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• Integrated spatial approach, for the quan-
tification of total biomass carbon stocks
of land cover and landscape features.

• Results demonstrate the possibility of de-
veloping and using remote integrated ap-
proach for farm-scale total biomass
carbon.

• Highest achievable prediction accuracy
attained by applying both current litera-
ture and measured information.

• Successful predictions of test values, with
error rates of 6.7% and 4.3% for the land
cover and landscape features, respec-
tively.

• Spatial presentation and calculation of
variable biomass carbon stocks along the
length of hedges and within woodlands
using lidar data.
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The drive for farm businesses tomove towards net zero greenhouse gas emissionsmeans that there is a need to develop
robust methods to quantify the amount of biomass carbon (C) on farms. Direct measurements can be destructive and
time-consuming and some predictionmethods provide no assessment of uncertainty. This study describes the develop-
ment, validation, and use of an integrated spatial approach, including the use of lidar data, and Bayesian Belief Net-
works (BBNs) to quantify total biomass carbon stocks (Ctotal) of i) land cover and ii) landscape features such as
hedges and lone trees for five case study sites in lowland England. The results demonstrated that it was possible to de-
velop and use a remote integrated approach to estimate biomass carbon at a farm scale. The highest achievable predic-
tion accuracy was attained frommodels using the variables AGBC, BGBC, DOMC, age, height, species and land cover,
derived from measured information and from literature review. The two BBN models successfully predicted the test
values of the total biomass carbon with propagated error rates of 6.7 % and 4.3 % for the land cover and landscape
features respectively. These error rates were lower than in other studies indicating that the seven predictors are strong
determinants of biomass carbon. The lidar data also enabled the spatial presentation and calculation of the variable C
stocks along the length of hedges and within woodlands.
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1. Introduction

Efforts tomitigate climate change have been enacted bymany countries
across the world with the aim of achieving net-zero greenhouse gas (GHG)
emissions by 2050 (Brandão et al., 2013; Smith et al., 2012; van Soest et al.,
2021). Achieving this will require management changes across each sector
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of the economy. This is particularly the case in agriculture, which was the
source of about 10.7 billion tonnes of carbon dioxide equivalent (Gt CO2

eq) emissions in 2019, and in the long-term, it could provide a net sink
(Food and Agriculture Organization of the United Nations, 2021).

Since management practices under the control of farmers can reduce
GHG emissions at a farm level (Burbi et al., 2016), a key policy measure is
to incentivise landmanagers to store more carbon (C) on their farms and re-
duce emissions (Ziegler et al., 2016; Petrokofsky et al., 2012). For these pol-
icies to be successful, robust and accurate information on the current C
stocks and methods to quantify the amount of C that has been or will be
stored are required. Ideally, the quantified baseline inventories will be de-
veloped according to industry-accepted best practices and will be auditable
(World Business Council for Sustainable Development andWorld Resources
Institute, 2020). Physical sampling of soil and biomass C might provide the
most accurate assessments, yet such methods can be destructive, expensive
and/or labour intensive (Rosenstock et al., 2016). Most approaches to esti-
mate C stocks using either a combination of models (e.g. species specific
allometric equations) and/or farm landscape features (e.g. woodland,
hedges, fields, etc.). These methods can contain considerable uncertainty
as features on farms are often heterogenous in composition (e.g. species)
and spatial distribution.

There is a substantive body of research on approaches using generic C
storage values (Adger and Subak, 1996; Cannell and Milne, 1995;
Cantarello et al., 2011; Cruickshank et al., 2000; Dewar and Cannell,
1992; Gregory et al., 1995; IPCC, 2019; Jian et al., 2020) and highly de-
tailed emission factor tools and calculators (Campos, 2020; Carlson et al.,
2017; Janzen et al., 2006; Stöckle et al., 2001; Sustainable Food Lab
et al., 2011; Ziegler et al., 2016). However, this generic approach tends to
present a very broad range between the minimum and maximum values,
often without defining the levels of uncertainty. Similarly, the use of farm
C calculators can be labour, time and cost-consuming and too complicated
for some farmers to use. Additionally, the residual uncertainty surrounding
the validity of carbon calculators is sometimes hard to determine. More-
over, farmers need tools that can incorporate changing technical, social,
and economic considerations while being able to specify the level of cer-
tainty in the C estimates. Here we explore a modelling approach that is ca-
pable of incorporating biological information (species, age, height) with
landscape features which can be obtained through detailed (Lidar) and
less detailed (hyperspectral remote sensed) methods.

Given the above, farmers need tools that can be adapted to changing
technical, social, and economic environments while being able to specify
the level of certainty in the carbon estimates. Additionally, ways to re-
motely measure the variables of interest are needed. This study determines
the potential of accounting for farm biomass C stocks with a level of uncer-
tainty and examines the consequences for policy, payments and land users.
This was achieved by developing two Bayesian Belief Network (BBN)
models to quantify biomass carbon stocks and their uncertainty at a farm
scale.

2. Materials and methods

2.1. Methodology formulation

Probabilistic Bayesian Belief Networks (BBNs) provide a way of
understanding social-environment interactions where complex sets of
geospatially interdependent variables can affect environmental outcomes
and consequently human decisions on landscape management (Grafius
et al., 2019; Karimi et al., 2021). The capability of BBNs to describe com-
plex systems (Borsuk et al., 2004; Heckerman, 1997; Pearl, 1988; Taalab
et al., 2015a, 2015b) potentially provide an approach to quantifying bio-
mass stocks and their certainty for a situation where we typically have in-
complete knowledge and information (Hassall et al., 2019; Korb and
Nicholson, 2010). Moreover, BBNs when combined with Geographical In-
formation Systems (GIS) can be used to guide on-farm decisions by provid-
ing an idea of the probability of events, defining key variables and
conditional dependencies, and identifying how these could affect the
2

outcomes (Grafius et al., 2019). The C stored in a farm can be affected by
many factors (Krauss et al., 2022; Branca et al., 2013), however, conditional
dependencies can assist in narrowing these down to the ones affectingmost
the parameter that needs to be predicted (Taalab et al., 2015a, 2015b).

On-farm carbon storage can occur as soil carbon, plant debris and in the
form of biomass of relatively homogenous land covers and landscape fea-
tures. In this study, a BBN modelling approach was used for predicting
the total amount of biomass carbon stocks of i) homogeneous land covers
such as arable crops, woodland, and grassland, and ii) landscape features
such as lone trees and hedges. According to the UK's National Forest Inven-
tory (NFI) (National Forest Inventory Forest Research, 2017) lone trees are
comprised of trees where their canopy does not touch any other tree and
have a height of 2 or more meters. These features have proven to store sig-
nificantly more C than managed hedges (Falloon et al., 2004) and can be
found as part of agroforestry treatments planted either as line of trees
(García de Jalón et al., 2018) or planted in a specified distance from each
other (Upson et al., 2016).

Themethodological approach involvedfive steps as shown in Fig. 1. Ini-
tially, key influence predictor variables were identified from a literature
search, followed by the construction of the BBN models using those litera-
ture values. We then quantified the conditional probabilities before (the
naive model) and after (the informed model) adding some additional mea-
sured values. Lastly, we used the informed model to spatially predict the
total biomass carbon stocks across five case studies. A more detailed de-
scription of the steps is provided in the following sections.

2.2. Identification of ‘state’ values

In the first step, we analysed published studies to identify the variables
that were reported to affect the amount of biomass carbon. The key vari-
ables identified were land cover, species, age, height, above-ground bio-
mass carbon, below-ground biomass carbon, and dead organic matter
carbon. The dead organic matter pool is comprised of dead wood and litter
(IPCC, 2019).

Secondly,we used two search engines (Scopus, and Google Scholar) and
a keyword approach to inform the BBNs and in total we retrieved 43 stud-
ies. The literature was focused on UK studies and we identified eight broad
types of homogeneous land cover using the classification of UKCEH (Centre
for Ecology and Hydrology, 2020). These were: arable land, improved
grassland, semi-natural grassland, broadleaf woodland, coniferous wood-
land, mixed woodland, mountain heath and bog, and shrubland. Addition-
ally, we completed a similar literature search for the landscape features
which were classified as hedgerows or lone trees (Brewer et al., 2017).

Within the land cover types, subdivisions were sometimes included
down to species levels (Appendix Table A.5 found in the Appendix). Arable
land cover was subdivided into 9 categories, while the broadleaf and conif-
erous woodland species were separated into 10 and 8 categories. Respec-
tively. The improved grassland comprised of 3 subdivisions while the
semi-natural grassland, mixed woodland, shrubland, mountain heath and
bog covers were not subdivided. Lastly, for the landscape features, the
hedgerow class was subdivided into 6 categories and the lone trees were
classified into 9.

For each land cover and landscape feature, values were derived for the
species, age, height, aboveground biomass carbon stock (AGBC), below-
ground biomass carbon stock (BGBC), dead organic matter carbon stock
(DOMC) and total biomass carbon stock (Ctotal).When a value for a variable
was unknown, theywere calculated using equations fromTable A1 found in
the appendix. All the values, their descriptive properties and their refer-
ences were inserted into Microsoft Excel spreadsheets (Microsoft Office,
2022), and were subsequently converted into the same format in order to
be used as ‘cases’ in the next step.

2.3. Construction of the Bayesian Belief Network models using literature values

We then developed predictive knowledge-based BBN probabilistic
models using Netica software (Norsys Software Corp., 2022) for the



Fig. 1. Schematic representation of the methodological approach.
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homogeneous land covers and the landscape features. These graphical
models link a set of nodes called variables to a set of directed edges that rep-
resent the conditional probabilities between the nodes (Taalab et al.,
2015a). In order to derive the structure of the probabilisticmodels, relation-
ships between the variables were established as presented in Eqs. (1)–(5).
The species variable was a function (f) of the land cover as seen in Eq. (1),
while the AGBC, BGBC and DOMC were a function of the species, age and
height (Eqs. (2)–(4)). Lastly, Ctotal was a function of the three forms of bio-
mass carbon (Eq. (5)).

Species ¼ f Land coverð Þ (1)
3

AGBC ¼ f species, age, heightð Þ (2)

BGBC ¼ f species, age, heightð Þ (3)

DOMC ¼ f species, age, heightð Þ (4)

Ctotal ¼ f AGBC,BGBC,DOMCð Þ (5)

The influence network for the homogeneous land covers contained
seven variables as predictor nodes i.e., land cover type, species class, age,
height, AGBC, BGBC, and DOMC. Each node contained four bins as it is
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considered good practice (Constantinou et al., 2016; Marcot, 2012). The
total biomass carbon stock (Ctotal) was selected as the response variable
node. The influence network for the landscape features contained similar
predictor and response variable nodes, although the land cover type node
contained only two states (hedgerow or lone trees) instead of the CEH
land cover classes.

Using only literature data, prior conditional probabilities were defined
for “naive”models for the homogeneous land cover and the landscape fea-
tures. For the naive models, 576 literature-derived values were used for
land cover and 68 values for the landscape features model.

2.4. Addition of measured values

The next stage was to include additional measurement inputs of land
cover and landscape features from five study areas (Fig. 2) to create an “in-
formed” model. These included measurements of all seven predictors to-
gether with Ctotal measurements. The measured values were derived from
five study areas all in lowland England identified by the names: Silsoe
(S), Clapham Park (CP), Hanhill Manor Farm (HM), Crowmarsh Battle
Farm (CB), and Elm Farm (E).

The site at Silsoe comprised an arable field planted with widely-spaced
(6.4 m × 10 m) poplar trees, which 19 years after planting, measured in
2011, had a grass understorey (Upson and Burgess, 2013). The measure-
ments at Clapham Park, taken in 2012, comprised a 14-year-old broadleaf
woodland, a grassland area at least 50 years old, and a silvopasture agrofor-
estry system with 14-year trees planted on grassland (Upson et al., 2016).
At Harnhill Manor Farm measurements during the winter of 2013 were
taken from three 12–18-year-old hawthorn and blackthorn hedges, and a
30 m adjacent area which included a grassland field margin and a small
part of the arable land with a mix of forbs and legumes (Axe et al., 2017).
At Crowmarsh Battle Farm, measurements were taken from five mixed
10-year-old hawthorn and mixed hedgerows in 2012 (Alexa Varah,
personal communication 2021). Lastly, at Elm Farm, two blackthorn, two
Fig. 2.Map showing the location of the five study areas▲where measurements of the c
collected. Basemap presenting Great Britain downloaded from Digimap (2022). Sites cr
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hawthorn and two hazel hedgerows aged 15–40 years were measured in
2014 (Westaway and Smith, 2020).

In total, there were an additional 5 measured values of land cover and
26 measured values for landscape features. The 31 measured values were
used to update the parameter distribution and predict the posterior proba-
bilities by the application of Bayes' Theorem (Eq. (6)).

p
θ
D

� �
¼ c p

D
θ

� �
p ϑð Þ (6)

where p θ
D

� �
is the posterior probability density function (pdf) for the

model's parameters ϑ after incorporating the new measured information
D, p(ϑ) is the prior pdf from the literature information for ϑ before the ar-
rival of the new information D. The likelihood of D for given values of ϑ is
p D

θ
� �

and c is a proportionality constant (Koller and Friedman, 2009).

2.5. Performance of BBN models and sensitivity testing

For both informedmodels, the predictors' influence on the total biomass
C stock (Ctotal) was examined by developing heat maps of the probabilistic
associations. Output maps of the predicted total carbon across the five case
studies were also generated using the QGIS 3.28 software environment
(QGIS, 2022).

The performance of the models was then assessed using the “Test with
cases” feature within Netica. The feature can be used to determine the per-
formance of the two models by comparing the total carbon stored in the
biomass predicted by the informed BBN models to the “true” value within
a confusion matrix. An error rate was defined for each network as the per-
centage of the cases where the measured value occurred outside of the
range of the allocated “bin” (Norsys Software Corp., 2022). Although this
process does not validate the results in the same way as determined in
modelling, due to the Bayesian probabilistic inference base (Grafius et al.,
2019), it provides a measure of confidence similar to model predictions.
arbon biomass, dry biomass, dimensions, age and height of landscape features were
eated manually in QGIS using information provided by the studies.
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To rank the influence of the seven predictors on Ctotal, their sensitivities and
correlations were assessed using the sensitivity feature of the Netica soft-
ware (Norsys Software Corp., 2022).

2.6. Spatial accounting approach of biomass carbon stocks

The prior naïve model and the posterior informed model were used to
estimate the total biomass carbon stocks of the study areas in order to iden-
tify the advantages of incorporating measured data.

2.6.1. Homogeneous land cover input data
A mixture of raster and vector input data was used to depict the esti-

mated total carbon stored in the biomass of the homogeneous land cover
features found in the five case study sites. In more detail, vector data in
the form of field delineations from the Rural Payments Agency in the UK,
the 2015 land cover dataset (Centre for Ecology and Hydrology, 2017)
and raster data in the form of the 1 m resolution Digital Surface Model
(DSM) and a Digital Terrain Model (DTM) (Department for Environment
Food & Rural Affairs, 2022) were collected for each study area. During
the first step, the field parcel information was combined in the QGIS 3.28
software environment (QGIS, 2022) with a land cover shapefile. This re-
sulted in the field parcels being categorised in one of the land cover states
of the BBN land cover node. The age and species of the homogeneous
land cover species present at each land parcel were taken from the informa-
tion provided from the sampling of the areas. The age of the arable crops
was assumed to be 1 year. The age of the grassland (3–50 years) was deter-
mined using aerial images from previous years from Google Earth (Google
Earth Pro, 2022). In order to derive the height data for land cover features
such as the woodland, the DTM was subtracted from the DSM and a raster
with the height was derived. This was then segmented using the ENVI Ver-
sion 5.6 (ENVI, 2022) software and was overlayed to the land cover/parcel
vectors to classify the different height objects in land covers. Following, the
vector shapefile with the segments was clipped to the boundaries of each
field parcel and the mean height of the segments that fell within each
field parcel was derived (height BNN predictor variable). The relationship
between the aboveground biomass for all woodland (AGBallwood; t ha−1)
and the mean canopy height (Hmean; m), was determined using Eq. (7)
from Lefsky et al. (2002) which had an R2 of 84 %.

AGBallwood ¼ 0:378 Hmean
2 (7)

Lastly, the predicted range of Ctotal was spatially depicted in QGIS for
each study area.

2.6.2. Landscape features input data
The height of landscape features such as hedges and lone trees and their

spatial location were derived using the method described for homogeneous
land covers. The height segments were overlaid with the parcel boundaries
and everything on the edge of each parcel boundary was classified as a
hedge, while everything located at the parcel interior was defined as a
lone tree. The age, species, and C stored in the biomass were obtained
using a similar method as in the homogeneous land cover features and
the predicted total carbon range was again spatially depicted.

3. Results

3.1. Bayesian uncertainty quantification and predictor sensitivity

For the BBN of the homogeneous land cover classes, a sensitivity analy-
sis showed that the most influential predictor variables in descending order
were AGBC, DOMC, BGBC, height, species, age, and land cover. For the
landscape features the three predictor variables with the most significant
influence were the three forms of biomass C, followed by age, species,
height, and land cover.

Fig. 3 presents thefive continuous variables of the two BBNmodels. The
prior probability values, indicated in red in Fig. 3, present themean value of
5

each one of the naive model's parameters together with the uncertainty
expressed as standard deviation (sd) associated with each prediction using
just literature values. After incorporating the measured information into
the naive models, an updated informed model and newly updated
uncertainties were derived as indicated in black in Fig. 3. Amore detailed de-
scription of the values can be found in Tables A1 andA2 in theAppendix. The
combination of literature and additional measured information seemed to
marginally improve the precision of estimation of the mean value of the
total biomass C stock, as themean value increased and the standard deviation
stayed the same. In terms of the landscape features, the addition of measured
values also increased the precision of the estimated total C stock value, as
the mean value increased and the standard deviation decreased. Similarly,
the precision of the estimate of the three forms of biomass C stock also im-
proved as the values increased but the standard deviation stayed the same.

3.2. Drivers of carbon density

Using the posterior models, heat maps were generated to describe the
probabilistic associations between the predictor variables and the predicted
total biomass C stock (Ctotal) for the homogeneous land cover classes
(Fig. 4a) and the landscape features (Fig. 4b). The conditional probabilities
of an outcome given a set of parent node states are presentedwith shades of
blue, with low and high probabilities indicated in light and dark blue re-
spectively. For the homogeneous land cover features, although there were
more than four states on the land cover and species nodes, only the four
most common land covers are presented in the heatmaps. The four probabi-
listic ranges that the Ctotal can take are referred to as “bins”.

For the homogeneous land covers, Bin 1 comprised 0–4.7 t C ha−1, and
Bins 2, 3, and 4 comprised 4.7–33.9, 33.9–110.4, and 110.4–332.8 t C ha−1

respectively. The heat map shows that low values of Ctotal were associated
with arable land (AR) and that high values of Ctotal were associated with
high values of aboveground biomass carbon and age and with broadleaf
woodland (Fig. 4a). The influence effect Differences between the effect of
the four most common species in the dataset (UA: unspecified arable; UG:
unspecified grassland, PA: pasture, and SS: Sitka spruce) on Ctotal were rel-
atively small. The low-level ‘bin’ of Ctotal (0.0–4.7 t C ha−1) was dominated
by short and young land covers that store low amounts of C as above-
ground, below-ground, and dead organic matter (Fig. 4a). By contrast, the
high level ‘bin’ of Ctotal (110.4–332.8 t C ha−1) comprised tall land cover
classes typically in the age range of 40–60 years and with high levels of
aboveground biomass (AGBC).

For the heatmap created for the landscape features (4b), Bin 1 com-
prised 0–10.2 t C ha−1, and Bins 2, 3, and 4 comprised 10.2–27.3,
27.3–58.0, and 58.0–120.0 t ha−1 respectively. As with the land cover,
the highest values of Ctotal were associatedwith high values of aboveground
biomass, belowground biomass and dead organic matter (Fig. 4b). High
values of age and height were also associated with high values of Ctotal.
Hence, young lone trees and hedges below a height of 5 m tended to have
low values of Ctotal, and older tall features had high values. Lone trees like
poplar and hedges like hawthorn and hazel and in an age group of greater
than 30 years tended to have high values of Ctotal.

3.3. Model performance

The performance of the BBN models in determining Ctotal can be partly
assessed using the error rate derived from a confusion matrix. The confu-
sion matrices produced for each model contained four possible ranges for
Ctotal. For each one of the 581 cases in the land cover dataset, the use of
the BBN model in Netica generated beliefs for each possible state and the
one with the highest probability value most likely was chosen as its predic-
tion. This valuewas then comparedwith themeasured value taken from the
test file. The confusion matrix (Table 1) shows that 542 out of the 581
datum points were correctly allocated to the correct “bin”. A total of 37
values were not estimated correctly, 15 of which were predicted to have a
higher value and the other 22 a lower value than their actual one. A similar
matrix (Table 1) was produced for the landscape features, where a total of



Fig. 3. Graphic representation for mean prior and posterior probability values and standard deviation for the parameters of the Bayesian Belief Network (BBN) model for
a) the homogeneous land cover classes (nprior = 576, nposterio r = 576 + 5) and b) landscape features (nprior = 68, nposterior = 68 + 26).
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94 cases were processed, and in this case, 90 features were correctly allo-
cated, but four features were incorrectly allocated to Bin 1. Hence, the
error rate for the BBN model was 6.7 % for the homogeneous land cover
6

classes and 4.3 % for the landscape features indicating that, in general,
the BBNs were able to match the allocated Ctotal value to the same bin as
the measured Ctotal test values.



Fig. 4. a. Informed heat map presenting the four bins of the total biomass carbon stock (Ctotal; n=581 of homogeneous land cover), and the conditional probabilities of five
continuous predictor variables, and two discrete predictor variables showing the four most common species (UA: unspecified arable; UG: unspecified grassland, PA: pasture,
and SS: Sitka spruce) and fourmost common land cover classes (AR: arable, IG: intensive grassland, CW: coniferouswoodland, and BW: broadleaf woodland) b. Informedheat
map presenting four bins of the total biomass carbon stock (Ctotal) of landscape features (n=94), the conditional probabilities of five continuous predictor variables, and two
discrete predictor variables showing the fourmost common species (HA: hazel; HW: hawthorn; PO: poplar, and AL: alder) andwhether the landscape feature is a hedge (H) or
lone tree (LT).

Table 1
Confusion matrix demonstrating the success of the posterior Bayesian Belief Net-
work (BNN) to predict the total biomass carbon stock (Ctotal) values for a) the homo-
geneous land cover classes (n= 581) as inputs and b) landscape features as inputs
(n = 94). The coloured values are those correclty predicted by the BBNs.

a) Predicted carbon stock (t C ha-1) Actual carbon stock (t C ha-1)
0.0 - 4.7 4.7 – 33.9 33.9 – 110.4 110.4 – 332.8

130 15 0 0 0.0 –4.7
18 127 0 0 4.7 – 33.9

0 2 142 1 33.9 – 110.4
0 0 1 143 110.4 – 332.8

b) Predicted carbon stock (t C ha-1) Actual carbon stock (t C ha-1)
0.0 – 10.2 10.2 – 27.3 27.3 – 58.0 58.0– 120.0 

9 0 0 0 0.0 – 10.2
2 24 0 0 10.2 – 27.3
2 0 29 0 27.3 – 58.0
0 0 0 28 58.0– 120.0
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3.4. Quantity and value of total carbon density

The next step in the analysis was to compare the measured values of
Ctotal with the predicted results of Ctotal using the informed BBNs
(Table 2). More details about the measured values can be found in
Table A4 in the Appendix. For each land cover and landscape feature
type, the most probable out of the four Ctotal bins is presented together
with the weighted median value. This was calculated as the weighted
median of all probable bins with their probabilities assigned as weights.
The highest predicted value of Ctotal (72 t C ha−1) was for an ash
broadleaf woodland, compared to a measured value of 58 t C ha−1

(Table 2). The lowest predicted value of Ctotal of 2 t C ha−1 was for an
arable field, compared to the measured value of 3 t C ha−1. For the land-
scape features, the mean measured Ctotal of all hedges was 65 t C ha−1

and that for the lone trees was 100 t C ha−1. The mean predicted



Table 2
Measured andpredicted by the informedBayesian BeliefNetworkmodels total biomass carbon stock (Ctotal) for homogeneous land cover classes and landscape features atfive
study sites.

Farm Land cover/feature n Total biomass carbon stock (t ha−1)

Measured Most probable bin range and probability Weighted median value and sda

Homogeneous land cover
HM Arable: cereal 1 3.0 0.0–5.0 (96 %) 2.0 ± 2.7
S Arable: stockfeed 1 5.0 0.0–5.0 (57 %) 4.0 ± 7.1
CP Improved grassland 1 8.0 5.0–34.0 (96 %) 15.0 ± 9.9
HM Improved grassland 1 7.0 5.0–34.0 (67 %) 15.0 ± 25.9
CP Broadleaf: ash 1 58.0 34.0–110.0 (97 %) 72.0 ± 29.1

5
Landscape features

CB Hedge: hawthorn 1 19.0 10.0–27.0 (67 %) 20.0 ± 24.8
CB Hedge: hawthorn 1 42.0 27.0–58.0 (84 %) 42.0 ± 17.4
CB Hedge: hawthorn 1 44.0 27.0–58.0 (75 %) 41.0 ± 20.8
CB Hedge: hawthorn 1 51.0 27.0–58.0 (75 %) 41.0 ± 20.8
CB Hedge: mix 4 34.0–40.0 27.0–58.0 (84 %) 42.0 ± 17.4
E Hedge: hazel 1 39.0 27.0–58.0 (84 %) 42.0 ± 17.4
CB Hedge: mix 1 87.0 58.0–120.0 (90 %) 85.0 ± 27.0
E Hedge: hawthorn 2 61.0–10.50 58.0–120.0 (75 %) 85.0 ± 36.5
E Hedge: hazel 1 97.0 58.0–120.0 (75 %) 85.0 ± 36.5
E Hedge: blackthorn 2 99.0–106.0 58.0–120.0 (75 %) 85.0 ± 36.5
HM Hedge: hawthorn 1 79.0 58.0–120.0 (75 %) 85.0 ± 36.5
HM Hedge: blackthorn 1 94.0 58.0–120.0 (75 %) 85.0 ± 36.5
HM Hedge: mix 1 103.0 58.0–120.0 (75 %) 85.0 ± 36.5

Mean 65.0 62.0
CP Lone tree: ash 1 69.0 58.0–120.0 (90 %) 85.0 ± 27.0
S Lone tree: poplar 7 98.0–111.0 58.0–120.0 (75 %) 85.0 ± 36.5

Mean 100.0 85.0
26

HM: Harnhill Manor Farm; S: Silsoe; E: Elm Farm; CP: Clapham Park; CB: Crowmarsh Battle.
a sd = standard deviation.
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value using the informed model was 62 t C ha−1 for the hedges and 85 t
C ha−1 for the lone trees.

The last stage of the analysiswas to predict the total biomass carbon stock
(Ctotal) found across all of the land covers and landscape features on each of
the five case study farms. As presented in Table 3 and presented visually in
Fig. 5 together with the age and height predictors, Crowmarsh Battle,
Harnhill Manor and Elm Farm had quite similar levels of Ctotal per hectare
stored in the biomass of the homogenous land covers, ranging from 11.4 to
13.5 t ha−1, while Silsoe had the lowest levels of just 2.4 t ha−1 (Table 3).
Clapham Park had the highest stored biomass Ctotal of 21.7 t ha−1. For the
landscape features Crowmarsh Battle and Elm Farm had the highest per
hectare values ranging from59.4 to 60.6 t ha−1 andHarnhillManor together
with Clapham Park had the lowest, ranging from 32.1 to 35.9 t ha−1. The
level of Ctotal stored at the poplar trees of Silsoe was 52.3 t ha−1.

4. Discussion

The results are discussed in terms of the key components and drivers de-
termining Ctotal, the development of an integrated spatial model, the impor-
tance of landscape features for carbon storage, the benefits of using lidar
data, and the benefits and disadvantages of using Bayesian Belief Network
models.
Table 3
Mean per hectare and total biomass carbon stock (Ctotal) present across all the land cover
area and the total biomass carbon stored in landscape features.

Farm Total area
(ha)

Total area landscape
features (ha)

Mean carbon of land cover
(t ha−1)

Mean
featu

Crowmarsh 42.46 5.44 (13 %) 11.4 59.4
Elm Farm 80.06 4.46 (6 %) 13.5 60.6
Harnhill Manor 394.86 7.50 (2 %) 11.8 32.1
Clapham Park 15.25 0.67 (4 %) 21.7 35.9
Silsoe 4.71 2.66 (57 %) 2.4 52.3
Mean 107.47 4.15 (4 %) 12.2 48.1

8

4.1. Key drivers

The identification of important predictor variables influencing Ctotal and
the structure of the BBNmodels were informed by published literature. The
creation of heatmaps (Fig. 4a and b) is one method to illustrate the influ-
ence of each predictor on Ctotal. The developed heatmaps highlight that
aboveground biomass carbon (AGBC) is the most influential predictor of
Ctotal for both homogenous land covers and landscape features. This is a use-
ful output of this research, as AGBC is often the easiest component to mea-
sure (Petrokofsky et al., 2012). Additionally, as described in Section 2.2 and
as seen in Table A1 found at the Appendix, it can be used to calculate the C
stored in the other forms of the biomass. For arable land and woodlands,
the aboveground biomass carbon was typically 2–5 times higher than the
belowground biomass carbon, as also indicated by algorithms in
Table A1 in the Appendix. High values of Ctotal were also positively asso-
ciated with height and large values for belowground and dead organic
biomass. This is very important particularly for woody vegetation, as
it can assist in understanding how efficiently trees store C throughout
their lifetime. The least influential predictor, of those considered, was
the species for land cover classes and underlying land cover for the land-
scape features, presumably because these predictors were less directly
linked to Ctotal.
and landscape features of five case study farms, together with the proportion of the

carbon of landscape
re (t ha−1)

Total
Carbon (t)

Total carbon of land
cover (t)

Total carbon of landscape
feature (t)

807 484 323 (40 %)
1354 1084 270 (20 %)
4882 4641 241 (5 %)
354 330 24 (7 %)
150 11 139 (93 %)

1509 1310 199 (13 %)
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4.2. Development of an integrated spatial method for biomass carbon

The approach described in this paper shows that it is possible to
determine both the biomass C stock of homogeneous land covers and land-
scape features in an integrated logical format using remotely sensed data.
This is something relatively new as previous studies (Adger and Subak,
1996; Cannell and Milne, 1995; Cantarello et al., 2011; Cruickshank
et al., 2000; Dewar and Cannell, 1992; Gregory et al., 1995; IPCC, 2019;
Jian et al., 2020) have focused on just the land cover and missing a big
part of farm C that can be found in the landscape features. Similarly, GHG
emission factor calculators (Campos, 2020; Carlson et al., 2017; Janzen
et al., 2006; Shrestha, 2014; Stöckle et al., 2001; Sustainable Food Lab
Fig. 5.Maps presenting the land cover types and species together with their age, height

9

et al., 2011; Ziegler et al., 2016) do not separately account for landscape
features.

Within our approach, we assumed that a lone tree is an additive feature,
and the Ctotal of the tree is added to the Ctotal of the underlying land cover.
By contrast, we considered that the Ctotal of a hedgerow was not additive
but that it effectively represented a different type of land cover. This inte-
grated method also incorporates the spatial aspect, as we have demon-
strated that the BBNs can be successfully combined with a GIS interface
across the five study areas to spatially apply the influence network of the
Ctotal.

The development of such robust farm-scale biomass carbon storage in-
ventories is useful to farmers who wish to achieve net-zero GHG emissions
and the simulated levels of the total biomass carbon stock (Ctotal) across five studies.



Fig. 5 (continued).

S. Beka et al. Science of the Total Environment 861 (2023) 160618
and move to being “carbon” positive. Theoretically, it would be possible to
organise on-sitemeasurements of aboveground, belowground, and dead or-
ganic carbon of each land cover or landscape feature on a farm, but this
would be costly in terms of time and resources and could be destructive.
There are also potential accessibility issues (Kumar and Saran, 2014;
Timothy et al., 2016). For woodlands, species-specific allometric equations
have been developed to derive tree biomass from measurements such as
stem wood, stem bark, branches, and the cross-sectional area (Zianis
et al., 2005; Zianis, 2008; Vargas-Larreta et al., 2017). However, in practice
woodlands on many farms comprise a mixture of species.

Farmers whowish to sell “carbon credits” from the accumulation of bio-
mass carbon need to demonstrate both the additionality and the perma-
nence of carbon storage. For example, within the Woodland Carbon Code
in the UK, it is necessary to demonstrate that increases in biomass carbon
arising from tree planting have only occurred because of carbon credits;
that is, it would not have occurredwithout the credits. In addition, it is nec-
essary to ensure the permanence of carbon storage. In contrast to woodland
establishment, which can involve a redesignation of land use from agricul-
ture towoodland, it ismore difficult for a farmer to demonstrate the perma-
nence of carbon storage in landscape features. Hence, in many cases, the
drive for increasing biomass carbon storage on farms through landscape
features is likely to be more useful in demonstrating that an individual
farm or group of farm businesses is achieving net-zero greenhouse gas emis-
sions rather than to profit from the sale of carbon credits.

4.3. Importance of landscape features

Landscape features such as hedgerows and lone trees are well-recognised
for their landscape, biodiversity, and cultural value. However, this paper also
highlights that they can store large quantities of carbon similar, on a per
hectare basis, to woodlands and substantially higher than the mean biomass
carbon levels of farms (Table 3). Hence increasing the area of hedgerows and
agroforestry systems can be a useful on-farm strategy to increase the storage
of carbon biomass (Axe et al., 2017; Drexler et al., 2021). Although the case
study farms were not randomly selected, the results demonstrate that land-
scape features could comprise 5–93 % of the biomass carbon storage on
farms. On average, the mean value was 13 % across the five case studies.

4.4. Benefits of using lidar data

A useful innovation described in this paper, is the capacity to spatially
present the variation in carbon stocks along the length of hedges andwithin
10
woodlands using remote sensing and lidar data (Fig. 5) (Petrokofsky et al.,
2012). Airborne lidar data can both reduce the costs and effort required to
conduct whole-farm surveys (Arenas-corraliza et al., 2020; Timothy et al.,
2016) in addition to providing a remote screenshot of vegetation heights.
Lidar data have been used in forest studies to estimate timber volumes
(Naesset, 1997), canopy cover (Arenas-corraliza et al., 2020; Lefsky et al.,
2002), forest aboveground carbon content (Patenaud et al., 2004;
Urbazaev et al., 2018), and above-ground biomass (Lu et al., 2012;
Timothy et al., 2016). The combined method of lidar and BBN models is
relatively new. Woodland studies such as Wang et al. (2019), and Zapata-
Cuartas and Sierra (2014) have proved the potential of improving the esti-
mation of above-ground biomass through lidar data by incorporating a BBN
method instead of using the traditional allometric equations. In this study,
we have extended this work by using the BBN method and estimating the
total biomass carbon in additional land cover categories togetherwith land-
scape features. Moreover, a useful attribute of the methodology described
in this paper is that the required variables (such as age and height) can po-
tentially be determined remotely using historic land cover and lidar height
data.

The use of lidar data allows the derivation of different levels of biomass
within land units that have a single designated “land cover”. For example,
within a single parcel designated as “woodland” at Clapham Park (Fig. 5),
the incorporation of height data from lidar enabled the BBN for land
cover to distinguish between areas of trees and grass walkways. The vege-
tation height in the walkways was less than the surrounding trees, with cor-
responding lower values of Ctotal. The process was also able to infer
different values of Ctotal along the length of the individual hedges across
four of the farms because of differences in the lidar height data (e.g.
Crowmarsh Battle in Fig. 6). This process of including variable heights
within woodlands and along hedges can be more informative to land
owners than previous studies in the UK (Cannell and Milne, 1995; Milne
and Brown, 1997), Ireland (Cannell et al., 1996; Cruickshank et al.,
2000), and in other parts of the world (Vargas-Larreta et al., 2017) where
one value is given to the whole woodland with the same age.

4.5. Advantages and disadvantages of the Bayesian approach

This paper shows that it was possible to develop an approach which
could quantify biomass carbon stocks and their certainty. Such a Bayesian
approach can be particularly useful for farmer or land manager practi-
tioners. It integrates information and measured values to derive relation-
ships between parameters (McCandless and Gustafson, 2017), aggregates
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uncertainty of information across complex networks when information is
limited (De Campos et al., 2004; Friedman and Koller, 2003; Jiang et al.,
2011), and prevents overfitting (Borsuk et al., 2004; Melody et al., 2011).
Moreover a novelty of this study is the development of a theoretical frame-
work in this area.

The way that BBN models quantify uncertainty is different from deter-
ministic models as the uncertainty is directly embedded in the predictions
and the generated error boundaries (Taalab et al., 2015b). The two in-
formed BBN models developed in this paper were able to predict success-
fully the test values with propagated error rates of 6.7 % for Ctotal for the
homogeneous land features model and 4.3 % for the landscape features.
These error rates were lower than in studies where BBN models have
been applied to soil systems (Taalab et al., 2015b) where the error ranged
from 15 % to 36 % and in environmental systems of ecosystem service
trade-offs and synergies where the error rate ranges from 41 to 45 %
(Karimi et al., 2021). Despite the reliance on only seven predictors, the rel-
atively lower error rates of BBNmodels reported in this paper suggests that
the selected predictors are strong determinants of Ctotal.

The developed BBNmodels generate distributions of Ctotal that were not
based on pre-determined relations and correlations between parameters.
This can be an advantage when the relationships between parameters are
complex. One example of a potential non-intuitive response in terms of bio-
mass carbon is that the land cover model (Fig. 4a) suggests that expanding
the continuity of a land cover beyond 40 years did not necessarily result in a
higher value of Ctotal. Such relationships could be a result of the carbon bio-
mass of woodlands plateauing once a woodland has reached 40 years or the
confounding effects of tree harvests.

The models uses the predictions from the BBN models and classifies
each land cover/feature found in the study sites into one of the four Ctotal

bins, where the median value of the bin range is given as seen in Table 2.
This lack of precision can result in overestimation or underestimation of
values. The mean value for arable land at the two sites ranged between
2.0 and 4.0 t ha−1 and is quite similar to values of 2.0–6.57 t ha−1 reported
for mean arable crop categories in the UK GHG Inventory (Brown et al.,
2020), and studies by Cruickshank et al. (2000), Cantarello et al. (2011)
and Adger and Subak (1996). The derived mean value for improved grass-
land of 15.0 t ha−1 (Table 2) at the two study sites, is also higher than
values of 4.2–8.4 t ha−1 in the aforementioned studies. By contrast, the
value of 72.0 t ha−1 for woodland is close to values of 52.9–74.0 ha−1 pro-
vided by Milne and Brown (1997) and Morison et al. (2012).

It is difficult to compare the C stored in the total biomass of the hedge-
rows with other studies, as studies such as Falloon et al. (2004), Black et al.
(2014, page 24) have only measured the AGBC and Biffi et al. (2022) fo-
cused on AGBC and BGBC without any DOMC measurements. Similarly,
for the lone trees, the comparison of themean value of 85.0 t ha−1 is a chal-
lenge to be compared with other agroforestry studies, as the type of system
has important implications on the stored carbon.

Within our approach,we developedmodels that provide a “snapshot” of
the values of Ctotal within a given year. Themodel does not account for tem-
poral variation in Ctotal within the year. However, in practice, the biomass
of a growing arable crop can change from effectively zero before the
seeding of cultivated soil to maximum values just before harvest. This
temporal limitation is a common feature of most carbon accounting
methods. For example, the standard practice in the IPCC guidelines
(IPCC, 2019; Chapter 5 page 7), is to assume the C density value of arable
crop after harvest, i.e. the biomass is primarily related to the weight of
the roots and the stubble of the crop. In using the model, we also assumed
a uniform species type and constant age within a land cover area. Although
in practice, there may be changes in tree species within a woodland or a
hedge, the logic generally follows the methodology described in the UK's
Woodland Carbon Code Assessment Protocol (Jenkins et al., 2011).

Looking forward, we anticipate two avenues where the model could be
further developed or used. Firstly, there is the potential to use the model to
predict the effect of management interventions on Ctotal at a farm level. For
instance, a farmmanager could use it to identify the height and species mix
of a specific hedgerow or woodland that would tend to achieve a specific
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level of Ctotal. Additionally, the model can be used in farm scenario testing,
agroforestry and forestry studies. Secondly, for this study, we used the
Netica BBN software (Norsys Software Corp., 2022) that categorised the
outputs into discrete “bins”. The advantage of this categorisation is that
the computing of the relationships becomes far more feasible on a standard
desktop computer or laptop. However, more computationally demanding
software programmes exist (Thomas et al., 2003), where the outputs can
be expressed as continuous variables. As the computational capacity of
computers increases, future farm, or forestry studies may be able to apply
the described in this paper techniques in order to derive continuous predic-
tions of Ctotal.

5. Conclusions

This study supports the hypothesis that a probabilistic approach for ac-
counting for farm biomass carbon stocks is feasible. A particularly useful at-
tribute of the demonstrated approach is that the estimation of the total
biomass carbon stocks (Ctotal) of both land cover and landscape features is
performed in an integrated logical format. The described BBN approach,
which seeks constantly to improve prediction accuracy, provided a method
for applying current literature and measured information about the vari-
ables that most influence the Ctotal values of land cover classes and land-
scape features.

An advantage of the approach described in this paper is that the re-
quired variables (such as age and height) can potentially be determined re-
motely using historic land cover and lidar height data. Additionally, in this
paper, we have demonstrated that the BBNs can be successfully combined
with a GIS interface across the five study areas to spatially apply the influ-
ence network of the Ctotal. A useful attribute of the methodology described
in the paper, including the use of lidar data, is that it was possible to predict
differences in Ctotal across hedgerows and land parcels. As the computa-
tional capacity of computers increases, there may be future opportunities
to use forms of BBN analysis that produces continuous rather than discrete
estimates of Ctotal.
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