustworthy experimental design
is crucial to avoid over-fitting, over-optimistic or biased results [Weber et al., 2019],
especially for clinical data [Bharucha et al., 2020].

Importantly, the simulated data must include positive and negative controls. In
this thesis, positive control refers to genetic sequences found in the reference database
and is expected to be identified when performing a meta-taxonomic classification. In
contrast, negative control refers to sequences that are not present in the reference
database. They might be related to previously unknown organisms or might be com-
pletely novel.

There are several publications that describe metagenomic profiling and include
negative controls in their studies, the strategies followed include: (i) randomised
sequences that include the generation of sequences from scratch, shuffling parts of
real sequences and introduction of noise [Lindgreen et al., 2016]; (ii) ’unexpected’
sequences that would not normally be in the reference database [McIntyre et al.,
2017], for example protein coding genes when profiling only for the gene 16S rRNA or
another example is in Velsko 2018 [Velsko et al., 2018] who used non-oral bacteria for
the analysis of dental plaque; and (iii) identity based use sequences with low identity
match against the reference database, e.g. alignment query <60% and the average
nucleotide identity <95% to the best match in the reference database [Liang et al.,
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2020].
For the positive controls, optimal mock communities should be generated from

sequences that are not present in the database [Gardner et al., 2019]. In order to
ensure that, several exclusion strategies can be applied:

– Clade exclusion approach is where the templates used for the simulation are
removed from the classification database at different taxonomic ranks, for ex-
ample species, genus, or family [Peabody et al., 2015].

– Random noise strategy introduces random mutations at each sequence tem-
plate, for example change the nucleotide in 2% of the positions [Almeida et al.,
2018].

– Simulated evolution generates new sequences at different evolution rates from
the reference [Lindgreen et al., 2016]. The idea is to emulate the natural be-
haviour. Species genomes accumulate mutations at different rates depending
on the genetic region. For example, the 16S rRNA gene consists of well-defined
conserved regions with very low mutation rate and variable regions where mu-
tations are much more prevalent.

– New sequences: recently deposited genomes have fewer chances to have been
incorporated into reference databases [Sczyrba et al., 2017].

– Random sequences: this strategy consists of a completely random generation
of genomic fragments [Soverini et al., 2019]. The main drawback is that in
most cases the simulated sequences will not resemble anything found in nature.

– Damage simulation: especially useful for archaeological type of studies, it is the
simulation of DNA damage accumulated through time [Velsko et al., 2018].

Despite all, there is still a lack of consensus on what constitutes gold standard
data for meta-taxonomics benchmarking: from the number of samples and sequences
each set should include to how to simulate realistic microbial communities [Mangul
et al., 2019].

Grinder metagenomic simulator

Grinder [Angly et al., 2012] is a versatile metagenomic sequence simulator imple-
mented in Perl. It is capable of generating data for both amplicon, e.g. 16S rRNA
data, and shotgun sequencing data. For amplicon data, it contains an additional step
to identify the PCR primers. Primers are commonly used in targeted type of studies
that flank specific genetic regions based on their conservation, for amplification prior
to sequencing.

The abundance profile for the simulated community can be user-specified or based
on α and β-diversities.
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Reads are selected from a bag of template sequences. For amplicon data they are
selected from the start of the specified region, or from a random start position for
when simulating shotgun sequence data

It is capable of simulating data for many types of sequencing platforms, including
Illumina paired-end.

Finally, Grinder is capable of introducing, if desired, errors for indels, substitutions
and homopolymers.

1.10 linguistics methods applied to genomics

In the same way novels contain written stories, genomes can be thought of as a book
where chromosomes are chapters and genes are paragraphs. And similarly, each gene
contains phrases or words that are key for the function. Therefore, machine learning
approaches from natural language processing can be applied to retrieve information
which will identify genomic features of interest. Topic modelling methods are powerful
to predict relationships between documents, or organism sequences in this case, and
have the potential to identify taxa.

Linguistics methods have been successfully applied in genomics. For example, Liu
et al [Liu et al., 2012] created a naive Bayes classification for fungal LSU taxonomic
classification. First k-mer size and regions were optimised with Shanon entropy. Two
regions were selected for classification. A k-mer size of 8 genus level was applied to
a naive Bayes approach to taxonomically classify short reads. Their accuracy levels
range from 60 to 80%. It can also be used to identify similar metagenomic samples.
In this case, Sener et al [Şener et al., 2018] combined a Term-Frequency Inverse
Document Frequency (TF-IDF) approach with Latent Semantic Analysis (LSA) for
a range of k-mer size between 2 and 13, for the forward and reverse complement
strands.

1.11 The bovine respiratory disease

Bovine Respiratory Disease (BRD) is one of the major causes of morbidity (70-80%)
and mortality (40-50% in the US) in dairy calves and feedlot cattle worldwide. It
is estimated that the disease causes at least US$1 billion of lost revenue annually
in the US alone [Ng et al., 2015, Tizioto et al., 2015] and more than US $3 billion
worldwide [DeDonder and Apley, 2015] (including prevention, treatment, and loss of
productivity).

BRD is caused by a number of factors, principally multiple environmental stress
factors, susceptibility of the host and infectious microbiological agents. Stress result-
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ing from transportation and fasting (especially for long hours), weaning, mixing cattle
from different sources and introductory diet have been shown to be extensively linked
with a higher incidence of the disease. Climate has also been linked to BRD peaks
where commonly outbreaks occur in autumn and winter, although rapid and sudden
changes in temperature can also have a big effect as well [Cusack et al., 2003].

It is believed that stress in combination with a primary viral infection in the
upper respiratory tract debilitates the host immune system (with mild clinical signs).
This is thought to lead to a secondary bacterial infection of the lower respiratory
track, ultimately resulting in bronchopneumonia [Grissett et al., 2015, Tizioto et al.,
2015]. The viruses and bacteria involved in BRD are known as the Bovine Respiratory
Disease Complex (BRDC). These include viruses such as bovine respiratory syncytial
virus (BRSV), bovine herpes virus type 1 (infectious bovine rhinotracheitis, IBR),
bovine parainfluenza 3 virus (PI3V), and bovine viral diarrhoea virus (BVDV), and the
most common bacteria are Arcanobacterium pyogenes, Mycoplasma bovis, Pasteurella
multocida, Histophilus somni and Mannheimia haemolytica. The three latter bacterial
pathogens are frequently found in the upper respiratory tract of healthy cattle and,
following damage to the respiratory epithelium resulting from viral infection, these
opportunistic bacteria colonize the lungs [Gershwin et al., 2015, Holman et al., 2015].
M. bovis and M. haemolytica are often found in synergy.

BRD symptoms can be quite severe and therefore debilitate the animal. The most
common clinical signs are fever, loss of weight, depression, respiratory signs (rapid
shallow breathing, coughing—early mild versus advanced acute), adventitious lung
sounds, nasal and eye discharges, salivation, diarrhoea and decreased milk production
[Ng et al., 2015]. Despite efforts to improve our understanding of BRD, the vast
majority of the pathogens which cause individual outbreaks are unknown. However,
the disease can be diagnosed by observation of typical clinical signs and by assessment
of tracheal washes, blood samples, nasopharyngeal swabs and post-mortem material.
In the feedlot, about 7% of the cattle require treatment [Cusack et al., 2003]. An-
tibiotics, non-steroidal anti-inflammatory and other therapeutic drugs are commonly
administrated in the treatment of this disease.

Many studies have been published to characterise the potential microbiota involved
in BRD through high throughput sequencing [Holman et al., 2017, Zeineldin et al.,
2017a, Johnston et al., 2017, Hause et al., 2015, Davids et al., 2016, Holman et al.,
2015]. Most of them are on either samples from swab or BAL and only a few on
tissue. They are normally focused on bacteria, commonly targeted to the 16S rRNA
gene. Only a minority are trying to detect viruses.
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1.12 Objectives

• Develop a method and define suitable metrics for benchmarking real-like metage-
nomics data. This tool should enable the evaluation and optimisation of any
chosen analysis pipeline.

• Identify the main source of errors of the metagenomics taxonomic identification
of 16S rRNA sequencing data.

• Implement a strategy to improve the taxonomic classification.

• Analysis of real sequencing data: characterise the microbiome of calf lung lobes.

All the work presented here is for 16S rRNA metagenomics data, and mostly
synthetic data. However, some of the methods can also be applied to a more general
context. Also, it is based on k-mer methods for taxonomic classification.

With the rapid growing field of metagenomics, it is often challenging to find an
adequate method to suit specific research projects. Moreover, there is a need to
perform systematic in-house validation of metagenomic bioinformatic methods that
fits the available resources. However, this is often challenging due to the lack of
software. This work presents a novel methodology to simulate in silico meta-genome
data based on real sequencing data.

Organisms are taxonomically organised in hierarchical lineages. And metagenomic
short reads can be labelled to any of them. However, precision and recall metrics are
based on true or false positives and negatives and cannot capture how far in the
taxonomic tree a read had been assigned to. For example, a specific read can be
correctly labelled at the phylum level, which is not very specific rank, and quite
far from species.Therefore, we define new metrics specifically designed metagenomic
taxonomic identification. These are based on distances between two nodes in a tree.

There are multiple factors impacting metagenomics taxonomic classification: from
sequencing errors to the reference database. Each reference database contains two
essential components: one are sequences representing organisms, and the other is the
taxonomic lineages associated with them. However, databases are incomplete, and
any metagenomic methods needs to be able to classify as accurately as possible novel
sequences.

All genes have regions that are more essential than others, therefore they contain
areas much more conserved throughout evolution. Once informative genetic areas
have been identified, they can be used to improve future taxonomic identification.

In the same way some words are more relevant to discover the topic of text, some
k-mers, or genetic sequence fragment of size “k”, are key to determine the species of a

20



given metagenomic read. A novel strategy based on linguistic methods for taxonomic
identification is developed.

Finally, calf lungs were sampled, DNA extracted and sequenced for metagenomics
16S rRNA locus. The microbiota for healthy animals of different lung lobes is char-
acterised, compared, and biomarkers are determined. Several sampling methods were
tested to establish the best for microbial community recovery.
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Chapter 2

Methods

2.1 General programming

All scripts were implemented in python, unless otherwise stated. Seaborn, matplotlib
and venn libraries were used to generate images in python. Also, the python libraries
in scikit-learn were used to generate Principal Components Analysis (PCA) plots. For
the images generated in R, the ggplot2 and ggtree were used. Interactive hierachical
pie-charts were created with Krona tools [Ondov et al., 2011]. When necessary, shell
scripting was also used, for example to run pipelines.

2.2 Reference databases

2.2.1 NCBI taxonomy database

The NCBI taxonomy database and its metadata were downloaded on [18/11/2020].

2.2.2 Silva database

Fasta files were downloaded from Silva database archive version 138.1 for SSU Parc,
ParcTrunc, RefTrunc, refNR99, refNR99Trunc and NR99. Sequences were mapped
to their corresponding NCBI Taxonomic ID (taxID) and updated old, merged and
deleted nodes by the files provided by NCBI taxonomy.

ParcClean and ParcTruncClean were generated by selecting sequences that contain
labels of at least the 7 main ranks (species, genus, family, order, class, phylum,
superkingdom) in the NCBI taxonomy. The total number of sequences was reduced
from over 6 million to just over 1.2 million in both cases.

All the subsets were reverse transcribed and formatted for Kraken2 input.

2.2.3 Mapping NCBI taxonomy database to GTDB

Several steps have been implemented to annotate the NCBI taxonomy to the phylo-
genetic Genome Taxonomy DataBase (GTDB) tree version 95, as shown in figure 2.1.
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First, leaves were directly mapped into Taxonomic ID (taxID) as well as other nodes
with annotation. Then, branches which have the same number of nodes on both
trees were annotated. Parent nodes were annotated when all the children agree. For
those cases where there was disagreement, a strategy of finding the Lowest Common
Ancestor (LCA) was applied. All these steps were applied from root to leave and vice
versa. Finally, unnamed children of nodes with taxID and unassigned children taxa
were labelled.

ENA-ID1 
Name1 Name3

ENA-ID2
Name2

ENA-ID4 
Name4 

ENA-ID5 
Name5

ENA-ID6
Name6

ENA-ID7 
Name7

ENA-ID8 
Name8

Name

NCBI_taxid1 NCBI_taxid2

NCBI_taxid1

NCBI_taxid3 NCBI_taxid4 NCBI_taxid5 NCBI_taxid6 NCBI_taxid7 NCBI_taxid8

a: Map annotated nodes to NCBI taxonomy.
lineage NCBI_taxid5:   taxid10    taxid11    taxid12 

NCBI_taxid1 NCBI_taxid2

NCBI_taxid9

NCBI_taxid3 NCBI_taxid4 NCBI_taxid5 NCBI_taxid6 NCBI_taxid7 NCBI_taxid8

NCBI_taxid10

NCBI_taxid12

NCBI_taxid11

b: Map nodes whose lineage has the same
number of nodes.

NCBI_taxid13

NCBI_taxid1 NCBI_taxid2

NCBI_taxid9

NCBI_taxid3 NCBI_taxid4 NCBI_taxid5 NCBI_taxid6 NCBI_taxid7 NCBI_taxid8

NCBI_taxid10

NCBI_taxid12

NCBI_taxid11

c: Map parent’s nodes where all children agree.

NCBI_taxid13NCBI_taxid16

NCBI_taxid1 NCBI_taxid2

NCBI_taxid9

NCBI_taxid3 NCBI_taxid4 NCBI_taxid5 NCBI_taxid6 NCBI_taxid7 NCBI_taxid8

NCBI_taxid10

NCBI_taxid12

NCBI_taxid11

NCBI_taxid14NCBI_taxid15

d: Map lowest common ancestors.

Figure 2.1: Mapping NCBI taxonomic IDs to GTDB phylogenetic tree. This diagram illus-
trates the process followed to map NCBI names and IDs into the GTDB. GTDB follows phylogenetic
principles based on selected genes (Bacterial and Archaeal) whereas the NCBI was originally based
on Linneaus principles, later expanded and in some cases phylogenetic information is included to re-
solve conflicts where necessary. The mapping process is complex due to the non-matching nature of
the two taxonomic trees, specially for those branches with different number of nodes. Starting from
the taxonomic node names already mapped by GTDB, first, the leaves were mapped to the NCBI
taxonomic ID. Next, those branches with the same number of nodes in both trees were annotated.
Finally, a lowest common ancestor approach was applied.

2.3 Mock communities

2.3.1 Chlamydia dataset

A taxonomic tree was plotted of all the Chlamydiae phylum (NCBI taxID 205528)
descendants present in the Silva database [Quast et al., 2013] version 128 (RefNR99),
see figure B.2 in the appendix.

Sixteen tips were manually selected according to the following criteria: (i) belong-
ing to 2 distinct orders; and (ii) selecting unevenly across families and genus, such
that some have a much higher number of representatives than others.
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An abundance profile was created by a gamma variate function (alpha = 1 and
beta = 2). This is to emulate the behaviour of microbial communities, where normally
1 or 2 species were disproportionately much more abundant compared to the others.
Then the abundance percentage was calculated (see table 2.1).

Table 2.1: Selected Chlamydia species. Chlamydial species selected and their corresponding
sequence ID from the Silva database. The percentage was used as the abundance profile, which
was randomly generated with gammavariate function (alpha = 1 and beta = 2). This was the input
Grinder sequence simulator.

Organism Sequence ID percentage
Candidatus Rhabdochlamydia crassificans AY928092.1.1495 16.7200145863
Chlamydia trachomatis RC-L2(s)/46 CP002672.850541.852092 13.84881612
Candidatus Amphibiichlamydia ranarum JN402380.1.1473 10.4517322605
Candidatus Rhabdochlamydia porcellionis AY223862.1.1366 8.13402043305
Chlamydia pecorum PV3056/3 CP004033.960840.962380 7.91822031861
Candidatus Fritschea eriococci AY140911.1.1515 6.90637230667
Candidatus Amphibiichlamydia salamandrae JN392919.1.1477 5.63533898192
Simkania negevensis Z FR872582.370012.371557 4.74672826415
Chlamydia psittaci 84/55 CP003790.1022893.1024430 4.60687103842
Candidatus Metachlamydia lacustris GQ221847.1.1355 4.301364458
Chlamydia abortus U76710.1.1548 3.89957847974
Candidatus Fritschea bemisiae AY140910.4332.5873 3.86787407858
Neochlamydia hartmannellae AF177275.1.1529 2.9721176161
Criblamydia sequanensis CRIB-18 CCEJ010000017.3833.5371 2.46327063495
Estrella lausannensis CWGJ01000021.98.1637 1.81694372235
Chlamydia suis MD56 AYKJ01000039.25.1560 1.71073670068

A total of 2000 paired-end reads were generated with grinder [Angly et al., 2012].
Their average length was 150 with insert size of 250. Illumina-like errors were simu-
lated by the recommended 4th degree polynomial derived model and a mutation indel
ratio of 80-20 (1 indel for every 4 mutations). The phred scores were recorded as 75
if no error, or 35 otherwise. The simulated reads were then separated into a forward
and reverse files.

Phylogenetic tree of the Chlamydia dataset

Sixteen selected species representatives sequences (16S rRNA gene) were aligned
with infernal [Nawrocki and Eddy, 2013] with the Covariance Model (CM) of Small
subunit ribosomal ribonucleic acid (SSU) rRNA bacteria (entry RF00177) from the
RFam database [Kalvari et al., 2018].

A Maximum Likelihood (ML) phylogenetic tree was generated with the r-cran
package phangorn [Schliep, 2011] following the default method for DNA. The dis-
tance matrix was calculated with the function dist.ml and model Jukes and Cantor,
1969 (JC69) which was the simplest substitution model, and it assumes equal base
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and equal mutation rates. An initial tree was estimated with bionj function, an im-
proved version of the Neighbor Joining algorithm (NJ). To optimise the tree, the best
model that fits the data was chosen according to Akaike information criterion with a
correction for small sample sizes (AICc).

Network classification

Directed network was created with igraph for R for a graphical visualisation of where
the reads were taxonomically identified compared to reality.

Nodes of the network corresponded to nodes of the taxonomic tree of the 16
chlamydial species, where leaves were coloured in blue and the rest of the taxa were
in orange and the unclassified sequences were presented in red. The self-loops were
removed from the network for clarity. The size of each leaf node was proportional to
the number of correctly identified sequences.

Edges were directed. The edge starts where reads were originally from and point
towards where they have been assigned. The width of the edges was proportional
to the number of events connecting the two nodes. The number in the middle of
the edges was the taxonomic distance or number of taxa between the two nodes in
the taxonomic tree. Grey arrows symbolise nodes within the same taxonomic lineage
compared to the red edges, which were different.

2.3.2 Genetic regions test data

Metagenomic reads were simulated from the abundance detected in a published sam-
ple analysis, accession MGYA00140743 on MGnify. Sequences to be used as templates
were selected from the Silva Parc database version 132. The abundance profile often
contains higher taxonomic ranks other than species or subspecies. For the simulation,
the number of sequences templates to be used was limited to 2 for genus, 3 for family,
4 for order, 5 for class, and 6 for phylum.

Sequences targeting the full length of the 16S rRNA were generated with Grinder,
consisting of 48930 Illumina paired-end-like reads, 150nt length.

The final community contains 262 different species from 349 sequence templates.
The composition can be observed in figure 2.2.

Subsequently, quality scores from the original samples were imputed, adjusting
lengths if necessary (adding N or removing bases). The quality scores at each in-
dividual position were then used to generate mutations to the simulated sequence
according to the probability associated with each phred score.
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Figure 2.2: Abundance profile of the genetic regions test data. Hierarchical representation
of the abundance profile of the simulated data, which contains 262 species and, 48930 reads. All
the reads are bacterial. The main dominant phylum is Proteocteria followd by Firmicutes.

2.3.3 Selection of publicly available environmental samples

Samples analysed by MGnify [Mitchell et al., 2020], which were publicly available and
include raw sequencing reads, were selected from nine diverse biome projects with the
following criteria: (i) amplicon samples sequenced with the Illumina platform that (ii)
have a standard normal quality, (iii) different environments to cover a wide range of
clans, (iv) at least 60% of the sequences were taxonomically identified, (v) reasonable
amount of number of reads (e.g. discard extremely low number of reads), (vi) include
single and paired end samples and (vii) a range of average read length across samples.
Table 2.2 contains a description of them.
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2.3.4 Generation of the Test Dastaset

The SSU Operational Taxonomic Unit (OTU) tsv file from MGnify was the input for
the abundance profile for each sample. This abundance was checked and updated with
the NCBI taxonomy database (29 January 2019). Taxa matching species/subspecies
levels were selected. In the case of taxa higher up on the tree of life, sequences
belonging to the specific branch were picked randomly. Thirteen sets of varying
complexity were created.

Positive controls

Sequences from the Silva database [Quast et al., 2013] (reference version 132) that
were also included in the GTDB database [Parks et al., 2018] were chosen as tem-
plates.The lineage of each one of these had been mapped and updated to the NCBI
taxonomy database on 29 January 2019.

Negative controls

Synthetic 16S rRNA-like sequences were generated. An HMM profile was created
from the alignment of unidentified and unclassified 16S rRNA sequences present in
the RNA central database [Sweeney et al., 2019] (on 31/01/2019) after duplicate
removal (CD-hit [Fu et al., 2012], global sequence identity flag set to 1, version 4.6).
Finally, 100 sequences were generated with the function hmmemit from HMMER
[Wheeler and Eddy, 2013].

Mock community

Single or paired-end mode was used according to the input dataset. The sequence
length profile of each set was the same as the original experimental fastq file(s).
Similarly, the quality phred scores were imputed from the original sequenced data.
This ensured that the lengths of the sequences and quality profiles were preserved
to provide a more realistic dataset. This first set did not contain any mutations of
any type. Then random mutations was introduced at 1% , 2% and 3% as noise.
Next, sequencing error was introduced according to the probability associated with
each phred score per base. For the final sets, the random noise was reverted, which
makes a total of 8 single or paired-end files per sample. 3 replicas from each of the
13 different levels of complexity were created.

A total of 312 synthetic sets of data were simulated with Grinder [Angly et al.,
2012].
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2.4 Meta-taxonomics classification

Kraken [Wood and Salzberg, 2014] methodology was applied for taxonomic assign-
ment. Both Kraken1 and Kraken2 were used for the analysis, which is indicated in
each case.

First, a database of LCA k-mers had to be created. It required the NCBI tax-
onomy database format and a formatted kraken fasta file, which consisted of adding
kraken:taxid|NNNNN after each sequence ID (NNNNN indicates the corresponding
taxID).

The Chlamydia data was analysed with Kraken [Wood and Salzberg, 2014] version
1.0 with the paired-end mode. A customised database was built consisting of the 16
original sequences with the corresponding fraction of the NCBI taxonomy database.

The test data was analysed with Kraken1 with the reference database Silva Ref ver-
sion 132.1 after quality trimming with sickle (quality = 30 and minimun length=100
base pair (bp)). NCBI taxonomy was mapped to Silva with the metadata pro-
vided by Silva. taxID were updated with the NCBI taxonomy database, available
on 29/01/2019. It consisted of merging taxIDs and deleting sequences whose taxID
no longer existed.

All the datasets for chapter 5 were taxonomically labelled with Kraken2 clas-
sification with the Silva database subsets NR99, NR99Trunc, Ref, RefTrunc, Parc,
ParcTrunc, ParcClean and ParcTrunClean mapped to NCBI taxonomy and NR99 with
Silva taxonomy.

2.5 Metrics

In table 2.3 there is a description of the metrics calculated. They were implemented
in python3.
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Table 2.3: Metrics. The metrics were implemented with python3 for each class. TP - true
positives, TN - true negatives, FP - false positives, FN - false negatives.

Metric Formula Definition
Precision

TP

TP + FP

Ratio of correctly predicted positive obser-
vations to the total predicted positive ob-
servations.

Recall or sensitivity
TP

TP + FN

Ratio of correctly predicted positive obser-
vations to all the observations in the actual
taxon.

F1 Score

2 ∗ Precision

Precision+Recall

Weighted average of precision and recall.

Specificity
TN

TN + FP

Ability to determine the true negatives cor-
rectly

Accuracy
TP + TN

TP + TN + FP + FN

Ability to differentiate the positive and neg-
ative cases correctly

False Positive Rate
FP

FP + TN

Proportion of false positives within the en-
tire set of tests.

2.6 Term-Frequency Inverse Document Frequency

In chapter 4 the Term-Frequency Inverse Document Frequency (TF-IDF) approach
was implemented with the functions provided by the Scikit-learn library. Full details
can be found at the revelant sections.

2.7 Lung data

The taxonomic data used for the experiment to evaluate the DNA extraction methods
was input into the MEGAN Community Edition (version 6.5.2, built 25 Aug 2016) to
analyse and generate plots.

The taxonomic assignment data from the experiment, for characterising the micro-
biome of the respiratory tract, was plotted with python3 standard libraries described
previously.

The α-diversity was calculated and plotted with the function provided by scikit-bio
with the abundance results directly from Kraken.

The Lasso method was used to select phyla by sampling method and lung location
that enhance the prediction accuracy. All the nasal samples were removed because
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of their small sample size. Those samples with less than 1000 counts were discarded
. Those phyla with no counts in any of the grouped samples were discarded. Next,
the relative abundance by sample was calculated. This step is necessary to solve the
problem of uneven sequencing depths and eliminates technical variation.

The Lasso method was implemented with R by Magdalena Navarro. Once the data
was aggreagated by phyla, the matrix was randomly separated into training (80%)
and testing (20%) per class for each group. The first step for the lasso method was
to get the optimal value for lambda (penalisation or regularisation parameter) for a
multinomial and alpha 1 per group type (sampling method, lung location, animal).
The Lasso regression was trained with the best lambda (determined at the previous
step).

DA was performed with LEfSe version 1.0 was applied to determine differentially
abundant taxonomic groups for the lung data. The method was applied after nor-
malising the data.
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Chapter 3

Benchmarking taxonomic profiling

3.1 Motivation

Numerous methodologies have been implemented for assigning taxonomic informa-
tion to metagenomic sequencing data. It is often challenging to choose a suitable
analysis strategy that fits the data [Mangul et al., 2019, Weber et al., 2019]. Often
popular methods based on literature are used, which might not necessarily be the best
performing or adequate [Capella-Gutierrez et al., 2017].

Sometimes reads are correctly identified as the original species by the binner or
taxonomic classifier. Others show similarities to multiple species and therefore might
be labelled to a common ancestor [Hornung et al., 2019] (higher taxonomic rank in
the tree of life). Occasionally, reads might be misclassified into unrelated taxonomic
lineages, as shown in figure 3.1. Other times there is not enough information to
confidently assign them. It is important to understand why, when and how often
these errors occur.

?

Phylum

Class

Order

Family

Genus

Species

Superkingdom

Root

Unclassif
ied

Figure 3.1: Classification in the tree of life. Example of a potential taxonomic tree. Text to the
right are the standard taxonomic ranks. Blue nodes are species, black belong to standard taxonomic
ranks and grey to other ranks. The red dot represents the original species of a metagenomic sequence.
Red arrows are pointing to potential taxonomic nodes where it can be assigned. Frequently sequences
are identified to their species of origin. There are cases where they can be labelled to a common
ancestor, to some unrelated taxonomic node or unclassified.
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3.1.1 Objectives

The main goals of this chapter are to:

– Produce a new method for simulating In Silico meta-genetics data based on
real experimental sequencing amplicon data.

– Define new meaningful metrics specifically designed for meta-taxonomics quality
assessment.

– Evaluate the taxonomic assignment of the marker gene 16S rRNA gene.

3.2 New proposed taxonomic distance based metrics

When profiling metagenomics data, it is essential to understand where misclassifica-
tion occurs. A new type of metric is proposed based on distance in a given taxonomic
or phylogenetic tree. The main concept is to understand how far from the original
organism, sequences are classified. Four subtypes are defined below.

Taxonomic Node Distance (TND) — Number of nodes that differ between the
original taxon and the classification result in the taxonomic tree.

Taxonomic Node Distance Standard Ranks (TNDSR) — Number of standard
ranks taxa that differ between the origin of the sequence and the classification
result in the taxonomic tree. The standard ranks being: superkingdom, phy-
lum, class, order, family, genus, species and the root node of the taxonomic
database.

Phylogenetic Node Distance (PND) — Number of nodes between the original
and the assigned node in the phylogenetic tree.

Phylogenetic Branch Distance (PBD) — The accumulated branch distance be-
tween the original and the assigned node in the phylogenetic tree.

Figure 3.2 represents a hypothetical classification of 3 different reads belonging
to the same species. When a read is correctly identified, the distance is 0. Distances
increase with classification occurring in further away nodes. The distance assigned
to non-classified reads will be the maximum number of nodes or maximum branch
distance between the two most distant leaves in the representative tree.
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a: Taxonomic node distance b: Taxonomic node distance standard ranks

c: Phylogenetic node distance d: Phylogenetic branch distance

Figure 3.2: Taxonomic and phylogenetic distance based metrics. (a) TND is the number
of nodes between the real sequence taxon and the assignment by the taxonomic profiler in the
taxonomic tree. (b) TNDSR is the number of nodes belonging to standard ranks between the real
sequence taxon and the assignment by the taxonomic profiler in the taxonomic tree.(c) PND is the
number of nodes between where the real sequence belongs and where in the phylogentic tree it has
been classified. (d) Similarly, PBD is the accumulated branch length between the origin and the
labelled result. Taxonomic and phylogenetic trees often do not agree on the number of nodes and in
the exact clustering of the sequences. Blue dots are species in the trees. The red dot respresent the
origin of sequenced result and the arrows are pointing towards where it could have been classified.
Green text next to the arrows, are the corresponding distances.

3.3 Characterisation of the source of taxonomic classification errors at
small scale

The small mock community, referred to as the Chlamydia set (defined in chapter
2 section 2.3.1), contains 16 simulated Chlamydia species (16S rRNA sequences).
This set was analysed with Kraken2 (taxonomic classifier) and the reference database
contains the same organisms employed for the simulation.

It is expected that Kraken correctly identifies most of the simulated data, and that
sequences with a higher number of errors are classified at higher taxonomic ranks in
the same lineage. However, that is not always the case according to the results.

Kraken is not able to fully match the sequences at their origin with this small
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a: Abundance of the test dataset
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Figure 3.3: Real and result abundance profile. (a) is the composition of the test simulated
reads from the Chlamydia clan. (b) is the abundance profile from analysing the data with kraken.
The profiles look relatively similar. The vast majority of sequences are correctly classified. However,
some sequences are labelled at higher taxonomic ranks, indicating that the profiler, even in this
small scale test (16 species in the reference database and the exact same 16 species are used to
create a simple mock community) is not capable to identify 100% of the short reads at the species
level.
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data set. None of the reads have been labelled as unidentified. Figure 3.3 shows
the abundance profile of the original dataset and the resulting abundance from the
analysis. At the rank phylum the proportion is almost identical, but differences are
increasingly higher at lower taxonomic ranks.

Most of the sequences, 74,80% (1496 out of 2000) are correctly labelled to the
original taxon. All the Estrella lausannensis reads are correctly identified at the se-
quence level. 24,55% (491) of reads are classified 1 to 3 nodes away in the taxonomic
tree, and as little as 13 (0.65%) are assigned to 4 or more nodes away from their
origin. A few reads (9), all belonging to Chlamydia psittaci 84/55, are assigned to the
order of Criblamydiaceae, which is not part of the same lineage. In the appendix, fig-
ure B.3, is a visual representation of how far in the taxonomic tree are taxonomically
identified for reads not assigned to their real orgin.

Accuracy metrics are calculated at the different rank levels (species, genus, family,
order). Taxon identification is more accurate at higher taxonomic ranks, as previously
described [Sczyrba et al., 2017], shown in figure 3.4.

Figure 3.4: Test data metrics by rank. Metrics (f1score, precision, recall, specificity, accuracy
and false positive rate) are averaged by rank. The error bars are the standard deviation. Higher
taxonomic ranks (order, family, genus) present the best results for each metric. The recall and
f1score, drop significantly at the species and subspecies level, indicating that the classification is
less accurate at his lower taxonomic ranks..

Figure 3.5 shows the metrics at the sequence level clustered by the taxonomic
tree. Results at the sequence level suggest that clans with more representatives, e.g.
genus Chlamydia with 5 sequences, have lower levels of recall and lower f1 scores as
well. Approximately a third of the short reads belonging to this clade were classified
at the genus level (Chlamydia, 271 out of 730).
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Figure 3.5: Test dataset metrics at sequence level. On the left, is the taxonomic tree of the
16 selected species, where nodes are coloured according to the taxonomic rank. In the middle, is a
heatmap of the metrics aggregated by species/subspecies accordingly. On the right are the names
of the selected species. The genus Chlamydia, which contain 5 species/subspecies, contains the
lowest values of recall and F1 score, which also correspond to the lineage with more representatives
in the database.
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Figure 3.6: Phylogenetic and taxonomic tree of 16 species belonging to the Chlamydiae
phylum. To the left is the maximum likelihood phylogenetic tree of the 16 species present in the
test dataset and database (loglikelihood -2502.929). Each node has its corresponding bootstrap
value. The length of the branch corresponds to the phylogentic distance. To the right is the
taxonomic tree, the length of the branches are only representing the structure. Light blue lines join
the corresponding tips. The 5 sequences belonging to the genus Chlamydia cluster much closer
together than any other clan. The taxonomic order Parachlamydiales (top 9) is more diverse than
the order Chlamydiales (bottom 7) according to the phylogeny. Some sequences in the phylogenetic
tree group distinctively from their taxonomy (middle 4).

38



In fact, the sequences belonging to the genus Chlamydia are phylogenetically
much closer than any other clan in the tree, as shown in figure 3.6. This suggests
that in such cases, Kraken is not able to assign reads confidently at lower taxonomic
levels. At the same time, this genus is phylogenetically much more distant from the
rest. Some wrongly labelled reads of this clan clustered to evolutionary close taxa
(Candidatus Amphibiichlamydia salamandrae and Criblamydiaceae, which contains
the species Criblamydia sequanensis and Estrella lausannensis).

While the taxonomic order Chlamydiales (the bottom 7 species in figure 3.6)
cluster together in the phylogenetic tree, the order Parachlamydiales is much more
diverse (top 9 species). This clade shows some disagreements between the trees. This
fact highlights the importance of the lineage for lowest common ancestor methods,
such as Kraken, for taxonomic identification. Sequences may be labelled differently
depending on the clustering.

Mutations, insertions, deletions and sequencing errors can have a great impact on
metataxonomics accuracy. There is only one sequence without errors, which belongs
to Chlamydia suis MD56, and it is classified correctly at the species level. Thirteen
others do not have mutations but have between 1 and 5 insertions and or deletions
and are correctly classified at their original taxon. About three quarters of the reads
without any insertion or deletion are accurately labelled (458 out of 602) and 9 are
labelled 3 ranks or further apart.

Table 3.1 contains a summary of the number of sequences assigned to each taxon
and the mean number of events (mutations, insertions and deletions) for each group.
Although the majority of correctly identified reads have a lower average of events per
read, reads classified further have a slightly higher average number of events.

Table 3.1: Chlamydia dataset taxonomic classification summary.

Origin Assignation Occurrences Assigned
rank

TND events
mean*

Candidatus Am-
phibiichlamydia
ranarum

Candidatus Amphibiich-
lamydia

9 genus 1 5.22 ±1.39

Candidatus Amphibiich-
lamydia ranarum

171 species 0 5.00 ±1.66

Candidatus Am-
phibiichlamydia
salamandrae

Candidatus Amphibiich-
lamydia

5 genus 1 6.00 ±1.22

Candidatus Amphibiich-
lamydia salamandrae

130 species 0 5.12 ±1.54

Chlamydiaceae 1 family 2 5.00 ±0.00

Candidatus
Fritschea
bemisiae

Candidatus Fritschea 25 genus 1 5.24 ±1.48

Candidatus Fritschea be-
misiae

49 species 0 4.98 ±1.56
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Origin Assignation Occurrences Assigned
rank

TND events
mean*

Candidatus
Fritschea
eriococci

Candidatus Fritschea 58 genus 1 5.38 ±1.48

Candidatus Fritschea erio-
cocci

95 species 0 5.47 ±1.58

Parachlamydiales 1 order 3 4.00 ±0.00

Candidatus
Metachlamydia
lacustris

Candidatus Metachlamy-
dia lacustris

109 species 0 5.40 ±1.64

Parachlamydiaceae 7 family 2 5.86 ±1.21

Parachlamydiales 2 order 3 6.50 ±0.71

Candidatus
Rhabdochlamy-
dia crassificans

Candidatus Fritschea be-
misiae

1 species 7 6.00 ±0.00

Candidatus Rhab-
dochlamydia

59 genus 1 5.13 ±1.55

Candidatus Rhab-
dochlamydia crassificans

242 species 0 4.88 ±1.58

Chlamydiia 2 class 4 6.50 ±0.71

Parachlamydiales 8 order 3 5.13 ±1.55

Candidatus
Rhabdochlamy-
dia porcellionis

Candidatus Rhab-
dochlamydia

34 genus 1 5.44 ±1.74

Candidatus Rhab-
dochlamydia porcellionis

117 species 0 5.20 ±1.60

Parachlamydiales 7 order 3 5.57 ±0.98

Chlamydia
abortus

Chlamydia 55 genus 1 5.57 ±0.98

Chlamydia abortus 25 species 0 4.92 ±1.58

Chlamydiaceae 1 family 3 5.00 ±0.00

Chlamydia trachomatis
RC-L2(s)/46

1 subspecies 4 4.00 ±0.00

Chlamydia
pecorum
PV3056/3

Chlamydia 24 genus 2 5.04 ±1.78

Chlamydiaceae 1 family 4 7.00 ±0.00

Chlamydia pecorum
PV3056/3

126 subspecies 0 4.77 ±1.66

Chlamydiia 1 class 6 4.00 ±0.00

Chlamydia
psittaci 84/55

Chlamydia 79 genus 2 4.90 ±1.64

Chlamydia pecorum
PV3056/3

1 subspecies 5 7.00 ±0.00

Chlamydia psittaci 84/55 19 subspecies 0 5.16 ±1.21

Criblamydiaceae 1 family 9 6.00 ±0.00

Chlamydia suis
MD56

Chlamydia 15 genus 2 5.20 ±1.61

Chlamydia suis MD56 15 subspecies 0 4.53 ±2.45

Chlamydia
trachomatis
RC-L2(s)/46

Candidatus Amphibiich-
lamydia salamandrae

1 species 7 7.00 ±0.00

Chlamydia 98 genus 2 6.52 ±1.75

Chlamydia pecorum
PV3056/3

2 subspecies 5 5.00 ±0.00
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Origin Assignation Occurrences Assigned
rank

TND events
mean*

Chlamydia trachomatis
RC-L2(s)/46

175 subspecies 0 5.90 ±1.58

Criblamydia
sequanensis

Criblamydia sequanensis 44 species 0 5.45 ±1.61

Parachlamydiales 2 order 3 6.50 ±2.12

Estrella lausan-
nensis

Estrella lausannensis 24 species 0 5.13 ±1.70

Neochlamydia
hartmannellae

Neochlamydia hartmannel-
lae

50 species 0 4.80 ±1.67

Parachlamydiaceae 1 family 2 6.00 ±0.00

Simkaniaceae 1 family 5 8.00 ±0.00

Simkania
negevensis Z

Parachlamydiales 1 order 4 6.00 ±0.00

Simkania negevensis Z 105 subspecies 0 5.22 ±1.56

*Mean number of events (mutations, insertions and deletions) introduced in each sequence and
the corresponding standard deviation. This table contains a count of sequences classified at the
different taxa. Most of the sequences are classified to the original taxon or same clade (in green).
There are very few sequences labelled to a far away node (taxonomic distance >=4). The lowest
average of events (in red) does not always correspond to the perfect identification.

In fact, looking closer to the correlation between events in sequences and taxo-
nomic distance, we can see a weak increasing effect as shown in figure 3.7.

3.4 Distance metrics comparison

The Test data (described in chapter 2 section 2.3.4) is designed to compare the newly
proposed distance based metrics.

The taxonomic and phylogenetic distances (TND, TNDSR, PBD and PND) slightly
increase with the number of mutations. Figure B.4 (see appendix) shows their distri-
bution for each type of experiment. PBD and PND mean of the experiments without
noise is higher than the experiments with 1% noise.

The number of accumulated mutations in a sequence, as demonstrated in figure
3.8, gently increase all the taxonomic distance metrics (TND, TNDSR, PBD and
PND). This might be indicative of the robustness of Kraken against mutations.
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Figure 3.7: Distribution and correlation of the number of events with the taxonomic dis-
tance. Plots a-d depicts the distribution of events (mutations, insertions, deletions) and the total
of them by sequence -changes- by the TND where sequences are classified. The taxonomic distance
is the number of taxonomic nodes away from where sequences have been classified. In general
the more changes a sequence presents (mutations, insertions and deletions) the higher the TND.
However, this seems to be quite a small effect. The number of insertions do not seem to have much
impact on classification whereas deletions seem to have a bigger effect. Most sequences that have
deletions also have a high number of mutations, therefore it is hard to discriminate the effect.
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Figure 3.8: Distance metrics by number of mutations. Average values of the newly proposed
metrics. Light blue area represents the standard deviation. The number of mutations present in a
short read slightly increase the taxonomic, phylogenetic and node distances. A few short reads have
a higher number of mutations, which increases the confidence intervals. However, the increment of
distance is inferior to the increment of number of mutations.
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3.5 Enabling metagenomics taxonomic classification benchmarking for
individual needs

The goal of this section is to establish a system that allows the evaluation of the
metataxonomic assignment and parameter optimisation for any method of choice.
Each type of project is unique: only certain clades are present in a microbiome, and
the quality and length of the sequencing is platform and protocol dependant. It is
crucial to ensure the bioinformatics pipeline is fit for purpose.

A new method is developed to generate in silico microbial communities, named
My Goldstandard Community (MGC), that resembles real sequencing metagenomics
data.

3.5.1 My Goldstandard Community

MGC consist of negative and positive controls. Sequencing errors and mutations are
introduced as described below. This method was specifically designed for 16S rRNA
sequencing data.

Negative controls

Negative controls are sequences expected not to be identified by the taxonomic pro-
filer. In this case, amplicon unclassified-like data was created, as figure 3.9 illustrates.

Environmental 16S rRNA
unclassified or unidentified

HMM profile

Synthetic 
sequences

 
RNA central

Figure 3.9: Negative control generation. Diagram representing the process for creating the
synthetic sequences. First, sequences of the gene 16S rRNA which are labelled as "unclassified"
or "unidentified" in the RNA central database are downloaded. The sequences are aligned, after
duplicate removal, and an HMM profile is generated. This profile is then used to create synthetic
sequences that will be used as negative controls for the experiments.

3021 non identified 16S rRNA genetic sequences were selected from environmental
samples (on 31/01/2019) from the RNA central database [Sweeney et al., 2019]. The
search terms used are shown in the box below:

44



tax_string:"unclassfied" OR tax_string:"unidentified"

AND tax_string:"environmental"

AND 16S* OR small* subunit* AND NOT 18S* NOT large*

AND length:[1300 TO 1900]

AND qc_warning_found:"False" AND rna_type:"rRNA"

Duplicates were removed with cd-hit-est [Fu et al., 2012] (global sequence identity
flag set to 1) (version 4.6) leaving a total of 2946 entries. They were then aligned
with nhmmer [Wheeler and Eddy, 2013] (3.1b1 (May 2013)) with the Bacterial SSU
RNA (RF00177) profile from RFam database [Kalvari et al., 2018].

A Hidden Markov Model (HMM) profile was created from the resulting alignment.
Finally, a set of 100 synthetic sequences were generated with the function hmmemit
from HMMER [Wheeler and Eddy, 2013].

Additionally, these sequences were blasted (blastn) against the reference database
SILVA Parc v138.1. Sequences with a match of minimum length of 35 (Kraken2 uses
a k=35), percentage identity above 90% and e-value inferior of 0.01 were removed.
This left a total of 96 sequences.

Positive controls

Positive controls are sequences expected to be identified by the taxonomic profiler.
Their generation is based on previously known and annotated sequences.

Templates for positives controls are selected from a relevant database. For exam-
ple, Silva database for 16S rRNA data.

Mock community generation

Generating a simulated environmental community requires the NCBI taxonomy database
(or another taxonomy database in NCBI’s format), metagenomic sequencing data,
the corresponding microbiome abundance profile generated by a taxonomic profiler, a
mapping file between the positive controls and the taxonomic database, and the file
containing the negative controls.

The templates for positive controls are assigned from the existing name or cor-
responding taxID from the selected database for templates. Those names in the
abundance profile which are in non-leaf nodes are randomly assigned a sequence tem-
plate from a species or subspecies from their corresponding clan. Five percent of
unclassified sequences are introduced from the synthetic negative controls.
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Sequences were simulated with Grinder with the abundance values arising from
analyses of the original sequence data, and with the templates previously selected.
The number of sequences to simulate was set to the same number as the fastq file
from sequencing, the length was set to the longest read from the fastq file. Three
replicates were created.

Next, each sequence was randomly assigned a quality score from the original
sequence data and the length was adjusted accordingly. This newly created data
did not contain mutations and is copied across to generate the rest of experimental
data. From the previously created data another 3 sets were generated by introducing
random mutations at 1%, 2% and 3% independently. From each of the previous sets,
new mock samples were obtained by introducing sequencing errors according to the
probability of a base being erroneous given the corresponding phred score. In total, 8
sets of data were generated, with 3 replicas each, to make MGC as figure 3.10 shows.
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Figure 3.10: My Goldstandard Community diagram. The simulation of realistic datasets.
For the process, it is required the sequencing data (fastq file(s)) and the corresponding taxonomic
abundance profile. From the abundance profile, reference sequences are selected after mapping to
NCBI taxonomy. This constitutes the positive controls of the experiments. The quality is imputed
from the original fastq file(s) (although mutations are not yet introduced), and the sequence length
adjusted accordingly. MGC is created by using the abundance of the abundance profile and 5%
of negative controls. Grinder simulator generate the first profile (of the total of 8), which does
not have any background mutations nor sequencing errors. From this one, the rest of MGC files
are generated, consisting of the introduction of 1%, 2% and 3% of random mutations (but not
sequencing errors). Finally, from the previous 4 files, sequencing errors are introduced according to
quality of each base.

47



3.5.2 Results

Simulation of communities

To mimic microbial communities and at the same time cover a wide taxonomic spec-
trum, 9 samples were chosen from a variety of environments (described in chapter 2
section 2.3.3 on page 26): from fish to plant and from gut to water, including ar-
chaeal. Only the Illumina sequencing platform was taken into consideration, in both
single or paired-end mode. A range of sequencing depths and average read lengths
were included, as both may influence classification. The abundance profile was down-
loaded from the analysis results available in MGnify [Mitchell et al., 2020] (previously
known as EBI Metagenomics).

Table 3.2: Summary of the number of sequences simulated per sample. Number of sequences
of each type of control included per sample and replica.

Sample Replica Number of
sequences

Negative
controls

Positive
controls

% positive
controls

% negative
controls

faeces
1 32,219 1,470 30,749 95.44 4.56
2 32,219 1,513 30,706 95.30 4.69
3 32,219 1,539 30,680 95.22 4.78

fish
1 65,850 3,362 62,488 94.89 5.11
2 65,850 3,466 62,384 94.74 5.26
3 65,850 3,436 62,414 94.78 5.22

gut
1 112,432 5,059 107,373 95.50 4.50
2 112,432 5,178 107,254 95.39 4.61
3 112,432 4,973 107,459 95.58 4.42

human
1 25,089 1,262 23,827 94.97 5.03
2 25,089 1,341 23,748 94.66 5.34
3 25,089 1,282 23,807 94.89 5.11

ice
1 104,163 4,571 99,592 95.61 4.39
2 104,163 4,645 99,518 95.54 4.46
3 104,163 4,716 99,447 95.47 4.53

plant
1 30,977 1,607 29,370 94.81 5.19
2 30,977 1,567 29,410 94.94 5.06
3 30,977 1,561 29,416 94.96 5.04

reactor
1 32,248 1,489 30,759 95.38 4.62
2 32,248 1,522 30,726 95.28 4.72
3 32,248 1,532 30,716 95.25 4.75

sludge
1 45,887 2,140 43,747 95.34 4.66
2 45,887 2,129 43,758 95.36 4.64
3 45,887 2,219 43,668 95.16 4.84

soil
1 24,937 1,195 23,742 95.21 4.79
2 24,937 1,192 23,745 95.22 4.78
3 24,937 1,167 23,770 95.32 4.68

The database Silva Parc version 138.1 was the input for the positive control
sequences. The previously described method was applied to simulate realistic mock
communities. Table 3.2 contains a brief description of the content of the newly
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simulated environmental samples.

Metataxonomic identification

The vast majority of sequences were identified as belonging to the taxonomic tree. In
fact, only about 4.68% of the simulated data was not classified by Kraken2 as shown
in table 3.3, some are from the positive controls and the majority from the negative.

Table 3.3: Number of classified sequences by control type. Almost all the positives controls
were classified, and the majority of negative controls were unclassified.

Classified Unclassified
Negative 4,867 532,197
Positive 10,834,134 50

The majority of sequences were labelled to leaves of the tree of life (species or
below), as shown in figure 3.11, and a considerable proportion of reads classified at
the superkingdom rank.
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Figure 3.11: Number of sequences classified per taxonomic rank. Most of the sequences
were identified at species level, interestingly, the higher proportion found in experiments with more
error. A significant fraction could only be assigned to superkingdom. Contrary to previously, those
experiments with less errors are more abundant here. This could be indicative of Kraken being
less reliable at lower taxonomic ranks, especially with higher number of mutations compared to the
reference.

Figure 3.12 shows the absolute abundance by superkingdom in each sets of sam-
ples.
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Figure 3.12: Superkingdom abundance by environment and experiment. Absolute abundance
at the superkingdom level by environment (sorted from the highest to the lowest number of sequenced
reads). Reads classified at "root" is when Kraken2 find kmers matching in the reference database,
but cannot assign them to any branch due to too many conflicts. Those samples with more errors
have more sequences identified as bacteria.
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Figure 3.13: Superkingdom abundance by experiment. This figure shows the classification at
the Superkingdom rank of all the simulated mock communities by experiment. There is an overall
low number of unclassified reads. Reads with higher proportion of mutations have lower proportion
of ’root’ labelled sequences. The fraction of unclassified reads increase slightly with higher number
of errors/mutations in the simulated data.

Kraken sometimes identifies sequences as belonging somewhere in the tree, and are
labelled as ’root’. Interestingly, the number of sequences assigned to ’root’ decreases
with higher number of mutations, as observed in figure 3.13.

Kraken does perform better at higher taxonomic ranks, as observed in figure 3.14,
according to the common metrics. However, the performance is highly dependent on
the microbial composition present on each sample (figure B.5 in appendix).
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Figure 3.14: Accuracy metrics by rank. The metrics presented here show that identification
at higher taxonomic ranks is more reliable, although there is a high standard deviation in all cases.
The precision, recall and F1 score are the metrics with more significant drops at lower taxonomic
ranks. The unclassified sequences include all the negative controls and have the best results for all
the metrics.

The taxonomic distance distribution has a slight tendency to increase with exper-
iments that contain more mutations, as shown in figure 3.15. The negative controls
are sometimes identified in the taxonomic tree.
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Figure 3.15: Violin plot of the Taxonomic Node Distance by type of control and experi-
ment. This figure illustrates the TND by positive and negative controls (reads which contain or not
sequences representing them in the reference database) by experiment. TND distribution is quite
similar amongst the different experiments with most of the positives controls being 10 or under,
and almost all negative controls at 0 with expections. Values of TND at 0 or close mean that reads
have been classified where expected, whereas higher values mean they have been classified in further
away nodes compared to the original species.
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Figure 3.16: Taxonomic Node Distance by length. Short reads have grouped by length. The
TND is generally lower for the shorter sequences, and also not much difference is observed by the
different experiments, except for the sequences over 550 bp. However, the taxonomies represented
in each group is different as the nature of MGC. The two shorter groups belong to soil and fish
samples.

TND of the total length of the simulated data is higher for the middle range 251-
550 base pair (bp), as figure 3.16 shows. The lowest taxonomic distance corresponds
to the second-shortest group. These sequences are single end and belong to 2 of the
environments. Also, TND does not differ much between experiments, except for the
longest group of sequences.

Depending on the microbial community, in this case each sample, TND can vary
greatly. Figure 3.17 shows that TND can vary up to 5 on average from sample to
sample. Moreover, the number of errors introduced also differs significantly.
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Figure 3.17: Taxonomic Node Distance by sample and experiment. Samples are in descending
order by number of reads. The taxonomic distance differs vastly depending on the organisms present
on the sample. It could be because of too many or too little representatives in the reference database
or due to the fact that some lineages have much larger number of taxonomic nodes than others
in the NCBI database, and therefore if reads belonging to very long lineages have a potential risk
of presenting higher values of TND even if the accuracy values at specific taxonomic ranks is the
same. Also, the effect of the number of mutations in each sample is different. This highlights the
importance of checking the fitness of the chosen database for the sample(s) of study, and understand
the impact that mutations will have on the chosen overall bioinformatics analysis pipeline.

3.6 Discussion

The Chlamydia dataset demonstrates that the classification method, Kraken, is not
capable of fully identifying all the sequences with the same organisms employed as
reference. Misclassification occurs at all levels, but is more common amongst closer
related taxonomic nodes. For benchmarking, appropriate metrics should be used.
They should also be meaningful for the purpose, and when necessary new measures
should be proposed [Capella-Gutierrez et al., 2017]. For example, precision, recall, f1
score, etc. measure the level of error classification at specified taxonomic ranks, but
fail to capture whether sequences are assigned to a close relative or very far away in
the tree of life.

The TND measures how far away, in the taxonomic tree, sequences have been
assigned. However, the number of ranks can greatly vary from lineage to lineage,
and therefore it can introduce a bias. An alternative is to only count the number
of standard ranks (superkingdom, phylum, class, order, family, genus and species),
which are common in all branches, named here as TNDSR. However, some clades
still contain multiples of some standard ranks in the NCBI taxonomy database.

Independently, Chen et al. [Chen et al., 2019] defined a similar metric based on
the concept of taxonomic distance. Their metric is based on the “number of ranks in
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difference” divided by the “number of unique ranks in two taxa”. The measure of the
PBD and PND would solve all the previously mentioned issues. But currently there
is no single phylogenetic tree that encapsulates all potential organisms, although the
GTDB database has a great potential to become the main reference for taxonomic
classification.

The Test data show comparable profiles (at different scale) for all these measures.
However, PBD and PND are quite likely to behave differently in other contexts. For
example, when GTDB is mapped with NCBI taxonomy, a number of leaves nodes in
GTDB with the exact same species name are discovered. The resulting mapping also
contains some nonsensical lineages, e.g. mixing up bacteria and eukaryotes.

Laboratories across the world must ensure the quality of their tests: reliability,
reproducibility and consistency [Schlaberg et al., 2017]. However, these principles
are not applied systematically for bioinformatic algorithms. A review of the literature
reveals contradictions in what are the best methods to use. Nevertheless, bench-
marking studies are representative and accurate in specific contexts [Pollock et al.,
2018]. Therefore, we propose to validate the bioinformatics methods for each study
to ensure the best possible taxonomic identification is achieved.

In this chapter, a novel methodology was proposed to generate in silico data that
is similar in composition to the one detected by the chosen classifier, and with the
same sequencing data profile. In this way, individuals can measure and decide on the
fitness of their methods and parameters. Indeed, the data shows the wide disparity
in the metrics that can be observed for different types of samples.

Up to 3% of random errors were introduced to the simulated data (MGC). This
was based on the fact that many OTU tools and pipelines identify clusters at 97%
of similarity [Imelfort et al., 2014, Velsko et al., 2018, Alves et al., 2016] as they
consider them to belong to the same species. However, with the increasing number
of microbial genomes available, it is proven that organisms belonging to the same
species can present much lower or much higher average nucleotide identity (ANI)
[Breitwieser et al., 2019]. For instance, ANI values between the genus Shigella and
E. coli species are >97% while some of the members of the Escherichia are only 93%
identical [Breitwieser et al., 2019, Hornung et al., 2019] at genome level.

Kraken performs better at higher taxonomic ranks, such as superkingdom or phyla.
Interestingly, when random noise was introduced in the data set, more short sequences
were assigned to lower taxonomic ranks rather than being unclassified.

To the best of my knowledge, I generated a novel methodology to generate syn-
thetic 16S rRNA data to be used as negative controls. This method can be applied
to other similar genes.

According to the data it can be concluded that: (i) Kraken is not always able to
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recover the original taxon; (ii) the number of error or evolutionary events introduced
in the simulated data seem to affect very little the assignment by Kraken; (iii) se-
quences that are evolutionary quite close might generate confusion when classifying;
(iv) assignment is more accurate at higher taxonomic ranks; and (v) misclassification
seems more likely to happen between phylogenetically closer sequences.
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Chapter 4

Discriminatory gene regions for taxonomic assignment

4.1 Motivation

Taxonomic assignment is a major challenge in metagenomics. Often, marker genes
are being used, and the most common is the housekeeping 16S rRNA gene. It has
nine variable and ten conserved regions. Understanding which genetic regions are
more informative, has the potential to aid taxonomic classification.

The classifier Kraken is k-mer based. Genetic sequences contain fragments of
size k (k-mers) which are found in varying frequencies within a sequence and across
species. Rare k-mers might be more informative for taxonomic classification than the
more common ones. Genetic sequences are represented by an alphabet of 4 characters,
which can in simple terms be visualised as a document of text on a specific topic. If k-
mers are thought of as words and genetic sequences as documents, linguistic methods
can be applied to develop a novel approach for metataxonomic classification.

4.1.1 Objectives

The main goals of this chapter were to:

– apply different strategies to improve taxonomic classification based on the in-
formation of different genetic regions.

– define database specific regions which contain more useful information for tax-
onomic classification.

– develop a new classification approach based on linguistic methods, which pe-
nalizes highly frequent k-mers for taxonomic classification.
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4.2 Genetic regions

The 16S rRNA gene has a complex structure related to its function. To be able to
maintain the function, there are key regions, which can be identified when performing
evolutionary studies to determine conserved and variable regions across species. The
work presented in this section aimed to discover if the regions with more accumulated
mutations across bacteria and eukaryotes counterpart present better taxonomic iden-
tification compared to the conserved regions, as has been previously described in the
literature [Chakravorty et al., 2007].

4.2.1 Selection of reads that contain variable regions

This work was conducted in collaboration with Rob Finn and Alex Mitchell (EMBL-
EBI).

Figure 4.1: Diagram of variable regions reads, mapping and selection. This digram illustrates
the process of mapping short reads into the 16S rRNA gene regions. An E. coli sequence was added
to the short reads. Next, they were aligned with nHMMER and the HMM SSU bacterial profile.
For each read, the relative position to the overall gene is defined, and the proportion of the variable
region calculated. Reads that map to a variable region at the specified threshold were selected for
analysis.

Figure 4.1 contains a diagram of the process. Basically, an E. coli full-length
sequence (Silva accession CP007265.4699050.4700590) was added to the mock com-
munity. Then all these were aligned with nHMMER and the HMM profile for bacteria
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from Rfam (SSU RF00177). The variable region reads, identified from the literature
[Yarza et al., 2014], were mapped to the full length E. coli sequence to determine
their alignment positions. The alignment positions of these variable regions were
then used to determine the position of the short read in the 16S rRNA gene and their
percentage of coverage to the variable and conserved regions.

The main goal here was to implement a method capable of mapping short se-
quencing reads to specific regions of the 16S rRNA gene. In the selection phase, only
those reads which cover a significant part of the areas of interest, the pre-defined
variable genetic regions, were selected for metagenomic taxonomic identification.

This process was evaluated by first testing using the Chlamydia dataset (see
chapter 2 section 2.3.1) to determine the selection criteria threshold of the mapping
reads, in other words, establish how much of each region needs to be covered by
the short reads in order to observe a better taxonomic classification. This process
of selecting reads that map variable regions was performed prior to the taxonomic
identification. Short reads were selected by several thresholds varying from 25% to
100% coverage of the variable regions and minimum length covered up to 50 bp.
The taxonomic classification was performed by Kraken with a reference database
consisting of 16 chlamydial species.

Figure 4.2 shows the f1 score metric for each of the 16 species in the Chlamydia
synthetic community, after applying the selection process at different thresholds of
coverage of the variable regions, including minimum sequence length (the last variable
regions were very short and this was to ensure enough coverage), followed by a
taxonomic identification by Kraken. The first striking result observed was that the
best performance was obtained for the full data without performing any read selection
step. The second overall result was that more stringent threshold values of minimum
variable coverage resulted in the worst performance, e.g. coverage of 90 to 100%.
The minimum length coverage threshold did not seem to have much of an effect
on the performance, therefore this parameter was ignored. However, with this small
data set, it was not possible to establish a threshold to determine the minimum read
coverage necessary for improving read identification.
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Figure 4.2: Chlamydia set f1 Score of selected reads by variable regions’ coverage. The
dataset consisted of 16 selected Chlamydial species. After the taxonomic assignment with Kraken1
with the same species as reference database, F1 score was calculated for each specie (columns of
the heatmap). The rows are the reads that map variable 16S rRNA regions at a combination of
thresholds, which include a minimum coverage (indicated by cov followed by a number, where the
number is the minimum percentage that the short read maps into variable regions, ranging from
25% to 100%), and the minimum number of position that a short reads need to cover a given
variable region (e.g. min len followed by the number of positions, ranging from 0 to 50bp). High
proportion of coverage present low performance, and the minimum length has little effect. However,
for this test, the best performance results are for the set without applying any selection of variable
regions. This could be due to the nature of Kraken that relies on fragments of size k, which at short
values of k might include repetitions inside and outside variable regions.



The Chlamydia data set was a small sample analysed with a tiny reference database.
To better understand whether the variable region selection pre-process improve taxo-
nomic classification, a bigger set of data analysed with a more comprehensive database
was required. The variable region selection criteria was established to a set of mini-
mum coverage thresholds of 20%, 40%, 60%, and 80% for the dataset genetic regions
test data described in chapter 2 section 2.3.2, and was analysed with the reference
database Silva Parc version 132, to determine if on a more realistic scale the results
varied from the previous data set. Figure 4.3 shows the profile of mapping the short
reads to the 16S rRNA gene sequence after selecting reads according to variable region
coverage.

a: All reads b: ≥20% coverage c: ≥40% coverage

d: ≥60% coverage e: ≥80% coverage

Figure 4.3: 16S rRNA gene sequence coverage of the genetic regions test data by selecting
reads mapping to the variable regions. The Chlamydia dataset is mapped to the 16S rRNA gene
sequence. The sub-figures are histograms showing the number of reads that map each individual
base. In grey are the conserved regions and in red the variable. The first sub-figure (a) is the
mapping profile for the whole dataset, and the rest (b-e) are the number of reads mapping after
selecting those which covers a minimum of any given variable regions (ranging from 20% to 80%
correspondingly). Note that in (e) a significant proportion of reads covering the V3 region (3rd read
area starting from the left) has not been included by the selection process.

The results were evaluated for each taxonomic rank with the f1 score metric, and
values, shown in figure 4.4. Similarly, as observed for the Chlamydia data set, the
f1 score was in general worse for the most stringent coverage threshold and best
results were for the full data set. The exception being for the most strict coverage
threshold of 80% at the phylum level. This could be due to the relatively low number
of phyla present in the set, and by chance the ones with better outcome were kept.
The taxonomic distance results did not show any differences between full or more
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Figure 4.4: Test data set metrics after selecting reads by variable regions’ coverage. This
figure shows the Chlamydia data set F1 score and TND by after selecting reads mapping variable
16S rRNA regions at different coverage thresholds. While the F1 scores present similar and low
results across the coverage thresholds from species to family rank, higher taxonomic ranks show
improved value, specially for phylum ath 80% coverage. However, as seen before, at this level of
selection (4.3) the lost of reads is significant. On the contrary, the TND remain stable across the
different threshold levels.

stringent values of variable region coverage.
Our results suggest that both regions, conserved and variable, contribute equally

to the identification of the metagenomic reads.
It is also possible that the variable regions or regions which contain discriminative

fragments may vary with the addition of new sequences in the database, and there-
fore they should perhaps be re-defined. Moreover, different approaches need to be
considered on how to use the variable regions to explore how to improve results.

4.2.2 Informative genetic regions

Each genetic database contains different sequences, and taxonomic clan representa-
tion might vary. These factors can easily influence evolutionary models which deter-
mine conserved and variable gene regions. Here, a methodology was established to
define variable and conserved regions for the 16S rRNA gene. The ultimate goal was
to understand whether new limits on these types of regions have more discrimina-
tory power for taxonomic classification. Therefore, the next step was to evaluate by
masking out the potentially conserved regions from the reference database.

The methodology employed to determine database specific variable regions (see
figure 4.5) was as follows: First, only those sequences considered of high quality
from the Silva database NR99 (510,503 sequences) were selected, which consisted of
selecting those sequences whose taxonomic annotations include the seven main taxo-
nomic ranks (superkingdom, phylum, class, order, family, genus, and species), which
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left 195,352 sequences, and that do not contain ambiguous bases; Second, all the
172,928 sequences remaining were then structurally aligned with Infernal [Nawrocki
and Eddy, 2013] and the Covariance Model (CM)1 from Rfam bacterial.

Phylum

Class

Order

Family

Genus

Species

Superkingdom

Root

Figure 4.5: 16S rRNA gene structural alignment diagram. The diagram illustrates the process
followed to generate structurally alignment of 16S rRNA. First, high quality sequences were selected
from the Silva database NR99 (containing the seven main ranks and without ambiguous bases).
Then they were aligned with Infernal and the covariance model from Rfam SSU bacterial.

Once the sequences were structurally aligned, the information content for each
position of the alignment was measured with the Kullbac-Leiber Divergence (KLD)
method, which was used to measure the conservation status of the genetic regions.
KLD is the loss of information when the observed distribution is compared to the
expected, and was calculated as shown in equation 4.1:

KLDj =
N∑
i=1

Pijlog

(
Pij

Qi

)
(4.1)

Pij =
Cij∑N
i=1 Cij

(4.2)

Qi =
Ci∑N
i=1 Ci

(4.3)

KLDj The information content for the j-th column in an alignment.
Pij Relative frequency of a particular letter i in the j-th column.
Qi The expected frequency of a letter i.
Cij Number of counts of letter i int he j-th column.
Ci Total number of counts of letter i.

1Covariance model definition: "approach to several RNA sequence analysis problems using prob-
abilistic models that flexibly describe the secondary structure and primary sequence consensus of an
RNA sequence family". Source [Eddy and Durbin, 1994]
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N The number of letters in the alphabet ACTG.

The KLD was averaged by grouping “l” columns. Finally, arbitrary thresholds were
set (l of 7,19,31 and 39 and KLD of 0.5,0.75 and 1) to determine which regions in-
formation loss was lower and therefore could be potentially classed as evolutionary
variable regions. Figure 4.6 shows the KLD values for the gene length, the calcu-
lated regions of interest (blue) and the already known variable regions (pale red) for
comparison.

We next evaluated whether these newly defined regions were able to improve
metagenomic taxonomic classification. To do so, the Silva Ref Trunc aligned SSU
database version 138 was downloaded. The positions of the alignments were mapped
to E. coli sequence accession CP007265.4699050.4700590. The previously described
regions of interest, shown blue in figure 4.6, were then mapped to the alignment and
the rest were masked out.

All the MGC data was analysed with Kraken2 for each masked database for each
group of potential variable regions to determine the optimal limits.

The original MGC dataset contained 1426 organisms which were labelled as be-
longing to 35,857 nodes of the NCBI taxonomy tree. In figure 4.7 the number of
correctly classified simulated reads (TND=0) increases with the number of regions
included. In fact, the non-masked reference database (RefTrunc) was the one with the
best results. The number of reads correctly identified was higher for those databases
with higher coverage of the 16S rRNA gene. As observed previously, the number of
mutations slightly decreased the number of correctly identified reads.

64



0 200 400 600 800 1000 1200 1400 1600
Sequence position

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ku
llb

ac
k-

Le
ib

le
r D

iv
er

ge
nc

e

Information content - threshold 0.5 - kmer size 7

a: L=7, KLD=0.5
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b: L=7, KLD=0.75
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c: L=7, KLD=1.0

0 200 400 600 800 1000 1200 1400 1600
Sequence position

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ku
llb

ac
k-

Le
ib

le
r D

iv
er

ge
nc

e

Information content - threshold 0.5 - kmer size 19

d: L=19, KLD=0.5
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f: L=19, KLD=1.0
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g: L=31, KLD=0.5
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h: L=31, KLD=0.75
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Figure 4.6: Potential database-specific variable regions of the 16S rRNA gene. Kullbac-
Leiber Divergence was calculated for each position of the structural alignment of high quality 16Sr-
RNA sequences in the Silva databases. The horizontal cyan line is the threshold below which regions
could be described as variable, which are highlighted in blue. In red are the 16S rRNA gene variable
regions. For KLD threshold of 1, the areas cover a rather large proportion of the genomic sequence,
whereas KLD of 0.5 detects very little. The criteria of KLD of 0.75 is a middle ground and at the
same time correlates better (not perfectly) with the variable regions already described in literature.
When L is low (e.g. 7, b), the number of areas predicted is much higher, with a number of short or
very short regions.
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Figure 4.7: Number of sequences identified by masking newly defined variable regions.The
MGC data was analysed with Kraken2 and Silva RefTrunc version 138. This database was masked
according to the regions calculated by the IC criteria for several thresholds. The results are presented
by the errors in the mock community. ’Positive’ refers to the positive controls in the dataset, those
that are present in the database, whereas ’negative’ refers to those reads generated synthetically and
are expected to be unclassified. The incorrectly identified sequences were labelled to some taxon,
but not to the original organism. The number of unclassified reads was higher for those masked
databases with very low coverage of the 16S rRNA gene, and also for those reads with a higher
proportion of mutations. The full database resulted in a higher number of correct classification
rates.
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Figure 4.8: TND after masking newly proposed regions.After masking the RefTrunc database
with the IC criteria regions, the average TND is high for a lower threshold of KLD, whereas for
higher limits (0.75 and 1) the .TND is much lower. However, the best results were obtained when
the data was analysed with the unmasked database.

TND was measured after masking out the newly defined potential conserved re-
gions with the Silva Ref database. Those sets with regions of interest with a KLD
threshold of 0.75 and 1.0 have the lower average TND (see figure 4.8). TND of the
masked database with the regions of l-mer 39 and KLD of 0.5 increase compared to
l-mer 31 counterparts. However, the best results were obtained with the unmasked
reference database.

These results indicate that it is necessary to have full-length genomic sequences
for taxonomic identification of short reads. Moreover, so far only genetic regions
have been studied. k-mer based methods used genetic fragments of size k to classify
sequences, which are found in varying frequencies across organisms. Finding a way
to penalise those k-mers that are commonly in a database and giving more weight to
those which are unique for a species might be a better solution. In the next section,
linguistics methods were used to create a novel metagenomic taxonomy classifier.
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4.3 Linguistic methods for taxonomic identification of metagenomic data

So far, the work presented was focused on the evolutionary conserved versus variable
regions. Nevertheless, some k-mers can still be found in both type of regions.

Each reference database has a unique composition. K-mers are found in different
proportions in each genome and across species. Organism specific k-mers are vital
elements for taxonomic identification.

Term-Frequency Inverse Document Frequency (TF-IDF) is a widely applied method
in linguistics which weights words according to their frequency in the body of the text
or corpus. It is used for example to determine the type of document or find topics
(e.g. sports, education, politics, etc). A document is composed of words, some occur
multiple times in one or a few documents, whereas others are frequently observed in
all or almost all. The first ones have more influence to discriminate the document
compared to the later ones. TF-IDF It has been applied to distinguish plasmid mate-
rial from metagenome data [Krawczyk et al., 2018], to determine lateral gene transfer
[Cong et al., 2017], the community interaction and structure [Yan et al., 2017], and to
identify long non-coding RNAs in combination with secondary structure [Madhavan
and Gopakumar, 2018].

4.3.1 Genetic Fragments Score Aided Taxonomic Identification (GeF-
SATI)

The strategy coupled theTF-IDF method with a naive Bayes classifier to develop a
method that taxonomically identifies sequencing reads up to the genus level by weight-
ing k-mers, and it is called GEnetic Fragments Score Aided Taxonomic Identification
(GeFSATI).

The TF-IDF needs to be redefined for the purpose of identifying organisms through
their genetic material. In this new context, the corpus is the reference database, a
term or a word is a fragment of size k or k-mer, and documents are all the genetic
sequences belonging to the same taxon or clan.

These types of models can create an impracticably large matrix for metagenomics,
which in some circumstances might be millions of k-mers by millions of species or sub-
species, so a reduced dimensions’ strategy was required. This method only identifies
metagenomic sequences up to genus level, for two main reasons: firstly, because some
phyla contain a large number of members and would generate huge model matrices,
and secondly, and more importantly, the Silva database only curates up to genus level
(see chapter 5 section 1.6.3).

68



Model generation

After cleaning the databases, and in order to generate the models, a two-step strategy
was designed: the first is for classifying sequences at the phylum level and the second
one is for classifying sequences at the genus taxonomic rank based on the predicted
phylum. Figure 4.9 shows a schematic diagram of the model generation process. All
the steps are detailed below.

tf-ifd models
 per phylum

> 1 Short lineage

> 2 Long lineage

> 4 Short lineage

> 3 Long lineage

> n Long lineage
...

Genomic database

> 2 Long lineage

> 3 Long lineage

> n Long lineage
...

Clean database

Cluster sequences
 by genus

Cluster sequences
 by phylum

tf-ifd model

Figure 4.9: Building TF-IDF models. First, the database is cleaned by removing those sequences
with lineages with less than 7 ranks, so keeping only those sequences that are likely to be highly
curated annotations. Then sequences are clustered at the phylum level and a TF-IDF model is
built. This model predicts only phylum. Next, for each phylum, sequences are grouped at the genus
level and a TF-IDF model per phylum is calculated. So the classification works in two steps, first a
phylum is predicted with the first model, and then genus is predicted by the corresponding model
of the second stage.

Cleaning and clustering the reference database

First the reference database Silva NR99 version 138 with its own taxonomy, which
contains 510,503 sequences, was cleaned by keeping those sequences which have the
main ranks annotated (superkingdom, phylum, class, order, family and genus) and
383,513 sequences remained. Then sequences were clustered at the phylum rank and
also at genus level for each of the 71 phylum, as figure 4.9 illustrates.

Bag of k-mers

Sequences were split in overlapping k-mers of size 9, ignoring fragments with
ambiguous bases, as shown in figure 4.10. K-mers that are found in more than
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Figure 4.10: Bag of k-mers. Each sequence in the database is split into overlapping fragments
of size k. In this example, k=3. Each sequence is taxonomically labelled, here represented with the
capital letter inside the blue circle. Some fragments are present in all the sequences, whereas others
are only present in some. Each k-mer is highlighted in a different colour. K-mers that are unique
in the whole database are in bold and are expected to be the ones more informative and therefore
should have higher weight during classification.

70% of the clans (phylum or genus accordingly) were considered not informative and
consequently removed, except for some phyla that only contain 1 genus where it did
not make sense to remove them.

Building TF-IDF models

For each of the sets, a TF-IDF matrix was calculated. All matrices were computed
with the functions provided by scikit-learn [Pedregosa et al., 2011] (python package)
as described in equations 4.4, 4.5. The tokenizer, to obtain the bag of k-mers, was
built in-house.

tf − idf(t, d) = tf(t, d)× idf(t) (4.4)

idf(t) = log 1+nd

1+df(d,t)
+ 1 (4.5)

Where:
tf-idf Term-frequency — inverse document-frequency.

tf(t,d) k-mer count.
idf inverse document-frequency.
nd total number of clans.

df(d,t) number of clans that contain the k-mer t or clan frequency.

Figure 4.11 shows an example of how TF-IDF matrices are calculated for taxo-
nomic identification. First, the frequency of each fragment of size k (rows) is counted
per each clan or taxon (columns). The inverse document frequency was calculated and

70



a: k-mer count b: Clan fre-
quency

c: Inverse
document
frequency

d: Term Frequency -
Inverse Document Fre-
quency

Figure 4.11: Example of Term Frequency - Inverse Document Frequency. a - The frequency
in each k-mer for each label is counted and stored in a matrix. b - The document or clan frequency
is the number of taxonomic clans (in this example A, B or C) where each k-mer is found. c - The
inverse document frequency is calculated according to the equation 4.5 for each k-mer. d - Finally
the TF-IDF model is calculated according to the equation 4.4 and the k-mers that are present in all
the documents are excluded from the final model.

multiplied by the count’s matrix, which generated the TF-IDF model after removing
those k-mers with frequency above the specified threshold.
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Multinomial Naive Bayes model

Multinomial Naive Bayes is a supervised machine learning method which assumes
independence between pairs of features (k-mers) given a class variable (taxon). It is
implemented for multinomial distributed data, and it can be applied to counts and
TF-IDF matrices.

For each matrix, a Multinomial Naive Bayes classifier model was created. The
model with the sequences clustered at the phylum rank contains 1,262,680 features
(k-mers).

Classification

The classification, shown in diagram 4.12, consisted of masking reads, predicting
phylum followed by a prediction of genus and finally a final assignment step.

Assign genus Assign to 
lowest common 

ancestor

Assign to 
Superkingdom

Unclassified

Probability
>=0.3

Probability
<0.3

tf-ifd model Predicted
phylum

ACTGNCTGGACTTNN

...

Sequencing
reads

Mask low quality 
bases

NNAAGTCCAGNCAGT
Reverse complement

tf-ifd models
 per phylum ?

Predicted genus
Probability

>=0.7
Probability

<0.7

Figure 4.12: TF-IDF classification. Each sequencing read is first classified to the phylum level
after masking the bases with low phred scores for the forward and reverse complement. Depending
on the probability it can be assigned to the rank superkingdom, unclassified or a genus may be
predicted from either forward or reverse complement sequence accordingly. If the probability at
the genus rank is low, a lowest common ancestor approach is applied for the top n results whose
probability is above the threshold.

Prior to the prediction steps, short read bases with low quality with a phred score
inferior or equal to 20 were masked.

Then the phylum was predicted for both the forward and reverse complement, and
the prediction with the highest probability of the two was chosen (if it was equal or
superior to 0.3). Genus was predicted with the corresponding model and with either
the forward or reverse sequence accordingly.
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The assignment step for the predicted genus consisted of either labelling the
sequence to the predicted genus (when the probability of the top result is equal or
superior to 0.7), or the lowest common ancestor approach was applied for up to five of
the top results whose probabilities add up at least 0.7. Where the previous conditions
were not met, the phylum level was assigned.

When the probability for forward and reverse sequence was lower than 0.3, the
probabilities of up to 5 of the top results were combined until they result in a minimum
value of 0.5. The last common ancestor approach was applied to whichever resulted
in the highest value. This meant- that sequences were assigned at the superkingdom
level or above. Sequencing reads were unclassified where there is no common ancestor.

Results

The new approach, GeFSATI, was based on the TF-IDF linguistic method, which
allows specific weighting for the unique k-mers (high scores) versus the common ones
(low scores). Then a two stage multinomial naive Bayes classification was performed,
first to classify up to phylum rank, and then up to genus level.

This new approach was tested with the soil sample replica 1 without noise and
without sequencing errors from MGC. The results were compared to the most similar
results available, which were obtained using Kraken2 and the full Silva NR99 database
with its own taxonomy.

It took approximately 1.8 hours with 1 core in a machine Dell PowerEdge R440
Rack Server Xeon Silver 4110/128GB/8x2TB and up to 25Gb RAM to build the
models and almost 15.3 hours and 10Gb RAM for the classification steps.

The taxonomic distance was calculated and is presented in figure 4.13.The bulk
of the sequences were classified at 4 or 0 nodes away with GeFSATI, and 157 positive
control sequences were unclassified. Kraken (in orange) classified more sequences
at the lowest levels (TND = 0) and the next significant TND value is 5, and no
sequences were unclassified. One negative control was labelled at the phylum level
with GeFSATI.

Figure 4.13 show the metrics comparing the same sample with the method pre-
sented here and the other with Kraken2 and the full Silva NR99 database with its
own taxonomy. GeFSATI’s recall at the phylum level is higher than Kraken. At the
genus level precision and recall are similar to Kraken, but precision and recall are lower
at the rest of the ranks compared to Kraken with Silva with its own taxonomy as a
reference.

To the best of my knowledge, this is the first time a TF-IDF strategy has been
combined with a multinomial naive Bayes for metagenomic taxonomic identification.
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Figure 4.13: Comparison of metrics by method. The classification works better with Kraken2
with Silva NR99 and its own taxonomy than the method presented here. The TND of GeFSATI
shows that most of the positive control are classified at either 0 or 4 nodes away from their origin
leaf. Whereas for Kraken Silva NR99 most of the sequences are classified correctly, and the second
most abundant TND value is 5. The negative controls are all but one correctly identified by GeFSATI
and all for Kraken. GeFSATI’s present a better recall for phylum and similar values of precision and
recall at genus level, but underperforms at the rest of the ranks.

4.4 Discussion

Genes contain conserved and variable regions across organisms, and it is important
to understand how they affect taxonomic classification. In this chapter, two different
approaches were investigated.

The first approach involved the selection of sequencing reads mapping to 16S
rRNA gene variable regions defined in the literature. The best overall results were
presented by the whole set. However, it can be argued that because databases are
continuously increasing, the content of the reference varies and consequently the
regions that may help to improve identification may be different.

This method, however, has the potential to be applied in other contexts, for
example to remove PCR artefacts and contamination from the sequencing data, or
to select reads that map onto specific genes or regions.

The second strategy, which consisted of masking out non-informative regions from
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each sequence, revealed that longer coverage of genes obtain better results.
Overall, the results confirm that the completeness of the gene in the reference

database is essential to be able to identify short sequences more accurately and as
close as possible to species level, as previously described in the literature [Johnson
et al., 2019].

Kraken is a k-mer based method for metagenomic identification. Genetic frag-
ments of size k are considered to be genetic signatures and are found in varying
amounts. These fragments can be unique or common among species, and perhaps
they may be the key to improving taxonomic classification.

A feature selection method with TF-IDF approach might have the power to obtain
better results. The newly developed GeFSATI is capable of taxonomically identifying
short sequences based on weighted k-mers.

This newly developed unigram type of model, based on scoring k-mers with the
TF-IDF method, overcomes the dimensionality problem and the question of having
enough information per clan (topic in linguistics). The strategy consisted of reducing
dimensionality by selecting sequences with a high quality annotated taxonomy, a
modest size of k, ignoring irrelevant k-mers, and splitting the classification into two
steps: clustering them first at the phylum rank, and then at the genus rank per
phylum, which means that in the vast majority of cases there is more than sequence
(referred to as a document in linguistics terms) per taxonomic clan.

An improvement of our method compared to other similar approaches [Garbarine
et al., 2011] is demonstrated by the fact that GeFSATI is capable of determining
whether the short read is found in the forward or reverse complement strand in the
reference database.

The reductionist strategy means that on one hand, it can handle better reference
databases, sometimes at the cost of losing vital information for identification. More
steps make it slower and potentially might produce less accurate results.

More investigation is needed to decrease TND values for GeFSATI and to obtain
higher recall. More strict probability values at the phylum levels worsen the results,
and relaxing probabilities at the genus level does not show much difference (data not
shown), indicating that these probabilities might not be as reliable as expected.

The literature suggests that not necessarily longer k-mers improve classification.
For example, combining TF-IDF with a Euclidean classifier reveals that accuracy is
higher for shorter k-mers (comparison of 6 and 9) [Garbarine et al., 2011]. Another
method [Şener et al., 2018], coupling TF-IDF with Latent Semantic Analysis (LSA)
to identify similar metagenomic samples, also shows shorter k-mers perform better
(k<=10) from a range up to 13. VirNet [Abdelkareem et al., 2020] is a tool specifically
developed for virome identification. A TF-IDF method with k-mer sizes ranging
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from 1 to 20 was tested with a variety of classifiers (logistic regression, XGboost,
AdaBoost, decision trees and random forest.), with an optimal k of 11 (88% accuracy).
Therefore, the optimal value of k needs to be determined for GeFSATI for both types
of models, at phylum and genera levels.

The multinomial naive Bayes classifier is a popular method in linguistics, it is
easy to use, scalable, and works well for counts matrices or TF-IDF. Therefore, it
is possible that another classifier might obtain better results. For example, Support
Vector Machines is a supervised method widely used for text classification. It is
claimed to be one of the best classifiers at the moment. It is effective in high
dimensional spaces. However, there is the risk of over-fitting and does not directly
provide probability estimates. Latent Dirichlet Allocation is an unsupervised algorithm
designed to discover topics in a given document. This differs slightly from the TF-IDF
approach. As an input, it needs the bag of words and the number of topics. It returns
a document to topics matrix and topics to word matrix.

Another important factor is that the reference database contains full length genetic
sequences (about 1500 bp), whereas the simulated sequencing reads used here were
much shorter (151 bp). Therefore, because only a fragment of the real gene is
observed, the proportions of k-mers will be different compared to the full length.
By this argument, Bernoulli naive Bayes, which is binary (indicates only presence or
absence of a k-mer) might be more appropriate.

At the moment, one of the main GeFSATI limitations is that, it has been imple-
mented for single reads. It is expected in a future release to incorporate a paired-end
mode option. Also, speed and memory efficient solutions need to be explored.

4.5 Conclusions

Evolutionary pressure can cause accumulation of mutations on certain genetic regions,
but the taxonomic identification relies on the principles of the classifier. In this case,
Kraken is k-mer based, and does not show any effect on selecting or masking informa-
tive regions for taxonomic identification. In general, metagenomics taxonomic classi-
fication needs to exploit this differences to improve taxonomic classification scores.

It is crucial that databases and the identification approaches contain genes as
complete as possible, as well as having highly curated data including annotations.

In this chapter, a novel method has been developed to taxonomically classify
metagenomic marker gene short reads. It scores overlapping k-mers according to
their frequencies in the reference database, and is coupled with a multinomial naive
Bayes classifier.
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Chapter 5

Reference databases

5.1 Introduction

The composition of a reference database has a huge impact on taxonomic classifica-
tion performance when used with the exact same tools and parameters [Méric et al.,
2019, R. Marcelino et al., 2020, Dixit, 2021], from the genomic sequences to their
corresponding taxonomic lineages. Yet, there is a lack of comprehensive studies on
their effect for taxonomic identification of metagenomics data.

Some databases are specialised in one type of data, for example NCBI taxonomy
only contains taxonomic lineages (see chapter 1, section 1.6.1 on page 8), whereas
others curate both, like the Silva database which contains a selection of 16/18S rRNA
sequences with their own curated taxonomy (see chapter 1, section 1.6.3 on page 11).

This chapter presents the impact databases have on taxonomic classification,
depending on their genomic content and their corresponding lineages, focusing on
the Silva and NCBI taxonomy databases.

5.1.1 Objectives

The main goals of this chapter were to:

– Determine the behaviour of taxonomic identification when organisms do not
have genetic sequences present in the reference database.

– Establish potential biases of the reference databases.
– Characterise factors that might lead to taxonomic misclassification of short

reads, depending on the content of the reference database.

Firstly, the effect of missing data from the reference database was explored with
the Chlamydia dataset (described in chapter 2 section 2.3.1) and Kraken2.

Secondly, the impact of the quality of the genetic sequences present in the ref-
erence database for taxonomic classification was studied and critical and non-critical
factors determined.
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Finally, different taxonomic databases were compared with the exact same genetic
content to understand how they affect classification.

5.2 Classification bias for incomplete reference databases

A small scale test was conducted with the Chlamydia dataset (described in chapter
3, section 3.3) to pinpoint weakness of taxonomic identification when sequences are
missing from the reference database.

Thirty-two subset reference databases were generated by removing the sequences
belonging to each taxonomic rank from the original 16 Chlamydia species and were
compared to the full database as well as their corresponding taxons from the taxonomy
database.

Figure 5.1 presents networks of classification for four of the previously described
sub-databases: the first one contains the 16 original species included in the dataset;
the second one, sequences belonging to the genus Candidatus Fristchea have been
removed; the third one, sequences belonging to the order Parachlamydiales have been
removed; and a fourth and final sub-database without the sequences belonging to the
family Simkaniaceae. In general, taxonomic identification gets worse (red arrows) for
higher taxonomic ranks missing from the reference.
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a: Database with 16 sequences b: Genus Candidatus Fristchea sequences missing
from database

c: Family Simkaniaceae sequences missing from
the database

d: Order Parachlamydiales missing from
database

e: Legend

Figure 5.1: Chlamydia dataset classification network when clades are missing from the
database. Each node of the graphs represent a node in the taxonomic tree. Nodes representing
species (leaves of the taxonomic tree) are shown in blue, while the rest are shown in orange with the
exception of unclassified, which is in red. Species nodes have a size proportional to the number of
correctly assigned sequences. Arrows from species nodes point to the nodes to which other sequences
from that species have been assigned, with a width proportional to the number of sequences. The
number by each arrow is the TND. Grey arrows are when sequences are classified in the same lineage
whereas red ones indicate that sequences have been assigned to an incorrect lineage.
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Figure 5.2: Taxonomic Distance Divergence. When sequences representing a taxonomic group,
for instance a genus, do not have sequence representing them in the reference database, an ideal
taxonomic profiler should assign them to the closest common ancestor present. The Taxonomic
Distance Divergence is measured by subtracting the expected TND from the observed. In this
example, TDD is equal to 3. In grey represents a genus whose sequences are missing in the database.
It is expected (ETD) that the sequence will be classified in the rank immediately above, however it
has been classified (OTD) to another species.

Knowing the missing fraction from each sub reference database, the Taxonomic
Distance Divergence (TDD) can be measured as the difference between the expected
TND and the observed TND. In the example in figure 5.2 this is calculated as 3.
The expected TND is the number of nodes between the original node and the rank
immediately above of the missing fraction of the taxonomic tree, or 0 if the organism
has a sequence in the reference database.

When 16 sequences belonging to the chlamydial clan of the 16S rRNA gene as
reference database, TDD is close to 0 for most species. For higher taxonomic ranks,
e.g. order, TDD is larger, as shown in figure 5.3. Also, the genus Chlamydia TDD is
higher than other genera, probably because this rank is the one that contains more
representatives in the taxonomic tree (see figure B.3 in chapter 3 on page 142).

TDD analysis also reveals that the missing fraction of the reference database can
lead to classification further in the taxonomic tree reads even when a clan (sequences
belonging to a specific taxonomic rank) is present in the database. For example, it is
expected that short simulated reads belonging to the species Chlamydia abortus to
present TDD value of 0 when the order of Parachlamydiales is missing (its own order
Chlamydiales is present), instead they classify to much further away taxa.

This confirms the findings of Marcelino et al [R. Marcelino et al., 2020] that
metagenomic classification has a bias towards assigning reads to the sequences present
in the reference database, ignoring potential missing fractions.

80



Figure 5.3: Taxonomic distance divergence of the Chlamydia dataset when the reference
database is incomplete. Difference between the average TND per each species (x axis) when
representatives of ranks are missing from the reference database (y axis). Note that Full database is
when all the sequences are included in the reference database. In an ideal world, TDD should be 0.
However, data shows that TDD is often above this desired level: it is low when a single species is
missing, and high when higher taxonomic ranks are not represented in the database. This indicates
that metagenomic classification is biased towards assigning reads to already known sequences and
does not consider database incompleteness.
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5.3 The effect of reference database choice on meta-taxonomic identifi-
cation

The genomic content of the reference database is key for metagenomic taxonomic
identification. The main goal is to compare the effect of the quality of the genomic
sequences present in the reference database.

In order to study the behaviour of meta-taxonomic classification depending on the
genetic content only, the MGC data, generated in chapter 3 section 3.5.1 on page
44, was analysed with Kraken2 and several subsets of the Silva database (described
in chapter 1 section 1.6.3) mapped to NCBI taxonomy was used as reference: NR99,
NR99Trunc, Ref, RefTrunc, Parc, ParcTrunc, ParcClean and ParcTruncClean (see
chapter 2 section 2.2.2).
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Figure 5.4: NCBI taxonomy content of the Silva SSU database, version 138.1. Number
of sequences with each label. Dashed lines are labels at rank species, while solid lines are at
superkingdom level (except for total, which are the total number of sequences). The vast majority
of sequences are Bacterial, followed by Eukaryotes. There is a high number of uncultured sequences.
Despite being a 16/18S rRNA database, there are between 2 and 51 sequences with viral lineages
once mapped to NCBI taxonomy.

Understanding the content of the reference database and the data will help to
interpret the results. As shown in figure 5.4, most of the sequences in the databases
are bacterial. The taxonomic content of the truncated databases (noted as "Trunc")
is exactly the same as their non-truncated counterparts. A high proportion of ge-
netic sequences are labelled as environmental or uncultured, with poorly supported
lineages. The number of sequences annotated for new species candidates (’sp.’) is
similar to the number of Eukaryotes present. Surprisingly, there are a few sequences
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classified as viral and viruses, even though these should not be present as they do not
have the 16/18S rRNA gene. It was decided to include them anyway. This enabled
the measurement of the effect of these types of sequences on the classification of
metagenomic reads.

The number of sequences with annotated taxa at each taxonomic rank is shown
in figure 5.5 as well as the number of unique taxon nodes. The Parc database has a
much higher number of sequences annotated only at species and superkingdom ranks
compared to the rest of subsets.

sp
ec

ie
s

ge
nu

s

fa
m

ily

or
de

r

cla
ss

ph
yl

um

su
pe

rk
in

gd
om

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f s
eq

ue
nc

es

1e7

a: Number of sequences annotated per rank.

sp
ec

ie
s

ge
nu

s

fa
m

ily

or
de

r

cla
ss

ph
yl

um

su
pe

rk
in

gd
om

101

102

103

104

105

106

Nu
m

be
r o

f u
ni

qu
e 

ta
xo

ns
database

NR99
Ref
Parc
ParcClean

b: Number of unique taxons per rank (logarithmic
scale).

Figure 5.5: Silva database with NCBI taxonomy content by rank. a Number of sequences
with annotation at each taxonomic rank by subset. The number of sequences annotated at ranks
other than species and phylum is generally lower. Except for ParcClean, which is the same for all
the ranks and Parc which contains disproportionally higher number of sequences with annotations
at only species and superkingdom rank. This indicates that the curation of the taxonomic lineage
is poor for a significant proportion of sequences. b shows the decreasing number of unique taxa per
rank.

The vast majority of MGC simulated data have sequences representing the organ-
isms in all the databases, as observed in figure 5.6. Twenty taxa are found in Ref and
Parc only. One hundred and thirty-six organisms do not have any representative in
the ParcClean database, and 237 are missing from NR99.
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Figure 5.6: Number of taxa in common in the databases. Number of original taxons from the
simulated data present in the different databases. Most of the taxa are shared across databases.

5.3.1 Mismatching taxonomic annotations

An unexpected discovery was made while mapping and comparing the Silva database
taxonomy, which only contain 16S and 18S rRNA marker sequences, against the NCBI
taxonomy database. Fifty-one sequences with virus species names and 29 as viral
meta-genome were detected in the Silva database SSU Parc version 138.1 belonging
to seven different lineages, of which 56 corresponding NCBI taxonomies were labelled
as “viruses” superkindgom (see table B.1 in the appendix). Viruses do not contain 16S
nor 18S rRNA genes. This leads to the worrying and challenging issue of detecting
other types of inconsistent or wrong labelling for cases where it is not so obvious.

According to the Silva team1, the species name of a sequence should be discarded
when it does not match the rest of the taxonomic path. However, the sequences
themselves should be kept as they provide unique genotypes [Robeson et al., 2021].
INSDC sequences and their taxonomic annotations are owned by the submitter, and
include old legacy sequences, while the Silva database re-assigns taxonomic lineages
according to their own system after selecting the 16/18S rRNA by machine learning
approaches. Therefore, it is more likely that the latter annotation is correct, despite
the species name being wrong.

The three examples illustrated in table 5.1 were investigated in greater detail.
The first sequence (AF065755.1.676) was blasted using the web NCBI blast service
with default parameters 2. The vast majority of top results show similarities with
the bacterial 16SrRNA partial sequence of Ochrobactrum species (shown in the ta-
ble B.2 in the appendix), in agreement with the Silva taxonomic annotation. The
sequence originated from a human clinical study [Martin et al., 1994] in 1994 where
Cytomegalovirus was detected and confirmed. The symptoms described in the original
paper are similar to the ones caused by organisms in the Ochrobactrum clade [Brady

1I communicated the mismatches found via email. In here there is a summary of their response.
2https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch

&LINK_LOC=blasthome on 05/03/2021
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Table 5.1: Examples of inconsistent Silva-NCBI taxonomic annotation in three Silva
database genetic sequences. Silva database assigns the original species and subspecies names
submitted by the author. This can lead to inaccurate taxonomic lineages (in red). This table only
presents 3 examples. Their corresponding taxonomic lineage in the NCBI taxonomy database sug-
gests that in some cases the annotation at the species level is in fact inaccurate (in green), or not
so clear.

Silva acces-
sion

Silva taxonomy NCBI taxonomy

AF065755
.1.676

Bacteria; Proteobacteria; Alphapro-
teobacteria; Rhizobiales; Rhizobi-
aceae; Ochrobactrum; Stealth virus 1

Viruses; Duplodnaviria; Heunggongvi-
rae; Peploviricota; Herviviricetes; Her-
pesvirales; Herpesviridae; Betaher-
pesvirinae; Cytomegalovirus

AE006468
.4394688
.4396232

Bacteria; Proteobacteria; Gammapro-
teobacteria; Enterobacterales;
Enterobacteriaceae; Salmonella;
Salmonella virus Fels2

cellular organisms; Bacteria; Pro-
teobacteria; Gammaproteobacteria;
Enterobacterales; Enterobacteriaceae;
Salmonella; Salmonella enterica;
Salmonella enterica subsp. enterica;
Salmonella enterica subsp. enterica
serovar Typhimurium

BCRZ01001786
.50.1614

Eukaryota; Archaeplastida; Chloro-
plastida; Chlorophyta; Mamiel-
lophyceae; Mamiellales; Micromonas;
uncultured marine virus

Viruses; environmental samples; un-
cultured marine virus

and Leber, 2017] which are rare opportunistic human pathogens. It is possible that
the sequence is the product of contamination during the DNA sequencing process.

For the second example, AE006468, 2 versions of the entry are found in the ENA
archive. The original 2001 publication [Michael McClelland, 2001] sequenced the
full genome of Salmonella enterica subsp. enterica serovar Typhimurium str. LT2.
The genomic sequence contains presumably integrated viruses. One possibility is a
potential issue with Silva’s mapping to NCBI taxonomy ID for these type of cases.

The third sequence, BCRZ01001786, is searched by similarity (blastn), 122 hits
are found, all against Eukaryota. The submitter study’s [Nishimura et al., 2017]
objective was to discover and characterise viruses in marine Eukaryotes. It is possible
that the sequence might have been incorrectly mapped to the host 18S rRNA gene.

5.3.2 Quality filtered reference databases performance

The overall best performing databases were the quality filtered sub-databases, as
figure 5.7 shows: databases filtered by well-annotated lineages (ParcClean and Parc-
TruncClean) followed by the NR99 and NR99Trunc, which are the strictest quality
filtered set of Silva.

Next, individual ranks within each database were evaluated. To do this, the
metrics of precision, recall, f1 score, false positive rate, accuracy and specificity were
calculated for each taxonomic rank. As shown in figure 5.7 classification is better
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Figure 5.7: Metrics by database. Average of each metric with the corresponding confidence
interval at 95%. The full databases and the corresponding truncated databases are overlapping. The
classification varies significantly across the databases. The overall best performing are the cleaned
versions of Parc and Parc Trunc. This might be due to the selection of better annotated lineages
and removal of noisy sequences from the databases.

at higher ranks (e.g. Phylum) compared to lower ones (e.g. species). The recall
and the f1 score are much higher for the ParcClean and ParcTruncClean databases
compared to the others. However, precision for these two databases is a bit lower
at the phylum level. The truncated databases and the corresponding non-truncated
ones show identical performance (overlapping lines in figure 5.7).

In order to determine how close the classification between the reference databases
and their truncated subsets were, the Spearman correlation of the scaled TND was
calculated (see appendix figure B.7). A perfect correlation can be observed between
the full database and their truncated counterparts (referred as "Trunc"). For this
reason, subsequent TND plots are showing only the four non-truncated databases. It
is also observed that ParcClean and ParcTruncClean are the ones that differ the most
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Figure 5.8: Kernel density estimation of the TND per database. The distribution of TND
by database is quite similar in NR99, Ref and Parc, showing two relative maximum peaks, one
at 0 and another one around 9. ParcClean present the best results with higher density of values
closer to 0. This demonstrates that taxonomic annotation has a huge impact on metagenomic read
identification.

from the rest of the databases, as previously seen.
To better understand differences of the resulting TND amongst databases, the

density of TND was estimated. The Kernel Density Estimation (KDE) plot 5.8 shows
that the TND distribution is almost identical for the databases NR99, Ref and Parc.
The cleaned versions of the Parc database show a distinct profile with much lower
TNDs, but there are still short simulated sequences classified far from their origin.
This highlights the importance of highly curated taxonomic lineages associated to the
genomic data.

5.3.3 Impact of short reads mutations and sequencing errors

The MGC data is formed of eight sets of different levels of mutations ranging from
none to 3% or random mutations with or without sequencing errors. The exploration
of the behaviour of these sets with the different databases will help to understand
what happens when short reads fall within mutated regions, and also the effect of
sequencing errors.

The sets without any mutations (0% mutations no sequencing errors) were not
correctly identified in all cases, although presented better performance scores (see
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Figure 5.9: TND by database and proportion of mutations of controls depending on the
presence of the original organism. Average TND with 95% confidence intervals separated by
database, controls and proportion of mutations in the dataset. The TND increases when the original
species genome is not present in the database. The ParcClean databaseTND is overall lower and
rises with the proportion of mutations from the simulated data. However, this growing tendency is
less clear for the rest of the databases.

appendix B figure B.8). Generally, f1 score values decrease with the accumulated
proportion of mutations in the MGC data. However, the difference of f1 score val-
ues among the mutated datasets was lower for the Parc database compared to Ref
and NR99 (as well as their truncated counterparts), and it is almost overlapping for
ParcClean.

It was found that TND shows different tendencies with the number of accumulated
mutations and errors depending on the type of control. The Spearman correlation for
the positive controls ranges from -0.089 to 0.078 (see figure B.6 in the appendix).
When the data were further separated by type of control and whether short reads
have any representative in the reference database, as shown in figure 5.9, those whose
representative is missing present higher overall values of TND, although without any
correlation with the proportion of accumulated mutations and errors. The ParcClean
database presents a lower TND compared to the rest of the databases studied here.

The negative controls without any mutations in the simulated data tended to
classify around 2 nodes away from their original taxonomic IDs in the Parc database,
and the distance decreased with a higher proportion of mutations. Whereas for the
rest of the databases in the negative controls, TND was almost flat at 0. This
suggests that more uncertainty may be introduced in the largest Parc database for
classification purposes. Parc database is the largest studied here, with about 6 million
sequences, and it is the Silva set with more relaxed quality controls.
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5.3.4 The taxonomic classification success varies among samples

Each sample has a different taxonomic composition. Figure 5.10 shows that the
classification success varies greatly per sample between the different databases. For
example, while the f1 score of the ParcClean and ParcTruncClean databases for gut
and plant is very high compared to the others, this is not so clear for the ice samples.
The number of representatives of each taxon might have an influence and are this
analysis is presented in the next section.

Figure 5.10: F1 score by sample and database. The f1 score is highly variable depending
on the sample and the database. There are no differences between databases and their truncated
counterpart (denoted as "Trunc"). The databases with lineages that are annoated at least at the
7 main taxonomic ranks ("cleaned") performed better overall, but not consistently. This is a clear
example of the importance to evaluate the fitness of specific pipelines given the data object to study.
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Figure 5.11: TND variation by the number of sequences representing each species. The
number of sequences representing organisms in the different reference databases are grouped. Those
species with "0" sequences included the negative controls. Some taxa simulated int he MGC is
missing from the databases NR99 and ParcClean. The TND fluctuates, and overall ParcClean
present lower values.

5.3.5 Number of sequence representatives per taxon

Each species may have one or more sequences present in the database, while some
are clearly overrepresented like human pathogens, others might be entirely missing.
The average TND for each organism is shown in figure 5.11 with organisms grouped
by the number of sequences representing them in the database The data fluctuates
and there is no clear tendency. The data analysed with the ParcClean database
showed a different pattern from the rest. For the databases of Ref and Parc there is a
maximum average TND for those species contains between 11 and 25 sequences. This
result might mean that perhaps having one single representative is already enough for
identification and adding more sequences does not necessarily help.
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Figure 5.12: Spearman correlation of the TND with the presence or absence of the original
taxon. N real taxid is when the original organisms are present, "N" means the number of sequences
present at the different ranks. When the original organism is present it improves classification (neg-
ative correlation) and when it not present TND increases with the number of sequences. However,
ParcClean database even when the original organism is present, the correlation is positive for the
number of sequences at family and phylum levels.

The effect of the number of sequences at different ranks is studied depending
on whether the original organism have any sequence present on the database. The
Spearman correlation is calculated. The correlation shown in 5.12 is positive if TND
increases with a higher number of sequences, and is negative if TND decreases with
a higher number of sequences. A greater number of sequences representing species
or subspecies improves classification (negative correlation) when the organisms are
present in the database. Having more sequences at the genus level and above does
not have any impact for taxonomic classification when the original organism is present
except for ParcClean which presents positive correlation values for the number of
sequences at the family and phylum level. The NR99 database without representatives
presented the highest positive correlation values for species and family.

TND values fluctuate with the number of sequences at each phyla for all databases.
Databases NR99, Ref and Parc TND tended to have lower values for those phyla with
fewer representatives. Interestingly, it was observed that those phyla without any
sequence representatives at this rank were labelled in taxonomic nodes much further
away from their origin (right side of subfigure 5.13b). This observation led towards
studying the classification for missing organisms from the database depending on how
far the closest relative is, in detail in the next section 5.3.6.
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a: Number of sequences representing each phylum (logarithmic scale).
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b: Average TND by phylum.

Figure 5.13: TND by the number of sequence in each database per phylum. Phyla are
order by desdendent number of reprsentatives at the ParcClean database. a shows the number of
sequences per phyla and b shows the average TND. The TND fluctuates for all databases, but for
NR99, Ref and Parc TND is generally smaller for those organisms with fewer sequences representing
thier phylum. Those phyla without any sequences representing them tend to have much higher TND
values, which is only observed for the ParcClean database.
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5.3.6 Identification effect depending on the lowest common ancestor
available

As already seen, when the original organisms have no sequence present in the reference
database, classification tends to occur further away than might be expected (see
section 5.2). Two databases have missing taxa from the original MGC simulated
mock community: NR99 and ParcClean (see figure 5.6). This section aimed to
investigate the effect on classification depending on how far the closest taxon is from
the leaf.
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Figure 5.14: Relationship between the TND and closest taxon of the positive controls.
The thick lines show the mean TND seen for each closest taxon. The contours represent the full
distribution of observed values. In all cases the average TND is higher than might be expected
(closest taxon). When the closest taxon is found 6 nodes away, the average TND is abut 3.5 times
higher than expected.

The closest taxon is the node or rank3 in a lineage which contain sequences
representing it (similar concept to the expected TND introduced in section 5.2 and
shown in figure 5.2). Imagine that the species and genus levels of a lineage do not
have representatives, but the family does, then the family rank is the closest taxon.
And it can be numerically expressed by counting the number of nodes between the

3“rank” and “node” are used as synonyms in this context.
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original organism and the closest taxonomic rank.
The taxonomic identification of those organisms which are not present in the

database tends to occur on average much further away than expected. For example,
as figure 5.14 shows, the NR99 database whose closest taxon is 2 nodes away, the
average TND is around 10, about 5 times higher than expected. The results also show
that classification occurs much further away than expected when higher taxonomic
ranks are completely missing, highlighting the importance of the need to use reference
databases that are as complete as possible. The Spearman correlation is 0.31 for both
database (see figure B.6 in appendix).

5.3.7 Number of nodes in the taxonomic lineages

Taxonomic lineages can have a highly variable number of nodes, referred to here
as lineage length. Therefore, this might be a potential bias factor for classification
for methods that are based on the lowest common ancestor, as Kraken is. Figure
B.9 shows the number of sequences for each lineage length by database. ParcClean
subset contains lineages from 8 taxa upwards, whereas for the others they start at 5
taxa. The longest lineages belong to Eukaryotes, whereas the shortest are less studied
species, which include uncultured bacteria and environmental samples.
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Figure 5.15: TND by lineage length. TND increases for Parc, Ref and NR99 for lineages with
up to 12 nodes. The ParcClean has a much higherTND for those lineages which have between 5-8
nodes as they are missing from the reference database. For longer lineages from 14 nodes upwards,
the trends vary greatly in all databases and no obvious patterns can be observed.

For the ParcClean database, lineages of length 5 to 8 have higher TND values
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Figure 5.16: Number of sequences at genus level of taxonomic lineages with 8 or fewer
ranks. From the lineages with up to 8 nodes, only 1 genus (Methylosinus) is present in the ParcClean
database. Genus without assigned name (labelled here as “Unknown”) are found in a large number
of sequences (Parc, Ref, NR99).

compared to the other databases, as can be observed in figure 5.15. This is because
these lineages do not have the original sequence present, except for the Methylosinus
genus (see figure 5.16).

For those lineages of length 9 to 12, which contain a relatively large number of
sequences (see figure B.9), the TND has an increasing tendency for NR99, Ref and
Parc databases while ParcClean, is lower than the others but fluctuates as figure 5.15
shows. For longer lineages that have fewer sequences the average value of TND varies
but is more similar across all databases.

Next, the relation between the number of nodes in the taxonomic lineages, the
closest taxon and the sequencing modality (single or paired end) are modelled to find
trends for the TND values.

Lineages of the positive controls were classified into three groups: length 5-11,
13-19 and >20. A linear regression model was fitted, separating the data by database
and sequencing modality (figure 5.17).

For the two shorter groups, TND has an increasing tendency depending on how far
away the closest ancestor is (the closest taxon) for ParcClean (both modes) and NR99
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Figure 5.17: Linear regression of the closest taxon by lineage length and mode. Shorter
lineages are presented in blue and orange. When lineages with 7 nodes or fewer are removed
(ParcClean), the linear regression becomes flatter for the shorter taxonomies (blue) for both single
and paired end data. Interestingly, lineages with 20 or more nodes have a negative correlation
(although with high confidence intervals) for the paired data with NR99 database, meaning thatTND
decreases with higher number of nodes per lineage.

paired-end. Interestingly, our data reveals that lineages with 20 or more ranks can
be beneficial (decreased TND) for those organisms with far away common ancestors
present in the ParcClean database paired-end data.

The results show that the removal of sequences with annotated lineages with less
than 7 taxa improves classification for single data (top right plot on figure 5.17).
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5.3.8 Effect of sequence length on taxonomic classification accuracy

For the simulated positive controls, the Spearman correlation of TND values associ-
ated with sequence length per database is almost 0, as the appendix figure B.6 shows.
However, when the original taxon sequence is missing from the database, longer se-
quences tend to have a lower TND for the ParcClean database, with a Spearman
correlation of -0.11, and for NR99, with a Spearman correlation of -0.23, as figure
5.18 shows.
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Figure 5.18: Spearman correlation by presence of the original taxon. The main factors that
show negative correlation between TND and the databases, therefore overall better identification,
are the number of sequences representing genus and phylum for NR99 when the original taxon is not
present, and the number of family and phylum sequences as well as longer lineages for ParcClean
when the taxon is missing from the database. Overall, longer lineages show a positive correlation
with TND values, except for the already mentioned case of ParcClean.

Overall, the main factors that correlate with an increase in TND (see positive
correlation values in heatmap B.6) are longer taxonomic lineages (except for Parc-
Clean database) and how far away the common ancestor (the closest taxon) is in the
reference. And the most significant aid to labelling closer to reality is the number of
sequences representing the subspecies or species in the database being used (N real
taxID and N species in figure B.6).

It was observed that due to the nature of the simulated MGC data, the effect
of sequence length on taxonomic identification can be classified into two categories:
single end (≤250 bp) and paired end (>250 bp). Figure 5.19 shows lower TND values
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for single end than for paired-end sequence data, but with paired-end performance
decreasing with increasing length.

The mode of analysis is studied in more detail in the next section, where correlation
of several of the factors presented so far are jointly investigated.
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Figure 5.19: TND by mode and length. The single end data belongs to 2 sets: soil and fish,
and the paired end data contains the rest of the dataset described in table 2.2. The TND decreases
more for the paired end data compared to singe end. However, the paired end data show much
higher TND values and ParcClean clearly tends to assign taxa closer to the original species compared
to the rest of the database. For the single end data, there is no clear pattern of a combination of
read length-reference database that performs better that others.
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5.3.9 Taxonmic classification difference with single and paired-end se-
quence data

As already observed in this chapter, classification of single and paired-end sequences
behave differently. Figure 5.20 shows the density of the TND data for each sequence
type and database. The single end data have lower average TND values for all
databases except for ParcClean.
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Figure 5.20: TND distribution single vs paired end by database. The TND is a bit lower
for the singe end mode in all databases except ParcClean. This database also present overall lower
TND.

This effect between the singe and paired-end was explored further. All the MGC
data was split by mode (single or paired-end) in combination with multiple other
factors previously described in this chapter. The correlation between TND values
by database-type of data and multiple factors, including read length and number of
representatives, was calculated (see appendix figure B.10). The main factors of the
positive control data, whose taxon is present in the reference database, with negative
correlation are the number of sequences per subspecies, species, genus, and longer
lineages for single end data. Factors that increase TND are the number of sequences
per phylum for the single-end and lineage length for the paired-end data.

There is a distinction for those reads which have sequences representing their
taxon in the database compared to when it is missing. In the first case, some factors
show opposite correlation between single and paired-end data, e.g. the number of
genus representatives or the length of the lineage, others both type of data present
a positive correlation, e.g. number of sequences representing a family. In the second
case, TND differences between the type of data are less obvious.

Only two of the samples from the MGC generated data were single end reads
(fish and soil) and represent distinct environments from the rest. From the total
simulated data, forty-eight taxa are common for both, single and paired end data, as
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a: Taxa by mode b: Common taxa by database

Figure 5.21: Venn diagram of the common taxonomic IDs between single/paired end data.
The simulated MGC data contain 48 common taxonomic IDs (a) between single (fish, soil) and
paired end. From the taxa in common in both modes, 34 are found in all databases (b).

figure 5.21 shows, with 3,499,240 simulated reads. However, this is a small subset
of data belonging to different genomic regions and might still include biases. The
Spearman correlation between the same previous studied factors and TND values for
the different types of data was calculated and shown in figure 5.22. Most of the
previous tendencies continue to be observed, for example single end data for number
of species present in the database still is negative correlation, with exceptions e.g.
the length of the lineage for both types, single and paired, show a positive trend
(excluding ParcClean).
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a: Common mode data of positive controls with representatives
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Figure 5.22: Spearman correlation of factors influencing taxonomic classification by mode
and representatives. Spearman correlation of the TND of the positive controls where the original
taxon is present (a) or not (b) in each database. *Common refers to those taxa in common between
paired and single end mode. N is the number of sequences per rank (species, genus, family, phylum)
present in a given database. Length lineage is the number of taxa described in the NCBI database
on 18 November 2020. The data shows almost no effect on TND with accumulated mutations.
When representatives are present, ParcClean paired end mode show positive correlation except
for lineage length. Except for ParcClean, the lineage length have some of the strongest positive
correlations jointly with the number of sequences representing genus, family and phylum for the
paired end mode. The ParcClean database show different tendencies compare to the rest, indicating
the enormous effect of curating annotations of the genomic data used as reference. Also, the effect
of some factors can be opposite in terms of taxonomic identification of short reads depending on
whether the organism has any representative in the reference database.
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5.4 The effect of taxonomic tree selection on classification

Here, the impact of the taxonomic annotation was studied by comparing the NCBI
and Silva taxonomy with the same exact genomic content, the Silva NR99. As
mentioned earlier, Silva database do not curate taxonomic lineages below genus rank.
And therefore Kraken2, when building this reference database with default settings,
it truncates any annotation below the genus. Therefore, the NCBI taxonomy was
adjusted to the same ranks level to make them comparable. The maximum TND for
the Silva taxonomic database is 30 and for NCBI is 52. The TND is normalised by
the maximum-minimum method, where TND values were transformed to a decimal
between 0 and 1, for each taxonomic database set.

The distribution of the normalised TND of the NR99 database with Silva versus
NCBI taxonomy, figure 5.23, shows the massive improvement even with the same
genomic content in the database.
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Figure 5.23: NCBI versus Silva taxonomy distance distribution. The data were analysed
with Kraken2 and the same genotypic content, but different taxonomic annotations: NR99 used
the NCBI taxonomy (truncated to genus) and NR99Silva used the Silva taxonomy. The normalised
TND distribution show that most of the sequences have been classified correctly at genus level for
the Silva taxonomy. The NCBI taxonomy performs poorly compared to Silva. This highlights the
dependency on the curation of the taxonomic annotations (with the same genetic sequences).

5.5 Discussion

This chapter studied the effect of taxonomic identification depending on the data and
metadata in the reference database.

Although the quality of the genomic sequences in the reference databases show
almost negligible impact for classification, the larger reference databases Parc and
ParcTrunc, which contain around 6 million sequences (compared to 0.8 to 2 million in
the others), have the poorest accuracy metric values. This is in contrast with previous
findings [Méric et al., 2019], where they improved taxonomic classification by adding
extra sequences in their reference database. Improved taxonomic annotation is crucial
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for successful, accurate meta-taxonomic identification of sequencing data and can
have a huge impact for downstream analysis [Robeson et al., 2021]. And therefore
it is likely that larger databases with highly curated annotations perform better. For
instance, taxonomic identification success improves when the Silva NR99 database is
used with their own annotated taxonomy rather than with NCBI taxonomy database.

Databases are biased towards human-related microorganisms [Pollock et al., 2018],
while others have not yet been sequenced or included in reference databases. Some-
times metagenomics projects can encounter organisms not present in the database.
The factors that influence classification are distinct for these cases compared to when
the organism has a representative, and also vary from database to database. In
general, taxonomic identification occurs much further away than expected.

Other factors influencing the classification are the number of genomic sequences
representing the organisms present in the sample: when there are no sequences rep-
resenting a phylum rank it has a devastating effect, and too many can be equally
confusing for the algorithm. However, our data shows negative correlation between
the number of species and subspecies TND values.

The MGC was generated with a range of previously known samples to obtain
a wide range of communities and obtain an idea of factors influencing taxonomic
identification for a wide range of taxa. Single and paired end data are not equally
represented, therefore the differences found between single and paired-end data require
of further investigation.

In summary, after studying several factors that might influence the taxonomic iden-
tification of metagenomic reads, results show consistency in the fact the taxonomic
annotation and its curation is vital to improve metagenomic read identification. The
results confirm that Kraken2 is method resilient to mutations and sequencing errors.
Also, having larger number of strains per species in the reference makes the identifi-
cation more reliable. For the NCBI taxonomy, those lineages with longer number of
nodes the taxonomic identification is less accurate.
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Chapter 6

Discussion

Metagenomics can be applied to a wide range of fields. Each environment has a
specific fragile microbial community equilibrium and can rapidly change. There are
a number of factors influencing which microbes are detected in samples, from the
experimental design to the taxonomic identification process [Knight et al., 2018]. The
objective of this thesis was to establish the source of errors for 16S rRNA metagenomic
taxonomic classification, and propose new suitable metrics and gold standards to allow
comparable analysis, as well as applying this acquired knowledge to a real case study.

6.1 Benchmarking

Along the lines proposed by [Schlaberg et al., 2017] and given the general lack of
validation of bioinformatics methods by individual laboratories, we developed a novel
method that simulates synthetic data based on previously analysed samples. It in-
cludes a new approach for generating synthetic negative controls based on HMM
profiles from known but unidentified sequences. It outputs the same number of reads
as the original sequencing data which it is trying to emulate, with the same length
profile and quality, based on the abundance profile from the method or combination
of methods of choice for metagenomic taxonomic identification. We call this method
My Goldstandard Community (MGC). It generates 3 replicas of 8 sets of simulated
data with different levels of sequencing and mutation errors to support comprehensive
parameters comparison and optimisation. This is a flexible benchmarking approach,
as each laboratory tends to have preferences for certain types of tools, which are of-
ten based on compatibility with the IT system available, and also the nature of each
project will present a different set of challenges. It allows the effect of different types
of errors to be determined, as well as a comparison to any other pipeline parameter.
However, an adequate choice of bag of templates needs to be made. For example, if
the real sample sequenced amplicon data, or targeted certain taxonomic groups, it is
essential to ensure the nature of the templates is of the same type. In other words,
for the 16S rRNA data, any database that contains its genetic sequences would be
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appropriate to use (for instance Silva or Greengenes databases), but it does not make
sense to choose a whole genome sequence database like RefSeq. It is essential that
quantitative methods are used to evaluate the accuracy of metataxonomic sequence
identification approaches, in much the same way that approaches are validated in
wet-lab experimental research.

For benchmarking, it is essential to use appropriate and meaningful metrics [Capella-
Gutierrez et al., 2017]. This thesis proposes a new set of meta-genetic specific met-
rics to complement the commonly used and generic precision and recall measures.
Metagenomic reads can be classified at different nodes of the taxonomic tree of life,
other than species or subspecies. These classifications are correct, but lack speci-
ficity. They involve either counting the number of nodes (TND, TNDSR, PND) or
branch length (PBD) between the original microorganism and the assigned node by
the classifier. A perfect identification in all cases has a value of 0 for all of them,
and increases as the classification occurs in further away nodes in the taxonomic or
phylogenetic tree.

These distance measures provide a better understanding of how specific the tax-
onomic identification has been. I believe they should be applied systematically in
benchmarking studies to complement other metrics to obtain a much more reliable
result.

The taxonomic node measures, presented here, can easily be applied to any tax-
onomic tree. The newly proposed phylogenetic measures should in principle be more
precise compared to taxonomic node distances. Nevertheless, phylogenetic distances
require a phylogenetic tree, which is often challenging to calculate for the highly di-
verse range of organisms commonly found in environmental samples. Additionally, in
traditional metagenomics classification, sequences can be labelled to a node of the
tree, which tend to be labelled with a taxonomic name and a taxonomic rank. Nor-
mally, phylogenetic trees do not have the same labels because classification is carried
out purely based on genomic similarities, whereas taxonomies like NCBI use a com-
bination of methods which include phenotypic observations, phylogentics of specific
clans and manual curation, and it is hard to map the same type of annotations onto
them. The GTDB has one of the most comprehensive phylogenetic trees and con-
tains some phenotypical annotations. However, so far it is only available for bacteria
and archaea, presented in two separate trees. But for metagenomics classification, it
needs to go a step further and integrate more organisms. This is because frequently,
the diversity in many environmental samples also includes eukaryotes, and this would
avoid biased results from the metagenomic taxonomic classifier.
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6.2 Source of errors for taxonomic identification

Several potential factors were investigated to understand which ones affected the
process of identifying metagenomic reads. The number of representative sequences in
the reference database at the genus, family, and phylum levels were shown to have very
little effect on taxonomic classification. In contradiction to previously published work
[Knight et al., 2018], the total number of errors, including mutations and sequencing
errors, did not affect the classification performance of the k-mer based method used
in this work, up to the maximum 3% of random noise and sequencing error tested.
Kraken2 is a robust approach based on a sliding k-mer window, which works well
even when sequences contain errors. Factors found that make classification worse
were: incompleteness of the reference database or in other words, missing taxa, and
long taxonomic lineages, which could be avoided by using only the 7 main taxonomic
ranks, except when sequences with less accurate lineage annotation are removed from
the reference database. This result is not surprising as Kraken uses a LCA approach.
Finally, factors that appeared beneficial, reducing observed TND, were the number of
species or subspecies which have several sequences present in the reference database,
and high quality and curated taxonomic annotations associated with the genomic
sequences.

Additionally, a group of differences arose between factors depending on whether
single or paired-end data was employed. However, the experimental data was not
designed to test this hypothesis and therefore these results should be investigated
further before reaching any final conclusions. For example, the length of reads did
not appear to have much effect when looked at globally, but when distinguished by
single or paired-end mode, in both cases longer reads gave better results.

6.2.1 Reference databases

The effect of the reference database is one of the main and most influential factors
for the taxonomic identification of metagenomic reads. Both the genomic quality and
the taxonomic annotation associated are key.

The results presented in chapter 5, demonstrate how crucial highly curated tax-
onomic annotations are. Improving them or selecting only those sequences whose
taxonomic and genomic content is of the highest quality possible ensures better
metagenomic identification. Fortunately, none of the simulated short sequences have
been labelled to the detected inconsistent viral lineages (no viruses were included in
the MGC data as they do not have the 16S rRNA gene).

If INSDC reference databases, commonly used for metagenomic purposes, included
quality annotations associated with the genetic regions then it would be possible to
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select sequences according to these criteria, and as a consequence metagenomics
identification could be improved.

6.3 Genetic regions and k-mer frequencies

Different parts of the genome and genes evolve at different speeds, leaving some
regions more evolutionary conserved than others, and in principle the hypervariable
regions should have much more discriminatory power for species [Chakravorty et al.,
2007]. However, our results do not seem to show this effect when studying simulated
reads that map to these experimentally defined regions. Instead, our results indicate
that conserved regions have as important a role as variable regions when it comes
to taxonomic identification in our experimental conditions. One possible explanation
could be due to the ongoing growth of the reference database, as new sequences
might change the previously defined evolutionary regions, or it could be because the
taxonomic classifier used is based on exact k-mer matching, and some k-mers might
be shared between evolutionary regions, and that therefore this method would be
insensitive to conserved and variable regions.

To test the first hypothesis, a set of new potential conserved and variable regions
were defined for the Silva database with machine learning approaches, and the po-
tentially conserved regions were masked from the reference database. The results
showed that full length sequences are required for optimal identification.

The methodologies that I have developed can be used in research areas beyond
those described here. For example, the method which first maps short reads against
the 16S rRNA gene to select the ones of interest (chapter 4 section 4.2.1), has already
been used in this thesis as a quality control to ensure the sequencing data in chapter
A was targeted to the desired regions and removed any potential contaminants. The
second method (chapter 4 section 4.2.2), has two parts, the first one consists of
determining regions that evolve at different rates, and can be applied to any other
gene or genetic region of interest for the same purpose.

To test the second hypothesis, a novel methodology for classifying metagenomic
reads was developed. Each reference database has a distinct k-mer profile abundance.
K-mers can be repeated within each sequence and across species, and a few can be
unique to a certain species or taxonomic clan. Therefore, I developed a new tool
called GeFSATI, which captures these properties for taxonomic classification. The
idea was to apply the linguistic method of TF-IDF, which is capable of weighting k-
mers according to their frequencies in the database, and couple it with a multinomial
naive Bayes classifier. However, this approach presented challenges. First it needed
to be adapted from linguistics terms to be useful for our purpose, and consequently,
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words were defined as fragments of size k or k-mers. Longer k-mers longer sizes of
k are more specific for taxonomic identification. The second challenge was that the
matrices required by the TF-IDF calculated for large k values can be intractable for
many machines. A choice of k = 9 was decided for the following reasons: (i) it
generates manageable matrices for our system given the choice of database, and (ii)
some sequencing platforms (like Oxford Nanopore) can have about 10% of sequencing
errors scattered along the read, therefore we hope that k-mers shorter than 10 will
avoid a concentration of them in each fragment, whereas other technologies have
much fewer error rates. Nevertheless, this was not sufficient to reduce dimensionality.
The reference database had to be cleaned for high quality annotated sequences and
a two-step approach was adopted, classifying first at a phylum level and secondly at
the genus level. The multinomial naive Bayes is one of the most basic classifiers, but
it has been described as working well with TF-IDF [Garbarine et al., 2011].

This newly created method for taxonomic classification proves that it is possible
to adapt and apply linguistic methods for metagenomics purposes and that in terms of
precision and recall, it performs in line with the currently available methods [Sczyrba
et al., 2017]. GeFSATI however, requires optimisation for large-scale use, especially in
terms of speed and memory efficiency. Other improvements would require to improve
accuracy.

Source code for the relevant parts will be made available jointly with publications.

6.4 Cattle respiratory tract microbiome

A real case scenario of a metagenomic analysis was performed to characterise the mi-
crobiota present in different parts of the cattle respiratory tract. This was a prospec-
tive study to determine best sampling method as well as microbiome composition of
healthy animals. To reduce costs, a 16S rRNA or metagenetic study was performed,
which allow multiplexing.

In order to determine potential pathogens for BRD, first the microbiota of healthy
animals needs to be determined as a source of comparison. However, while designing
experiments two essential questions arose: one was about which DNA extraction
method was best for this type of experiment, and the other one was to identify the
best sampling method from three possible options (tissue, swab, and BAL). Therefore,
two sets of experiments were necessary. While the first one was designed to find an
extraction kit that works well for the three sampling methods to be tested, the purpose
of the second experiment was to determine and compare the ‘normal’ microbiome of
the bovine respiratory tract while comparing the sampling methods.

In the first experiment, some samples contained a high load of host DNA. The
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Powersoil DNA kit was determined to work well for the different sampling methods,
and at the same time it highlighted potentially similar results for different sampling
methods, with major microbiota discrepancies due to either technical or batch or
source related causes.

To determine the Differential Abundance (DA) taxa, different methods were ex-
plored. The assumptions by R packages of edgeR and DESeq (both designed for
RNAseq data) are violated because the data is sparse, and therefore they were not
tested for our data. Instead, it was decided to test using the Lasso method (general
purpose) and the LEfSe approach (to determine metagenomic biomarkers). Compo-
sitional data analysis are the newly developing methods which are meant to be much
more appropriate [Nearing et al., 2022].

The second experiment, with the double goal of establishing the healthy calf
microbiome for lung lobes and nose and comparing sampling methods, revealed that
tissue samples contained more diversity compared to the rest, and that for healthy
animals the microbiome of each of the lung lobules was similar. Also, the nasal
sample microbial community was found to be different from the lungs and therefore
is perhaps not a good proxy for investigating changes in the lung due to disease.

At the phylum level it was observed that the population comprised two main dom-
inant phyla which were either Tenericutes or Actinobacteria. A potential correlation
between their relative abundances was also observed. Actinobacteria include My-
cobacterium, commonly associated with respiratory infections. Also, in some samples
the phylum of Proteobacteria was found to be dominant, instead of the two previous
ones. This phylum contains Pasteurellaceae which is an opportunistic pathogen com-
monly associated with BRD. Firmicutes, which were the main phyla for a few of the
samples, are commonly found in water, soil and gut, hence this might be the entry
point to the lung.

6.5 Future work

More features could be integrated to MGC, for example instead of inserting random
noise, the mutations introduced could be introduced by evolutionary mutation rates
models.

To encourage the widespread adoption of benchmarking, it would be useful to
make the MGC software more easily available (will be made public following relevant
publications), through bioinformatics frameworks such as Snakemake or a Galaxy
workflow, or more general installation methods such as a Docker container or a Debian
package. Additional user-targeted documentation would also be helpful.

It would be useful to design experiments to study further the effect of the read
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length. Our results suggest that even though Illumina sequencing data is classified
better with longer reads. My experimental design was for general benchmarking, and
further investigation of this specific point would be interesting.

Further investigations are required to understand if the variable regions of the
16S rRNA gene have more discriminative power for metagenomics identification for
similarity based methods than conserved regions. For example, regions V1-V2 are
described as performing poorly for the phylum of Proteobacteria, whereas regions V3-
V5 performance is good for the genus Klebsiella [Johnson et al., 2019]. This seems
likely, since by definition they should be more sensitive to evolution than composition
based classification. A good starting point, could be to reuse the same approaches
as explained in chapter 4.

To improve GeFSATI, new features should be incorporated. For example, future
releases should include compatibility with more sequencing platforms, including Illu-
mina paired end mode. It needs to be explored if smaller k-mers provide at least
similar results if not better, because this would help to reduce the RAM require-
ments. Also, a strategy should be implemented to try to improve accuracy results,
especially at genus level. For example, a Bernoulli classifier could be tested. This
classifier is binary, instead of taking into account weighted k-mers. The main reason
is because, especially for short fragments platforms, the k-mer frequency observed
may be different from the overall original gene, so this could potentially be a reason
for misclassification. Speed also needs to be improved, so faster methods should be
explored.

Once the microbiota of the healthy cattle is studied, and sampling methods tested,
BRD samples should be sequenced and compared to healthy animals. The experimen-
tal design should consist of animals of approximately the same age, and with enough
from each farm, so that statistical tests can be applied in order to identify potential
pathogenic groups.

6.6 Concluding remarks

This work makes a contribution to end the lack of systematic validation of bioinfor-
matics metagenomics pipelines by specific researchers to test the suitability of the
methods with project specific data. MGC combined with the new quantitative mea-
sures, allows better evaluation of pipeline performance, which enables more informed
choices about pipeline elements, leading to better overall results.

The methods developed in this thesis have potential beyond the scope of the
specific applications presented.

GeFSATI not only has a future potential for metagenomic sequence identification,
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but is also a useful reminder that fruitful approaches to genomic data can be adapted
from methods that have shown their value in natural language processing.
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Appendix A

Applications

A.1 Motivation

Bovine Respiratory Disease (BRD) is a multifactorial disease caused by a complex of
viral and bacterial pathogens that act individually or in concert. BRD—associated
viruses, which include bovine herpes virus 1 (BHV-1; causative agent of Infectious
Bovine Rhinotracheitis or IBR), bovine respiratory syncytial virus (BRSV), and bovine
parainfluenza-3 virus (PI3V), are primary pathogens that can also pre-dispose calves
to secondary bacterial infections. BRD-associated bacteria can also act as primary
pathogens without any viral involvement and these include, Pasteurella multocida,
Mannheimia haemolytica, Histophilus somni, and Mycoplasma spp. (especially Mp.
bovis), while Trueperella pyogenes may be found in chronic cases. The susceptibility
of calves to BRD is significantly affected by farm management practices, includ-
ing inadequate colostrum intake, weaning-associated stress, high stocking density,
change of feed, poor nutrition, transportation (‘shipping fever’) and poor ventilation.
Increased susceptibility to BRD can result from BVDV infection-induced immunosup-
pression. However, Scotland has nearly eradicated BVDV and the rest of the UK
(similar to some European countries) has embarked on eradication, so BVD is a less
important contributory factor here

Many studies have been published to characterise the potential microbiota asso-
ciated with BRD through high throughput sequencing. Most of them are on either
samples from swabs or, Bronchoalveolar lavage (BAL) and only a few on tissue. They
are normally focused on bacteria, because they are the principal cause of the pneu-
monia, and, commonly targeted to the 16S rRNA gene [Johnston et al., 2017, Hause
et al., 2015, Davids et al., 2016, Holman et al., 2017, Zeineldin et al., 2017b, Holman
et al., 2015]. It is necessary first to establish what a healthy respiratory microbiome
comprises in terms of a ’normal’ microbe population [McMullen et al., 2020]. How-
ever, these studies lack a comprehensive comparison and evaluation of different DNA
extraction and sampling methodologies, which are the focus of this study.
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A.1.1 Objectives

The main objectives are:

– Determine and establish a robust sampling protocol and DNA extraction method
for the cattle lung.

– Compare sampling methods.
– Characterise the ’normal’ microbiota present in different parts of the upper and

lower respiratory tract of young calves.

The sampling was performed by the Respiratory Group team from the More-
dun Research Institute, including Chris Cousens, Mark Dagleish, Mara Rocchi, David
Longbottom and Alba Crespi. Sample processing and DNA extraction was performed
by Mara Rocchi, Kevin Aitchison and Morag Livingstone. The sequencing was per-
formed at the Liverpool Centre for Genomic Research. The bioinformatic analysis was
performed by Alba Crespi.

A.2 Materials and methods

A.2.1 Samples for evaluating the DNA extraction methods

sampling

Two animal lungs were sampled post-mortem, one from adult cattle with mastitis and
no other clinical signs and another one from a 3 to 6-month-old calf with no clinical
signs. Three sampling techniques were used: swab, BAL and tissue. From the adult
animal, swab and tissue samples were taken and from the young calf, swab and BAL.

Samples from swab, tissue and BAL were collected post-mortem (PM) as follows:
the trachea was clamped first to stop blood or ruminal material to fall back into
the lungs, then the heart and lungs were removed together from the thoracic cavity.
Two bronchioles of the cranial bronchus were dissected. Swab were taken first at the
entry into each separate section of the lung, then tissue samples were taken close
to the entry and then at the distal end of the bronchiole. The bronchiole end was
then clamped above where the tissue sample was taken (to prevent leakage/loss of
BAL fluid) and 60 ml BAL fluid then introduced at the entry, tissue gently massaged,
and then the fluid recovered and transferred to a sterile glass bottle. The samples
collected were kept on ice until they were returned to the laboratory.

DNA extraction and sequencing

The DNA was extracted using the kits QIAamp cador pathogen, Powersoil DNA,
Powerfecal DNA, DNeasy blood and tissue and QIAamp DNA microbiome following
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manufaturer’s instructions. Then the quality of the DNA was checked and quantified
by Nanodrop and Qubit.

The sequencing was performed with the platform llumina MiSeq run v2, paired-end
mode, 2x250 bp sequencing.

Bioinformatics analysis

All the samples were checked for quality, read lengths distribution, and 16S rRNA
targeted region by applying the same selection of reads process as described in chapter
4 section 4.2.1. Samples were quality trimmed with sickle (q = 30) and filtered by
length (<100bp). The taxonomic identification was performed with Kraken 1.1 and
the Parc Silva database v.128.

A.2.2 Samples for the characterisation of respiratory tract microbiome

Sampling and DNA extraction

Four 10-week-old male dairy calf, sourced from 2 different farms, were used for this
experiment. Samples were collected PM. All the different lung lobes were sampled
for BAL, swab and tissue (alveolar and peripheral), as detailed in section A.2.1 and
shown in figure A.1. Swabs used for the nasal swabbing were of the “flocked” type and
were stored in their sleeves after collection. Tissue samples were collected, trimmed
and stored in histology cassettes which were immediately snap frozen in liquid ni-
trogen. Surgical instruments were changed between each sample to avoid sample
cross-contamination. In total, 105 samples were collected for sequencing the 16S
rRNA gene region V4 (PCR amplification for forward primer 5’TGCCAGCMGCCGCG-
GTAA3’ and reverse primer 5’GGACTACHVGGGTWTCTAAT3’). The DNA was ex-
tracted with the Powersoil DNA and sequenced by Illumina paired end sequencing at
the Liverpool Centre for Genomic Research.

Sample were identified as follows: first a number identifying the sample, then the
animal identification consisting of the letter “A” followed by a number, next is the
sampling method (BAL for bronchoalveolar lavage, T for Tissue, S for swab) followed
by a 2-letter code indication the lung lobule (RA right apical or cranial, RM right
middle, RC right caudal, LA left apical or cranial, LC left caudal and AC accessory).
For tissue samples there is an extra letter at the end which is a P for peripheral or B
for bronchiole.

As the previous samples, they were sequenced with the platform llumina MiSeq
run v2, paired-end mode, 2x250 bp sequencing.
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a: Lungs b: Swab sampling

c: Clamping tissue d: Tissue

e: BAL f: BAL collection

Figure A.1: Lung sample collection. After extracting the lungs and heart (a), a swab
sample was collected for each lobule (b). Then a small part of each lobule was clamped
(c) for extracting a tissue sample (d). Finally Liquid was introduced in each lobule (e) and
recovered with the same syringe (f). 116



Bioinformatics

Raw sequencing data received was checked for adaptors. A set of samples were
checked to make sure that they mapped the target region V4 of the 16S region
following the same steps as described in chapter 4 section 4.2.1. Reads were quality
checked and trimmed with sickle[Joshi NA, 2011] (quality threshold 30 and minimum
length of 100 base pairs).

Kraken [Wood and Salzberg, 2014] with Silva SSU Parc database v.132 was used
for taxonomic assignment. Kraken has two modes, one for Illumina paired-end reads,
and the other one for single reads which were used accordingly. The results were
combined in a single file.

A.3 Evaluation of DNA extraction methods

The main goal of this experiment was to test the sampling protocols and DNA extrac-
tion methods to determine which produced the best nucleic acid recovery in terms of
quantity and quality.

Five different extraction protocols were tested, and their main characteristic are
listed in table A.1.

Table A.1: DNA extraction kits tested Main characteristics of the tested kits for DNA
extraction. *NA: Nucleic Acid, **PowerSoil DNA: first follow PowerSoil total RNA isolation
kit with DNA elution accessory kit.

Kit Sample target NA* Carrier bead
beading

column

QIAamp cador
pathogen

blood, serum, plasma,
body fluids, swabs
and washes and tissue

viral RNA
and DNA
and bacterial
DNA

Carrier RNA glass
beads

spin column

PowerSoil
DNA**

Soil RNA, DNA No Bead tube RNA and
DNA capture
columns

QIAamp DNA
microbiome

bacterial microbime
from mixed samples

DNA No bead mill UPC mini
column

PowerFeacal
DNA Isolation

stool and faeces DNA No Dry bead
tube

silica spin col-
umn

DNeasy blood
and tissue

animal blood and tis-
sue, rodent tails, ear
punches, culture cells
fixed cells, bacteria,
insects

DNA optional DNA
and RNA car-
rier for small
samples

No mini spin col-
umn

Samples to be sequenced were selected based on the concentration, quality con-
trols, purity and integrity of the genetic material, and are highlighted in red in the
table A.2. Purity check was performed for traces of ethanol, phenol and protein by
NanoDrop analysis. While the absorbance ratio at 260/280nm indicates purity of
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Table A.2: Test samples DNA extraction summary. Experimental parameters of the different
samples. Highlighed in gray are the sequenced samples. The number inside the parenthesis indicated
the sample sequencing ID. Conc. - Concentration. *Purity I is the ratio of absorbance at 260/280nm,
**Purity II is the ratio of absorbance at 260/230nm, acceptable values are green. *** Host content
is only for the sequenced samples (greyed rows).

Sample Animal Kit Conc.
ng/ul

Purity
I*

Purity
II**

Conc. (b-
actin) CT

number of
reads

Host
content
***

Swab A1 1 QIAamp cador
pathogen

77.6 2.1 1.45 16.42

Swab A2 1 QIAamp cador
pathogen

231.3 2.2 0.84 17.31

swab B
(2)

1 Powersoil DNA 49 1.78 2.07 16.41 2,950,310 0.5%

swab B 2 Powersoil DNA 1.8 1.58 4.09 19.66
Swab A1
+ A2 (1)

2 QIAamp cador
pathogen

117.2 2.02 0.62 13.78 3,234,003 70.0%

swab D 2 QIAamp DNA
microbiome

6.4 2.02 0.32 24.52

BAL A1 2 QIAamp cador
pathogen

88.7 1.89 0.9 16.04

BAL A2 2 QIAamp cador
pathogen

312.4 2.01 1.1 11.01

BAL B
(4)

2 Powersoil DNA 0.7 1.26 0.39 29.97 3,439,655 72.0%

BAL D
(3)

2 DNeasy blood
and tissue +
QIAamp DNA
microbiome

20.7 2.13 0.2 11.91 2,129,391 32.0%

Tissue B
1st (8)

1 Powersoil DNA 1161.6 1.87 2.3 13.26 4,096,153 4.0%

Tissue B
2nd (5)

1 Powersoil DNA 172.2 1.95 2.15 16.18 1,051,518 4.0%

Tissue
Dneasy

1 DNeasy blood
and tissue kit

32.6 1.98 1.61 15.89

DNA and should give a ratio of approx 1.8 for pure DNA (RNA gives a ratio of
2.0). If higher than 1.8 then indicates RNA contamination, the ratio of absorbance
at 260/230nm indicates the presence of any unwanted organic compound such as
phenol and should fall within the range 2-2.2. Higher values indicate contamination.

Representative samples of swabs, tissue and BAL were sequenced by Illumina
paired-end sequencing at Liverpool Centre for Genomic Research. The V4 region of
the 16S rRNA gene was sequenced in eight test samples, which included a positive
(mixture of pathogens previously extracted with PowerFeacal) and a negative control
(a swab which was ’waved in the air’ at PM). The sequencing output generated reads
between 19 and 250 bp long.

The analysis of taxonomic identification at the species rank, revealed that host
sequences, Bos Taurus, were mislabelled as Bos mutus, which is wild yak. This can
be observed in figure A.2, a word cloud of the most abundant species detected in
the test samples. It was noted that human DNA was also detected. Therefore, an
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additional step was implemented in the pipeline to remove sequences belonging to
mammals.
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Figure A.2: Most abundant species in the test samples. The font size is proportional to the
abundance. This word cloud reveals that host sequences have been mislabelled to Bos mutus, wild
yak. Also host genome is found in a relatively high proportion of the sequenced data. SampleCRGNeg
is a negative control from the sequencing.

The relative abundance by phylum is presented in figure A.3. Bacteroidetes,
Tenericutes, Actinobacteria, Frimicutes and Proteobacteria were found to be the most
abundant phyla in this set of test samples.
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Figure A.3: Relative abundance of phyla for the test samples. Phylum legend is ordered
according to abundance. The predominant phyla in the cattle samples are Bacteroidetes, Tener-
icutes, Actinobacteria, Firmicutes and Proteobacteria. SampleCRGNeg is the negative control of
sequencing.
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Figure A.4: Test samples PCA. The samples have 3 distinct clusters: 8,2 and 5 which belong
to animal 1; samples 1,3 and 4 which belong to animal 2, and the controls.

A Principal Components Analysis (PCA) with Bray Curtis distance analysis was
performed of the abundance profile obtained from Kraken, and it is shown in figure
A.4. There are 3 clusters, one for samples 2, 5 and 8, which belong to animal 1,
another one for samples 1, 3 and 4, which belong to animal 2 and a final cluster
which contain the positive and negative control samples. Which indicates the major
differences are due to microbiome being unique for each individual. And it also
highlights potentially no difference for sampling methods.

Samples 1 and 3 were extracted with the kit QIAamp, whereas the remaining
samples, apart from controls, were extracted with the Powersoil kit. Because of the
small sample size, statistical tests were not performed to decide which kit works better
in terms of microbiome abundance recovery. However, PowerSoil DNA showed the
overall best purity results and works well for all the types of sampling to be tested
next, as it can be observed in table A.2, and it was the kit of choice for the next
experiment.
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A.4 Characterisation of healthy calves’ respiratory tract microbiota

To characterise the normal microbiota present in different regions of the upper and
lower respiratory tract. Due to costs limitations, samples were collected by swab,
tissue and BAL from 4 male calves that were approximately 10 weeks old and which
were obtained from two different farms. The goals of this experiment were: i Deter-
mine the microorganism community in the lung of young cattle, ii Find differences
between microbial composition in the different regions of the respiratory tract, and
iii Compare the different sampling methods. At PM, animal 1 presented a runny
nose, and about 5% consolidation in the right cranial lobe (indication of a respiratory
infection), which indicates that this animal might not be used as a control sample.

Cattle lungs have six lobes, as depicted in figure A.5.

Cranial

Middle

Caudal

Accessory

Cranial

Caudal

Left lobes Right lobes

Figure A.5: Cattle lung lobes. Cattle lung contain 6 lobes: 2 on the left (cranial or apical and
caudal), 3 on the right (cranial or apical, middle and caudal) and the accessory in between.

One hundred and five samples were collected for DNA 16S rRNA sequencing
from three different sampling methods: swab, BAL, and tissue. A positive, which
contained a pool of isolated pathogens, and negative controls, swab opened at PM,
were included. Optimisation of the coupled amplification of the 16S V4 rRNA gene
region and barcoding of multiple samples was conducted prior to sequencing.

A.4.1 Exploratory analysis

Prior to taxonomic assignment of the sequencing reads, the Canberra’s distance of
the raw reads was calculated with Simka [Benoit et al., 2016], which is a tool that
analyses the k-mer composition or genomic composition. It does not require any
previous taxonomic assignment.

The genomic content of the raw samples is compared to find out quickly simi-
larities, and without the need of a taxonomic identification. Figure A.6 shows the
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Canberra measure (distance between pairs) of the raw reads. This measure works
well for highly dimensional data. At a first glance, the vast majority of BAL and swab
samples cluster together, whereas tissue tends to be more separate.

Figure A.6: Canberra’s distance of the raw reads. Calculated with Simka. Tissue samples are
mostly clustered together, and the vast majority of BAL and swab samples are clustered together.
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A.4.2 Microbiome taxonomic composition

After quality filtering, read counts were found to range from 811 to 178,652, as shown
in figure A.7. Next, sequences identifies as belonging to mammals were removed,
which left the number of reads in the samples ranging from 521 to 178,079.

Figure A.7: Superkingdom absolute abundance. Total number of reads, descending order, per
sample at the superkingdom level. After quality trimming and before removing reads belonging to
mammals.

Most of the reads were identified as bacterial. However, samples contained up
79.58% of Eukaryotic DNA, as can be observed in figure A.8, and up to 78.5% of
sequences were identified as mammalian origin. Samples from animal 1 contained up
to 16.94% of fungi, whereas samples belonging to the other animals had less than 2%.
Archaea were less commonly identified, with the sample with the highest proportion
containing 3.44%.

Kraken classified host sequences as Bos mutus instead of Bos taurus. The results
presented here were for the taxonomic ranks of superkingdom and phylum. As pre-
viously discussed in this thesis (see chapter 3, section 3.5) the most accurate results
were found at these levels.
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a: With mammals

b: Without mammals

Figure A.8: Superkingdom relative abundances.Relative abundance before and after removing
sequences belonging to animals (sorted by bacterial abundance). There is a relatively small number
of unclassified sequences. Most of the eukaryotes remaning after removing mammals, are fungi.
Archaea represents a tiny fraction of the microbiome.
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The most abundant phyla are Tenericutes followed by Actinobacteria, Proteobac-
teria, Firmicutes, Bacteroidetes and Ascomycota, as shown in figure A.9.

Frequency

Figure A.9: Phylum relative abundance. The most abundant phyla in the samples are Tener-
icutes and Actinobacteria. Ascomycota (fungi) is present in animal 1 and some samples of animal
2.
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A.4.3 Comparative analysis

Diversity

The alpha diversity from the Kraken assignment after removing mammalian sequences
was calculated with the skbio. At species level was found to vary greatly across
samples. Figure A.10 shows the alpha diversity by respiratory tract sampling point
and sampling method. Tissue samples have the highest average alpha diversity values.
BAL and swab samples present much lower values. These results are consistent across
the lower respiratory tract. The nasal sample mean alpha diversity was found to be
between the tissue and BAL samples.
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Figure A.10: Alpha diversity. Alpha diversity is grouped by respiratory tract location and
sampling method. Tissue samples present higher average values, followed by BAL samples
and swabs have the lowest alpha diversity values. R LA left apicak, RM right middle, RA
rigth apical, RC right caudal, AC accessory, LC left caudal. Type refers to the sampling
method: BAL, S - swab, T - tissue.

Phyla composition across samples

There are a few dominant phyla in the samples. As figure A.11 shows, Tenericutes
are present in most of the samples. However, it can also be observed that most of
the samples have only one dominant phyla. Bacteroidetes and Firmicutes are in a few
cases both found in relatively high proportions.

There seems to be an equilibrium between Actinobacteria and Tenericutes as
dominant phyla, thus most samples only have one of them as dominant. In 3 tissue
samples from animal 1 Ascomycota is dominant, probably it has replaced the previous
dominant phyla, but in the remaining samples there is a combination of Proteobacte-
ria, Firmicutes and Bacteroidetes instead of the Tenericutes population, which mostly
occur in tissue and nasal samples.
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Figure A.11 shows results clustered by sample, and it is colour coded by respiratory
tract location (denoted as lobule), sampling method (type) and animal. The clusters
appear to be somewhat more correlated with animal and sampling method.
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Figure A.11: Heatmap scaled phylum abundance. (Caption on next page.)
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Figure A.11: (Previous page.) Data was grouped by sample and phylum. To the right it
is color coded by lung location (lobule), sampling method (type) and animal. Type refers to
sampling method: T for tissue, BAL for bronchoalveolar lavage, S for swab, and NasalS for
nasal swab. Lobule indicates which part of the respiratory tract the sample is being taken
from: LA left apical, LC left caudal, AC accessory, RA right apical, RM right middle, RC
right caudal, and Nasal. The vast majority of samples have one or two dominant phyla.
Samples cluster better for animal and sampling method than respiratory tract location.

Figure A.12: Pairplot of the top 5 phyla by sampling method. The axis are at a different
scale for each phylum. The plots in the diagonal show the density distribution for the phylum.
Teneritues is dominant for swab and BAL samples. The nasal sample is composed mostly
of Actinobacteria.

First, the top 5 most abundant phyla are compared by sampling method. As
previously observed, the dominant phyla can change. Figure A.12 shows a potential
correlation between Tenericutes and Actinobacteria, Proteobacteria and Firmicutes.
The figure also shows the distribution of each of the 5 phyla per sampling method
(subplots in the diagonal). Swab followed by BAL are the sampling methods that

130



recover more Tenericutes. Actinobacteria distribution is similar, with a higher peak
for nasal swab.

Next, the phyla detected at each lung location by sampling method is compared
with the z-score metric (see figure A.13). This metric is useful to compare samples
with different mean and standard deviation. The major differences were observed for
sampling method and the score remains stable for each lobule for swab, tissue and
BAL respectively. This shows that the recovered microbiome differs between each
sampling method.

z-
sc
o
re

Location and sampling method

Figure A.13: Z-score by sampling method and location. Location refers to the lung lobule
where the sample was taken from: AC - accessory, LA - left apical, LC - left caudal, RA -
right apical, RC - right caudal, RM - right middle. Sampling method: BAL, S - swab, T -
tissue. The z-scores values are presented for each pair of sampling method and respiratory
tract location by phylum. Except for the nose, which has a distinct microbial community
from the lower respiratory tract, the major differences observed are related to the sampling
method and not to lung lobule location.

The Pearson correlation of the phylum relative frequency is shown in figure A.14.
Most of the samples belonging to animal 1 do not correlate with the samples from the
other animals. The sampling methods of swab and BAL results present high values
of correlation, indicating the microbial community recovered by these two methods
were very similar.
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Figure A.14: Sample correlation of the phyla abundance. Location refers to the lung lobule
where the sample was taken from: AC - accessory, LA - left apical, LC - left caudal, RA
- right apical, RC - right caudal, RM - right middle. Sampling method: BAL, S - swab,
T - tissue. The Pearson correlation is calculated from the phylum relative abundance. At
the top animals are colour coded and at the left are the respiratory track sampling points
(location) and the sampling method (type). There is no clear pattern of clustering according
to location. BAL and swab samples tend to cluster together. Most of the samples belonging
to animal 1 cluster together.

132



a: Animal b: Location

c: Method

Figure A.15: Principal component analysis by animal, location and sampling method. The
data is projected into the first two principal components. One sample belonging to animal
tissue from the accessory lobule is far from any others. There is no clear grouping pattern
for the different respiratory tract sampled locations. Most of the swab and BAL samples
grouped together.

A PCA is plotted and coloured separately by sampling method, respiratory tract
location, and animal, and is presented in figure A.15. Most of the BAL and swab
samples grouped together, except for 2 belonging to animal 3 BAL left caudal and
accessory lobules. There is no grouping pattern for the different respiratory tract
sampling locations. Interestingly, one sample belonging to tissue of animal 3 accessory
lobules appears isolated in the PCA.

A.4.4 Comparison of samples by taxon

Two different methods were applied to determine which taxa are differ in abundance
by the different groups: the Lasso method and LEfSe [Segata et al., 2011] which were
specifically designed for metagenomics using marker genes.

LASSO method

The Lasso method was applied to a matrix of 100 samples by 72 phyla (after removing
mammalian sequences) to determine differences in taxa abundance amongst groups
of samples. See chapter 2 on page 30. Nasal samples were excluded because there
were too few for this method.
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Table A.3: Differential abundance by sampling method. Phylum DA by sampling method.
Lasso accuracy 65%. The Lasso coefficients presented here are the logarithmic probability of a
phylum being more significant in one sampling method compare to the rest.

Phylum Tissue Swab BAL
Candidatus Amesbacteria 1.634428e+04
Chlorobi 3.843308e+01
Ascomycota 0.17347906
Bacteroidetes 2.91293347
Chloroflexi 70.99154603
Lentisphaerae 134.05896768
Nitrospirae 199.93152836
Streptophyta 3.01156983

Table A.4: Differential abundance by animal. Lasso accuracy 70%. The Lasso coefficients
presented here are the logarithmic probability of a phylum being more significant in one
animal compare to the rest. Negative coefficients stand for the inverse correlations. For
example Tenericutes is found less abundantly in animal 1 compared to the rest. Higher
values are more significant than the ones closer to 0.

Phyla animal 1 animal 2 animal 3 animal 4
Actinobacteria 1.1179408 -0.01213219
Ascomycota 1.9867143
Fibrobacteres 22.1525084
Spirochaetes 13.6271250
Tenericutes -1.7011920
Candidatus Maga-
sanikbacteria

7541.04587362

Euryarchaeota 25.56243057
Candidatus Amesbacte-
ria

12743.5748483

Candidatus Calesca-
mantes

6364.0992082

Candidatus Marinimicro-
bia

97.2069565

Chlorobi 996.2089632
Chlorophyta 189.8931510
Aquificae 31.8435685
Candidatus Peregrinibac-
teria

2071.3704385

Chordata 1614.8389986
Nitrospirae 156.6484326
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The Lasso method did not detect any significant phyla over or underrepresented
depending on the lung location, and a few phyla were detected when grouping by
sampling method and animal. The Lasso coefficients presented in the tables A.3 and
A.4 that are high are the more significant ones, and negative coefficients means in-
verse relationship, are expressed in log scale of the differentially abundant phyla by
sampling method and animal, respectively. Except for Actinobacteria (in animal 1)
and Ascomycota (tissue), which are in the top 5 most abundant phyla, the major
differences were found in rarer phyla. Given the small size of the dataset per group
available, and the sparsity of the data, results can vary greatly depending on the parti-
tion of train and test data. Nevertheless, it detects the fungal phylum of Ascomycota
as more abundant in animal 1 compared to the rest of animals. This result coincide
with the clinical observation of consolidation (as described previously).

Biomarker discovery with LEFSE

The Linear discriminant analysis effect size (LEfSe) [Segata et al., 2012] method,
specifically designed for metagenomics, was applied per-sample normalising, subject
is animal. The threshold on the absolute value of the logarithmic LDA score is 2.

Several combinations of class and subclass have been explored to identify any
potential different abundant taxa.The correlations found are quite weak. No taxa
were identified for to be DA for lung location, that indicates no difference in the
microbiome across the lung lobules.

Figure A.16: Biomarkers by respiratory tract location and sampling method. LEfSe method
with class lung location and subclass sampling method. A few taxons have been identified
as more abundant in nose and the family of Nitrosomonadaceae is less abundant in the left
caudal lobule.

The family of Nitosomonadaceae was found to be much less abundant in the left
caudal lobule, and in nose the order of Pasturellales, genus of Rodentibacter, order of
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Rhodospirilales, genus of Paeniglutamicibacter and family of Altermonadaceae were
found to be more abundant (see figure A.16).

When the data is grouped for sampling method and location, a few DA taxa were
found, as shown in figure A.17. However, the number of samples in each case is low
and results might be biased.

Figure A.17: Biomarkers by grouping sampling method and respiratory tract location. Lefse
method with class grouped sampling method-lung location.

The species of Mycoplasma detected in tissue from the right caudal lobule and
the taxa detected for swab samples right middle lobule all belong to the phylum
Tenericutes.

The taxa found more abundantly in the swab samples of the right caudal lobule
all belong to the phylum of Cyanobacteria (green or blue-green algae), probably came
through fresh water.

Swab samples of the left apical lobule seem to be somewhat abundant in the class
of insects. However, this is a surprising result, since no insect was observed during the
sampling. As discussed previously in this thesis, the accuracy of Kraken at the class
level is inferior compared to the phylum, it could possibly be a taxonomic assignment
error. Although there is a small chance, it could have been picked up while grazing
in the fields and managed to get into the respiratory tract.

The nose taxa biomarkers contain mostly the phylum of Proteobacteria, which
include the Pasturellaceae and also Bacteroidetes, mainly found in soils, gut and on
the skin of animals. The first ones, are typical commensal bacteria found in birds and
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mammals in the upper respiratory tract.
In the right middle lobule BAL samples, the LEfSe method detected the genus

Liberibacter, which is associated with plant disease.

A.5 Discussion

The Powersoil DNA extraction kit works well for different types of sampling methods
to characterise the respiratory tract microbiome.

The composition of the microbiota of both experiments described in this chapter
were found to be different. This could be due to technical factors, e.g. different
versions of databases, or other factors related to the age of the animals or other
environmental factors to which each animal was exposed, which is the most likely
one.

The samples from the experiment, to characterise the microbiota of the lungs,
contained low numbers of sequence data. This might be indicative that the micro-
biome of young animal lungs is not yet fully established, and might be in the process
of colonisation. The animal 1 microbiome was found to be different from the other
animals according to the results. At the time of sampling, it was noted that there
was a sign of respiratory infection in this animal.

Tenericutes, Actinobacteria, Firmicutes, Proteobacteria have previously been de-
scribed as some of the most abundant phyla present in the healthy bovine lung [Mc-
Mullen et al., 2020, Zeineldin et al., 2017a]. However, these same studies also found
other highly abundant phyla, namely Fusobacteria and Bacteroidetes, which are not
in the top 5 in the present work, which could again be a result of a number of possible
environmental or other factors.

Tenericutes was the major phylum found. It contains Mycoplasma spp., which
belongs to the clade of Mollicutes and are associated with respiratory infections in
humans and other mammals. Because of their medical importance, mollicutes are
overrepresented in the genomic databases. Tenericutes can adapt to extreme condi-
tions. Their genome is reduced so much that they lack key functions like regulatory
elements, biosynthesis of amino acids and many metabolic requirements, all of which
they obtain from the host. However, they are a non-monophyletic clan, and recent
studies show the boundary between them and Bacilli is unclear [Wang et al., 2020].

Actinobacteria are the main phyla in some of the animal 1 samples. They are
ubiquitous and one of the largest bacterial phyla, which includes Mycobacterium, a
species often associated with respiratory infections, e.g. tuberculosis, and leprosy
in humans. They also play a central role in the carbon recycling and also produce
secondary metabolites, some of which have antifungal properties. Some genera of
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this phylum are important pathogens in mammals, causing for example tuberculosis
in humans (Mycobacterium tuberculosis) and in cattle (Mycobacterium bovis) [Ul-
Hassan and Wellington, 2009].

Ascomycota is one of the largest phyla of Fungi. Some are adapted to extreme
environments. This project targeted 16S rRNA gene, however it is a well known
fact that the primers for such a gene capture some Eukaryota including fungi. Some
of them are pathogenic and have an impact on animal and human health[Nalin N
Wijayawardene et al., 2011]. They are identified in a large number of samples of
animal 1, in which some clinical signs of infection were observed, and in a lower
proportion in a few samples in animal 2. Both belonging to the same farm.

Proteobacteria, found more abundantly in tissue, is a phylum which presents a
diverse phenotype, and include the majority of gram negative bacteria. They are
often endosymbionts with eukaryotes: α-Proteobacteria are associated with eukary-
otic cells, β-Proteobacteria are mainly plant pathogens and animal linked, and γ-
Proteobacteria found in insects and vertebrates, including a wide range of animal and
human pathogens and non-obligate symbionts [Stackebrandt, 2001].

The phylum Firmicutes is one of the most diverse [Seong et al., 2018]. They are
commonly found in water and soil, and also in a mammal’s gut, either present as
commensals or pathogenic.

The Bacteroidetes phylum is found in many distinct environments, they are espe-
cially abundant and may play important roles in the gut [Hahnke et al., 2016]. Most
of their species are anaerobic. This phylum is metabolically highly flexible, they can
be simultaneously generalist and specialists, providing them with high adaptability to
the constantly changing environmental conditions [Johnson et al., 2017]. They were
specifically found in the tissue samples, and cattle potentially acquired them while
grazing.

To determine the DA of taxa, different methods were explored. As discussed by
Weiss et al. [Weiss et al., 2017]. Metagenomics taxa abundance is compositional,
given it is sparse. Recently, there has been a booming in a new area of study applied
to tackle this issue: Compositional data analysis (CoDa). This type of methods
are based on the proportion of number of reads per taxa within a sample. Some
of them are stringent and produce low number of significant abundant taxa. The
comparison against other type, like DESeq, revealed that often the top hits are similar.
However, these methods need to mature and be evaluated against gold standards,
once established [Nearing et al., 2022].

Both the Lasso and LEfSe methods, applied to determine DA taxa, found com-
monalities in the data, for example no differences amongst the different lung lobules.
The LEfSe method, which is specifically designed for metagenomics, although seems
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to work well, there is a debate about the rarefaction employed [Nearing et al., 2022].
The main differences found were amongst each individual sample, and for the

combination of sampling methods and lung location. In the experimental conditions
tested, tissue samples present a reasonable number of sequencing reads, and it also
recovers more varied microbiome. Nevertheless, tissue samples are impossible to
obtain from living animals, whereas swabs samples are easier to obtain except for
deep into the lungs, and finally BAL is generally easy to get, although ethics approval
might be required, which is often a lengthy process.

A.5.1 Future work

The nasal and lung lobule microbiota of young cattle has been determined. BRD is
still causing major problems in many farms, and it would now be possible to determine
pathogenic patterns.

In gut, the proportion of Firmicutes - Bacteroidetes has been proposed as an
obesity biomarker [Magne et al., 2020]. However, the relationship, if any, with the
respiratory tract remains unclear. Therefore, more work needs to be done to determine
any potential correlation.
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Appendix B

Supplementary figures and tables
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b: Classification higher up on the tree, no k-mer was found to be species specific.
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c: K-mers match a range of taxons at different levels. The sequence was labelled at the order level.
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d: K-mers match similar species and the sequence was wrongly assigned.

Figure B.1: kraken classification examples. Taxonomic trees where kraken found k-mers match-
ing during the classification process. Above the lines there is the name of the clade and under there
is the corresponding rank. Next to the rank, there is the number of matching k-mers (if any).
Highlighted in blue is the original species. In red where the sequence was classified elsewhere that
wasn’t the origin. Note that in all the cases there are k-mers in the sequence that are not present
in the original database. These correspond to the mutations introduced during the simulation.
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Figure B.2: Taxonomic tree of the Chlamydiae phylum. NCBI taxonomy of the Chlamydiae
phylum which have sequences at the Silva database SSU RefNR99 version 128. Each order is
highlited in a different color.
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Figure B.3: Assignment to the wrong taxa. This diagram shows the taxonomic tree of the
16 selected species. A simple mock community is created and short reads simulated, and only the
16 sequences belonging to the selected species are used as reference database for the taxonomic
classification. Under this condition, Kraken classifies the vast majority of short reads correctly.
However, a few are not labelled to the correct species or subspecies. The black lines correspond to
the taxonomic tree, taxonomic nodes (represented by dots) are coloured by ranks and the name is
printed adjacently. The coloured curvy lines illustrate where the mislabelled sequences have been
assigned to in the taxonomic tree. Arrows originate at leaves (corresponding to species or subspecies
ranks). All the arrows from the same leaf have the same colour, and is different for each leaf. Some
misclassified reads have been assigned to one or two taxonomic nodes away (e.g. species Candidatus
Amphibiichlamydia ranarum assigned to the genus level of Candidatus Amphibiichlamydia, belonging
to the same taxonomic clan). The great majority of misassigned taxonomies are assigned within
the same taxonomic lineage, and only 9 sequences, all belonging to Chlamydia psittaci 84_55 are
completely labelled in the wrong lineage (order rank). We can also observe that sequences belonging
to the same species are not consistently mislabelled to the same taxon. A possible cause could be
the region which the short reads belong to and the number of errors.
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Figure B.4: New distance metrics by experiment. The subfigures represent the distribution
values for the new proposed measures by the different experiments (from no mutation to 3% back-
ground noise and with error mutations). TND is the number of nodes that differ from the original
species of a read to where it has been classified to. Similarly TNDSR, is the same but only counting
the main taxonomic ranks nodes. The PBD is the number of nodes in a phylogenetic tree that
differ between the origin of a read to the assignment. Finally, the PND is the phylogenetic distance
between original leaf and assigned node in a phylogenetic tree. Overall, the new metrics capture
the average distance of misclassification. Kraken shows that the TND (a) and TNDSR (b) have
almost imperceptible groth with the number of mutations introduced. PBD (c) and PND (d) are
very similar across the experiments. The results indicate that kraken is robust to the introduction
of mutations.

143



0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 faeces fish gut

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 human ice plant

un
cla

ss
ifi

ed

ph
yl

um

cla
ss

or
de

r

fa
m

ily

ge
nu

s

sp
ec

ie
s

Taxonomic rank

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 reactor

un
cla

ss
ifi

ed

ph
yl

um

cla
ss

or
de

r

fa
m

ily

ge
nu

s

sp
ec

ie
s

Taxonomic rank

sludge
un

cla
ss

ifi
ed

ph
yl

um

cla
ss

or
de

r

fa
m

ily

ge
nu

s

sp
ec

ie
s

Taxonomic rank

soil

precision recall f1score specificity accuracy false_positive_rate

Va
lu

e

Figure B.5: Metrics by sample. The metrics diverge quite a lot amongst the samples. That is
due to the content of the sample in respect of the database. While soil presents the the best

overall performance reactor shows one of the poorest. This can be due to the fact it contains a
number of Archaea but none are present in the reference database (MGC data).
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Figure B.6: Spearman correlation of the positive control data. "N" refers to the number of
sequences at different taxonomic ranks, and "length" to the number of base pairs simulated. The
number of sequences at the leaf of taxonomic trees are contributing to classify the short read closer.
Longer number of nodes in a taxonomic lineage (length lineage) and further common ancestors
(closest taxon) have a negative impact in the classification, and this increases TND
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Table B.1: Viral labelled sequences in Silva taxonomy.

NCBI
taxid

Accessions * NCBI and Silva taxonomic lineages

36452 AF065755.1.676
AF191073.2766.3620

Viruses; Duplodnaviria; Heunggongvirae; Peploviricota;
Herviviricetes; Herpesvirales; Herpesviridae; Betaher-
pesvirinae; Cytomegalovirus; Cercopithecine betaher-
pesvirus 5; Stealth virus 1
Bacteria; Proteobacteria; Alphaproteobacteria; Rhizo-
biales; Rhizobiaceae; Ochrobactrum; Stealth virus 1

99287 AE006468.4394688.4396232
AE006468.4196072.4197613
AE006468.289190.290733
AE006468.2800121.2801663
AE006468.3570470.3572013
AE006468.4100145.4101688
AE006468.4351143.4352686

Bacteria; Proteobacteria; Gammaproteobacteria;
Enterobacterales; Enterobacteriaceae; Salmonella;
Salmonella enterica; Salmonella enterica subsp. en-
terica; Salmonella enterica subsp. enterica serovar
Typhimurium; Salmonella enterica subsp. enterica
serovar Typhimurium str. LT2
Bacteria; Proteobacteria; Gammaproteobacteria;
Enterobacterales; Enterobacteriaceae; Salmonella;
Salmonella virus Fels2

262728 CP002277.1779959.1781497
CP002277.1904650.1906188
CP002277.478016.479554
CP002277.357249.358787
CP002277.709269.710807
CP002277.1714279.1715817

Bacteria; Proteobacteria; Gammaproteobacteria;
Pasteurellales; Pasteurellaceae; Haemophilus;
Haemophilus influenzae; Haemophilus influenzae
R2866
Bacteria; Proteobacteria; Gammaproteobacteria;
Enterobacterales; Pasteurellaceae; Haemophilus;
Haemophilus virus HP2

1221328 CP008698.166510.168047
CP008698.30287.31824
CP008698.171512.173049
CP008698.90544.92081
CP008698.96400.97937
CP008698.9819.11356
CP008698.618990.620527
CP008698.930253.931790
CP008698.3155132.3156669
CP008698.160901.162438

Bacteria; Terrabacteria group; Firmicutes; Bacilli;
Bacillales; Bacillaceae; Bacillus; Bacillus subtilis group;
Bacillus subtilis; Bacillus subtilis subsp. subtilis; Bacil-
lus subtilis subsp. subtilis str. AG1839
Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae;
Bacillus; Bacillus virus SPbeta
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1232554 CP007800.160901.162438
CP007800.930253.931790
CP007800.618990.620527
CP007800.9819.11356
CP007800.171512.173049
CP007800.90544.92081
CP007800.30287.31824
CP007800.3149861.3151398
CP007800.96400.97937
CP007800.166510.168047

Bacteria; Terrabacteria group; Firmicutes; Bacilli;
Bacillales; Bacillaceae; Bacillus; Bacillus subtilis group;
Bacillus subtilis; Bacillus subtilis subsp. subtilis; Bacil-
lus subtilis subsp. subtilis str. JH642; Bacillus subtilis
subsp. subtilis str. JH642 substr. AG174
Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae;
Bacillus; Bacillus virus SPbeta

186617 BCRZ01001786.50.1614
BCSB01007630.22.1149
BCRW01002018.1.644
BCSF01026815.1.1043
BCSF01020973.1.1132

Viruses; environmental samples; uncultured marine
virus
Eukaryota; Archaeplastida; Chloroplastida; Chloro-
phyta; Mamiellophyceae; Mamiellales; Micromonas;
uncultured marine virus

239364 AAMH01004094.1.727
AAMH01004484.1.831
AAMH01004487.1.820
AAMI01003277.1.886
AAMH01004561.8.906
AAMH01004365.1.787
AAMH01004441.1.808
AAMH01004478.1.865
AAMH01004442.1.808
AAMH01004568.21.905
AAMI01003326.6.853

Viruses; environmental samples; uncultured human fe-
cal virus
Bacteria; Proteobacteria; Alphaproteobacteria; Rhizo-
biales; Xanthobacteraceae; uncultured; uncultured hu-
man fecal virus
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1070528 MAVL01000973.46.795
MAVM01000094.8.913
MAVO01000069.1.831
MAVJ01000039.1.921
MAVK01000017.1.1314
MAVM01000102.4.886
MAVI01000089.4.740
MAVL01000555.91.1013
MAVJ01000057.1.884
MAVN01000025.87.1541
MAVG01000031.10.1072
MAVM01000112.1.859
MAVG01000032.238.1418
MAVO01000046.1.1190
MAVJ01000031.1.920
MAVK01000010.1.1037
MAVL01000618.164.963
MAVN01000046.1.1190
MAVO01000025.87.1541
MAVJ01000028.1.1047
MAVN01000069.1.831
MAVM01000062.1.1054
MAVL01000832.16.849
MAVM01000019.37.1451
MAVI01000061.1.849
MAVJ01000052.30.900
MAVI01000055.8.871
MAVI01000036.3.1003

unclassified entries; unclassified sequences;
metagenomes; organismal metagenomes; viral
metagenome
Bacteria; Proteobacteria; Alphaproteobacteria; Rhi-
zobiales; Xanthobacteraceae; Bradyrhizobium; viral
metagenome

* The accession number consist of the sequence id and then separated by dots thestart and end

of the 16/18S rRNA sequence predicted by Silva. In the taxonomies column, in black are the NCBI

and in green Silva.

148



D
es

cr
ip

tio
n

Sc
ie

nt
ifi

c
N

am
e

M
ax

Sc
or

e
To

ta
l

Sc
or

e
Q

ue
ry

C
ov

er
E

va
lu

e
Pe

r.
id

en
t

A
cc

.
Le

n
St

ea
lth

vi
ru

s
1

cl
on

e
3B

43
T

3
St

ea
lth

vi
ru

s
1

12
27

12
27

99
%

0.
0

10
0.

00
81

4
O

ch
ro

ba
ct

ru
m

pi
tu

ito
su

m
st

ra
in

N
IH

H
S1

08
16

S
rib

o-
so

m
al

R
N

A
ge

ne
,p

ar
tia

ls
eq

ue
nc

e
O

ch
ro

ba
ct

ru
m

pi
tu

-
ito

su
m

11
14

11
14

99
%

0.
0

96
.5

9
13

29

St
ea

lth
vi

ru
s

1
cl

on
e

3B
43

,
ge

no
m

ic
se

qu
en

ce
St

ea
lth

vi
ru

s
1

11
12

11
12

99
%

0.
0

96
.7

4
36

20
O

ch
ro

ba
ct

ru
m

rh
iz

os
ph

ae
ra

e
st

ra
in

L3
5

16
S

rib
os

om
al

R
N

A
ge

ne
,
pa

rt
ia

ls
eq

ue
nc

e
O

ch
ro

ba
ct

ru
m

rh
i-

zo
sp

ha
er

ae
11

09
11

09
99

%
0.

0
96

.5
9

13
46

O
ch

ro
ba

ct
ru

m
sp

.
st

ra
in

FA
75

16
S

rib
os

om
al

R
N

A
ge

ne
,p

ar
tia

ls
eq

ue
nc

e
O

ch
ro

ba
ct

ru
m

sp
.

11
09

11
09

99
%

0.
0

96
.5

9
14

39

O
ch

ro
ba

ct
ru

m
sp

.
st

ra
in

H
14

0
16

S
rib

os
om

al
R
N

A
ge

ne
,p

ar
tia

ls
eq

ue
nc

e
O

ch
ro

ba
ct

ru
m

sp
.

11
09

11
09

99
%

0.
0

96
.5

9
14

12

O
ch

ro
ba

ct
ru

m
rh

iz
os

ph
ae

ra
e

st
ra

in
Sa

m
pl

e 8
51
6
S
ri
bo
so
m
a
lR

N
A
g
en

e,
p
a
rt
ia
ls
eq
u
en

ce
O

ch
ro

ba
ct

ru
m

rh
i-

zo
sp

ha
er

ae
11

09
11

09
99

%
0.

0
96

.5
9

13
44

O
ch

ro
ba

ct
ru

m
rh

iz
os

ph
ae

ra
e

st
ra

in
Sa

m
pl

e 2
01
6
S
ri
bo
so
m
a
lR

N
A
g
en

e,
p
a
rt
ia
ls
eq
u
en

ce
O

ch
ro

ba
ct

ru
m

rh
i-

zo
sp

ha
er

ae
11

09
11

09
99

%
0.

0
96

.5
9

13
44

O
ch

ro
ba

ct
ru

m
sp

.
st

ra
in

P
N

2-
B

07
P
1-

15
16

S
rib

os
om

al
R
N

A
ge

ne
,
pa

rt
ia

ls
eq

ue
nc

e
O

ch
ro

ba
ct

ru
m

sp
.

11
09

11
09

99
%

0.
0

96
.5

9
10

49

O
ch

ro
ba

ct
ru

m
sp

.
st

ra
in

P
N

2-
B

04
P
2-

22
16

S
rib

os
om

al
R
N

A
ge

ne
,
pa

rt
ia

ls
eq

ue
nc

e
O

ch
ro

ba
ct

ru
m

sp
.

11
09

11
09

99
%

0.
0

96
.5

9
10

53

O
ch

ro
ba

ct
ru

m
sp

.
st

ra
in

P
N

2-
B

04
P
2-

17
16

S
rib

os
om

al
R
N

A
ge

ne
,
pa

rt
ia

ls
eq

ue
nc

e
O

ch
ro

ba
ct

ru
m

sp
.

11
09

11
09

99
%

0.
0

96
.5

9
10

62

O
ch

ro
ba

ct
ru

m
pi

tu
ito

su
m

st
ra

in
Sa

ad
11

16
S

rib
os

om
al

R
N

A
ge

ne
,
pa

rt
ia

ls
eq

ue
nc

e
O

ch
ro

ba
ct

ru
m

pi
tu

-
ito

su
m

11
09

11
09

99
%

0.
0

96
.5

9
83

4

O
ch

ro
ba

ct
ru

m
gr

ig
no

ne
ns

e
st

ra
in

B
N

16
S

rib
os

om
al

R
N

A
ge

ne
,
pa

rt
ia

ls
eq

ue
nc

e
O

ch
ro

ba
ct

ru
m

gr
ig

no
ne

ns
e

11
09

11
09

99
%

0.
0

96
.5

9
93

0

O
ch

ro
ba

ct
ru

m
sp

.
st

ra
in

R
P
TA

tO
ch

1
16

S
rib

os
om

al
R
N

A
ge

ne
,
pa

rt
ia

ls
eq

ue
nc

e
O

ch
ro

ba
ct

ru
m

sp
.

11
09

11
09

99
%

0.
0

96
.5

9
13

46

T
ab

le
B
.2

:
B
la

st
re

su
lts

se
qu

en
ce

A
F0

65
75

5.
1.

68
6.

To
p

15
re

su
lts

of
w
eb

N
C
B

Ib
la

st
n

se
ar

ch
w

ith
de

fa
ul

t
pa

ra
m

et
er

s.
T

he
fir

st
hi

t
is

th
e

or
ig

in
al

se
qu

en
ce

,t
ax

on
om

ic
al

ly
an

no
ta

te
d

as
vi

ra
l.

T
he

re
st

of
th

e
hi

ts
w

ith
hi

gh
co

ve
ra

ge
an

d
id

en
tit

y
m

at
ch

pa
rt

ia
l1

6S
rR

N
A

se
qu

en
ce

s
of

th
e

ba
ct

er
ia

ls
pe

ci
es

O
ch

ro
ba

tr
um

.

149



−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ar

cC
le

an

P
ar

cT
ru

nc
C

le
an

N
R

99

N
R

99
Tr

un
c

R
ef

R
ef

Tr
un

c

P
ar

c

P
ar

cT
ru

nc

ParcClean

ParcTruncClean

NR99

NR99Trunc

Ref

RefTrunc

Parc

ParcTrunc

Figure B.7: Spearman correlation of TND by database. Similarity on classification success
based on the scaled TND of the MGC data. ParcClean and ParcTrunc, which are the best performing,
have lower correlation with the rest and identical one to the other. NR99 and NR99Trunc with
intermediate correlation values.
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Figure B.8: F1 score by accumulated mutations in the simulated sets per database. The
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two sources: the first are randomly introduced mutations in the reads, ranging from 0 to 3%, and
the second are the mutations linked to the quality of sequencing. Kraken2 is not capable to 100%
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scores for the clean Parc databases.
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Figure B.9: Number of sequences per lineage length. Each database contains a different
subset of taxa, which have varying lineage length. ParcClean does not contain lineages with 7 or
less annotated ranks. The most common number of nodes per lineage is 5. The longest lineages
contain 35 nodes.
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Figure B.10: Spearman correlation of factors influencing taxonomic classification of positive
controls by single or paired-end data and representatives. Spearman correlation of the TND of
the positive controls depends on the presence a or absence b of the original taxon in the databases.
N is the number of sequences per rank (species, genus, family, phylum) present in a given database.
Lineage length is the number of taxa described in the NCBI database on 18 November 2020.
Also, the correlation values present differences depending on the type of data, single or paired-
end. Generally, the number of sequence representing a phylum in the database show a positive
correlation in both cases, whereas in many other cases there is an opposite trend. For those taxa
without representatives in the database, no factor clearly influences classification for single-end data
in the NR99 database. However, for the NR99 and paired-end data the read length , number of
genera and number of phyla improves identification whereas longer lineages and more sequences in
the database at species level make things worse.
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