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Abstract
Discrimination of brain cancer versus non-cancer patients using serum-based attenuated total 

reflection Fourier transform infrared (ATR-FTIR) spectroscopy diagnostics was first 

developed by Hands et al. Cameron et al. then went on to stratifying between specific brain 

tumour types: glioblastoma multiforme (GBM) vs. primary cerebral lymphoma.  Expanding on 

these studies, 30 GBM, 30 lymphoma and 30 non-cancer patients were selected to investigate 

the influence on test performance by focusing on specific molecular weight regions of the 

patient serum. Membrane filters with molecular weight cut offs of 100 kDa, 50 kDa, 30 kDa, 

10 kDa and 3 kDa were purchased in order to remove the most abundant high molecular weight 

components. Three groups were classified using both partial least squares-discriminate analysis 
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(PLS-DA) and random forest (RF) machine learning algorithms; GBM versus non-cancer, 

lymphoma versus non-cancer and GBM versus lymphoma. For all groups, once the serum was 

filtered the sensitivity, specificity and overall balanced accuracies decreased. This illustrates 

that the high molecular weight components are required for discrimination between cancer and 

non-cancer as well as between tumour types. From a clinical application point of view, this is 

preferable as less sample preparation is required. 
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Introduction

Brain cancer diagnosis is challenging. The most common symptoms are non-specific (such as 

headaches) and are more likely to be associated with a non-tumour diagnosis (1-3). As many 

as two thirds of patients are diagnosed in the Emergency Department when their symptoms 

have deteriorated, with the majority of these patients having previously visited their primary 

care doctor multiple times (4). There is a need for a rapid, cost-effective and non-invasive tool 

for earlier diagnosis. 

A vibrational spectroscopic technique, attenuated total reflection (ATR) Fourier transform 

infrared (FTIR) spectroscopy, has been applied to earlier detection and diagnosis of brain 

tumours (5, 6). Serum-based ATR-FTIR combined with machine learning algorithms can 

reliably predict which patients with symptoms of a possible brain tumour actually have a 

tumour on brain imaging. Hands et al. were the first to investigate the use of serum for ATR-

FTIR spectroscopic analysis for brain tumour diagnosis, comparing brain tumour and 

asymptomatic non-tumour patients. Subsequent studies have included symptomatic non-

tumour patients as well as investigating predictions of tumour grade and subtype (7-9). The 
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earlier work used a traditional, time-consuming ATR-FTIR set-up with a fixed-point diamond 

internal reflection element (IRE). A newer, high-throughput approach uses silicon-based IRE 

(SIRE) sample slides. These SIREs are disposable and have multiple sampling points, which 

allows for high-throughput and batch processing (10, 11). 

With this technique, brain tumours can be detected with a sensitivity of 88.7%, specificity of 

94.7% and overall balanced accuracy of 91.7% (12). To further improve test performance, we 

investigated whether specific molecular weight regions of patient serum improved detection 

and stratification. Blood serum contains over 20,000 different proteins with a wide range of 

molecular weights, dominated by human serum albumin (HSA); 30-50 g/L is considered 

normal (13). Imbalances within protein concentrations in serum may relate to specific disease 

states and the low molecular weight fraction of serum may contain cancer-specific diagnostic 

information (14, 15). 

Commercially available centrifugal filters can fractionate serum according to a molecular 

threshold, and so aid investigation of specific molecular weight fractions of serum. 

Traditionally, these filters are used to separate and remove rapidly the most abundant high 

molecular weight proteins from the less abundant low molecular weight molecules (viz. 

metabolites). One concern with these filters is the extra sample preparation required, the 

binding of small molecules to proteins which are then removed by filtrations. The reported 

potential for contamination from the filter membrane, has been resolved by Bonnier et al. who 

developed a centrifugal washing technique to remove any trace glycerine from the filter 

membranes (16, 17). 
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Here, we use the serum-based ATR-FTIR technique to investigate six (five fractions plus 

unfiltered whole serum) different molecular weight regions of serum for the stratification of 

brain cancer patients against non-cancer controls (Hands et.al previously reported sensitivity 

of 92.8% and specificity of 91.5% (7)). . We also explore the stratification between tumour 

types; GBM and primary cerebral lymphoma (Cameron et al. previously reported sensitivity 

of 90.1% and specificity of 86.3% (10)). 

Materials and Methods

Patient serum samples (n=90) were obtained from the Walton Centre NHS Trust (Liverpool, 

UK) and the Royal Preston Hospital (Preston, UK) with consent, under Ethics approval code 

(Walton Research Bank BTNW/WRTB 13_01/BTNW Application #1108). Included within 

the study were 30 glioblastoma (GBM) patients, 30 primary cerebral lymphoma patients and 

30 asymptomatic control patients.

The patient serum was fractionated sequentially through five different size molecular weight 

filters (100 kDa, 50 kDa, 30 kDa, 10 kDa and 3 kDa) (Amicon Ultra-0.5 mL, Merck, Germany). 

The samples were centrifuged at 14,000 xg for 30 min to collect molecular weight fractions. 

The filtrate was collected and analysed so each portion represented the molecular weights less 

than the cut-off point (E.g., <100 kDa). This resulted in 6 serum samples per patient (including 

unfiltered whole serum), with a total of 540 samples. 

Before the filters were used, they were centrifugally washed with 0.1M NaOH and MilliQ 

water through the following steps; 30 min with 0.1M NaOH at 14,000 xg, followed by 2 times 

30 min with MilliQ water at 14,000 xg, and finally 2 min upside down at 1,000 xg to remove 

any remaining liquid. The washing was necessary to remove any residual glycerine coating on 
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the ultrafiltration membranes as indicated by the manufacturer, to ensure no interferences 

within the sample spectra. Within the Supplementary Information there is example serum 

spectra illustrating both washed and unwashed filters, highlighting the need for the pre-

analytical washing steps (Figure S1). 

Patient serum, either whole or molecular weight fraction (3 µL), was deposited onto a SIRE 

optical sample slide (Dxcover Ltd, Glasgow, UK) and air dried before spectroscopic data 

collection. All serum spectra were collected on a Perkin Elmer Spectrum 2 FTIR spectrometer 

(Perkin Elmer, London, UK), utilising a Specac Quest ATR accessory unit with a specular 

reflectance puck (Specac Ltd., London, UK), allowing a Dxcover optical sample SIRE 

(Dxcover Ltd., Glasgow, UK) to be placed directly on top of the aperture. Each sample SIRE 

contains four wells where one remains blank as the background and the other three were used 

as sample repeats, with each three wells analysed three times. Nine spectra per patient were 

collected within the range of 4000–450 cm−1, at a resolution of 4 cm−1, with 1 cm−1 data spacing 

and 16 co-added scans; resulting in a total of 4,860 spectra acquired. The typical time for 

spectral collection was 15 min per patient sample slide (9 repeats and background).

The spectroscopic data analysis was completed using the R Statistical Computing 

Environment, MATLAB R2020a software with the PRFFECT toolbox (18) or a principal 

component analysis (PCA) code written in house. Data pre-processing was applied to reduce 

computational burden and improve classification algorithms. The techniques used match 

previous published work (12), (19). Exploratory analysis was completed using PCA followed 

by supervised machine learning methods including random forest (RF) and partial least 

squares-discriminant analysis (PLS-DA). The supervised techniques require splitting the data 

into training and test sets where the training set is used to identify biosignatures in a calibration 
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phase and the model generated subsequently used for predictions to be made on the test set (10, 

11, 20, 21). As there were no imbalances between the groups, no training set sampling 

adjustments were needed for classification analysis. The three groups were classified as the 

following: (i) GBM versus non-cancer, (ii) lymphoma versus non-cancer and (iii) GBM versus 

lymphoma.

Each classification completed using the PRFFECT toolbox had 51 reiterations to minimise 

standard error and to ensure a robust diagnostic model was used. The data were randomly split 

by patient ID at a 70/30 ratio between the training and test sets, keeping all patient spectral 

repeats together. The 51 reiterations shuffled the 70/30 split each time so that every patient 

within the whole dataset was predicted at least once. 

Results

Figure 1 displays the spectral differences between the same GBM patient sample in unfiltered 

serum compared to each of the five molecular weight cut-off regions. Each patient serum was 

separated through a 100 kDa filter first, followed by 50 kDa, then 30 kDa, followed by 10 kDa 

and finally 3 kDa, where the filtrate (region that has passed through the filter) was analysed. 

This process resulted in the molecular weight regions of <100 kDa, <50 kDa, <30 kDa, <10 

kDa and <3 kDa. From Figure 1, it is clear that there is a large difference within the serum 

spectra once the higher molecular weight components (>100 kDa) were removed. This is 

significant in the higher wavenumber region between 3700 cm-1 to 2700 cm-1. However, more 

importantly there are numerous differences between 1800 cm-1 and 1000 cm-1 (Figure 1 inset), 

which was therefore determined as the region of interest for further analyses. The Amide I and 

II bands are reduced after filtration, which is perhaps unsurprising as HSA and other serum-

based proteins have been removed (note HSA is ~50% of the protein content of human blood). 

Given this observation, as to be expected, there are no visual differences observed between the 
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three groups of patients; GBM, lymphoma and non-cancer (Figure S2 and S3), however they 

all followed the same trend as Figure 1 once separated into specific molecular weight fractions.

Figure 1: Example of patient serum spectra including unfiltered whole serum and each 
molecular weight region. 
Average of the 30 GBM patients shown here. The inset is the wavenumber region between 1800 cm-1 
and 1000 cm-1, which was used for all chemometrics and machine learning analyses. Spectra is offset 
for clearer visualisation.
 

The patient spectral data were subjected to both exploratory PCA and supervised classification 

models (RF and PLS-DA) for all three groups: (i) GBM versus non-cancer, (ii) lymphoma 

versus non-cancer and (iii) GBM versus lymphoma. Figure 2 illustrates the PCA scores results 

for the three groups with unfiltered serum and contains a slight separation between the classes 

along the second principal component (PC2). Figure 3 shows the PCA outcomes for the three 

groups in the molecular weight region <100 kDa, where there is no clear separation between 

in the classes in all groups. The PCA scores plots for <50 kDa, <30 kDa, <10 kDa and <3 kDa 

are contained with the supplementary information (Figures S4-S7) and display similar results 

to that of the <100 kDa region, with no separation between the classes (GBM versus non-

cancer, lymphoma versus non-cancer and GBM versus lymphoma).

Figure 2: Principal component analysis scores plots for the unfiltered whole serum of the first 
and second dimensions. 
The three figures represent (A) GBM in blue and non-cancer in yellow, (B) lymphoma in blue and 
non-cancer in yellow and (C) GBM in blue and lymphoma in yellow. The eclipses in each class 
represent a 95% confidence interval. Values in parentheses within the axes legends are the total 
explained variance (TEV) for each principal component (PC).

Figure 3: PCA scores plots for the filtered serum (<100 kDa) of the first and second dimensions. 
The three figures represent (A) GBM in blue and non-cancer in yellow, (B) Lymphoma in blue and 
non-cancer in yellow and (C) GBM in blue and lymphoma in yellow. The eclipses in each class 
represent a 95% confidence interval. Values in parentheses are the TEV for each PC.

Following this initial exploratory PCA, each group was analysed using the supervised learning 

algorithms of RF and PLS-DA. Tables 1-3 contain the sensitivity, specificity and balanced 

accuracy (defined as the averaged sensitivity and specificity) for each serum fraction. The PLS-
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DA model results are included within these tables (Tables 1-3), while the RF are provided 

within the supplementary information (Tables S1-S3). 

Table 1: Sensitivity, specificity and balanced accuracies for the PLS-DA model classification of GBM 
versus non-cancer patients.  Mean, standard deviation (SD) and 95% confidence intervals (CIs) are 
provided. 

Sensitivity (%) Specificity (%) Balanced accuracy (%)

Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI

Unfiltered 87.4 11.8 ±3.2
84.2-90.6 92.4 8.2 ±2.3

90.1-94.7 89.9 6.4 ±1.8
88.1-91.7

<100 kDa 85.5 10.7 ±2.9
82.6-88.4 92.4 8.2 ±2.3

90.1-94.7 89.0 6.0 ±1.6
87.4-90.6

<50 kDa 84.3 11.5 ±3.2
81.1-87.5 88.9 10.4 ±2.9

86.0-91.8 86.6 6.3 ±1.7
84.9-88.3

<30 kDa 84.0 13.9 ±3.8
80.2-87.8 85.6 12.4 ±3.4

82.2-89.0 84.8 8.7 ±2.4
82.4-87.2

<10 kDa 79.7 12.7 ±3.5
76.2-83.2 85.2 13.5 ±3.7

81.5-88.9 82.4 7.4 ±2.0
80.4-84.4

GBM 
versus 

NC

<3 kDa 86.8 13.7 ±3.8
83.0-90.1 87.4 9.7 ±2.7

84.7-90.1 87.1 8.3 ±2.3
84.8-89.4

Table 2: Sensitivity, specificity and balanced accuracies for the PLS-DA model classification of 
lymphoma versus non-cancer patients. Mean, standard deviation (SD) and 95% confidence intervals 
(CIs) are provided.

Sensitivity (%) Specificity (%) Balanced accuracy (%)

Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI

Unfiltered 85.3 13.6 ±3.7
81.6-89.0 85.8 13.3 ±3.7

82.1-89.5 85.6 8.7 ±2.4
83.2-88.0

<100 kDa 66.1 18.5 ±5.1
61.0-71.2 78.9 14.9 ±4.1

74.8-83.0 72.5 11.5 ±3.2
69.3-75.7

<50 kDa 66.9 19.7 ±5.4
61.5-72.3 83.7 12.8 ±3.5

80.2-87.2 75.3 10.9 ±3.0
72.3-78.3

<30 kDa 74.2 17.4 ±4.7
69.4-79.0 80.6 13.8 ±3.8

76.8-84.4 77.4 10.4 ±2.9
74.5-80.3

<10 kDa 70.6 16.4 ±4.5
66.1-75.1 81.5 12.1 ±3.3

78.2-84.8 76.0 10.8 ±3.0
76.0-79.0

Lymphoma 
versus

NC

<3 kDa 65.7 15.2 ±4.2
61.5-69.9 82.8 13.6 ±3.7

79.1-86.5 74.2 9.6 ±2.6
71.6-76.8

Table 3: Sensitivity, specificity and balanced accuracies for the PLS-DA model classification of GBM 
versus Lymphoma patients. Mean, standard deviation (SD) and 95% confidence intervals (CIs) are 
provided.

Sensitivity (%) Specificity (%) Balanced accuracy (%)

Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI
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Unfiltered 97.1 5.4 ±1.5
95.6-98.6 86.0 10.5 ±2.9

83.1-88.9 91.5 6.2 ±1.7
89.8-93.2

<100 kDa 52.9 17.7 ±4.9
48.0-57.8 53.2 17.7 ±4.9

48.3-58.1 53.1 9.7 ±2.7
50.4-55.8

<50 kDa 53.8 18.9 ±5.2
48.6-59.0 56.0 16.6 ±4.6

51.4-60.6 54.9 11.7 ±3.2
51.7-58.1

<30 kDa 54.4 18.8 ±5.2
49.2-59.6 57.1 21.0 ±5.8

51.3-62.9 55.8 12.1 ±3.3
52.5-59.1

<10 kDa 55.4 17.9 ±4.9
50.5-60.3 44.5 19.7 ±5.4

39.1-49.9 50.0 10.9 ±3.0
47.0-53.0

GBM 
versus

lymphoma

<3 kDa 27.5 15.0 ±4.1
23.4-31.6 65.5 20.4 ±5.6

59.9-71.1 46.5 11.0 ±3.0
43.5-49.5

For the GBM versus non-cancer there was a slight decrease in the sensitivity, specificity and 

balanced accuracies once the serum was filtered. However, all classification models had an 

overall balanced accuracy greater then 82%, suggesting that even the individual molecular 

weight regions of serum can predict GBM from non-cancer patients. Lymphoma versus non-

cancer had a larger decrease in sensitivity, specificity and balanced accuracies once filtered 

with overall balanced accuracies ranging between 72% and 78%. When investigating between 

the two cancer types, GBM versus lymphoma, there was a significant decrease in the 

sensitivity, specificity and balanced accuracies. The overall balanced accuracy decreased from 

91.5% to a range between 46% and 56%, suggesting the serum fractions are unreliable in being 

able to stratify between cancer types as there is no distinction between GBM and lymphoma.

The RF classifications for all three groups gave very similar responses to the PLS-DA. For 

GBM versus non-cancer there was more of a decrease in sensitivity, specificity and balanced 

accuracies once the serum was filtered. The same can be said with Lymphoma versus non-

cancer and once again, there was no ability to stratify between the cancer types using RF model 

algorithms. The percentages for each groups sensitivity, specificity and balanced accuracies 

are displayed in the supplementary information (Tables S1-S3).
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From these PLS-DA classification models the loadings plots were investigated in order to 

identify which wavenumber regions were important for the discriminations between the 

cohorts. Figures 4 and 5 display the PLS-DA loadings plot for each group with the unfiltered 

serum (Figure 4) and the first fraction of filtered serum (<100 kDa) (Figure 5). Both the first 

and second PLS components are shown within the figures as the majority of the spectral 

variance between the cohorts will be present within these two latent variables. The loadings 

plots for the other serum fractions (<50 kDa, <30 kDa, <10 kDa and <3 kDa) are included 

within the supplementary information (Figures S8-S11). 

Figure 4: PLS loadings plots for the 1st and 2nd latent variables (LVs) for the unfiltered whole 
serum. 
(A) GBM versus non-cancer, (B) Lymphoma versus non-cancer and (C) GBM versus lymphoma.

Figure 5: PLS loadings plot for the 1st and 2nd LVs for the filtered serum (<100 kDa). 
(A) GBM versus non-cancer, (B) Lymphoma versus non-cancer and (C) GBM versus lymphoma.

For the unfiltered serum the loadings plot suggests that the discrimination between GBM and 

non-cancer (Figure 4.A) is dependent on the Amide I and Amide II proteins (region between 

1700 cm-1 and 1500 cm-1) and the glycogen/carbohydrates (1100 cm-1 – 1000 cm-1). Lymphoma 

versus non-cancer (Figure 4.B) has similar reliance on the Amide I and Amide II bands, 

however there is less importance in the glycogen/carbohydrates. The peak at ~1740 cm-1 

suggests that the discrimination between lymphoma and non-cancer is also determined by the 

lipid components within the serum. Discriminating between cancer types, GBM versus 

lymphoma (Figure 4.C), there is importance within the Amide I and Amide II region, and the 

glycogen/carbohydrates region. The peaks identified as important for each group is displayed 

in Table 4.  

Table 4: Top wavenumbers for each group in unfiltered serum classifications. Tentative biochemical 
assignments and their corresponding vibrational modes are included (22).

Wavenumber (cm-1) Tentative assignment Vibrational modes

GBM 1668.5 Amide I of proteins v(C=O), v(C-N), δ(N-H)
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1660.5 Amide I of proteins v(C=O), v(C-N), δ(N-H)

1628.5 Amide I of proteins v(C=O), v(C-N), δ(N-H)

1556.5 Amide II of proteins δ(N-H), v(C-N), δ(C-O), 
v(C-C)

1100.5 Nucleic acids v(PO2-)

versus 
NC

1028.5 Glycogen v(C-O), v(C-C), def(C-
OH)

1740.5 Lipids v(C-O)

1660.5 Amide I of proteins v(C=O), v(C-N), δ(N-H)

1652.5 Amide I of proteins v(C=O), v(C-N), δ(N-H)

1580.5 Amide II of proteins δ(N-H), v(C-N), δ(C-O), 
v(C-C)

Lymphoma 
versus 

NC

1108.5 Carbohydrate v(C-O), v(C-C)

1668.5 Amide I of proteins v(C=O), v(C-N), δ(N-H)

1660.5 Amide I of proteins v(C=O), v(C-N), δ(N-H)

1628.5 Amide I of proteins v(C=O), v(C-N), δ(N-H)

1548.5 Amide II of proteins δ(N-H), v(C-N), δ(C-O), 
v(C-C)

1108.5 Carbohydrate v(C-O), v(C-C)

GBM 
versus 

Lymphoma

1020.5 Glycogen v(C-O), v(C-C)
ν = stretching; δ = bending; def = deformation

Once the serum was filtered the loadings plot significantly changed with what wavenumber regions 

were deemed important for the discrimination between patient cohorts (Figure 5). The percentage of 

variance from each LV will decrease with the accuracy of the model, therefore it is unreasonable to 

directly compare the important peaks from filtered and unfiltered serum when the whole serum will 

have a greater percentage of importance. It is interesting to note that more regions are deemed important 

within the filtered serum however the percentage of variance represented in each LV is minimal 

compared to the whole serum.  

Discussion

From the initial visual observations there was a significant difference between the spectral 

profiles of whole unfiltered serum and the different molecular weight fractions. This is to be 

expected as the initial filtration step will remove components greater than 100 kDa, including 
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human serum albumin which comprises 50% of the protein complement of sera (30-50 g/L), 

and antibodies such as immunoglobulin G (IgG). IgG is one of the main components (7-16 g/L) 

within serum (23, 24). The removal of serum albumin and other components within the first 

filtration step has a significant impact on the overall serum spectral profile. Between the 3 

patient groups, GBM, lymphoma and non-cancer, visually there were no spectral differences 

and they all follow the same spectral trend once centrifugally filtered (Figures 1, S2 and S3). 

There were visually few changes between the molecular weight fractions as most significant 

changes occured within the first filtration step.

Within the exploratory principal component analysis (PCA) there was slight separation 

between the groups along the second principal component for the unfiltered whole serum. By 

contrast, once filtered there was no separation between the groups of patients, demonstrated 

throughout all molecular weight regions. The clear distinction between groups within the 

unfiltered serum suggests that the higher molecular weight (>100 kDa) components within the 

serum play an important role for the discrimination between cancer and non-cancer or between 

cancer types. 

These observations can be confirmed through the supervised classification analysis where each 

group of patients was stratified using both PLS-DA and RF machine learning algorithms. For 

the unfiltered serum the classifications between the two patient groups (GBM versus non-

cancer, lymphoma versus non-cancer or GBM versus lymphoma) all gave overall balanced 

accuracies above 85%. When focusing on GBM versus non-cancer the sensitivities, 

specificities and balanced accuracies of the models remained around or greater then 80%; 

however, none of the molecular weight filtrates gave percentages as high as the unfiltered 

whole serum. Lymphoma versus non-cancer had a more noticeable decrease in sensitivity, 
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specificity and balanced accuracies once the patient serum was filtered. These remained at 65% 

and greater, however, as with the GBM versus non-cancer cohort the unfiltered serum 

outperformed each filtrate. Between the two cancer types, GBM versus lymphoma, there was 

a significant decrease in stratification ability once the serum was filtered. The overall balanced 

accuracies of 50% suggest that there are no discriminatory features within the serum to identify 

between a GBM or lymphoma brain cancer patient once the components above 100 kDa were 

removed.  

For all classifications the unfiltered whole serum performed the greatest which suggests that 

the higher molecular weight components are needed for discriminatory ability between these 

binary cohorts. From a clinical application point of view, this is preferable as the extra pre-

analytical steps to include the filtration is more time consuming and harder to translate into a 

clinic ready test. 
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