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Abstract 27 

 28 

Photorespiratory metabolism is essential for plants to maintain functional 29 

photosynthesis in an oxygen-containing environment. Because the oxygenation reaction 30 

of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often 31 

considered a wasteful process and considerable efforts are aimed at minimizing the 32 

negative impact of photorespiration on the plant’s carbon uptake. However, the 33 

photorespiratory pathway has also many positive aspects, as it is well integrated within 34 

other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is 35 

important for maintaining the redox balance of the plant. The overall effect of 36 

photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly 37 

influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the 38 

distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to 39 

evaluate the costs and benefits of photorespiration.  40 

 41 

Introduction 42 

 43 

Photosynthesis is quantitatively the most important biochemical pathway on the planet, 44 

by which plants turn sunlight and atmospheric CO2 into organic biomass. It thereby 45 

provides the foundation of most life on Earth. The key enzyme involved in the 46 

carboxylation of ribulose 1,5-bisphosphate (RuBP), which drives the assimilation of CO2 47 

in photosynthetic organisms, is RuBP carboxylase/oxygenase (Rubisco). For every 48 
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carboxylation reaction two molecules of 3-phosphoglycerate (3-PGA) are produced that 49 

can be metabolized in the Calvin-Benson-Bassham (CBB) cycle to either regenerate 50 

RuBP, or to be exported as triose phosphate and become the substrate for most other 51 

organic compounds that make up a plant. Almost a century ago, Otto Warburg 52 

discovered that the rate of CO2 assimilation is suppressed by increasing the external 53 

oxygen concentration (Warburg, 1920; Nickelsen, 2007). Only much later, and more 54 

than a decade after the discovery of Rubisco’s capacity to carboxylate its substrate RuBP 55 

(Quayle et al., 1954; Weissbach et al., 1954; Mayaudon et al., 1957), it was established 56 

that Rubisco is an enzyme that can also react with oxygen to produce one molecule of 2-57 

phosphoglycolate (2-PG) along with one molecule of 3-PGA (Bowes et al., 1971).  58 

 The two-carbon molecule 2-PG is a potent inhibitor of several enzymes, including 59 

triose phosphate isomerase (Anderson, 1971), sedoheptulose 1,7-bisphosphatase 60 

(Flügel et al., 2017), and phosphofructokinase (Kelly and Latzko, 1976) and therefore 61 

needs to be metabolized quickly. This is accomplished via the photorespiratory pathway, 62 

also known as C2 pathway or the oxidative photosynthetic carbon cycle. This pathway 63 

recovers 75% of the 2-PG carbon by converting it to 3-PGA, which is then fed back into 64 

the CBB cycle where it can be used to regenerate RuBP (Berry et al., 1978). The 65 

remaining 25% of the carbon is released as CO2 from photorespiration, meaning 66 

‘respiration in the light’, as this process is light-dependent. Photorespiration tends to be 67 

higher at high temperatures, low CO2 concentrations and high O2 concentrations 68 

(Sharkey, 1988). 69 
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Because of the release of previously fixed CO2 and the energetic cost involved in 70 

metabolizing 2-PG, photorespiration has often been considered wasteful and it has been 71 

estimated that decreasing photorespiration could significantly increase food production 72 

(Walker et al., 2016). However, considering photorespiration as merely an unwanted 73 

side reaction is too simplistic, as the photorespiratory pathway is linked with several 74 

other metabolic processes that are essential to the plant. In addition to being connected 75 

with the carbon metabolism of the CBB cycle via Rubisco activity and the returned 3-76 

PGA, photorespiration is also involved in nitrogen assimilation (Bloom, 2015; Busch et 77 

al., 2018), C1 metabolism, and amino acid and phospholipid biosynthesis (Hanson and 78 

Roje, 2001; Ros et al., 2014). The photorespiratory pathway may also be beneficial 79 

through the dissipation of excess energy (Kozaki and Takeba, 1996) and has important 80 

implications in balancing the ratio of NADPH and ATP within the cell (Kramer and Evans, 81 

2011). 82 

Photorespiration is the metabolic consequence of the generation of 2-PG via the 83 

oxygenation reaction of Rubisco that is recycled via the photorespiratory pathway. As 84 

such, the oxygenation reaction is the ultimate cause for photorespiration and, to a large 85 

extent, also determines the rate of photorespiratory CO2 release. Although often 86 

conflated with the oxygenation reaction by Rubisco, the CO2 release from 87 

photorespiration is an interrelated, but independent process and the stoichiometry of 88 

oxygenation and photorespiration is not fully fixed. Metabolic pathways that drain 89 

carbon from the photorespiratory pathway, such as glycine being exported for protein 90 

synthesis (Busch et al., 2018) or serine used for C1 metabolism (Mouillon et al., 1999), 91 
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will alter the amount of CO2 released per oxygenation reaction. It is therefore instructive 92 

to consider the generation of 2-PG and its metabolism separately. In the following I 93 

outline the two sides of photorespiration: (1) the enzymatic properties of Rubisco and 94 

aspects of the leaf affecting CO2 diffusion that determine the generation of 2-PG; and (2) 95 

the metabolic context in which photorespiratory recycling of 2-PG occurs. It is these two 96 

sides of photorespiration that in combination define photorespiratory CO2 release and 97 

thereby the costs and benefits of photorespiration. I conclude by discussing whether 98 

and under which conditions photorespiration might be considered wasteful. 99 

 100 

The oxygenation of RuBP by Rubisco 101 

 102 

The rate limiting step of CO2 fixation in plants is catalyzed by Rubisco, a hexadecameric 103 

enzyme that consists of eight large subunits (RbcL) containing the catalytic site and eight 104 

small subunits (RbcS) that have some influence over the kinetic properties of Rubisco 105 

(Pottier et al., 2018). The key kinetic parameters of Rubisco include the Michaelis-106 

Menten constants for CO2 ( K
c
) and O2 ( K

o
), and the catalytic turnover speed for 107 

carboxylation and oxygenation ( k
cat

c  and k
cat

o , respectively, in turnovers per second). The 108 

value of k
cat

c  is only ~2-3 s-1 in C3 plants (Whitney et al., 2011), which is the reason why 109 

Rubisco constitutes around 20-30% of soluble leaf protein, but may reach more than 110 

50% depending on the growth condition (Makino and Osmond, 1991; Galmés et al., 111 

2014), corresponding to 10-25% of total leaf nitrogen (Onoda et al., 2017; Evans and 112 

Clarke, 2019). Its high abundance across all photosynthetic organisms means Rubisco 113 
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may be the most abundant protein on Earth (Ellis, 1979; Bar-On and Milo, 2019). Both 114 

the slow turnover rate and the competitive inhibition by O2 give Rubisco the reputation 115 

of being an inefficient enzyme. However, a recent comparison with chemically related 116 

enzymes showed that Rubisco’s catalytic performance is not unusual and the perception 117 

of it being a particularly sluggish enzyme may be unwarranted (Bathellier et al., 2018).  118 

We can mathematically relate the maximum carboxylation capacity (Vcmax) and 119 

oxygenation capacity (Vomax) of Rubisco to the total concentration of enzyme sites (Et) by 120 

defining V
cmax

= k
cat

c E
t
 and V

omax
= k

cat

o E
t
. From these equations we can calculate the ratio 121 

of the actual Rubisco carboxylation rate (Vc) relative to its oxygenation rate (Vo) as (Laing 122 

et al., 1974): 123 

 
V

c

V
o

=
V

cmax

K
c

K
o

V
omax

C
c

O
 , (1) 124 

where Cc is the CO2 concentration and O the O2 concentration at the Rubisco active site. 125 

The ratio of the carboxylation rate to the oxygenation rate when Cc and O are equal is 126 

called the relative specificity of Rubisco (Sc/o) and is given by 127 

 S
c /o

=
V

cmax

K
c

K
o

V
omax

 . (2) 128 

Sc/o is therefore a property that is determined by the fundamental enzyme kinetics of 129 

Rubisco. See Tcherkez (2016) for a detailed discussion of the reaction mechanisms 130 

responsible for the partitioning between carboxylation and oxygenation reactions of 131 

Rubisco. For given Cc and O, the ratio of the oxygenation to the carboxylation rate is 132 

determined by 133 
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o
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c

=
1

S
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æ

è
ç

ö

ø
÷

O

C
c

 . (3) 134 

Eqn. (3) demonstrates that the production of 2-PG through RuBP oxygenation is in a 135 

fixed relationship with the production of 3-PGA for any given Sc/o, Cc, and O. In other 136 

words, higher rates of CO2 fixation are inextricably linked to higher rates of 2-PG 137 

production, which then require a higher capacity of 2-PG recycling in the 138 

photorespiratory pathway. Consequently, an uncoupling of 3-PGA from 2-PG synthesis 139 

can only be achieved by altering Sc/o, Cc, or O. 140 

 141 

Variability of Sc/o  142 

 143 

The Sc/o of Rubisco is largely determined by the protein sequence of its subunits and 144 

even single amino acid substitutions can impact the kinetic properties of the enzyme. It 145 

has been shown that a substitution of Met309 to Ile309 of RbcL turns a C3-like enzyme 146 

with lower k
cat

c  and higher CO2 affinity (i.e. lower K
c
) into a C4-like enzyme with higher 147 

k
cat

c  and lower CO2 affinity (Whitney et al., 2011). Other examples exist where small 148 

changes in the protein sequence affected Rubisco kinetic properties, including Sc/o 149 

(Whitney and Sharwood, 2008) and residues of RbcL have been determined that are 150 

under positive selection towards specific kinetic parameters, indicating that RbcL is 151 

instrumental in determining the catalytic properties of the enzyme (Kapralov and 152 

Filatov, 2007; Kapralov et al., 2010; Galmés et al., 2014).  153 
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The role of the small subunit so far is not as well understood, but it has become 154 

apparent that it, too, has an impact on the catalytic properties of Rubisco (Spreitzer, 155 

2003; Kapralov et al., 2010). A transformation of the small subunit of Sorghum bicolor, a 156 

C4 plant, into the C3 plant rice has revealed a role for RbcS in controlling catalytic 157 

properties (Ishikawa et al., 2011). The transgenic rice plants obtained in these 158 

experiments expressing a C4-type RbcS alongside the native rice RbcL exhibited a higher 159 

k
cat

c  and lower Sc/o than the non-transgenic rice, making Rubisco’s catalytic properties 160 

much more C4-like. Other hybrid enzymes consisting of Chlamydomonas RbcL and RbcS 161 

from spinach, sunflower, or Arabidopsis also produced enzymes with specificities that 162 

were intermediate between the wild-type Chlamydomonas and the higher plant Rubisco 163 

(Genkov et al., 2010). Similarly, a hybrid Rubisco with RbcL from sunflower and RbcS 164 

from tobacco showed Sc/o values intermediate between sunflower and tobacco 165 

(Sharwood et al., 2008). In contrast to RbcL, which is usually encoded by a single-copy 166 

gene in the chloroplast, RbcS is a multigene family that encodes several different 167 

isoforms in the nuclear genome. The number of rbcS genes can range from as few as 2 in 168 

the green alga Chlamydomonas reinhardtii to more than 22 in wheat (Spreitzer, 2003). 169 

Some of these RbcS variants that are mostly expressed in the mesophyll (M-type) share 170 

up to 100% amino acid identity. Another type of RbcS that exists in some plant species 171 

and was first found in trichomes (T-type), is distinctly different from the M-type (Pottier 172 

et al., 2018). So far, this T-type RbcS has been found in non-photosynthetic tissues such 173 

as roots, seeds, fruits, and secretory organs such as trichomes, but appears to be largely 174 

absent in photosynthetic tissues (Morita et al., 2016). It can be speculated that this type 175 
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of RbcS may be important when Rubisco is not being used in the context of the CBB 176 

cycle, such as in the fatty acid synthesis during seed development (Schwender et al., 177 

2004). In rice the overexpression of its T-type RbcS, OsRbcS1, altered the effective 178 

catalytic properties of extracted Rubisco (Morita et al., 2014). In these experiments, 179 

OsRbcS1 overexpression increased k
cat

c  and K
c
, with a concomitant decrease in Sc/o, 180 

shifting Rubisco’s catalytic properties towards those found in C4 plants. Similar 181 

differences were observed when tobacco M-type and T-type RbcS genes were expressed 182 

in Chlamydomonas lacking its own small subunits (Laterre et al., 2017). Small subunits 183 

do not have to be as different as M-type and T-type RbcS to confer differences in 184 

Rubisco kinetic parameters. Substitutions of single Chlamydomonas RbcS residues have 185 

been shown to account for decreases in Sc/o of up to 8% (Spreitzer et al., 2001). 186 

Although direct experimental evidence is lacking to date that the different M-187 

type small subunits within a plant mediate substantial differences in Rubisco kinetic 188 

properties in vivo, it can be speculated that they do so. Several studies have shown that 189 

changes in growth environment, such as temperature (Yoon et al., 2001), light intensity 190 

(Wanner and Gruissem, 1991; Dedonder et al., 1993) and light quality (Eilenberg et al., 191 

1998), CO2 concentration (Cheng et al., 1998), as well as the developmental stage of the 192 

plant (Wanner and Gruissem, 1991), result in differential expression of RbcS variants. 193 

Plants may therefore acclimate to their environment by expressing a Rubisco isoform 194 

that is most suitable, e.g. one with high Sc/o under conditions where photorespiration 195 

would be high, such as high temperatures. An increase in Sc/o under high growth 196 

temperatures has been experimentally observed in spinach (Yamori et al., 2006), 197 
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indicating that the acclimation of Rubisco kinetics via expression of different RbcS 198 

isoforms is at least plausible.    199 

Because the half-life of Rubisco inside leaves is in the order of one week 200 

(Simpson et al., 1981), any acclimation on the protein level of its kinetic properties 201 

cannot happen quickly. However, this does not mean that Sc/o necessarily needs to be 202 

considered constant over short periods of time. Recent evidence points to the possibility 203 

that there may be mechanisms through which Rubisco’s kinetic properties can be 204 

altered post-translationally. The catalytic site of Rubisco (E) is inactive in its native form 205 

(Fig. 1). Its activation requires the binding of non-substrate CO2 to the Lys201 residue of 206 

the active site forming a carbamate (EC) (Sharwood, 2017). This is followed by the 207 

binding of Mg2+ to create a stable ECM complex, to which the substrate RuBP can bind 208 

resulting in the formation of ECMR. The presence of Mg2+ and its binding to the catalytic 209 

site therefore plays a critical role in the activation of Rubisco. It has been speculated 210 

that Mg2+ could be replaced by Mn2+ inside the chloroplast, which would slightly alter 211 

the geometry of the active site (Bloom and Lancaster, 2018). This may differentially 212 

change the catalytic properties and thereby favor the oxygenation reaction over the 213 

carboxylation reaction. However, so far it is uncertain how much this replacement 214 

contributes to the regulation of Rubisco kinetic properties inside the leaf. Experimental 215 

evidence of the effect of Mn2+ in vivo is required, especially since the change in 216 

specificity is accompanied by a drastic decrease in the overall catalytic rate (Jordan and 217 

Ogren, 1983; Bloom and Kameritsch, 2017).  218 
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From an evolutionary perspective, Sc/o is fairly constrained within C3 plants (~85-219 

110 mol mol-1 at 25°C)(Hermida-Carrera et al., 2016; Orr et al., 2016), but varies 220 

substantially when other organisms such as green and non-green algae or 221 

photosynthetic bacteria are included in the comparison, due in part to their different 222 

forms of Rubisco (~10 mol mol-1 in photosynthetic bacteria, up to ~240 mol mol-1 in red 223 

algae)(Savir et al., 2010; Young et al., 2016; Flamholz et al., 2019). This variation in 224 

specificity is negatively correlated with a variation in k
cat

c , which has led to the 225 

conclusion that there is an unavoidable trade-off between Sc/o and k
cat

c , meaning 226 

Rubisco is well optimized to its environmental conditions (Tcherkez et al., 2006; Savir et 227 

al., 2010). However, more recent analyses based on data obtained from many more 228 

species weaken the apparent inverse relationship between Sc/o and k
cat

c  (Galmés et al., 229 

2014; Flamholz et al., 2019), suggesting that photosynthetic organisms have some 230 

capacity to adjust Vo relative to Vc without compromising the catalytic rate too much. 231 

As with most other enzymes, the kinetic properties of Rubisco are highly 232 

dependent on temperature. With increasing temperatures Rubisco progressively loses 233 

its specificity for CO2 (Badger and Collatz, 1977; Sharwood et al., 2016), meaning that 234 

the oxygenation reaction becomes more dominant relative to the carboxylation 235 

reaction. This results in generally higher rates of oxygenation and higher losses of 236 

carbon from photorespiration at higher leaf temperatures. Surveying a large diversity of 237 

species has uncovered a substantial variability in how Sc/o is affected by temperature 238 

(Hermida-Carrera et al., 2016; Orr et al., 2016; Sharwood et al., 2016). Interestingly, C3 239 

plants from cool habitats contain Rubiscos that perform better at low temperatures, 240 
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while Rubiscos from warm-habitat plants perform better at high temperatures (Galmés 241 

et al., 2016). Despite these insights into the variability of Rubisco kinetics, the exact 242 

molecular bases for what makes Sc/o of some Rubiscos more invariant to temperature 243 

than others, and which subunit is the main driver for this effect, remain elusive.  244 

Overall, Sc/o is variable to some degree, both through acclimation to current 245 

environmental conditions and adaptation to the plant’s habitat. This necessarily impacts 246 

Vo and thereby the rate of 2-PG recycling and consequentially the rate of 247 

photorespiration. It also means that despite the Rubisco oxygenation reaction 248 

potentially being wasteful and unavoidable, plants have some control over how much 249 

oxygenation of RuBP they allow to happen. It is interesting to note at this point that 250 

plants do not always seem to opt for the highest possible specificity. It is therefore 251 

worthwhile to discuss the benefits that plants receive from RuBP 252 

oxygenation/photorespiration. 253 

 254 

Delivery of CO2 into the chloroplast 255 

 256 

Besides Sc/o, the other important factor determining Vo inside the leaf is O/Cc (Eqn. (3)). 257 

Because the O2 concentration in the atmosphere surrounding the leaf (~ 210,000 µmol 258 

mol-1) is much higher than the CO2 concentration (Ca; ~ 415 µmol mol-1), photosynthetic 259 

activity, which releases O2 at a similar rate as it takes up CO2, does not substantially alter 260 

O. In contrast, in photosynthesizing leaves Cc can vary considerably and reach values 261 

much below Ca. This is due to the rate of CO2 uptake relative to Ca being much larger 262 
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than the rate of O2 release relative to O, which according to Fick’s law causes a much 263 

greater concentration gradient for CO2 as compared to O2. We can therefore consider O 264 

to be a constant in the natural environment and focus here on the variability of Cc.   265 

 The CO2 needed for photosynthesis inside the chloroplast enters the leaf through 266 

stomata that tightly regulate the gas exchange between the atmosphere and the inside 267 

of the leaf. Thus, stomata impose a resistance to CO2 diffusion (rs) that causes the 268 

intercellular CO2 concentration (Ci) to be lower than Ca (Fig. 2a). A similar effect occurs 269 

during the diffusion of CO2 from the intercellular air space to the site of carboxylation in 270 

the chloroplast. Here, physical components such as cell walls and membranes impose an 271 

additional resistance, termed mesophyll resistance (rm). According to Fick’s law of 272 

diffusion, the net CO2 assimilation rate of a plant (A) can be related to changes in the 273 

CO2 concentrations along the diffusive path by making use of these resistances: 274 

 A =
C

a
-C

i

r
s

=
C

i
-C

c

r
m

  (4) 275 

Under normal growth conditions, both Ci/Ca and Cc/Ci tend to be around 0.7, resulting in 276 

Cc/Ca of about 0.5 (Wong et al., 1978; von Caemmerer and Evans, 1991). This indicates 277 

that these resistances have a large impact on Cc and therefore Vo. Stomata respond to a 278 

range of environmental signals, such as light intensity and quality, CO2 concentration, 279 

the humidity of the air, and the general water status of the plant (Assmann, 1993; 280 

Vavasseur and Raghavendra, 2005; Busch, 2014; Buckley, 2019). In general, stomata 281 

open when there is a metabolic need for CO2 inside the leaf (i.e. the plant is 282 

photosynthesizing), and close when the water loss from transpiration exceeds the water 283 

availability (Wong et al., 1979; Wong et al., 1985, 1985; Hetherington and Woodward, 284 
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2003), making rs variable on short time scales. Similarly, there is evidence that rm is also 285 

variable, which may be at least in part due to the effective location of (photo)respiratory 286 

CO2 release (Tholen et al., 2012). In the case of chloroplast covering the cell periphery 287 

tightly, this forces all (photo)respired CO2 to diffuse through the chloroplast, effectively 288 

resulting in a CO2 release ‘inside the chloroplast’ (Fig. 2a). If, however, chloroplast cover 289 

is incomplete and the (photo)respiratory CO2 mixes with the CO2 coming in from the 290 

intercellular air space mostly inside the cytosol, then rm is an apparent resistance that 291 

depends on the diffusive resistance across the cell wall and plasmamembrane (rwp) and 292 

the resistance across the chloroplast membrane and stroma (rch) (Fig. 2b) (for discussion 293 

and further explanation see Tholen et al., 2014; Yin and Struik, 2017; Ubierna et al., 294 

2019):  295 

 r
m

= r
wp

+ r
ch

V
c

A
  (5) 296 

It becomes evident from Eqn. (5) that rm increases (and the inverse, mesophyll 297 

conductance (gm) decreases) dramatically as A approaches zero (Fig. 2c). This has also 298 

been shown experimentally (Busch et al., Accepted). Thus, the location of 299 

(photo)respiratory CO2 release has some impact on Cc, especially when A is low. This 300 

idea is exploited by bioengineering approaches that introduce photorespiratory 301 

bypasses to relocate photorespiratory CO2 release from the mitochondria to the 302 

chloroplast (Kebeish et al., 2007; Maier et al., 2012; Shen et al., 2019; South et al., 303 

2019). This effectively changes the CO2 diffusive properties from a “two-resistance” case 304 

(Fig. 2b) to a “single-resistance” case (Fig. 2a), which is associated with increases in gm at 305 

low CO2 concentrations (Fig. 2c).  306 
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Furthermore, rm is influenced by anatomical traits, such as cell wall thickness 307 

(Ellsworth et al., 2018), chloroplast shape and cover (Busch et al., 2013; Weise et al., 308 

2015), cell density, and the relative amount of intercellular air space (Lehmeier et al., 309 

2017). Mesophyll CO2 diffusion properties, and consequently the CO2 concentration 310 

inside the chloroplast, therefore are mediated by the 3D anatomy of the mesophyll cells 311 

and the leaf as a whole (Earles et al., 2019).    312 

Overall, the effective total resistance for CO2 diffusion (rt) from Ca to Cc is highly 313 

variable with the environment, causing Cc to change according to  314 

 C
c

= C
a

- Ar
t
 . (6) 315 

A, in turn, is the difference between the CO2 taken up by Rubisco and the CO2 released 316 

from photorespiration (F) and mitochondrial respiration (Rd) and can therefore be 317 

described by (Farquhar et al., 1980) 318 

 A =V
c

- F - R
d
 . (7) 319 

Here, F relates to Vo through F = lV
o
, where l  is the amount of CO2 released from 320 

photorespiration per oxygenation reaction. The CO2 concentration, at which the CO2 321 

uptake by Rubisco carboxylation equals CO2 release from photorespiration is called the 322 

CO2 compensation point in the absence of mitochondrial respiration (*), and is 323 

calculated according to  324 

 G* =
lO

S
c /o

  (8) 325 

If the photorespiratory pathway functions as a closed cycle l = 0.5, corresponding to 326 

25% of the 2-PG carbon lost as CO2. Combining Eqn. (7) with Eqns. (3) and (6) we can 327 

obtain an expression for Vc  328 
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c

=
A + R

d

1- lF
=

A + R
d

1-
l

S
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O

C
c

=
A + R

d

1-
l

S
c /o

O

C
a

- Ar
t

  (9) 329 

and one for F  330 

 F = lV
o

=
A + R

d

1

lF
-1

=
A + R

d

S
c /o

l

C
c

O
-1

=
A + R

d

S
c /o

l

C
a

- Ar
t

O
-1

 . (10) 331 

Eqn. (10) highlights that F is not linearly related to A because of the additional factor 332 

C
a

- Ar
t
. In other words, decreasing F by a certain amount does not increase A by the 333 

same amount, because Cc will change at the same time as a consequence. This can be 334 

assessed quantitatively by solving Eqn. (10) for A, yielding a quadratic equation in A with 335 

Ca as the reference CO2 concentration (see e.g. Farquhar and Busch, 2017). A graphical 336 

representation and detailed description of this effect is displayed in Box 1. Most studies 337 

to date estimate the impact of photorespiration on A by comparing CO2 assimilation 338 

rates with and without photorespiration modelled at a common Ci or Cc, or investigate 339 

the rate of photorespiratory CO2 release at a given internal CO2 concentration (see e.g. 340 

Sharkey, 1988; Valentini et al., 1995; Walker et al., 2016). While these approaches may 341 

account for gm, they disregard that diffusion resistances simultaneously affect both A 342 

and Cc, and thus ignore that some of the photorespired CO2 is refixed. Box 1 343 

demonstrates that the modelling of A has to be coupled to CO2 diffusion through the 344 

stomata and the mesophyll when estimating the effect of photorespiration on net CO2 345 

assimilation rate. The costs of photorespiration on food production as estimated by 346 

Walker et al. (2016) is therefore likely an overestimation and should be revisited.  347 

 348 
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Recycling of 2-PG and release of CO2 by glycine decarboxylation 349 

 350 

The primary photorespiratory pathway 351 

 352 

Under normal conditions, the oxygenation of RuBP comprises about a quarter of the 353 

total use of RuBP by Rubisco, and it can be considerably more under conditions where 354 

stomata are substantially impacting CO2 exchange with the atmosphere. This makes the 355 

flux through the photorespiratory pathway the largest biochemical process in plants 356 

second only to the flux through the CBB cycle. The 2-PG produced in the oxygenation 357 

reaction is dephosphorylated to glycolate by phosphoglycolate phosphatase 1 (PGLP1) in 358 

the chloroplast (Fig. 3). Glycolate is exported from the chloroplast by the plastidal 359 

glycolate/glycerate translocator 1 (PLGG1), which exchanges chloroplastic glycolate for 360 

cytosolic glycerate (Pick et al., 2013). A second transporter, the bile acid sodium 361 

symporter BASS6, has recently been implicated in the glycerate-independent export of 362 

glycolate, ensuring the balance of glycolate export and glycerate import for varying flux-363 

ratios of these metabolites (South et al., 2017).   364 

 In the peroxisome glycolate reacts irreversibly with O2 and is converted to 365 

glyoxylate by glycolate oxidase (GOX), producing H2O2 as a byproduct. Catalase (CAT) 366 

then decomposes H2O2 to water and oxygen. Next, the enzyme glutamate:glyoxylate 367 

aminotransferase (GGAT) transaminates glyoxylate to form glycine. A second enzyme 368 

that catalyzes the conversion of glyoxylate to glycine is serine:glyoxlate 369 

aminotransferase (SGAT), which returns the amino group from the three-carbon branch 370 
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of the photorespiratory pathway to the two-carbon branch by converting serine into 371 

hydroxypyruvate (Fig. 3; Bauwe et al., 2010). The glycine produced is subsequently 372 

exported from the peroxisome and taken up by mitochondria. So far, no transporters or 373 

channels facilitating the exchange of photorespiratory metabolites between the 374 

peroxisomes and the cytosol, or the mitochondrial glycine import and serine export, 375 

have been identified (Eisenhut et al., 2013). In the mitochondria glycine is 376 

decarboxylated (the source of ‘photorespiration’) by the multi-enzyme glycine 377 

decarboxylase complex (GDC) containing the four cooperating enzymes P-, H-, T-, and L-378 

protein (Douce et al., 2001). This step catalyzes the conversion of the co-factor 379 

tetrahydrofolate (THF) to 5,10-methylene-THF (CH2-THF), which acts as the leaf’s 380 

currency for activated one-carbon (C1) units. As a side product, NH3 is released and 381 

NADH generated. CH2-THF then reacts with a second glycine to form serine in a reaction 382 

catalyzed by serine hydroxymethyltransferase 1 (SHMT1). Because the activity of GDC is 383 

higher than that of SHMT1, CH2-THF accumulates in the mitochondria relative to THF 384 

(Rebeille et al., 1994). 385 

 Photorespiratory serine is shuttled back to the peroxisome, where SGAT 386 

facilitates the transfer of the amino group to glyoxylate. The resulting hydroxypyruvate 387 

is converted to glycerate under the consumption of NADH. This happens either in the 388 

peroxisome, facilitated by hydroxypyruvate reductase (HPR1), or in the cytosol by a 389 

second hydroxypyruvate reductase (HPR2; Timm et al., 2008). A third enzyme, HPR3, 390 

can also react with glyoxylate to form glycolate and operates in the chloroplast (Timm et 391 

al., 2011). While the bulk of the flux goes through HPR1 in the peroxisome, the enzymes 392 
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in the other compartments allow for a redirection of the flux depending on the  393 

availability of NADH in the peroxisome (Timm et al., 2008). As the final step in the 394 

photorespiratory pathway, the chloroplastic glycerate kinase (GLYK) phosphorylates 395 

glycolate to 3-PGA, which can then enter the CBB cycle. In the case of the 396 

photorespiratory pathway operating as a full cycle, three out of four 2-PG carbon atoms 397 

will be returned to the CBB cycle and one will be released as CO2. A detailed description 398 

of the enzymatic steps involved in the photorespiratory pathway outlined above can be 399 

found in Bauwe (2018).  400 

 401 

Reassimilation of NH3 402 

 403 

Glycine decarboxylation in the mitochondria releases NH3 as a byproduct (Fig. 3). Plants 404 

have evolved an efficient mechanism that recaptures and recycles photorespiratory 405 

ammonia and it has been estimated that less than 1% is lost to the atmosphere in the 406 

process (Mattsson and Schjoerring, 1996). The reassimilation of ammonia is facilitated 407 

by two enzymes in the chloroplast, glutamine synthetase (GS2) and ferredoxin-408 

dependent glutamine:oxoglutarate aminotransferase (GOGAT; Coschigano et al., 1998). 409 

GS2 converts ammonia and glutamate to glutamine in an ATP-consuming process (Fig. 410 

3). Glutamine then donates an amino group to 2-oxoglutarate (2-OG) to form glutamate 411 

in a reaction catalyzed by GOGAT. The glutamate is subsequently transported to the 412 

peroxisome, where it is used by GGAT to convert glyoxylate to glycine. The product of 413 

this reaction, 2-OG, is returned to the chloroplast to close the cycle.  414 
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 415 

Interaction with other metabolic pathways 416 

 417 

The photorespiratory pathway is essential for all oxygenic phototrophs as a way to 418 

metabolize 2-PG and salvage the majority of its carbon. Its importance is demonstrated 419 

when the pathway is disrupted by deletion of any of its enzymes, resulting in a 420 

photorespiratory phenotype, which may even be lethal (summarized e.g. by Timm and 421 

Bauwe, 2013; Eisenhut et al., 2019). The photorespiratory pathway, however, also has 422 

other important functions owing to its central position within plant metabolism, and is 423 

coupled to the nitrogen-, sulfur-, and C1- metabolisms by supplying key metabolites and 424 

coupled to the TCA cycle and respiration by changing the cell’s redox and energy 425 

balance (Abadie et al., 2017). For recent reviews on the metabolic integration of the 426 

photorespiratory pathway see Hodges et al. (2016) and Obata et al. (2016). 427 

 428 

Photorespiration and nitrogen assimilation 429 

 The photorespiratory pathway is not only linked to nitrogen assimilation via the 430 

reassimilation of photorespiratory ammonia through GS/GOGAT, but also through the 431 

reduction and assimilation of new nitrogen, most importantly NO3
- (Bloom, 2015). 432 

Decreasing the flux through the photorespiratory pathway results in decreased rates of 433 

NO3
- uptake and assimilation, demonstrating a clear link between de novo nitrogen 434 

assimilation and photorespiration (Rachmilevitch et al., 2004; Bloom et al., 2010; Bloom 435 

et al., 2012). The photorespiratory pathway is the main biosynthetic pathway for the 436 
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amino acids glycine and serine, which are used for many purposes in plant metabolism 437 

other than regenerating 3-PGA, such as protein synthesis and as precursors for several 438 

other amino acids and phospholipids (Ros et al., 2014). Amino acids produced via the 439 

photorespiratory pathway also have a role in stress mitigation as they are key 440 

constituents of dehydrins, glutathione, and glycine betaine that increase tolerance to 441 

desiccation and prevent damage from reactive oxygen species (Close, 1997; Sakamoto 442 

and Murata, 2002; Layton et al., 2010; Noctor et al., 2012). If NO3
- is available to support 443 

de novo nitrogen assimilation into glycine and serine, a considerable amount of these 444 

amino acids can be diverted from the photorespiratory pathway for other uses, meaning 445 

the pathway does not exhibit a fully cyclic nature (Abadie et al., 2016; Busch et al., 446 

2018). Remarkably, because the diverted amino acids contain carbon in addition to 447 

nitrogen, the carbon and nitrogen metabolism act synergistically, and this means that 448 

photorespiration can increase the overall carbon uptake of a plant despite reducing the 449 

efficiency of Rubisco carboxylation (Busch et al., 2018). 450 

 451 

Photorespiration and C1 metabolism 452 

The photorespiratory pathway also interacts with the C1 metabolism as the main supply 453 

of activated C1 units in the form of CH2-THF (Li et al., 2003). CH2-THF has numerous uses 454 

throughout the plant’s metabolism, such as in the synthesis of nucleic acids, proteins, 455 

lipids, chlorophyll, pantothenate, and other methylated molecules (Cossins, 2000; 456 

Hanson and Roje, 2001; Gorelova et al., 2017). It is the precursor of several derivatives 457 

of THF that are interconverted between 10-formyl-THF (10-CHO-THF), 5,10-methenyl-458 
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THF (5,10-CH+-THF), 5,10-methylene-THF (CH2-THF), and 5-methyl-THF (5-CH3-THF), 459 

differing by their oxidation state (Fig. 4). C1 units are drawn from these pools for the 460 

synthesis of purines, thymidylate, and pantothenate. The 5-CH3-THF that is derived from 461 

CH2-THF in a reaction catalyzed by 5,10-methylene-THF reductase (MTHFR) can be used 462 

to convert homocysteine to methionine. In addition to protein synthesis, methionine is 463 

also involved in the production of S-adenosyl-methionine (SAM), which is used by 464 

different methyltransferases (MT) for the methylation of DNA, RNA, proteins, 465 

phospholipids, and other substrates (Crider et al., 2012). Both methionine and SAM are 466 

assumed to be produced predominantly in the cytosol (Isegawa et al., 1993), supported 467 

by the SHMT1-mediated conversion of photorespiratory serine to glycine. The C1 468 

metabolism also plays a major role in the biosynthesis of many secondary products, 469 

such as glycine betaine, nicotine, and lignin. It was estimated that the carbon demand in 470 

the form of C1 units for these secondary metabolites can be in the order of 2 mmol C1 471 

units/g dry weight, or about 5% of the total assimilated carbon (Hanson and Roje, 2001).  472 

 473 

Photorespiration and sulfur metabolism 474 

The photorespiratory pathway further intersects with, and stimulates, sulfur metabolism 475 

(Abadie and Tcherkez, 2019). The synthesis of O-acetylserine by serine O-476 

acetyltransferase (SAT3) draws from the serine pool in the mitochondria. Reduced sulfur 477 

is then incorporated into O-acetylserine via O-acetylserine (thiol) lyase (OAS-TL) to form 478 

cysteine. Cysteine is the primary product of S-assimilation and is required for, among 479 

other things, methionine synthesis and glutathione metabolism (Rausch and Wachter, 480 
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2005). While the photorespiratory flux supporting this S-metabolism is fairly small 481 

compared to that supporting the N- or C1-metabolism, it should not be considered 482 

negligible (Tcherkez and Tea, 2013).  483 

 484 

The stoichiometry of CO2 release per oxygenation reaction 485 

 486 

The way photorespiration is embedded with other metabolic pathways shows that 487 

numerous biochemical processes rely on the supply of metabolites from the 488 

photorespiratory pathway. It is therefore likely that a sizeable proportion of 489 

photorespiratory carbon leaves the pathway in the form of glycine, serine, and CH2-THF 490 

and does not get recycled back to 3-PGA. In support of this, the release of CO2 per 491 

oxygenation reaction ( l ) was shown to be variable and not fixed at 0.5 (Hanson and 492 

Peterson, 1985, 1986). In their early attempt to measure the stoichiometry of 493 

photorespiratory CO2 release per oxygenation reaction in vivo they determined values 494 

ranging from 0.30 to 0.84, depending on environmental conditions such as temperature 495 

and light intensity. Since then, other studies have reported a departure of l  from 0.5 in 496 

mutants that had an impairment in the photorespiratory pathway, such as plants lacking 497 

the peroxisomal malate dehydrogenase (PMDH; Cousins et al., 2008), HPR1 (Cousins et 498 

al., 2011; Timm et al., 2011), or the thioredoxins THXh2 or THXo1 (da Fonseca-Pereira et 499 

al., 2019; Reinholdt et al., 2019), and in WT tobacco, wheat, soybean, and Arabidopsis 500 

(Walker and Cousins, 2013; Walker et al., 2017). A value of l  lower than 0.5 would be 501 

expected if carbon is diverted from the photorespiratory pathway as glycine (Busch et 502 
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al., 2018). In contrast, the export in the form of CH2-THF would increase this value 503 

towards l = 1, because every carbon exported as CH2-THF releases one carbon as CO2 in 504 

its production by GDC (see Box 2). Based on this, one might expect values of l  that are 505 

lower than 0.5 in plants that draw more carbon from the photorespiratory pathway in 506 

the form of glycine, and values greater than 0.5 in plants that use large amounts of CH2-507 

THF to synthesize metabolites such as lignin or nicotine. Related to this, Walker et al. 508 

(2017) reported that the value of l  increases with temperature much more in tobacco 509 

than in wheat and soybean. Interestingly, this increase in l  corresponds well with an 510 

increase in nicotine biosynthesis in tobacco plants exposed to high temperatures (Chen 511 

et al., 2016). While the reasons for changes in l  in vivo are mostly speculative at the 512 

moment, further research on the extent of use of photorespiratory carbon for other 513 

metabolic processes will undoubtedly lead to significant advances in our understanding 514 

of the costs and benefits of photorespiration. 515 

 516 

Costs vs. benefits of photorespiration 517 

 518 

The interactions of the photorespiratory pathway with other metabolic pathways that 519 

draw from photorespiratory metabolites shine a light on which aspects of 520 

photorespiration, if any, should be considered wasteful. As outlined above, oxygenation 521 

itself is not wasteful per se and can provide substantial benefits towards maintaining the 522 

redox homeostasis of the cell. The release of photorespiratory CO2 by GDC should also 523 

not be considered a wasteful process as such, as long as it is related to producing 524 
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metabolites that are needed elsewhere in metabolism, such as glycine, serine, or CH2-525 

THF. Producing these compounds independently of the photorespiratory pathway would 526 

also necessitate reducing equivalents and ATP of similar magnitude – or potentially 527 

more – than when going via the photorespiratory pathway. It would also require a 528 

steady supply of C1 compounds that have to be generated with an associated CO2 529 

release. Any cost/benefit analysis therefore has to include an analysis of the possible 530 

alternatives. With this in mind, the only portion of photorespiration that we may want 531 

to consider ‘wasteful’ is the flux of 2-PG that actually makes it back to the CBB cycle as 532 

3-PGA, as the 25% of carbon lost along the way is not compensated for by other 533 

processes (Fig. 3, Box 2). While this ‘wasteful’ proportion of 2-PG may comprise most of 534 

the flux coming from Rubisco’s oxygenation reaction under some conditions, such as 535 

high temperatures or low CO2 supply to the chloroplast, it potentially makes up only a 536 

small part under other conditions. I am not aware of any direct measurements of 537 

photorespiratory 3-PGA production relative to 2-PG synthesis, i.e. the effective activities 538 

of GLYK relative to PGLP1, that would be useful to evaluate how much of the 539 

photorespiratory carbon is put to good use. Indirect evidence that photorespiration is 540 

not all wasteful, however, comes from photorespiratory mutant studies. As discussed 541 

above, values of l  deviating from 0.5 have been previously observed experimentally 542 

(Hanson and Peterson, 1985, 1986; Cousins et al., 2008; Cousins et al., 2011; Timm et 543 

al., 2011; Walker and Cousins, 2013; da Fonseca-Pereira et al., 2019), which would be 544 

expected if carbon is exported from the photorespiratory pathway. These observations 545 

hint at that an important role of the photorespiratory pathway is to supply the demand 546 
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for metabolites for other processes and that it acts as an open pathway rather than a 547 

closed cycle when rates of oxygenation are not exceeding this demand. Future studies 548 

that aim at quantifying carbon export from the photorespiratory pathway could provide 549 

new insights into how leaky the pathway is under varying environments. 550 

 The interactions of the photorespiratory with other metabolic pathways, as well 551 

as the impact that leaf anatomy and physiology have on determining the net effect of 552 

photorespiration on carbon balance, make it difficult to assess the impact of these 553 

aspects individually on plant performance (see Box 3 for techniques that may be used to 554 

quantify photorespiratory carbon fluxes at different points along the pathway). We can, 555 

however, gauge the overall short-term effect of photorespiration on carbon uptake, 556 

ignoring potential effects due to long-term acclimation. The rate of oxygenation can be 557 

instantaneously decreased by experimentally decreasing O (see Eqn. (3)). This allows us 558 

to compare A as an integrative parameter for the net cost of photorespiration on CO2 559 

uptake under conditions with and without photorespiration. Despite a substantial 560 

proportion of Rubisco activity being used to support the oxygenation reaction, the net 561 

effect on A is much smaller for a wide range of environmental conditions (Fig. 5). 562 

Especially at Ca of ambient or higher concentrations, the net effect of photorespiration is 563 

negligible or even positive. Similarly, at temperatures below about 20°C 564 

photorespiration has little or no negative consequences on A in the example shown in 565 

Fig. 5. In contrast, photorespiration quickly becomes disadvantageous as leaf 566 

temperatures rise above 25°C. Based on these examples, photorespiration appears to be 567 

beneficial for the overall carbon uptake for a Vo/Vc of up to approximately 0.25.  568 
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 Photorespiration has further benefits that go beyond the carbon balance of the 569 

plant, e.g. due to its contribution to maintaining the redox homeostasis of the cell under 570 

abiotic stress conditions such as drought or chilling (Voss et al., 2013). Under certain 571 

conditions NADPH and ATP production by the photosynthetic light reactions may exceed 572 

their consumption in the CBB cycle. This is likely the case during light induction of 573 

photosynthesis under the fluctuating light environments that plants experience e.g. in 574 

the understory. Under low light, Rubisco and other CBB cycle enzymes tend to be 575 

deactivated and stomata to be relatively closed. If a leaf experiences a sudden increase 576 

in light intensity, NADPH and ATP production is induced rapidly (Björkman and Demmig-577 

Adams, 1995), while their consumption is restricted due to slow CBB cycle activation and 578 

stomatal opening (Deans et al., 2019; Deans et al., 2019). Under these conditions, the 579 

photosynthetic electron transport chain can become over-reduced, causing an increased 580 

production of superoxide and other reactive oxygen species, which exacerbates the 581 

potential for photodamage (Niyogi, 1999). Photorespiration provides an extra outlet for 582 

NADPH and ATP, mitigating the negative effects of excessive light (Kozaki and Takeba, 583 

1996; Wingler et al., 2000; Takahashi and Badger, 2011; Eisenhut et al., 2017). While this 584 

might come at a carbon cost, the loss in A from photorespiration ( DA ) is small at least in 585 

the case of low stomatal conductance (Box 1), seen e.g. during photosynthetic induction 586 

or drought stress. Independent of the magnitude of the actual carbon cost, the energy 587 

dissipation aspect of photorespiration increases the resilience of plants under adverse 588 

conditions, such as under variable light environments or when limited water availability 589 

causes stomata to close. 590 
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 While photorespiration has certain benefits, it also has costs other than the 591 

direct impact on the carbon balance. At a Vo/Vc of 0.33 (an approximate ratio under 592 

normal growing conditions, see Fig. 5), one quarter of the nitrogen investment in 593 

Rubisco supports the oxygenation reaction, which negatively impacts the photosynthetic 594 

nitrogen use efficiency (PNUE) of C3 plants. Due to higher CO2 concentrations around 595 

Rubisco C4 plants have much lower rates of oxygenation, which allows them to 596 

compromise their Rubisco’s Sc/o for a higher k
cat

c . Thus their nitrogen investment in 597 

Rubisco (and other enzymes in the photorespiratory pathway) is much lower than that 598 

of C3 plants, increasing their PNUE (Rotundo and Cipriotti, 2017). It has been shown that 599 

an efficient use of nitrogen in C4 photosynthesis lessens nitrogen cost constraints on 600 

molecular sequence evolution (Kelly, 2018). Photorespiration therefore slows both the 601 

rate of speciation and extinction in C3 plants as compared to C4 plants. Thus, the C4 602 

photosynthetic pathway may be just as much an adaptation to make the most of the 603 

available nitrogen as it is to increase carbon uptake of the plant. 604 

 605 

How have plants dealt with photorespiration evolutionarily?  606 

 607 

Despite the positive side effects of photorespiration, certain environmental conditions, 608 

specifically low CO2 concentrations, higher temperatures, and conditions inducing 609 

stomatal closure, will increase Rubisco oxygenation beyond a flux beneficial for overall 610 

plant performance. Plants have evolved several strategies to limit photorespiratory 611 

carbon loss, and species with mechanisms that counter photorespiration dominate 612 
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environments that are particularly prone to Rubisco oxygenation. It is assumed that a 613 

gradual decrease in the atmospheric CO2:O2 ratio throughout Earth’s history and the 614 

associated increase of photorespiration at the cost of carboxylation prompted an 615 

adaptation response to these conditions (Moroney et al., 2013). The mechanisms that 616 

many plant lineages have evolved can be categorized as either minimizing the rate of 617 

oxygenation, resulting in relatively higher carboxylation rates, or minimizing the loss of 618 

photorespiratory CO2 downstream.  619 

 620 

Minimizing the rate of oxygenation 621 

The first category includes the carbon concentrating mechanisms (CCMs) of C4 plants 622 

(evolved ~30 Ma; Christin et al., 2011), plants operating a crassulacean acid metabolism 623 

(CAM), and the carboxysomes and pyrenoids found in many cyanobacteria and algae, 624 

respectively (evolved ~350 Ma; Badger et al., 2002). The common principle by which 625 

these CCMs operate includes biochemical and anatomical changes that allow the 626 

concentration of CO2 around Rubisco above ambient levels. This not only decreases the 627 

oxygenation rate of Rubisco, but also increases Rubisco’s carboxylation rate due to its 628 

dependence on the absolute CO2 concentration following Michaelis-Menten kinetics.  629 

In the C4 photosynthetic pathway the initial fixation of CO2 is accomplished in the 630 

mesophyll cells by the enzyme phosphoenolpyruvate carboxylase (PEPC) producing the 631 

C4 acid oxaloacetate (OAA). OAA is then converted to malate (or aspartate in some 632 

variants of the pathway), which is transported to the bundle sheath cells where Rubisco 633 

is located. There the C4 acid is decarboxylated, producing pyruvate and CO2, which 634 
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increases the CO2 concentration around Rubisco several-fold (Langdale, 2011). This 635 

biochemical pathway is usually accompanied by a C4 Kranz leaf anatomy, which 636 

efficiently manages the separation of the C4- and C3-pathways (Edwards and 637 

Voznesenskaya, 2011). Although the interplay between changes in biochemistry and 638 

anatomy is very complex, C4 photosynthesis is a highly convergent trait that has evolved 639 

at least 66 times independently, demonstrating its effectiveness for reducing 640 

photorespiration (Sage et al., 2011; Sage et al., 2012). The CAM pathway has similar 641 

features to the C4 pathway, but with a temporal rather than spatial separation of C3 and 642 

C4 metabolisms (Dodd et al., 2002). In CAM plants CO2 is initially fixed at night into OAA 643 

by PEPC, which is then converted to malate. Malate is stored in the vacuole until 644 

daytime, when the conversion back to CO2 and pyruvate occurs. During the day, the 645 

plant’s stomata remain closed, resulting in a similar increase in CO2 concentration 646 

around Rubisco as in the bundle sheath cells of C4 plants. Because the stomata are 647 

closed during mid-day when potential rates of transpiration are large, CAM plants can 648 

achieve high water-use efficiencies (Szarek and Ting, 1975).  649 

CO2 diffusion in water is several orders of magnitude slower than in air, 650 

restricting the ability of plants to access CO2 for photosynthesis. Aquatic photosynthetic 651 

organisms therefore frequently contain CCMs based on encapsulating Rubisco in 652 

organelles that restrict outward CO2 diffusion by a protein shell (in cyanobacterial 653 

carboxysomes; Rae et al., 2013) or a starch sheath that may be supplemented by an 654 

additional layer of proteins (in algal pyrenoids; Ramazanov et al., 1994). In both cases, 655 

CO2 is converted to bicarbonate in the cytosol before being transported into the 656 
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carboxysome or pyrenoid, where it is converted back to CO2 by the enzyme carbonic 657 

anhydrase. This results in an increase in CO2 concentration around Rubisco, limiting the 658 

oxygenation of RuBP.  659 

Despite the existence of a CCM, all these photosynthetic types possess, and 660 

require, a fully functioning photorespiratory pathway, though operating at lower fluxes 661 

due to decreased Rubisco oxygenation rates that come along with an increased CO2 662 

concentration around Rubisco (Eisenhut et al., 2008; Zelitch et al., 2009; Levey et al., 663 

2019). Here, the metabolic demand for glycine and serine may at least partially be met 664 

through other metabolic pathways, such as the phosphorylated pathway (Igamberdiev 665 

and Kleczkowski, 2018). The essential nature of the photorespiratory pathway in C4 666 

plants, however, might point towards its contribution to providing metabolites for other 667 

pathways also in C4 plants. In any case, increasing the CO2 concentration inside the cell 668 

relaxes the need for a highly substrate-specific Rubisco. Organisms with a CCM usually 669 

express a Rubisco that trades off an increased k
cat

c  for a decreased Sc/o (Badger et al., 670 

1998; Sharwood et al., 2016; Heureux et al., 2017; Sharwood, 2017). Non-CCM ways to 671 

reduce Rubisco oxygenation include increasing Sc/o by lowering the leaf temperature, 672 

which can be achieved by decreasing the absorbance of solar radiation or increasing 673 

transpiration (Sage, 2013).   674 

 675 

Minimizing the loss of photorespiratory carbon 676 

The second category, minimizing the loss of photorespiratory carbon downstream of the 677 

production of 2-PG, is a much more boutique approach that has not been as widely 678 
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adopted in nature. Considered an evolutionary intermediate condition between C3 and 679 

C4 photosynthesis, some plant species shuttle photorespiratory glycine from the 680 

mesophyll to the bundle sheath by restricting GDC to the mitochondria of the bundle 681 

sheath cells (Sage et al., 2012). These mitochondria are positioned against the 682 

centripetal wall, with chloroplasts covering the cell periphery towards the mesophyll 683 

cells (Sage et al., 2013; Sage et al., 2014). This increases the probability of refixation of 684 

the photorespiratory CO2, evidenced by a decrease in the apparent CO2 compensation 685 

point (Sage et al., 2013; Khoshravesh et al., 2016), while at the same time increasing the 686 

CO2 concentration around the population of Rubisco in the bundle sheath. 687 

Photorespiratory CO2 scavenging via this glycine shuttle has been termed C2 688 

photosynthesis, which refers to the number of carbons in the shuttling metabolite 689 

glycine (Vogan et al., 2007). The arrangement of chloroplast around the cell periphery as 690 

barrier against outward CO2 diffusion has been shown to be beneficial also in C3 plants 691 

(Busch et al., 2013). 692 

Thus, many different approaches exist in nature to combat excessive rates of 693 

photorespiration, with the CCMs being the most successful, both in terms of the number 694 

of species employing them and their global biomass production. The C4 photosynthetic 695 

pathway stands out, occurring in 3% of the world’s plant species and accounting for 23% 696 

of the terrestrial primary productivity (Sage et al., 1999; Still et al., 2003). It is a curious 697 

observation that the C4 photosynthetic pathway is, with very few exceptions, limited to 698 

herbaceous species. This was hypothesized to be due to constraints associated with the 699 

evolutionary history of the C4 lineages (Sage and Sultmanis, 2016). However, a 700 
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contributing factor could be related to the heavy reliance of the arborescent life form on 701 

lignin as structural support. Lignin is a large sink for C1 units (Hanson and Roje, 2001) 702 

and one might speculate that this large demand for C1 units of photorespiratory origin is 703 

the reason why the C4 photosynthetic pathway is largely absent in trees. 704 

 705 

Concluding remarks 706 

 707 

In summary, predicting the net effect of photorespiration on the CO2 uptake of plants 708 

requires knowledge of the anatomical and physiological properties of the leaf 709 

influencing CO2 diffusion, the kinetic properties of the CO2-fixing enzyme Rubisco, and 710 

the biochemistry of the photorespiratory pathway and how it is connected to other 711 

metabolic processes. Each of these aspects influences the rate of photorespiration, 712 

resulting in the fact that knowledge of the photorespiratory CO2 release alone is not 713 

sufficient to estimate the carbon cost of photorespiration. In particular, CO2 diffusive 714 

resistances have a large impact on the carbon balance of the photorespiratory pathway. 715 

The price a plant has to pay in terms of forgone carbon assimilation is not equal to the 716 

carbon lost from photorespiration or the additional carbon that could be assimilated if 717 

the RuBP oxygenation reaction were to be replaced by its carboxylation. The actual 718 

carbon costs of photorespiration that come into play when Vo/Vc exceeds ~0.25 should 719 

be evaluated against the benefits of providing protection against photodamage and 720 

helping to balance the ATP to NADPH ratio of the cell, increasing the overall resilience of 721 

the plant operating in a variable environment.  722 
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Given that the photorespiratory pathway is so well integrated within the plant’s 723 

metabolism, it may be instructive to view its main purpose as a biosynthetic pathway 724 

using a substrate that is available in excess, rather than a pathway for the detoxification 725 

of 2-PG. Rubisco can then be considered a dual-functioning enzyme that does not only 726 

facilitate the production of primary carbohydrates, but is also the first step in the 727 

biosynthesis of several amino acids and compounds relying on the C1 metabolism. An 728 

integrated view of photorespiration within the context of the leaf’s biochemical and 729 

diffusional properties will ultimately allow us to better target our research efforts 730 

towards modifying photorespiration in pursuit of increasing crop productivity. 731 
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Box 1: The effect of diffusion properties on forgone carbon uptake due to 742 

photorespiration 743 

 744 

 745 

The effect of CO2 diffusion on carbon uptake forgone due to photorespiration. Panel (a) 746 

shows a graphical representation of CO2 assimilation rates with and without 747 

photorespiration. In the simplest case, CO2 uptake is limited by the rate of Rubisco 748 

carboxylation (see Box 2 for the treatment of other biochemical limitations). Then, A can 749 

be modelled according to Farquhar et al. (1980) as 750 

 A =
V
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where Vcmax is the maximum carboxylation rate of Rubisco, Kc and Ko the Michaelis-752 

Menten constants for CO2 and O2. O and Cc are the oxygen and CO2 concentrations at 753 

the site of carboxylation, Rd is the rate of mitochondrial respiration, and * is the CO2 754 
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compensation point in the absence of Rd, as defined by Eqn. (8). The red line 755 

corresponds to A when photorespiration is present, modeled with Eqn. (11) and Vcmax = 756 

80 µmol m-2 s-1, Kc = 272 µmol mol-1, Ko = 166 mmol mol-1 and O = 210 mmol mol-1. Here, 757 

Rd was assumed to be zero for simplicity. Vc in response to Cc when photorespiration is 758 

present is displayed by a yellow line. Because we ignore Rd in this example, the 759 

difference between Vc and A at a given Cc is then equal to F (Eqn. (7)). We can model A 760 

for the case of no photorespiration occurring (Ano PR; blue line), which is mathematically 761 

equivalent to setting O in Eqn. (11) to zero. Note that this also results in * being zero 762 

(Eqn. (8)). This has the effect of allowing Rubisco to put all of its activity towards the 763 

carboxylation reaction (i.e. Ano PR = Vc, as Rd = 0). At any given Cc, APR is lower than Ano PR 764 

by DA
w/o gt x PR

, which is the added effect of Rubisco forgoing carboxylation activity in 765 

favor of oxygenation of RuBP, and the loss of carbon from photorespiration. Here, 766 

DA
w/o gt x PR

 represents the net effect of the Rubisco oxygenation reaction, if diffusion 767 

resistances are ignored.  768 

The line originating at Cc = 400 µmol mol-1 and intercepting the A/Cc curve at the 769 

chloroplastic CO2 concentration corresponding to an ambient Ca of 400 µmol mol-1 is 770 

called the supply function. It represents the decrease in Cc that will occur due to the 771 

assimilation of CO2 by Rubisco (indicated by the drop in CO2 concentration Ca-Cc (PR)). 772 

From Eqn. (6) it follows that the slope of the supply function is -
1

r
t

 (=-gt). This means 773 

that the Cc intersect of the supply function with the A/Cc curve decreases as rt increases. 774 

Assuming rt is the same under non-photorespiratory conditions, the supply function 775 
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intersects with the Ano PR line at a lower Cc, because the larger CO2 assimilation rate 776 

causes the CO2 draw-down (Ca-Cc (no PR)) to be larger. Therefore, the net effect of the 777 

Rubisco oxygenation reaction being present, if diffusion resistances are considered, is 778 

equal to DA . DA  is generally less than DA
w/o gt x PR

, emphasizing that diffusion 779 

resistances moderate the negative impact of photorespiration on A. 780 

 In a natural environment, Ca can be considered mostly constant, while Cc will 781 

vary on short timescales with changes in both CO2 diffusion properties and the capacity 782 

to fix CO2. Panel (b) displays F and forgone rates of CO2 assimilation with ( DA ) and 783 

without ( DA
w/o gt x PR

) considering diffusion resistances as a function of the total 784 

conductance to CO2 diffusion (gt) at Ca = 400 µmol mol-1. Here, gt goes towards zero as 785 

stomata close – this is equivalent with the supply function in (a) becoming shallower – 786 

but it will also vary with varying mesophyll conductance. As stomata close, and thus Cc 787 

decreases, F increases moderately. In contrast, DA  decreases as gt decreases, and 788 

reaches zero when the stomata are fully closed. This underscores, maybe somewhat 789 

counterintuitively, that the rate of photorespiratory CO2 release is not a good measure 790 

for the impact that photorespiration has on net CO2 uptake. Diffusive resistances have a 791 

big impact on the absolute amount of carbon uptake forgone due to photorespiratory 792 

processes, as demonstrated by DA
w/o gt x PR

 being considerably larger than DA . 793 

  794 
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Box 2: Accounting for carbon export from the photorespiratory pathway 795 

when modelling CO2 uptake 796 

Export of carbon from the photorespiratory pathway will influence how much carbon is 797 

assimilated by the plant overall (Busch et al., 2018). In addition, in the case of export of 798 

the nitrogen containing photorespiratory metabolites glycine and serine, it will also 799 

affect the nitrogen metabolism. Busch et al. (2018) have developed a model that 800 

describes net CO2 uptake when considering carbon export from the photorespiratory 801 

pathway in the form of glycine and serine. Here, I provide a more generalized 802 

description that also accounts for the export of carbon through the C1 metabolism (see 803 

Fig. 3).  804 

 Following Busch et al. (2018) we denote a
G

 the proportion of 2-PG carbon that 805 

is exported from the photorespiratory pathway as glycine and a
S

 the proportion 806 

exported as serine. Similarly, we define a
T

 as the proportion of 2-PG carbon exported as 807 

CH2-THF. The overall proportion of 2-PG carbon that is exported cannot exceed 1, and 808 

therefore the relation 0 £ a
G

+ 2a
T

+
4

3
a

S
£ 1  must hold. Adding up the electron 809 

requirement for carbon reduction, photorespiration, and nitrate reduction necessary to 810 

supply the nitrogen in the exported glycine and serine (Fig. S1, see Supporting 811 

Information), the actual photosynthetic electron transport rate can be calculated as 812 

 J
a

= 4 + 4 + 8a
G

- 4a
T

+ 4a
S( )F( )Vc

 , (12) 813 

where F is defined as in Eqn. (3). Eqn. (12) indicates that Ja is both dependent on F as 814 

well as on the carbon exported from the photorespiratory pathway. The same is true for 815 
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the rate of ATP consumption, which is equal to 3 + 3.5 - 0.5a
G

- a
T

- 2 3a
S( )F( )Vc

. If 816 

glycine is removed from the photorespiratory pathway, not only is the rate of electron 817 

transport used for nitrogen assimilation affected, but it also decreases the amount of 818 

CO2 released per oxygenation reaction ( l ). In contrast, the removal of CH2-THF from the 819 

pathway results in an increase in l , because for every carbon removed as CH2-THF one 820 

carbon is lost from glycine decarboxylation as CO2. The net CO2 assimilation rate given 821 

by Eqn. (7) therefore needs to be parameterized with  822 

 l = 0.5 1- a
G( ) + a

T
.  (13) 823 

Equation (13) demonstrates that l  can be less or greater than 0.5, subject to the 824 

magnitudes of a
G

 and a
T

. Thus, A is described by 825 

 A =V
c

- 0.5 1- a
G( ) + a

T( )Vo
- R

d
 . (14) 826 

Depending on the biochemical process limiting CO2 assimilation, A can be described with 827 

the minimum of the three rates Wc, Wj, and Wp (Farquhar et al., 1980), which are the 828 

carboxylation rates that can be supported under a Rubisco, electron transport or triose 829 

phosphate utilization (TPU) limitation, respectively, so that  830 

 A = min W
c
,W

j
,W

p{ } 1-
G*

C
c

æ

è
ç

ö

ø
÷ - R

d
  (15) 831 

where * is defined as in Eqn. (8). It becomes evident that * varies with a
G

 and a
T

. 832 

When RuBP supply is not limiting the rate of Rubisco carboxylation, Wc is the limiting 833 

factor described by  834 

 W
c

=
V

cmax
C

c

C
c

+ K
c

1+O K
o( )

 . (16) 835 
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If the electron transport rate (J) that drives the regeneration of RuBP is the process that 836 

limits A, Wj is described by 837 

 W
j
=

J

4 + 4 + 8a
G

- 4a
T

+ 4a
S( )F

  (17) 838 

Finally, at high CO2 concentrations RuBP regeneration may be controlled by the capacity 839 

for starch and sucrose synthesis from triose phosphates to regenerate inorganic 840 

phosphate for sustained ATP synthesis (Sharkey, 1985; Busch and Sage, 2017). If TPU is 841 

limiting the rate of carboxylation, we can write Wp as  842 

 W
p

=
3T

p

1- 0.5 1+ 3a
G

+ 6a
T

+ 4a
S( )F

 , (18) 843 

where Tp is the rate of triose phosphate utilization of the plant. In Eqn. (18) the 844 

denominator corresponds to the flux of carbon (scaled by Vc) exported as triose-845 

phosphates. While an attempts have been made to estimate the values of a
G

 and a
S

 846 

(Abadie et al., 2016; Busch et al., 2018), so far there is no information available as to the 847 

value of a
T

. 848 

 Because carbon can leave the photorespiratory pathway in several locations, the 849 

flux of photorespiratory carbon that makes it back to the CBB cycle as 3-PGA is less than 850 

half the rate of RuBP oxygenation. We can quantify this flux mathematically, giving a 851 

rough indication of the degree of how ‘wasteful’ photorespiration is in terms of carbon 852 

(this, however, ignores the effect of CO2 diffusion and other beneficial aspects of 853 

photorespiration). This gives a flux of photorespiratory CO2 release that is not linked to 854 

supplying metabolites to other metabolic pathways of  855 
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 Carbon 'wasted' by photorespiration = 0.5 - 0.5a
G

- a
T

-
2

3
a

S

æ

èç
ö

ø÷
F  . (19) 856 

Therefore, carbon is not ‘wasted’ by photorespiration if Vo does not exceed the 857 

metabolic demand for glycine, serine and CH2-THF, which is the case for 858 

a
G

+ 2a
T

+
4

3
a

S
= 1. 859 

 860 

 861 

Box 3: Measuring photorespiration 862 

As outlined in the main text, photorespiration is a multifaceted pathway that is tightly 863 

tied in with other metabolic pathways that draw metabolites from the photorespiratory 864 

pathway. As a consequence, the carbon flux through the photorespiratory pathway can 865 

change along the pathway and therefore may not be accurately represented by the 866 

oxygenation reaction of Rubisco or the CO2 release from GDC. However, much could be 867 

learned about the nature of photorespiration and its costs and benefits by combining 868 

measurements of fluxes through different parts of the pathway. A range of techniques 869 

suitable to probe different aspects of photorespiration has been discussed previously 870 

(Sharkey, 1988; Busch, 2013). Other techniques that can be employed in combination to 871 

study the interactions of photorespiration with other biochemical pathways are outlined 872 

in the following. 873 

 874 

Estimation of the rate of Rubisco oxygenation 875 
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The rate of Rubisco oxygenation, which is the main source of 2-PG, is largely determined 876 

by Rubisco kinetic properties and the CO2 and O2 concentrations at the site of 877 

carboxylation. While Rubisco kinetic properties can be determined in vitro, Cc can be 878 

estimated in vivo from gas exchange analysis that is coupled with measurements of 879 

carbon isotope discrimination (Farquhar et al., 1982; Evans et al., 1986; Busch et al., 880 

Accepted) or, with limitations, chlorophyll fluorescence (Epron et al., 1995; Warren, 881 

2006). An alternative strategy for estimating the rate of Rubisco oxygenation involves 882 

13CO2 labeling followed by computational flux estimation (Ma et al., 2014, 2017). This 883 

“Isotopically Nonstationary Metabolic Flux Analysis” (INST-MFA) has the benefit of not 884 

requiring kinetic constants of the involved enzymes and therefore avoids some of the 885 

assumptions inherent to the other methods. 886 

 887 

Estimation of CO2 release from GDC 888 

Carbon isotopes can be used in bulk to separate gross fluxes of CO2 entering the leaf 889 

from (photo)respired CO2 exiting the leaf. The efflux of photorespiratory 12CO2 can be 890 

measured in a 13CO2 atmosphere (Busch et al., 2013; Busch et al., 2017). A related 891 

method uses 14CO2 to separate the source pools of photorespiration into primary and 892 

stored photosynthates, allowing further details of photorespiratory CO2 release to be 893 

obtained (Pärnik and Keerberg, 1995, 2007).  894 

 895 

Estimation of glycine export from the photorespiratory pathway 896 
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While the rate of glycine synthesis is a useful parameter to know, it does not inform us 897 

per se how much photorespiratory carbon leaves the photorespiratory pathway as 898 

glycine. Abadie et al. (2016) devised a technique based on isotope labelling and 899 

metabolome kinetics coupled with isotope ratio mass spectrometry and nuclear 900 

magnetic resonance (NMR) analyses to estimate how much photorespiratory glycine 901 

accumulates and is not converted to serine. This approach may be used to determine 902 

the value of l . 903 

 904 

Estimation of the flux through the C1 metabolism 905 

Our knowledge about the magnitude of the flux through the C1 metabolism to date is 906 

sparse. Attempts to measure the one-carbon fluxes associated with the 907 

photorespiratory metabolism in plants have been made using NMR techniques, and it 908 

has been shown that the C1 units needed for serine synthesis originate mostly from 909 

photorespiratory carbon (Prabhu et al., 1996). Less is known about the fate of the CH2-910 

THF produced by GDC. One of the sinks for C1 units from the folate cycle is the synthesis 911 

of methionine. The flux of 13C-label to methionine synthesis has been estimated with a 912 

similar NMR approach and been found to be scaled to net CO2 assimilation (Gauthier et 913 

al., 2010; Abadie et al., 2017). Future studies are warranted to elucidate the overall 914 

fluxes through the folate cycle. 915 

  916 
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 1443 

Figure 1 1444 

Activation and catalysis sequence of Rubisco. Inactive Rubisco enzyme (E) becomes 1445 

carbamated by the binding of non-substrate CO2 (EC) followed by the activation through 1446 

the binding of Mg2+ (ECM). The activated Rubisco binds ribulose-1,5-bisphosphate 1447 

(RuBP) forming the ECMR complex, which can then react either with CO2 in a 1448 

carboxylation reaction producing two molecules of 3-phosphoglycerate (3-PGA), or with 1449 

O2 in an oxygenation reaction producing one molecule of 3-PGA and one of 2-1450 

phosphoglycolate (2-PG). Figure adapted from Mate et al. (1996).  1451 

EC ECM ECMR
E

E – CO2 E – CO2 – Mg2+ E – CO2 – Mg2+ – RuBP  

ECMR-O2

ECMR-CO2

CO2 Mg2+

CO2

O2

CO2

O2

2 x 3-PGA

1 x 3-PGA
1 x 2-PG

Activation Catalysis

RuBP

RuBP

Carboxylation

Oxygenation



 58 

Figure 2 1452 

Resistances to CO2 diffusion inside the leaf affecting the CO2 concentration around 1453 

Rubisco. The photorespiratory pathway involves the subcellular compartments 1454 

chloroplasts (C), peroxisomes (P) and mitochondria (M). (a) (Photo)respired CO2 is 1455 
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effectively released inside the chloroplast. This is the case if chloroplasts fully cover the 1456 

cell periphery and the mitochondria are located towards the inside of the cell. It is also 1457 

achieved in plants bioengineered to release photorespiratory CO2 directly inside the 1458 

chloroplast. The resistances imposed by stomata (rs) and the mesophyll (rm), which 1459 

includes the cell wall and membranes, cause a progressive decline in CO2 concentrations 1460 

from the ambient air (Ca) to the intercellular air space (IAS; Ci) and the chloroplast (Cc). 1461 

(b) If (photo)respired CO2 mixes with the CO2 coming from the IAS inside the cytosol, 1462 

which is the case e.g. when chloroplasts are further apart, or mitochondria are located 1463 

between the cell wall and the chloroplasts, then rm becomes an apparent resistance that 1464 

varies with the amount of CO2 released from (photo)respiration (see text for further 1465 

information). In this case, rm has to be separated into a cell wall and plasmalemma 1466 

component (rwp) and a chloroplast envelope and stromal component (rch). (c) The CO2 1467 

response of the mesophyll conductance (gm) to CO2 diffusion for the two scenarios 1468 

outlined in panels (a) and (b), modelled for equal contribution of rch and rwp. Note that 1469 

when (photo)respiratory CO2 enters the cytosol first, the apparent value of gm tends to 1470 

zero when the compensation point ( A = 0) is approached. Panels (a) and (b) adapted 1471 

from von Caemmerer (2013)  1472 
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 1474 

Figure 3 1475 

Schematic of the photorespiratory metabolism. The movement of carbon along the 1476 

photorespiratory pathway (black arrows) and the metabolites involved (bold font) are 1477 

shown in the context of the nitrogen (blue) and sulfur metabolism (green). Redox 1478 
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reactions involving NAD, NADP, or ferredoxin (Fdx) are shown in red and ATP consuming 1479 

processes in orange. Photorespiratory carbon leaves the pathway as CO2 during the 1480 

glycine decarboxylation step or is returned to the CBB cycle as 3-PGA. Carbon may also 1481 

be exported from the photorespiratory pathway (white arrows) in the form of the amino 1482 

acids glycine and serine, or as CH2-THF, which supplies one-carbon (C1) units to the C1 1483 

metabolism (grey boxes). The amount of exported carbon influences how much 1484 

photorespiratory carbon is returned to the CBB cycle. 2-PG, 2-phosphoglycolate; 3-PGA, 1485 

3-phosphoglycerate; 2-OG, 2-oxoglutarate; PGLP1, phosphoglycolate phosphatase 1; 1486 

GOX, glycolate oxidase; CAT, catalase; GGAT, glutamate:glyoxylate aminotransferase; 1487 

SGAT, serine:glyoxylate aminotransferase; GDC, glycine decarboxylase complex; SHMT1, 1488 

serine hydroxymethyltransferase 1; HPR1, hydroxypyruvate reductase 1; HPR2, 1489 

hydroxypyruvate reductase 2; GLYK, glycerate kinase; GS2, glutamine synthetase; 1490 

GOGAT, glutamine:oxoglutarate aminotransferase; SAT3, serine O-acetyltransferase; 1491 

OAS-TL, O-acetylserine (thiol) lyase (Figure adapted from Bauwe et al., 2010; Eisenhut et 1492 

al., 2019). 1493 
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 1495 

Figure 4 1496 

Metabolic uses of C1 units outside the photorespiratory pathway. CH2-THF exported 1497 

from the photorespiratory pathway is the precursor for several derivatives of THF that 1498 

can be interconverted and their C1 units used for the biosynthesis of a wide range of 1499 

primary and secondary metabolites (shown in red). A major sink for C1 units is the 1500 

methylation of various substrates, such as DNA, RNA, proteins, phospholipids and other 1501 

substrates. The shown reactions occur in mitochondria, chloroplasts, and the cytosol, 1502 

but may have a preference for a certain subcellular compartment. THF, 1503 

tetrahydrofolate; CH2-THF, 5,10-methylene-THF; 5,10-CH+-THF, 5,10-methenyl-THF; 5-1504 

CHO-THF, 5-formyl-THF; 10-CHO-THF, 10-formyl-THF; 5-CH3-THF, 5-methyl-THF; SAM, S-1505 

adenosyl-methionine; SAH, S-adenosyl-homocysteine; fMet-tRNA, N-formylmethionine-1506 

tRNA; GDC, glycine decarboxylase complex; SHMT, serine:hydroxymethyltransferase; 1507 
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FDF, 10-formyl-THF deformylase; MTHFD, 5,10-methylene-THF dehydrogenase; MTHFC, 1508 

5,10-methenyl-THF cyclohydrolase; FTHFC, 5-formyl-THF cyclo-ligase; MTHFR, 5,10-1509 

methylene-THF reductase; MS, methionine synthase; MAT, methionine 1510 

adenosyltransferase; MT, methyltransferase; SAHase, S-adenosyl-homocysteine 1511 

hydrolase (Figure adapted from Gorelova et al., 2017). 1512 

  1513 



 64 

Figure 5 1514 

Net effect of photorespiration on CO2 assimilation rates. Photorespiration can 1515 

transiently be suppressed by decreasing O around the leaf. A measured during the 1516 

instantaneous suppression of the Rubisco oxygenation reaction integrates the 1517 
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diffusional, biochemical, and physiological effects of photorespiration on net carbon 1518 

uptake of the leaf (calculated as DA ; see Box 1). (a)-(c) The suppression of 1519 

photorespiration under varying atmospheric CO2 concentrations (Ca) for sunflower 1520 

(Helianthus annuus) leaves fertilized with NO3
- (data from Busch et al., 2018). (d)-(f) The 1521 

suppression of photorespiration under varying leaf temperatures in leaves of sweet 1522 

potato (Ipomoea batatas; data from Busch and Sage, 2017). Net CO2 assimilation rates 1523 

are measured at oxygen concentrations of 21% and close to 0% (a) or 21% and 2% (b). 1524 

The absolute difference between A when photorespiration is present (21% O) and A 1525 

when it is absent (0% or 2% O) is displayed in (b) and (e). Note that DA  in (b) is 1526 

estimated from the A/Ca curves rather than A/Ci or A/Cc curves, which ensures all 1527 

diffusion resistances, and thus also the effect of the leaf anatomy, is accounted for (see 1528 

Box 1 for details). The dotted lines denote ambient conditions (CO2 concentration: 400 1529 

µmol mol-1; growth temperature: 25ºC). Red dashed lines denote the CO2 concentration 1530 

and temperature at which the net effect of photorespiration on carbon uptake is zero. In 1531 

these examples, at values of Ca above ambient, or leaf temperatures below 1532 

approximately 20°C, the net effect of photorespiration on carbon uptake is positive, 1533 

meaning that decreasing photorespiration decreases A. At lower Ca, or higher 1534 

temperatures, the overall effect of photorespiration is negative and plants would 1535 

benefit from decreasing photorespiration. (c) and (f) The ratio Vo/Vc when 1536 

photorespiration is present. At ambient Ca, approximately a quarter of Rubisco activity 1537 

goes towards oxygenation (c), corresponding to a negligible net effect on carbon uptake 1538 

(b). Similarly, at 20°C one fifth of Rubisco activity supports oxygenation (f), again with no 1539 
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associated costs in net carbon uptake (e). Comparing (b) with (c), and (e) with (f), 1540 

photorespiration appears to be beneficial in terms of net carbon uptake for a Vo/Vc of up 1541 

to roughly 0.25.   1542 

  1543 
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 1544 

Supplementary Figure 1 1545 

Fluxes through the photosynthetic carbon reduction and photorespiratory pathways. 1546 

Outlined are the pathways indicating metabolites (bold font) and stoichiometries 1547 

(regular font) of carbon (black) nitrogen (blue) when a proportion of the 1548 
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photorespiratory carbon leaves the photorespiratory pathway as amino acids and CH2-1549 

THF. Electron and ATP requirements are indicated in red and orange, respectively. The 1550 

difference between CO2 taken up by carboxylation and CO2 released from 1551 

photorespiration (light gray boxes) equals the sum of the individual sinks for assimilated 1552 

carbon, indicated by double-bordered gray boxes. The proportion of 2-PG carbon 1553 

leaving the photorespiratory pathway as glycine is denoted by a
G

, that leaving as CH2-1554 

THF by a
T

 and that leaving as serine by a
S

. F represents the ratio of the rates of RuBP 1555 

oxygenation to that of carboxylation; 3-PGA, 3-phosphoglycerate; 2-PG, 2-1556 

phosphoglycolate. All flux magnitudes are scaled in relation to the rate of RuBP 1557 

carboxylation. Figure adapted from Busch et al. (2018). 1558 
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