1	Photorespiration in the context of Rubisco biochemistry, CO_2
2	diffusion, and metabolism
3	
4	Florian A. Busch
5	
6	Research School of Biology and ARC Centre of Excellence for Translational
7	Photosynthesis, Australian National University, Acton ACT 2601, Australia
8	
9	Author ORCID ID: 0000-0001-6912-0156
10	
11	
12	* Corresponding author:
13	Florian Busch
14	Plant Science Division
15	Research School of Biology
16	46 Sullivans Creek Road
17	The Australian National University
18	Acton, ACT, 2601
19	Australia
20	
21	Tel: +61 2 6125 0123
22	Email: florian.busch@anu.edu.au
23	
24	Key words
25	Rubisco, CO_2 diffusion, mesophyll conductance, photorespiratory C_2 cycle,

26 photosynthetic efficiency, photorespiratory bypass, yield improvement, photosynthesis

27 Abstract

28

29 Photorespiratory metabolism is essential for plants to maintain functional 30 photosynthesis in an oxygen-containing environment. Because the oxygenation reaction 31 of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often 32 considered a wasteful process and considerable efforts are aimed at minimizing the 33 negative impact of photorespiration on the plant's carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within 34 35 other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is 36 important for maintaining the redox balance of the plant. The overall effect of 37 photorespiratory carbon loss on the net CO_2 fixation of the plant is also strongly 38 influenced by the physiology of the leaf related to CO₂ diffusion. This review outlines the 39 distinction between Rubisco oxygenation and photorespiratory CO_2 release as a basis to 40 evaluate the costs and benefits of photorespiration.

41

42 Introduction

43

Photosynthesis is quantitatively the most important biochemical pathway on the planet, by which plants turn sunlight and atmospheric CO₂ into organic biomass. It thereby provides the foundation of most life on Earth. The key enzyme involved in the carboxylation of ribulose 1,5-bisphosphate (RuBP), which drives the assimilation of CO₂ in photosynthetic organisms, is RuBP carboxylase/oxygenase (Rubisco). For every

49 carboxylation reaction two molecules of 3-phosphoglycerate (3-PGA) are produced that 50 can be metabolized in the Calvin-Benson-Bassham (CBB) cycle to either regenerate 51 RuBP, or to be exported as triose phosphate and become the substrate for most other 52 organic compounds that make up a plant. Almost a century ago, Otto Warburg 53 discovered that the rate of CO_2 assimilation is suppressed by increasing the external 54 oxygen concentration (Warburg, 1920; Nickelsen, 2007). Only much later, and more 55 than a decade after the discovery of Rubisco's capacity to carboxylate its substrate RuBP 56 (Quayle et al., 1954; Weissbach et al., 1954; Mayaudon et al., 1957), it was established 57 that Rubisco is an enzyme that can also react with oxygen to produce one molecule of 2-58 phosphoglycolate (2-PG) along with one molecule of 3-PGA (Bowes et al., 1971).

59 The two-carbon molecule 2-PG is a potent inhibitor of several enzymes, including 60 triose phosphate isomerase (Anderson, 1971), sedoheptulose 1,7-bisphosphatase 61 (Flügel et al., 2017), and phosphofructokinase (Kelly and Latzko, 1976) and therefore needs to be metabolized quickly. This is accomplished via the photorespiratory pathway, 62 63 also known as C₂ pathway or the oxidative photosynthetic carbon cycle. This pathway 64 recovers 75% of the 2-PG carbon by converting it to 3-PGA, which is then fed back into 65 the CBB cycle where it can be used to regenerate RuBP (Berry et al., 1978). The 66 remaining 25% of the carbon is released as CO₂ from photorespiration, meaning 67 'respiration in the light', as this process is light-dependent. Photorespiration tends to be 68 higher at high temperatures, low CO₂ concentrations and high O₂ concentrations 69 (Sharkey, 1988).

70 Because of the release of previously fixed CO₂ and the energetic cost involved in 71 metabolizing 2-PG, photorespiration has often been considered wasteful and it has been 72 estimated that decreasing photorespiration could significantly increase food production 73 (Walker et al., 2016). However, considering photorespiration as merely an unwanted 74 side reaction is too simplistic, as the photorespiratory pathway is linked with several 75 other metabolic processes that are essential to the plant. In addition to being connected 76 with the carbon metabolism of the CBB cycle via Rubisco activity and the returned 3-77 PGA, photorespiration is also involved in nitrogen assimilation (Bloom, 2015; Busch et 78 al., 2018), C₁ metabolism, and amino acid and phospholipid biosynthesis (Hanson and 79 Roje, 2001; Ros et al., 2014). The photorespiratory pathway may also be beneficial 80 through the dissipation of excess energy (Kozaki and Takeba, 1996) and has important 81 implications in balancing the ratio of NADPH and ATP within the cell (Kramer and Evans, 82 2011).

Photorespiration is the metabolic consequence of the generation of 2-PG via the 83 84 oxygenation reaction of Rubisco that is recycled via the photorespiratory pathway. As 85 such, the oxygenation reaction is the ultimate cause for photorespiration and, to a large extent, also determines the rate of photorespiratory CO₂ release. Although often 86 87 conflated with the oxygenation reaction by Rubisco, the CO₂ release from 88 photorespiration is an interrelated, but independent process and the stoichiometry of oxygenation and photorespiration is not fully fixed. Metabolic pathways that drain 89 carbon from the photorespiratory pathway, such as glycine being exported for protein 90 91 synthesis (Busch et al., 2018) or serine used for C_1 metabolism (Mouillon et al., 1999),

92 will alter the amount of CO_2 released per oxygenation reaction. It is therefore instructive 93 to consider the generation of 2-PG and its metabolism separately. In the following I 94 outline the two sides of photorespiration: (1) the enzymatic properties of Rubisco and 95 aspects of the leaf affecting CO_2 diffusion that determine the generation of 2-PG; and (2) 96 the metabolic context in which photorespiratory recycling of 2-PG occurs. It is these two 97 sides of photorespiration that in combination define photorespiratory CO₂ release and 98 thereby the costs and benefits of photorespiration. I conclude by discussing whether 99 and under which conditions photorespiration might be considered wasteful.

100

101 The oxygenation of RuBP by Rubisco

102

103 The rate limiting step of CO₂ fixation in plants is catalyzed by Rubisco, a hexadecameric 104 enzyme that consists of eight large subunits (RbcL) containing the catalytic site and eight 105 small subunits (RbcS) that have some influence over the kinetic properties of Rubisco 106 (Pottier et al., 2018). The key kinetic parameters of Rubisco include the Michaelis-Menten constants for CO₂ (K_c) and O₂ (K_c), and the catalytic turnover speed for 107 carboxylation and oxygenation (k_{cat}^{c} and k_{cat}^{o} , respectively, in turnovers per second). The 108 value of k_{cat}^{c} is only ~2-3 s⁻¹ in C₃ plants (Whitney et al., 2011), which is the reason why 109 110 Rubisco constitutes around 20-30% of soluble leaf protein, but may reach more than 111 50% depending on the growth condition (Makino and Osmond, 1991; Galmés et al., 112 2014), corresponding to 10-25% of total leaf nitrogen (Onoda et al., 2017; Evans and Clarke, 2019). Its high abundance across all photosynthetic organisms means Rubisco 113

may be the most abundant protein on Earth (Ellis, 1979; Bar-On and Milo, 2019). Both the slow turnover rate and the competitive inhibition by O₂ give Rubisco the reputation of being an inefficient enzyme. However, a recent comparison with chemically related enzymes showed that Rubisco's catalytic performance is not unusual and the perception of it being a particularly sluggish enzyme may be unwarranted (Bathellier et al., 2018).

119 We can mathematically relate the maximum carboxylation capacity (V_{cmax}) and 120 oxygenation capacity (V_{omax}) of Rubisco to the total concentration of enzyme sites (E_t) by 121 defining $V_{cmax} = k_{cat}^c E_t$ and $V_{omax} = k_{cat}^o E_t$. From these equations we can calculate the ratio 122 of the actual Rubisco carboxylation rate (V_c) relative to its oxygenation rate (V_o) as (Laing 123 et al., 1974):

124
$$\frac{V_c}{V_o} = \frac{V_{cmax}}{K_c} \frac{K_o}{V_{omax}} \frac{C_c}{O} , \qquad (1)$$

where C_c is the CO₂ concentration and O the O₂ concentration at the Rubisco active site. The ratio of the carboxylation rate to the oxygenation rate when C_c and O are equal is called the relative specificity of Rubisco ($S_{c/o}$) and is given by

128
$$S_{c/o} = \frac{V_{c\max}}{K_c} \frac{K_o}{V_{o\max}} .$$
 (2)

 $S_{c/o}$ is therefore a property that is determined by the fundamental enzyme kinetics of Rubisco. See Tcherkez (2016) for a detailed discussion of the reaction mechanisms responsible for the partitioning between carboxylation and oxygenation reactions of Rubisco. For given C_c and O, the ratio of the oxygenation to the carboxylation rate is determined by

134
$$F = \frac{V_o}{V_c} = \left(\frac{1}{S_{c/o}}\right) \frac{O}{C_c} .$$
(3)

Eqn. (3) demonstrates that the production of 2-PG through RuBP oxygenation is in a fixed relationship with the production of 3-PGA for any given $S_{c/o}$, C_c , and O. In other words, higher rates of CO_2 fixation are inextricably linked to higher rates of 2-PG production, which then require a higher capacity of 2-PG recycling in the photorespiratory pathway. Consequently, an uncoupling of 3-PGA from 2-PG synthesis can only be achieved by altering $S_{c/o}$, C_c , or O.

141

142 Variability of S_{c/o}

143

The $S_{c/o}$ of Rubisco is largely determined by the protein sequence of its subunits and 144 145 even single amino acid substitutions can impact the kinetic properties of the enzyme. It 146 has been shown that a substitution of Met309 to Ile309 of RbcL turns a C₃-like enzyme with lower K_{cat}^{c} and higher CO₂ affinity (i.e. lower K_{c}) into a C₄-like enzyme with higher 147 k_{cat}^{c} and lower CO₂ affinity (Whitney et al., 2011). Other examples exist where small 148 149 changes in the protein sequence affected Rubisco kinetic properties, including Sc/o 150 (Whitney and Sharwood, 2008) and residues of RbcL have been determined that are 151 under positive selection towards specific kinetic parameters, indicating that RbcL is 152 instrumental in determining the catalytic properties of the enzyme (Kapralov and 153 Filatov, 2007; Kapralov et al., 2010; Galmés et al., 2014).

154 The role of the small subunit so far is not as well understood, but it has become 155 apparent that it, too, has an impact on the catalytic properties of Rubisco (Spreitzer, 156 2003; Kapralov et al., 2010). A transformation of the small subunit of Sorghum bicolor, a C₄ plant, into the C₃ plant rice has revealed a role for RbcS in controlling catalytic 157 158 properties (Ishikawa et al., 2011). The transgenic rice plants obtained in these 159 experiments expressing a C₄-type RbcS alongside the native rice RbcL exhibited a higher k_{cat}^{c} and lower $S_{c/o}$ than the non-transgenic rice, making Rubisco's catalytic properties 160 161 much more C₄-like. Other hybrid enzymes consisting of *Chlamydomonas* RbcL and RbcS 162 from spinach, sunflower, or Arabidopsis also produced enzymes with specificities that 163 were intermediate between the wild-type *Chlamydomonas* and the higher plant Rubisco 164 (Genkov et al., 2010). Similarly, a hybrid Rubisco with RbcL from sunflower and RbcS 165 from tobacco showed S_{c/o} values intermediate between sunflower and tobacco 166 (Sharwood et al., 2008). In contrast to RbcL, which is usually encoded by a single-copy 167 gene in the chloroplast, RbcS is a multigene family that encodes several different 168 isoforms in the nuclear genome. The number of rbcS genes can range from as few as 2 in 169 the green alga Chlamydomonas reinhardtii to more than 22 in wheat (Spreitzer, 2003). 170 Some of these RbcS variants that are mostly expressed in the mesophyll (M-type) share 171 up to 100% amino acid identity. Another type of RbcS that exists in some plant species 172 and was first found in trichomes (T-type), is distinctly different from the M-type (Pottier 173 et al., 2018). So far, this T-type RbcS has been found in non-photosynthetic tissues such 174 as roots, seeds, fruits, and secretory organs such as trichomes, but appears to be largely 175 absent in photosynthetic tissues (Morita et al., 2016). It can be speculated that this type

176 of RbcS may be important when Rubisco is not being used in the context of the CBB 177 cycle, such as in the fatty acid synthesis during seed development (Schwender et al., 178 2004). In rice the overexpression of its T-type RbcS, OsRbcS1, altered the effective catalytic properties of extracted Rubisco (Morita et al., 2014). In these experiments, 179 OsRbcS1 overexpression increased k_{cat}^{c} and K_{c} , with a concomitant decrease in $S_{c/o}$, 180 181 shifting Rubisco's catalytic properties towards those found in C₄ plants. Similar 182 differences were observed when tobacco M-type and T-type RbcS genes were expressed 183 in Chlamydomonas lacking its own small subunits (Laterre et al., 2017). Small subunits 184 do not have to be as different as M-type and T-type RbcS to confer differences in 185 Rubisco kinetic parameters. Substitutions of single Chlamydomonas RbcS residues have been shown to account for decreases in $S_{c/o}$ of up to 8% (Spreitzer et al., 2001). 186

187 Although direct experimental evidence is lacking to date that the different M-188 type small subunits within a plant mediate substantial differences in Rubisco kinetic 189 properties in vivo, it can be speculated that they do so. Several studies have shown that 190 changes in growth environment, such as temperature (Yoon et al., 2001), light intensity 191 (Wanner and Gruissem, 1991; Dedonder et al., 1993) and light quality (Eilenberg et al., 192 1998), CO₂ concentration (Cheng et al., 1998), as well as the developmental stage of the plant (Wanner and Gruissem, 1991), result in differential expression of *RbcS* variants. 193 194 Plants may therefore acclimate to their environment by expressing a Rubisco isoform that is most suitable, e.g. one with high $S_{c/o}$ under conditions where photorespiration 195 would be high, such as high temperatures. An increase in S_{c/o} under high growth 196 197 temperatures has been experimentally observed in spinach (Yamori et al., 2006),

indicating that the acclimation of Rubisco kinetics via expression of different *RbcS*isoforms is at least plausible.

200 Because the half-life of Rubisco inside leaves is in the order of one week 201 (Simpson et al., 1981), any acclimation on the protein level of its kinetic properties cannot happen quickly. However, this does not mean that S_{c/o} necessarily needs to be 202 203 considered constant over short periods of time. Recent evidence points to the possibility 204 that there may be mechanisms through which Rubisco's kinetic properties can be 205 altered post-translationally. The catalytic site of Rubisco (E) is inactive in its native form 206 (Fig. 1). Its activation requires the binding of non-substrate CO₂ to the Lys201 residue of 207 the active site forming a carbamate (EC) (Sharwood, 2017). This is followed by the binding of Mg²⁺ to create a stable ECM complex, to which the substrate RuBP can bind 208 resulting in the formation of ECMR. The presence of Mg²⁺ and its binding to the catalytic 209 210 site therefore plays a critical role in the activation of Rubisco. It has been speculated that Mg²⁺ could be replaced by Mn²⁺ inside the chloroplast, which would slightly alter 211 212 the geometry of the active site (Bloom and Lancaster, 2018). This may differentially 213 change the catalytic properties and thereby favor the oxygenation reaction over the 214 carboxylation reaction. However, so far it is uncertain how much this replacement 215 contributes to the regulation of Rubisco kinetic properties inside the leaf. Experimental evidence of the effect of Mn²⁺ in vivo is required, especially since the change in 216 217 specificity is accompanied by a drastic decrease in the overall catalytic rate (Jordan and 218 Ogren, 1983; Bloom and Kameritsch, 2017).

219 From an evolutionary perspective, $S_{c/o}$ is fairly constrained within C₃ plants (~85-110 mol mol⁻¹ at 25°C)(Hermida-Carrera et al., 2016; Orr et al., 2016), but varies 220 221 substantially when other organisms such as green and non-green algae or 222 photosynthetic bacteria are included in the comparison, due in part to their different forms of Rubisco (~10 mol mol⁻¹ in photosynthetic bacteria, up to ~240 mol mol⁻¹ in red 223 224 algae)(Savir et al., 2010; Young et al., 2016; Flamholz et al., 2019). This variation in specificity is negatively correlated with a variation in k_{cat}^{c} , which has led to the 225 conclusion that there is an unavoidable trade-off between $S_{c/o}$ and k_{cat}^{c} , meaning 226 227 Rubisco is well optimized to its environmental conditions (Tcherkez et al., 2006; Savir et 228 al., 2010). However, more recent analyses based on data obtained from many more species weaken the apparent inverse relationship between $S_{c/o}$ and k_{cat}^{c} (Galmés et al., 229 230 2014; Flamholz et al., 2019), suggesting that photosynthetic organisms have some 231 capacity to adjust V_0 relative to V_c without compromising the catalytic rate too much.

232 As with most other enzymes, the kinetic properties of Rubisco are highly 233 dependent on temperature. With increasing temperatures Rubisco progressively loses 234 its specificity for CO_2 (Badger and Collatz, 1977; Sharwood et al., 2016), meaning that 235 the oxygenation reaction becomes more dominant relative to the carboxylation 236 reaction. This results in generally higher rates of oxygenation and higher losses of 237 carbon from photorespiration at higher leaf temperatures. Surveying a large diversity of 238 species has uncovered a substantial variability in how S_{c/o} is affected by temperature 239 (Hermida-Carrera et al., 2016; Orr et al., 2016; Sharwood et al., 2016). Interestingly, C_3 240 plants from cool habitats contain Rubiscos that perform better at low temperatures,

while Rubiscos from warm-habitat plants perform better at high temperatures (Galmés et al., 2016). Despite these insights into the variability of Rubisco kinetics, the exact molecular bases for what makes $S_{c/o}$ of some Rubiscos more invariant to temperature than others, and which subunit is the main driver for this effect, remain elusive.

245 Overall, $S_{c/o}$ is variable to some degree, both through acclimation to current 246 environmental conditions and adaptation to the plant's habitat. This necessarily impacts 247 V_{0} and thereby the rate of 2-PG recycling and consequentially the rate of 248 photorespiration. It also means that despite the Rubisco oxygenation reaction 249 potentially being wasteful and unavoidable, plants have some control over how much 250 oxygenation of RuBP they allow to happen. It is interesting to note at this point that 251 plants do not always seem to opt for the highest possible specificity. It is therefore 252 worthwhile discuss the benefits that plants receive from RuBP to 253 oxygenation/photorespiration.

254

255 **Delivery of CO**₂ into the chloroplast

256

Besides $S_{c/o}$, the other important factor determining V_o inside the leaf is O/C_c (Eqn. (3)). Because the O₂ concentration in the atmosphere surrounding the leaf (~ 210,000 µmol mol⁻¹) is much higher than the CO₂ concentration (C_a ; ~ 415 µmol mol⁻¹), photosynthetic activity, which releases O₂ at a similar rate as it takes up CO₂, does not substantially alter O. In contrast, in photosynthesizing leaves C_c can vary considerably and reach values much below C_a . This is due to the rate of CO₂ uptake relative to C_a being much larger

263 than the rate of O_2 release relative to O, which according to Fick's law causes a much 264 greater concentration gradient for CO_2 as compared to O_2 . We can therefore consider O265 to be a constant in the natural environment and focus here on the variability of C_c .

266 The CO₂ needed for photosynthesis inside the chloroplast enters the leaf through 267 stomata that tightly regulate the gas exchange between the atmosphere and the inside 268 of the leaf. Thus, stomata impose a resistance to CO_2 diffusion (r_s) that causes the 269 intercellular CO₂ concentration (C_i) to be lower than C_a (Fig. 2a). A similar effect occurs 270 during the diffusion of CO₂ from the intercellular air space to the site of carboxylation in 271 the chloroplast. Here, physical components such as cell walls and membranes impose an 272 additional resistance, termed mesophyll resistance (rm). According to Fick's law of 273 diffusion, the net CO₂ assimilation rate of a plant (A) can be related to changes in the 274 CO₂ concentrations along the diffusive path by making use of these resistances:

275
$$A = \frac{C_a - C_i}{r_s} = \frac{C_i - C_c}{r_m}$$
(4)

276 Under normal growth conditions, both C_i/C_a and C_c/C_i tend to be around 0.7, resulting in C_c/C_a of about 0.5 (Wong et al., 1978; von Caemmerer and Evans, 1991). This indicates 277 278 that these resistances have a large impact on C_c and therefore V_0 . Stomata respond to a 279 range of environmental signals, such as light intensity and quality, CO₂ concentration, 280 the humidity of the air, and the general water status of the plant (Assmann, 1993; 281 Vavasseur and Raghavendra, 2005; Busch, 2014; Buckley, 2019). In general, stomata 282 open when there is a metabolic need for CO₂ inside the leaf (i.e. the plant is 283 photosynthesizing), and close when the water loss from transpiration exceeds the water 284 availability (Wong et al., 1979; Wong et al., 1985, 1985; Hetherington and Woodward, 285 2003), making r_s variable on short time scales. Similarly, there is evidence that r_m is also 286 variable, which may be at least in part due to the effective location of (photo)respiratory 287 CO₂ release (Tholen et al., 2012). In the case of chloroplast covering the cell periphery 288 tightly, this forces all (photo)respired CO₂ to diffuse through the chloroplast, effectively 289 resulting in a CO₂ release 'inside the chloroplast' (Fig. 2a). If, however, chloroplast cover 290 is incomplete and the (photo)respiratory CO_2 mixes with the CO_2 coming in from the 291 intercellular air space mostly inside the cytosol, then $r_{\rm m}$ is an apparent resistance that depends on the diffusive resistance across the cell wall and plasmamembrane (r_{wp}) and 292 293 the resistance across the chloroplast membrane and stroma (r_{ch}) (Fig. 2b) (for discussion 294 and further explanation see Tholen et al., 2014; Yin and Struik, 2017; Ubierna et al., 295 2019):

$$r_m = r_{wp} + r_{ch} \frac{V_c}{A}$$
(5)

It becomes evident from Eqn. (5) that r_m increases (and the inverse, mesophyll 297 298 conductance (g_m) decreases) dramatically as A approaches zero (Fig. 2c). This has also 299 been shown experimentally (Busch et al., Accepted). Thus, the location of 300 (photo)respiratory CO_2 release has some impact on C_c , especially when A is low. This 301 idea is exploited by bioengineering approaches that introduce photorespiratory 302 bypasses to relocate photorespiratory CO₂ release from the mitochondria to the chloroplast (Kebeish et al., 2007; Maier et al., 2012; Shen et al., 2019; South et al., 303 304 2019). This effectively changes the CO_2 diffusive properties from a "two-resistance" case 305 (Fig. 2b) to a "single-resistance" case (Fig. 2a), which is associated with increases in g_m at 306 low CO₂ concentrations (Fig. 2c).

Furthermore, r_m is influenced by anatomical traits, such as cell wall thickness (Ellsworth et al., 2018), chloroplast shape and cover (Busch et al., 2013; Weise et al., 2015), cell density, and the relative amount of intercellular air space (Lehmeier et al., 2017). Mesophyll CO₂ diffusion properties, and consequently the CO₂ concentration inside the chloroplast, therefore are mediated by the 3D anatomy of the mesophyll cells and the leaf as a whole (Earles et al., 2019).

313 Overall, the effective total resistance for CO_2 diffusion (r_t) from C_a to C_c is highly 314 variable with the environment, causing C_c to change according to

 $C_c = C_a - Ar_t . (6)$

316 *A*, in turn, is the difference between the CO_2 taken up by Rubisco and the CO_2 released 317 from photorespiration (*F*) and mitochondrial respiration (R_d) and can therefore be 318 described by (Farguhar et al., 1980)

319 $A = V_c - F - R_d$. (7)

Here, *F* relates to V_0 through $F = |V_0$, where | is the amount of CO₂ released from photorespiration per oxygenation reaction. The CO₂ concentration, at which the CO₂ uptake by Rubisco carboxylation equals CO₂ release from photorespiration is called the CO₂ compensation point in the absence of mitochondrial respiration (Γ^*), and is calculated according to

$$G^{\star} = \frac{|O|}{S_{c/o}}$$
(8)

326 If the photorespiratory pathway functions as a closed cycle | = 0.5, corresponding to 327 25% of the 2-PG carbon lost as CO₂. Combining Eqn. (7) with Eqns. (3) and (6) we can 328 obtain an expression for V_c

329
$$V_{c} = \frac{A + R_{d}}{1 - |F|} = \frac{A + R_{d}}{1 - \frac{|}{S_{c/o}} \frac{O}{C_{c}}} = \frac{A + R_{d}}{1 - \frac{|}{S_{c/o}} \frac{O}{C_{a} - Ar_{t}}}$$
(9)

330 and one for F

331
$$F = |V_o| = \frac{A + R_d}{\frac{1}{|F|} - 1} = \frac{A + R_d}{\frac{S_{c/o}}{|O|} - 1} = \frac{A + R_d}{\frac{S_{c/o}}{|O|} - 1} = \frac{A + R_d}{\frac{S_{c/o}}{|O|} - 1}.$$
 (10)

332 Eqn. (10) highlights that F is not linearly related to A because of the additional factor $C_a - Ar_t$. In other words, decreasing F by a certain amount does not increase A by the 333 334 same amount, because C_c will change at the same time as a consequence. This can be 335 assessed quantitatively by solving Eqn. (10) for A, yielding a quadratic equation in A with 336 C_a as the reference CO₂ concentration (see e.g. Farguhar and Busch, 2017). A graphical 337 representation and detailed description of this effect is displayed in Box 1. Most studies 338 to date estimate the impact of photorespiration on A by comparing CO₂ assimilation rates with and without photorespiration modelled at a common C_i or C_c , or investigate 339 340 the rate of photorespiratory CO₂ release at a given internal CO₂ concentration (see e.g. 341 Sharkey, 1988; Valentini et al., 1995; Walker et al., 2016). While these approaches may 342 account for g_m , they disregard that diffusion resistances simultaneously affect both A 343 and C_c , and thus ignore that some of the photorespired CO_2 is refixed. Box 1 344 demonstrates that the modelling of A has to be coupled to CO₂ diffusion through the 345 stomata and the mesophyll when estimating the effect of photorespiration on net CO2 346 assimilation rate. The costs of photorespiration on food production as estimated by 347 Walker et al. (2016) is therefore likely an overestimation and should be revisited.

349 **Recycling of 2-PG and release of CO₂ by glycine decarboxylation**

350

- 351 The primary photorespiratory pathway
- 352

353 Under normal conditions, the oxygenation of RuBP comprises about a quarter of the 354 total use of RuBP by Rubisco, and it can be considerably more under conditions where 355 stomata are substantially impacting CO₂ exchange with the atmosphere. This makes the 356 flux through the photorespiratory pathway the largest biochemical process in plants 357 second only to the flux through the CBB cycle. The 2-PG produced in the oxygenation 358 reaction is dephosphorylated to glycolate by phosphoglycolate phosphatase 1 (PGLP1) in 359 the chloroplast (Fig. 3). Glycolate is exported from the chloroplast by the plastidal 360 glycolate/glycerate translocator 1 (PLGG1), which exchanges chloroplastic glycolate for 361 cytosolic glycerate (Pick et al., 2013). A second transporter, the bile acid sodium 362 symporter BASS6, has recently been implicated in the glycerate-independent export of 363 glycolate, ensuring the balance of glycolate export and glycerate import for varying flux-364 ratios of these metabolites (South et al., 2017).

In the peroxisome glycolate reacts irreversibly with O₂ and is converted to glyoxylate by glycolate oxidase (GOX), producing H₂O₂ as a byproduct. Catalase (CAT) then decomposes H₂O₂ to water and oxygen. Next, the enzyme glutamate:glyoxylate aminotransferase (GGAT) transaminates glyoxylate to form glycine. A second enzyme that catalyzes the conversion of glyoxylate to glycine is serine:glyoxlate aminotransferase (SGAT), which returns the amino group from the three-carbon branch

371 of the photorespiratory pathway to the two-carbon branch by converting serine into 372 hydroxypyruvate (Fig. 3; Bauwe et al., 2010). The glycine produced is subsequently 373 exported from the peroxisome and taken up by mitochondria. So far, no transporters or 374 channels facilitating the exchange of photorespiratory metabolites between the 375 peroxisomes and the cytosol, or the mitochondrial glycine import and serine export, 376 have been identified (Eisenhut et al., 2013). In the mitochondria glycine is 377 decarboxylated (the source of 'photorespiration') by the multi-enzyme glycine 378 decarboxylase complex (GDC) containing the four cooperating enzymes P-, H-, T-, and L-379 protein (Douce et al., 2001). This step catalyzes the conversion of the co-factor 380 tetrahydrofolate (THF) to 5,10-methylene-THF (CH₂-THF), which acts as the leaf's 381 currency for activated one-carbon (C₁) units. As a side product, NH₃ is released and 382 NADH generated. CH₂-THF then reacts with a second glycine to form serine in a reaction 383 catalyzed by serine hydroxymethyltransferase 1 (SHMT1). Because the activity of GDC is 384 higher than that of SHMT1, CH₂-THF accumulates in the mitochondria relative to THF 385 (Rebeille et al., 1994).

Photorespiratory serine is shuttled back to the peroxisome, where SGAT facilitates the transfer of the amino group to glyoxylate. The resulting hydroxypyruvate is converted to glycerate under the consumption of NADH. This happens either in the peroxisome, facilitated by hydroxypyruvate reductase (HPR1), or in the cytosol by a second hydroxypyruvate reductase (HPR2; Timm et al., 2008). A third enzyme, HPR3, can also react with glyoxylate to form glycolate and operates in the chloroplast (Timm et al., 2011). While the bulk of the flux goes through HPR1 in the peroxisome, the enzymes

393 in the other compartments allow for a redirection of the flux depending on the 394 availability of NADH in the peroxisome (Timm et al., 2008). As the final step in the 395 photorespiratory pathway, the chloroplastic glycerate kinase (GLYK) phosphorylates 396 glycolate to 3-PGA, which can then enter the CBB cycle. In the case of the 397 photorespiratory pathway operating as a full cycle, three out of four 2-PG carbon atoms 398 will be returned to the CBB cycle and one will be released as CO₂. A detailed description 399 of the enzymatic steps involved in the photorespiratory pathway outlined above can be 400 found in Bauwe (2018).

401

402 Reassimilation of NH3

403

404 Glycine decarboxylation in the mitochondria releases NH_3 as a byproduct (Fig. 3). Plants 405 have evolved an efficient mechanism that recaptures and recycles photorespiratory 406 ammonia and it has been estimated that less than 1% is lost to the atmosphere in the 407 process (Mattsson and Schjoerring, 1996). The reassimilation of ammonia is facilitated 408 by two enzymes in the chloroplast, glutamine synthetase (GS2) and ferredoxin-409 dependent glutamine:oxoglutarate aminotransferase (GOGAT; Coschigano et al., 1998). 410 GS2 converts ammonia and glutamate to glutamine in an ATP-consuming process (Fig. 411 3). Glutamine then donates an amino group to 2-oxoglutarate (2-OG) to form glutamate 412 in a reaction catalyzed by GOGAT. The glutamate is subsequently transported to the peroxisome, where it is used by GGAT to convert glyoxylate to glycine. The product of 413 414 this reaction, 2-OG, is returned to the chloroplast to close the cycle.

415

416 Interaction with other metabolic pathways

417

The photorespiratory pathway is essential for all oxygenic phototrophs as a way to 418 419 metabolize 2-PG and salvage the majority of its carbon. Its importance is demonstrated 420 when the pathway is disrupted by deletion of any of its enzymes, resulting in a 421 photorespiratory phenotype, which may even be lethal (summarized e.g. by Timm and 422 Bauwe, 2013; Eisenhut et al., 2019). The photorespiratory pathway, however, also has 423 other important functions owing to its central position within plant metabolism, and is 424 coupled to the nitrogen-, sulfur-, and C₁- metabolisms by supplying key metabolites and 425 coupled to the TCA cycle and respiration by changing the cell's redox and energy 426 balance (Abadie et al., 2017). For recent reviews on the metabolic integration of the 427 photorespiratory pathway see Hodges et al. (2016) and Obata et al. (2016).

428

429 **Photorespiration and nitrogen assimilation**

The photorespiratory pathway is not only linked to nitrogen assimilation via the reassimilation of photorespiratory ammonia through GS/GOGAT, but also through the reduction and assimilation of new nitrogen, most importantly NO_3^- (Bloom, 2015). Decreasing the flux through the photorespiratory pathway results in decreased rates of NO_3^- uptake and assimilation, demonstrating a clear link between *de novo* nitrogen assimilation and photorespiratory pathway is the main biosynthetic pathway for the 437 amino acids glycine and serine, which are used for many purposes in plant metabolism 438 other than regenerating 3-PGA, such as protein synthesis and as precursors for several 439 other amino acids and phospholipids (Ros et al., 2014). Amino acids produced via the photorespiratory pathway also have a role in stress mitigation as they are key 440 441 constituents of dehydrins, glutathione, and glycine betaine that increase tolerance to 442 desiccation and prevent damage from reactive oxygen species (Close, 1997; Sakamoto 443 and Murata, 2002; Layton et al., 2010; Noctor et al., 2012). If NO_{3⁻} is available to support 444 de novo nitrogen assimilation into glycine and serine, a considerable amount of these 445 amino acids can be diverted from the photorespiratory pathway for other uses, meaning 446 the pathway does not exhibit a fully cyclic nature (Abadie et al., 2016; Busch et al., 2018). Remarkably, because the diverted amino acids contain carbon in addition to 447 448 nitrogen, the carbon and nitrogen metabolism act synergistically, and this means that 449 photorespiration can increase the overall carbon uptake of a plant despite reducing the 450 efficiency of Rubisco carboxylation (Busch et al., 2018).

451

452 **Photorespiration and C1 metabolism**

The photorespiratory pathway also interacts with the C₁ metabolism as the main supply of activated C₁ units in the form of CH₂-THF (Li et al., 2003). CH₂-THF has numerous uses throughout the plant's metabolism, such as in the synthesis of nucleic acids, proteins, lipids, chlorophyll, pantothenate, and other methylated molecules (Cossins, 2000; Hanson and Roje, 2001; Gorelova et al., 2017). It is the precursor of several derivatives of THF that are interconverted between 10-formyl-THF (10-CHO-THF), 5,10-methenyl-

459 THF (5,10-CH⁺-THF), 5,10-methylene-THF (CH₂-THF), and 5-methyl-THF (5-CH₃-THF), 460 differing by their oxidation state (Fig. 4). C1 units are drawn from these pools for the 461 synthesis of purines, thymidylate, and pantothenate. The 5-CH₃-THF that is derived from 462 CH₂-THF in a reaction catalyzed by 5,10-methylene-THF reductase (MTHFR) can be used 463 to convert homocysteine to methionine. In addition to protein synthesis, methionine is 464 also involved in the production of S-adenosyl-methionine (SAM), which is used by 465 different methyltransferases (MT) for the methylation of DNA, RNA, proteins, 466 phospholipids, and other substrates (Crider et al., 2012). Both methionine and SAM are 467 assumed to be produced predominantly in the cytosol (Isegawa et al., 1993), supported 468 by the SHMT1-mediated conversion of photorespiratory serine to glycine. The C1 metabolism also plays a major role in the biosynthesis of many secondary products, 469 470 such as glycine betaine, nicotine, and lignin. It was estimated that the carbon demand in 471 the form of C₁ units for these secondary metabolites can be in the order of 2 mmol C₁ 472 units/g dry weight, or about 5% of the total assimilated carbon (Hanson and Roje, 2001).

473

474 Photorespiration and sulfur metabolism

The photorespiratory pathway further intersects with, and stimulates, sulfur metabolism (Abadie and Tcherkez, 2019). The synthesis of *O*-acetylserine by serine *O*acetyltransferase (SAT3) draws from the serine pool in the mitochondria. Reduced sulfur is then incorporated into *O*-acetylserine via *O*-acetylserine (thiol) lyase (OAS-TL) to form cysteine. Cysteine is the primary product of S-assimilation and is required for, among other things, methionine synthesis and glutathione metabolism (Rausch and Wachter,

481 2005). While the photorespiratory flux supporting this S-metabolism is fairly small 482 compared to that supporting the N- or C₁-metabolism, it should not be considered 483 negligible (Tcherkez and Tea, 2013).

484

485 **The stoichiometry of CO₂ release per oxygenation reaction**

486

The way photorespiration is embedded with other metabolic pathways shows that 487 numerous biochemical processes rely on the supply of metabolites from the 488 489 photorespiratory pathway. It is therefore likely that a sizeable proportion of 490 photorespiratory carbon leaves the pathway in the form of glycine, serine, and CH₂-THF 491 and does not get recycled back to 3-PGA. In support of this, the release of CO_2 per 492 oxygenation reaction (|) was shown to be variable and not fixed at 0.5 (Hanson and Peterson, 1985, 1986). In their early attempt to measure the stoichiometry of 493 494 photorespiratory CO₂ release per oxygenation reaction *in vivo* they determined values 495 ranging from 0.30 to 0.84, depending on environmental conditions such as temperature 496 and light intensity. Since then, other studies have reported a departure of 1 from 0.5 in 497 mutants that had an impairment in the photorespiratory pathway, such as plants lacking 498 the peroxisomal malate dehydrogenase (PMDH; Cousins et al., 2008), HPR1 (Cousins et 499 al., 2011; Timm et al., 2011), or the thioredoxins THX*h2* or THX*o1* (da Fonseca-Pereira et 500 al., 2019; Reinholdt et al., 2019), and in WT tobacco, wheat, soybean, and Arabidopsis 501 (Walker and Cousins, 2013; Walker et al., 2017). A value of | lower than 0.5 would be 502 expected if carbon is diverted from the photorespiratory pathway as glycine (Busch et

503 al., 2018). In contrast, the export in the form of CH₂-THF would increase this value 504 towards | = 1, because every carbon exported as CH₂-THF releases one carbon as CO₂ in 505 its production by GDC (see Box 2). Based on this, one might expect values of | that are 506 lower than 0.5 in plants that draw more carbon from the photorespiratory pathway in 507 the form of glycine, and values greater than 0.5 in plants that use large amounts of CH₂-508 THF to synthesize metabolites such as lignin or nicotine. Related to this, Walker et al. 509 (2017) reported that the value of | increases with temperature much more in tobacco 510 than in wheat and soybean. Interestingly, this increase in | corresponds well with an 511 increase in nicotine biosynthesis in tobacco plants exposed to high temperatures (Chen 512 et al., 2016). While the reasons for changes in | in vivo are mostly speculative at the 513 moment, further research on the extent of use of photorespiratory carbon for other 514 metabolic processes will undoubtedly lead to significant advances in our understanding 515 of the costs and benefits of photorespiration.

516

517 **Costs vs. benefits of photorespiration**

518

The interactions of the photorespiratory pathway with other metabolic pathways that draw from photorespiratory metabolites shine a light on which aspects of photorespiration, if any, should be considered wasteful. As outlined above, oxygenation itself is not wasteful *per se* and can provide substantial benefits towards maintaining the redox homeostasis of the cell. The release of photorespiratory CO₂ by GDC should also not be considered a wasteful process as such, as long as it is related to producing

525 metabolites that are needed elsewhere in metabolism, such as glycine, serine, or CH₂-526 THF. Producing these compounds independently of the photorespiratory pathway would 527 also necessitate reducing equivalents and ATP of similar magnitude – or potentially 528 more - than when going via the photorespiratory pathway. It would also require a 529 steady supply of C_1 compounds that have to be generated with an associated CO_2 530 release. Any cost/benefit analysis therefore has to include an analysis of the possible 531 alternatives. With this in mind, the only portion of photorespiration that we may want 532 to consider 'wasteful' is the flux of 2-PG that actually makes it back to the CBB cycle as 533 3-PGA, as the 25% of carbon lost along the way is not compensated for by other 534 processes (Fig. 3, Box 2). While this 'wasteful' proportion of 2-PG may comprise most of 535 the flux coming from Rubisco's oxygenation reaction under some conditions, such as 536 high temperatures or low CO_2 supply to the chloroplast, it potentially makes up only a 537 small part under other conditions. I am not aware of any direct measurements of 538 photorespiratory 3-PGA production relative to 2-PG synthesis, i.e. the effective activities of GLYK relative to PGLP1, that would be useful to evaluate how much of the 539 540 photorespiratory carbon is put to good use. Indirect evidence that photorespiration is 541 not all wasteful, however, comes from photorespiratory mutant studies. As discussed 542 above, values of | deviating from 0.5 have been previously observed experimentally 543 (Hanson and Peterson, 1985, 1986; Cousins et al., 2008; Cousins et al., 2011; Timm et 544 al., 2011; Walker and Cousins, 2013; da Fonseca-Pereira et al., 2019), which would be expected if carbon is exported from the photorespiratory pathway. These observations 545 546 hint at that an important role of the photorespiratory pathway is to supply the demand

547 for metabolites for other processes and that it acts as an open pathway rather than a 548 closed cycle when rates of oxygenation are not exceeding this demand. Future studies 549 that aim at quantifying carbon export from the photorespiratory pathway could provide 550 new insights into how leaky the pathway is under varying environments.

551 The interactions of the photorespiratory with other metabolic pathways, as well 552 as the impact that leaf anatomy and physiology have on determining the net effect of 553 photorespiration on carbon balance, make it difficult to assess the impact of these 554 aspects individually on plant performance (see Box 3 for techniques that may be used to 555 quantify photorespiratory carbon fluxes at different points along the pathway). We can, 556 however, gauge the overall short-term effect of photorespiration on carbon uptake, 557 ignoring potential effects due to long-term acclimation. The rate of oxygenation can be 558 instantaneously decreased by experimentally decreasing O (see Eqn. (3)). This allows us 559 to compare A as an integrative parameter for the net cost of photorespiration on CO₂ 560 uptake under conditions with and without photorespiration. Despite a substantial 561 proportion of Rubisco activity being used to support the oxygenation reaction, the net 562 effect on A is much smaller for a wide range of environmental conditions (Fig. 5). 563 Especially at C_a of ambient or higher concentrations, the net effect of photorespiration is 564 negligible or even positive. Similarly, at temperatures below about 20°C 565 photorespiration has little or no negative consequences on A in the example shown in 566 Fig. 5. In contrast, photorespiration quickly becomes disadvantageous as leaf 567 temperatures rise above 25°C. Based on these examples, photorespiration appears to be beneficial for the overall carbon uptake for a V_0/V_c of up to approximately 0.25. 568

569 Photorespiration has further benefits that go beyond the carbon balance of the 570 plant, e.g. due to its contribution to maintaining the redox homeostasis of the cell under 571 abiotic stress conditions such as drought or chilling (Voss et al., 2013). Under certain 572 conditions NADPH and ATP production by the photosynthetic light reactions may exceed 573 their consumption in the CBB cycle. This is likely the case during light induction of 574 photosynthesis under the fluctuating light environments that plants experience e.g. in 575 the understory. Under low light, Rubisco and other CBB cycle enzymes tend to be 576 deactivated and stomata to be relatively closed. If a leaf experiences a sudden increase 577 in light intensity, NADPH and ATP production is induced rapidly (Björkman and Demmig-578 Adams, 1995), while their consumption is restricted due to slow CBB cycle activation and 579 stomatal opening (Deans et al., 2019; Deans et al., 2019). Under these conditions, the 580 photosynthetic electron transport chain can become over-reduced, causing an increased 581 production of superoxide and other reactive oxygen species, which exacerbates the 582 potential for photodamage (Niyogi, 1999). Photorespiration provides an extra outlet for 583 NADPH and ATP, mitigating the negative effects of excessive light (Kozaki and Takeba, 584 1996; Wingler et al., 2000; Takahashi and Badger, 2011; Eisenhut et al., 2017). While this 585 might come at a carbon cost, the loss in A from photorespiration (DA) is small at least in 586 the case of low stomatal conductance (Box 1), seen e.g. during photosynthetic induction 587 or drought stress. Independent of the magnitude of the actual carbon cost, the energy 588 dissipation aspect of photorespiration increases the resilience of plants under adverse 589 conditions, such as under variable light environments or when limited water availability 590 causes stomata to close.

591 While photorespiration has certain benefits, it also has costs other than the 592 direct impact on the carbon balance. At a V_0/V_c of 0.33 (an approximate ratio under 593 normal growing conditions, see Fig. 5), one quarter of the nitrogen investment in 594 Rubisco supports the oxygenation reaction, which negatively impacts the photosynthetic 595 nitrogen use efficiency (PNUE) of C_3 plants. Due to higher CO_2 concentrations around 596 Rubisco C₄ plants have much lower rates of oxygenation, which allows them to compromise their Rubisco's $S_{c/o}$ for a higher k_{cat}^c . Thus their nitrogen investment in 597 598 Rubisco (and other enzymes in the photorespiratory pathway) is much lower than that 599 of C₃ plants, increasing their PNUE (Rotundo and Cipriotti, 2017). It has been shown that 600 an efficient use of nitrogen in C₄ photosynthesis lessens nitrogen cost constraints on 601 molecular sequence evolution (Kelly, 2018). Photorespiration therefore slows both the 602 rate of speciation and extinction in C_3 plants as compared to C_4 plants. Thus, the C_4 603 photosynthetic pathway may be just as much an adaptation to make the most of the 604 available nitrogen as it is to increase carbon uptake of the plant.

605

606 How have plants dealt with photorespiration evolutionarily?

607

Despite the positive side effects of photorespiration, certain environmental conditions, specifically low CO₂ concentrations, higher temperatures, and conditions inducing stomatal closure, will increase Rubisco oxygenation beyond a flux beneficial for overall plant performance. Plants have evolved several strategies to limit photorespiratory carbon loss, and species with mechanisms that counter photorespiration dominate

environments that are particularly prone to Rubisco oxygenation. It is assumed that a gradual decrease in the atmospheric $CO_2:O_2$ ratio throughout Earth's history and the associated increase of photorespiration at the cost of carboxylation prompted an adaptation response to these conditions (Moroney et al., 2013). The mechanisms that many plant lineages have evolved can be categorized as either minimizing the rate of oxygenation, resulting in relatively higher carboxylation rates, or minimizing the loss of photorespiratory CO_2 downstream.

620

621 *Minimizing the rate of oxygenation*

622 The first category includes the carbon concentrating mechanisms (CCMs) of C₄ plants 623 (evolved ~30 Ma; Christin et al., 2011), plants operating a crassulacean acid metabolism 624 (CAM), and the carboxysomes and pyrenoids found in many cyanobacteria and algae, 625 respectively (evolved ~350 Ma; Badger et al., 2002). The common principle by which 626 these CCMs operate includes biochemical and anatomical changes that allow the 627 concentration of CO₂ around Rubisco above ambient levels. This not only decreases the 628 oxygenation rate of Rubisco, but also increases Rubisco's carboxylation rate due to its 629 dependence on the absolute CO₂ concentration following Michaelis-Menten kinetics.

In the C₄ photosynthetic pathway the initial fixation of CO₂ is accomplished in the mesophyll cells by the enzyme phosphoenolpyruvate carboxylase (PEPC) producing the C₄ acid oxaloacetate (OAA). OAA is then converted to malate (or aspartate in some variants of the pathway), which is transported to the bundle sheath cells where Rubisco is located. There the C₄ acid is decarboxylated, producing pyruvate and CO₂, which

635 increases the CO₂ concentration around Rubisco several-fold (Langdale, 2011). This 636 biochemical pathway is usually accompanied by a C₄ Kranz leaf anatomy, which 637 efficiently manages the separation of the C₄- and C₃-pathways (Edwards and 638 Voznesenskaya, 2011). Although the interplay between changes in biochemistry and 639 anatomy is very complex, C₄ photosynthesis is a highly convergent trait that has evolved 640 at least 66 times independently, demonstrating its effectiveness for reducing 641 photorespiration (Sage et al., 2011; Sage et al., 2012). The CAM pathway has similar 642 features to the C_4 pathway, but with a temporal rather than spatial separation of C_3 and 643 C_4 metabolisms (Dodd et al., 2002). In CAM plants CO_2 is initially fixed at night into OAA 644 by PEPC, which is then converted to malate. Malate is stored in the vacuole until 645 daytime, when the conversion back to CO_2 and pyruvate occurs. During the day, the 646 plant's stomata remain closed, resulting in a similar increase in CO₂ concentration 647 around Rubisco as in the bundle sheath cells of C₄ plants. Because the stomata are 648 closed during mid-day when potential rates of transpiration are large, CAM plants can 649 achieve high water-use efficiencies (Szarek and Ting, 1975).

650 CO₂ diffusion in water is several orders of magnitude slower than in air, 651 restricting the ability of plants to access CO₂ for photosynthesis. Aquatic photosynthetic 652 organisms therefore frequently contain CCMs based on encapsulating Rubisco in 653 organelles that restrict outward CO₂ diffusion by a protein shell (in cyanobacterial 654 carboxysomes; Rae et al., 2013) or a starch sheath that may be supplemented by an 655 additional layer of proteins (in algal pyrenoids; Ramazanov et al., 1994). In both cases, 656 CO₂ is converted to bicarbonate in the cytosol before being transported into the

657 carboxysome or pyrenoid, where it is converted back to CO_2 by the enzyme carbonic 658 anhydrase. This results in an increase in CO_2 concentration around Rubisco, limiting the 659 oxygenation of RuBP.

Despite the existence of a CCM, all these photosynthetic types possess, and 660 require, a fully functioning photorespiratory pathway, though operating at lower fluxes 661 662 due to decreased Rubisco oxygenation rates that come along with an increased CO₂ 663 concentration around Rubisco (Eisenhut et al., 2008; Zelitch et al., 2009; Levey et al., 664 2019). Here, the metabolic demand for glycine and serine may at least partially be met 665 through other metabolic pathways, such as the phosphorylated pathway (Igamberdiev 666 and Kleczkowski, 2018). The essential nature of the photorespiratory pathway in C4 667 plants, however, might point towards its contribution to providing metabolites for other 668 pathways also in C₄ plants. In any case, increasing the CO₂ concentration inside the cell 669 relaxes the need for a highly substrate-specific Rubisco. Organisms with a CCM usually 670 express a Rubisco that trades off an increased k_{cat}^{c} for a decreased $S_{c/o}$ (Badger et al., 671 1998; Sharwood et al., 2016; Heureux et al., 2017; Sharwood, 2017). Non-CCM ways to reduce Rubisco oxygenation include increasing $S_{c/o}$ by lowering the leaf temperature, 672 673 which can be achieved by decreasing the absorbance of solar radiation or increasing 674 transpiration (Sage, 2013).

675

676 Minimizing the loss of photorespiratory carbon

The second category, minimizing the loss of photorespiratory carbon downstream of the production of 2-PG, is a much more boutique approach that has not been as widely

679 adopted in nature. Considered an evolutionary intermediate condition between C₃ and 680 C₄ photosynthesis, some plant species shuttle photorespiratory glycine from the 681 mesophyll to the bundle sheath by restricting GDC to the mitochondria of the bundle sheath cells (Sage et al., 2012). These mitochondria are positioned against the 682 683 centripetal wall, with chloroplasts covering the cell periphery towards the mesophyll 684 cells (Sage et al., 2013; Sage et al., 2014). This increases the probability of refixation of 685 the photorespiratory CO_2 , evidenced by a decrease in the apparent CO_2 compensation 686 point (Sage et al., 2013; Khoshravesh et al., 2016), while at the same time increasing the 687 CO₂ concentration around the population of Rubisco in the bundle sheath. 688 Photorespiratory CO₂ scavenging via this glycine shuttle has been termed C₂ photosynthesis, which refers to the number of carbons in the shuttling metabolite 689 690 glycine (Vogan et al., 2007). The arrangement of chloroplast around the cell periphery as 691 barrier against outward CO₂ diffusion has been shown to be beneficial also in C₃ plants 692 (Busch et al., 2013).

Thus, many different approaches exist in nature to combat excessive rates of 693 694 photorespiration, with the CCMs being the most successful, both in terms of the number 695 of species employing them and their global biomass production. The C₄ photosynthetic 696 pathway stands out, occurring in 3% of the world's plant species and accounting for 23% 697 of the terrestrial primary productivity (Sage et al., 1999; Still et al., 2003). It is a curious 698 observation that the C_4 photosynthetic pathway is, with very few exceptions, limited to herbaceous species. This was hypothesized to be due to constraints associated with the 699 700 evolutionary history of the C₄ lineages (Sage and Sultmanis, 2016). However, a

701contributing factor could be related to the heavy reliance of the arborescent life form on702lignin as structural support. Lignin is a large sink for C_1 units (Hanson and Roje, 2001)703and one might speculate that this large demand for C_1 units of photorespiratory origin is704the reason why the C4 photosynthetic pathway is largely absent in trees.

705

706 Concluding remarks

707

708 In summary, predicting the net effect of photorespiration on the CO_2 uptake of plants 709 requires knowledge of the anatomical and physiological properties of the leaf 710 influencing CO₂ diffusion, the kinetic properties of the CO₂-fixing enzyme Rubisco, and 711 the biochemistry of the photorespiratory pathway and how it is connected to other 712 metabolic processes. Each of these aspects influences the rate of photorespiration, 713 resulting in the fact that knowledge of the photorespiratory CO₂ release alone is not 714 sufficient to estimate the carbon cost of photorespiration. In particular, CO₂ diffusive 715 resistances have a large impact on the carbon balance of the photorespiratory pathway. 716 The price a plant has to pay in terms of forgone carbon assimilation is not equal to the 717 carbon lost from photorespiration or the additional carbon that could be assimilated if 718 the RuBP oxygenation reaction were to be replaced by its carboxylation. The actual 719 carbon costs of photorespiration that come into play when V_0/V_c exceeds ~0.25 should 720 be evaluated against the benefits of providing protection against photodamage and 721 helping to balance the ATP to NADPH ratio of the cell, increasing the overall resilience of 722 the plant operating in a variable environment.

723 Given that the photorespiratory pathway is so well integrated within the plant's 724 metabolism, it may be instructive to view its main purpose as a biosynthetic pathway 725 using a substrate that is available in excess, rather than a pathway for the detoxification 726 of 2-PG. Rubisco can then be considered a dual-functioning enzyme that does not only 727 facilitate the production of primary carbohydrates, but is also the first step in the 728 biosynthesis of several amino acids and compounds relying on the C₁ metabolism. An 729 integrated view of photorespiration within the context of the leaf's biochemical and 730 diffusional properties will ultimately allow us to better target our research efforts 731 towards modifying photorespiration in pursuit of increasing crop productivity.

732

733

734 Acknowledgements

This work was supported by the Australian Government through the Australian Research Council Centre of Excellence for Translational Photosynthesis. I thank Graham Farquhar from The Australian National University for critical feedback on a draft of this manuscript.

739

740 **Conflict of interest**

741 The author declares no conflict of interest.

742 Box 1: The effect of diffusion properties on forgone carbon uptake due to

743 photorespiration

744

745

The effect of CO₂ diffusion on carbon uptake forgone due to photorespiration. Panel (a) shows a graphical representation of CO₂ assimilation rates with and without photorespiration. In the simplest case, CO₂ uptake is limited by the rate of Rubisco carboxylation (see Box 2 for the treatment of other biochemical limitations). Then, *A* can be modelled according to Farguhar et al. (1980) as

751
$$A = \frac{V_{cmax} \left(C_c - G^* \right)}{C_c + K_c \left(1 + O/K_o \right)} - R_d , \qquad (11)$$

where V_{cmax} is the maximum carboxylation rate of Rubisco, K_c and K_o the Michaelis-Menten constants for CO₂ and O₂. *O* and C_c are the oxygen and CO₂ concentrations at the site of carboxylation, R_d is the rate of mitochondrial respiration, and Γ^* is the CO₂ 755 compensation point in the absence of R_{d} , as defined by Eqn. (8). The red line 756 corresponds to A when photorespiration is present, modeled with Eqn. (11) and V_{cmax} = 80 μ mol m⁻² s⁻¹, K_c = 272 μ mol mol⁻¹, K_o = 166 mmol mol⁻¹ and O = 210 mmol mol⁻¹. Here, 757 758 R_d was assumed to be zero for simplicity. V_c in response to C_c when photorespiration is 759 present is displayed by a yellow line. Because we ignore R_d in this example, the 760 difference between V_c and A at a given C_c is then equal to F (Eqn. (7)). We can model A 761 for the case of no photorespiration occurring ($A_{no PR}$; blue line), which is mathematically equivalent to setting O in Eqn. (11) to zero. Note that this also results in Γ^* being zero 762 763 (Eqn. (8)). This has the effect of allowing Rubisco to put all of its activity towards the 764 carboxylation reaction (i.e. $A_{no PR} = V_c$, as $R_d = 0$). At any given C_c , A_{PR} is lower than $A_{no PR}$ by $DA_{w/o dt x PR}$, which is the added effect of Rubisco forgoing carboxylation activity in 765 766 favor of oxygenation of RuBP, and the loss of carbon from photorespiration. Here, $DA_{w/o \text{ gt x PR}}$ represents the net effect of the Rubisco oxygenation reaction, if diffusion 767 768 resistances are ignored.

The line originating at $C_c = 400 \ \mu \text{mol mol}^{-1}$ and intercepting the A/C_c curve at the chloroplastic CO₂ concentration corresponding to an ambient C_a of 400 μ mol mol⁻¹ is called the supply function. It represents the decrease in C_c that will occur due to the assimilation of CO₂ by Rubisco (indicated by the drop in CO₂ concentration C_a - C_c (PR)). From Eqn. (6) it follows that the slope of the supply function is $-\frac{1}{r_t}$ (=- g_t). This means that the C_c intersect of the supply function with the A/C_c curve decreases as r_t increases. Assuming r_t is the same under non-photorespiratory conditions, the supply function intersects with the $A_{no PR}$ line at a lower C_c , because the larger CO₂ assimilation rate causes the CO₂ draw-down (C_a - C_c (no PR)) to be larger. Therefore, the net effect of the Rubisco oxygenation reaction being present, if diffusion resistances are considered, is equal to DA. DA is generally less than $DA_{w/o gt \times PR}$, emphasizing that diffusion resistances moderate the negative impact of photorespiration on A.

781 In a natural environment, C_a can be considered mostly constant, while C_c will 782 vary on short timescales with changes in both CO₂ diffusion properties and the capacity 783 to fix CO₂. Panel (b) displays F and forgone rates of CO₂ assimilation with (DA) and without ($DA_{\!_{w\!/o\,gt\,\times\,PR}}$) considering diffusion resistances as a function of the total 784 785 conductance to CO₂ diffusion (g_t) at C_a = 400 µmol mol⁻¹. Here, g_t goes towards zero as 786 stomata close – this is equivalent with the supply function in (a) becoming shallower – 787 but it will also vary with varying mesophyll conductance. As stomata close, and thus $C_{\rm c}$ 788 decreases, F increases moderately. In contrast, DA decreases as q_t decreases, and 789 reaches zero when the stomata are fully closed. This underscores, maybe somewhat 790 counterintuitively, that the rate of photorespiratory CO₂ release is not a good measure 791 for the impact that photorespiration has on net CO₂ uptake. Diffusive resistances have a 792 big impact on the absolute amount of carbon uptake forgone due to photorespiratory 793 processes, as demonstrated by $DA_{w/o \text{ at x PR}}$ being considerably larger than DA.

795 **Box 2: Accounting for carbon export from the photorespiratory pathway**

796 when modelling CO₂ uptake

797 Export of carbon from the photorespiratory pathway will influence how much carbon is 798 assimilated by the plant overall (Busch et al., 2018). In addition, in the case of export of 799 the nitrogen containing photorespiratory metabolites glycine and serine, it will also 800 affect the nitrogen metabolism. Busch et al. (2018) have developed a model that 801 describes net CO₂ uptake when considering carbon export from the photorespiratory 802 pathway in the form of glycine and serine. Here, I provide a more generalized 803 description that also accounts for the export of carbon through the C₁ metabolism (see 804 Fig. 3).

Following Busch et al. (2018) we denote $a_{\rm g}$ the proportion of 2-PG carbon that 805 is exported from the photorespiratory pathway as glycine and a_s the proportion 806 exported as serine. Similarly, we define $a_{ au}$ as the proportion of 2-PG carbon exported as 807 CH2-THF. The overall proportion of 2-PG carbon that is exported cannot exceed 1, and 808 therefore the relation $0 \pm a_{g} + 2a_{\tau} + \frac{4}{3}a_{s} \pm 1$ must hold. Adding up the electron 809 810 requirement for carbon reduction, photorespiration, and nitrate reduction necessary to 811 supply the nitrogen in the exported glycine and serine (Fig. S1, see Supporting 812 Information), the actual photosynthetic electron transport rate can be calculated as

813
$$J_{a} = \left(4 + \left(4 + 8a_{g} - 4a_{\tau} + 4a_{s}\right)F\right)V_{c}, \qquad (12)$$

814 where \vdash is defined as in Eqn. (3). Eqn. (12) indicates that J_a is both dependent on \vdash as 815 well as on the carbon exported from the photorespiratory pathway. The same is true for the rate of ATP consumption, which is equal to $(3 + (3.5 - 0.5a_G - a_T - 2/3a_S)F)V_c$. If glycine is removed from the photorespiratory pathway, not only is the rate of electron transport used for nitrogen assimilation affected, but it also decreases the amount of CO₂ released per oxygenation reaction (1). In contrast, the removal of CH₂-THF from the pathway results in an increase in 1, because for every carbon removed as CH₂-THF one carbon is lost from glycine decarboxylation as CO₂. The net CO₂ assimilation rate given by Eqn. (7) therefore needs to be parameterized with

823
$$I = 0.5(1 - a_g) + a_{\tau}.$$
 (13)

Equation (13) demonstrates that | can be less or greater than 0.5, subject to the magnitudes of a_{g} and a_{τ} . Thus, *A* is described by

826
$$A = V_c - (0.5(1 - a_G) + a_T)V_o - R_d.$$
(14)

Depending on the biochemical process limiting CO_2 assimilation, *A* can be described with the minimum of the three rates W_c , W_j , and W_p (Farquhar et al., 1980), which are the carboxylation rates that can be supported under a Rubisco, electron transport or triose phosphate utilization (TPU) limitation, respectively, so that

831
$$\boldsymbol{A} = \min\left\{\boldsymbol{W}_{c}, \boldsymbol{W}_{j}, \boldsymbol{W}_{p}\right\} \left(1 - \frac{\boldsymbol{G}^{*}}{\boldsymbol{C}_{c}}\right) - \boldsymbol{R}_{d}$$
(15)

where Γ^* is defined as in Eqn. (8). It becomes evident that Γ^* varies with a_g and a_{τ} . When RuBP supply is not limiting the rate of Rubisco carboxylation, W_c is the limiting factor described by

835
$$W_{c} = \frac{V_{cmax}C_{c}}{C_{c} + K_{c}\left(1 + O/K_{o}\right)}$$
 (16)

836 If the electron transport rate (J) that drives the regeneration of RuBP is the process that
837 limits A, W_j is described by

838
$$W_{j} = \frac{J}{4 + (4 + 8a_{g} - 4a_{\tau} + 4a_{s})F}$$
(17)

Finally, at high CO₂ concentrations RuBP regeneration may be controlled by the capacity for starch and sucrose synthesis from triose phosphates to regenerate inorganic phosphate for sustained ATP synthesis (Sharkey, 1985; Busch and Sage, 2017). If TPU is limiting the rate of carboxylation, we can write W_p as

843
$$W_{p} = \frac{3T_{p}}{1 - 0.5(1 + 3a_{g} + 6a_{\tau} + 4a_{s})F}, \qquad (18)$$

844 where T_p is the rate of triose phosphate utilization of the plant. In Eqn. (18) the 845 denominator corresponds to the flux of carbon (scaled by V_c) exported as triose-846 phosphates. While an attempts have been made to estimate the values of a_g and a_s 847 (Abadie et al., 2016; Busch et al., 2018), so far there is no information available as to the 848 value of a_{τ} .

Because carbon can leave the photorespiratory pathway in several locations, the flux of photorespiratory carbon that makes it back to the CBB cycle as 3-PGA is less than half the rate of RuBP oxygenation. We can quantify this flux mathematically, giving a rough indication of the degree of how 'wasteful' photorespiration is in terms of carbon (this, however, ignores the effect of CO₂ diffusion and other beneficial aspects of photorespiration). This gives a flux of photorespiratory CO₂ release that is not linked to supplying metabolites to other metabolic pathways of

856 Carbon 'wasted' by photorespiration =
$$\left(0.5 - 0.5a_{g} - a_{\tau} - \frac{2}{3}a_{s}\right)F$$
. (19)

Therefore, carbon is not 'wasted' by photorespiration if V_0 does not exceed the metabolic demand for glycine, serine and CH₂-THF, which is the case for

859
$$a_{g} + 2a_{\tau} + \frac{4}{3}a_{s} = 1.$$

860

861

862 **Box 3: Measuring photorespiration**

863 As outlined in the main text, photorespiration is a multifaceted pathway that is tightly tied in with other metabolic pathways that draw metabolites from the photorespiratory 864 865 pathway. As a consequence, the carbon flux through the photorespiratory pathway can 866 change along the pathway and therefore may not be accurately represented by the oxygenation reaction of Rubisco or the CO₂ release from GDC. However, much could be 867 learned about the nature of photorespiration and its costs and benefits by combining 868 869 measurements of fluxes through different parts of the pathway. A range of techniques 870 suitable to probe different aspects of photorespiration has been discussed previously 871 (Sharkey, 1988; Busch, 2013). Other techniques that can be employed in combination to 872 study the interactions of photorespiration with other biochemical pathways are outlined 873 in the following.

874

875 Estimation of the rate of Rubisco oxygenation

876 The rate of Rubisco oxygenation, which is the main source of 2-PG, is largely determined 877 by Rubisco kinetic properties and the CO₂ and O₂ concentrations at the site of 878 carboxylation. While Rubisco kinetic properties can be determined in vitro, C_c can be 879 estimated in vivo from gas exchange analysis that is coupled with measurements of 880 carbon isotope discrimination (Farguhar et al., 1982; Evans et al., 1986; Busch et al., 881 Accepted) or, with limitations, chlorophyll fluorescence (Epron et al., 1995; Warren, 882 2006). An alternative strategy for estimating the rate of Rubisco oxygenation involves 883 13 CO₂ labeling followed by computational flux estimation (Ma et al., 2014, 2017). This 884 "Isotopically Nonstationary Metabolic Flux Analysis" (INST-MFA) has the benefit of not 885 requiring kinetic constants of the involved enzymes and therefore avoids some of the 886 assumptions inherent to the other methods.

887

888 Estimation of CO₂ release from GDC

Carbon isotopes can be used in bulk to separate gross fluxes of CO_2 entering the leaf from (photo)respired CO_2 exiting the leaf. The efflux of photorespiratory ${}^{12}CO_2$ can be measured in a ${}^{13}CO_2$ atmosphere (Busch et al., 2013; Busch et al., 2017). A related method uses ${}^{14}CO_2$ to separate the source pools of photorespiration into primary and stored photosynthates, allowing further details of photorespiratory CO_2 release to be obtained (Pärnik and Keerberg, 1995, 2007).

895

896 *Estimation of glycine export from the photorespiratory pathway*

While the rate of glycine synthesis is a useful parameter to know, it does not inform us per se how much photorespiratory carbon leaves the photorespiratory pathway as glycine. Abadie et al. (2016) devised a technique based on isotope labelling and metabolome kinetics coupled with isotope ratio mass spectrometry and nuclear magnetic resonance (NMR) analyses to estimate how much photorespiratory glycine accumulates and is not converted to serine. This approach may be used to determine the value of |.

904

905 **Estimation of the flux through the C1 metabolism**

906 Our knowledge about the magnitude of the flux through the C₁ metabolism to date is 907 sparse. Attempts to measure the one-carbon fluxes associated with the 908 photorespiratory metabolism in plants have been made using NMR techniques, and it 909 has been shown that the C₁ units needed for serine synthesis originate mostly from 910 photorespiratory carbon (Prabhu et al., 1996). Less is known about the fate of the CH₂-911 THF produced by GDC. One of the sinks for C₁ units from the folate cycle is the synthesis 912 of methionine. The flux of ¹³C-label to methionine synthesis has been estimated with a 913 similar NMR approach and been found to be scaled to net CO₂ assimilation (Gauthier et al., 2010; Abadie et al., 2017). Future studies are warranted to elucidate the overall 914 915 fluxes through the folate cycle.

916

References

n	1	ο
3	Т	0

919	Abadie C, Boex-Fontvieille ERA, Carroll AJ, Tcherkez G (2016) In vivo stoichiometry of
920	photorespiratory metabolism. Nature Plants 2: 15220
921	Abadie C, Carroll A, Tcherkez G (2017) Interactions between day respiration,
922	photorespiration, and N and S assimilation in leaves. In G Tcherkez, J Ghashghaie,
923	eds, Plant Respiration: Metabolic Fluxes and Carbon Balance. Springer
924	International Publishing, Cham, pp 1-18
925	Abadie C, Tcherkez G (2019) Plant sulphur metabolism is stimulated by
926	photorespiration. Communications Biology 2: 379
927	Anderson LE (1971) Chloroplast and cytoplasmic enzymes II. Pea leaf triose phosphate
928	isomerases. Biochimica et Biophysica Acta (BBA) - Enzymology 235: 237-244
929	Assmann SM (1993) Signal transduction in guard cells. Annual Review of Cell Biology 9:
930	345-375
931	Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD
932	(1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and
933	chloroplast-based CO ₂ -concentrating mechanisms in algae. Canadian Journal of
934	Botany 76: 1052-1071
935	Badger MR, Collatz GJ (1977) Studies on the kinetic mechanism of ribulose-1,5-
936	bisphosphate carboxylase and oxygenase reactions, with particular reference to
937	the effect of temperature on kinetic parameters. Carnegie Institution Year Book
938	76: 355-361
939	Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO ₂ concentrating
940	mechanisms in cyanobacteria. Functional Plant Biology 29: 161-173
941	Bar-On YM, Milo R (2019) The global mass and average rate of rubisco. Proceedings of
942	the National Academy of Sciences 116: 4738-4743
943	Bathellier C, Tcherkez G, Lorimer GH, Farquhar GD (2018) Rubisco isn't really so bad.
944	Plant, Cell & Environment 41: 705-716
945	Bauwe H (2018) Photorespiration – damage repair pathway of the Calvin–Benson cycle.
946	In Annual Plant Reviews online, Vol 50, pp 293-342
947	Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and
948	origin. Trends in Plant Science 15: 330-336
949	Berry JA, Osmond CB, Lorimer GH (1978) Fixation of ¹⁸ O ₂ during photorespiration. Plant
950	Physiology 62: 954-967
951	Björkman O, Demmig-Adams B (1995) Regulation of photosynthetic light energy
952	capture, conversion, and dissipation in leaves of higher plants. In E-D Schulze,
953	MM Caldwell, eds, Ecophysiology of Photosynthesis. Springer Berlin Heidelberg,
954	Berlin, Heidelberg, pp 17-47
955	Bloom AJ (2015) Photorespiration and nitrate assimilation: a major intersection
956	between plant carbon and nitrogen. Photosynthesis Research 123: 117-128

957	Bloom AJ, Asensio JSR, Randall L, Rachmilevitch S, Cousins AB, Carlisle EA (2012) CO ₂
958	enrichment inhibits shoot nitrate assimilation in C ₃ but not C ₄ plants and slows
959	growth under nitrate in C₃ plants. Ecology 93: 355-367
960	Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits
961	nitrate assimilation in wheat and Arabidopsis. Science 328: 899-903
962	Bloom AJ, Kameritsch P (2017) Relative association of Rubisco with manganese and
963	magnesium as a regulatory mechanism in plants. Physiologia Plantarum 161:
964	545-559
965	Bloom AJ, Lancaster KM (2018) Manganese binding to Rubisco could drive a
966	photorespiratory pathway that increases the energy efficiency of photosynthesis.
967	Nature Plants 4: 414-422
968	Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by
969	ribulose diphosphate carboxylase. Biochemical and Biophysical Research
970	Communications 45: 716-722
971	Buckley TN (2019) How do stomata respond to water status? New Phytologist 224: 21-
972	36
973	Busch FA (2013) Current methods for estimating the rate of photorespiration in leaves.
974	Plant Biology 15: 648-655
975	Busch FA (2014) Opinion: The red-light response of stomatal movement is sensed by the
976	redox state of the photosynthetic electron transport chain. Photosynthesis
977	Research 119: 131-140
978	Busch FA, Deans RM, Holloway-Phillips M-M (2017) Estimation of photorespiratory
979	fluxes by gas exchange. In AR Fernie, H Bauwe, APM Weber, eds,
980	Photorespiration. Methods in Molecular Biology, Vol 1653. Humana Press, New
981	York, NY, pp 1-15
982	Busch FA, Holloway-Phillips M-M, Stuart-Williams H, Farquhar GD (Accepted) Revisiting
983	carbon isotope discrimination in C_3 plants: Respiration rules when
984	photosynthesis is low. Nature Plants
985	Busch FA, Sage RF (2017) The sensitivity of photosynthesis to O ₂ and CO ₂ concentration
986	identifies strong Rubisco control above the thermal optimum. New Phytologist
987	213: 1036-1051
988	Busch FA, Sage RF, Farquhar GD (2018) Plants increase CO ₂ uptake by assimilating
989	nitrogen via the photorespiratory pathway. Nature Plants 4: 46-54
990	Busch FA, Sage TL, Cousins AB, Sage RF (2013) C ₃ plants enhance rates of
991	photosynthesis by reassimilating photorespired and respired CO ₂ . Plant, Cell &
992	Environment 36: 200-212
993	Chen X, Chen Q, Zhang X, Li R, Jia Y, Ef AA, Jia A, Hu L, Hu X (2016) Hydrogen sulfide
994	mediates nicotine biosynthesis in tobacco (<i>Nicotiana tabacum</i>) under high
995	temperature conditions. Plant Physiology and Biochemistry 104: 174-179
996	Cheng S-H, Moore Bd, Seemann JR (1998) Effects of short- and long-term elevated CO ₂
997	on the expression of ribulose-1,5-bisphosphate carboxylase/oxygenase genes
998	and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh.
999	Plant Physiology 116: 715-723

1000	Christin P-A, Osborne CP, Sage RF, Arakaki M, Edwards EJ (2011) C4 eudicots are not
1001	younger than C ₄ monocots. Journal of Experimental Botany 62: 3171-3181
1002	Close TJ (1997) Dehydrins: A commonalty in the response of plants to dehydration and
1003	low temperature. Physiologia Plantarum 100: 291-296
1004	Coschigano KT, Melo-Oliveira R, Lim J, Coruzzi GM (1998) Arabidopsis gls mutants and
1005	distinct Fd-GOGAT genes: implications for photorespiration and primary nitrogen
1006	assimilation. The Plant Cell 10: 741-752
1007	Cossins EA (2000) The fascinating world of folate and one-carbon metabolism. Botany
1008	78: 691
1009	Cousins AB, Pracharoenwattana I, Zhou W, Smith SM, Badger MR (2008) Peroxisomal
1010	malate dehydrogenase is not essential for photorespiration in Arabidopsis but its
1011	absence causes an increase in the stoichiometry of photorespiratory CO ₂ release.
1012	Plant Physiology 148: 786-795
1013	Cousins AB, Walker BJ, Pracharoenwattana I, Smith SM, Badger MR (2011) Peroxisomal
1014	hydroxypyruvate reductase is not essential for photorespiration in Arabidopsis
1015	but its absence causes an increase in the stoichiometry of photorespiratory CO ₂
1016	release. Photosynthesis Research 108: 91-100
1017	Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of
1018	molecular mechanisms and the evidence for folate's role. Advances in Nutrition
1019	3: 21-38
1020	da Fonseca-Pereira P, Souza PVL, Hou L-Y, Schwab S, Geigenberger P, Nunes-Nesi A,
1021	Timm S, Fernie AR, Thormählen I, Araújo WL, Daloso DM (2019) Thioredoxin h2
1022	contributes to the redox regulation of mitochondrial photorespiratory
1023	metabolism. Plant, Cell & Environment 43: 188-208
1024	Deans RM, Brodribb TJ, Busch FA, Farquhar GD (2019) Plant water-use strategy
1025	mediates stomatal effects on the light induction of photosynthesis. New
1026	Phytologist 222: 382-395
1027	Deans RM, Farquhar GD, Busch FA (2019) Estimating stomatal and biochemical
1028	limitations during photosynthetic induction. Plant, Cell & Environment 42: 3227-
1029	3240
1030	Dedonder A, Rethy R, Fredericq H, Van Montagu M, Krebbers E (1993) Arabidopsis rbcS
1031	genes are differentially regulated by light. Plant Physiology 101: 801-808
1032	Dodd AN, Borland AM, Haslam RP, Griffiths H, Maxwell K (2002) Crassulacean acid
1033	metabolism: plastic, fantastic. Journal of Experimental Botany 53: 569-580
1034	Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001) The glycine decarboxylase
1035	system: a fascinating complex. Trends in Plant Science 6: 167-176
1036	Earles JM, Buckley TN, Brodersen CR, Busch FA, Cano FJ, Choat B, Evans JR, Farquhar
1037	GD, Harwood R, Huynh M, John GP, Miller ML, Rockwell FE, Sack L, Scoffoni C,
1038	Struik PC, Wu A, Yin X, Barbour MM (2019) Embracing 3D complexity in leaf
1039	carbon-water exchange. Trends in Plant Science 24: 15-24
1040	Edwards GE, Voznesenskaya EV (2011) C ₄ photosynthesis: kranz forms and single-cell C ₄
1041	in terrestrial plants. <i>In</i> AS Raghavendra, RF Sage, eds, C ₄ photosynthesis and
1042	related CO ₂ concentrating mechanisms. Springer Netherlands, Dordrecht, pp 29-
1043	61

1044	Eilenberg H, Hanania U, Stein H, Zilberstein A (1998) Characterization of rbcS genes in
1045	the fern <i>Pteris vittata</i> and their photoregulation. Planta 206: 204-214
1046	Eisenhut M, Bräutigam A, Timm S, Florian A, Tohge T, Fernie AR, Bauwe H, Weber APM
1047	(2017) Photorespiration is crucial for dynamic response of photosynthetic
1048	metabolism and stomatal movement to altered CO ₂ availability. Molecular Plant
1049	10: 47-61
1050	Eisenhut M, Pick TR, Bordych C, Weber APM (2013) Towards closing the remaining gaps
1051	in photorespiration – the essential but unexplored role of transport proteins.
1052	Plant Biology 15: 676-685
1053	Eisenhut M, Roell M-S, Weber APM (2019) Mechanistic understanding of
1054	photorespiration paves the way to a new green revolution. New Phytologist 223:
1055	1762-1769
1056	Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The
1057	photorespiratory glycolate metabolism is essential for cyanobacteria and might
1058	have been conveyed endosymbiontically to plants. Proceedings of the National
1059	Academy of Sciences 105: 17199-17204
1060	Ellis RJ (1979) The most abundant protein in the world. Trends in Biochemical Sciences
1061	4: 241-244
1062	Ellsworth PV, Ellsworth PZ, Koteyeva NK, Cousins AB (2018) Cell wall properties in
1063	<i>Oryza sativa</i> influence mesophyll CO ₂ conductance. New Phytologist 219: 66-76
1064	Epron D, Godard D, Cornic G, Genty B (1995) Limitation of net CO ₂ assimilation rate by
1065	internal resistances to CO ₂ transfer in the leaves of two tree species (<i>Fagus</i>
1066	sylvatica L and Castanea sativa Mill). Plant Cell and Environment 18: 43-51
1067	Evans JR, Clarke VC (2019) The nitrogen cost of photosynthesis. Journal of Experimental
1068	Botany 70: 7-15
1069	Evans JR, Sharkey TD, Berry JA, Farquhar GD (1986) Carbon isotope discrimination
1070	measured concurrently with gas-exchange to investigate CO ₂ diffusion in leaves
1071	of higher plants. Australian Journal of Plant Physiology 13: 281-292
1072	Farquhar GD, Busch FA (2017) Changes in the chloroplastic CO ₂ concentration explain
1073	much of the observed Kok effect: a model. New Phytologist 214 : 570-584
1074	Farquhar GD, O'Leary MH, Berry JA (1982) On the relationship between carbon isotope
1075	discrimination and the intercellular carbon dioxide concentration in leaves.
1076	Australian Journal of Plant Physiology 9: 121-137
1077	Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic
1078	CO_2 assimilation in leaves of C_3 species. Planta 149 : 78-90
1079	Flamholz Al, Prywes N, Moran U, Davidi D, Bar-On YM, Oltrogge LM, Alves R, Savage D,
1080	Milo R (2019) Revisiting trade-offs between Rubisco kinetic parameters.
1081	Biochemistry 58: 3365-3376
1082	Flugel F, Timm S, Arrivault S, Florian A, Stitt M, Fernie AR, Bauwe H (2017) The
1083	photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and
1084	starch accumulation in Arabidopsis. The Plant Cell 29: 2537-2551
1085	Galmes J, Hermida-Carrera C, Laanisto L, Niinemets U (2016) A compendium of
1086	temperature responses of Rubisco kinetic traits: variability among and within

1087 photosynthetic groups and impacts on photosynthesis modeling. Journal of 1088 Experimental Botany 67: 5067-5091 1089 Galmés J, Kapralov MV, Andralojc PJ, Conesa MÀ, Keys AJ, Parry MAJ, Flexas J (2014) 1090 Expanding knowledge of the Rubisco kinetics variability in plant species: 1091 environmental and evolutionary trends. Plant, Cell & Environment 37: 1989-2001 1092 Gauthier PPG, Bligny R, Gout E, Mahe A, Nogues S, Hodges M, Tcherkez GGB (2010) In 1093 folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is 1094 mostly independent from current CO₂ assimilation in illuminated leaves of 1095 Brassica napus. New Phytologist 185: 988-999 1096 Genkov T, Meyer M, Griffiths H, Spreitzer RJ (2010) Functional hybrid rubisco enzymes 1097 with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in Chlamydomonas. Journal of Biological Chemistry 285: 19833-19841 1098 1099 Gorelova V, Ambach L, Rébeillé F, Stove C, Van Der Straeten D (2017) Folates in plants: 1100 research advances and progress in crop biofortification. Frontiers in Chemistry 5: 1101 doi: 10.3389/fchem.2017.00021 1102 Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 52: 119-137 1103 Hanson KR, Peterson RB (1985) The stoichiometry of photorespiration during C₃-1104 1105 photosynthesis is not fixed: Evidence from combined physical and 1106 stereochemical methods. Archives of Biochemistry and Biophysics 237: 300-313 Hanson KR, Peterson RB (1986) Regulation of photorespiration in leaves: Evidence that 1107 1108 the fraction of ribulose bisphosphate oxygenated is conserved and stoichiometry 1109 fluctuates. Archives of Biochemistry and Biophysics 246: 332-346 1110 Hermida-Carrera C, Kapralov MV, Galmés J (2016) Rubisco catalytic properties and 1111 temperature response in crops. Plant Physiology 171: 2549-2561 1112 Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving 1113 environmental change. Nature 424: 901-908 1114 Heureux AMC, Young JN, Whitney SM, Eason-Hubbard MR, Lee RBY, Sharwood RE, 1115 Rickaby REM (2017) The role of Rubisco kinetics and pyrenoid morphology in 1116 shaping the CCM of haptophyte microalgae. Journal of Experimental Botany 68: 1117 3959-3969 1118 Hodges M, Dellero Y, Keech O, Betti M, Raghavendra AS, Sage R, Zhu X-G, Allen DK, 1119 Weber APM (2016) Perspectives for a better understanding of the metabolic 1120 integration of photorespiration within a complex plant primary metabolism 1121 network. Journal of Experimental Botany 67: 3015-3026 1122 Igamberdiev AU, Kleczkowski LA (2018) The glycerate and phosphorylated pathways of 1123 serine synthesis in plants: the branches of plant glycolysis linking carbon and nitrogen metabolism. Frontiers in Plant Science 9: doi: 10.3389/fpls.2018.00318 1124 1125 Isegawa Y, Watanabe F, Kitaoka S, Nakano Y (1993) Subcellular distribution of 1126 cobalamin-dependent methionine synthase in Euglena gracilis z. Phytochemistry 1127 **35:** 59-61 1128 Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H (2011) Functional 1129 incorporation of sorghum small subunit increases the catalytic turnover rate of 1130 Rubisco in transgenic rice. Plant Physiology **156**: 1603-1611

1131 Jordan DB, Ogren WL (1983) Species variation in kinetic properties of ribulose 1,5-1132 bisphosphate carboxylase/oxygenase. Archives of Biochemistry and Biophysics 1133 **227:** 425-433 1134 Kapralov MV, Filatov DA (2007) Widespread positive selection in the photosynthetic 1135 Rubisco enzyme. BMC Evolutionary Biology 7:73 1136 Kapralov MV, Kubien DS, Andersson I, Filatov DA (2010) Changes in Rubisco kinetics during the evolution of C₄ photosynthesis in *Flaveria* (Asteraceae) are associated 1137 1138 with positive selection on genes encoding the enzyme. Molecular Biology and 1139 Evolution 28: 1491-1503 1140 Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stäbler N, 1141 Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory 1142 bypass increases photosynthesis and biomass production in Arabidopsis thaliana. 1143 Nature Biotechnology 25: 593-599 1144 Kelly GJ, Latzko E (1976) Inhibition of spinach-leaf phosphofructokinase by 2-1145 phosphoglycollate. FEBS letters 68: 55-58 1146 Kelly S (2018) The amount of nitrogen used for photosynthesis modulates molecular 1147 evolution in plants. Molecular Biology and Evolution **35**: 1616-1625 1148 Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF, Ludwig M, Sage TL (2016) C₃-1149 C₄ intermediacy in grasses: organelle enrichment and distribution, glycine 1150 decarboxylase expression, and the rise of C₂ photosynthesis. Journal of 1151 Experimental Botany 67: 3065-3078 1152 Kozaki A, Takeba G (1996) Photorespiration protects C₃ plants from photooxidation. 1153 Nature **384:** 557-560 1154 Kramer DM, Evans JR (2011) The Importance of Energy Balance in Improving 1155 Photosynthetic Productivity. Plant Physiology 155: 70-78 1156 Laing WA, Ogren WL, Hageman RH (1974) Regulation of soybean net photosynthetic 1157 CO₂ fixation by the interaction of CO₂, O₂, and ribulose 1,5-diphosphate 1158 carboxylase. Plant Physiology 54: 678-685 1159 Langdale JA (2011) C₄ cycles: Past, present, and future research on C₄ photosynthesis. 1160 The Plant Cell Online **23**: 3879-3892 1161 Laterre R, Pottier M, Remacle C, Boutry M (2017) Photosynthetic trichomes contain a specific rubisco with a modified pH-dependent activity. Plant Physiology **173**: 1162 1163 2110-2120 1164 Layton BE, Boyd MB, Tripepi MS, Bitonti BM, Dollahon MNR, Balsamo RA (2010) 1165 Dehydration-induced expression of a 31-kDa dehydrin in *Polypodium* polypodioides (Polypodiaceae) may enable large, reversible deformation of cell 1166 1167 walls. American Journal of Botany 97: 535-544 1168 Lehmeier C, Pajor R, Lundgren MR, Mathers A, Sloan J, Bauch M, Mitchell A, Bellasio C, 1169 Green A, Bouyer D, Schnittger A, Sturrock C, Osborne CP, Rolfe S, Mooney S, 1170 Fleming AJ (2017) Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. The Plant Journal 92: 981-1171 994 1172 1173 Levey M, Timm S, Mettler-Altmann T, Borghi GL, Koczor M, Arrivault S, Weber APM, 1174 Bauwe H, Gowik U, Westhoff P (2019) Efficient 2-phosphoglycolate degradation

1175	is required to maintain carbon assimilation and allocation in the C ₄ plant <i>Flaveria</i>
1176	<i>bidentis</i> . Journal of Experimental Botany 70: 575-587
1177	Li R, Moore M, King J (2003) Investigating the regulation of one-carbon metabolism in
1178	Arabidopsis thaliana. Plant and Cell Physiology 44: 233-241
1179	Ma F, Jazmin LJ, Young JD, Allen DK (2014) Isotopically nonstationary ¹³ C flux analysis of
1180	changes in Arabidopsis thaliana leaf metabolism due to high light acclimation.
1181	Proceedings of the National Academy of Sciences 111 : 16967-16972
1182	Ma F, Jazmin LJ, Young JD, Allen DK (2017) Isotopically nonstationary metabolic flux
1183	analysis (INST-MFA) of photosynthesis and photorespiration in plants. In AR
1184	Fernie, H Bauwe, APM Weber, eds, Photorespiration. Methods in Molecular
1185	Biology, Vol 1653. Humana Press, New York, NY, pp 167-194
1186	Maier A, Fahnenstich H, von Caemmerer S, Engqvist MKM, Weber APM, Fluegge U-I,
1187	Maurino VG (2012) Transgenic introduction of a glycolate oxidative cycle into A.
1188	thaliana chloroplasts leads to growth improvement. Frontiers in Plant Science 3:
1189	doi: 10.3389/fpls.2012.00038
1190	Makino A, Osmond B (1991) Effects of nitrogen nutrition on nitrogen partitioning
1191	between chloroplasts and mitochondria in pea and wheat. Plant Physiology 96:
1192	355-362
1193	Mate CJ, von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1996) The relationship
1194	between CO ₂ -assimilation rate, Rubisco carbamylation and Rubisco activase
1195	content in activase-deficient transgenic tobacco suggests a simple model of
1196	activase action. Planta 198: 604-613
1197	Mattsson M, Schjoerring JK (1996) Ammonia emission from young barley plants:
1198	Influence of N source, light/dark cycles and inhibition of glutamine synthetase.
1199	Journal of Experimental Botany 47: 477-484
1200	Mayaudon J, Benson AA, Calvin M (1957) Ribulose-1,5-diphosphate from and CO ₂
1201	fixation by Tetragonia expansa leaves extract. Biochimica et Biophysica Acta 23:
1202	342-351
1203	Morita K, Hatanaka T, Misoo S, Fukayama H (2014) Unusual small subunit that is not
1204	expressed in photosynthetic cells alters the catalytic properties of rubisco in rice.
1205	Plant Physiology 164: 69-79
1206	Morita K, Hatanaka T, Misoo S, Fukayama H (2016) Identification and expression
1207	analysis of non-photosynthetic Rubisco small subunit, OsRbcS1-like genes in
1208	plants. Plant Gene 8: 26-31
1209	Moroney J, Jungnick N, DiMario R, Longstreth D (2013) Photorespiration and carbon
1210	concentrating mechanisms: two adaptations to high O ₂ , low CO ₂ conditions.
1211	Photosynthesis Research 117: 121-131
1212	Mouillon J-M, Aubert S, Bourguignon J, Gout E, Douce R, Rébeillé F (1999) Glycine and
1213	serine catabolism in non-photosynthetic higher plant cells: their role in C1
1214	metabolism. The Plant Journal 20: 197-205
1215	Nickelsen K (2007) Otto Warburg's first approach to photosynthesis. Photosynthesis
1216	Research 92: 109-120
1217	Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Annual
1218	Review of Plant Physiology and Plant Molecular Biology 50: 333-359

1219	Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G,
1220	Foyer CH (2012) Glutathione in plants: an integrated overview. Plant, Cell &
1221	Environment 35: 454-484
1222	Obata T, Florian A, Timm S, Bauwe H, Fernie AR (2016) On the metabolic interactions of
1223	(photo)respiration. Journal of Experimental Botany 67: 3003-3014
1224	Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T,
1225	Westoby M (2017) Physiological and structural tradeoffs underlying the leaf
1226	economics spectrum. New Phytologist 214: 1447-1463
1227	Orr D, Alcântara A, Kapralov MV, Andralojc J, Carmo-Silva E, Parry MAJ (2016)
1228	Surveying Rubisco diversity and temperature response to improve crop
1229	photosynthetic efficiency. Plant Physiology 172: 707-717
1230	Pärnik T, Keerberg O (1995) Decarboxylation of primary and end products of
1231	photosynthesis at different oxygen concentrations. Journal of Experimental
1232	Botany 46: 1439-1447
1233	Pärnik T, Keerberg O (2007) Advanced radiogasometric method for the determination of
1234	the rates of photorespiratory and respiratory decarboxylations of primary and
1235	stored photosynthates under steady-state photosynthesis. Physiologia
1236	Plantarum 129: 34-44
1237	Pick TR, Bräutigam A, Schulz MA, Obata T, Fernie AR, Weber APM (2013) PLGG1, a
1238	plastidic glycolate glycerate transporter, is required for photorespiration and
1239	defines a unique class of metabolite transporters. Proceedings of the National
1240	Academy of Sciences 110: 3185-3190
1241	Pottier M, Gilis D, Boutry M (2018) The hidden face of rubisco. Trends in Plant Science
1242	23: 382-392
1243	Prabhu V, Chatson KB, Abrams GD, King J (1996) ¹³ C nuclear magnetic resonance
1244	detection of interactions of serine hydroxymethyltransferase with C1-
1245	tetrahydrofolate synthase and glycine decarboxylase complex activities in
1246	Arabidopsis. Plant Physiology 112: 207-216
1247	Quayle JR, Fuller R, Benson AA, Calvin M (1954) Enzymatic carboxylation of ribulose
1248	diphosphate. Journal of the American Chemical Society 76: 3610-3611
1249	Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots
1250	depends on photorespiration. Proceedings of the National Academy of Sciences
1251	of the United States of America 101: 11506-11510
1252	Rae BD, Long BM, Whitehead LF, Förster B, Badger MR, Price GD (2013) Cyanobacterial
1253	carboxysomes: microcompartments that facilitate CO ₂ fixation. Journal of
1254	Molecular Microbiology and Biotechnology 23: 300-307
1255	Ramazanov Z, Rawat M, Henk MC, Mason CB, Matthews SW, Moroney JV (1994) The
1256	induction of the CO ₂ -concentrating mechanism is correlated with the formation
1257	of the starch sheath around the pyrenoid of Chlamydomonas reinhardtii. Planta
1258	195: 210-216
1259	Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching
1260	defence operations. Trends in Plant Science 10: 503-509

1261	Rebeille F, Neuburger M, Douce R (1994) Interaction between glycine decarboxylase,
1262	serine hydroxymethyltransferase and tetrahydrofolate polyglutamates in pea
1263	leaf mitochondria. Biochemical Journal 302: 223-228
1264	Reinholdt O, Schwab S, Zhang Y, Reichheld J-P, Fernie AR, Hagemann M, Timm S (2019)
1265	Redox-regulation of photorespiration through mitochondrial thioredoxin o1.
1266	Plant Physiology 181: 442-457
1267	Ros R, Muñoz-Bertomeu J, Krueger S (2014) Serine in plants: biosynthesis, metabolism,
1268	and functions. Trends in Plant Science 19: 564-569
1269	Rotundo JL, Cipriotti PA (2017) Biological limits on nitrogen use for plant
1270	photosynthesis: a quantitative revision comparing cultivated and wild species.
1271	New Phytologist 214: 120-131
1272	Sage RF (2013) Photorespiratory compensation: a driver for biological diversity. Plant
1273	Biology 15: 624-638
1274	Sage RF, Christin P-A, Edwards EJ (2011) The C ₄ plant lineages of planet Earth. Journal of
1275	Experimental Botany 62: 3155-3169
1276	Sage RF, Khoshravesh R, Sage TL (2014) From proto-Kranz to C ₄ Kranz: building the
1277	bridge to C ₄ photosynthesis. Journal of Experimental Botany 65: 3341-3356
1278	Sage RF, Li M, Monson RK (1999) The taxonomic distribution of C ₄ photosynthesis. <i>In</i> RF
1279	Sage, RK Monson, eds, C4 Plant Biology. Academic Press, San Diego, CA, USA, pp
1280	551-584
1281	Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C ₄
1282	photosynthesis. Annual Review of Plant Biology 63: 19-47
1283	Sage RF, Sultmanis S (2016) Why are there no C ₄ forests? Journal of Plant Physiology
1284	203 : 55-68
1285	Sage TL, Busch FA, Johnson DC, Friesen PC, Stinson CR, Stata M, Sultmanis S, Rahman
1286	BA, Rawsthorne S, Sage RF (2013) Initial events during the evolution of C ₄
1287	photosynthesis in C ₃ species of <i>Flaveria</i> . Plant Physiology 163 : 1266-1276
1288	Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants
1289	from stress: clues from transgenic plants. Plant, Cell & Environment 25: 163-171
1290	Savir Y, Noor E, Milo R, Tlusty T (2010) Cross-species analysis traces adaptation of
1291	Rubisco toward optimality in a low-dimensional landscape. Proceedings of the
1292	National Academy of Sciences 107: 3475-3480
1293	Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin
1294	cycle improves the carbon efficiency of developing green seeds. Nature 432: 779-
1295	782
1296	Sharkey TD (1985) O_2 -insensitive photosynthesis in C_3 plants - Its occurrence and a
1297	possible explanation. Plant Physiology 78: 71-75
1298	Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiologia
1299	Plantarum 73: 147-152
1300	Sharwood RE (2017) Engineering chloroplasts to improve Rubisco catalysis: prospects
1301	for translating improvements into food and fiber crops. New Phytologist 213 :
1302	494-510

1303	Sharwood RE, Ghannoum O, Kapralov MV, Gunn LH, Whitney SM (2016) Temperature
1304	responses of Rubisco from Paniceae grasses provide opportunities for improving
1305	C₃ photosynthesis. Nature Plants 2: 16186
1306	Sharwood RE, von Caemmerer S, Maliga P, Whitney SM (2008) The catalytic properties
1307	of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror
1308	the kinetically equivalent source Rubiscos and an support tobacco growth. Plant
1309	Physiology 146: 83-96
1310	Shen B-R, Wang L-M, Lin X-L, Yao Z, Xu H-W, Zhu C-H, Teng H-Y, Cui L-L, Liu EE, Zhang J-
1311	J, He Z-H, Peng X-X (2019) Engineering a new chloroplastic photorespiratory
1312	bypass to increase photosynthetic efficiency and productivity in rice. Molecular
1313	Plant 12: 199-214
1314	Simpson E, Cooke RJ, Davies DD (1981) Measurement of protein degradation in leaves
1315	of Zea mays using [³ H]acetic anhydride and tritiated water. Plant Physiology 67:
1316	1214-1219
1317	South PF, Cavanagh AP, Liu HW, Ort DR (2019) Synthetic glycolate metabolism
1318	pathways stimulate crop growth and productivity in the field. Science 363:
1319	eaat9077
1320	South PF, Walker BJ, Cavanagh AP, Rolland V, Badger M, Ort DR (2017) Bile Acid
1321	Sodium Symporter BASS6 Can Transport Glycolate and Is Involved in
1322	Photorespiratory Metabolism in Arabidopsis thaliana. The Plant Cell 29: 808-823
1323	Spreitzer RJ (2003) Role of the small subunit in ribulose-1,5-bisphosphate
1324	carboxylase/oxygenase. Archives of Biochemistry and Biophysics 414: 141-149
1325	Spreitzer RJ, Esquivel MG, Du Y-C, McLaughlin PD (2001) Alanine-scanning mutagenesis
1326	of the small-subunit βA–βB loop of chloroplast ribulose-1,5-bisphosphate
1327	carboxylase/oxygenase: substitution at Arg-71 affects thermal stability and
1328	CO ₂ /O ₂ specificity. Biochemistry 40: 5615-5621
1329	Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C_3 and C_4
1330	vegetation: Carbon cycle implications. Global Biogeochemical Cycles 17: 1006
1331	Szarek SR, Ting IP (1975) Photosynthetic efficiency of CAM plants in relation to C_3 and C_4
1332	plants. In. Springer Netherlands, Dordrecht, pp 289-297
1333	Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II
1334	damage. Trends in Plant Science 16: 53-60
1335	Tcherkez G (2016) The mechanism of Rubisco-catalysed oxygenation. Plant, Cell &
1336	Environment 39: 983-997
1337	Tcherkez G, Tea I (2013) ³² S/ ³⁴ S isotope fractionation in plant sulphur metabolism. New
1338	Phytologist 200: 44-53
1339	Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused
1340	substrate specificity, all ribulose bisphosphate carboxylases may be nearly
1341	perfectly optimized. Proceedings of the National Academy of Sciences 103: 7246-
1342	7251
1343	Tholen D, Éthier G, Genty B (2014) Mesophyll conductance with a twist. Plant, Cell &
1344	Environment 37: 2456-2458

1345	Tholen D, Ethier G, Genty B, Pepin S, Zhu X-G (2012) Variable mesophyll conductance
1346	revisited: theoretical background and experimental implications. Plant, Cell &
1347	Environment 35: 2087-2103
1348	Timm S, Bauwe H (2013) The variety of photorespiratory phenotypes – employing the
1349	current status for future research directions on photorespiration. Plant Biology
1350	15: 737-747
1351	Timm S, Florian A, Jahnke K, Nunes-Nesi A, Fernie AR, Bauwe H (2011) The
1352	hydroxypyruvate-reducing system in Arabidopsis: multiple enzymes for the same
1353	end. Plant Physiology 155: 694-705
1354	Timm S, Nunes-Nesi A, Pärnik T, Morgenthal K, Wienkoop S, Keerberg O, Weckwerth
1355	W, Kleczkowski LA, Fernie AR, Bauwe H (2008) A cytosolic pathway for the
1356	conversion of hydroxypyruvate to glycerate during photorespiration in
1357	Arabidopsis. The Plant Cell 20: 2848-2859
1358	Ubierna N, Cernusak LA, Holloway-Phillips M, Busch FA, Cousins AB, Farquhar GD
1359	(2019) Critical review: incorporating the arrangement of mitochondria and
1360	chloroplasts into models of photosynthesis and carbon isotope discrimination.
1361	Photosynthesis Research 141: 5-31
1362	Valentini R, Epron D, Deangelis P, Matteucci G, Dreyer E (1995) In situ estimation of net
1363	CO ₂ assimilation, photosynthetic electron flow and photorespiration in Turkey
1364	Oak (Q. cerris L) leaves: diurnal cycles under different levels of water supply.
1365	Plant Cell and Environment 18: 631-640
1366	Vavasseur A, Raghavendra AS (2005) Guard cell metabolism and CO ₂ sensing. New
1367	Phytologist 165: 665-682
1368	Vogan PJ, Frohlich MW, Sage RF (2007) The functional significance of C ₃ -C ₄ intermediate
1369	traits in <i>Heliotropium</i> L. (Boraginaceae): gas exchange perspectives. Plant Cell
1370	and Environment 30: 1337-1345
1371	von Caemmerer S (2013) Steady-state models of photosynthesis. Plant Cell and
1372	Environment 36: 1617-1630
1373	von Caemmerer S, Evans J (1991) Determination of the average partial pressure of CO ₂
1374	in chloroplasts from leaves of several C ₃ plants. Functional Plant Biology 18: 287-
1375	305
1376	Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of
1377	photorespiration as an important part of abiotic stress response. Plant Biology
1378	15: 713-722
1379	Walker BJ, Cousins AB (2013) Influence of temperature on measurements of the CO_2
1380	compensation point: differences between the Laisk and O_2 -exchange methods.
1381	Journal of Experimental Botany 64: 1893-1905
1382	Walker BJ, Orr DJ, Carmo-Silva E, Parry MAJ, Bernacchi CJ, Ort DR (2017) Uncertainty in
1383	measurements of the photorespiratory CO_2 compensation point and its impact
1384	on models of leaf photosynthesis. Photosynthesis Research 132 : 245-255
1385	Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR (2016) The costs of photorespiration to
1386	tood production now and in the future. Annual Review of Plant Biology 67: 107-
1387	129

1388	Wanner LA, Gruissem W (1991) Expression dynamics of the tomato <i>rbcS</i> gene family
1389	during development. The Plant Cell 3: 1289-1303
1390	Warburg O (1920) Über die Geschwindigkeit der photochemischen
1391	Kohlensäurezersetzung in lebenden Zellen. II. Biochemische Zeitschrift 103: 188-
1392	217
1393	Warren C (2006) Estimating the internal conductance to CO ₂ movement. Functional
1394	Plant Biology 33: 431-442
1395	Weise SE, Carr DJ, Bourke AM, Hanson DT, Swarthout D, Sharkey TD (2015) The arc
1396	mutants of Arabidopsis with fewer large chloroplasts have a lower mesophyll
1397	conductance. Photosynthesis Research 124: 117-126
1398	Weissbach A, Smyrniotis P, Horecker B (1954) Pentose phosphate and CO ₂ fixation with
1399	spinach extracts. Journal of the American Chemical Society 76: 3611-3612
1400	Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to
1401	engineer nature's CO ₂ -sequestering enzyme, Rubisco. Plant Physiology 155: 27-
1402	35
1403	Whitney SM, Sharwood RE (2008) Construction of a tobacco master line to improve
1404	Rubisco engineering in chloroplasts. Journal of Experimental Botany 59: 1909-
1405	1921
1406	Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmes J (2011) Isoleucine 309
1407	acts as a C ₄ catalytic switch that increases ribulose-1,5-bisphosphate
1408	carboxylase/oxygenase (rubisco) carboxylation rate in <i>Flaveria</i> . Proceedings of
1409	the National Academy of Sciences of the United States of America 108: 14688-
1410	14693
1411	Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways
1412	and their role in stress protection. Philosophical Transactions of the Royal
1413	Society B-Biological Sciences 355: 1517-1529
1414	Wong S-C, Cowan IR, Farquhar GD (1978) Leaf Conductance in Relation to Assimilation
1415	in <i>Eucalyptus pauciflora</i> Sieb. ex Spreng. Plant Physiology 62: 670-674
1416	Wong S-C, Cowan IR, Farquhar GD (1985) Leaf conductance in relation to rate of CO ₂
1417	assimilation. II. Effects of short-term exposures to different photon flux densities.
1418	Plant Physiology 78: 826-829
1419	Wong S-C, Cowan IR, Farquhar GD (1985) Leaf conductance in relation to rate of CO ₂
1420	assimilation. III. Influences of water stress and photoinhibition. Plant Physiology
1421	78: 830-834
1422	Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with
1423	photosynthetic capacity. Nature 282: 424-426
1424	Yamori W, Suzuki K, Noguchi KO, Nakai M, Terashima I (2006) Effects of Rubisco
1425	kinetics and Rubisco activation state on the temperature dependence of the
1426	photosynthetic rate in spinach leaves from contrasting growth temperatures.
1427	Plant, Cell & Environment 29: 1659-1670
1428	Yin X, Struik PC (2017) Simple generalisation of a mesophyll resistance model for various
1429	intracellular arrangements of chloroplasts and mitochondria in C ₃ leaves.
1430	Photosynthesis Research 132: 211-220

- 1431 Yoon M, Putterill JJ, Ross GS, Laing WA (2001) Determination of the relative expression
- 1432 levels of Rubisco small subunit genes in *Arabidopsis* by rapid amplification of
 1433 cDNA ends. Analytical Biochemistry **291:** 237-244
- 1434Young JN, Heureux AMC, Sharwood RE, Rickaby REM, Morel FMM, Whitney SM (2016)1435Large variation in the Rubisco kinetics of diatoms reveals diversity among their1436carbon-concentrating mechanisms. Journal of Experimental Botany 67: 3445-14373456
- 1438Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP (2009) High glycolate oxidase1439activity is required for survival of maize in normal air. Plant Physiology 149: 195-1440204
- 1441
- 1442

1444 Figure 1

Activation and catalysis sequence of Rubisco. Inactive Rubisco enzyme (E) becomes carbamated by the binding of non-substrate CO₂ (EC) followed by the activation through the binding of Mg²⁺ (ECM). The activated Rubisco binds ribulose-1,5-bisphosphate (RuBP) forming the ECMR complex, which can then react either with CO₂ in a carboxylation reaction producing two molecules of 3-phosphoglycerate (3-PGA), or with O₂ in an oxygenation reaction producing one molecule of 3-PGA and one of 2phosphoglycolate (2-PG). Figure adapted from Mate et al. (1996).

1452 Figure 2

1453 Resistances to CO_2 diffusion inside the leaf affecting the CO_2 concentration around 1454 Rubisco. The photorespiratory pathway involves the subcellular compartments 1455 chloroplasts (C), peroxisomes (P) and mitochondria (M). (a) (Photo)respired CO_2 is

1456 effectively released inside the chloroplast. This is the case if chloroplasts fully cover the 1457 cell periphery and the mitochondria are located towards the inside of the cell. It is also 1458 achieved in plants bioengineered to release photorespiratory CO₂ directly inside the 1459 chloroplast. The resistances imposed by stomata (r_s) and the mesophyll (r_m) , which 1460 includes the cell wall and membranes, cause a progressive decline in CO₂ concentrations 1461 from the ambient air (C_a) to the intercellular air space (IAS; C_i) and the chloroplast (C_c). 1462 (b) If (photo)respired CO_2 mixes with the CO_2 coming from the IAS inside the cytosol, 1463 which is the case e.g. when chloroplasts are further apart, or mitochondria are located 1464 between the cell wall and the chloroplasts, then r_m becomes an apparent resistance that 1465 varies with the amount of CO₂ released from (photo)respiration (see text for further information). In this case, r_m has to be separated into a cell wall and plasmalemma 1466 1467 component (r_{wp}) and a chloroplast envelope and stromal component (r_{ch}) . (c) The CO₂ 1468 response of the mesophyll conductance (g_m) to CO₂ diffusion for the two scenarios 1469 outlined in panels (a) and (b), modelled for equal contribution of r_{ch} and r_{wp} . Note that when (photo)respiratory CO₂ enters the cytosol first, the apparent value of g_m tends to 1470 1471 zero when the compensation point (A = 0) is approached. Panels (a) and (b) adapted 1472 from von Caemmerer (2013)

1474

1475 Figure 3

1476 **Schematic of the photorespiratory metabolism.** The movement of carbon along the 1477 photorespiratory pathway (black arrows) and the metabolites involved (bold font) are 1478 shown in the context of the nitrogen (blue) and sulfur metabolism (green). Redox 1479 reactions involving NAD, NADP, or ferredoxin (Fdx) are shown in red and ATP consuming 1480 processes in orange. Photorespiratory carbon leaves the pathway as CO_2 during the 1481 glycine decarboxylation step or is returned to the CBB cycle as 3-PGA. Carbon may also 1482 be exported from the photorespiratory pathway (white arrows) in the form of the amino 1483 acids glycine and serine, or as CH_2 -THF, which supplies one-carbon (C_1) units to the C_1 1484 metabolism (grey boxes). The amount of exported carbon influences how much 1485 photorespiratory carbon is returned to the CBB cycle. 2-PG, 2-phosphoglycolate; 3-PGA, 3-phosphoglycerate; 2-OG, 2-oxoglutarate; PGLP1, phosphoglycolate phosphatase 1; 1486 1487 GOX, glycolate oxidase; CAT, catalase; GGAT, glutamate:glyoxylate aminotransferase; 1488 SGAT, serine:glyoxylate aminotransferase; GDC, glycine decarboxylase complex; SHMT1, 1489 serine hydroxymethyltransferase 1; HPR1, hydroxypyruvate reductase 1; HPR2, 1490 hydroxypyruvate reductase 2; GLYK, glycerate kinase; GS2, glutamine synthetase; 1491 GOGAT, glutamine:oxoglutarate aminotransferase; SAT3, serine O-acetyltransferase; 1492 OAS-TL, O-acetylserine (thiol) lyase (Figure adapted from Bauwe et al., 2010; Eisenhut et 1493 al., 2019).

1496 **Figure 4**

1497 Metabolic uses of C₁ units outside the photorespiratory pathway. CH₂-THF exported from the photorespiratory pathway is the precursor for several derivatives of THF that 1498 1499 can be interconverted and their C_1 units used for the biosynthesis of a wide range of 1500 primary and secondary metabolites (shown in red). A major sink for C₁ units is the 1501 methylation of various substrates, such as DNA, RNA, proteins, phospholipids and other 1502 substrates. The shown reactions occur in mitochondria, chloroplasts, and the cytosol, 1503 but may have a preference for a certain subcellular compartment. THF, tetrahydrofolate; CH₂-THF, 5,10-methylene-THF; 5,10-CH⁺-THF, 5,10-methenyl-THF; 5-1504 CHO-THF, 5-formyl-THF; 10-CHO-THF, 10-formyl-THF; 5-CH₃-THF, 5-methyl-THF; SAM, S-1505 1506 adenosyl-methionine; SAH, S-adenosyl-homocysteine; fMet-tRNA, N-formylmethionine-1507 tRNA; GDC, glycine decarboxylase complex; SHMT, serine:hydroxymethyltransferase;

1508 FDF, 10-formyl-THF deformylase; MTHFD, 5,10-methylene-THF dehydrogenase; MTHFC, 1509 5,10-methenyl-THF cyclohydrolase; FTHFC, 5-formyl-THF cyclo-ligase; MTHFR, 5,10-1510 methylene-THF reductase; MS, methionine synthase; MAT, methionine adenosyltransferase; MT, methyltransferase; SAHase, S-adenosyl-homocysteine 1511 hydrolase (Figure adapted from Gorelova et al., 2017). 1512

1515 **Net effect of photorespiration on CO_2 assimilation rates.** Photorespiration can 1516 transiently be suppressed by decreasing *O* around the leaf. *A* measured during the 1517 instantaneous suppression of the Rubisco oxygenation reaction integrates the

1518 diffusional, biochemical, and physiological effects of photorespiration on net carbon 1519 uptake of the leaf (calculated as DA; see Box 1). (a)-(c) The suppression of 1520 photorespiration under varying atmospheric CO_2 concentrations (C_a) for sunflower 1521 (Helianthus annuus) leaves fertilized with NO₃⁻ (data from Busch et al., 2018). (d)-(f) The 1522 suppression of photorespiration under varying leaf temperatures in leaves of sweet 1523 potato (Ipomoea batatas; data from Busch and Sage, 2017). Net CO₂ assimilation rates 1524 are measured at oxygen concentrations of 21% and close to 0% (a) or 21% and 2% (b). 1525 The absolute difference between A when photorespiration is present (21% O) and A 1526 when it is absent (0% or 2% O) is displayed in (b) and (e). Note that DA in (b) is 1527 estimated from the A/C_a curves rather than A/C_i or A/C_c curves, which ensures all diffusion resistances, and thus also the effect of the leaf anatomy, is accounted for (see 1528 1529 Box 1 for details). The dotted lines denote ambient conditions (CO₂ concentration: 400 1530 μ mol mol⁻¹; growth temperature: 25°C). Red dashed lines denote the CO₂ concentration 1531 and temperature at which the net effect of photorespiration on carbon uptake is zero. In these examples, at values of C_a above ambient, or leaf temperatures below 1532 1533 approximately 20°C, the net effect of photorespiration on carbon uptake is positive, meaning that decreasing photorespiration decreases A. At lower Ca, or higher 1534 1535 temperatures, the overall effect of photorespiration is negative and plants would benefit from decreasing photorespiration. (c) and (f) The ratio V_0/V_c when 1536 1537 photorespiration is present. At ambient C_a , approximately a quarter of Rubisco activity goes towards oxygenation (c), corresponding to a negligible net effect on carbon uptake 1538 1539 (b). Similarly, at 20°C one fifth of Rubisco activity supports oxygenation (f), again with no

- 1540 associated costs in net carbon uptake (e). Comparing (b) with (c), and (e) with (f),
- 1541 photorespiration appears to be beneficial in terms of net carbon uptake for a V_0/V_c of up
- 1542 to roughly 0.25.
- 1543

1544

1545 Supplementary Figure 1

1546 Fluxes through the photosynthetic carbon reduction and photorespiratory pathways.

1547 Outlined are the pathways indicating metabolites (bold font) and stoichiometries 1548 (regular font) of carbon (black) nitrogen (blue) when a proportion of the 1549 photorespiratory carbon leaves the photorespiratory pathway as amino acids and CH₂-1550 THF. Electron and ATP requirements are indicated in red and orange, respectively. The difference between CO₂ taken up by carboxylation and CO₂ released from 1551 1552 photorespiration (light gray boxes) equals the sum of the individual sinks for assimilated 1553 carbon, indicated by double-bordered gray boxes. The proportion of 2-PG carbon leaving the photorespiratory pathway as glycine is denoted by a_{g} , that leaving as CH₂-1554 THF by a_{τ} and that leaving as serine by a_{s} . F represents the ratio of the rates of RuBP 1555 oxygenation to that of carboxylation; 3-PGA, 3-phosphoglycerate; 2-PG, 2-1556 phosphoglycolate. All flux magnitudes are scaled in relation to the rate of RuBP 1557 1558 carboxylation. Figure adapted from Busch et al. (2018).