
Pasteurization of Beer by
Non-Thermal Technologies
Elham A. Milani 1 and Filipa V.M. Silva2*

1Chemical and Materials Engineering Department, University of Auckland, Auckland, New Zealand, 2LEAF—Linking Landscape,
Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa,
Lisboa, Portugal

The pasteurization of beer occurs at the end of the industrial production, after fermentation.
Generally, a mild thermal process (60°C) is employed aiming to inactivate the fermenting
yeast and potential spoilage microorganisms, thus extending the beer shelf-life at room
temperature. The heat treatment negatively affects the original beer freshness and flavor. In
this study, beer pasteurization using emerging non-thermal technologies, namely, high-
pressure processing (HPP), pulsed electric fields (PEF), and ultrasound (US), was
reviewed, including the effect on microbial inactivation and beer quality. The
combination of non-thermal methods with mild heat for more efficient pasteurization of
beer was also reviewed. All technologies caused microbial inactivation in beer. However,
room temperature HPP treatment was the most efficient method, delivering the minimum
15 PU (pasteurization units) to beer after seconds (e.g., 300 MPa for 27 s), as opposed to
thermal and TS treatments which required several minutes, while causing a negative
impact on beer sensory. As expected, PEF + heat caused a higher microbial inactivation
than PEF alone, and yeast ascospores were more resistant than vegetative yeast cells.
Non-thermal PEF (35–45 kV/cm) caused 3–5.8 log reductions in vegetative bacteria.
Studies on thermal assisted PEF and ultrasound combined with low heat (50–55°C)
showed processing times in the magnitude of microseconds for PEF pasteurization and
0.5–2min (depending on the temperature) for TS pasteurization. With respect to impact of
these technologies on beer quality, HPP, thermosonication (TS), high pressure
homogenization (HPH), and dense phase CO2 (DPCD) treatments revealed less effect
on beer sensory properties, better retaining the freshness of original beer, compared to
thermally processed beers.
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INTRODUCTION TO BEER PASTEURIZATION

Beer is an alcoholic beverage, which is produced by yeast fermentation of the sugar obtained from
malted cereal grains (e.g., barley and wheat). A Sumerian tablet found in Mesopotamia dated
6,000 years ago is the oldest evidence of beer production (Mirsky, 2007; Nelson, 2014). Global beer
production amounted to about 1.91 billion of hectolitres in 2018, from 1.30 billion hectolitres in
1998, which demonstrates beer as a high demand beverage in the world (Statista, 2020). The
production of beer consists of four stages: malting in which barley (or other cereal) is converted to
malt, mashing where hops are added and malt is converted to wort by boiling, fermentation of sugars

Edited by:
Guibing Chen,

North Carolina Agricultural and
Technical State University,

United States

Reviewed by:
Sevcan Unluturk,

Izmir Institute of Technology, Turkey
Hafiz Shahbaz,

University of Veterinary and Animal
Sciences, Pakistan

*Correspondence:
Filipa V.M. Silva

fvsilva@isa.ulisboa.pt
filipavinagresilva@gmail.com

Specialty section:
This article was submitted to

Food Safety and Quality Control,
a section of the journal

Frontiers in Food Science and
Technology

Received: 20 October 2021
Accepted: 10 December 2021

Published: 23 March 2022

Citation:
Milani EA and Silva FVM (2022)
Pasteurization of Beer by Non-

Thermal Technologies.
Front. Food. Sci. Technol. 1:798676.

doi: 10.3389/frfst.2021.798676

Frontiers in Food Science and Technology | www.frontiersin.org March 2022 | Volume 1 | Article 7986761

REVIEW
published: 23 March 2022

doi: 10.3389/frfst.2021.798676

http://crossmark.crossref.org/dialog/?doi=10.3389/frfst.2021.798676&domain=pdf&date_stamp=2022-03-23
https://www.frontiersin.org/articles/10.3389/frfst.2021.798676/full
https://www.frontiersin.org/articles/10.3389/frfst.2021.798676/full
http://creativecommons.org/licenses/by/4.0/
mailto:fvsilva@isa.ulisboa.pt
mailto:filipavinagresilva@gmail.com
https://doi.org/10.3389/frfst.2021.798676
https://www.frontiersin.org/journals/food-science-and-technology
www.frontiersin.org
https://www.frontiersin.org/journals/food-science-and-technology#articles
https://www.frontiersin.org/journals/food-science-and-technology
https://www.frontiersin.org/journals/food-science-and-technology#editorial-board
https://doi.org/10.3389/frfst.2021.798676


to ethanol (yeast pitching), and post-fermentation operations.
The hops added during production are responsible for the bitter
flavor and contribute to its natural preservation. The beer
ingredients (water, cereal, hops, and yeast) can be combined
in different ways to create different styles of beers such as ale,
lager, stout, pilsner, etc. Ale and lager are the two major classes of
beers: an ale beer ferments with top-cropping Saccharomyces
cerevisiae at temperatures around 15–20°C, and a lager beer is
fermented by bottom-cropping yeasts such as Saccharomyces
carlsbergensis (pastorianus) or Saccharomyces uvarum at
temperatures ranging between 8 and 13°C (Hardwick et al.,
1995; Hornsey, 2003). Regions such as the Senne Valley in
Belgium still use wild yeasts for spontaneous fermentation.

The fermenting yeast is the dominant microorganism present
in beer. Regardless of the pasteurization method, existent
microorganisms which survived the process can occasionally
grow during storage and negatively affect the quality of beer.
As opposed to pitching yeasts, wild yeasts are recognized as
redundant yeasts throughout fermentation in beer production.
The major groups of wild yeasts that can spoil beer belong to the
genus Zygosaccharomyces, Saccharomyces, and Brettanomyces.
According to Suzuki (2011), the microbial instability in beers
is often caused by lactic acid bacteria of genera Lactobacillus and
Pediococcus, and strict anaerobic bacteria belonging to genera
Pectinatus and Megasphaera. Other spoilage organisms,
particularly found in unpasteurized draft beers, are
Micrococcus and Zymophilus bacteria, and moulds (Lawrence,
1988; Esmaeili et al., 2015).

The main post-fermentation operations of bottled or canned
beer are clarification/filtration, filling, and pasteurization, which
are followed by labeling, box packing, and palletizing. Keg beers
might be pasteurized before the keg filling operation. Filtration is
one of the oldest non-thermal methods employed by breweries
before filling (bottling/canning). The shelf-life of filtered beer is
much shorter in comparison to thermal pasteurized beers since
some spoilage organisms still remain in the beer after filtration
(Curtis, 1968). Then, a process of thermal pasteurization occurs
in the industrial production of bottled beer, aiming to extend beer
shelf life through the inactivation of undesirable spoilage
microorganisms that will otherwise promote unwanted
chemical reactions (Priest, 2003; Priest, 2006; Priest and
Stewart, 2006; Wray, 2015). As beer also contains carbon
dioxide and alcohol, and is made bitter with hops, all of which
are natural antimicrobials, a mild thermal pasteurization is
effective for its stabilization at room temperature (Silva and
Gibbs, 2009) and to ensure instead of ensuring there are no
issues with pathogenic microorganisms.

The term pasteurization comes from the scientist Louis
Pasteur, who first used thermal pasteurization method,
coincidentally to preserve beer. Since then, a variety of
beverages and foods (e.g., fruit juices, and milk) have been
preserved/stabilized this way to extend shelf-life. The intensity
of a thermal pasteurization process is measured in pasteurization
units or PU, where 1 PU is defined as 1 min treatment at 60°C
(Baselt, 1958; Portno 1968; Tsang and Ingledew, 1982; Reveron
et al., 2003; Reveron et al., 2005; Milani et al., 2015b). A 15 PU
treatment is the minimum recommended for beer pasteurization,

resulting in desired inactivation of spoilage yeasts and bacteria in
beer (Del Vecchio et al., 1951; Portno, 1968; European Brewery
Convention, 1995). However, the beer industry applies a more
severe pasteurization process (e.g., 120–300 PU) to avoid spoilage
due to on-going modifications in traditional beer composition
such as alcohol-free and less bitter beers (Silva et al., 2014).

Since the conventional thermal process can negatively affect
the beer flavor (Milani and Silva, 2016), emerging non-thermal
pasteurization technologies like high pressure processing (HPP),
pulsed electric fields (PEF), and power ultrasound (US) alone or
combined with mild heating have been researched (Walkling-
Ribeiro et al., 2011; Evelyn and Silva, 2015, 2016a, 2016b; Milani
et al., 2015a; Sulaiman et al., 2015; Milani et al., 2016; Milani and
Silva, 2016, 2017). The main objective of this work was to review
the application of emerging non-thermal technologies to
pasteurize beer, and the effect on beer quality parameters and
key beer microorganisms.

BACKGROUND ON CONVENTIONAL
THERMAL PASTEURIZATION EFFECTS ON
BEER QUALITY
Appearance (e.g., turbidity and haze), aroma and flavor, mouth
feel, strength, specific gravity, and alcohol concentration are some
of the beer quality parameters controlled in breweries (Eckhardt,
1989; Varnam and Sutherland, 1994; Ogle, 2007). The lightstruck
character is a beer off-flavor defect caused by light. This
phenomenon can be minimized using amber glass, bottles, or
cans (Milani et al., 2015b). Changes in beer chemical composition
during beer processing, ageing, and storage alter its sensory
attributes (Vanderhaegen et al., 2006).

Craft beers produced in microbreweries are usually not
pasteurized so that original properties of the beer produced
are retained until consumption. However, this type of artisanal
beer needs to be cold stored and distributed. Thermal treatment is
the most common pasteurizationmethod used in industrial large-
scale breweries. As heat can have a negative impact on beer
quality, some studies have reported the effect of thermal process
on different quality characteristics of beer (Bernstein and Laufer,
1977; Vanderhaegen et al., 2003; Vanderhaegen et al., 2006; El
Gharras, 2009; Lund and Andersen, 2011). Bernstein and Laufer
(1977) concluded the formation of 2-furfural during beer thermal
pasteurization is one of the most significant parameters causing
beer staling and the loss of freshness. The presence of
polyphenolic compounds is related to beer sensory
characteristics, as these types of compounds are mainly
responsible for the degree of bitterness or sweetness and
mouthfeel in beer (El Gharras, 2009). Lima et al. (2009)
revealed that thermal treatment dramatically affects the
phenolic content of different foods which results to significant
difference in sensory properties of the beer. Lund and Andersen
(2011) concluded that the overall volatile profile of unpasteurized
beers contained more fruity character and less staling volatile
esters, suggesting that pasteurized beer has lower sensory
acceptance than the fresh, non-thermally treated beer. Härnulv
and Larsson (1992) studied the influence of thermal
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pasteurization andmembrane filtration on the quality parameters
of Swedish lager beer and recorded a staling effect on the
thermally pasteurized beers at high PU levels compared to
filtered non-heated beer. The thermal pasteurization process
can generate off-flavors, as beer is a delicate beverage. With
respect to flavor, the possibility of using a method of
pasteurization with no heat or less heat would be welcomed
by the brewing industry (Folkes, 2004; Milani, 2016). The
following sections explore alternative non-thermal methods for
beer pasteurization.

HIGH PRESSURE PROCESSING OF BEER

High Pressure Processing Overview
High pressure processing (HPP) is one of the most significant
innovations in food processing in recent decades. Pressures in the
range of 200–600 MPa can inactivate microorganisms in foods
and beverages (Figure 1). This technique retains the food’s
natural freshness and quality parameters such as aroma, color,
and important food components while destroying the spoilage
bacteria, yeasts, and moulds in beverages (e.g., beer, wine, juices)
or solid foods. Consequently, HPP technology is a breakthrough
in processing solid or liquid foods. Nowadays, HPP food
processing is being applied on ever-increasing commercial
basis (Balda, 2018). In 2019, a semicontinuous unit
appropriate for beverages was designed by Hiperbaric, which
was named HPP “in bulk” process, to differentiate from the
original HPP “in pack” process (Hiperbaric, 2021). The HPP “in
bulk” allows the use of any type of packaging material, as aseptic
filling is carried out after the process. Additionally, the
combination of HPP with heat allows inactivation of microbial
spores which are resistant to HPP at room temperature (Evelyn
and Silva, 2015; Evelyn and Silva, 2016a, 2016b, 2017, 2019;
Uchida and Silva, 2017; Silva and Evelyn, 2018). The high
pressure thermal assisted processing (HPTP) is not applied
industrially, although there are several research studies using
lab scale units (e.g., 2 L HPP vessel). Although non-linear
inactivation of microorganisms by HPP or HPTP has been
reported, generally microbial inactivation increases when one

instead of any of the three main processing parameters increases:
pressure, temperature, or holding time (Farkas and Hoover, 2000;
Silva et al., 2012; Milani et al., 2016; Milani and Silva, 2016; Silva
and Evelyn, 2018).

Commercial HPP batch vessel volumes range in size from 30
to 600 L. A common process cycle first loads the vessel with pre-
packaged product, then fills the rest of the vessel void space with
water, which acts as the pressure-transmitting fluid. Then, the
vessel closes, and the expected process pressure is obtained
through adding water that is delivered via an intensifier. After
keeping the product at the target pressure for the pre-determined
time, the vessel is decompressed by releasing the pressure
(Balasubramaniam et al., 2008).

There are several studies on the mechanism of microbial
inactivation via HPP, which is the result of a combination of
factors. The cell membrane is the primary site for pressure-
induced microbial inactivation (Figure 1). Microorganisms are
known as resistant to selective chemical inhibitors because of
their capability to eliminate such agents from the cell, through the
cell membrane. However, once the membrane is injured, this
capability is lost. Furthermore, HPP leads to some alterations in
cell morphology (Rozali et al., 2017) (Figure 1), protein
denaturation, and biochemical reactions inside the cell. HPP
denature major microbial enzymes and disrupt ribosomes
(Linton and Patterson, 2000). Larger injury of the
microorganisms results from quick alterations in intracellular-
extracellular differences at the membrane interface, leading to
higher inactivation rate (Palou et al., 1998).

Clearly, there are opportunities for innovative use and new
food products (Ferrentino et al., 2015). According to Balda
(2018), more than 300 HPP units were installed and operating
in food industries by 2016, with an annual production ratio of
≥250 thousand tones. HPP processed products available in the
food market are mainly fruit juices, pre-cooked meals like meat
and fish, and other beverages and smoothies (Mújica-Paz et al.,
2011; Buzrul, 2012; Balda, 2018; Houška and Pravda). HPP food
and beverages have longer shelf life than untreated products, and
can meet customer’s quality expectations providing better taste
and preservative-free healthier products (Nunes et al., 2017). At
present time, one of the main disadvantages of this technology is

FIGURE 1 | Environmental scanning election microscopy (eSEM) images of Saccharomyces cerevisiae free spores (a) untreated live (b) HPP treated dead
(16,000 ×magnification) (Reprinted from International Journal of FoodMicrobiology, Vol. 263, pg. 23, Siti N.M. Rozali Elham A. Milani, Rebecca C. Deed, Filipa V.M Silva,
Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observation, with permission from Elsevier).
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the high capital investment, limiting HPP application to high
value products. Additionally, the fact of being initially designed in
batch mode is not advantageous for beverages.

High Pressure Processing Impact on
Beer Quality
Table 1 presents a chronological review of past studies of the
effect of HPP on beer properties/quality. Although in a few
reports information is missing, all treatments are expected to be
non-thermal (T < 45°C). For example, Milani and Silva (2016)
obtained temperatures ≤36°C for HPP compression times of 15,
26, 45, and 60 s for 200, 300, 400, and 600 MPa, and noted a
higher increase of temperature for higher pressures (longer
compressions). Fischer et al. (2006) applied HPP at 300 and
700 MPa for 5 min on mash, wort, and pale lager beer.
Compared to an untreated mash sample, the content of
dissolved protein in HPP treated mash increased as the
pressure increased. Moreover, the fermentation degree
dropped with the increasing pressure and no changes in pH
value were registered. For the HPP treatment of wort the results
revealed HPP treatment could increase the bitterness more
than thermal treatment. The results on pale lager beer samples
showed that 300 MPa HPP treatment for 5 min did not
significantly change the color, aromatic compounds, and
foam stability, while a 700 MPa treatment for 5 min
increased the beer haziness. Pale ale and mild ale beers were
submitted to 600 MPa treatment for 5 min by Castellari et al.
(2000) and compared to thermally treated beer. Color and
permanent haze of pale ale beer were not affected by HPP as
opposed to thermally pasteurized beer. Also, there was no effect
of HPP on the main constituents of the beer. Permanent haze

was more influenced by the stabilizing process in pale ale than
in mild ale. Moreover, the results of HPP treatment (500 MPa
and 5 min) on lager and pilsner beers that Fischer et al. (2002)
carried out revealed no changes on HPP beer turbidity. Buzrul
et al. (2005) concluded that HPP treatment of lager beer
(300 MPa for 5 min) did not alter the bitterness of the
original untreated beer, while thermal pasteurization
increased the bitterness. This outcome emphasises the
advantage of HPP compared to thermal processing with
respect to a pasteurized beer flavor attribute. Recent studies
of Milani and Silva (2016) also demonstrated no significant
differences in the overall flavor of beers (ale and lager)
submitted to 600 MPa for 30 s and untreated beers. In
addition, preference testing confirmed no preference
between the untreated and HPP treated beers. HPP
processing at 600 MPa for 30 s (holding pressure phase) was
performed to ensure a minimum treatment of 15 PU
(equivalent to 15 min at 60°C) recommended for beer
pasteurization (Milani et al., 2015a). Likewise, preference
tests confirmed no preference between the untreated and
HPP-treated beers.

Yin et al. (2016) sensorial studies on cloudy wheat beer
revealed that original beer colloidal haze was retained with
HPP treatment (600 MPa, 5 min). Moreover, analysis by
dynamic light scattering showed that HPP treatments at
500 MPa/10 min demonstrated more uniform and smaller
particle sizes than untreated beer, that leads to a better haze
stability during beer storage. Štulíková et al. (2020) analyzed the
quality of lager beer after HPP treatment at 250 and 550 MPa for
5 min. Both beers presented higher foam stability for 2 months
storage compared to untreated beer. The original beer extract,
alcohol content, apparent extract, pH, and colour did not change

TABLE 1 | Effect of HPP on beer quality.

Beer type HPP
pressure (MPa)

HPP
time (min)

Beer quality Reference

Pale lager beer 300 5 No changes in colour, foam stability haziness and aromatic compounds. Fischer et al. (1999)
700 5 Increase in haziness

Pale ale beer 600 5 Color and permanent haze of pale ale beer were not affected by HPP as opposed to
thermal pasteurized beer (60°C, 10 min). No effect on main chemical constituents of the
beer

Castellari et al.
(2000)Mild ale beer

Lager beer Pilsner
beer

500 5 No change in the turbidity Fischer et al. (2002)

Lager beer 300 5 The bitterness of HPP beer is the same as untreated beer while thermal pasteurization
increased the bitterness

Buzrul et al. (2005)

Ale beer 600 0.5 No significant difference in the overall flavour of HPP and untreated beers Milani and Silva
(2016)Lager beer

Cloudy wheat beer 600 5 As opposed to thermal treatment HPP retained the original colloidal haze of the untreated
beer

Yin et al. (2016)

Lager beer 250 5 No change in the original beer extract, alcohol content, apparent extract, pH and color
Higher foam stability during 2 months storage of the HPP beer compared to the
untreated beer

Štulíková et al.
(2020)

550 5 Change in the color was recorded. Higher foam stability during 2 months storage of the
HPP beer compared to the untreated beer
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with the HPP process at 250 MPa. The foaming characteristics
and colloidal stability of beer can be enhanced with HPP (Pérez-
Lamela et al., 2002).

Overall HPP of beer can better retain the original flavor of the
beer than thermal pasteurization, although for certain beers and
at very higher pressures (≥700 MPa), the HPP can increase the
beer haziness.

High Pressure Processing Microbial
Inactivation in Beer
As mentioned previously, different types of microorganisms
could contaminate beer during the brewing process. HPP
pasteurization treatment often uses pressures up to
600 MPa (87,000 psi) for a particular holding time (Farkas
and Hoover, 2000; Anon 2006; van Wyk and Silva, 2017a; van
Wyk and Silva, 2017b; van Wyk et al., 2018). A review of the
studies of HPP inactivation of yeasts and bacteria in beer is
summarized in Table 2. Yin et al. (2016) studied the total yeast
count of wheat beer (4.9% alc/vol) after 5 min processing of
beer at 600 MPa and recorded 5.6 log reduction. Milani and
Silva (2016) studied the non-thermal HPP S. cerevisiae
ascospores as the most heat resistant form of spoilage
yeasts for inactivation of beer. After 5 min HPP processing
at 300 and 400 MPa of 4.8% alc/vol beer, 3.2 and 4.5 log
reductions of S. cerevisiae ascospores were recorded,
respectively. The minimum pasteurization is achieved in
both HPP processes, as 15 PU is equivalent to 1.34 log
reductions in the strain used by Milani and Silva (2016).
For 7.0% alc/vol beer, 3.0 and 5.2 log reductions were
achieved, respectively. Gaunzle et al. (2001) also studied on
the effect of HPP on the inactivation of Lactobacillus
plantarum in different alcohol level beers. They used a
model beer using 5 and 10% alcohol and concluded that
ethanol enhanced the effect of pressure on the inactivation
rate of L. plantarum to maximum 5 log reduction of L.
plantarum at 300 MPa and 5 min of treatment time at
room temperature.

Referring to these results, HPP technology demonstrated an
efficient method for beer pasteurization. The environmental
scanning electron microscope (eSEM) images of S. cerevisae
free spores before and after being submitted to 600 MPa HPP
showed the loss of the spore round shape (integrity) with

intracellular contents release, with viability loss confirmed by
plating (Rozali et al., 2017).

PULSED ELECTRIC FIELDS
PASTEURIZATION OF BEER

Pulsed Electric Fields Overview
Sale and Hamilton (1967) initiated research on pulsed electric
fields (PEF) in the sixties. From 1990 to date, PEF was
investigated broadly in studies that mainly focused on the PEF
disinfection of water and pasteurization of liquid food (Toepfl
et al., 2006). Having low processing temperature and extremely
short residence time, in the magnitude of microseconds, PEF
leads to effective microbial inactivation and retention of product
quality (Sulaiman et al., 2017). The permeabilization of the
cellular tissue by PEF in microseconds could be developed to
replace or complement conventional thermal pasteurization
techniques. There is a great potential for PEF application to
beverages, namely, beer and wine, as PEF can be set in continuous
mode (Milani et al., 2015a; van Wyk et al., 2019a) (Figure 2). A
typical continuous PEF system is based on a high voltage pulse
generator with a treatment chamber and a suitable beverage
handling system (pump, tube), as well as controlling devices to
monitor inlet and outlet temperatures, electric field intensity,
pulse frequency, and duration. Liquid food product is pumped
through the treatment chamber, mainly in continuous mode,
where two electrodes can be placed with different configurations,
according to the chamber design (e.g., parallel, coaxial, and
collinear). The high voltage electrical pulses are conveyed to
the electrodes, and an electric field is generated between the
two electrodes. While flowing within this gap between the 2
electrodes (the treatment chamber), the liquid food is submitted
to the pulsed electric fields generated. The electric field intensity is
the ratio between peak voltage and the gap between electrodes.
Note that the CO2 present in the beer does not conduct the
electric energy, possibly causing sparks. This is a process and risk
issue to control during treatment. The main process parameters
for PEF treatments are the electric field intensity, shape and width
of the pulse, frequency of pulses, residence time (calculated from
the flow rate and the volume of the treatment chamber), beverage
electrical conductivity, and treatment temperature (which is the
outlet temperature, Tout). A PEF treatment increases the

TABLE 2 | HPP inactivation of yeasts and bacteria in beer.a

Beer
type

Microorganism Beer alcohol content (%
alc/vol)

Processing
pressure (MPa)

Processing
time (min)

Log
reduction

References

Lager beer Saccharomyces cerevisiae
ascospores

4.8 400 5 4.5 Milani and Silva
(2016)300 5 3.2

7 400 5 5.2
300 5 3.0

Model beer Lactobacillus plantarum 5 300 5 2.0 Gaunzle et al.
(2001)10 300 5 4.0

Wheat beer Total yeasts 4.9 600 5 5.6 Yin et al. (2016)

aThe HPP processing temperature was ≤25°C; thus, a non-thermal HPP treatment was applied in all studies.
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temperature of the beverage due to Joule effect. A non-thermal
PEF process (maximum Tout 40–45°C) can be assured by strict
control PEF processing conditions and by lowering the initial
temperature of the beverage (van Wyk et al., 2019b). The real
treatment time can be calculated from the frequency and width of
the PEF pulses, the flow rate of the liquid food product that is
pumped into the treatment chamber, and its volume. The
selection of conditions for these parameters determines the
final lethal effect on the microbial population (Abram et al.,
2003; Altunakar and Barbosa-Canovas, 2011; Milani et al.,
2015a).

Pulsed Electric Fields Impact on Beer
Quality
The main quality concern in the breweries is an off-flavor
developed in beer exposed to light, that generates skunky off-
notes in the beer, referred as the “lightstruck character” (Marsili
et al., 2007). The 3-methyl-2-butene-1-thiol and organic sulphur
compounds are responsible for this skunky smell, which limits
the beer’s shelf life. The main reason for bottling beers in dark
glasses or aluminium cans is to avoid or reduce the development
of lightstruck character in beer during storage. Milani et al.
(2015a) assessed the lightstruck character in nine different
PEF beers (45 kV/cm, 70 µs), by comparing them with a
control (untreated beer sample) and a lightstruck beer sample
(exposed to sunlight for 8 h). The sensory panel could not detect
differences between aroma and flavour of control, PEF, and

lightstruck for Pilsner and dark ale beers indicating that these
do not have a tendency to develop the lightstruck character with
PEF treatment, probably due to the beers dark color. However,
the panel could detect the lightstruck flavor/aroma in the rest of
light lager beers treated by PEF. Hence, it is important to select
the beer and optimize the PEF processing conditions to avoid the
development of this and other undesirable flavors. A trained
panel of 25 judges detected differences in the beer flavor and
mouth feeling, with a significantly lower rating for PEF beer
exposed to a treatment of 41 kV/cm for 175 µs treatment time
(Evrendilek et al., 2004) compared with control samples
(untreated beers). Some panellists detected a metallic mouth
feeling, which was probably associated with the migration of
compounds from the PEF electrodes to the beverage during the
treatment. Oziemblowski et al. (2017) observed lower bitterness
and turbidity of PEF processed beer submitted to 200, 300, and
400 pulses in comparison to unpasteurized beer, which could be
considered as a beneficial effect of PEF pasteurization of beer.

Overall pulsed electric fields can develop the lightstruck
character in certain beers, depending on the processing conditions.

Pulsed Electric Fields Microbial Inactivation
in Beer
During the PEF treatment, the electric field inactivates the
microorganisms in foods by increasing the transmembrane
potential in the cell membrane until electroporation takes place
(the permeabilization of the cell and organelles membranes), and

FIGURE 2 | Diagram Showing the pulsed electric field (PEF) inactivation of beer spoilage microorganisms (T refers to temperature) in continuous mode (Reprinted
from preservatives and preservation Approaches in Beverages, van Wyk, Silva, F. V. M., 2019. Chapter 7-Nonthermal preservation of Wine, PP. 203–235, with
permission from Elsevier).
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subsequent cell death (Heinz et al., 2001). Since PEF pasteurization
can be operated in a continuous mode, it has the potential to be
implemented in the beverage industry at a commercial scale to
preserve drinks. Some studies have investigated the effect of PEF or
temperature-assisted PEF on the inactivation of microbial
populations in beer. Table 3 shows results of PEF studies
carried out with yeasts in beers, while Table 4 shows studies
conducted with bacteria in keg and lager beers. Milani et al.
(2015a) studied the non-thermal PEF and thermal assisted PEF
pasteurization of beer with different alcohol contents to inactivate
the heat resistant S. cerevisiae ascospores. PEF treatment of 45 kV/
cm electric field for 70 µs(real treatment time) at room temperature
for 0.0, 4.0, and 7.0% alc/vol beers and recorded 0.2, 1.1, and 2.2 log
reductions of S. cerevisiae ascospores, respectively. Thermally
assisted PEF at 52–53°C (45 kV/cm, 70 µs) presented a higher
spore inactivation: 0.9, 2.9, and 4.0 log reductions in 0.0, 4.8,

and 7.0% alc/vol beers, respectively. The other studies presented
in Table 3 were carried out with vegetative forms of yeasts.
Walkling-Ribeiro et al. (2011) studied non-thermal and
temperature assisted PEF treatment of 3.5% alc/vol beer to
inactivate the S. cerevisiae vegetative cells. Non-thermal PEF
processes of 35 kV/cm for 574 µs and 45 kV/cm for 402 µs
caused 3.8 and ≥6.8 log reductions of S. cerevisae vegetative
cells, respectively. Thermal assisted PEF treatment of beer at
55°C, 35 kV/cm for 1145 µs resulted in ≥6.8 log reduction of S.
cerevisiae vegetative cells. Evrendilek et al. (2004) studied the effect
of PEF on vegetative yeasts and obtained 4.1 log reductions of
Saccharomyces uvarum and 4.3 log reductions of Rhodotorula
rubra in a keg beer using a 10°C cooling water bath to ensure a
non-thermal process (22 kV/cm, 216 µs).

PEF inactivation of Lactobacillus plantarum vegetative bacteria
was studied by Ulmer et al. (2002) in model beer (Table 4). The

TABLE 3 | PEF inactivation of yeasts in beer.a

Microorganism Beer
type

Alcohol content
(% alc/vol)

Electrical field
intensity (kV/cm)

Treatment
time (µs)

T (°C) Log
reduction

References

Saccharomyces cerevisiae
(ascospore)

Lager 0.0 45 70 Non-thermal 0.2 Milani et al. (2015a)
Lager 4.0 53 0.9
Ale 7.0 Non-thermal 1.1

52 2.9
Non-thermal 2.2
53 4.0

Lager 3.5 35 574 Non-thermal 3.8 Walkling- Ribeiro
et al. (2011)35 1145 55 ≥6.8

45 402 Non-thermal ≥6.8

Saccharomyces uvarum
(vegetative)

Keg nr 22 216 Non-thermal 4.1 Evrendilek et al.
(2004)

Rhodotorula rubra (vegetative) Keg nr 22 216 Non-thermal 4.3 Evrendilek et al.
(2004)

aT is the processing temperature, measured at the outlet of the PEF treatment chamber; Non-thermal means only the effect of PEF in the microorganism, as there is no heating of the beer,
T below 44°C; nr–not reported.

TABLE 4 | PEF inactivation of bacteria in beer.

Microorganism Beer
type

Alcohol
content (%
alc/vol)

Electrical field
intensity
(kV/cm)

Treatment
time (µs)

T (°C) Log
reduction

References

Lactobacillus plantarum
(vegetative)

Model
beer

nr 35 nr Non-thermal >3.0 Ulmer et al. (2002)

Lager 3.5 35 574 Non-thermal 1.8 Walkling- Ribeiro et al.
(2011)45 402 Non-thermal 3.2

45 804 52 6.5
Keg nr 41 175 Non-thermal 4.7 Evrendilek et al. (2004)

Pediococcus damnosus
(vegetative)

Keg nr 41 175 Non-thermal 5.8 Evrendilek et al. (2004)

Salmonella enterica
(vegetative)

Lager 3.5 35 574 Non-thermal 2.0 Walkling- Ribeiro et al.
(2011)45 536 Non-thermal 4.0

45 804 49 5.7

Bacillus subtilis (vegetative
cells)

Keg nr 41 175 Non-thermal 4.8 Evrendilek et al. (2004)
Lager 3.5 35 574 Non-thermal 1.8 Walkling- Ribeiro et al.

(2011)45 536 Non-thermal 3.0
45 402 49 3.4

aT is the processing temperature, measured at the outlet of the PEF treatment chamber; Non-thermal means only the effect of PEF in the microorganism, as there is no heating of the beer,
T below 43°C; nr–not reported.
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results showed >3.0 log reduction of bacteria during the non-
thermal PEF at 35 kV/cm electric field intensity. Evrendilek et al.
(2004) studied the effect of non-thermal PEF treatment (41 kV/cm
and 175 µs) on three different bacteria L. plantarum, Pediococus
damnosus, and Bacillus subtilis vegetative cells in keg beer and
recorded 4.7, 5.8, and 4.8 log reductions, respectively. Walkling-
Ribeiro et al. (2011) carried out non-thermal and thermally assisted
PEF treatment of L. plantarum, Salmonella enterica, and B. subtilis
vegetative bacteria in 3.5% alc/vol lager beer. A non-thermal PEF
(35 kV/cm and 574 µs) caused similar inactivation in the three
bacteria: 1.8, 2.0, and 1.8 log reductions for L. plantarum, S.
enterica, and B. subtilis, respectively. A non-thermal PEF
treatment of higher electric field (45 kV/cm, 402 µs) led to a
higher inactivation of L. plantarum (3.2 log reductions).
Thermally assisted PEF at 52°C, 45 kV/cm, 804 µs caused a
higher log reduction of 6.5. Regarding S. enterica, the same
authors recorded 4.0 log reduction after a non-thermal PEF
process of 45 kV/cm and 536 µs and 5.7 log reduction at 49°C,
45 kV/cm, and 804 µs. With respect to B. subtilis, 3.0 log reductions
were achieved at room temperature (45 kV/cm and 536 µs) and 3.4
log reductions at 49°C (45 kV/cm and 402 µs) were registered,
respectively. In resume the higher the PEF temperature, the higher
the microbial inactivation. Same conclusions were taken by a few
PEF-thermal studies carried out with other beverages and foods
(Jayaram et al., 1992; Zhang et al., 1995; Vega-Mercado et al., 1997).

The effect of microorganism size on PEF inactivation could be
demonstrated by comparing bacteria and yeast inactivation
submitted to the same PEF conditions (Walkling-Ribeiro et al.,
2011). While the three different bacteria were reduced by a
magnitude of approximately 2 logs after a PEF treatment of
35 kV/cm for 574 µs (Table 4), 3.8 decimal reductions were
obtained with the yeast S. cerevisiae. Vegetative yeasts are larger
(4–6 µm) than bacteria, and thus more susceptible to PEF than
bacteria. The review also showed that it is more difficult to
inactivate yeast spores by PEF than vegetative yeast cells (Table 3).

POWER ULTRASOUND TREATMENT OF
BEER

Ultrasound Overview
Ultrasound are sonic waves of the same physical nature as
sound, but with frequencies above the range of human
hearing (20–100 kilo Hertz, kHz). Based on frequency
difference and sound intensity, ultrasound waves are
classified in two categories. High frequency ultrasound
(diagnostic ultrasound) operates at frequencies of 2–20 MHz
with sound intensities in the range of 0.1–1 W/cm2. Food quality
assessment, medical imaging, and non-devastating inspection
are examples in which high frequency ultrasound is used. Lower
frequencies (20–100 kHz) with a sound intensity of 10–1000 W/
cm2 are employed in power ultrasound (also called high
intensity ultrasound). Because of high energy level, power
ultrasound is considered appropriate to be used in the food
industry for microbial destruction and equipment disinfection
(Baumann et al., 2005, 2009; Ugarte et al., 2006). Power
ultrasound processing, often called sonication, operates

through a liquid medium which can be the food or water
containing a solid food (Figure 3). Nowadays, ultrasound
technology can be used more widely in food pasteurization
applications. The main US applications for food processing at a
commercial scale are emulsification, size reduction,
crystallization, and extraction (Feng and Yang, 2011).

Ultrasound Impact on Beer Quality
Ultrasound of 1MHz has been applied for wines, whiskey, and
spirits, and results showed that it has changed the alcohol/ester
balance creating an effect similar to ageing (Mason et al., 1996).
With respect to applications to beer industry, at the beginning of
themashing process, US increases the beer yield and can reduce the
fermentation time. This process increases the oxidation in
fermented products, which leads to a better flavor and
maturation. It also improves the hygiene of beer defobbing and
defoaming operations before bottling (Chemat and Khan, 2011).
Deng et al. (2018) did not record significant changes on
physicochemical and sensorial properties of Chinese lager beer
submitted to the following US and thermosonication (TS,
simultaneous exposure to US and heat) conditions: 2.7W/ml
acoustic power density, temperatures of 40, 50, and 60°C, for
2 min treatment time. However, a higher acoustic power density
(10.8W/ml) and temperature (75°C) TS process for 20.5 s,
equivalent to a 15 PU process, developed an unacceptable haze
in ale and lager beers (Silva et al., 2015). Borsato et al. (2019)
concluded that sonication of malted barley increased the size of the
starch granules, and a better quality was obtained when malted
barley was exposed to TS compared with thermally treated or
untreated malted barley. Xiao et al. (2020) showed that the main
parameters (ethanol content, original gravity, pH, bitterness, and
viscosity) of wheat beer were scarcely affected by TS (at 50°C and
2.7W/ml for 3 min). Meanwhile, TS-treated beer had higher
colloidal haze and foam stability than thermally (60°C-15 min)
pasteurized beer. Dynamic light scattering analysis showed that TS
treatment resulted in a smaller andmore uniform particle size, thus
having a positive effect on the desired beer haze stability.

Overall, ultrasound technology seems to have potential for
beer pasteurization. An increase in the stability of beer turbidity
and haze was observed and the overall beer quality was not much
affected by the US process. In addition, this technology can also
be applied to improve the yield of other operations (e.g., mashing)
and speed up the beer production.

Ultrasound Microbial Inactivation in Beer
Microbial inactivationmechanism of ultrasound can be explained
through the effect of cavitation on microbial cell walls (Figure 3).
Water jets of liquid, generated by the asymmetric implosion of
transient cavitating bubbles, may cause severe cell envelope
damage and cleavage of the texture of the polymeric materials
of the cell walls (Evelyn and Silva, 2020). In terms of the chemical
effects, transient cavitation can create OH- and H radicals and
hydrogen peroxide. In addition, stable cavitating bubbles can
generate microstreaming alongside the bubble and create high
hydrodynamic shear stresses, which cause cell membrane
damages. Many studies have been carried out to investigate
the application of power ultrasound on the inactivation of
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different yeasts and bacteria in foods and beverages (Adekunte
et al., 2010; Bauman et al., 2005; Char et al., 2010; and; Suslick and
Nyborg, 1990), including wine (Luo et al.,2012; Gracin et al.,
2016).

Milani and Silva (2017) studied the effect of power ultrasound
treatment with and without heat on lager beers pasteurization. A
pasteurization of 15 pasteurization units, equivalent to 1.34 log
reductions in S. cerevisiae ascospores, was achieved in 4.8% alc/vol
beer when batch mode 16.2W/ml thermosonication at 50°C for
1.9 min or TS at 55°C for 26 s was applied. On the other hand,
16.2W/ml US without heat at room temperature (23°C) required
20min for the same level of pasteurization. Deng et al. (2018)
demonstrated the inactivation of yeast and spoilage bacteria
(including lactic acid bacteria and aerobic bacteria) in lager beer
by 2.7W/ml TS at 50°C and 60°C for 2 min. Xiao et al. (2020)
showed that the microbiological stability of TS-treated wheat beer
(at 50°C and 2.7W/ml for 3 min) was comparable with that of the
heat-treated sample (at 60°C for 15 min).

The studies demonstrated US and ultimately TS at 50–55°C are
efficient methods to pasteurize beer.

OTHER NON-THERMAL TECHNOLOGIES

Dense-Phase CO2
DPCD is known as a non-thermal technique that inactivates spoilage
microorganisms and enzymes through carbon dioxide molecular
effect at a pressure of below 50MPa while maintaining the freshness,
sensory attributes, and nutritional qualities of food (Damar and
Balaban, 2006). Fraser (1951) was the first scientist demonstrating
the microbial inactivation by gas pressure of various types of bacteria.
The mechanism of microbial inactivation by DPCD is not well
known. However, researchers have demonstrated that various
processes can be involved in the microbial inactivation (Fraser

1951; Daniels et al., 1985; Lin et al., 1991; Nakamura et al., 1994;
Ishikawa et al., 1995): intra- and extracellular pH decrease due to the
acidic effect of CO2; proteins and ions precipitation; inhibition of
biological activities; and modifications of cell walls that cause cell
rupture and extraction of cellular substances, leading to intracellular
electrolyte balance disorder (Erkmen and Karaman, 2001).

Some studies with different foods DPCD pasteurization have
been carried out (Haas et al., 1989; Arreola et al., 1991; Ishikawa
et al., 1997; Shimoda et al., 1998; Erkmen and Karaman, 2001;
Folkes, 2004; Kincal et al., 2005; Damar and Balaban, 2006). Apart
from fruit juices, DPCDwas applied to alcoholic beverages like beer.
Folkes (2004) studied the effect of DPCD on microbial inactivation
and sensorial parameters of beer and found no significant difference
between the untreated beer and DPCD treated beers. Dagan and
Balaban (2006) studied the pasteurization of beer by DPCD to
inactivate vegetative yeasts and got amaximum 7.38 log reduction of
yeasts at 26.5MPa, 21°C, 9.6% CO2, and 4.77 min residence time.
With respect to beer quality, haze was reduced by DPCD
pasteurization from 146 nephelometric turbidity units (NTU) to
95. The aroma and flavor of treated beer were not significantly
different from fresh beer. Foam capacity and stability were
minimally affected by CO2 processing, although changes would
most likely be unnoticed by consumers. These results revealed that
DPCD technology is an effective treatment for beer pasteurization
while retaining the aroma and freshness of beer. This cold
pasteurization technique can be used as an alternative method by
the industry as it could preserve the nutritional and haze
characteristics of beer during storage.

High Pressure Homogenization
High pressure homogenization (HPH) is another non-thermal
technology which is widely investigated for food pasteurization
(Puig et al., 2008; Franchi et al., 2011; Franchi et al., 2013;
Comuzzo et al., 2015). In HPH, the fluid food is exposed to a

FIGURE 3 |DiagramShowingPower ultrasound (US) inactivation of beer spoilagemicroorganisms (T refer to temperature) in continuousmode (Reprinted frompreservatives
and preservation Approaches in Beverages, van Wyk, S., Silva, F. V. M., 2019. Chapter 7-Nonthermal preservation of Wine, PP. 203–235, with permission from Elsevier).
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forced pressure and rapid acceleration of media in a thin gap
during a continuous process e.g., 200 m/s at 340 MPa. Then, a
sudden drop of pressure causes cavities, shear, and friction of
microbial cells that leads to microbiological inactivation (Franchi
et al., 2011; Franchi et al., 2013). Franchi et al. (2013) studied the
effect of HPH treatment on microbial inactivation and quality
parameters of beer. He ran HPH treatment on Pilsen beer
inoculated by lactic acid bacteria, acetic bacteria, and yeasts.
Lactobacillus delbrueckii was the most resistant
microorganism, requiring 250 MPa for a 6 log reduction.
Furthermore, Franchi et al. (2011) claims that according to the
molecular conformational changes in polysaccharides and
proteins of beer, this process promotes a positive effect on
beer quality and improves beer color. Also, an addition of a
small amount of lysozyme (50 mg/L) would enable a reduction in
the level of pressure to 150 MPa, with energy and costs savings.
Overall, HPH processing has the potential of cost-effective
commercial application in the beer industry.

Ultraviolet Irradiation
Ultraviolet treatment is another promising technology that is
widely used for food pasteurization as an alternative for heat
treatment (Bintsis et al., 2000). In the food industry, UV
irradiation is mainly used for milk, juices, and cider
preservation (Basaran et al., 2004; Quintero-Ramos et al.,
2004; Matak et al., 2005; Koutchma, 2019). Main parameters
in UV-C processing are the time and doses of applied. According
to Bintsis et al. (2000), the most efficient wavelengths
for pasteurization are between 200 and 280 nm, so called as
UV-C. The DNA of virus, bacteria, fungi, yeasts, and molds is
destroyed through the exposure to irradiation and hence the
reproduction process of microbial cells is stopped (Koutchma,
2019).

Some researchers carried out studies to investigate the effect
of UV irradiation on beer pasteurization and its sensory
properties. Lu et al. (2010) optimized the optical-fiber
distribution density and thin-film thickness for treating beer
by UV. The apparatus could reduce more than 4 log of
inoculated Lactobacillus brevis in draft beer at UV doses of
9.7 mJ/cm2, while the reduction of S. cerevisiae was not as
efficient. They concluded that naturally contaminating lactic
acid bacteria and Enterobacteriaceae could be effectively
inactivated in draft beer. Moreover, the results of Hosseini
et al. (2011) on UV processing of non-alcoholic beer
demonstrated that beer spoilage microorganisms were totally
inactivated at pulse UV wavelength of 266 nm. Mezui and Swart
(2010) studied the sensory parameters of UV treated beer, and
reported the formation of lightstruck flavor in beer processed by
low ultraviolet light irradiation (UV-C).

While successful microbial inactivation in beer by UV has
been reported, more sensory studies are needed to assess the
impact of this process on the formation of the lightstruck
character in different beers.

COMPARISON OF TECHNOLOGIES AND
FINAL REMARKS

This review demonstrated the advantages and limitations of
novel non-thermal technologies in terms of beer quality and
microbial inactivation compared to conventional thermal
processing. The CO2 present in beer can cause
technological problems, and this issue needs to be
addressed (e.g., sparks in PEF treatment). In general PEF,
thermosonication, HPP, HPH, and DPCD treatments
revealed less effect on beer sensory properties, retaining
more of the nutritional and freshness of original beer,
compared to thermally processed beers.

Non-thermal HPP inactivation of S. cerevisiae ascospores in
beer is much faster (few seconds for 15 PU) than
thermosonication (few minutes) and thermal pasteurization
(15 min) (Milani et al., 2016; Evelyn et al., 2017). The high
pressure (HPP) process is more efficient than thermal
treatment for equivalent yeast inactivation, retaining the
original beer flavour and requiring less energy (HPP—77 kJ/
L vs 60°C thermal—189 kJ/L) (IChemE, 2016; Milani et al.,
2016). The most recently developed commercial HPP process
“in bulk” followed by aseptic filling allows the use of glass
bottles or cans for beer packaging while keeping the freshness of
the original non processed beer. Power ultrasound at room
temperature presented insufficient microbial inactivation,
while thermal assisted sonication (thermosonication) was
successful for beer pasteurization (15 PU) and also increased
the stability of beer turbidity and haze. For both direct contact
or indirect US systems, as the distance from the wave source
increases, the efficiency of microbial inactivation decreases. US
treatment PEF and UV-C developed the undesirable lightstruck
character in beer, with a negative impact in beer sensory
quality.

Some of the alternative methods can achieve higher microbial
log reductions, with shorter processing times, and less energy
requirements compared with the conventional thermal
processing, while keeping the freshness of the raw beer.

The research on non-thermal pasteurization of other
alcoholic beverages is expanding (van Wyk et al., 2019a).
More research is needed to compare capital investment, costs
of operation, energy consumption, and sustainability of
different technologies. Some of these technologies are not
commercially available yet at a larger scale. Therefore, more
studies at pilot and industrial scales are needed to elucidate
the industrial feasibility of the non-thermal technologies
reviewed.
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