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ABSTRACT International organizations have collaborated to revise standards and guidelines for human 

protection from exposure to electromagnetic fields. In the frequency range of 6–300 GHz, the permissible 

spatially averaged epithelial/absorbed power density, which is primarily derived from thermal modeling, is 

considered the basic restriction. However, for the averaging methods of the epithelial/absorbed power density 

inside human tissues, only a few groups have presented calculated results obtained using different exposure 

conditions and numerical methods. Because experimental validation is extremely difficult in this frequency 

range, this paper presents the first intercomparison study of the calculated epithelial/absorbed power density 

inside a human body model exposed to different frequency sources ranging from 10–90 GHz. This 

intercomparison aims to clarify the difference in the calculated results caused by different numerical 

electromagnetic methods in dosimetry analysis from 11 research groups using planar skin models. To reduce 

the comparison variances caused by various key parameters, computational conditions (e.g., the antenna type, 

dimensions, and dielectric properties of the skin models) were unified. The results indicate that the maximum 

relative standard deviation (RSD) of the peak spatially averaged epithelial/absorbed power densities for one- 

and three-layer skin models are less than 17.49% and 17.39%, respectively, when using a dipole antenna as 

the exposure source. For the dipole array antenna, the corresponding maximum RSD increases to 32.49% and 

42.55%, respectively. Under the considered exposure scenarios, the RSD in the spatially averaged 

epithelial/absorbed power densities decrease from 42.55% to 16.7% when the frequency is increased from 

10–90 GHz. Furthermore, the deviation from the two equations recommended by the exposure guidelines for 

deriving the spatially averaged epithelial/absorptive power density is mostly within 1 dB. The fair agreement 

in the intercomparison results demonstrates that the variances of the spatially averaged epithelial/absorbed 

power densities calculated using planar skin models are marginal.  
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I. INTRODUCTION 

Owing to the development of various wireless systems, 

research on the protection of humans exposed to 

electromagnetic fields (EMFs) has attracted considerable 

attention [1][4]. In 2019 and 2020, the IEEE International 

Committee on Electromagnetic Safety (ICES) Technical 

Committee (TC) 95 and the International Commission on 

Non-Ionizing Radiation Protection (ICNIRP) revised the 

exposure standards and guidelines, respectively, to prescribe 

the exposure limits for people in restricted 

environments/occupational exposure and for unrestricted 

environments/general public exposure conditions [5], [6]. 

In the revised standard/guidelines, the two-tier approach is 

used, similar to the previous versions. The epithelial/absorbed 

power density (hereafter referred as APD) is used as a new 

internal physical quantity to set the dosimetric reference limit 

(DRL) or basic restriction (BR), which is derived from the 

operational threshold of adverse health effects, considering the 

safety or reduction factor in the frequencies from 6–300 GHz. 

These DRL or BR were derived based on thermal modeling 

[7][12], which provides a high degree of protection against 

dominant adverse health effects of exposure, that is, localized 

temperature elevation on the surface of human skin tissue. To 

correlate well with the local maximum temperature increase, 

it is suggested that the APD be averaged over an area of 4 cm2 

from 6–300 GHz. Above 30 GHz, a smaller spatial averaging 

area of 1 cm2 should also be considered to account for possible 

narrow-beam exposure scenarios. For this averaging area, the 

limit was relaxed by a factor of 2. Conversely, the permissible 

external exposure reference level (ERL) [5] or reference level 

(RL) [6], that is, the incident power density (IPD) in free 

space, which is derived from the APD, has been prescribed 

conservatively. Based on the exposure guidelines/standards, 

the IPD should be averaged over an area of 4 cm2 for 

frequencies ranging from 6–300 GHz. For frequencies higher 

than 30 GHz, additional criteria of the IPD averaged over 1 

cm2 are given with a relaxation of ERL/RL by a factor of two 

for local beam-like exposures, similar to those of the spatial 

average of the APD.  

Dosimetric studies for both plane-wave [13][21] and 

antenna source exposures [22][40] were conducted to 

determine the relationship between the power densities and 

resultant surface temperature elevation above 6 GHz. 

Subcommittee 6 of the IEEE ICES TC95 reported on a guide 

for defining the spatial average of IPD to correlate surface 

temperature elevation [41]. Using intercomparison from 

established working groups in dosimetry analysis using 

various skin and antenna models, the deviations of the heating 

factors of the spatially averaged IPDs were insignificant [42], 

including the oblique incidence angle effects caused by phased 

array antennas [43]. In comparison with the IPD outside 

human tissue, however, the APD, which is closely correlated 

with the superficial heating of human tissue, has not been 

studied sufficiently and to a greater extent. Only a few groups 

computed the APD and resultant temperature rise at 

frequencies greater than 6 GHz using different exposure 

conditions and methods [44][48]. Considering different 

important factors (e.g., the antenna type (size), frequency, 

separation distance from the radiation source, averaging area, 

and tissue electrical parameters), it is worthwhile to further 

discuss and clarify the appropriate schemes for the spatial 

average of the APD in conventional planar models and in non-

planar and complex irregular human tissue models. 

Under Subcommittee 6 of the IEEE ICES TC95, a new 

working group (WG) was established, which aims to study and 

quantify the effects of different schemes on the spatial average 

of the APD above 6 GHz. The cause of the variances of the 

numerical calculations in the dosimetry analyses will be 

evaluated through an objective comparison of the computation 

results from participating organizations using their proper 

assessment methods and average schemes with various body 

and antenna models. This intercomparison of the specific 

absorption rate (SAR) has been conducted for standardization 

in frequency bands of a few GHz [49]. This is because the 

measurement of the field strength in biological bodies is 

difficult; thus, a computational approach is often conducted. 

Additionally, for exposure at higher frequencies (particularly 

above 6 GHz, where the penetration depth is below 

approximately 1 cm), precise measurement in the depth 

direction becomes extremely difficult.  

The WG task for the average scheme and assessment 

method of the spatially averaged APD is divided into three 

phases: 

 

 intercomparison of spatially averaged APD using 

conventional planar models 

 appropriate average schemes using non-planar shaped 

models (e.g., cylinder or sphere) 

 ultimate challenge of the complex irregular voxel model 

of realistic human tissue, including thermal analysis 

 

To evaluate the deviation of the spatially averaged APD 

caused by the numerical calculation method of each research 

organization, a traditional planar skin model with unified 

computational conditions was utilized for the first step of the 

intercomparison, as mentioned above. This study computed 

the spatially averaged IPD and APD at the skin surface from 

10–90 GHz using computational approaches with unified 

body and antenna models. An intercomparison of the 

numerical calculation variances from different research 

organizations using their simulation codes and commercial 

electromagnetic (EM) solvers was performed.  
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II.  Analytical Model and Method 

A.  Exposure Scenarios 

Eleven different organizations collaborated to conduct this 

study: Nagoya Institute of Technology (NITech), South China 

Agricultural University (SCAU), Kagawa University 

(Kagawa Univ.), Aalborg University (AAU), University of 

Split (UniSplit), National Institute of Information and 

Communications Technology (NICT), Kitami Institute of 

Technology (KITech), Institut d’Électronique et des 

Technologies du numéRique (IETR), Foundation for Research 

on Information Technologies in Society (IT’IS), Dassault 

Systèmes SIMULIA (3DS), and Intel Corporation (Intel). 

Table I presents an overview of the scenarios evaluated 

numerically by participating organizations. As presented in 

the table, a separation distance between the antenna and skin 

surface ranging within 5–15 mm was considered for 

frequencies of 10 and 30 GHz. At 90 GHz, the separation 

distances were set from 2–10 mm for the extreme near-field 

exposure conditions of interest at higher frequencies. 

Nonetheless, in most wireless device application scenarios, the 

antenna was not located close to the body to such a separation 

distance. All the conditions presented in this study clarify the 

variances in spatially averaged APD computed by different 

research organizations. 

The antenna and planar skin models for the numerical 

simulations used by different organizations are shown in Fig. 

1. As suggested in the discussion of the WG under 

Subcommittee 6 of the IEEE ICES TC95, a single half-

wavelength dipole antenna and a 4 × 4 dipole antenna array 

were used in this intercomparison study. The half-wavelength 

dipole was modeled as a perfect electric conductor. Dipoles 

were designed at 10, 30, and 90 GHz by each research 

organization. For most research organizations, the antenna 

was resonated with an adjusted length to obtain the maximum 

radiation power emitted from the antenna to the extent 

possible.  

Table II summarizes the dipole lengths used by each 

organization. For the 4 × 4 dipole antenna arrays, almost the 

same length (Table II) was used by the corresponding 

organization of the dipole element in the array. The separation 

distance between the feeding points of any two adjacent dipole 

elements is /2, where  is the free-space wavelength. For both 

dipole and dipole arrays, the total antenna input power was 

normalized to 10 mW representing a typical power level of 

mobile devices in the considered frequency range, as in the 

previous WG [41], [42]. 

On the other hand, a one-layer skin model and stratified 

models composed of skin, fat, and muscle layers were 

employed in this study for dosimetry analysis (Fig. 1). The 

dimensions of the skin models were L × L × T (mm3; Table 

III). The dielectric properties of the tissues obtained by a four-

Cole–Cole dispersion model [50][52] were employed. The 

electrical parameters for each tissue layer in the skin model are 

summarized in Table IV. 

 

 
FIGURE 1.  Antenna and skin models for dosimetry analysis. 

 

 
TABLE I 

EXPOSURE SCENARIOS 

Antenna type Skin Model 
Frequency  

(GHz)  

Distance 

(mm) 

/2 dipole,  
4 × 4 dipole array 

one-layer, 

three-layer 

10 5, 10, 15 

30 5, 10, 15 

90 2, 5, 10 

 

 
TABLE II 

LENGTHS OF DIPOLE ANTENNA ELEMENTS FOR EACH ORGANIZATION 

Org. 
10 GHz 

(mm) 

30 GHz 

(mm) 

90 GHz 

(mm) 

O1 13.75 4.25 1.25 

O2 13.5 4.75 1.5 

O3 13.6 4.4 1.5 

O4 12.6 4.11 1.46 

O5 15.0 5.0 1.67 

O6 13.75 4.625 1.55 

O7 14.5 4.75 1.5 

O8 15.0 5.0 1.67 

O9 13.6 4.53 1.51 

O10 15.0 5.0 1.67 

O11 13.49 4.57 1.52 

Abbreviations: Organization (Org.). 

 

 
TABLE III 

DIMENSION AND THICKNESSES OF SKIN MODELS AT EACH FREQUENCY 

Skin 

model 
Dimension 10 GHz 30 GHz 90 GHz 

one-

layer 

L (mm) 200 150 60 

T (mm) 100 75 30 

three-

layer

L (mm) 100 50 50 

Tskin (mm) 1.5 1.5 1.5 

Tfat (mm) 4.0 4.0 4.0 

Tmuscle (mm) 14.5 14.5 14.5 

L

L

M
u

sc
le

F
a

t

S
k

in

T

z

y

x

Dipole

d

FatMuscle Skin

Skin

/2

/2

/2

Dipole 

Array

one-layer

three-layer
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TABLE IV 

DIELECTRIC PROPERTIES FOR SKIN MODELS  

Skin 

model 
Tissue 

10 GHz 30 GHz 90 GHz 


(S/m) 

r 


(S/m) 
r 


(S/m) 

r 

one-

layer 
Skin 8.48 32.41 27.31 16.63 41.94 6.83 

 three-

layer 

Skin 8.48 32.41 27.31 16.63 41.94 6.83 

Fat 0.59 4.60 1.79 3.64 3.41 2.93 

Muscle 10.63 42.76 35.49 23.16 60.72 9.30 

 

 
TABLE V 

NUMERICAL METHOD AND SPATIAL RESOLUTION () FOR NUMERICAL 

SIMULATION BY EACH ORGANIZATION 

Org. Method 
10 GHz 
(mm) 

30 GHz 
(mm) 

90 GHz 
(mm) 

O1 FDTD 0.25 0.25 0.05 

O2 FDTD 0.5 0.25 0.1 

O3 FDTD 0.2 0.2 0.05 

O4 FIT 0.25 0.1-0.2 0.01-0.05 

O5 GB-IBEM 0.25 0.25 0.25 

O6 FDTD 0.25 0.125 0.05 

O7 FDTD 0.5 0.25 0.1 

O8 FEM 
0.014-
15.404 

0.007-
5.557 

0.002-
1.874 

O9 FDTD 0.25-0.05 0.1-0.05 
0.0125-

0.05 

O10 TLM 0.15-1.65 0.1-0.55 
0.0333-
0.183 

O11 FEM 0.5 0.5 0.1 

 

Table V summarizes the numerical techniques used to 

evaluate the IPD in free space and the APD inside the 

simplified human tissue models. The spatial resolutions used 

in each organization were also summarized. The finite-

difference time-domain (FDTD) [52] method was adopted by 

six organizations that used their own developed in-house 

codes. In addition to the FDTD methods, the Galerkin-Bubnov 

indirect boundary element method (GB-IBEM) [54], finite 

integration technique (FIT) [55], finite element method (FEM) 

[56], and transmission line method (TLM) [57] have been used 

separately by other research organizations. It should be noted 

that the FIT, FEM, and TLM methods used by O4, O8, and 

O10, respectively, are the three different EM-solvers from 

commercial simulation software. The other group (O11) that 

used the FEM method was performed using different types of 

commercial software. Therefore, this study first covered 

almost all the commonly used methods of EM simulation for 

dosimetry analysis without the duplication of commercial 

software and code. This enables the provision of very neutral 

and representative intercomparison results to determine the 

deviation of the calculated APD caused by different numerical 

methods.  

First, the IPDs in free space were calculated without the 

presence of the body to clarify the influence of the different 

algorithms on the EM calculations of the antenna near-field. 

Similar to the previous WG, two definitions of the spatial-

average incident power density (sIPD), i.e., the normal (sIPDn) 

and norm (sIPDtot) component of the time-averaged power 

density for the EMF, were examined in the absence of the 

human body (Eqs. (6) and (7) in [42]). The spatial-average 

APD (sAPD) in the tissue was calculated for the modeling 

scenario using the simplified human block model. As 

recommended in the ICNIRP-2020 exposure guidelines [6], 

two general equations for deriving the sAPD were employed 

by each organization, which are expressed by the following 

formulae: 

 

𝑠APD(𝒓) =
1

𝐴
∬ ∫ 𝜎(𝒓)|𝑬(𝒓)|2𝑑𝑧𝑑𝑠

𝑧𝑚𝑎𝑥

0
,

𝐴
 (1) 

 

𝑠APD =
1

𝐴
∬ Re(𝑬(𝒓) × 𝑯∗(𝒓)) ∙ 𝑑𝒔,
𝐴

 (2) 

 

where 𝑬 and H indicates the effective values of the complex 

electric and magnetic fields inside the body surface, 

respectively; * denotes the complex conjugate; zmax is the 

depth where the EMF is negligibly small in respect to that at 

the skin surface; r denotes the position vector; and ds is the 

integral variable vector whose direction is normal to the 

integral area A on the body surface (x-y plane at z = 0). Because 

only the planar skin model was considered in this paper, the 

averaging areas in Eqs. (1) and (2) were averaged over a cubic 

volume and square area of the flat body surface, respectively, 

corresponding to the average area of the sIPDs.  

III.  Intercomparison Results 

The intercomparison results in terms of the peak spatial-

average IPD and APD (psIPD and psAPD) using different 

antennas are presented in this section. The psIPDn, psIPDtot, 

and psAPD were averaged over an area of A = 4 cm2 and A = 

1 cm2 at 10–90 GHz.  

A.  Comparison of Peak Spatial-Average Incident Power 
Density 

Figures 2 and 3 show the results of psIPD as a function of the 

antenna-to-skin separation distance d exposed to the single 

half-wavelength dipole or 4 × 4 dipole array antenna for the 

exposure scenarios in Table I, respectively. The solid lines 

indicate the psIPDn, whereas the dashed lines denote the 

psIPDtot when A = 1 cm2. The dash-dotted and dotted lines 

represent the corresponding results for A = 4 cm2. 
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FIGURE 2.  Spatially averaged incident power densities as a function of 
the antenna-to-skin separation distance for half-wavelength dipoles at 
frequencies of (a) 10, (b) 30, and (c) 90 GHz. 

 

In the case of the dipole antenna (Fig. 2), both psIPDn and 

psIPDtot decrease monotonically with an increase in the 

separation distance d. psIPDtot is greater than psIPDn in the 5–

10 mm range at 10–30 GHz and the 2–5 mm range at 90 GHz. 

At d > 10 mm, all the results do not show any significant 

differences between the two definitions of the sIPD. The 

maximum absolute differences of the psIPD among all the 

research groups are within 0.62, 0.45, and 0.43 dB 

respectively, at 10, 30, and 90 GHz when d > 5 mm.  

 
 
FIGURE 3.  Spatially averaged incident power densities as a function of 
the antenna-to-skin separation distance for 4 × 4 dipole array at 
frequencies of (a) 10, (b) 30, and (c) 90 GHz. 

 

For the 4 × 4 dipole array (Fig. 3), the profiles of both 

psIPDn and psIPDtot exhibit different trends compared to those 

of the dipole antennas owing to the dispersion of multiple 

near-field peaks generated by the wave source of the antenna 

array. Moreover, the difference between the psIPDn and 

psIPDtot was reduced.  

The maximum absolute differences of psIPD among all the 

organizations for the 4 × 4 dipole array are within 5.09, 0.77, 

and 0.6 dB respectively, at 10, 30, and 90 GHz when d is 

(a)

(b)

(c)

sIPDn (A = 1cm2)
sIPDtot (A = 1cm2)

sIPDn (A = 4cm2)
sIPDtot (A = 4cm2)

(a)

(b)

(c)

sIPDn (A = 1cm2)
sIPDtot (A = 1cm2)

sIPDn (A = 4cm2)
sIPDtot (A = 4cm2)
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greater than 5 mm. The above results indicate that, at a 

separation distance d > 5 mm, there is no obvious discrepancy 

between the different EM-simulation and spatial average 

methods for the calculation of psIPDn and psIPDtot for either 

the dipole or dipole antenna arrays. 

 
TABLE VI  

MEAN VALUE AND STANDARD DEVIATION OF SPATIALLY AVERAGED 

INCIDENT POWER DENSITIES FOR DIPOLE ANTENNAS 
 

Distance 

(mm) 

Frequency 

(GHz) 

psIPDn 

(A=1cm2) 

psIPDtot 

(A=1cm2) 

psIPDn 

(A=4cm2) 

psIPDtot 

(A=4cm2) 

5 

10 

18.04  

± 0.65 
20.62  

± 0.83 
8.23  

± 0.16 
11.28  

± 0.29 

10 
8.26  

± 0.26 

8.72  

± 0.29 

5.19  

± 0.12 

6.09  

± 0.15 

15 
4.53  

± 0.1 
4.66  

± 0.11 
3.37  

± 0.06 
3.7  

± 0.08 

5 

30 

21.31  

± 0.33 

25.34  

± 0.49 

8.46  

± 0.1 

12.09  

± 0.22 

10 
9.36  

± 0.15 
9.99  

± 0.16 
5.43  

± 0.06 
6.51  

± 0.09 

15 
4.91  

± 0.13 
5.08  

± 0.13 
3.52  

± 0.05 
3.91  

± 0.05 

2 

90 

36.99  

± 0.9 
56.53  

± 1.67 
10.83  

± 0.39 
20. 38  

± 0.99 

5 
21.92  

± 0.48 
26.3  

± 0.62 
8.55  

± 0.21 
12.31  

± 0.33 

10 
9.55  

± 0.22 

10.23  

± 0.24 

5.49  

± 0.12 

6.62  

± 0.15 

Unit: W/m2. 

TABLE VII  
MEAN VALUES AND STANDARD DEVIATIONS OF SPATIALLY AVERAGED 

INCIDENT POWER DENSITIES FOR DIPOLE ANTENNA ARRAYS 

 

Distance 

(mm) 

Frequency 

(GHz) 

psIPDn 

(A=1cm2) 

psIPDtot 

(A=1cm2) 

psIPDn 

(A=4cm2) 

psIPDtot 

(A=4cm2) 

5 

10 

2.02  

± 0.48 
2.06  

± 0. 49 
1.79  

± 0.21 
1.84  

± 0.23 

10 
2.03  

± 0.32 
2.06  

± 0.33 
1.75  

± 0.15 
1.79  

± 0.15 

15 
2.01  

± 0.13 
2.05  

± 0.15 
1.9  

± 0.1 
1.96 

± 0.13 

5 

30 

16.6  

± 0.62 
17.21  

± 0.86 
10.93 

± 0.16 
11.3  

± 0.22 

10 
21.77  

± 0.84 
20.85 

± 0.87 
9.47  

± 0.14 
9.56  

± 0.18 

15 
21.67  

± 0.69 
21.72  

± 0.73 
8.99  

± 0.19 
9.0  

± 0.2 

2 

90 

48.93  

± 1.55 
51.95  

± 2.05 
12.69  

± 0.51 
13.59  

± 0.72 

5 
42.55  

± 1.0 
43.03  

± 1.16 
12.35  

± 0.37 
13.0  

± 0.47 

10 
39.34  

± 1.07 
39.85  

± 1.23 
11.25  

± 0.22 
11.57  

± 0.33 

Unit: W/m2. 

 

 

Tables VI and VII summarize the mean value and standard 

deviation of computed psIPDn and psIPDtot for the dipole and 

dipole array, respectively. The separation distances from the 

antenna for the cases of d = 5, 10, and 15 mm for 10–30 GHz 

and d = 2, 5, and 10 mm for 90 GHz were compared. The 

relative standard deviation (RSD), which is defined as the ratio 

of the standard deviation to the mean value, was analyzed as a 

metric for the intercomparison of different research groups. 

For the dipole source, as presented in Table VI, the 

maximum RSD values of psIPD were 4.05% (d = 5 mm), 

2.58% (d = 15 mm), and 4.84% (d = 2 mm), respectively, at a 

frequency of 10–90 GHz. Conversely, for the case of the 4 × 

4 dipole array, as presented in Table VII, the maximum RSD 

was approximately 23.55% (d = 5 mm), 5.0% (d = 5 mm), and 

5.26% (d = 2 mm) at a frequency of 10–90 GHz. The above 

results agree well with the outcomes of previous WG activities 

(see Tables 6 and 7 in [42]). This shows that the impact on the 

calculation of the antenna near-field distribution in free space 

caused by the different numerical methods used by each 

organization is very small, demonstrating the effectiveness of 

EM-simulation methods for the antennas themselves. 

B.  Comparison of Peak Spatial-Average 
Epithelial/Absorbed Power Density 

Figures 4 and 5 show the intercomparison results of the 

psAPD as a function of the antenna-to-skin separation distance 

d exposed to the dipole when the averaging area A is 1 and 4 

cm2, respectively. In Figs. 4 and 5, the solid lines with circular 

markers indicate the results obtained using the one-layer 

model, whereas the dashed lines with square markers denote 

those obtained using the three-layer model.  

As shown in Figs. 4 and 5, for both the one- and three-

layer skin models exposed to a dipole antenna, the profiles 

of psAPD decrease gradually as d increases. At 10 GHz, 

relatively large deviations are observed in the different 

organizations. The maximum absolute differences of psAPD 

are 3.24 and 3.0 dB at d = 5 mm, respectively, for the one- 

and three-layer models when A = 1 cm2. When A increases 

to 4 cm2, the corresponding differences are reduced to 3.62 

and 2.89 dB, respectively.  

However, at frequencies ranging from 30–90 GHz, the 

deviations caused by the EM simulation methods are very 

small for both the one- and three-layer models. As shown in 

Figs. 4 (b) and (c) and Figs. 5 (b) and (c), the maximum 

absolute differences of psAPD are within 1.07 and 2.46 dB, 

respectively, at 30 and 90 GHz when A = 1 cm2. This 

difference is further reduced to 1.21 and 2.49 dB, 

respectively, for A = 4 cm2.  
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FIGURE 4.  Spatially averaged epithelial/absorbed power density as a 
function of the antenna-to-skin separation distance for a dipole when A = 
1 cm2 at frequencies of (a) 10, (b) 30, and (c) 90 GHz. 

 

Figures 6 and 7 show the intercomparison results of the 

psAPD as a function of the antenna-to-skin separation 

distance d exposed to the radiation sources of the 4 × 4 dipole 

array when the average area A is 1 and 4 cm2, respectively. 

Unlike the dipoles illustrated in Figs. 4 and 5, the deviation 

of psAPDs at 10 GHz is nonexistent at d = 5 mm, but at d = 

15 mm. The maximum absolute differences of psAPD at 10 

GHz are 9.84 and 10.15 dB at d = 15 mm when A is 1 and 4 

cm2, respectively.  

  

 
 
FIGURE 5.  Spatially averaged epithelial/absorbed power density as a 
function of the antenna-to-skin separation distance for a dipole when A = 
4 cm2 at frequencies of (a) 10, (b) 30, and (c) 90 GHz. 

 

Particularly at 30 GHz, there are also significant variations 

in the numerical results from the different research groups. 

The maximum absolute differences of the psAPD at 30 GHz 

increase to 5.49 and 4.27 dB at d = 5 mm when A is 1 and 4 

cm2, respectively. At 90 GHz, the largest deviation of psAPD 

changes at d = 5 mm to 2.75 and 2.74 dB, respectively, when 

A is 1 and 4 cm2. Furthermore, similar to the results of the 

dipoles in Figs. 4 and 5, the difference in the psAPD values 

obtained using the one- and three-layer skin models is still 

small for the dipole arrays. 

(a)

(b)

(c)

sAPD (1-layer) sAPD (3-layer)

(a)

(b)

(c)

sAPD (1-layer) sAPD (3-layer)
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FIGURE 6.  Spatially averaged epithelial/absorbed power density as a 
function of the antenna-to-skin separation distance for 4 × 4 dipole arrays 
when A = 1 cm2 at frequencies of (a) 10, (b) 30, and (c) 90 GHz. 

 

Tables VIII and IX list the statistical mean values and 

standard deviations of psAPD for cases of the dipole and 

dipole array, respectively. For the dipole source (Table VIII), 

the maximum RSD of the one-layer models were 20.0%, 

8.03%, and 13.33%, which occurred at frequencies of 10 GHz 

when d = 5 mm, 30 GHz when d = 10 mm, and 90 GHz when 

d = 10 mm.  

 

 

 

 
 
FIGURE 7.  Spatially averaged epithelial/absorbed power density as a 
function of the antenna-to-skin separation distance for 4 × 4 dipole arrays 
when A = 4 cm2 at frequencies of (a) 10, (b) 30, and (c) 90 GHz. 

 

When using the three-layer skin models, the corresponding 

maximum RSD were 17.39%, 5.77%, and 7.02%, which 

occurred at 10 GHz when d = 5 mm, 30 GHz when d = 5 mm, 

and 90 GHz when d = 2 mm.  

For the dipole array, as presented in Table IX, the maximum 

RSD of the one-layer models were 33.13%, 32.49%, and 

12.07% at 10 GHz when d = 15 mm, 30 GHz when d = 5 mm, 

and 90 GHz when d = 10 mm, respectively. When using the 

three-layer skin models, the corresponding maximum RSDs 

were within 42.55%, 29.55%, and 16.7%, respectively, at 10 

(a)

(b)

(c)

sAPD (1-layer) sAPD (3-layer)

(a)

(b)

(c)

sAPD (1-layer) sAPD (3-layer)
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GHz when d = 15 mm, 30 GHz when d = 5 mm, and 90 GHz 

when d = 5 mm.  

The above results indicate no evident difference exists 

between the psAPD values in the different organizations when 

using dipole antennas at 30 GHz and 90 GHz; however, some 

deviations occur at 10 GHz when d = 5 mm. The difference in 

the psAPD from 11 organizations when using the 4 × 4 dipole 

array was relatively greater than that of the dipole at 30 and 90 

GHz. Additionally, a significant difference is observed at 10 

GHz when d = 15 mm.  

These facts indicate that a difference in the numerical 

analysis of the spatial-average APD among various 

organizations may exist depending on the different antenna 

types at specific frequency ranges as well as antenna-to-skin 

separation distances, whereas the difference caused by the skin 

models is relatively marginal. Particularly, when using a 

dipole array at 30 GHz, relatively large deviations were 

observed, regardless of the skin models. To determine the 

skewness and tail weights of the data batches, statistical 

analysis of the significant differences in the calculated sPDs is 

conducted hereafter.  

C.  Statistical Analysis of the Significant Difference 

The variations in the psAPD values between the different 

groups in the previous sections suggest that they may be 

affected by the antennas types. In this section, the variability 

in psAPD caused by antenna models is evaluated.  

Figures 8 and 9 show the box plots of the calculated psIPD 

and psAPD, respectively, as a function of the frequency from 

10 to 90 GHz. The results are shown in Figs. 8 (a-b) and 9 (a-

b), respectively, when using a half-wavelength dipole and 4 × 

4 dipole array. In Figs. 8 and 9, the height of the rectangular 

box indicates the interquartile range (IQR), which is the range 

between the 75th and 25th percentiles. The horizontal line in 

the middle of the box denotes the statistical median value of 

psPD from different groups. The error bars show the range of 

maximum to minimum values, where the plus sign indicates 

the outliers. Notably, for each box with error bars, three sets 

of antenna-to-skin separation distances (5, 10, and 15 mm or 

2, 5, and 10 mm) and two types of skin models (one- and three-

layer; or two definitions for sIPD, namely, sIPDn and sIPDtot) 

were included. Therefore, the 11 research groups provided a 

maximum of 66 sets of data in each frequency band and 

averaging area, which was sufficient for statistical analysis.  

In Fig. 8 (a), for the sIPD values obtained using a dipole 

antenna, only one outlier was observed at 90 GHz when A = 4 

cm2. When using a dipole array, as can be seen in Fig. 8 (b), 

four outliers appear at 10 GHz. However, the IQRs of the sIPD 

values for the dipole array cases are much smaller than those 

of the dipole antennas. For the psAPD values obtained using 

the dipole antennas, as illustrated in Fig. 9 (a), two outliers 

occurred at 10 GHz when A = 4 cm2. When the dipole array 

was used, there were no outliers. Conversely, the IQRs of the 

psAPD values for the dipole arrays at 30 and 90 GHz are 

comparable or even larger than those of the dipole antennas, 

particularly when A = 1 cm2. However, the deviation caused 

by the numerical calculation error is not evident for both the 

psIPD and psAPD values.  

 
TABLE VIII  

MEAN VALUES AND STANDARD DEVIATIONS OF SPATIALLY AVERAGED 

EPITHELIAL/ABSORBED POWER DENSITIES FOR DIPOLE ANTENNAS.  
 

Distance 

(mm) 

Frequency 

(GHz) 

One-layer Three-layer 

psAPD 

(A=1cm2) 

psAPD 

(A=4cm2) 

psAPD 

(A=1cm2) 

psAPD 

(A=4cm2) 

5 

10 

15.27  

± 2.67 
6.31  

± 1.26 
9.62  

± 1.67 
3.85  

± 0.64 

10 
3.95  

± 0.45 

2.42  

± 0.46 
2.34  

± 0.21 
1.4  

± 0.15 

15 
2.51  

± 0.27  

1.83  

± 0.19 

1.57  

± 0.18 

1.16  

± 0.15 

5 

30 

12.0 

± 0.68 
4.39  

± 0.26 
11.93  

± 0.64 
4.38  

± 0.25 

10 
4.84  

± 0.36 
2.74  

± 0.22 
4.91 

± 0.24 
2.79  

± 0.15 

15 
2.53 

± 0.13 
1.8  

± 0.11 
2.53  

± 0.11 
1.81  

± 0.09 

2 

90 

24.44  

± 2.04 
6.67  

± 0.59 
24.76  

± 1.68 
6.71  

± 0.47 

5 
14.39  

± 0.43 
5.27  

± 0.18 
14.29  

± 0.43 
5.24  

± 0.18 

10 
6.06  

± 0.8 

3.42  

± 0.46 

6.25  

± 0.22 

3.54  

± 0.16 

Unit: W/m2. 

TABLE IX  
MEAN VALUES AND STANDARD DEVIATIONS OF SPATIALLY AVERAGED 

EPITHELIAL/ABSORBED POWER DENSITIES FOR DIPOLE ANTENNA ARRAYS.  

 

Distance 

(mm) 

Frequency 

(GHz) 

One-layer Three-layer 

psAPD 

(A=1cm2) 

psAPD 

(A=4cm2) 

psAPD 

(A=1cm2) 

psAPD 

(A=4cm2) 

5 

10 

0.81  

± 0.19 
0.69  

± 0.12 
0.5  

± 0.12 
0.42  

± 0.06 

10 
0.69  

± 0.16 
0.58  

± 0.12 
0.42  

± 0.09 
0.35 

± 0.06 

15 
2.73  

± 0.88 
2.65  

± 0.88 
2.77 

± 1.16 
2.69  

± 1.15 

5 

30 

21.35  

± 6.94 
12.09  

± 3.33 
22.41 

± 6.62 
12.65 

± 2.96 

10 
18.61  

± 5.63 
9.3  

± 2.61 
19.4 

± 4.69 
9.7 

± 2.16 

15 
17.7  

± 5.13 
7.87  

± 2.29 
18.0 

± 3.8 
7.98  

± 1.68 

2 

90 

36.41  

± 2.59 
9.33  

± 0.66 
36.37  

± 2.58 
9.33  

± 0.65 

5 
45.62  

± 7.31 
13.08  

± 2.05 
44.87 

± 7.5 
12.87 

± 2.06 

10 
33.36  

± 4.03 
9.6 

± 1.1 
32.698  

± 4.37 
9.4  

± 1.17 

Unit: W/m2. 



 

VOLUME XX, 2017 1 

 
FIGURE 8.  Statistical analysis of sIPD as a function of frequency from 
10 to 90 GHz considering all the potential effects caused by the EM-
method, antenna-to-skin separation distance, definition of power density, 
and averaging area: (a) single dipole and (b) 4 × 4 dipole arrays. 

 

D.  Variability of APD for the Dipole Array at 30 GHz 

As shown in Figs. 6 (b) and 7 (b), relatively large variations in 

the psAPD values occurred when using the 4 × 4 dipole array 

antennas at 30 GHz. In this section, the variability in the 

psAPD caused by the number of dipole antenna elements is 

evaluated.  

Figures 10 and 11 show the calculated psIPD and psAPD 

values, respectively, as a function of the antenna-to-skin 

separation distance d at 30 GHz, which were provided by O1. 

For simplicity, only the results for sIPDtot are shown in Fig. 10. 

Figs. 10 (a-b) and 11 (a-b) denote the average areas of 1 and 4 

cm2, respectively. To evaluate the impact of the number of 

antenna arrays, three different antenna types—half-

wavelength single dipole, 2 × 2, and 4 × 4 dipole arrays—were 

compared.  

 
 

 
FIGURE 9.  Statistical analysis of sAPD as a function of frequency from 
10 to 90 GHz considering all the potential effects caused by the EM-
method, antenna-to-skin separation distance, definition of power density, 
and averaging area: (a) single dipole and (b) 4 × 4 dipole arrays. 

 

 

As shown in Fig. 10 (a), all the results of psIPD smoothly 

change with an increase in the antenna-to-skin separation d. 

For the single dipole and 2 × 2 dipole arrays, the trends are 

close to monotonically decreasing as d increases. For the case 

of the 4 × 4 dipole array, the curve first exhibits an upward 

trend and then slowly declines as d increases. This may be due 

to the increased number of antenna arrays or dimensions, 

which changes the boundary conditions of the near field. 

However, when A = 4 cm2, the above changes become less 

observable, as illustrated in Fig. 10 (b).  

However, in Fig. 11 (a), the curves of psAPD when using 

the dipole arrays show evident periodic fluctuations as d 

increases. Particularly, at integer multiples of half wavelength, 

that is, 10 mm at 30 GHz, some bursts can be observed. This 

phenomenon did not change as the average area increased 

from 1 to 4 cm2, as shown in Fig. 11 (b). 

(a)

(b)

A=1cm2

A=4cm2

+ outliers

A=1cm2

A=4cm2

+ outliers

(a)

(b)

A=1cm2

A=4cm2

+ outliers

A=1cm2

A=4cm2

+ outliers
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FIGURE 10.  sIPDtot as a function of the antenna-to-skin separation 
distance with different antenna types of the single dipole, 2 × 2, and 4 × 4 
dipole arrays at 30 GHz averaged over (a) 1 cm2 and (b) 4 cm2. 

 

  

From the above results, it is deduced that, unlike the results 

of psAPD when using a single dipole, an increase in the 

number of dipole arrays may significantly change the mutual 

interaction between the antennas and skin models. This 

eventually results in a calculation error of psAPD at 5, 10, or 

15 mm at 30 GHz, which corresponds well with the relatively 

large deviation shown in Figs. 6 (b) and 7 (b). 

E.  Variability of APD Definition 

In this intercomparison study, the formula for deriving the 

sAPD was not unified among all research groups. Therefore, 

it is necessary to discuss the difference in the calculated sAPD 

caused by the two definitions in (1) and (2), that is, the 

volumetric integral for the entire skin model and surface 

integral of the normal component of the Poynting vector 

perpendicular to the skin model, respectively, as 

recommended by the ICNIRP exposure guidelines [6].  

 
FIGURE 11.  sAPD as a function of antenna-to-skin separation distance 
with different antenna types of single dipole, 2 × 2, and 4 × 4 dipole arrays 
at 30 GHz averaged over (a) 1 cm2 and (b) 4 cm2. 
 

 

Tables X and XI list the results of the maximum absolute 

difference in psAPD (psAPD) due to different definitions 

using dipole and dipole array antennas evaluated by O6 and 

O8, which employed the numerical methods of the FDTD and 

FEM, respectively. The same separation-distance conditions 

and skin models were used.  

In Table X, for the FDTD method, the maximum psAPD 

caused by the use of different equations are within 0.2 dB for 

the dipole and dipole array at frequencies within 1090 GHz 

when one-layer skin models are employed. When using the 

three-layer models, the corresponding difference did not 

exceed 0.51 dB. When using the FEM method, as shown in 

Table XI, the maximum psAPD slightly increases to within 

0.49 and 0.51 dB, respectively, for cases of the dipole and 

dipole array at 1090 GHz when the one-layer skin models are 

used. The corresponding difference is up to 0.69 and 1.3 dB, 

respectively, when using the three-layer skin models. 

(a)

(b)

(a)

(b)
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TABLE X  

MAXIMUM ABSOLUTE DIFFERENCE IN SPATIALLY AVERAGED 

EPITHELIAL/ABSORBED POWER DENSITIES DUE TO DIFFERENT DEFINITIONS 

USING DIPOLES AND DIPOLE ARRAYS INVESTIGATED USING FDTD METHOD.  

 

Distance 

(mm) 

Frequency 

(GHz) 

One-layer Three-layer 

psAPD 

(A=1cm2) 

psAPD 

(A=4cm2) 

psAPD 

(A=1cm2) 

psAPD 

(A=4cm2) 

Dipole 

10 0.13 dB 0.04 dB 0.51 dB 0.26 dB 

30 0.13 dB 0.16 dB 0.11 dB 0.16 dB 

90 0.19 dB 0.2 dB 0.19 dB 0.2 dB 

Dipole 

Array 

10 0.12 dB 0.11 dB 0.41 dB 0.23 dB 

30 0.18 dB 0.18 dB 0.17 dB 0.17 dB 

90 0.19 dB 0.2 dB 0.19 dB 0.2 dB 

 

 
TABLE XI 

MAXIMUM ABSOLUTE DIFFERENCE IN SPATIALLY AVERAGED 

EPITHELIAL/ABSORBED POWER DENSITIES DUE TO DIFFERENT DEFINITIONS 

USING DIPOLES AND DIPOLE ARRAYS INVESTIGATED USING FEM METHOD.  

 

Distance 

(mm) 

Frequency 

(GHz) 

One-layer Three-layer 

psAPD 

(A=1cm2) 

psAPD 

(A=4cm2) 

psAPD 

(A=1cm2) 

psAPD 

(A=4cm2) 

Dipole 

10 0.46 dB 0.42 dB 0.09 dB 0.69 dB 

30 0.49 dB 0.46 dB 0.46 dB 0.43 dB 

90 0.13 dB 0.12 dB 0.18 dB 0.17 dB 

Dipole 

Array 

10 0.15 dB 0.25 dB 1.3 dB 0.91 dB 

30 0.51 dB 0.5 dB 0.46 dB 0.46 dB 

90 0.23 dB 0.22 dB 0.22 dB 0.21 dB 

 

IV.  Discussion and Conclusion 

Compared with the intercomparison study of previous WG 

[41] [42], this study unified simulation conditions to the extent 

possible, such as the antenna type for the radiation source, 

planar skin model, and dielectric constants of body tissues, to 

minimize the number of variables that may affect the fairness 

of the intercomparison results. Moreover, the number of 

research groups as well as the EM-simulation algorithm have 

increased from the last 6 to 11. We believe that the established 

exposure scenarios considered in this study are more accurate 

and rigorous for clarifying the validity of the APD averaging 

method, which will be very informative for the next 

intercomparison of dosimetry analysis using more realistic 

body models.  

In the first step of the intercomparison of the peak value 

of spatially averaged incident power densities, that is, psIPDn 

and psIPDtot, all the results provided by the eleven groups 

showed good agreement with each other. For the cases using 

dipole antennas, the maximum RSDs among the different 

organizations were 4.04%, 2.58%, and 4.84% at frequencies 

of 10, 30, and 90 GHz, respectively. For the dipole array, the 

maximum RSDs did not exceed 23.55%, 5.0%, and 5.26% at 

frequencies of 10, 30, and 90 GHz, respectively. Relatively 

large deviations of up to 23.55% were observed for the 

dipole arrays at 10 GHz when d = 5 mm. For a large 

dimension of an array with 16 dipole elements, this distance 

can be regarded as an extreme near-field at 10 GHz. In this 

case, it is understandable that the difference in the 

electromagnetic field distribution obtained by different 

simulation methods increases owing to different approaches 

for solving Maxwell equations with different boundary 

conditions and resolutions. Additionally, the maximum 

RSDs of all the results did not exceed 5.26%. The above 

results are in agreement with the outcomes from a previous 

study (Tables 6 and 7 in [42]), demonstrating the 

effectiveness of all the employed methods for the EM 

simulation of the antenna near-field distribution. 

As the second step of intercomparison for the peak value 

of spatially averaged epithelial/absorbed power densities, 

that is, psAPD, an excellent agreement for the considered 

exposure scenarios using a dipole antenna can still be 

observed. At frequencies of 10, 30, and 90 GHz, the 

maximum RSDs among different organizations were 18.83%, 

8.03%, and 13.33%, respectively, for both the one- and three-

layer skin models. When using dipole arrays as the radiation 

source, relatively obvious deviations in the calculated 

psAPD are shown in several scenarios (e.g., 10 GHz at d = 

15 mm, 30 GHz when d is from 5 to 15 mm, and 90 GHz at 

d = 10 mm). Despite this, the maximum RSDs for the cases 

using the dipole arrays did not exceed 42.55%, 29.55%, and 

16.7%, respectively, at frequencies of 10, 30, and 90 GHz, 

regardless of the skin model. Based on the statistical 

significance analysis, the number of outliers is very small 

compared to the overall sample of the calculated data, 

including all the parameters of the antenna types, skin 

models, and separation distance. Furthermore, it is 

confirmed that the maximum difference caused by the 

equations of deriving the sAPD recommended by the 

ICNIRP exposure guidelines, i.e., the volumetric integral for 

the entire skin model and surface integral of the normal 

component of the Poynting vector perpendicular to the skin 

model, is generally approximately 0.5 to 1 dB or even less. 

The difference depends on the calculation condition, e.g., 

field segmentation; here, we found that the difference can be 

suppressed to approximately 0.2 dB or lower in almost all 

exposure scenarios.  

This study represents the first intercomparison of the 

calculated sAPD in a simplified body model for exposure from 
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different antennas ranging from 10 GHz to 90 GHz. The main 

causes of variance in the numerical calculations in the 

dosimetry analysis of psAPD were evaluated using an 

objective comparison of the analysis results from different 

research groups. The fair agreement among the 

intercomparison results demonstrated that deviations caused 

by the numerical method, definition, and spatial average of the 

calculated psAPD using planar skin models are marginal. 

However, with the increasing number of antenna arrays, the 

dependence on the antenna types that are used as the radiation 

sources for the dosimetry analysis of sAPD may be slightly 

increased. 
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