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Abstract In a recent work, a generic differential operator on the vectorial space of polynomial functions was
presented and applied in the study of differential relations fulfilled by polynomial sequences either orthogonal or
2-orthogonal. Considering a third order differential operator that does not increase the degree of polynomials, we
search for polynomial eigenfunctions with the help of symbolic computations, assuming that those polynomials
constitute a 2-orthogonal polynomial sequence. Two examples are extensively described.
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1 Introduction

The families of classical orthogonal polynomials are known to fulfil a second order linear differential equation
of hypergeometric type [1,2]. Since the 1990’s, a significant amount of bibliography (e.g. [9]) allowed us to
understand the orthogonal polynomial eigenfunctions of ordinary differential equations. With regard to the notion
ofd-orthogonal polynomials which generalises the standard orthogonality and it is defined by means ofd functionals,
for any positive integer d, much is still unknown. The d-orthogonal polynomials are characterised by a recurrence
relation of order d + 1, naturally enlarging the well known recurrence relation of order two fulfilled by the classical
orthogonal polynomials. Moreover, the orthogonality conditions fulfilled by these polynomial sequences are also
associated with the step-line multiple orthogonal polynomials (e.g. [3,4]). Several contributions indicate that some
d-orthogonal polynomial sequences {Pn(x)}n≥0 fulfil certain differential equations of order d + 1 (e.g. [5,6]),
though in most cases the differential operator obtained depends on n.

Focusing on the dimension d = 2, we define any 2-orthogonal polynomial sequence by three numerical
sequences, called the recurrence coefficients. In this paper we convey a procedure that aims to compute those
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numerical sequences corresponding to polynomial eigenfunctions of ordinary differential equations with prede-
fined coefficients, not depending on n. Some important results about a general differential operator were given in
[17] and are inhere used in order to deal with the computations required for the matter in hands.

This paper has the following structure: in Sect. 2 we provide the basic concepts and the most common notation.
Also in Sect. 2 the results given in [17] are listed and a new result proved. Section 3 is dedicated to a third-order
differential operator (that preserves the degree of polynomials) and the above mentioned symbolic approach is
depicted, step by step. In Sect. 4, we find the complete description of two 2-orthogonal polynomial sequences that
are sets of polynomial eigenfunctions of two given third-order differential operators. The procedure here presented
allowed us to establish, on one hand, additional differential identities fulfilled by the polynomial sequences obtained,
and on the other hand, a list of some impossible cases.

2 Notation and Fundamental Results

Let P be the vector space of polynomials with coefficients in C and let P ′ be its topological dual space. We denote
by 〈u, p〉 the action of the form or linear functional u ∈ P ′ on p ∈ P . In particular, 〈u, xn〉 := (u)n , n ≥ 0,

represent the moments of u. In the following, we will call polynomial sequence (PS) to any sequence {Pn}n≥0 such
that deg Pn = n, n ≥ 0, that is, for all non-negative integer. We will also call monic polynomial sequence (MPS)
to a PS so that all polynomials have leading coefficient equal to one.

If {Pn}n≥0 is a MPS, there exists a unique sequence {un}n≥0, un ∈ P ′, called the dual sequence of {Pn}n≥0, such
that,

< un, Pm >= δn,m , n,m ≥ 0. (2.1)

On the other hand, given a MPS {Pn}n≥0, the expansion of x Pn+1(x), defines sequences in C, {βn}n≥0 and
{χn,ν}0≤ν≤n, n≥0, such that

P0(x) = 1, P1(x) = x − β0, (2.2)

x Pn+1(x) = Pn+2(x) + βn+1Pn+1(x) +
n∑

ν=0

χn,ν Pν(x) , n ≥ 0 . (2.3)

This relation is usually called the structure relation of {Pn}n≥0, and {βn}n≥0 and {χn,ν}0≤ν≤n, n≥0 are called the
structure coefficients (SCs) [11]. Another useful presentation is the following.

Pn+2(x) = (x − βn+1)Pn+1(x) +
n∑

ν=0

χn,ν Pν(x) , P0(x) = 1, P1(x) = x − β0 , n ≥ 0 .

When the structure coefficients fulfil χn,ν = 0 , 0 ≤ ν ≤ n − 1 , χn,n �= 0, identities (2.2)-(2.3) refer to the
well known three-term recurrence associated to an orthogonal MPS. More generally, identity (2.3) may furnish a
recurrence relation of a higher order corresponding to the following notion of orthogonality with respect to d given
functionals.

Definition 1 [8,13,20] Given Γ 1, Γ 2, . . . , Γ d ∈ P ′, d ≥ 1, the polynomial sequence {Pn}n≥0 is called d-
orthogonal polynomial sequence (d-OPS) with respect to Γ = (Γ 1, . . . , Γ d) if it fulfils

〈Γ α, Pm Pn〉 = 0, n ≥ md + α, m ≥ 0, (2.4)

〈Γ α, Pm Pmd+α−1〉 �= 0, m ≥ 0, (2.5)

for each integer α = 1, . . . , d.

Lemma 1 [12] For each u ∈ P ′ and each m ≥ 1, the two following statements are equivalent.
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a) 〈u, Pm−1〉 �= 0, 〈u, Pn〉 = 0, n ≥ m.
b) ∃λν ∈ C, 0 ≤ ν ≤ m − 1, λm−1 �= 0 such that u = ∑m−1

ν=0 λνuν .

The conditions (2.4) are called the d-orthogonality conditions and the conditions (2.5) are called the regularity
conditions. In this case, the d-dimensional functional Γ is said to be regular.

The d-dimensional functional Γ is not unique. Nevertheless, from Lemma 1, we have:

Γ α =
α−1∑

ν=0

λα
ν uν, λα

α−1 �= 0, 1 ≤ α ≤ d.

Therefore, since U = (u0, . . . , ud−1) is unique, we use to consider the canonical functional of dimension d, U =
(u0, . . . , ud−1), saying that {Pn}n≥0 is d-orthogonal (for any positive integer d) with respect toU = (u0, . . . , ud−1)

if

〈uν, Pm Pn〉 = 0, n ≥ md + ν + 1, m ≥ 0,

〈uν, Pm Pmd+ν〉 �= 0, m ≥ 0,

for each integer ν = 0, 1, . . . , d − 1.

Theorem 1 [13] Let {Pn}n≥0 be a MPS. The following assertions are equivalent:

a) {Pn}n≥0 is d-orthogonal with respect to U = (u0, . . . , ud−1).
b) {Pn}n≥0 satisfies a (d + 1)-order recurrence relation (d ≥ 1):

Pm+d+1(x) = (x − βm+d)Pm+d(x) −
d−1∑

ν=0

γ d−1−ν
m+d−νPm+d−1−ν(x), m ≥ 0,

with initial conditions

P0(x) = 1, P1(x) = x − β0 and if d ≥ 2 :

Pn(x) = (x − βn−1)Pn−1(x) −
n−2∑

ν=0

γ d−1−ν
n−1−ν Pn−2−ν(x), 2 ≤ n ≤ d,

and regularity conditions: γ 0
m+1 �= 0, m ≥ 0.

In this paper, we will focus our attention on 2-orthogonal MPSs, thus fulfilling the recurrence relation

Pn+3(x) = (x − βn+2)Pn+2(x) − γ 1
n+2Pn+1(x) − γ 0

n+1Pn(x),

P0(x) = 1, P1(x) = x − β0, P2(x) = (x − β1)P1(x) − γ 1
1 , n ≥ 0.

While working solely with 2-orthogonality it is usual to rename the gamma coefficients as follows (cf. [5])

Pn+3(x) = (x − βn+2)Pn+2(x) − αn+2Pn+1(x) − γn+1Pn(x), (2.6)

P0(x) = 1, P1(x) = x − β0, P2(x) = (x − β1)P1(x) − α1 , n ≥ 0. (2.7)

2.1 Differential Operators on P and Technical Identities

In this subsection, we initially list the main results indicated in [17] that will be applied along the text, and secondly,
we prove new identities that are the fundamental tools for the strategy pursued. Namely, in Proposition 1 we establish
an identity, fulfilled by different types of operators, which has a crucial role in the procedure outlined.
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Given a sequence of polynomials {aν(x)}ν≥0, let us consider the following linear mapping J : P → P (cf. [15],
[19]).

J =
∑

ν≥0

aν(x)

ν! Dν, deg aν ≤ ν, ν ≥ 0. (2.8)

Expanding aν(x) as follows:

aν(x) =
ν∑

i=0

a[ν]
i x i ,

and recalling that Dν (ξn) (x) = n!
(n−ν)! x

n−ν , we get the next identities about J :

J
(
ξn

)
(x) =

n∑

ν=0

aν(x)

(
n

ν

)
xn−ν , (2.9)

J
(
ξn

)
(x) =

n∑

τ=0

(
τ∑

ν=0

(
n

n − ν

)
a[n−ν]
τ−ν

)
xτ , n ≥ 0. (2.10)

In particular, a linear mapping J is an isomorphism if and only if

deg
(
J

(
ξn

)
(x)

) = n , n ≥ 0, and J (1) (x) �= 0. (2.11)

The next result establishes that any operator that does not increase the degree admits an expansion as (2.8) for
certain polynomial coefficients.

Lemma 2 [17] For any linear mapping J , not increasing the degree, there exists a unique sequence of polynomials
{an}n≥0, with deg an ≤ n, so that J reads as in (2.8). Further, the linear mapping J is an isomorphism of P if and
only if

n∑

μ=0

(
n

μ

)
a[μ]
μ �= 0, n ≥ 0. (2.12)

The technique that we will implement in the next section requires the knowledge about the J -image of the
product of two polynomials f g. The polynomial J ( f g) is then given by a Leibniz-type expansion as mentioned in
the next Lemma.

Lemma 3 [17] For any f, g ∈ P , we have:

J ( f (x)g(x)) (x) =
∑

n≥0

J (n) ( f ) (x)
g(n)(x)

n! =
∑

n≥0

J (n) (g) (x)
f (n)(x)

n! , (2.13)

where the operator J (m) , m ≥ 0, on P is defined by

J (m) =
∑

n≥0

an+m(x)

n! Dn . (2.14)

Let us suppose that J is an operator expressed as in (2.8), and acting as the derivative of order k, for some
non-negative integer k, that is, it fulfils the following conditions.

J
(
ξ k

)
(x) = a[k]

0 �= 0 and deg
(
J

(
ξn+k

)
(x)

)
= n, n ≥ 0; (2.15)

J
(
ξ i

)
(x) = 0, 0 ≤ i ≤ k − 1, if k ≥ 1. (2.16)
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Lemma 4 [17] An operator J fulfils (2.15)–(2.16) if and only if the next conditions hold.

a) a0(x) = · · · = ak−1(x) = 0, if k ≥ 1;
b) deg (aν(x)) ≤ ν − k, ν ≥ k;

c) λ
[k]
n+k := ∑n

ν=0

( n+k
n+k−ν

)
a[n+k−ν]
n−ν �= 0, n ≥ 0.

Remark 1 Note that in the definition given in item c), we find λ
[k]
k = a[k]

0 .

If k = 0, then it is assumed that λ
[0]
n �= 0, n ≥ 0, matching (2.12), so that J is an isomorphism.

If k = 1, then J imitates the usual derivative and is commonly called a lowering operator (e.g. [10,16]).

Applying Lemma 3 to different pairs of polynomials, we obtain immediately the next identities.

J (xp(x)) = x J (p(x)) + J (1) (p(x)) (2.17)

J
(
x2 p(x)

)
= x2 J (p(x)) + 2x J (1) (p(x)) + J (2) (p(x)) (2.18)

J
(
x3 p(x)

)
= x3 J (p(x)) + 3x2 J (1) (p(x)) + 3x J (2) (p(x)) + J (3) (p(x)) (2.19)

Proposition 1 Given an operator J defined by (2.8), and taking into account the definition of the operator J (m),
m ≥ 0, (see (2.14)), the following identities hold.

J (i) (xp(x)) = J (i+1) (p(x)) + x J (i) (p(x)) , i = 0, 1, 2, . . . . (2.20)

Proof Reading i = 0 in (2.20) we find the identity stated in (2.17). Let us now consider (2.17) with p(x) filled by
the product xp(x):

J
(
x2 p(x)

)
= J (1) (xp(x)) + x J (xp(x)) .

The last term x J (xp(x)) can be rephrased taking into account (2.17), yielding

J
(
x2 p(x)

)
= x2 J (p(x)) + x J (1) (p(x)) + J (1) (xp(x)) . (2.21)

Confronting (2.18) with (2.21), we conclude (2.20) with i = 1:

J (1) (xp(x)) = J (2) (p(x)) + x J (1) (p(x)) .

Let us assume as induction hypotheses over k ≥ 2 that

J (i) (xp(x)) = J (i+1) (p(x)) + x J (i) (p(x)) , i = 0, . . . , k − 1.

In view of Lemma 3, we learn that for any polynomial p = p(x)

J
(
xk+1 p

)
=

∑

n≥0

J (n)(p)

(
xk+1

)(n)

n! ;
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and thus we may write:

J
(
xk+1 p

)
=

k+1∑

μ=0

J (μ)(p)

(
k + 1

μ

)
xk+1−μ ; (2.22)

J
(
xk p

)
=

k∑

ν=0

J (ν)(p)

(
k

ν

)
xk−ν . (2.23)

Let us now consider (2.23) with p filled by the product xp as follows:

J
(
xk+1 p

)
=

k∑

ν=0

J (ν)(xp)

(
k

ν

)
xk−ν . (2.24)

By means of the induction hypotheses, identity (2.24) yields the following.

J
(
xk+1 p

)
=

k−1∑

ν=0

(
J (ν+1)(p) + x J (ν)(p)

) (
k

ν

)
xk−ν + J (k)(xp)

=
k−1∑

ν=0

J (ν+1)(p)

(
k

ν

)
xk−ν +

k−1∑

ν=1

J (ν)(p)

(
k

ν

)
xk+1−ν + J (k)(xp) + J (p)xk+1

=
k−2∑

ν=0

J (ν+1)(p)

{(
k

ν

)
+

(
k

ν + 1

)}
xk−ν + J (k)(p)

(
k

k − 1

)
x + J (k)(xp) + J (p)xk+1

=
k−2∑

ν=0

J (ν+1)(p)

(
k + 1

ν + 1

)
xk−ν + J (k)(p)kx + J (k)(xp) + J (p)xk+1

=
k−1∑

ν=0

J (ν)(p)

(
k + 1

ν

)
xk+1−ν + J (k)(p)kx + J (k)(xp) .

In brief

J
(
xk+1 p

)
=

k−1∑

ν=0

J (ν)(p)

(
k + 1

ν

)
xk+1−ν + J (k)(p)kx + J (k)(xp) . (2.25)

Comparing (2.25) with (2.22), we get

J (k)(p)

(
k + 1

k

)
xk+1−k + J (k+1)(p)

(
k + 1

k + 1

)
= kx J (k)(p) + J (k)(xp)

hence x J (k)(p) + J (k+1)(p) = J (k)(xp) ,

which ends the proof. ��



Symbolic Approach to 2-Orthogonal Polynomial Solutions... Page 7 of 21 6

3 An Isomorphism Applied to a 2-Orthogonal Sequence

In the sequel, we consider that J is an isomorphism and aν(x) = 0 , ν ≥ 4, thus

J = a0(x)I + a1(x)D + a2(x)

2
D2 + a3(x)

3! D3 , where

a0(x) = a[0]
0 , a1(x) = a[1]

0 + a[1]
1 x , a2(x) = a[2]

0 + a[2]
1 x + a[2]

2 x2 ,

a3(x) = a[3]
0 + a[3]

1 x + a[3]
2 x2 + a[3]

3 x3 , (3.1)

and we suppose that the MPS {Pn}n≥0 is 2-orthogonal and fulfils

J (Pn(x)) = λ[0]
n Pn(x), with λ[0]

n �= 0 , n ≥ 0 , (3.2)

where

λ[0]
n = a[0]

0 +
(
n

1

)
a[1]

1 +
(
n

2

)
a[2]

2 +
(
n

3

)
a[3]

3 , n ≥ 0 .

In view of aν(x) = 0 , ν ≥ 4 , the operators J (1), J (2) and J (3) are (see (2.14)):

J (1)(p) =
(
a1(x)I + a2(x)D + 1

2!a3(x)D
2
)

(p) (3.3)

J (2)(p) = (a2(x)I + a3(x)D) (p) (3.4)

J (3)(p) = a3(x)p

J (m)(p) = 0 , m ≥ 4. (3.5)

Broadly speaking, in this section we will intertwine the action of operators J (k), for initial values of k, with the
simple multiplication by the monomial x , herein called Tx :

Tx : p 
→ xp ,

in order to obtain the expansions of polynomials J (1) (Pn(x)), J (2) (Pn(x)) and J (3) (Pn(x)) in the basis formed
by the 2-orthogonal MPS {Pn(x)}n≥0.

Most importantly, we review (2.6)-(2.7) by establishing the following definition, considering henceforth
P−i (x) = 0, i = 1, 2, . . ..

Tx (Pn(x)) = Pn+1(x) + βn Pn(x) + αn Pn−1(x) + γn−1Pn−2(x), n ≥ 0 . (3.6)

Additionally, we can use the knowledge provided by Proposition 1, valid for all operators not decreasing the degree
(2.8), that asserts

J (i) (Tx (p)) = J (i+1) (p) + Tx
(
J (i) (p)

)
, i = 0, 1, 2, . . . . (3.7)

First step: applying J to the four-term recurrence
Let us apply the operator J to the recurrence relation (2.6), using both (3.7), with i = 0, and (3.2):

λ
[0]
n+2Tx (Pn+2(x)) + J (1) (Pn+2(x)) = λ

[0]
n+3Pn+3(x)

+ βn+2λ
[0]
n+2Pn+2(x) + αn+2λ

[0]
n+1Pn+1(x) + γn+1λ

[0]
n Pn(x) . (3.8)
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Next, by (3.6) we get J (1) (Pn+2(x)) in the basis {Pn(x)}n≥0:

J (1) (Pn+2(x)) =
(
λ

[0]
n+3 − λ

[0]
n+2

)
Pn+3(x)

+αn+2

(
λ

[0]
n+1 − λ

[0]
n+2

)
Pn+1(x) + γn+1

(
λ[0]
n − λ

[0]
n+2

)
Pn(x) , n ≥ 0. (3.9)

Taking into account the information retained in identities J (P0(x)) = λ
[0]
0 P0(x), J (P1(x)) = λ

[0]
1 P1(x), it is easy

to verify that

a1(x) = J (1) (P0(x)) =
(
λ

[0]
1 − λ

[0]
0

)
P1(x) ,

a1(x)P1(x) + a2(x) = J (1) (P1(x)) =
(
λ

[0]
2 − λ

[0]
1

)
P2(x) + α1

(
λ

[0]
0 − λ

[0]
1

)
P0(x) ,

and thus we may define the image of every Pn(x) through the operator J (1) as follows:

J (1) (Pn(x)) =
(
λ

[0]
n+1 − λ[0]

n

)
Pn+1(x)

+ αn

(
λ

[0]
n−1 − λ[0]

n

)
Pn−1(x) + γn−1

(
λ

[0]
n−2 − λ[0]

n

)
Pn−2(x) , n ≥ 0. (3.10)

Second step: applying J (1) to the four-term recurrence

Let us now apply operator J (1) to the recurrence relation (2.6) fulfilled by {Pn(x)}n≥0:

J (1) (Tx (Pn+2(x))) = J (1) (Pn+3(x))

+ βn+2 J
(1) (Pn+2(x)) + αn+2 J

(1) (Pn+1(x)) + γn+1 J
(1) (Pn(x)) . (3.11)

We may then perform the following transformations:

G1(n) : J (1) (Tx (Pn+2(x))) → J (2) (Pn+2(x)) + Tx
(
J (1) (Pn+2(x))

)
,

I1(n) : J (1) (Pn(x)) →
(
λ

[0]
n+1 − λ[0]

n

)
Pn+1(x)

+ αn

(
λ

[0]
n−1 − λ[0]

n

)
Pn−1(x) + γn−1

(
λ

[0]
n−2 − λ[0]

n

)
Pn−2(x) ,

M(n) : Tx (Pn(x)) → Pn+1(x) + βn Pn(x) + αn Pn−1(x) + γn−1Pn−2(x) .

These transformations are defined in a suitable computer software, allowing a symbolic implementation that executes
the adequate positive increments on the variable n. In this manner, it is possible for us to obtain the expansion of
the image of Pn+2(x) by operator J (2), in the basis {Pn(x)}n≥0. This procedure is expedite and provides a fourth
definition also suitable for a subsequent symbolic application where the significant amount of terms involved is not
a problem.

As a result of these computations, (3.11) corresponds to the next identity.

J (2) (Pn+2(x)) = An+4Pn+4(x) + Bn+3Pn+3(x) + Cn+2Pn+2(x)

+ Dn+1Pn+1(x) + Fn Pn(x) + Gn−1Pn−1(x) + Hn−2Pn−2(x) , (3.12)
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where

An = λ[0]
n − 2λ

[0]
n−1 + λ

[0]
n−2 ;

Bn = (βn−1 − βn)
(
λ[0]
n − λ

[0]
n−1

)
;

Cn = 2αn+1

(
λ[0]
n − λ

[0]
n+1

)
+ 2αn

(
λ[0]
n − λ

[0]
n−1

)
;

Dn = αn+1 (βn+1 − βn)
(
λ[0]
n − λ

[0]
n+1

)

+ γn+1

(
λ[0]
n − 2λ

[0]
n+2 + λ

[0]
n+1

)
+ γn

(
λ[0]
n − 2λ

[0]
n−1 + λ

[0]
n+1

)
;

Fn = αn+2αn+1

(
λ[0]
n − 2λ

[0]
n+1 + λ

[0]
n+2

)
+ γn+1 (βn+2 − βn)

(
λ[0]
n − λ

[0]
n+2

)
;

Gn = αn+3γn+1

(
λ[0]
n − 2λ

[0]
n+2 + λ

[0]
n+3

)
+ αn+1γn+2

(
λ[0]
n − 2λ

[0]
n+1 + λ

[0]
n+3

)
;

Hn = γn+3γn+1

(
λ[0]
n − 2λ

[0]
n+2 + λ

[0]
n+4

)
. (3.13)

Once more, taking into account that J (Pi (x)) = λ
[0]
i Pi (x), i = 0, 1, and also (3.10) for n = 0, 1, 2, we are able

to confirm that the following initial identities hold:

J (2) (P0(x)) = A2P2(x) + B1P1(x) + C0P0(x) ,

J (2) (P1(x)) = A3P3(x) + B2P2(x) + C1P1(x) + D0P0(x) ,

and, hence :

J (2) (Pn(x)) = An+2Pn+2(x) + Bn+1Pn+1(x) + Cn Pn(x)

+ Dn−1Pn−1(x) + Fn−2Pn−2(x) + Gn−3Pn−3(x) + Hn−4Pn−4(x) , n ≥ 0 . (3.14)

Third step: applying J (2) to the four-term recurrence

Let us now apply operator J (2) to the recurrence relation (2.6) fulfilled by {Pn(x)}n≥0:

J (2) (Tx (Pn+2(x))) = J (2) (Pn+3(x))

+ βn+2 J
(2) (Pn+2(x)) + αn+2 J

(2) (Pn+1(x)) + γn+1 J
(2) (Pn(x)) .

We may perform the following transformations:

G2(n) : J (2) (Tx (Pn+2(x))) → J (3) (Pn+2(x)) + Tx
(
J (2) (Pn+2(x))

)
,

I2(n) : J (2) (Pn(x)) → An+2Pn+2(x) + Bn+1Pn+1(x) + Cn Pn(x)

+ Dn−1Pn−1(x) + Fn−2Pn−2(x) + Gn−3Pn−3(x) + Hn−4Pn−4(x) ,

M(n) : Tx (Pn(x)) → Pn+1(x) + βn Pn(x) + αn Pn−1(x) + γn−1Pn−2(x) .
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As before, these transformations and consequent simplifications, enhanced by the symbolic computations, permit
to express J (3) (Pn+2(x)) as follows.

J (3) (Pn+2(x)) = a[3]
3 Pn+5(x)

+ (An+4βn+2 − An+4βn+4 − Bn+3 + Bn+4) Pn+4(x)

+ (An+3αn+2 − An+4αn+4 + Bn+3βn+2 − Bn+3βn+3 − Cn+2 + Cn+3) Pn+3(x)

+ (An+2γn+1 − An+4γn+3 + Bn+2αn+2 − Bn+3αn+3 − Dn+1 + Dn+2) Pn+2(x)

+ (Bn+1γn+1 − Bn+3γn+2 + Cn+1αn+2 − Cn+2αn+2

−Dn+1βn+1 + Dn+1βn+2 − Fn + Fn+1) Pn+1(x)

+ (Cnγn+1 − Cn+2γn+1 − Dn+1αn+1 + Dnαn+2

−Fnβn + Fnβn+2 − Gn−1 + Gn) Pn(x)

+ (−Dn+1γn + Dn−1γn+1 − Fnαn + Fn−1αn+2

−Gn−1βn−1 + Gn−1βn+2 − Hn−2 + Hn−1) Pn−1(x)

+ (−Fnγn−1 + Fn−2γn+1

−Gn−1αn−1 + Gn−2αn+2 − Hn−2βn−2 + Hn−2βn+2) Pn−2(x)

+ (−Gn−1γn−2 + Gn−3γn+1 − Hn−2αn−2 + Hn−3αn+2) Pn−3(x)

+ (Hn−4γn+1 − Hn−2γn−3) Pn−4(x) , n ≥ 0 , (3.15)

with initial conditions:

J (3) (P0(x)) = a[3]
3 P3(x) +

(
(β0 + β1 + β2) a

[3]
3 + a[3]

2

)
P2(x)

+
(
a[3]

3

(
α1 + α2 + β2

0 + β1β0 + β2
1

)
+ (β0 + β1) a

[3]
2 + a[3]

1

)
P1(x)

+
(
a[3]

3

(
α1 (2β0 + β1) + β3

0 + γ1

)
+ α1a

[3]
2 + β0

(
β0a

[3]
2 + a[3]

1

)
+ a[3]

0

)
;

J (3) (P1(x)) = a[3]
3 P4(x) +

(
(β1 + β2 + β3) a

[3]
3 + a[3]

2

)
P3(x)

+
(
a[3]

3

(
α1 + α2 + α3 + β2

1 + β2β1 + β2
2

)
+ (β1 + β2) a

[3]
2 + a[3]

1

)
P2(x)

+
(
a[3]

3

(
2 (α1 + α2) β1 + α2β2 + β3

1 + γ1 + γ2

)
+ α1β0a

[3]
3 + (α1 + α2) a

[3]
2

+β1

(
β1a

[3]
2 + a[3]

1

)
+ a[3]

0

)
P1(x)

+
(
α1

(
a[3]

3

(
α2 + β2

0 + β1β0 + β2
1

)
+ (β0 + β1) a

[3]
2 + a[3]

1

)
+ α2

1a
[3]
3

+γ1

(
(β0 + β1 + β2) a

[3]
3 + a[3]

2

))
.

Recalling that J (3) (p) = a3(x)p =
(
a[3]

3 x3 + a[3]
2 x2 + a[3]

1 x + a[3]
0

)
p, identity (3.15) enables the computation

of the recurrence coefficients (βn)n≥0, (αn)n≥1 and (γn)n≥1 of a 2-orthogonal {Pn}n≥0 that is the solution of

J (Pn) = λ
[0]
n Pn(x) , n ≥ 0 , for a third-order J . We will pursuit with such computations in the next section for

particular cases.

4 Finding the 2-Orthogonal Solution of Some Third-Order Differential Equations

Let us now assume that the 2-orthogonal MPS {Pn}n≥0 fulfils J (Pn) = λ
[0]
n Pn(x) , n ≥ 0, where J is defined by

(2.8) with aν(x) = 0 , ν ≥ 4.
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Initially, we consider that deg (a3(x)) = 0, though a3(x) �= 0, deg (a2(x)) ≤ 1 and deg (a1(x))=1. In other words:

(
a0(x)I + a1(x)D + a2(x)

2
D2 + a[3]

0

3! D3

)
(Pn(x)) = λ[0]

n Pn(x) ,

with a0(x) = a[0]
0 , a1(x) = a[1]

0 + a[1]
1 x , a[1]

1 �= 0,

a2(x) = a[2]
0 + a[2]

1 x ,

a3(x) = a[3]
0 �= 0 . (4.1)

Consequently, λ
[0]
n = na[1]

1 + a[0]
0 , which we are assuming as nonzero for all non-negative integer n. Taking into

account this set of hypotheses, identity (3.15) provides several difference equations due to the linear independence
of {Pn}n≥0. In particular, the coefficient of Pn+4(x) on the right hand of (3.15) is expressed by

−a[1]
1 (βn+2 − 2βn+3 + βn+4)

and thus we get the equation

βn+4 − 2βn+3 + βn+2 = 0 , n ≥ 0 . (4.2)

Also, the coefficients of Pn+3(x) and Pn+2(x) on the right hand of (3.15) provide the following two identities

a[1]
1

(
−2αn+2 + 4αn+3 − 2αn+4 + (βn+2 − βn+3)

2
)

= 0 , (4.3)

−3a[1]
1 (γn+1 − 2γn+2 + γn+3) = a[3]

0 . (4.4)

Before we head for the final result that describes the 2-orthogonal polynomial sequence that is formed by
polynomial eigenfunctions of (4.1), let us list three identities, valid in general, that will take part in the demonstration
of Propositions 2 and 4.

Lemma 5 Given an operator J defined by (2.8), and supposing that {Pn(x)}n≥0 is a 2-orthogonal MPS, the
following identities hold.

J (2) (Pn+2(x)) = J (3) (Pn+1(x)) + x J (2) (Pn+1(x))

− βn+1 J
(2) (Pn+1(x)) − αn+1 J

(2) (Pn(x)) − γn J
(2) (Pn−1(x)) ; (4.5)

J (1) (Pn+2(x)) = J (2) (Pn+1(x)) + x J (1) (Pn+1(x))

− βn+1 J
(1) (Pn+1(x)) − αn+1 J

(1) (Pn(x)) − γn J
(1) (Pn−1(x)) ; (4.6)

J (Pn+3(x)) = J (1) (Pn+2(x)) + x J (Pn+2(x)) − βn+2 J (Pn+2(x))

− αn+2 J (Pn+1(x)) − γn+1 J (Pn(x)) . (4.7)

Proof Let us recall the content of Proposition (1) which says

J (i+1) (p(x)) + x J (i) (p(x)) = J (i) (xp(x)) .

Let us consider J (3) (p(x)) + x J (2) (p(x)) = J (2) (xp(x)) with p(x) replaced by Pn+1(x). If the right-hand term
J (2) (x Pn+1(x)) is expanded by the recurrence relation

x Pn+1(x) = Pn+2(x) + βn+1Pn+1(x) + αn+1Pn(x) + γn Pn−1(x), n = 0, 1, 2, . . . ,
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the identity (4.5) is obtained. Using the same argument and identity

J (2) (Pn+1(x)) + x J (1) (Pn+1(x)) = J (1) (x Pn+1(x))

we get (4.6). Finally, from

J (1) (Pn+2(x)) + x J (Pn+2(x)) = J (x Pn+2(x))

we deduce (4.7). ��
Proposition 2 Let us consider a 2-orthogonal polynomial sequence {Pn}n≥0 fulfilling

J (Pn(x)) = λ[0]
n Pn(x)

where J is defined by (2.8) with aν(x) = 0 , ν ≥ 4, and such that a0(x) = a[0]
0 , a1(x) = a[1]

0 + a[1]
1 x , a[1]

1 �= 0 ,

a2(x) = a[2]
0 + a[2]

1 x , a3(x) = a[3]
0 �= 0 .

Then the coefficient a[2]
1 of polynomial a2(x) is zero and the recurrence coefficients of the sequence {Pn}n≥0 are

the following.

βn = −a[1]
0

a[1]
1

, n ≥ 0 , (4.8)

αn+1 = − a[2]
0

2a[1]
1

(n + 1) , n ≥ 0 , (4.9)

γn+1 = −a[3]
0

a[1]
1

(
1

3
+ 1

2
n + 1

6
n2

)
= − a[3]

0

6a[1]
1

(n + 1) (n + 2) , n ≥ 0 . (4.10)

Conversely, the 2-orthogonal polynomial sequence {Pn}n≥0 defined by the recurrence coefficients (4.8)-(4.10)
fulfils the third order differential equation J (Pn(x)) = λ

[0]
n Pn(x) , n ≥ 0 , where a0(x) = a[0]

0 , a1(x) = a[1]
0 +

a[1]
1 x , a[1]

1 �= 0 , a2(x) = a[2]
0 , a3(x) = a[3]

0 �= 0 , and aν(x) = 0 , ν ≥ 4.

Proof Analysing the following polynomials, that are assumed to be trivial
(
a0(x)I + a1(x)D + a2(x)

2
D2 + a[3]

0

3! D3

)
(Pi (x)) − λ

[0]
i Pi (x) ,

for i = 0, 1, 2, 3, 4, 5, we deduce the next list of conditions

a[2]
1 = 0 ,

βi = −a[1]
0

a[1]
1

, i = 0, 1, 2, 3 ,

α1 = − a[2]
0

2a[1]
1

, α2 = −a[2]
0

a[1]
1

, α3 = −3a[2]
0

2a[1]
1

, α4 = −4a[2]
0

2a[1]
1

,

γ1 = − a[3]
0

3a[1]
1

, γ2 = −a[3]
0

a[1]
1

, γ3 = −2a[3]
0

a[1]
1

.

Equation (4.2) points to a general solution of the form βn+2 = c1 + c2n that in view of the initial data of βi , i =
0, 1, 2, 3, yields βn = − a[1]

0

a[1]
1

, n ≥ 0.
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Looking at (4.3) updating the information of {βn}n≥0, and using the initial data regarding αi , i = 1, 2, 3, 4, we

conclude that αn+1 = − a[2]
0

2a[1]
1

(n + 1) , n ≥ 0. Finally, (4.4) and the initial conditions provide the global definition

γn+1 = − a[3]
0

a[1]
1

( 1
3 + 1

2n + 1
6n

2
)

, n ≥ 0.

It is important to stress that having defined these three sets of constants as the recurrence coefficients of the
sequence {Pn}n≥0, all the remaining terms of the right hand of relation (3.15) vanish, namely the coefficients of
Pn+1(x), Pn(x), Pn−1(x), Pn−2(x), Pn−3(x) and Pn−4(x), and the entire identity (3.15) is fulfilled without the need
of further restrictions.

Conversely, let us assume that the 2-orthogonal MPS is defined by the recurrence coefficients (4.8)-(4.10) and
let us consider the operator

J = a0(x)I + a1(x)D + a2(x)

2
D2 + a3(x)

3! D3 ,

with a0(x) = a[0]
0 , a1(x) = a[1]

0 + a[1]
1 x , a[1]

1 �= 0 , a2(x) = a[2]
0 , and a3(x) = a[3]

0 �= 0 .

It is easy to confirm that the following identities are true, for the initial values of i , like i = 0, . . . , nmax with
nmax equal to 4 or 5, using for that matter the definitions of the operator J , J (1) and J (2), as indicated in (3.3)-(3.4).

J (Pi (x)) = λ
[0]
i Pi (x) , i = 0, . . . 5.

J (1) (Pi (x)) =
(
λ

[0]
i+1 − λ

[0]
i

)
Pi+1(x)

+ αi

(
λ

[0]
i−1 − λ

[0]
i

)
Pi−1(x) + γi−1

(
λ

[0]
i−2 − λ

[0]
i

)
Pi−2(x) , i = 0, . . . 4.

J (2) (Pi (x)) = Ai+2Pi+2(x) + Bi+1Pi+1(x) + Ci Pi (x)

+ Di−1Pi−1(x) + Fi−2Pi−2(x) + Gi−3Pi−3(x) + Hi−4Pi−4(x) , i = 0, . . . 4 ,

with Ai , Bi , Ci , Di , Fi , Gi and Hi defined as read in (3.13).
As induction hypotheses over n, we consider to be true the following set of identities.

J (Pi (x)) = λ
[0]
i Pi (x) , i = 0, . . . , n + 2.

J (1) (Pi (x)) =
(
λ

[0]
i+1 − λ

[0]
i

)
Pi+1(x)

+ αi

(
λ

[0]
i−1 − λ

[0]
i

)
Pi−1(x) + γi−1

(
λ

[0]
i−2 − λ

[0]
i

)
Pi−2(x) , i = 0, . . . , n + 1.

J (2) (Pi (x)) = Ai+2Pi+2(x) + Bi+1Pi+1(x) + Ci Pi (x)

+ Di−1Pi−1(x) + Fi−2Pi−2(x) + Gi−3Pi−3(x) + Hi−4Pi−4(x), i = 0, . . . , n + 1,

where Ai , Bi , Ci , Di , Fi , Gi and Hi are the coefficients defined in (3.13).
In view of the precise definitions of the recurrence coefficients of {Pn}n≥0 and the description of polynomials

a3(x), a2(x) and a1(x), this set of identities may be rewritten as follows.

J (Pi (x)) = λ
[0]
i Pi (x) , i = 0, . . . , n + 2 , with λ

[0]
i = a[0]

0 + ia[1]
1 �= 0. (4.11)

J (1) (Pi (x)) = a[1]
1 Pi+1(x) + 1

2
i a[2]

0 Pi−1(x)

+ 1

3
i (i − 1)a[3]

0 Pi−2(x) , i = 0, . . . , n + 1. (4.12)

J (2) (Pi (x)) = a[2]
0 Pi (x) + ia[3]

0 Pi−1(x) , i = 0, . . . , n + 1. (4.13)
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Looking at (4.5) knowing that J (3) (Pn+1(x)) = a[3]
0 Pn+1(x), and using the four-term recurrence relation and the

induction hypotheses (4.13), we conclude:

J (2) (Pn+2(x)) = a[2]
0 Pn+2(x) + (n + 2)a[3]

0 Pn+1(x).

Similarly, when we apply hypotheses (4.12) and (4.13) into (4.6), along with the four-term recurrence relation, we
deduce:

J (1) (Pn+2(x)) = a[1]
1 Pn+3(x) + 1

2
(n + 2) a[2]

0 Pn+1(x)

+ 1

3
(n + 1)(n + 2)a[3]

0 Pn(x) . (4.14)

Finally, using the hypotheses (4.11), the four-term recurrence relation and (4.14) , we infer from (4.7):

J (Pn+3(x)) = λ
[0]
n+3Pn+3(x) =

(
a[0]

0 + (n + 3)a[1]
1

)
Pn+3(x) ,

which completes the induction argument and allow us to assert that J (Pn(x)) = λ
[0]
n Pn(x) for all non-negative

values of n. ��
Concerning the assumptions of this last Propostion, it is worth mention that, later on, it is clarified in Proposition

3 that if deg (a3(x)) = 0, though a3(x) �= 0, and deg (a2(x)) = 0, then a[1]
1 �= 0.

It is also important to remark that the 2-orthogonal sequence described in Proposition 2 corresponds to a case,
called E, of page 82 of [8]. We then conclude that the single 2-orthogonal polynomial sequence fulfilling the
differential identity described in Proposition 2 is classical in Hahn’s sense, which means that the sequence of the
derivatives Qn(x) = 1

n+1 DPn+1(x) , n ≥ 0, is also a 2-orthogonal polynomial sequence.
The classical character can be expressed by means of a vectorial functional equation fulfilled by the pair of

forms (u0, u1) that in this particular case can be read in page 292 of [6], for the case β0 = 0, or a[1]
0 = 0,

taking into account that it is established in [8] (p. 104) that this sequence is an Appell sequence, in other words,
Qn(x) = Pn(x) , n ≥ 0. We review this detail while working with the intermediate relations (3.9) and (3.12) along
with the proof of Proposition 2, and based on those two identities we may indicate as corollary the following two
differential identities.

Corollary 1 Let us consider the 2-orthogonal polynomial sequence {Pn}n≥0 described in Proposition 2 that fulfils

J (Pn(x)) = λ[0]
n Pn(x)

where J is defined by (2.8) with aν(x) = 0 , ν ≥ 4, and such that a0(x) = a[0]
0 , a1(x) = a[1]

0 + a[1]
1 x , a[1]

1 �= 0 ,

a2(x) = a[2]
0 , a3(x) = a[3]

0 �= 0 . The sequence {Pn}n≥0 also fulfils the following two identities

(
a1(x)I + a[2]

0 D + 1

2
a[3]

0 D2
)

(Pn(x)) = a[1]
1 Pn+1(x)

+ 1

2
n a[2]

0 Pn−1(x) + 1

3
(n − 1)n a[3]

0 Pn−2(x) ,

DPn(x) = nPn−1(x) , n ≥ 0 , P−1(x) = 0 .

In the next proposition, we sum up a list of further conclusions pointed out by the application of the symbolic
approach detailed in Sect. 3 .
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Proposition 3 Let us consider a 2-orthogonal polynomial sequence {Pn}n≥0 fulfilling

J (Pn(x)) = λ[0]
n Pn(x) ,

where J is defined by (2.8) with aν(x) = 0 , ν ≥ 4.

a) If a2(x) = a[2]
0 (constant) and deg (a3(x)) ≤ 2, though a3(x) �= 0, then a[1]

1 �= 0.
b) If a2(x) = 0 and deg (a3(x)) = 1, then there isn’t a 2-orthogonal polynomial sequence {Pn}n≥0 such that

J (Pn(x)) = λ
[0]
n Pn(x) , n ≥ 0.

c) If a3(x) = 0, then the only solution of J (Pn(x)) = λ
[0]
n Pn(x) corresponds to J = a[1]

0 D + a[0]
0 I .

Proof Inserting the hypotheses a2(x) = a[2]
0 (constant) and a[3]

3 = 0 into (3.15), we obtain a3(x)Pn+2(x) =
a[1]

1 Υn(x), for a given linear combination Υn(x) of elements of {Pn}n≥0. Thus, if we consider a[1]
1 = 0, we get

a3(x)Pn+2(x) = 0 which is impossible.
With respect to item b), we proceed with the analysis of (3.15) under the assumptions a3(x) = a[3]

1 x + a[3]
0 and

a2(x) = 0, which allows the definition of the sequences (βn)n≥0 , (αn)n≥0 and (γn)n≥0 by this order, as follows.

Firstly, identity (3.15) establishes the equation βn+4−2βn+3+βn+2 = 0 with initial data βn = −a[1]
0

a[1]
1

, n = 0, 1, 2, 3,

yielding: βn = −a[1]
0

a[1]
1

, n ≥ 0.

Secondly, from the knowledge of (βn)n≥0, (3.15) indicates

αn+4 − 2αn+3 + αn+2 = − a[3]
1

2a[1]
1

,

and taking into account the initial data obtained, the sequence (αn)n≥0 is defined by αn = − a[3]
1

4a[1]
1

n(n−1) , n ≥ 1 .

Finally, the equation about (γn)n≥0 reads

γn+3 − 2γn+2 + γn+1 = − 1

3a[1]
1

(
a[3]

0 − a[3]
1 a[1]

0

a[1]
1

)
,

yielding, in view of γ1 and γ2: γn = − 1

6
(
a[1]

1

)2

(
a[1]

1 a[3]
0 − a[1]

0 a[3]
1

)
n(n + 1) , n ≥ 1 .

Nevertheless, (3.15) furnishes more than the three equations mentioned previously and the remaining equations are
not fulfilled when the above three definitions are taken. In fact, both looking at (3.15) and to the initial computations

J (Pi (x)) − λ
[0]
i Pi (x) , i = 0, · · · , 10 ,

we conclude that a[3]
1 must be zero in which case we meet a particular setup of the case described in Proposition 2.

Thus, we may assert that the identity J (Pn(x)) = λ
[0]
n Pn(x) , n ≥ 0, does not admit 2-orthogonal solutions when

deg(a3(x)) = 1 and a2(x) = 0.
With respect to item c), when we aim for solutions of a second degree differential equation, we may look at

(3.12) because if a3(x) = 0 then the operator J (2) defined in (3.4) is free of derivatives, since J (2)(p) = a2(x)p ,
for all p ∈ P . Let us proceed by analysing identity (3.12), in particular, we apply the recurrence relation fulfilled
by {Pn(x)}n≥0:

x Pn(x) = Pn+1(x) + βn Pn(x) + αn Pn−1(x) + γn−1Pn−2(x) ,
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on the left-hand of (3.12), that is, in a2(x)Pn+2.
On one hand, the coefficient of Pn−2(x) of the expression

a2(x)Pn+2 − (An+4Pn+4(x) + Bn+3Pn+3(x) + Cn+2Pn+2(x)

+Dn+1Pn+1(x) + Fn Pn(x) + Gn−1Pn−1(x) + Hn−2Pn−2(x)) (4.15)

is −3a[2]
2 γn+1γn−1 yielding a[2]

2 = 0, due to the regularity of {Pn(x)}n≥0.
On the other hand, the computation of the first recurrence coefficients through

J (Pi (x)) − λ
[0]
i Pi (x) = 0 , i = 0, · · · , 3 ,

imply a[1]
1 = 0.

When we insert these two conditions a[1]
1 = 0 and a[2]

2 = 0 into (4.15), we gradually infer that a[2]
1 = 0 and

a[2]
0 = 0 putting us on the trivial situation J = a[1]

0 D + a[0]
0 I that corresponds to a known case. ��

In the final Proposition 4, we find the description of the 2-orthogonal sequence that is the solution of the problem
posed with respect to the third order operator J defined by the conditions a2(x) = 0 and deg (a3(x)) ≤ 2. Taking
into consideration Proposition 3, we have assured that deg (a1(x)) = 1, or a[1]

1 �= 0.

Proposition 4 Let us consider a 2-orthogonal polynomial sequence {Pn}n≥0 fulfilling

J (Pn(x)) = λ[0]
n Pn(x) , n ≥ 0 ,

where J is defined by (2.8) with aν(x) = 0 , ν ≥ 4, and such that a0(x) = a[0]
0 , a1(x) = a[1]

0 + a[1]
1 x , a[1]

1 �= 0 ,

a2(x) = 0 , a3(x) = a[3]
0 + a[3]

1 x + a[3]
2 x2 .

Then the recurrence coefficients of the sequence {Pn}n≥0 are the following and the coefficients of the polynomial
a3(x) = a[3]

2 x2 + a[3]
1 x + a[3]

0 fulfil

(a[3]
1 )2 − 4a[3]

2 a[3]
0 = 0.

βn = − a[3]
2

2a[1]
1

(n − 1)n − a[1]
0

a[1]
1

, n ≥ 0 , (4.16)

αn = − a[3]
1

2a[1]
1

+ a[1]
0 a[3]

2

(a[1]
1 )2

+ (n − 2)

⎛

⎝−3a[3]
1

4a[1]
1

+
a[3]

2

(
9a[1]

0 + a[3]
2

)

6(a[1]
1 )2

⎞

⎠

+(n − 2)2
(
b0 + b1(n − 2) + b2(n − 2)2

)
, n ≥ 1 , (4.17)

γn = − 1

3a[1]
1

⎛

⎝a[3]
0 +

a[1]
0

(
−a[1]

1 a[3]
1 + a[1]

0 a[3]
2

)

(a[1]
1 )2

⎞

⎠

−(n − 1)

(
(a[1]

1 )2a[3]
0 − a[1]

0 a[1]
1 a[3]

1 + (a[1]
0 )2 a[3]

2

2(a[1]
1 )3

)

+(n − 1)2
(
f0 + f1(n − 1) + f2(n − 1)2 + f3(n − 1)3 + f4(n − 1)4

)
, n ≥ 1 ; (4.18)
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where

f0 =
−18a[3]

0 (a[1]
1 )2 + 6a[3]

1 a[1]
1

(
3a[1]

0 + a[3]
2

)
+ a[3]

2

(
−18(a[1]

0 )2 − 12a[3]
2 a[1]

0 + (a[3]
2 )2

)

108(a[1]
1 )3

,

f1 =
a[3]

2

(
6a[1]

1 a[3]
1 + a[3]

2

(
a[3]

2 − 12a[1]
0

))

72(a[1]
1 )3

,

f2 = −
a[3]

2

(
a[3]

2

(
12a[1]

0 + a[3]
2

)
− 6a[1]

1 a[3]
1

)

216(a[1]
1 )3

,

f3 = − (a[3]
2 )3

72(a[1]
1 )3

,

f4 = − (a[3]
2 )3

216(a[1]
1 )3

,

b0 = 1

2

(
− a[3]

1

2a[1]
1

+ a[1]
0 a[3]

2

(a[1]
1 )2

+ 10 (a[3]
2 )2

12 (a[1]
1 )2

)
,

b1 = (a[3]
2 )2

3 (a[1]
1 )2

,

b2 = (a[3]
2 )2

12 (a[1]
1 )2

.

Conversely, the 2-orthogonal polynomial sequence {Pn}n≥0 defined by the recurrence coefficients (4.16)-(4.18),
under the assumption γn �= 0 , n ≥ 1 , fulfils the differential equation J (Pn(x)) = λ

[0]
n Pn(x) , n ≥ 0 , where

a0(x) = a[0]
0 , a1(x) = a[1]

0 +a[1]
1 x , a[1]

1 �= 0 , a2(x) = 0 , a3(x) = a[3]
2 x2 +a[3]

1 x+a[3]
0 with (a[3]

1 )2 −4a[3]
2 a[3]

0 =
0, and aν(x) = 0 , ν ≥ 4.

Proof The demonstration follows the same reasoning applied in the proof of Proposition 2, based on the symbolic
implementation of Sect. 3.
We compute the initial data for βi , for i = 0, 1, 2, 3, αi , for i = 1, 2, 3 and γi , for i = 1, 2, using the equations
J

(
Pj (x)

) − λ
[0]
j Pj (x) = 0 , j = 1, . . . , 4.

In the equation (3.15) we have on the left-hand a linear combination of the set of polynomials {Pn−2(x), Pn−1(x),
. . . , Pn+4(x)} in view of the recurrence relation fulfilled by a 2-orthogonal polynomial sequence:

x (Pn(x)) = Pn+1(x) + βn Pn(x) + αn Pn−1(x) + γn−1Pn−2(x).

Comparing both members of (3.15) we identify several equations, in particular, three of those allow the definition
of the sequences (βn)n≥0 , (αn)n≥0 and (γn)n≥0 by this order, as follows.

Firstly, identity (3.15) establishes the equation βn+4 −2βn+3 +βn+2 = −a[3]
2

a[1]
1

with initial data β2 = −a[1]
0 + a[3]

2

a[1]
1

,

β3 = −a[1]
0 + 3a[3]

2

a[1]
1

, and β0 = β1 = −a[1]
0

a[1]
1

, yielding (4.16).

Secondly, from the knowledge of (βn)n≥0, (3.15) indicates

αn+4 − 2αn+3 + αn+2 = − a[3]
1

2a[1]
1

+ a[1]
0 a[3]

2

(a[1]
1 )2

+ (a[3]
2 )2

(a[1]
1 )2

(n + 1)2 .
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Using the values of the initial α’s we conclude that the solution of this difference equation is given by (4.17).
Finally, the equation for (γn)n≥0 reads

γn+3 − 2γn+2 + γn+1 = − 1

3a[1]
1

(
a[3]

0 + βn+2

(
a[3]

1 + a[3]
2 βn+2

)
+ a[3]

2 (αn+3 + αn+2)
)

,

yielding (4.18), in view of γ1 and γ2.
It is important to stress that having defined these three sets of constants as the recurrence coefficients of the sequence

{Pn}n≥0, all the remaining equations defined by (3.15) are fulfilled if and only if
(
a[3]

1

)2 = 4a[3]
2 a[3]

0 .

Conversely, let us assume a 2-orthogonal MPS defined by the recurrence coefficients (4.16)-(4.18) and let us
consider the operator

J = a0(x)I + a1(x)D + a2(x)

2
D2 + a3(x)

3! D3 ,

with a0(x) = a[0]
0 , a1(x) = a[1]

0 + a[1]
1 x , a[1]

1 �= 0 , a2(x) = 0 , and a3(x) = a[3]
2 x2 + a[3]

1 x + a[3]
0 such that

(a[3]
1 )2 − 4a[3]

2 a[3]
0 = 0.

It is easy to confirm that the following identities are true, for the initial values of i , like i = 0, . . . , nmax with
nmax equal to 4 or 5, using for that matter the definitions of the operator J , J (1) and J (2), as indicated in (3.3)-(3.4).

J (Pi (x)) = λ
[0]
i Pi (x) , i = 0, . . . 5.

J (1) (Pi (x)) =
(
λ

[0]
i+1 − λ

[0]
i

)
Pi+1(x)

+ αi

(
λ

[0]
i−1 − λ

[0]
i

)
Pi−1(x) + γi−1

(
λ

[0]
i−2 − λ

[0]
i

)
Pi−2(x) , i = 0, . . . 4.

J (2) (Pi (x)) = Ai+2Pi+2(x) + Bi+1Pi+1(x) + Ci Pi (x)

+ Di−1Pi−1(x) + Fi−2Pi−2(x) + Gi−3Pi−3(x) + Hi−4Pi−4(x) , i = 0, . . . 4 ,

with Ai , Bi , Ci , Di , Fi , Gi and Hi defined as read in (3.13).
As induction hypotheses over n, we consider to be true the following set of identities.

J (Pi (x)) = λ
[0]
i Pi (x) , i = 0, . . . , n + 2. (4.19)

J (1) (Pi (x)) =
(
λ

[0]
i+1 − λ

[0]
i

)
Pi+1(x)

+ αi

(
λ

[0]
i−1 − λ

[0]
i

)
Pi−1(x) + γi−1

(
λ

[0]
i−2 − λ

[0]
i

)
Pi−2(x) , i = 0, . . . , n + 1. (4.20)

J (2) (Pi (x)) = Ai+2Pi+2(x) + Bi+1Pi+1(x) + Ci Pi (x)

+ Di−1Pi−1(x) + Fi−2Pi−2(x) + Gi−3Pi−3(x) + Hi−4Pi−4(x), i = 0, . . . , n + 1, (4.21)

where Ai , Bi , Ci , Di , Fi , Gi and Hi are the coefficients defined in (3.13).

Looking at (4.5) knowing that J (3) (Pn+1(x)) =
(
a[3]

2 x2 + a[3]
1 x + a[3]

0

)
Pn+1(x), and using the four-term

recurrence relation and the induction hypotheses (4.13), we conclude:

J (2) (Pn+2(x)) = An+4Pn+4(x) + Bn+3Pn+3(x) + Cn+2Pn+2(x)

+ Dn+1Pn+1(x) + Fn Pn(x) + Gn−1Pn−1(x) + Hn−2Pn−2(x).
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Similarly, when we apply hypotheses (4.20) and (4.21) into (4.6), along with the four-term recurrence relation, we
deduce:

J (1) (Pn+2(x)) =
(
λ

[0]
n+3 − λ

[0]
n+2

)
Pn+3(x)

+αn+2

(
λ

[0]
n+1 − λ

[0]
n+2

)
Pn+1(x) + γn+1

(
λ[0]
n − λ

[0]
n+2

)
Pn(x) . (4.22)

Finally, using the hypotheses (4.11), the four-term recurrence relation and (4.14) , we infer from (4.7):

J (Pn+3(x)) = λ
[0]
n+3Pn+3(x) ,

which completes the induction argument and allow us to assert that J (Pn(x)) = λ
[0]
n Pn(x) for all non-negative

values of n. ��

The content of Proposition 4 provides an entire solution written in terms of the polynomial coefficients of the
operator J . In the next Corollary we read a specific case endowed with Hahn’s property, as we may confirm
computationally, for the first elements of the sequence, or prove analytically using the functionals of the dual
sequence. The computational confirmation, for n = 0, . . . , nmax , for a given positive integer nmax , was done
using the recursive definition of the sequence P [1]

n (x) = (n + 1)−1DPn+1(x) , n ≥ 0, as indicated in [18] and
through the application of the routine SCζ that computes the structure coefficients of any given MPS {ζn}n≥0 (cf.
Step 3 of the symbolic computation of [18]). The analytical proof is out of the scope of this paper, since it requires
a somehow extensive work with the dual sequence along with some results of [14] and [17], regarding further
knowledge on 2-orthogonality and on the transpose operator of J .

Corollary 2 Let us consider the 2-orthogonal polynomial sequence {Pn}n≥0 fulfilling

J (Pn(x)) = λ[0]
n Pn(x) , n ≥ 0 ,

where J is defined by (2.8) with aν(x) = 0 , ν ≥ 4, and such that a0(x) = a[0]
0 , a1(x) = 1

24 x , a2(x) = 0 ,

a3(x) = (x − 1)2 .

Then the recurrence coefficients of the sequence {Pn}n≥0 are the following.

βn = −12(n − 1)n , n ≥ 0 , (4.23)

αn = 12(n − 1)n(2n − 3)2 , n ≥ 1 , (4.24)

γn = −4n(n + 1)(2n − 3)2(2n − 1)2 , n ≥ 1. (4.25)

Conversely, the 2-orthogonal polynomial sequence {Pn}n≥0 defined by the recurrence coefficients (4.23)-(4.25)
fulfils the differential equation

(
1

6
(x − 1)2D3 + 1

24
xD + a[0]

0 I

)
(Pn(x)) = λ[0]

n Pn(x) , n ≥ 0 ,

where λ
[0]
n = 1

24n + a[0]
0 , n ≥ 0 .
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Furthermore, we remark that the polynomial sequence {Pn}n≥0 defined by (4.23)-(4.25), fulfils the following two
differential relations obtained by (3.9) and (3.12).

(
1

24
x I + 1

2
(x − 1)2D2

)
(Pn(x)) = 1

24
Pn+1(x)

− 1

2
(3 − 2n)2(n − 1)nPn−1(x) + 1

3
(n − 1)n(15 − 16n + 4n2)2Pn−2(x) , (4.26)

(x − 1)2D(Pn(x)) = nPn+1(x) − 2n(5 + 4n(2n − 3))Pn(x)

+ (3 − 2n)2n(24(n − 2)n + 25)Pn−1(x) − 8(5 − 2n)2(n − 1)n(2n − 3)3Pn−2(x)

+ 4(3 − 2n)2(5 − 2n)2(7 − 2n)2(n − 2)(n − 1)nPn−3(x) , n ≥ 0 , P−i (x) = 0 . (4.27)

5 Conclusions

The symbolic approach here presented aims to find 2-orthogonal eigenfunctions of a third order differential operator
of the form p3(x)D3 + p2(x)D2 + p1(x)D + p0(x)I , deg (pi (x)) ≤ i , and provides a research scheme that led
us to the results of Sect. 4; in particular, it has brought to light the 2-orthogonal sequence defined in Corollary 2.
In addition, the steps of the procedure proposed brings up other differential identities fulfilled by a 2-orthogonal
solution besides the prefixed one J (Pn(x)) = λ

[0]
n Pn(x) , n ≥ 0 .

An ongoing work around the functionals (u0, u1) demonstrates the Hahn classical feature of the sequences
found so far and possibly others. Therefore, this implementation is a suitable instrument either in finding complete
descriptions of such 2-orthogonal sequences or establishing the non-existence of solutions, and it is a relevant
tool in the pursuit of polynomial sequences characterised as eigenfunctions of given differential operators, defined
independently of n.
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