
Article

Investigating Novice Developers’ Code
Commenting Trends Using Machine
Learning Techniques

Niazi, Tahira, Das, Teerath, Ahmed, Ghufran, Waqas, Syed
Muhammad, Khan, Sumra, Khan, Suleman, Abdelatif, Ahmed
Abdelaziz and Wasi, Shaukat

Available at https://clok.uclan.ac.uk/45341/

Niazi, Tahira, Das, Teerath, Ahmed, Ghufran, Waqas, Syed Muhammad, Khan,
Sumra, Khan, Suleman, Abdelatif, Ahmed Abdelaziz and Wasi, Shaukat (2023)
Investigating Novice Developers’ Code Commenting Trends Using Machine
Learning Techniques. Algorithms, 16 (1). p. 53.

It is advisable to refer to the publisher’s version if you intend to cite from the work.
http://dx.doi.org/10.3390/a16010053

For more information about UCLan’s research in this area go to
http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to
http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including
Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained
by the individual authors and/or other copyright owners. Terms and conditions for use
of this material are defined in the policies page.

CLoK
Central Lancashire online Knowledge
www.clok.uclan.ac.uk

https://clok.uclan.ac.uk/policies.html
http://www.uclan.ac.uk/research/
http://www.uclan.ac.uk/researchgroups/

Citation: Niazi, T.; Das, T.;

Ahmed, G.; Waqas, S.M.; Khan, S.;

Khan, S.; Abdelatif, A.A.; Wasi, S.

Investigating Novice Developers’

Code Commenting Trends Using

Machine Learning Techniques.

Algorithms 2023, 16, 53. https://

doi.org/10.3390/a16010053

Academic Editors: Xiang Zhang

and Xiaoxiao Li

Received: 12 October 2022

Revised: 2 January 2023

Accepted: 4 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Investigating Novice Developers’ Code Commenting Trends
Using Machine Learning Techniques
Tahira Niazi 1 , Teerath Das 2, Ghufran Ahmed 3 , Syed Muhammad Waqas 4, Sumra Khan 1, Suleman Khan 5,*,
Ahmed Abdelaziz Abdelatif 6 and Shaukat Wasi 1

1 Department of Computer Science, Mohammad Ali Jinnah University, Karachi 75400, Pakistan
2 Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
3 School of Computing, National University of Computer Emerging Sciences, Karachi 75400, Pakistan
4 Department of Computer Science, Bahria University, Karachi 75260, Pakistan
5 School of Psychology and Computer Science, University of Central Lancashire, Preston PR1 2HE, UK
6 Khawarizmi International College, Al Bahya, Abu Dhabi 25669, United Arab Emirates
* Correspondence: skhan92@uclan.ac.uk

Abstract: Code comments are considered an efficient way to document the functionality of a particular
block of code. Code commenting is a common practice among developers to explain the purpose
of the code in order to improve code comprehension and readability. Researchers investigated the
effect of code comments on software development tasks and demonstrated the use of comments
in several ways, including maintenance, reusability, bug detection, etc. Given the importance of
code comments, it becomes vital for novice developers to brush up on their code commenting skills.
In this study, we initially investigated what types of comments novice students document in their
source code and further categorized those comments using a machine learning approach. The work
involves the initial manual classification of code comments and then building a machine learning
model to classify student code comments automatically. The findings of our study revealed that
novice developers/students’ comments are mainly related to Literal (26.66%) and Insufficient (26.66%).
Further, we proposed and extended the taxonomy of such source code comments by adding a few
more categories, i.e., License (5.18%), Profile (4.80%), Irrelevant (4.80%), Commented Code (4.44%),
Autogenerated (1.48%), and Improper (1.10%). Moreover, we assessed our approach with three different
machine-learning classifiers. Our implementation of machine learning models found that Decision
Tree resulted in the overall highest accuracy, i.e., 85%. This study helps in predicting the type of code
comments for a novice developer using a machine learning approach that can be implemented to
generate automated feedback for students, thus saving teachers time for manual one-on-one feedback,
which is a time-consuming activity.

Keywords: source code comments; classification; machine learning techniques

1. Introduction

Code comments are considered an integral and indispensable activity across various
tasks in the software development life cycle (SDLC). Indeed, it is necessary for the devel-
opers and peer reviewers to understand what the code is intended to perform and how
it works. In recent times, with the increase in software complexity and the number of
developers working on a single project, it has become necessary to write code comments
to make any sense of what is happening within the software. With growing team sizes, it
is important for all the developers in the team to have a better understanding of the code.
This can be achieved by adhering to good programming conventions to better understand
the codebase by all the developers within a team. Many code conventions are followed to
make the code readable across the development teams, e.g., naming conventions, source
code comments, etc. Code conventions are a set of formats, rules, and guidelines followed
while writing code. The code is written in a specific format to make the program easy to

Algorithms 2023, 16, 53. https://doi.org/10.3390/a16010053 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16010053
https://doi.org/10.3390/a16010053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-9459-7068
https://orcid.org/0000-0002-0077-9638
https://orcid.org/0000-0003-3660-065X
https://doi.org/10.3390/a16010053
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16010053?type=check_update&version=1

Algorithms 2023, 16, 53 2 of 19

read and understand. There are many research studies that discuss the impact of adopting
coding standards on their particular projects [1]. Many studies reveal that coding conven-
tions significantly and positively impact the readability of code [2]. These programming
conventions help developers produce more readable code that is better understood by
others. At the same time, it also helps to produce adaptable code, which is easy to fix when
it comes to bug fixing. Basic code conventions are generalized across all programming
languages. However, the way code comments are written varies according to the program-
ming language’s syntax. Figure 1 illustrates different types of comments in Java program
such as block, single-line and multi-line comments.

As discussed above, source code commenting is one of the programming practices
widely followed by developers to explain their code to others, who intend to gain an un-
derstanding for either improving the code or bug fixing. For a particular project, the same
development team is not always the one to work on that project continuously. Therefore,
it is not guaranteed that the next developer will be as experienced as the development
team that worked on it before. No matter how well the code is written or refactored, it
still requires that the documentation be included in the source code, and therefore, code
commenting is one of the good practices for documenting the code.

Code comments are part of the source code that developers produce in natural lan-
guage to describe the purpose and implementation details of the programming code. The
purpose of source code comments is not just limited to the code’s explanation; developers
also include comments to highlight any pending bug fixes, technical debt, or references to
other code snippets. They play a pivotal role in many software engineering tasks, such as
software maintainability, code modification, and code reuse. Multiple researches suggest
that commenting on a source code enhances its readability [3,4], leads to bug detection [5,6],
and improves testing [7].

Algorithms 2023, 16, x FOR PEER REVIEW 3 of 22

Figure 1. Example of code comments in Java program file. Reprinted/adapted with permission

from [8] Copyright 2019, by Luca Pascarella, Magiel Bruntink, Alberto Bacchelli. 80

This research study has provided the key contributions to taxonomy introduced in 81

[9,10] by analyzing student code comments. Further, we implemented machine learning 82

models to achieve the automated classification of students’/developers’ source code com- 83

ments. 84

The main contributions of our study are: 85

• An extension to the taxonomy of the source code comments introduced in [9,10]; 86

• Automated classification of students’/developers’ source code comments using 87

machine learning techniques. 88

The remainder of this paper is structured as follows: The related research work is 89

highlighted in Section 2 to find the significant gap. Section 3 describes the methodology 90

exploited to conduct the research, and the experiment is explained in Section 4. The results 91

and analysis of the research are reported in Section 5. Finally, Section 6 represents the 92

conclusions and provides potential future research directions. 93

2. Related Work 94

Research on code comments has been an active area of research in the past decades. 95

Many researchers have investigated code comments regarding their relation to code con- 96

cerning various factors. These studies help us understand the effectiveness of code com- 97

ments and their influence on different aspects of software design and implementation. The 98

related literature is divided into six categories connected to our study: (i) code comments 99

for code maintainability, (ii) code comments for bug detection, (iii) comments generation 100

and code summarizing, (iv) code comments as a means of documentation, (v) code com- 101

ments quality aspect and categorization, and (vi) analysis of student code comments. 102

2.1. Code Comments for Code Maintainability 103

Figure 1. Example of code comments in Java program file. Reprinted/adapted with permission
from [8] Copyright 2019, by Luca Pascarella, Magiel Bruntink, Alberto Bacchelli.

Algorithms 2023, 16, 53 3 of 19

This research study has provided the key contributions to taxonomy introduced
in [9,10] by analyzing student code comments. Further, we implemented machine learning
models to achieve the automated classification of students’/developers’ source code comments.

The main contributions of our study are:

• An extension to the taxonomy of the source code comments introduced in [9,10];
• Automated classification of students’/developers’ source code comments using ma-

chine learning techniques.

The remainder of this paper is structured as follows: The related research work is
highlighted in Section 2 to find the significant gap. Section 3 describes the methodology
exploited to conduct the research, and the experiment is explained in Section 4. The results
and analysis of the research are reported in Section 5. Finally, Section 6 represents the
conclusions and provides potential future research directions.

2. Related Work

Research on code comments has been an active area of research in the past decades.
Many researchers have investigated code comments regarding their relation to code con-
cerning various factors. These studies help us understand the effectiveness of code com-
ments and their influence on different aspects of software design and implementation. The
related literature is divided into six categories connected to our study: (i) code comments for
code maintainability, (ii) code comments for bug detection, (iii) comments generation and
code summarizing, (iv) code comments as a means of documentation, (v) code comments
quality aspect and categorization, and (vi) analysis of student code comments.

2.1. Code Comments for Code Maintainability

Many researchers have studied the source code comments and revealed interesting
findings that encourage programmers to follow this useful code convention. The benefits
of good commenting extend beyond the primary benefit of providing information to the
reader. Comments are an important element of code quality. They help document how
the code is supposed to work. This increases programmer understanding, making the
code more maintainable. Tenny et al. [3,4] suggested that commenting on a source code
enhances its readability, as discussed in that leads to bug detection, discussed by Rubio-
Gonz et al. and Subramanian et al. [5,6] and improved testing, discussed by Goffi et al. [7].
Hartzman et al. [11] studied the roles of comments in the maintenance of large software
systems depicting the need for source code comments for maintainability. Jiang et al. [12]
suggested that outdated comments that no longer align with the associated method entities
result in confusion for the developers and hinder the process of future code-changing. As
evident from the results, writing quality source code comments in a program is regarded
as a good practice, as studied by de Souza et al. [13]. Oman et al. and Garcia et al. [14,15]
introduced a quality metric called the code/comment ratio to quantify the quality of the
overall code. Further tools are developed to assess the quality of the source code comments.
For example, Khami [16] designed a tool called JavaDocMiner to check the quality of
JavaDoc comments. It is based on natural language processing and evaluates the comment
content concerning “language” and its relevance with the associated code. Steidl et al. [17]
suggested that for analyzing the quality of code comments, a machine learning model was
used, and assessment was carried out on various comment categories, including “header
comments, member comments, in-line comments, section comments, code comments, and
task comments.” Similarly, as an extension to the previous work, Sun et al. [18] gave useful
recommendations by performing a comprehensive assessment of the comments in jdk8.0
and jEdit.

2.2. Code Comments for Bug Detection

Many researchers have exploited code comments to gain useful insights for software
quality assurance perspectives. The developers often overlook inconsistencies between
code and comments as the codebase grows. Tan et al. [19] suggest that bugs can be

Algorithms 2023, 16, 53 4 of 19

automatically detected between inconsistent code and comments. The experimental results
present evidence that their tool, iComment, can extract 1832 rules from comments with
90.8–100% accuracy and detect 60 comment-code inconsistencies, 33 new bugs, and 27 bad
comments in the latest versions of the four programs. Nineteen of these issues (twelve bugs
and seven bad comments) were confirmed by the corresponding developers, while the
other issues are currently under investigation by the developers. Ratol et al. [20] studied
the process of refactoring a source code. Code comments can be used to facilitate the
change introduced by the refactoring. Code comments were used to help in the refactoring
activities, thus enhancing the code’s maintainability. Few studies have been conducted
to analyze GitHub commits; for example, Das et al. [21] analyzed GitHub commits to
investigate the performance issues in Android application.

2.3. Comments Generation and Code Summarizing

Various studies have been conducted in the context of experimenting with com-
ment generation and code summarizing to produce comments from the existing code.
The techniques employed by machine translation were suggested by Allamanis et al.
and Hu et al. [22,23], and information retrieval was suggested by Haiduc et al. and
Huang et al. [24–26] to generate comments. The study by Lawrie et al. [27] employed
an information retrieval approach using the cosine similarity for assessing the program’s
quality with the hypothesis that “if the code is high quality, then the comments give
a good description of the code”. Marcus et al. [28] introduced an innovative information
retrieval approach to distinguish traceability links between source code and comments.
Chen et al. [29] worked on automatically identifying the scope of the code comments in
Java programs by employing machine learning techniques. However, they propose that
natural language processing techniques can also be applied to evaluate the similarities
between code comments and the corresponding code entities.

2.4. Code Comments as a Means of Documentation

In the literature, researchers also investigated the contents of comments in their
work to further assess the need for writing informative and meaningful code comments.
Hata et al. [30] investigated the role of links in code comments, their prevalence, purpose,
and targets. Their investigation reveals diversity in the usage of links in comments, and
links decay over time and evolve after they have been referenced in the source code
comments. Similarly, Alghamdi et al. [31] studied comments concerning the presence of
primitive data types through advanced lexical methods and demonstrated that developers
document the primitive data types in the code comments to give additional information
regarding purpose and usage.

2.5. Code Comments Quality Aspect and Categorization

As apparent from the above sections, code commenting practice varies among devel-
opers, and different code comments serve different purposes and meanings. Eventually,
this leads to an interesting research area of comment classification. Some of the earliest
studies by Haouari et al. and Steidl et al. [17,32] that worked on comment classification
presented valuable results. Additionally, Zhai et al. [33] introduced a taxonomy by consid-
ering the code entities and the code perspectives of the comments. They also experimented
with the propagation of comments from one code entity to another. However, classifying
comments was not their primary purpose. Moreover, Pascarella et al. [8] introduced a more
fine-grained taxonomy of code comments by studying comments from six open-source Java
projects and mobile applications. It resulted in two-layered taxonomy having 6 top layers
and 16 sub-layer categories. A statistically representative 1925 comments from files were
selected and then manually classified by the two authors using the COMMEAN application.
The authors used the supervised machine learning technique, probabilistic (Naïve Bayes
Multinomial), and the Decision Tree algorithm (Random Forest or J48).

Algorithms 2023, 16, 53 5 of 19

2.6. Analysis of Student Code Comments

Mohammadi-Aragh et al. [9] also assessed the commenting habits of students and
categorized them into different types. Beck et al. [10] collected student source code com-
ments and labeled them as “sufficient” or “insufficient” according to their codebook from
their previous research work and then implemented supervised machine learning tech-
niques. Their results suggest that introducing the lemmatization technique improved the
performance of the Random Forest classifier. However, it lowered the performance on
Multinomial Naïve Bayes on average. Additionally, Random Forest exceeded Naïve Bayes
classifier in both testing rounds based on the results. Vieira et al. [34] worked on promoting
in-code comments to self-explain the code written by students. Beck et al. [35] studied the
structure and proportion of student comments and code.

Furthermore, various studies have been conducted to build the taxonomy of source
code comments. For example, Table 1 contains the various aspects along with their names
and descriptions. It presents the aspects that were considered in various types of research
work on source code comments carried out in this particular domain. Table 2 is an overview
of the research studies that cover specific aspects of Table 1.

Table 1. Aspects considered in research.

Aspect Category Aspect Name Description

A1 Analysis of student
code commenting habit

Whether the dataset was taken of the
professional developers or students

A2 Taxonomy based on code cognition Types of comment categories based on comments
insights from the author re- flection

A3 Taxonomy based on program aspect Types of comment categories based on program
structure and related code entities

A4 Classification using machine learning method Any classification techniques that are applied to
carry out the research

Table 2. Analysis of existing research (A = Addressed, NA = Not Addressed).

Research Work A1 A2 A3 A4

J. Zhai et al. [33] NA NA A A
L. Pascarella and A. Bacchelli, [8] NA NA A A
P. Beck et al. [10] A A NA A
L. Pascarella [36] NA NA A A
R. E. Garcia [34] NA NA NA NA
M. J. Mohammadi-Aragh et al. [9] A A NA NA
H. Hata, C. Treude et al. [30] NA NA A NA
M. Alghamdi et al. [31] NA NA A NA
P. J. Beck [35] A NA NA A

The research study discussed herein mainly differs from the existing research work
in all the above aspects. In particular, previous studies were mostly based on codebases
produced by professional developers, whereas the current study investigates the code
commenting habits of novice developers. The work by Mohammadi-Aragh et al. [9]
is also related to students’ commenting habits, but the experiment was carried out for
the Python language; however, this research work has taken Java as the programming
language. To illustrate this point, consider the fact that programming languages differ in
their structure, as the former is a dynamically typed language and the latter is a statically
typed language, therefore, having a consequent impact on the programming concepts.
Moreover, the research work mentioned above used supervised machine learning methods
to train a binary classifier. In contrast, our model is capable of classifying data into different
categories, i.e., a multi-class classification model. Another aspect is a difference in the
granularity of the classification with respect to comment categorization.

Algorithms 2023, 16, 53 6 of 19

3. Methodology

The study aims to analyze the activities performed in the Java source code with the
purpose of manually investigating and classifying the source code activities using machine
learning techniques. The study was conducted from the viewpoint of novice developers and
researchers. The context of the study is based on the projects of novice students/developers
that were developed at Mohammad Ali Jinnah University.

3.1. Research Questions

The main objectives that drive the motivation behind this study are: is it possible
to analyze the code activities by novice developers and further classify the source code
comments that would help novice student developers to write meaningful code comments?
The intent is to make their code more readable. We formulated two research questions
(RQs) to investigate this study further.

RQ-1. Which kind of code activities are performed by novice students/developers in the source code?

Rationale: The primary rationale behind this research question is to analyze the key
activities developers mention in their source code comments. This research question
provides an idea to novice developers regarding the essential aspects that should be
considered for development. The features exploited in this RQ-1 are comment_content
and code, as shown in Table 3. As already described, the main idea is to see the novice
developers’ activities by analyzing comment code and its corresponding source code and
building a meaningful set of categories. The outcome of this research question will be
a taxonomy of categories mentioned in the source code.

Table 3. Description of the features extracted for the dataset preparation.

No. Feature Name Description

1 comment_content This feature contains the comment text written by the student
2 code This feature contains the relevant code about which the comment was written.
3 begin_line The line number of the file at which the comment begins.
4 end_line The end line of the comment.
5 code_start_line The start line for the relevant code section.
6 type The type of the comment, i.e., single-line or multi-line.
7 category This is the class that was labeled to the dataset using the taxonomy.

RQ-2. Is it possible to classify novice students’/developers’ source code comments using machine
learning techniques?

Rationale: This research question is dedicated to automatically classifying the novice
students’/developers’ source code comment categories obtained in RQ-1 using machine
learning techniques. Furthermore, the objective of this research question is to apply dif-
ferent machine-learning approaches to source code comments and eventually find the
best machine-learning approach for classifying code comments. This will help novice
developers to categorize the new comments in the correct categories.

It is important to note here that the work examines student code comments with
a finer categorization of their comments, as discussed at the end of Section 2.6. The
objective of this research question is also to lay out the methodology of machine learning
techniques based on multi-label classification, which will provide an outcome of how
effective this approach is at predicting code comments for novice developers.

The proposed method in Listing 1 represents the high-level pseudo-code algorithm,
which describes the overall methodology. The methodology of our study consists of
two parts: (i) Preparation of taxonomy of code comments using source code comments
(M1), and (ii) classification of source code comments categories using machine learning
techniques (M2). M1 aims to address RQ-1, whereas M2 is dedicated to RQ-2, described in
the research question section. For the RQ-2 methodology, we used three machine learning

Algorithms 2023, 16, 53 7 of 19

techniques to classify the source code’s comments: (i) Support Vector Machine, (ii) Random
Forest, and (iii) Decision Tree.

Listing 1. Pseudo code of classification of code comments.

1
2 Input: Comments extracted from the source code
3 Parameter: Hyperparamter tuning
4 Output: Label comments
5 Steps of M1: Preparation of dataset of source code comments
6 building taxonomy of source code comments
7
8 1. Pre-processing the raw java source code.
9 2. Building the parser to parse the raw source code and extract code comments in JSON object
format
10 3. The JSON object is converted into CSV
11 4. Building Taxonomy and Dataset Annotation
12
13 Steps of M2: Classification of source code comments categories using machine learning
techniques
14
15 5. Extract the dependent feature.
16 6. Add the dependent feature to the original dataset.
17 7. Split the dataset into training and testing
18 8. Hyperparameter Tuning

3.2. Context Selection

The context of this study is 70 web development projects written in Java language
by novice students/developers at the Department of Computer Science, Mohammad Ali
Jinnah University. We built the dataset of source code comments from the Java code
projects, and these comments are extracted by the parser, which is built in JavaScript.
There are two approaches used in Java programming to comment in the source code, i.e.,
(i) single-line comment and (ii) multi-line comment.

Single-line comments start with//.
Example System.out.println(“Hello World”);//This is the example comment
Multi-line comments start with/* and end with */.
Example:///* The code will print the character of words to the screen, then use it in line 4*/

Figure 2 represents the flow chart of the classification of code comments that describes
the overall flow of our algorithm. The raw Java code is initially pre-processed, and then
we parse it to create a JSON object, which is then converted to CSV. In CSV, we obtain our
dataset, which consists of 5000 total comments, and then annotate it using our designed
taxonomy, represented in Table 4. We then extract the dependent features, and add those
features to our dataset. The dataset was then split into training and testing to apply
the machine learning algorithm and tune their hyper-parameters to improve the results
even further.

Table 4. Taxonomy and annotation with new categories.

SNO Category Frequency Description

1 Literal 1333 (26.66%) A comment that just restates the source code and does not provide any additional insight into the
program’s logic.

2 Insufficient 1333 (26.66%) Code comments might be classified as “insufficient,” either if they do not provide enough information for
understanding the code or if, even if they are verbose, they add no value.

3 Conceptual 1111 (22.22%)
Conceptual comments explain source code functionality without simply restating the source code.
Conceptual comments are not mere translations of source code in English but explain its functionality in
greater detail to a code reviewer or another outside developer.

Algorithms 2023, 16, 53 8 of 19

Table 4. Cont.

SNO Category Frequency Description

4 License 259 (5.18%) The code comments that contain information on the terms of use and the licensing of the
source code.

5 Profile 240 (4.80%) These code comments provide references to the authors and their ownership of the work, as well as
source credentials in the form of an “@author” tag.

6 Irrelevant 240 (4.80%) The type of code comments for which it is not easy to comprehend their meaning and they do not
clearly describe the associated code and are not related.

7 Commented
code 222 (4.44%) This category includes all comments that contain

source code commented out by developers.

8 Organizational 92 (1.84%)

Organizational comments are used to communicate the structure of code. They typically take the form of
a short comment that explains
a module or block of code, separating one functional unit from another. This demonstrates that the
programmer is attempting to present code in a way that helps other coders easily understand it.

9 Autogenerated 74 (1.48%)
This category includes Auto-generated code. These are typically the metadata left behind by an IDE
and contain only the skeleton with
a placeholder provided by the IDE.

10 Improper 55 (1.10%) This category includes comments that are not properly implemented, e.g., a comment should have
an associated code directly below the comment body without any empty lines in between.

11 Empty 41 (0.82%) This category includes the comments that do not contain anything,
for example //

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 22

Example:///* The code will print the character of words to the screen, then use it in line 4*/

Figure 2 represents the flow chart of the classification of code comments that de- 267

scribes the overall flow of our algorithm. The raw Java code is initially pre-processed, and 268

then we parse it to create a JSON object, which is then converted to CSV. In CSV, we obtain 269

our dataset, which consists of 5000 total comments, and then annotate it using our designed 270

taxonomy, represented in Table 4. We then extract the dependent features, and add those 271

features to our dataset. The dataset was then split into training and testing to apply the 272

machine learning algorithm and tune their hyper-parameters to improve the results even 273

further. 274

 275

Figure 2. Flow chart of classification of code comments. 276

3.3. Data Extraction 277

As already discussed, we split the methodology for RQ1 and RQ2 as M1 and M2, 278

respectively. The data extraction process of the research questions is described in M1 and 279

M2. 280

3.3.1. M1: Preparation of dataset of source code comments and building taxonomy of 281

source code Comments 282

As shown in Figure 3 and Listing 1, the steps from 1 to 4 of the figure and algorithm 283

cover the data extraction of RQ1. It defines the overall procedure of dataset preparation 284

which is sub-divided into four parts, (i) pre-processing of java source code, (ii) building the 285

parser, (iii) the JSON object is converted into CSV, and (iv) building taxonomy and 286

dataset annotation, which are described as follows: 287

• Pre-processing of java source code: The dataset required to carry out this re- 288

search was prepared by pre-processing the raw source code. This raw source code is 289

obtained from the lab assignments of sophomore-year students in the computer sci- 290

ence discipline. We only considered the java source code files for our study. Initially, 291

Figure 2. Flow chart of classification of code comments.

3.3. Data Extraction

As already discussed, we split the methodology for RQ-1 and RQ-2 as M1 and M2,
respectively. The data extraction process of the research questions is described in M1 and M2.

Algorithms 2023, 16, 53 9 of 19

3.3.1. M1: Preparation of Dataset of Source Code Comments and Building Taxonomy of
Source Code Comments

As shown in Figure 3 and Listing 1, the steps from 1 to 4 of the figure and algorithm
cover the data extraction of RQ-1. It defines the overall procedure of dataset preparation
which is sub-divided into four parts, (i) pre-processing of java source code, (ii) building the
parser, (iii) the JSON object is converted into CSV, and (iv) building taxonomy and dataset
annotation, which are described as follows:

• Pre-processing of java source code: The dataset required to carry out this research
was prepared by pre-processing the raw source code. This raw source code is ob-
tained from the lab assignments of sophomore-year students in the computer science
discipline. We only considered the java source code files for our study. Initially, we
prepared a dedicated script to obtain all the projects that are: (i) complete projects and
(ii) programs built in java language. This results in a total of 70 projects.

• Build the parser and Parse the raw source code to create JSON object: A parser was
developed in JavaScript language to parse the java source code files and extract the
code-comment pairs. The parser goes through a directory, traverses all sub-directories
within that directory, and searches all files with a .java file extension. It reads the files
one by one, extracts the code-comments pairs from those files, and creates a JSON
object. That extended JSON object is later converted to CSV file format so that this can
be used for machine learning experiments.

• The JSON object converted into CSV: Data pre-processing is the first and most crucial
phase in the research analysis. Data pre-processing is applied to the CSV file that is
obtained by the parser. Intensive pre-processing would be required to convert the raw
code into a usable dataset.

• Building Taxonomy and Dataset Annotation: The generated dataset was carefully an-
alyzed, the annotation for the dataset was performed from the existing taxonomy [9,10],
and new categories in the taxonomy were also introduced. Table 4 below contains all
the information about the taxonomy, which consists of the comment type name and
its description (the types in bold text are newly introduced types in the taxonomy).

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 22

 333

Figure 3. Overall methodology. 334

4. Experiment 335

Several experiments are performed to assess the effectiveness of the suggested 336

method. A machine equipped with an Intel Xeon E5-2630 v4 CPU, 64G RAM, Windows 337

10 with 64-bit OS, and the Jupyter notebook was used to conduct the tests. We exploited 338

precision, recall, and accuracy as the performance metrics to report the results. 339

4.1. Characteristics of Datasets 340

In order to run machine learning experiments, it is important to have datasets available 341

for these experiments. Often, the data required for an experiment are not readily available 342

in the desired format. Therefore, it must be created from scratch. Similarly, this was the 343

case in our experiment, and we had to prepare our datasets. A total of 5000 samples were 344

acquired in the dataset preparation process. The information contained in Table 3 describes 345

each feature/attribute present in our dataset. 346

4.2. Performing Feature Extraction 347

The feature engineering step was carried out on the data, and some new features 348

were created from the existing data. This step is also called feature extraction. These new 349

features were extracted to improve the machine learning results and enrich the feature set. 350

Table 5 describes the new features that resulted after the feature engineering step. 351

Table 5. New features introduced in the dataset during feature engineering process. 352

No. Feature Name Description

1

2

3

comment_length

is_license

comment_token_length

The number of characters present in the com-

ment content.

Indicates whether the comment falls in the License cate-

gory with a value of 1 or 0 (1: yes, 0: no)

The number of tokens present in the comment content.

Figure 3. Overall methodology.

Figure 3 depicts the overall methodology, which consists of two steps (M1 and M2),
each represented by an arrow symbol and each sub-step by a number. The first step, which
we called M1, was the preparation of the dataset represented by 1–4. In substep 1, the raw
source code is pre-processed. In the second sub-step, the parser is built through which
the raw source code is parsed to create a JSON object containing the source code com-

Algorithms 2023, 16, 53 10 of 19

ments. In the third sub-step, the JSON object is converted into CSV. In the fourth sub-step,
a taxonomy is built, and the annotation is performed on a CSV file. The second step, M2,
involves the classification of source code using various machine learning algorithms; the
second part is represented as 5–8. In the fifth sub-step, feature extraction is performed, and
in the sixth sub-step, we divided the dataset into training and testing. Then, in the seventh
sub-step, a machine learning classification model was implemented, and in the last sub-step,
three evaluation measures were used to evaluate the performance of the algorithm.

3.3.2. M2: Classification of Source Code Comments Categories Using Machine
Learning Techniques

The methodology (M2) covers points from 5 to 8 in the algorithm and aims to answer
RQ-2. M2 consists of 4 steps, i.e., (i) extract the dependent features from data, (ii) add the
extracted features to the original dataset, (iii) split the dataset into training and testing, and
(iv) tune the hyper-parameter for the machine learning model. We further explain these
steps in detail in the next Experiment section.

4. Experiment

Several experiments are performed to assess the effectiveness of the suggested method.
A machine equipped with an Intel Xeon E5-2630 v4 CPU, 64G RAM, Windows 10 with
64-bit OS, and the Jupyter notebook was used to conduct the tests. We exploited precision,
recall, and accuracy as the performance metrics to report the results.

4.1. Characteristics of Datasets

In order to run machine learning experiments, it is important to have datasets available
for these experiments. Often, the data required for an experiment are not readily available
in the desired format. Therefore, it must be created from scratch. Similarly, this was the
case in our experiment, and we had to prepare our datasets. A total of 5000 samples were
acquired in the dataset preparation process. The information contained in Table 3 describes
each feature/attribute present in our dataset.

4.2. Performing Feature Extraction

The feature engineering step was carried out on the data, and some new features
were created from the existing data. This step is also called feature extraction. These new
features were extracted to improve the machine learning results and enrich the feature set.
Table 5 describes the new features that resulted after the feature engineering step.

Table 5. New features introduced in the dataset during feature engineering process.

No. Feature Name Description

1 comment_length The number of characters present in the comment content.
2 is_license Indicates whether the comment falls in the License category with a value of 1 or 0 (1: yes, 0: no)
3 comment_token_length The number of tokens present in the comment content.
4 is_profile Indicates whether the comment falls in the Profile category with a value of 1 or 0 (1: yes, 0: no)

4.3. Training and Testing the Model

After feature extraction, the dataset is split into the training and test set. The training
set is used to train the classifier with the help of hyperparameter tuning, and later the
model was evaluated according to accuracy and other parameters by using the test set
for predictions.

Code comments written by students are often too general or premature and lack the
precision of those written by more experienced developers. From the code perspective, the
apparent characteristics of the code comments can be extracted as the features, e.g., what
is the text that creates a comment, from where does the comment start, etc. The features
listed in Table 3 were extracted based on these apparent characteristics of comments to

Algorithms 2023, 16, 53 11 of 19

prepare the initial dataset for this experiment. The initial dataset was examined, and
a feature engineering process was performed to derive more meaningful features that can
enhance the overall prediction of the machine learning model. The impact of features from
Table 5 is demonstrated in the Result and Discussion section.

4.4. Hyperparameter Tuning

Hyperparameters are the adjustable parameters of a machine learning model architec-
ture, and these cannot be assigned randomly, but rather optimizing and selecting the ideal
parameters is needed to improve the machine learning model’s performance. Therefore,
this process is called hyperparameter tuning. We performed the hyperparameter tuning
of the machine learning model in our experiments to enhance their overall performance.
K-fold cross-validation of 5 folds was applied to tune the machine learning model and gain
the values for the hyperparameters.

Among the three classifiers, Decision Tree was the most accurate classifier for predict-
ing the comment categories, and then Random Forest also gave relatively better results.
However, Support Vector Machine only performed well on the textual data; therefore, we
performed hyperparameter tuning on the Random Forest to further improve its results. As
discussed above, the 5-fold cross-validation method was used to obtain the values for the
hyperparameters. We employed GridSearchCV from the Scikit-learn library; it is a method
that exhaustively considers all parameter combinations (as shown in Listing 2), providing
a means for finding the best parameter settings.

Listing 2. Parameter combinations for the hyperparmater tuning of Random Forest classifier.

1 param_grid_rf = {
2 ’ n_estimator ’: [200, 300, 400, 500, 600, 700, 800, 1000],
3 max_features’: [’ auto ’],
4 ’ max_depth’: [20, 22, 24, 26, 28, 30],
5 ’ random_state’: [x for x in range (6,100,2)]

6 }

4.5. Evaluation and Performance Metrics

Every experiment evaluation requires some performance measure to validate the
results. We used four performance measures in our study, i.e., accuracy, precision, recall, and
F1-Scores. The main reasons for selecting these measures are their widespread acceptance in
machine learning. These performance measures are obtained from the classification report
of the machine learning model.

Model accuracy measures how accurately a classification model predicts classifications.
A model’s accuracy is defined by the number of correct classifications divided by the
number of total predictions.

Accuracy =
Total Number o f Correct reponses f or a class

Total Number o f responses f or a class

The precision measure is also known as positive predictive value (PPV), which indicates
the proportion of positive instances among all the positive class predictions. This predic-
tion measure is defined for each class output individually. The outcome is different for
each parameter.

Precision(class) =
Total Number o f Correct predictions f or a class

Total Number o f resulting predictions f or a class

Algorithms 2023, 16, 53 12 of 19

The recall tells how many of all the positive samples were correctly identified as such
by the classifier. It is also known as true positive rate (TPR) or sensitivity. Recall measure is
also defined for each class output individually.

Recall(class) =
Total Number o f Correct predictions f or a class
Total Number o f Actual predictions f or a class

By calculating the harmonic mean of a classifier’s precision and recall, the F1-score
integrates both into a single metric.

F1 − Score(class) =
2 × Precision × Recall

Precision + Recall

5. Results and Discussion
5.1. RQ-1 Which Kind of Code Activities Are Performed by Novice Students/Developers in the
Source Code?

In order to answer this research question, we manually analyzed each comment’s
content and assigned them a suitable category. The category should be a representation of
the whole source code comment. Master’s students performed this activity for all the source
code comments. The student’s supervisor and co-supervisor cross-checked the labels to
verify this activity. The outcome of this labeling activity was a taxonomy of categories
representing different aspects of the source code.

According to our results, the source code comments are mainly distributed in the
categories such as Literal, Insufficient, Conceptual, License, Profile, Irrelevant, Commented
code, Autogenerated, Improper, and Empty. The distribution of the dataset according to the
“category” is reported in Table 4 and Figure 4. We observed that the more frequent source
code comment categories in our dataset are “Insufficient” and “Literal” (1333, 26.66% each).
This may be due to students’ inability to write better comments as the large proportion
of comments falls in the “Insufficient” and “Literal” categories. The Literal category just
restates the source code and does not provide any additional insight into the program logic.
Whereas in the Insufficient category, comments either do not provide enough information for
understanding or are verbose, i.e., adding no value. Moreover, large numbers of conceptual
comments (1111, 22.22%) are present in our dataset, followed by License (259, 5.18%). This
makes sense because, generally, students write some conceptual comments to explain the
functionality of source code in detail without simply restating the code. License comments
are more focused on the terms of use and the licensing of the source code. It usually appears
at the top of the source code.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 22

comments are more focused on the terms of use and the licensing of the source code. It usu- 436

ally appears at the top of the source code. 437

Empty (41, 0.82%) category source code comments are rare in our dataset. We presume 438

that developers very rarely write “//” or does not write any comment on the source code. 439

Furthermore, as discussed, Table 4 depicts the complete taxonomy that is obtained after 440

pre-processing, carefully analyzing, and annotation of the source code comments. The bold 441

category type, frequency, and description are indicated as our contribution as new catego- 442

ries to the existing taxonomy. The new categories of the taxonomy that emerged from our 443

dataset are: 444

• License (259, 5.18%): License is the code comments that contain information on 445

the terms of use and the licensing of the source code. It usually appears at the top 446

of the source code. 447

• Profile (240,4.80%): This comment contains the information of authors and the 448

ownership of the work; it usually begins with the “@author” tag. 449

• Irrelevant (240, 4.80%): It is not easy to comprehend the meaning of the comment. 450

This type of comment does not describe the associated code. 451

• Commented code (222, 4.44%): This category contains all the comments that con- 452

tain source code which were commented out by the developer. 453

• Auto-generated (74, 1.48%): This category contains metadata left behind by an 454

IDE and contains only the skeleton with a placeholder provided by the IDE. 455

• Improper (55, 1.10%): This category includes comments that are not properly im- 456

plemented, e.g., a comment should have an associated code directly below the 457

comment body without any empty lines in between. 458

From the above results, these obtained categories can be used as a checklist for novice 459

developers to check what types of comments developers focus on during software de- 460

velopment. It is interesting to note that novice developers frequently mention the Literal 461

type of comments in their source code. This is reasonable because the comments of novice 462

developers are more specific to what they are implementing in their source code. Moreover, 463

the comments type Empty has been used significantly less by novice developers, which 464

means developers tend to comment on what activities are performed in source code. 465

 466

Figure 4. Distribution of code-comments data by the type column feature. 467

Distribution of Data According to Type of Comments 468

We further analyzed that there are two types of comments present in our dataset: (i) 469

single-line comments and (ii) multi-line comments. The data distribution according to the 470

Figure 4. Distribution of code-comments data by the type column feature.

Algorithms 2023, 16, 53 13 of 19

Empty (41, 0.82%) category source code comments are rare in our dataset. We presume
that developers very rarely write “//” or does not write any comment on the source code.

Furthermore, as discussed, Table 4 depicts the complete taxonomy that is obtained
after pre-processing, carefully analyzing, and annotation of the source code comments.
The bold category type, frequency, and description are indicated as our contribution as new
categories to the existing taxonomy. The new categories of the taxonomy that emerged
from our dataset are:

• License (259, 5.18%): License is the code comments that contain information on the
terms of use and the licensing of the source code. It usually appears at the top of the
source code.

• Profile (240,4.80%): This comment contains the information of authors and the owner-
ship of the work; it usually begins with the “@author” tag.

• Irrelevant (240, 4.80%): It is not easy to comprehend the meaning of the comment.
This type of comment does not describe the associated code.

• Commented code (222, 4.44%): This category contains all the comments that contain
source code which were commented out by the developer.

• Auto-generated (74, 1.48%): This category contains metadata left behind by an IDE
and contains only the skeleton with a placeholder provided by the IDE.

• Improper (55, 1.10%): This category includes comments that are not properly imple-
mented, e.g., a comment should have an associated code directly below the comment
body without any empty lines in between.

From the above results, these obtained categories can be used as a checklist for novice
developers to check what types of comments developers focus on during software de-
velopment. It is interesting to note that novice developers frequently mention the Literal
type of comments in their source code. This is reasonable because the comments of novice
developers are more specific to what they are implementing in their source code. Moreover,
the comments type Empty has been used significantly less by novice developers, which
means developers tend to comment on what activities are performed in source code.

Distribution of Data According to Type of Comments

We further analyzed that there are two types of comments present in our dataset:
(i) single-line comments and (ii) multi-line comments. The data distribution according
to the “type” column is shown in Table 6, along with its graphical representation in
Figure 5. It is evident from the figure that students are more comfortable writing single-line
comments than writing more detailed comments in the form of multi-line. We attribute
this to the fact that students are still in the learning phase and lack attention to the code
documentation aspect.

Algorithms 2023, 16, x FOR PEER REVIEW 16 of 22

“type” column is shown in Table 6, along with its graphical representation in Figure 5. It 471

is evident from the figure that students are more comfortable writing single-line com- 472

ments than writing more detailed comments in the form of multi-line. We attribute this 473

to the fact that students are still in the learning phase and lack attention to the code 474

documentation aspect. 475

After the dataset and taxonomy preparation, the experiments were carried out in Py- 476

thon using the Jupyter notebook. Mainly, three machine learning algorithms were imple- 477

mented to conduct the experiment: Support Vector Machine, Random Forest, and Decision Trees. 478

Table 7 reports the results of three models for their accuracy measure with a comparison of 479

the after and before feature extraction steps. The results show that all three classifiers’ per- 480

formance was enhanced after implementing feature extraction. 481

5.2. RQ-2 Is It Possible to Classify Student Source Code Comments Using Machine 482

Learning Techniques? 483

In order to answer this research question, we applied three machine learning al- 484

gorithms to our labeled dataset obtained in RQ1. The algorithms considered in our study 485

to classify the source code comments are: (i) Support Vector Machine (SVM), (ii) Decision 486

Tree, and (iii) Random Forest. After the machine learning models were implemented, 487

the results were recorded. We analyzed the results with three performance parameters, 488

i.e., accuracy, precision, and recall. 489

Table 7 and Figure 6 represent the comparison of the accuracy measure for all three 490

classifiers. The feature extraction helped in improving the overall performance of all three 491

classifiers. As apparent from the results, the Decision Tree algorithm outperformed the rest 492

of the two models with an overall accuracy of 0.85 (85%). The performance of the Support 493

Vector Machine was poor. We presume that this is the one main reason it was not used pre- 494

viously for such a problem, i.e., classification of source code comments. 495

Figure 6 shows a graphical representation of the accuracy before feature extraction and 496

after feature extraction. 497

Table 6. Distribution of data by “type” column. 498

Type Total

Single-line 4333

Multi-line 667

 499

Figure 5. Distribution of code-comments data by the type column feature. 500

Table 7. Accuracy measure of proposed machine learning algorithm. 501

Figure 5. Distribution of code-comments data by the type column feature.

Algorithms 2023, 16, 53 14 of 19

Table 6. Distribution of data by “type” column.

Type Total

Single-line 4333
Multi-line 667

After the dataset and taxonomy preparation, the experiments were carried out in
Python using the Jupyter notebook. Mainly, three machine learning algorithms were imple-
mented to conduct the experiment: Support Vector Machine, Random Forest, and Decision Trees.
Table 7 reports the results of three models for their accuracy measure with a comparison
of the after and before feature extraction steps. The results show that all three classifiers’
performance was enhanced after implementing feature extraction.

Table 7. Accuracy measure of proposed machine learning algorithm.

Method Before Feature Extraction After Feature
Extraction

Random Forest 0.68 (68%) 0.84 (84%)
Decision Tree 0.72 (72%) 0.85 (85%)

Support Vector Machine 0.31 (31%) 0.59 (59%)

5.2. RQ-2 Is It Possible to Classify Student Source Code Comments Using Machine Learning
Techniques?

In order to answer this research question, we applied three machine learning algo-
rithms to our labeled dataset obtained in RQ-1. The algorithms considered in our study to
classify the source code comments are: (i) Support Vector Machine (SVM), (ii) Decision Tree,
and (iii) Random Forest. After the machine learning models were implemented, the results
were recorded. We analyzed the results with three performance parameters, i.e., accuracy,
precision, and recall.

Table 7 and Figure 6 represent the comparison of the accuracy measure for all three
classifiers. The feature extraction helped in improving the overall performance of all three
classifiers. As apparent from the results, the Decision Tree algorithm outperformed the rest
of the two models with an overall accuracy of 0.85 (85%). The performance of the Support
Vector Machine was poor. We presume that this is the one main reason it was not used
previously for such a problem, i.e., classification of source code comments.

Algorithms 2023, 16, x FOR PEER REVIEW 17 of 22

Method
Before Feature Ex-

traction

After Feature

Extraction

Random Forest 0.68 (68%) 0.84 (84%)

Decision Tree 0.72 (72%) 0.85 (85%)

Support Vector Machine 0.31 (31%) 0.59 (59%)

 502

Figure 6. Classifiers accuracy before and after feature extraction. 503

One interesting aspect to note from Table 8 and Figure 7 is that the Support Vector 504

Machine classifier produced good results when only the text feature (i.e., comment content) 505

was selected as the only predictor for the machine learning model. However, when both 506

quantitative data (numerical information such as token comment size, length, etc.) and 507

textual data (e.g., comment text) were used as predictors, both Random Forest and Decision 508

Tree achieved good performance. 509

 510

Figure 6. Classifiers accuracy before and after feature extraction.

Algorithms 2023, 16, 53 15 of 19

Figure 6 shows a graphical representation of the accuracy before feature extraction
and after feature extraction.

One interesting aspect to note from Table 8 and Figure 7 is that the Support Vector
Machine classifier produced good results when only the text feature (i.e., comment content)
was selected as the only predictor for the machine learning model. However, when both
quantitative data (numerical information such as token comment size, length, etc.) and
textual data (e.g., comment text) were used as predictors, both Random Forest and Decision
Tree achieved good performance.

Table 8. Accuracy of all three classifiers on text data.

Method Accuracy on Text Feature

Random Forest 0.83 (83%)
Decision Tree 0.86 (86%)

Support Vector Machine 0.83 (83%)
Algorithms 2023, 16, x FOR PEER REVIEW 18 of 22

 511

Figure 7. Accuracy of all three classifiers on text data only. 512

Table 8. Accuracy of all three classifiers on text data. 513

Method Accuracy on Text Feature

Random Forest 0.83 (83%)

Decision Tree 0.86 (86%)

Support Vector Machine 0.83 (83%)

P. Beck et al. [10] evaluated and analyzed the code comments with a single label as 514

either sufficient or insufficient using a binary classifier. In their research study, they only 515

considered the text feature of the comments. They demonstrated that after the reduction 516

in the vocabulary size due to lemmatization, the Multinomial Naive Bayes classifier’s 517

accuracy was reduced by 5%, but Random Forest Classifier’s accuracy was improved by 518

6%. The results of their study reveal that they achieved an overall precision rate of 82% 519

using Multinomial Naïve Bayes. By using a Random Forest classifier and lemmatization, 520

they were able to achieve a classification precision of 90%. In another study, L. Pascarella [36] 521

compared the performance of two machine learning models to automatically classify code 522

comments in five open-source mobile applications. Their aim was to assess code comments 523

produced by professional developers. Specifically, they used two well-known classes 524

of supervised machine learning algorithms based on probabilistic classifiers and Decision 525

Tree algorithms: Naive Bayes Multinomial and Random Forest. According to their results, 526

Random Forest outperformed the Naive Bayes Multinomial classifier in automatically 527

classifying the code comments. In our research study, we employed three different machine 528

learning classifiers to compare their performance results. All three models produced bet- 529

ter results on text data; however, when the other quantitative features were taken into 530

account, both Random Forest and Decision Tree produced good results than the Support 531

Vector Machine, with Decision Tree having the highest accuracy, i.e., 85%. It is interesting 532

to note that previous studies, as discussed above, also revealed the effectiveness of the 533

Random Forest classifier for classifying source code comments. 534

Table 9and Figure 8 represent the precision, recall and F1-Score of Random Forest and 535

Decision Tree on all the source code comments categories of our dataset. The overall 536

accuracy achieved in the case of Random Forest is 0.84 (84%), whereas the overall accuracy 537

in the case of Decision Tree is 0.85 (85%), which means we obtain the best result on the Deci- 538

sion Tree. 539

 540

Figure 7. Accuracy of all three classifiers on text data only.

P. Beck et al. [10] evaluated and analyzed the code comments with a single label as
either sufficient or insufficient using a binary classifier. In their research study, they only
considered the text feature of the comments. They demonstrated that after the reduction in
the vocabulary size due to lemmatization, the Multinomial Naive Bayes classifier’s accuracy
was reduced by 5%, but Random Forest Classifier’s accuracy was improved by 6%. The
results of their study reveal that they achieved an overall precision rate of 82% using
Multinomial Naïve Bayes. By using a Random Forest classifier and lemmatization, they
were able to achieve a classification precision of 90%. In another study, L. Pascarella [36]
compared the performance of two machine learning models to automatically classify code
comments in five open-source mobile applications. Their aim was to assess code comments
produced by professional developers. Specifically, they used two well-known classes of
supervised machine learning algorithms based on probabilistic classifiers and Decision
Tree algorithms: Naive Bayes Multinomial and Random Forest. According to their results,
Random Forest outperformed the Naive Bayes Multinomial classifier in automatically
classifying the code comments. In our research study, we employed three different machine
learning classifiers to compare their performance results. All three models produced better
results on text data; however, when the other quantitative features were taken into account,
both Random Forest and Decision Tree produced good results than the Support Vector
Machine, with Decision Tree having the highest accuracy, i.e., 85%. It is interesting to note

Algorithms 2023, 16, 53 16 of 19

that previous studies, as discussed above, also revealed the effectiveness of the Random
Forest classifier for classifying source code comments.

Table 9 and Figure 8 represent the precision, recall and F1-Score of Random Forest and
Decision Tree on all the source code comments categories of our dataset. The overall accuracy
achieved in the case of Random Forest is 0.84 (84%), whereas the overall accuracy in the case
of Decision Tree is 0.85 (85%), which means we obtain the best result on the Decision Tree.

Table 9. The Precision, Recall anf F1-Score for Random Forest and Decision Tree.

Random Forest Decision Trees

Precision Recall F1-score Precision Recall F1-score

Autogenerated 1 0.5 0.67 1 0.5 0.67

Commented code 1 0.75 0.86 1 1 1

Conceptual 0.75 0.9 0.82 0.75 0.9 0.82

Improper 0 0 0 0 0 0

Insufficient 0.86 0.95 0.9 0.9 0.95 0.92

Irrelevant 1 0.67 0.8 0.67 0.67 0.67

License 1 1 1 1 1 1

Literal 0.78 0.74 0.76 0.82 0.74 0.78

Organizational 1 1 1 1 1 1

Profile 1 0.67 0.67 1 0.67 0.8

Overall Accuracy Overall Accuracy
0.84 0.85

Algorithms 2023, 16, x FOR PEER REVIEW 19 of 22

Table 9: The Precision, Recall anf F1-Score for Random Forest and Decision Tree 541

Random Forest Decision Trees

 Precision Recall
F1-

score
Precision Recall

F1-

score

Autogenerated 1 0.5 0.67 1 0.5 0.67

Commented code 1 0.75 0.86 1 1 1

Conceptual 0.75 0.9 0.82 0.75 0.9 0.82

Improper 0 0 0 0 0 0

Insufficient 0.86 0.95 0.9 0.9 0.95 0.92

Irrelevant 1 0.67 0.8 0.67 0.67 0.67

License 1 1 1 1 1 1

Literal 0.78 0.74 0.76 0.82 0.74 0.78

Organizational 1 1 1 1 1 1

Profile 1 0.67 0.67 1 0.67 0.8

 Overall Accuracy Overall Accuracy

 0.84 0.85

 542

Figure 8. The precision and recall for Random Forest and Decision Tree. 543

6. Conclusions 544

In this study, initially, we manually classified the source code comments and then 545

presented a machine-learning approach to classify source code comments written by novice 546

developers/students enrolled at Mohammad Ali Jinnah University. This work is inspired 547

by many aspects, such as student metacognition, focusing on internal student processes 548

while writing code; teacher–student feedback activity, introducing automated feedback 549

and reducing teacher dependency; and studying the machine learning approach to code- 550

comment analysis. The results of our study depicted that novice developers/students’ 551

comments are mainly related to Literal (26.66%) and Insufficient (26.66%). Further, we 552

proposed and extended a taxonomy of such source code comments by adding a few 553

more categories, i.e., License (5.18%), Profile (4.80%), Irrelevant (4.80%), Commented Code 554

(4.44%), Autogenerated (1.48%), and Improper (1.10%). Moreover, after applying different 555

machine learning algorithms, we found that the Decision Tree has the overall highest accu- 556

racy, i.e., 85%, and performed better than other studied techniques. Classification of 557

source code comments is important from the perspective of how students utilize this im- 558

portant code convention in providing the documentation for their programming code. 559

This study helps not only in predicting the type of code comments using the machine 560

Figure 8. The precision and recall for Random Forest and Decision Tree.

6. Conclusions

In this study, initially, we manually classified the source code comments and then
presented a machine-learning approach to classify source code comments written by novice
developers/students enrolled at Mohammad Ali Jinnah University. This work is inspired
by many aspects, such as student metacognition, focusing on internal student processes
while writing code; teacher–student feedback activity, introducing automated feedback
and reducing teacher dependency; and studying the machine learning approach to code-
comment analysis. The results of our study depicted that novice developers/students’
comments are mainly related to Literal (26.66%) and Insufficient (26.66%). Further, we
proposed and extended a taxonomy of such source code comments by adding a few more
categories, i.e., License (5.18%), Profile (4.80%), Irrelevant (4.80%), Commented Code (4.44%),

Algorithms 2023, 16, 53 17 of 19

Autogenerated (1.48%), and Improper (1.10%). Moreover, after applying different machine
learning algorithms, we found that the Decision Tree has the overall highest accuracy, i.e.,
85%, and performed better than other studied techniques. Classification of source code
comments is important from the perspective of how students utilize this important code
convention in providing the documentation for their programming code. This study helps
not only in predicting the type of code comments using the machine learning approach but
also can serve as a basis for designing a utility that can be implemented to generate auto-
mated feedback for students, thus, saving teachers’ time for manual one-on-one feedback,
which is a time-consuming activity. The objectives of this study included building a source
code parser, designing a taxonomy for the categorization of source code comments, and
implementing the different machine learning models and their results and evaluations. The
datasets for this research study were not available. Therefore, they were extracted from the
raw source code of student programming tasks. The machine learning models performed
classification with a reasonably good accuracy of 85%, achieved by Decision Tree, and hence,
outperformed the other two algorithms.

7. Future Work

This study provides a foundation for future directions in this area of research. As
previously discussed, the research in this software engineering domain is ongoing and
offers much potential for further study. This also opens more ways for pursuing research
in this field of study. In the future, other machine learning models can be analyzed by
their performance. Furthermore, the NLP approach to classifying source code comments
can be carried out and compared with the machine learning approach as a comparison.
Moreover, in the future, the idea related to predicting the contribution of each feature to
the classification model using Random Forest variables with SHAP can be implemented as
an extension to the current work with anticipation of further enhancing the effectiveness
and accuracy of our research objective. We also aim to incorporate the code context and
CodeBert in our intended extension of this research effort.

Author Contributions: Conceptualization, T.N. and S.W.; Methodology, T.N., T.D. and S.M.W.;
Software, T.N. and S.K. (Sumra Khan); Validation, T.D.; Investigation, T.D., S.K. (Sumra Khan) and
S.W.; Resources, G.A.; Data curation, G.A. and S.W.; Writing—original draft, S.M.W.; Writing—review
& editing, S.K. (Suleman Khan) and A.A.A.; Supervision, G.A. and S.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Smit, M.; Gergel, B.; Hoover, H.J.; Stroulia, E. Maintainability and source code conventions: An analysis of open source projects.

Univ. Alta. Dep. Comput. Sci. Tech. Rep. TR11 2011, 6.
2. dos Santos, R.M.; Gerosa, M.A. Impacts of coding practices on readability. In Proceedings of the 26th Conference on Program

Comprehension, Gothenburg, Sweden, 27–28 May 2018; pp. 277–285.
3. Tenny, T. Program readability: Procedures versus comments. IEEE Trans. Softw. Eng. 1988, 14, 1271. [CrossRef]
4. Tenny, T. Procedures and comments vs. the banker’s algorithm. Acm Sigcse Bull. 1985, 17, 44–53. [CrossRef]
5. Rubio-González, C.; Liblit, B. Expect the unexpected: Error code mismatches between documentation and the real world. In

Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, Toronto,
ON, Canada, 5–6 June 2010; pp. 73–80.

6. Subramanian, S.; Inozemtseva, L.; Holmes, R. Live API documentation. In Proceedings of the 36th International Conference on
Software Engineering, Hyderabad, India, 31 May–7 June 2014; pp. 643–652.

7. Goffi, A.; Gorla, A.; Ernst, M.D.; Pezzè, M. Automatic generation of oracles for exceptional behaviors. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, Saarbrücken, Germany, 18–20 July 2016; pp. 213–224.

8. Pascarella, L.; Bacchelli, A. Classifying code comments in Java open-source software systems. In Proceedings of the 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), Buenos Aires, Argentina, 20–28 May 2017;
pp. 227–237.

http://doi.org/10.1109/32.6171
http://doi.org/10.1145/382208.382523

Algorithms 2023, 16, 53 18 of 19

9. Mohammadi-Aragh, M.J.; Beck, P.J.; Barton, A.K.; Reese, D.; Jones, B.A.; Jankun-Kelly, M. Coding the coders: A qualitative
investigation of students’ commenting patterns. In Proceedings of the 2018 ASEE Annual Conference Exposition, Salt Lake City,
UT, USA, 23–27 July 2018.

10. Beck, P.; Mohammadi-Aragh, M.J.; Archibald, C. An Initial Exploration of Machine Learning Techniques to Classify Source Code Com-
ments in Real-time. In Proceedings of the 2019 ASEE Annual Conference & Exposition, Tampa, FL, USA, 15 June–19 October 2019.

11. Hartzman, C.S.; Austin, C.F. Maintenance productivity: Observations based on an experience in a large system environment.
In Proceedings of the 1993 Conference of the Centre for Advanced Studies on Collaborative Research: Software Engineering,
Toronto, ON, Canada, 22–25 November 1993; Volume 1, pp. 138–170.

12. Jiang, Z.M.; Hassan, A.E. Examining the evolution of code comments in PostgreSQL. In Proceedings of the 2006 International
Workshop on Mining Software Repositories, Shanghai, China, 22–23 May 2006; pp. 179–180.

13. de Souza, S.C.B.; Anquetil, N.; de Oliveira, K.M. A study of the documentation essential to software maintenance. In Proceedings
of the 23rd Annual International Conference on Design of Communication: Documenting & Designing for Pervasive Information,
Coventry, UK, 21–23 September 2005; pp. 68–75.

14. Oman, P.; Hagemeister, J. Metrics for assessing a software system’s maintainability. In Proceedings of the Conference on Software
Maintenance 1992, IEEE Computer Society, Orlando, FL, USA, 9–12 November 1992; pp. 337–338.

15. Garcia, M.J.B.; Granja-Alvarez, J.C. Maintainability as a key factor in maintenance productivity: A case study. In Proceedings of
the Icsm, Monterey, CA, USA, 4–8 November 1996; p. 87.

16. Khamis, N.; Witte, R.; Rilling, J. Automatic quality assessment of source code comments: The JavadocMiner. In Proceedings of
the International Conference on Application of Natural Language to Information Systems, Cardiff, UK, 23–25 June 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 68–79.

17. Steidl, D.; Hummel, B.; Juergens, E. Quality analysis of source code comments. In Proceedings of the 2013 21st International
Conference on Program Comprehension (icpc), San Francisco, CA, USA, 20–21 May 2013; pp. 83–92.

18. Sun, X.; Geng, Q.; Lo, D.; Duan, Y.; Liu, X.; Li, B. Code comment quality analysis and improvement recommendation:
An automated approach. Int. J. Softw. Eng. Knowl. Eng. 2016, 26, 981–1000. [CrossRef]

19. Tan, L.; Yuan, D.; Krishna, G.; Zhou, Y. comment: Bugs or bad comments? In Proceedings of the ACM Symposium on Operating
Systems Principles: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles, New York, NY,
USA, 3–6 November 2007; Volume 14, pp. 145–158.

20. Ratol, I.K.; Robillard, M.P. Detecting fragile comments. In Proceedings of the 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), Urbana-Champaign, IL, USA, 30 October–3 November 2017; pp. 112–122.

21. Das, T.; Penta, M.D.; Malavolta, I. A Quantitative and Qualitative Investigation of Performance-Related Commits in Android
Apps. In Proceedings of the 2016 IEEE International Conference on Software Maintenance and Evolution, ICSME 2016, IEEE
Computer Society, Raleigh, NC, USA, 2–7 October 2016; pp. 443–447. [CrossRef]

22. Allamanis, M.; Peng, H.; Sutton, C. A convolutional attention network for extreme summarization of source code. In Proceedings
of the International Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016; pp. 2091–2100.

23. Hu, X.; Li, G.; Xia, X.; Lo, D.; Jin, Z. Deep code comment generation. In Proceedings of the 2018 IEEE/ACM 26th International
Conference on Program Comprehension (ICPC), Gothenburg, Sweden, 27 May–3 June 2018; pp. 200–20010.

24. Haiduc, S.; Aponte, J.; Marcus, A. Supporting program comprehension with source code summarization. In Proceedings of the
2010 ACM/IEEE 32nd International Conference on Software Engineering, Cape Town, South Africa, 1–8 May 2010; Volume 2,
pp. 223–226.

25. Haiduc, S.; Aponte, J.; Moreno, L.; Marcus, A. On the use of automated text summarization techniques for summarizing source
code. In Proceedings of the 2010 17th Working Conference on Reverse Engineering, Washington, DC, USA, 13–16 October 2010;
pp. 35–44.

26. Huang, Y.; Zheng, Q.; Chen, X.; Xiong, Y.; Liu, Z.; Luo, X. Mining version control system for automatically generating commit
comment. In Proceedings of the 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), Toronto, ON, Canada, 9–10 November 2017; pp. 414–423.

27. Lawrie, D.J.; Feild, H.; Binkley, D. Leveraged quality assessment using information retrieval techniques. In Proceedings of the
14th IEEE International Conference on Program Comprehension (ICPC’06), Athens, Greece, 14–16 June 2006; pp. 149–158.

28. Marcus, A.; Maletic, J.I. Recovering documentation-to-source-code traceability links using latent semantic indexing. In Proceed-
ings of the 25th International Conference on Software Engineering, Portland, OR, USA, 3–10 May 2003; pp. 125–135.

29. Chen, H.; Huang, Y.; Liu, Z.; Chen, X.; Zhou, F.; Luo, X. Automatically detecting the scopes of source code comments. J. Syst. Softw.
2019, 153, 45–63. [CrossRef]

30. Hata, H.; Treude, C.; Kula, R.G.; Ishio, T. 9.6 million links in source code comments: Purpose, evolution, and decay. In Proceedings
of the 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 27 May 2019;
pp. 1211–1221.

31. Alghamdi, M.; Hayashi, S.; Kobayashi, T.; Treude, C. Characterising the Knowledge about Primitive Variables in Java Code
Comments. In Proceedings of the 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR),
Madrid, Spain, 17–19 May 2021; pp. 460–470.

http://doi.org/10.1142/S0218194016500339
http://doi.org/10.1109/ICSME.2016.49
http://doi.org/10.1016/j.jss.2019.03.010

Algorithms 2023, 16, 53 19 of 19

32. Haouari, D.; Sahraoui, H.; Langlais, P. How good is your comment? A study of comments in java programs. In Proceedings of the
2011 International Symposium on Empirical Software Engineering and Measurement, Banff, AB, Canada, 22–23 September 2011;
pp. 137–146.

33. Zhai, J.; Xu, X.; Shi, Y.; Tao, G.; Pan, M.; Ma, S.; Xu, L.; Zhang, W.; Tan, L.; Zhang, X. CPC: Automatically classifying and
propagating natural language comments via program analysis. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, Seoul, Republic of Korea, 27 June–19 July 2020; pp. 1359–1371.

34. Vieira, C.; Magana, A.J.; Falk, M.L.; Garcia, R.E. Writing in-code comments to self-explain in computational science and
engineering education. ACM Trans. Comput. Educ. (TOCE) 2017, 17, 1–21. [CrossRef]

35. Beck, P.J.; Mohammadi-Aragh, M.J.; Archibald, C.; Jones, B.A.; Barton, A. Real-time metacognition feedback for introductory
programming using machine learning. In Proceedings of the 2018 IEEE Frontiers in Education Conference (FIE), Lincoln, NE,
USA, 13–16 October 2018; pp. 1–5.

36. Pascarella, L. Classifying code comments in Java mobile applications. In Proceedings of the 2018 IEEE/ACM 5th International
Conference on Mobile Software Engineering and Systems (MOBILESoft), Gothenburg, Sweden, 27 May–3 June 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/3058751

	Introduction
	Related Work
	Code Comments for Code Maintainability
	Code Comments for Bug Detection
	Comments Generation and Code Summarizing
	Code Comments as a Means of Documentation
	Code Comments Quality Aspect and Categorization
	Analysis of Student Code Comments

	Methodology
	Research Questions
	Context Selection
	Data Extraction
	M1: Preparation of Dataset of Source Code Comments and Building Taxonomy of Source Code Comments
	M2: Classification of Source Code Comments Categories Using MachineLearning Techniques

	Experiment
	Characteristics of Datasets
	Performing Feature Extraction
	Training and Testing the Model
	Hyperparameter Tuning
	Evaluation and Performance Metrics

	Results and Discussion
	RQ-1 Which Kind of Code Activities Are Performed by Novice Students/Developers in the Source Code?
	RQ-2 Is It Possible to Classify Student Source Code Comments Using Machine Learning Techniques?

	Conclusions
	Future Work
	References

