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Abstract

Statistical depth functions provide a way to order the elements of a space by their centrality in a probability distribution. That has 
been very successful for generalizing non-parametric order-based statistical procedures from univariate to multivariate and (more 
recently) to functional spaces. We introduce two general definitions of statistical depth which are adapted to fuzzy data. For that 
purpose, two concepts of symmetric fuzzy random variables are introduced and studied. Furthermore, a generalization of Tukey’s 
halfspace depth to the fuzzy setting is presented and proved to satisfy the above notions, through a detailed study of its properties.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

L. A. Zadeh [45] introduced in 1965 the concept of a fuzzy set in order to formalize mathematically properties 
with unsharp boundaries or vaguely defined. Since then, the study of fuzzy sets has grown and is nowadays a field in-
corporating experts from different areas, including statistics. In 1975, Tukey coined the term statistical depth function 
[44]. Since R is totally ordered, one can easily say which of two points lies deeper in a distribution by comparing their 
quantiles. The point whose quantile is closer to .5 is considered deeper; the median is the deepest point since one must 
travel through at least half of the probability mass in order to leave the support of the distribution. Statistical depth 
aims at an analogous center–outward ordering of multivariate data in the space Rp which does not carry a natural 
order.

The use of depth functions has substantially grown over the years and it is a popular research topic in non-
parametric statistics [28], with applications in regression [6], classification [19] or outlier detection [23], just to name 
a few examples. There exists a formal definition of statistical depth for multivariate spaces [47] and another for func-
tional spaces [33]. Both are constructed on the basis of a list of desirable properties. In the multivariate case, they are 
affine equivariance, maximality at the center of symmetry, monotony with respect to the deepest element and vanish-
ing at infinity. In the functional case: isometry equivariance, maximality at center, strict monotony with respect to the 
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deepest element, upper semicontinuity, receptivity to the convex hull width across the domain, and continuity with 
respect to the distribution.

Since fuzzy sets are functions, that functional definition can potentially be applied to fuzzy data. However, that is at 
odds with how fuzzy data are understood in the literature. Functions have the variable under study in the y-axis, while 
the x-axis typically represents time in the analysis of functional data. For fuzzy sets, the values of the variable are in 
the x-axis while the y-axis represents the grade of membership. Similarly, the standard operations of fuzzy sets and 
functions do not match, and the analysis of a fuzzy set via its α-cuts does not have an obvious analog for functions.

An avenue for overcoming the mismatch is to identify each convex fuzzy set with its support function (like in 
[22]). Some properties demanded in the case of functional depth still do not suit fuzzy sets perfectly. For instance, 
receptivity (see [33]) does not have any clear meaning for fuzzy data. Also, demanding equivariance under arbitrary 
isometries has at least two disadvantages:

(1) The isometry groups of metric spaces of fuzzy sets being unknown, currently it is not possible to prove that this 
property holds for a given function. It may be possible if the definition of the function involves explicitly the set 
of all isometries, but then it would not be possible to compute the depth values themselves!

(2) Instead of arbitrary isometries, since fuzzy sets are objects in the underlying space Rp it looks more reasonable 
to consider equivariance under transformations of Rp instead of the whole space of fuzzy sets.

In view of that, we found it convenient to study a notion of depth which is specifically taylored to the particularities 
of fuzzy data (and, in particular, also set-valued data).

A random process generating fuzzy data is formalized with the notion of a fuzzy random variable (also called a 
random fuzzy set). Let us provide some pointers for readers with a background in statistical depth (and all readers). 
Attempts to combine probability and fuzzy sets started in the 70s. The modern approach to fuzzy random variables 
originates in [17,35,36]. Some books with a varying degree of mathematical or practical emphasis are [26,2,31,32], 
unfortunately there seem to be no general books more recent than 2006. There are some journal special issues, how-
ever, which include [9,8,16] from that date on. An interesting panorama of the analysis of fuzzy data appears in [3]
which surveys the work of the SMIRE group. It describes some of the difficulties in handling fuzzy data, like the 
absence of a difference operation and the lack of parametric models. A nice guide to the semantics of fuzzy sets is 
Dubois and Prade’s [14].

Our first main objective is to provide a formal definition of statistical depth in the space of fuzzy sets. In doing so, 
we present two feasible formal definitions. They are based on the multivariate and functional formal definitions: one 
is a natural extension to fuzzy sets of the multivariate notion and the other is closer to the functional one, in the sense 
that it uses explicitly a metric in the space of fuzzy sets; while the first one only depends on the operations of sum and 
product by scalars. We justify our two proposals by comparing and contrasting their defining properties which relate 
to the existing ones: affine equivariance, maximality at the center of symmetry, monotony with respect to the deepest 
point and vanishing at infinity. Additionally, we study the relationship between the multivariate notion of depth and 
our proposed notions of fuzzy depth when particularized to non-fuzzy points.

By analogy with the univariate case, the depth function of a symmetric distribution is expected to be maximized 
at the center of symmetry [48]. Thus this property requires of a notion of symmetry for fuzzy random variables. It 
turns out that an immediate extension of central symmetry (with which, e.g., X is symmetric with respect to the point 
0 if and only if X and (−1) · X are identically distributed) is not best suited for the task and we need further notions 
which allow for symmetry with respect to more general fuzzy sets. We propose two such notions, which make use of 
the support function; one directly and the other through the mid and spread functions (see Section 2 for the required 
background). We analyze their relevance and contrast them through particular examples.

The most well-known statistical depth function is, in the multivariate case, the Tukey (or halfspace) depth [44], 
which has a computationally efficient approximation, the random Tukey depth [10]. The two other more well-known 
multivariate instances are spatial depth [37] and simplicial depth [27], which has in [20] a generalized version conve-
nient for applications. Generally, multivariate instances do not behave properly in functional spaces [15], exceptions 
are the spatial [5] and the random Tukey [11] depths. Other functional instances are integrated depth [18], h-depth 
[12], band depth [29], elastic depth [23] and metric depth [34].

We extend Tukey depth to the fuzzy setting, showing that it falls under both notions of depth presented in this 
paper (semilinear and geometric depth). While it is clearly necessary to consider more depth functions, we found that 
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mathematically studying the properties becomes quite harder due to the greater complexity of spaces of fuzzy sets 
compared to Rp . For instance, in the case of the Tukey depth, we need a generalization of the notion of a halfspace 
but some complications appear since the space of fuzzy sets is not even a linear space. Similarly, an extension of 
simplicial depth would require working around the notion of simplices in the space of fuzzy sets. Hence we content 
ourselves with studying the Tukey depth in this paper and leave other depth functions to future work.

The structure of the paper is as follows. Section 2 contains the notation and background in fuzzy sets and statistical 
depth required for a comprehensive understanding of our proposals. The proposed formal definitions of fuzzy depth 
are in Section 3 and the proposed fuzzy symmetry notions in Section 4. The theoretical study of the properties that 
constitute the formal definitions is in Section 5. Section 6 presents and studies the generalization of Tukey’s depth to 
the fuzzy setting. All proofs in the paper are deferred to Section 8. The paper concludes with some final remarks in 
Section 9.

2. Preliminaries and notation

This section contains the necessary definitions, notation and results which are used in the sequel.
A fuzzy subset of Rp is a function A : Rp → [0, 1]. By Fc(Rp) we denote the class of fuzzy sets A on Rp such 

that each α-level of A is in the class Kc(Rp), of all non-empty, compact and convex subsets of Rp, for α ∈ [0, 1]. The 
α-levels or α-cuts are the sets

Aα := {x ∈Rp : A(x) ≥ α}, α ∈ (0,1]
and the closed support A0. Since fuzzy sets generalize the indicator function of a set, a fuzzy set having convex α-
levels is a generalization of a convex set. It is thus called convex, although this property does not coincide with the 
usual convexity of functions (a fuzzy set is convex if and only if it is quasiconcave as a function). This work focuses 
on Fc(Rp), thus when speaking of fuzzy sets we will implicitly mean elements of Fc(Rp).

Note that Kc(R), in particular, is the class of non-empty compact intervals in R. Let Sp−1 := {x ∈ Rp : ‖x‖ ≤ 1}
be the unit sphere on Rp , with ‖.‖ denoting the Euclidean norm. The support function of A ∈ Fc(Rp) is defined as 
the mapping sA : Sp−1 × [0, 1] → R such that

sA(u,α) := sup{〈u,v〉 : v ∈ Aα}, (1)

for every u ∈ Sp−1 and α ∈ [0, 1], where 〈·, ·〉 is the usual inner product in Rp . By IA we denote the indicator function 
of a set A ⊆Rp; i.e. IA(t) is 1 if t ∈ A and 0 otherwise. The symbol =d denotes equality in distribution.

In Fc(R) it is common to consider the triangular fuzzy numbers [24, Section 4.1], which will appear in some of 
our examples. For any a ≤ b ≤ c, the triangular fuzzy number T (a, b, c) is the fuzzy set (tent function) given by

T (a, b, c)(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − a

b − a
if x ∈ [a, b] and a < b,

x − c

b − c
if x ∈ [b, c] and b < c

1 if x ∈ [a, b] and a = b or x ∈ [b, c] and b = x,

0 otherwise.

(2)

2.1. Arithmetics and Zadeh’s extension principle

Operations in Fc(Rp) are defined as follows.

Definition 2.1 ([45]). Let A, B ∈Fc(Rp) and γ ∈R. Then, we define

• the sum A + B as

(A + B)(t) := sup
p

min{A(x),B(y)}, with t ∈Rp
x,y∈R :x+y=t
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or, equivalently,

(A + B)α = {x + y : x ∈ Aα,y ∈ Bα}
for all α ∈ [0, 1].

• the product γ · A of A by a scalar γ , as

(γ · A)(t) := sup
x∈Rp :t=γ ·x

A(y) =

⎧⎪⎨
⎪⎩

A
(

t
γ

)
, si γ �= 0

I{0}(t) si γ = 0,

for t ∈ Rp . Equivalently,

(γ · A)α = {γ · x : x ∈ Aα}
for all α ∈ [0, 1].

While the sum has I{0} as its neutral element, it is important to notice that (−1) × A is not the additive inverse of 
A in general. Taking the support function is a linear operator in the sense that

sγ ·A+γ ′B = γ · sA + γ ′ · sB
whenever γ, γ ′ ≥ 0 and A, B ∈ Fc(Rp).

Zadeh’s extension principle [46] allows a crisp function (non-fuzzy) to act on fuzzy sets in the following way. 
Given a function f :Rp → Rp and A ∈Fc(Rp), the image f (A) ∈ Fc(Rp) is defined to be

f (A)(t) := sup{A(y) : y ∈Rp,f (y) = t}
for all t ∈ Rp . For instance, the operations defined above are consistent with Zadeh’s extension principle.

For an arbitrary f , it may happen that A ∈ Fc(Rp) does not imply f (A) ∈ Fc(Rp). However, we will only apply 
Zadeh’s extension to continuous functions, where that cannot happen. The main example in this paper is the following.

Let M ∈ Mp×p(R) be a non-singular matrix and let f : Rp → Rp be given by f (x) = M · x. Then Zadeh’s 
extension yields, for any A ∈Fc(Rp), a value f (A) = M · A ∈ Fc(Rp) as

(M · A)(t) := sup{A(y) : y ∈ Rp,M · y = t}.
Since f is bijective, actually

(M · A)(t) = A(M−1 · t).
An important tool in order to deal with support functions of fuzzy sets is the mid/spr decomposition [43]. Given 
A ∈ Fc(Rp), the support function of A, sA, can be expressed as sA = mid(sA) + spr(sA), where the mid and spread 
of a function f : Sp−1 × [0, 1] → R are defined by

mid(f (u,α)) := (f (u,α) − f (−u,α))/2 (3)

spr(f (u,α)) := (f (u,α) + f (−u,α))/2. (4)

Analogously, for any K ∈ Kc(R), we set

mid(K) = (sup(K) + inf(K))/2 and spr(K) = (sup(K) − inf(K))/2. (5)

2.2. Metrics in Fc(Rp)

There are several different metrics in Fc(Rp). We will use some of the best known: dr , which use the Hausdorff 
metric over the α-levels, and ρr , which are Lr -type metrics.

First of all, the Hausdorff metric in Kc(Rp) is given by

dH (S,T ) := max

{
sup inf

t∈T
‖ s − t ‖, sup inf

s∈S
‖ s − t ‖

}

s∈S t∈T
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for any S, T ∈ Kc(Rp). Thus, given two fuzzy sets A, B ∈ Fc(Rp), the following family of metrics makes use of the 
Hausdorff distance between α-levels:

dr(A,B) :=

⎧⎪⎨
⎪⎩

(∫ 1
0 (dH (Aα,Bα))r dα

)1/r

, r ∈ [1,∞)

supα∈[0,1] dH (Aα,Bα), r = ∞.

While (Fc(Rp), dr) is a non-complete and separable metric space, for any r ∈ (1, ∞), the metric space (Fc(Rp), d∞)

is non-separable and complete (see [13]).
It is also possible to consider Lr -type metrics (see [13]).

ρr(A,B) :=
⎛
⎜⎝ ∫
Sp−1

∫
[0,1]

‖sA − sB‖rdudα)

⎞
⎟⎠

1/r

, (6)

for all A, B ∈Fc(Rp). The most commonly used metrics are the cases r = 1 and r = 2.

2.3. Fuzzy random variables

Let (�, A, P ) be a probability space.

Definition 2.2 ([30]). A random compact convex set (or simply a random set) is a function � : � →Kc(Rp) such that 
{ω ∈ � : �(ω) ∩ K �= ∅} ∈A for all K ∈Kc(Rp).

Note that this definition is equivalent to demanding � to be measurable with respect to the Borel σ -algebra induced 
by the Hausdorff metric.

Definition 2.3 ([36]). A fuzzy random variable is a function X : � → Fc(Rp) such that Xα(ω) is a random compact 
set for all α ∈ [0, 1], where Xα : � → Kc(Rp) is defined as Xα(ω) := (X (ω))α for any ω ∈ �.

It is not explicit in this definition that a fuzzy random variable is a measurable function in the ordinary sense. But 
clearly, X is a fuzzy random variable if and only if it is measurable when Fc(Rp) is endowed with the σ -algebra 
generated by the α-cut mappings Lα : A ∈ Fc(Rp) �→ Aα ∈ Kc(Rp), namely the smallest σ -algebra which makes 
each Lα measurable. As shown by Krätschmer [25], that is the Borel σ -algebra generated by any of the metrics dr or 
ρr for r ∈ [1, ∞). The Borel σ -algebra of d∞ is strictly larger.

Given a fuzzy random variable X : � → Fc(Rp), we define sX the support function of X as the function sX :
Sp−1 × [0, 1] × � → R defined by

sX (u,α,ω) := sX (ω)(u,α), (7)

for all u ∈ Sp−1, α ∈ [0, 1] and ω ∈ �. Whenever X is a fuzzy random variable, each sX (u, α) is a real random 
variable.

Definition 2.4 ([39]). Let (�, A, P ) be a probabilistic space associated with the fuzzy random variable X : � →
Fc(R). A 1-median of the distribution of X is any fuzzy set M̃e(X ) ∈ Fc(R) such that E(ρ1(X , M̃e(X ))) =
minU∈Fc(R) E(ρ1(X , U)).

Given a real random variable X, Med(X) denotes the median of X. Med(X) does not need to be unique and will 
be generally assumed to be a set of points. In the particular cases in which Med(X) will denote a representative of the 
set instead of the whole set, we will specifically point it out.

Theorem 2.5 ([39]). Let (�, A, P ) be a probabilistic space associated with the fuzzy random variable X : � →
Fc(R). We have that for any α ∈ [0, 1], the fuzzy set(s), M̃e(X ) ∈ Fc(R), satisfies that

(M̃e(X ))α = [Med(inf(Xα)),Med(sup(Xα))]. (8)
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In (8), if Med(infXα) and/or Med(supXα) are not unique, they are defined as the midpoint of the set of medians.

2.4. Basic definitions about Banach spaces

Definition 2.6. A normed vector space (E, ‖ · ‖) is called a Banach space if it is complete with respect to the metric 
derived from its norm, that is, every Cauchy sequence is convergent.

Definition 2.7 ([21]). A Banach space (E, ‖ · ‖) is said to be strictly convex if x = y whenever ‖(1/2) · (x + y)‖ =
‖x‖ = ‖y‖, for all x, y ∈E.

The following result presents two characterizations of strictly convex Banach spaces.

Theorem 2.8 ([21]). Let (E, ‖ · ‖) be a Banach space. The following properties are equivalent.

1. (E, ‖ · ‖) is strictly convex.
2. For all x, y ∈ E such that x �= y and ‖x‖ = ‖y‖ = 1, we have that ‖x + y‖ < 2.
3. For all x, y ∈ E such that x �= y and ‖x‖ = ‖y‖ = 1, we have that ‖(1 − λ) · x + λ · y‖ < 1 for all λ ∈ (0, 1).

2.5. Multivariate statistical depth

The definition of a statistical depth function is as follows.

Definition 2.9 ([47]). Let H be a class of random variables. Let D(·; ·) :Rp ×H → [0, ∞) be a map satisfying:

(M1.) D(M · x + b; M · X + b) = D(x; X), for any X ∈ H, any non-singular matrix M ∈ Mp×p(R) and any x, b ∈
Rp .

(M2.) D(θ; X) = supx∈Rp D(x; X), for any X ∈H with center θ with respect to some notion of symmetry.
(M3.) For any X ∈ H having deepest point θ , D(x; X) ≤ D((1 − λ)θ + λx; X), for any λ ∈ [0, 1].
(M4.) D(x; X) → 0 as ‖x‖ → ∞, for each X ∈ H.

Then D(·; ·) is called a statistical depth function or just a depth function. To distinguish the multivariate and fuzzy 
cases, we also call it a multivariate depth function.

Recall the notion of central symmetry of a random variable.

Definition 2.10 ([47]). Let X : � →Rp be a random variable associated with a probabilistic space (�, A, P ) and let 
c ∈ Rp . X is centrally symmetric with respect to c if X − c =d c − X.

It must also be emphasized that it is customary in the statistical community to regard those properties as favorable
features (‘desirable properties’ [47, Section 2.1]) rather than proper axioms. The intuitive rationale behind properties 
M1–M4 is the following.

M1. The depth of a point should not depend on the coordinate system we choose to use.
M2. The center of symmetry of a distribution, if it exists, should be the deepest point in the distribution.
M3. Depth should increase when we follow a straight line from any point towards a point of maximal depth.
M4. Depth should decrease to 0 as we move towards infinity.

While these intuitive explanations make M1–M4 plausible requirements, it is hard to view them as forceful axioms 
since it is unclear, in most cases, that dangerous consequences would necessarily follow from omitting one or another. 
That explains that some functions which do not satisfy all those properties are generally accepted and routinely called 
depth functions.
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3. Definition of statistical depth function for fuzzy sets

This section is devoted to proposing two notions of statistical depth function for fuzzy data, specifically for fuzzy 
sets in Fc(Rp). They are based on the notions of statistical depth function in Rp (Section 2.5) and function spaces. 
However, due to the special properties of spaces of fuzzy sets (in particular, they are not linear spaces and more than 
one metric is available), some adaptations become necessary.

More precisely, the intuitive properties that depth decreases along any ray departing from a deepest point, and that 
depth must tend to 0 when moving outwards ‘towards infinity’, must be reimagined in the context of fuzzy sets. The 
former, for instance, will be expressed in terms of betweenness: all fuzzy sets which are between a given fuzzy set 
and a maximally deep fuzzy set, must have an intermediate depth. The notion of being between can be formalized 
by resorting to the algebraic structure (i.e., a convex combination of two fuzzy sets is declared to be between them) 
or to the geometric structure (i.e., a fuzzy set which splits the distance between other two is declared to be between 
them). In Rp or, in the context of functional data, in Hilbert spaces, these two notions are equivalent, but they must 
be distinguished in our context. Similar considerations affect the notion of ‘moving towards infinity’.

That leads us to proposing two different notions or ‘styles’ of depth, one algebraic and the other geometric. Since 
the structure of fuzzy set spaces is often called semilinear (as it has a sum and a product by scalars but fails some key 
axioms of a linear space), we call them semilinear depth and geometric depth.

Let L0[Fc(Rp)] be the class of all fuzzy random variables on the measurable space (�, A), and consider subsets 
H ⊆ L0[Fc(Rp)] and J ⊆ Fc(Rp). A statistical depth function is a mapping

D(·; ·) : J ×H → [0,∞)

that satisfies a number of properties listed below. Subset H accounts for the fact that many methods do not provide 
a depth function for every single random object (for instance, a definition may involve expectations and so it is valid 
only provided those expectations exist). Usually J is the whole Fc(Rp), however one may want to consider depth 
functions restricted to specific subclasses of fuzzy sets, like triangular, trapezoidal and LR fuzzy numbers [24, Section 
4.1].

The first two desirable properties are the same for both semilinear depth and geometric depth:

(P1.) D(M · A + B; M · X + B) = D(A; X ) for any non-singular matrix M ∈ Mp×p(R), any A, B ∈ J and any 
X ∈ H.

(P2.) For (some notion of symmetry and) any symmetric fuzzy random variable X ∈H,

D(U ;X ) = sup
B∈Fc(Rp)

D(B;X ),

where U ∈ J is a center of symmetry of X .

The product of a matrix and a fuzzy set is performed with Zadeh’s extension principle (Section 2.1) and represents 
the change of the fuzzy set under a coordinate change in Rp which preserves the origin. Property P1 is a general-
ization of the affine equivariance property of multivariate depth. Property P2 formally coincides with its analog in 
the multivariate [47] and functional [33] cases. However, some notion of symmetry suitable for the fuzzy case needs 
to be considered. In Section 4 below we provide two notions of symmetry for fuzzy random variables in order to 
make property P2 operative. Symmetry is meant here as a property of the probability distribution of the fuzzy random 
variable, not of the individual fuzzy sets it takes on as values. Also, in the literature of statistical depth it is not meant 
that a depth function must satisfy P2 simultaneously for every conceivable definition of symmetry, but only that it is 
desirable that symmetrically distributed random objects have the center of symmetry as the maximally deep object for 
some notion of symmetry.

Semilinear depth and geometric depth differ in how further properties are adapted. We complete their definitions 
as follows.

Definition 3.1. Let H ⊆ L0[Fc(Rp)] and J ⊆ Fc(Rp). A mapping D(·; ·) : J × H → [0, ∞) is a semilinear depth 
function if it satisfies P1 – P2 and, for each fuzzy random variable X ∈ H and each A ∈ J such that D(A; X ) =
sup{D(B; X ) : B ∈ J }, the following two properties are met.
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(P3a.) D(A; X ) ≥ D((1 − λ) · A + λ · B; X ) ≥ D(B; X ) for all λ ∈ [0, 1] and all B ∈Fc(Rp).
(P4a.) limλ→∞ D(A + λ · B; X ) = 0 for all B ∈ J \ {I{0}}.

Definition 3.2. Let H ⊆ L0[Fc(Rp)], J ⊆ Fc(Rp) and d a metric in Fc(Rp). A mapping D(·; ·) : J ×H → [0, ∞)

is a geometric depth function with respect to d if it satisfies P1 – P2 and, for each fuzzy random variable X ∈ H and 
each A ∈ J such that D(A; X ) = sup{D(B; X ) : B ∈ J }, the following two properties are met.

(P3b.) D(A; X ) ≥ D(B; X ) ≥ D(C; X ) for all B, C ∈ J satisfying d(A, C) = d(A, B) + d(B, C).
(P4b.) limn→∞ D(An; X ) = 0 for every sequence of fuzzy sets {An}n such that the limn→∞ d(An, A) = ∞.

Properties P3b and P4b are based also on the functional case, in the sense that we consider the space of fuzzy sets 
as a metric space and formulate these properties with respect to a specific metric. Concerning P4b, notice that, by the 
triangle inequality, A can be replaced by any other fuzzy set like I{0}, which makes it possible to check P4b without 
computing the fuzzy sets with maximum depth.

We will study the relationships between these two definitions in Section 5.
The distribution of a fuzzy random variable is the probability measure it induces in Fc(Rp). Note that the examples 

of statistical depth considered in this paper only depend on the fuzzy random variable via its distribution, i.e., identi-
cally distributed fuzzy random variables will share the same depth function. Thus there is no essential difference with 
defining depth as a function of distributions instead of variables, as more commonly found in the statistical literature. 
Using variables will improve the readability of some proofs.

4. Symmetry for fuzzy random variables

Property P2 requires the use of some notion of symmetry for fuzzy random variables. It is clear that one can define 
central symmetry (Section 2.5) with respect to a point c by requiring X to be such that X − I{c} and its product by −1
are identically distributed (see, e.g., [40] among other papers). However, that would lead to a very weak variant of P2 
as it would be void whenever maximally deep fuzzy sets are not crisp points; i.e., whenever they are not points in Rp. 
Therefore, we need a notion which allows for symmetry with respect to a more general A ∈Fc(Rp) rather than only 
crisp points.

We will introduce now two such notions. They make use of the support function, in (1) and (7), as a way of con-
sidering the space of fuzzy sets as a space of real functions defined over the compact set Sp−1 × [0, 1]. Definition 4.1
below provides a notion of symmetry that takes into account measures of shape and location of the symmetric fuzzy 
set with respect to those of the fuzzy random variable. That is due to the fact that the support function of a fuzzy 
set provides information about the α-level boundaries of the fuzzy set. Definition 4.2, meanwhile, makes use of the 
functions mid and spr over the support function, whose definitions are in (3) and (4), respectively.

Definition 4.1. Let X : � → Fc(Rp) be a fuzzy random variable and A ∈Fc(Rp) a fuzzy set. X is F -symmetric with 
respect to A if

sA(u,α) − sX (u,α) =d sX (u,α) − sA(u,α),

for all u ∈ Sp−1 and α ∈ [0, 1].
Equivalently, X is F-symmetric with respect to A if each sX (u, α) is centrally symmetric with respect to sA(u, α).

Definition 4.2. Let X : � → Fc(Rp) be a fuzzy random variable and A ∈ Fc(Rp) a fuzzy set. X is (mid, spr)-
symmetric with respect to A if the following two conditions are satisfied for all u ∈ Sp−1 and α ∈ [0, 1]:

mid(sA(u,α)) − mid(sX (u,α)) =d mid(sX (u,α)) − mid(sA(u,α)),

spr(sA(u,α)) − spr(sX (u,α)) =d spr(sX (u,α)) − spr(sA(u,α)).

Through the next examples, we show the similarities and differences between Definitions 4.1 and 4.2.
65



L. González-De La Fuente, A. Nieto-Reyes and P. Terán Fuzzy Sets and Systems 443 (2022) 58–86
Fig. 1. Illustration of the triangular fuzzy sets T (0,0.5,1) and T (2,2.5,3) in red and A in green. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

Example 4.3. Given the probability space ({ω1, ω2}, P({ω1, ω2}), P ) with P (ω1) = P (ω2), let X : {ω1, ω2} → Fc(R)

be a fuzzy random variable over it such that X (ω1) and X (ω2) are the triangular fuzzy numbers T (0,0.5,1) and 
T (2,2.5,3), respectively (see Section 2.3 for the definition).

The fuzzy random variable X is F -symmetric with respect to the triangular fuzzy number A := T (1, 1.5, 2) (see 
Fig. 1). That is due to the following. For any α ∈ [0, 1],

(X (ω1))α = [α/2,1 − α/2], (X (ω2))α = [2 + α/2,3 − α/2]
and

Aα = [1 + α/2,2 − α/2].
Since S0 = {−1, 1},

sX (ωi )(1, α) =
{

1 − α/2, i = 1,

3 − α/2, i = 2

and

sX (ωi )(−1, α) =
{

−α/2, i = 1,

−2 − α/2, i = 2.

Their centers of symmetry are, respectively, 2 − α/2 and −1 − α/2. Since

sA(1, α) = 2 − α/2, sA(−1, α) = −1 − α/2,

indeed each sX (u, α) is centrally symmetric with respect to sA(u, α), namely X is F -symmetric with respect to A.
One similarly shows that the fuzzy random variable X is also (mid, spr)-symmetric with respect to A.
Observe that X (ω1) and X (ω2) are centrally symmetric with respect to the crisp point 1.5. But I{1.5} is not a 

reasonable candidate for being maximally deep in the distribution of X . The variable takes on fuzzy values with 
the same triangle shape, while the supposed center of the distribution, I{1.5}, is entirely somewhere else in the space 
Fc(Rp) while also not being appropriate from the perspective of Property P4. On the contrary, A = T (1, 1.5, 2), 
which is the center of F-symmetry and (mid, spr)-symmetry, is the natural candidate.

Example 4.4. Given the probability space ({ω1, ω2, ω3}, P({ω1, ω2, ω3}), P ), with P (ω1) = P (ω2) = P (ω3), let X :
{ω1, ω2, ω3} → Fc(R) be a fuzzy random variable over it such that X (ω1) = I[−2,4], X (ω2) = I[0,2] and X (ω3) =
I[2,6].

Definitions 4.1 and 4.2 are not equivalent. This can be deduced from X being F -symmetric with respect to the 
fuzzy set I[0,4] but not (mid, spr)-symmetric. One can check
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sX (ωi )(1, α) =

⎧⎪⎨
⎪⎩

4, i = 1

2, i = 2

6, i = 3

for all α ∈ [0, 1], whence sX (ωi)(1, α) is centrally symmetric with respect to 4, which is sI[0,4](1, α). Similarly,

sX (ωi )(−1, α) =

⎧⎪⎨
⎪⎩

2, i = 1

0, i = 2

−2, i = 3

whence sX (ωi)(−1, α) is centrally symmetric with respect to 0, which is sI[0,4](−1, α). Thus F -symmetry with respect 
to I[0,4] is proved. However,

mid(sX (ωi)(1, α)) =

⎧⎪⎨
⎪⎩

1, i = 1

1, i = 2

4, i = 3

which shows that mid(sX (ωi)(1, α)) takes on values 1 and 4 with probabilities 2/3 and 1/3, i.e. is not centrally 
symmetric. Thus X cannot be (mid, spr)-symmetric.

Example 4.5. Given the probability space ({ω1, ω2, ω3, ω4}, P({ω1, ω2, ω3, ω4}), P ), with P (ω1) = P (ω2) =
P (ω3) = P (ω4), let X : {ω1, ω2, ω3, ω4} → Fc(R) be a fuzzy random variable over it such that X (ω1) = I[1,5], 
X (ω2) = I[−2,4], X (ω3) = I[1,3] and X (ω4) = I[2,6].

This example presents a (mid, spr)-symmetric fuzzy random variable which is not F -symmetric. Indeed, for any 
α ∈ [0, 1] and u ∈ {−1, 1},

mid(sX (ωi)(u,α)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3u, i = 1

u, i = 2

2u, i = 3

4u, i = 4,

which is centrally symmetric with respect to 2.5u. Moreover,

spr(sX (ωi )(u,α)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, i = 1

3, i = 2

1, i = 3

2, i = 4,

which is centrally symmetric with respect to 2. The fuzzy set with those values of mid and spread is I[.5,4.5], hence X
is (mid,spr)-symmetric with respect to it.

However,

sX (ωi )(−1, α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1, i = 1

2, i = 2

−1, i = 3

−2, i = 4.

Its distribution takes on values −2, −1, 2 with respective probabilities .25, .5, .25 which is not a centrally symmetric 
distribution: the only possibility is central symmetry with respect to the point with probability .5; but it is not the 
midpoint between the other two.

Next we provide a result on the median of a function of symmetric fuzzy random variables.
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Lemma 4.6. Let X : � →Fc(Rp) be a fuzzy random variable over a probabilistic space (�, A, P ) and A ∈Fc(Rp)

a fuzzy set.

• If X is F -symmetric with respect to A ∈ Fc(Rp) then sA(u, α) is a median of sX (u, α) for all u ∈ Sp−1 and 
α ∈ [0, 1].

• If X is (mid, spr)-symmetric with respect to an A ∈ Fc(Rp) then mid(sA(u, α)) is a median of mid(sX (u, α))

and spr(sA(u, α)) is a median of spr(sX (u, α)) for each u ∈ Sp−1 and α ∈ [0, 1].

Let � : � → Kc(R) be a random interval, associated with a probabilistic space (�, A, P ). In [38], a median of 
a random interval is defined to be a compact interval Me[�] ∈ Kc(R) such that mid(Me[�]) = Med(mid(�)) and 
spr(Me[�]) = Med(spr(�)), see (5). Thus, by Lemma 4.6, if I� is (mid, spr)-symmetric with respect to the indicator 
function of a compact interval A ∈Kc(R), then A is the median of the random interval �.

5. Relationship between depth properties

The aim of this section is to clarify the relationships between both proposed definitions of depth, and between them 
and multivariate depth. Since geometric depth depends on the choice of a metric, its defining properties cannot be 
expected to be equivalent, in general, to those of semilinear depth. We will give sufficient conditions for P3a to imply 
P3b and vice versa, as well as for P4b to imply P4a. Those conditions are satisfied, for example, by the ρr-metrics for 
r ∈ (1, ∞). Examples will be provided in which the implications fail.

Property P4a does not imply P4b since it fails to imply M4 when restricted to the multivariate case, as discussed 
below. Hence we will propose an alternative P4a* so that properties P1–P3 and P4a* become equivalent to M1–M4 
in the multivariate case.

The subset

Rp = {I{x} ∈ Fc(R
p) : x ∈Rp}

of Fc(Rp) and Rp can be identified and the operations sum and product by a scalar are preserved, i.e. I{x} + I{y} =
I{x+y} and γ · I{x} = I{γ ·x}, for all x, y ∈ Rp and for all γ ∈ R. It seems, then, natural to study the relation between 
both notions of fuzzy depth and that of multivariate depth function, reproduced in Section 2.5 together with the central 
symmetry notion.

Proposition 5.1. Take F -symmetry to be the notion of symmetry for Definitions 3.1 and 3.2, and take central symmetry 
for Definition 2.9. Then for any of the metrics ρ2 and dr (r ∈ [1, ∞]), Definition 3.2 restricted to Rp and Definition 2.9
are equivalent. Additionally, Definition 2.9 implies Definition 3.1 restricted to Rp and the properties P3a and M3 are 
equivalent.

The next proposition proves the equivalence of Definition 2.9 and Definition 3.1 restricted to Rp when P4a is 
replaced by

(P4a∗.) limn→∞ D(A + Bn; X ) = 0 for all Bn ∈ Fc(Rp) with n ∈ N such that there exists i ∈ {1, 2, · · · , p} and 
α ∈ [0, 1] with limn→∞ |sBn(ei, α)| = ∞.

Here, {ei}pi=1 is the canonical basis of Rp. Clearly, it is equivalent to consider only the case α = 0.

Proposition 5.2. The following hold:

(a) Property P4a∗ restricted to Rp is equivalent to M4.
(b) Property M4 implies P4a restricted to Rp.
(c) Property P4b (for the d∞-metric) restricted to Rp implies M4.

Property M4 can be rewritten by replacing the condition ‖x‖ → ∞ by the equivalent one that xi → ∞ for some 
i = 1, . . . , p (where x = (x1, . . . , xp) ∈ Rp). By doing this, one omits any reference to the metric (norm) of Rp and 
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focuses on the vector coordinates, which are part of the algebraic structure. That is the idea behind P4a*, however 
we do not feel that property P4a* is purely algebraic since it involves support functions, which are still geometric 
in nature. Thus we chose the weaker P4a for the definition of semilinear depth; but P1–P3 and P4a* are a valid 
generalization of the notion of multivariate depth to the fuzzy setting.

The rest of the section focuses on comparing the third and fourth properties in Definitions 3.1 and 3.2, since P1–P2 
are common. That will give us a better understanding of the relationships between the geometric and semilinear forms 
of depth.

For that purpose, we consider metrics d : Fc(Rp) × Fc(Rp) → [0, ∞) that satisfy the following assumptions. 
These are common for many distances between fuzzy sets and are satisfied by each of the metrics in this paper.

(A1.) d(γ · A, γ · B) = γ · d(A, B), for all A, B ∈ Fc(Rp) and for all γ ∈ [0, ∞).
(A2.) d(A + W, B + W) = d(A, B), for all A, B, W ∈ Fc(Rp).

Proposition 5.3 establishes that, under these assumptions, P3b implies P3a while Theorem 5.4 is for studying the 
reverse problem. Examples 5.6 and 5.7 show, however, that the equivalence does not hold in general; for instance, for 
the ρ1 distance or for dr , for any r ∈ [1, ∞].

Proposition 5.3. Let X a fuzzy random variable and D(·; X ) : Fc(Rp) → [0, ∞) a function satisfying P3b for a 
metric that fulfills A1 and A2. Then D(·; X ) satisfies P3a.

Theorem 5.4. Let (E, ‖ · ‖) be a strictly convex Banach space, let d be a metric in Fc(Rp) fulfilling A1 and A2 and 
j : (Fc(Rp), d) → (E, ‖ · ‖) an isometry. Whenever A, B, C ∈ Fc(Rp) are such that

d(A,B) = d(A,C) + d(B,C), (9)

the fuzzy set C has the form (1 − λ) · A + λB for some λ ∈ [0, 1].

Remark 5.5. In particular, Lp-type norms are strictly convex for p ∈ (1, ∞). Many commonly used Lp-type metrics 
for fuzzy sets are thus in the assumptions of Theorem 5.4, like the ρr metrics (r ∈ (1, ∞)). Note that if the mapping j
preserves the linear operations then A1 and A2 always hold, since every norm has those properties.

Example 5.6. Let ({ω1, ω2}, P({ω1, ω2}), P ) be a probability space such that P ({ω1}) = 3/4 and P ({ω2}) = 1/4
and X : {ω1, ω2} → Fc(R) a fuzzy random variable on that probability space such that A := X (ω1) = I[1,2] and 
B := X (ω2) = I[2,7]. Consider C := I[3,5]. Clearly,

5 = d∞(A,B) = d∞(A,C) + d∞(B,C) = 2 + 3.

Let DFT (·; X ) : Fc(R) → [0, 1] be defined by

DFT (U ;X ) := inf
u∈S0,α∈[0,1]

min{P (sX (u,α) ≤ sA(u,α)),P (sX (u,α) ≥ sA(u,α))}. (10)

We study DFT in the general case in Section 6, and in Theorem 6.6 we will show that it is a semilinear depth 
function in the sense of Definition 3.1. Thus, DFT satisfies property P3a. It is easy to see that A satisfies

DFT (A;X ) = P (sX (−1,0) ≥ sA(−1,0)) = 3/4

and it is a fuzzy set with maximal depth. Now

DFT (B;X ) = P (sX (−1,0) ≤ sB(−1,0)) = 1/4

and

DFT (C;X ) = P (sX (−1,0) ≥ sC(−1,0)) = 0.

Then, we have A, B, C ∈Fc(R) such that

d∞(A,B) = d∞(A,C) + d∞(B,C)
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but DFT (B; X ) > DFT (C; X ). Hence P3b does not hold for the metric d∞. In fact

dr(A,B) = dr(A,C) + dr(B,C)

for all r ∈ [1, ∞), so the same counterexample is valid for any r ∈ [1, +∞].

Example 5.7. Given the probability space ({ω1, ω2}, P({ω1, ω2}), P ) with P (ω1) = 3/4 and P (ω2) = 1/4, let X :
{ω1, ω2} → Fc(R) be a fuzzy random variable such that X (ω1) = T (0, .5, 1) and X (ω2) = T (2, 2.5, 3). Let us define 
the function D1(·; X ) : Fc(R) → [0, 1] as

D1(U ;X ) := (1 + E[‖spr(sX ) − spr(sU )‖1])−1 ,

where ‖ · ‖1 is the L1-norm ‖f ‖1 = ∫
S0

∫
[0,1] |f (u, α)|dαdu. The value of D1(U ; X ) is meant as 0 if the expectation 

in the denominator is infinite.
Let us show that this function satisfies property P3a but fails P3b.
Observe that E[‖spr(sX ) − spr(sU )‖1] is convex as a function of U ∈ Fc(R), that is, for all U, V ∈ Fc(R) and 

λ ∈ [0, 1],
E[‖spr(sX ) − spr(sλU+(1−λ)V )‖1] ≤ λE[‖spr(sX ) − spr(sU )‖1] + (1 − λ)E[‖spr(sX ) − spr(sV )‖1],

because ‖ · ‖1 is a norm and the spread and the expectation are linear. Then, if A ∈ Fc(R) maximizes D1(·; X ) we 
have E[‖spr(sX ) − spr(sA)‖1] ≤ E[‖spr(sB) − spr(sU )‖1] and there follows, for any B ,

D1((1 − λ)A + λB;X ) ≥
(1 + (1 − λ)E[‖spr(sX ) − spr(sA)‖1] + λE[‖spr(sX ) − spr(sB)‖1])−1 ≥
(1 + (1 − λ)E[‖spr(sX ) − spr(sB)‖1] + λE[‖spr(sX ) − spr(sB)‖1])−1 = D1(B;X ),

which establishes P3a.
Now let A, B and C be the fuzzy sets A := T (0, .5, 1) = X (ω1), B := T (2, 2.5, 3) = X (ω2), C := I{2}.
First of all, it is clear that Aα = [α/2, 1 −α/2] and Bα = [2 +α/2, 3 −α/2]. Then we know that sA(−1, α) = −α/2, 

sA(1, α) = 1 − α/2, sB(−1, α) = −2 − α/2 and sB(1, α) = 3 − α/2 for all α ∈ [0, 1]. It is easy to check ρ1(A, B) =
2, ρ1(A, C) = 3/2, ρ1(B, C) = 1/2 taking into account sC(−1, α) = −2 and sC(1, α) = 2 for all α ∈ [0, 1]. Then 
A, B, C satisfy

ρ1(A,B) = ρ1(A,C) + ρ1(B,C).

Further, X , A and B have been chosen so that

spr(sX ) = spr(sA) = spr(sB),

whence

E[‖spr(sX ) − spr(sA)‖1] = E[‖spr(sX ) − spr(sB)‖1] = 0

and, accordingly,

D1(A;X ) = D1(B;X ) = 1.

Since, by definition, D1 is bounded above by 1, both A and B maximize the depth value. If P3b held true, since C is 
metrically between A and B we would have D1(C; X ) = 1 as well. But spr(C) = 0, whence

D1(C;X ) = (1 + E[‖ spr(sX )‖1])−1 = 4

5
< 1

and P3b does not hold.

Proposition 5.8 shows that P4b implies P4a under mild conditions. Example 5.9 shows that the converse is not 
satisfied in general.
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Proposition 5.8. Let X be a fuzzy random variable and D(·; X ) :Fc(Rp) → [0, ∞) a function for which P4b holds 
with respect to a metric that fulfills A1 and A2. Then D(·; X ) satisfies P4a.

Example 5.9. Let us consider the function D1(U ; X ) = (1 + E[ρ1(X , U)])−1 for any fuzzy set U and fuzzy random 
variable X , where (like in Example 5.7) the value is meant as 0 if the denominator is infinite.

Let A = I{0} ∈ Fc(R) and let X the fuzzy random variable such that X (ω1) = A, associated with the probabilistic 
space ({ω1}, P({ω1}), P ). Since the only value of X is A, clearly D1(A; X ) = 1 which maximizes D1(·; X ) and is in 
fact the unique maximizer since ρ1(B, A) > 0 for any other B .

Let us show that P4a is satisfied by D1(·, X ) but P4b fails for the metric dr , for any r ∈ (1, ∞). Accordingly, it 
fails as well for the corresponding ρr -metrics, since they are equivalent to the dr .

For any B ∈ Fc(R) such that B �= I{0}, and any λ > 0, taking into account that ρ1 has properties A1 and A2 we 
obtain

D1(A + λB;X ) = (1 + ρ1(A + λB,A))−1 = (1 + ρ1(λB, I{0}))−1 = (1 + λρ1(B, I{0}))−1

which goes to 0 as λ → ∞. Therefore P4a holds.
To prove that P4b fails, consider the sequence {An}n ∈ Fc(R) given by

An(x) =

⎧⎪⎨
⎪⎩

1, x = 0

n−1, x ∈ (0, n]
0, otherwise.

Since (An)α = [0, n] if α ∈ [0, n−1] and {0} otherwise,

ρ1(An,A) = 1

2
· 0 + 1

2
· n−1 · n = 1

2
.

Accordingly, for each n ∈N ,

D1(An;X ) = (1 + ρ1(An,A))−1 = 2

3
> 0.

Thus if P4b held for dr , that would imply dr(An, A) �→ ∞. But

dr(An,A) = (

1∫
0

dH ((An)α,Aα)rdα)1/r = (n−1 · nr)1/r = n1−1/r → ∞

since r > 1. We conclude that property P4b cannot hold.

Remark 5.10. As a consequence of Propositions 5.3 and 5.8, if a function satisfies the properties of geometric depth 
function for a metric fulfilling A1 and A2, then it is also a semilinear depth function.

6. The Tukey depth

Given a probability space (�, A, P ), the multivariate Tukey depth [44] (or halfspace depth) of a point x ∈Rp with 
respect to a random vector X is defined as

DT (x;X) := inf
u∈Sp−1

{P [ω ∈ � : X(ω) ∈ S−
u,x]},

where S−
u,x := {y ∈Rp : 〈y − x, u〉 ≤ 0} is a closed halfspace in Rp . We propose in Definition 6.1 a generalization for 

fuzzy sets which makes use of the support function of the fuzzy set. As shown in Proposition 6.3, it coincides with the 
Tukey depth when restricting Fc(Rp) to Rp .

Definition 6.1. Let H ⊆ L0[Fc(Rp)] and J ⊆ Fc(Rp). The Tukey depth of a fuzzy set with respect to a fuzzy random 
variable is given by the function DFT (·; ·) : J ×H → [0, 1] with
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DFT (U ;X ) := inf
u∈Sp−1,α∈[0,1]

min
(
P [ω ∈ � :X (ω) ∈ S−

u,α],P [ω ∈ � :X (ω) ∈ S+
u,α]) ,

where

S−
u,α := {V ∈ Fc(R

p) : sV (u,α) − sU (u,α) ≤ 0},
S+

u,α := {V ∈ Fc(R
p) : sV (u,α) − sU (u,α) ≥ 0}.

Although it is not made explicit, the sets S−
u,α and S+

u,α depend on U . The same will happen with the sets S−
u,α,t and 

S+
u,α,t in Theorem 6.2 below.

Our definition of Tukey depth is based on using the support functionals A �→ sA(u, α) as a replacement for the 
products x �→ 〈x, u〉 in Rp . The rationale for doing so is multiple. First, the support functionals reduce to the inner 
product functionals in Rp , which will ensure this is an actual generalization. Second, each A ∈ Fc(Rp) is identified 
by the value of all the support functionals on it, like each x ∈ Rp is identified by the value of all the products 〈x, u〉. 
Third, they are additive and positively homogeneous so they work well with the operations on fuzzy sets. The main 
difference is that s−A(u, α) �= −sA(u, α) in general, whence we need to consider both types of generalized halfspaces 
S−

u,α and S+
u,α . In Rp one would just have S+

u,x = S−−u,x , which makes it unnecessary to include both halfspaces in the 
definition.

A known feature of the multivariate Tukey depth of a point x ∈ Rp is that it is equivalent to consider all halfspaces 
containing x or only those which contain x in their boundary. As we see in the following theorem, the situation is 
analogous for the fuzzy Tukey depth, because S−

u,α = S−
u,α,sU (u,α) ⊆ S−

u,α,t for any t ≥ sU (u, α), where the second type 
of halfspace is defined below. The situation is analogous for the generalized halfspaces with the positive sign. Also, 
the infimum and the minimum can be interchanged.

Theorem 6.2. It is equivalent to define, for any U ∈ Fc(Rp) and X ∈ L0[Fc(Rp)], the Tukey depth of U with respect 
to X as

DFT (U ;X ) = min( inf
(u,α,t)∈I−

U

P [ω ∈ � : X (ω) ∈ S−
u,α,t ], inf

(u,α,t)∈I+
U

P [ω ∈ � : X (ω) ∈ S+
u,α,t ]),

where

I−
U := {(u,α, t) ∈ Sp−1 × [0,1] ×R : t ≥ sU (u,α)},

I+
U := {(u,α, t) ∈ Sp−1 × [0,1] ×R : t ≤ sU (u,α)},

S−
u,α,t := {V ∈ Fc(R

p) : max(sV (u,α), sU (u,α)) ≤ t},
S+

u,α,t := {V ∈ Fc(R
p) : max(sV (u,α), sU (u,α)) ≥ t}.

The fuzzy version of the Tukey depth is actually a generalization in the sense that it coincides with the multivariate 
Tukey depth when applied to the indicator function of a crisp random vector.

Proposition 6.3. Let X be a fuzzy random variable taking on values in Rp and let X be the associated random vector 
such that X = I{X}. Then DFT (I{x}; X ) = DT (x; X) for all x ∈ Rp .

It is well known that many multivariate depth functions provide multivariate generalizations of the univariate 
median. For instance, the Tukey depth is maximized at the halfspace median, which coincides with the ordinary 
median for univariate random variables. Sinova et al. provide in [39] a definition of median for fuzzy random variables, 
which we reproduce in Section 2.3. The next theorem proves that, under mild conditions, the fuzzy Tukey depth is 
maximized at that median.

Theorem 6.4. Let (�, A, P ) be a probabilistic space associated with the fuzzy random variable X : � →Fc(R) such 
that Med(infXα) and Med(supXα) are unique for each α ∈ [0, 1]. Then,

M̃e(X ) = arg sup DFT (U ;X ),

U∈Fc(R)
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where M̃e(X ) ∈ Fc(R) satisfies

(M̃e(X ))α = [Med(infXα),Med(supXα)]
for every α ∈ [0, 1].

If Med(infXα) and/or Med(supXα) are not unique, we take the usual convention of defining them as the midpoint 
of the set of medians. The next example shows that without the uniqueness assumption, the result in Theorem 6.4 is 
not satisfied.

Example 6.5. Let ({ω1, ω2}, P({ω1, ω2}), P ) be a probability space with P (ω1) = 1/4 and P (ω2) = 3/4 and X :
{ω1, ω2} → Fc(R) a fuzzy random variable over it such that X (ω1) = I[1,2] and X (ω2) = I[3,4].

Now M̃e(X ) = I[2,3] as Med(infXα) is the midpoint of the interval [1, 3] and Med(supXα) of the interval [2, 4]. 
One easily checks

DFT (M̃e(X );X ) = 1/4 < 3/4 = DFT (X (ω2);X ).

In Theorem 6.6 we show that DFT is a depth function in the sense of both Definitions 3.1 and 3.2.

Theorem 6.6. When symmetry is understood in the sense of F -symmetry, DFT is a semilinear depth and a geometric 
depth with respect to the metric ρr for any r ∈ (1, ∞). Further, it satisfies property P4b for the metric d∞ and property 
P4a*.

Proposition 6.7. DFT is not a geometric depth function with respect to dr for any r ∈ [1, ∞].

Remark 6.8. The difference between ρr and dr in this regard can be tracked down to Theorem 5.4, which applies to 
ρr while dr admits an embedding into a Banach space but not a strictly convex one.

As shown in Section 4, F -symmetry and (mid, spr)-symmetry are not equivalent concepts. We provide an example 
below where a fuzzy random variable is (mid, spr)-symmetric with respect to a fuzzy set at which the maximum 
Tukey depth is not reached.

Example 6.9. Consider the fuzzy random variable X in Example 4.5, which takes on four values with equal probabil-
ities. We showed there that X is (mid, spr)-symmetric with respect to A = I[1/2,9/2].

One can straightforwardly check that, for any α ∈ [0, 1],
P(sX (1, α) ≤ sA(1, α)) = .5

P(sX (1, α) ≥ sA(1, α)) = .5

P(sX (−1, α) ≤ sA(−1, α)) = .75

P(sX (−1, α) ≥ sA(−1, α)) = .25

whence there follows DFT (A; X ) = .25.
However, taking B = I[1,9/2] we have

P(sX (1, α) ≤ sB(1, α)) = .5

P(sX (1, α) ≥ sB(1, α)) = .5

P(sX (−1, α) ≤ sB(−1, α)) = .75

P(sX (−1, α) ≥ sB(−1, α)) = .75

and therefore DFT (B; X ) = .5. That shows that A is not maximally deep and thus DFT violates P2 when symmetry 
is understood in the sense of (mid, spr)-symmetry.
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Fig. 2. Display of the fuzzy sets in the three species in the Trees dataset: birch (top row), sessile oak (middle row) and rowan (bottom row). In the 
first column, color is assigned based on the Tukey depth of each fuzzy set in the empirical distribution of the corresponding species’ sample. Colors 
range from red (high depth) to blue (low depth) with shades of purple for intermediate levels of depth. In the second column, the weights of the 
elements in each of the three samples (i.e., their relative frequencies in the sample) are codified in a grey scale, from light grey (light weight) to 
black (heavy weight). The third column applies the procedure in the first column but discarding the weights of the fuzzy sets in the samples (i.e., 
this is what would appear if all quality types were distributed uniformly in the population of trees).

7. Real data illustration

To illustrate the performance of the Tukey depth of fuzzy sets on a real dataset we use the Trees dataset in the
SAFD (Statistical Analysis of Fuzzy Data) R package [7]. It comes from a study carried out by the INDUROT forest 
institute of the University of Oviedo (Spain) on a reforestation project in the Northern Spanish region of Asturias. It 
contains random samples of three species of trees, namely birch (Betula celtiberica), sessile oak (Quercus petraea) 
and rowan (Sorbus aucuparia). There are n1 = 133 birches, n2 = 109 sessile oaks and n3 = 37 rowans, for a total 
sample size of n = 279. An important variable considered in the study is the quality of trees, which is not measured 
as a real number but rather on the basis of expert subjective opinions on the leaf structure, height-diameter ratio, and 
other factors. Each tree’s quality is represented by a trapezoidal fuzzy set, see Fig. 2. The x-axis represents the tree 
quality on a scale from 0 to 5, with 0 meaning a total absence of quality and 5 a perfect quality. The y-axis represents 
the trapezoidal membership function, with the 0-level being the interval where the experts are absolutely sure that the 
quality is contained and the 1-level being the interval where the experts think that the quality is contained.

For each species, the Tukey depth of each fuzzy set in the sample is computed. First, we discuss the adequacy 
of the Tukey depth for this dataset. The data are trapezoidal fuzzy sets, which are commonly used in practice for 
their simplicity. The defining feature of a trapezoidal fuzzy set is that it is determined by four values, the maximum 
and minimum values of its 0-level (support) and 1-level (kernel). Moreover, the operations between trapezoidal fuzzy 
sets correspond to the addition and product by a scalar of those four values. From an algebraic point of view, their 
operations are isomorphic to those of 4-dimensional vectors (elements of R4). Hence one can reason that using a 
semilinear depth is appropriate, since its requirements describe the notion of statistical depth making use only of the 
algebraic structure.

Before discussing the possible adequacy of geometric depth, observe that one could identify each datum with a 
vector in R4 and apply a multivariate depth function to assign each trapezoidal fuzzy set a depth value. But the defining 
properties of multivariate depth are not the best fit for these data. To understand this without an elaborate discussion, 
just compare properties P1 and M1. Property M1 requires invariance with respect to all affine transformations in 
R4, many of which will transform the vector into another vector which does not correspond to any fuzzy set at 
all. However, Property P1 deals with affine transformations of the underlying space R, i.e., each of the four vector 
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components identifying the fuzzy datum must be affected by the same transformation in a coherent way. This is why 
we cannot simply reduce fuzzy data depth to multivariate data depth.

Concerning geometric depth, we should ask whether some metric is particularly appropriate for these data. Since 
they have a simple form which only depends on the 0-level and the 1-level, it is hard to see practical reasons to 
discard any metric a priori. They are not a special type of fuzzy data with specificities which should be taken into 
account with an ad hoc metric. One may reasonably consider that, in order to assess the distance between two quality 
values, it may be disadvantageous to use metrics like d∞: since it is a supremum-type metric, it can produce the same 
distance value in situations where visually it looks like one distance should definitely be larger than the other. From 
a theoretical perspective, a metric such as ρ2 which embeds the space of fuzzy data into a Hilbert space has the best 
geometric properties (closest to those of the Euclidean space). Moreover, for that very reason ρ2 does not have the 
above mentioned shortcoming of d∞. This analysis suggests that a depth function which were both a semilinear depth 
and a geometric depth with respect to the metric ρ2 (or another metric embedding fuzzy data into a Hilbert space) 
would be the optimal choice. As shown in Theorem 6.6, Tukey depth satisfies both criteria.

Now let us discuss the computation of the depth values. Let {Sj
i }nj

i=1 be the sample associated to species j , where 
j = 1 for birch, j = 2 for sessile oak, and j = 3 for rowan. For each j = 1, 2, 3, let us also denote by Xj a fuzzy 
random variable corresponding to the empirical distribution associated to {Sj

i }nj

i=1 (namely, each fuzzy value has the 
probability given by its relative frequency in the sample). Thus, for each i = 1, . . . , nj and j = 1, 2, 3, our objective is 
to compute DFT (S

j
i , Xj ), providing an order of the fuzzy sets in {Sj

i }nj

i=1 by their depth values. Since the fuzzy sets are 

trapezoidal, each Sj
i , i = 1, . . . , nj and j = 1, 2, 3, is determined by the following four values of its support function: 

s
S

j
i

(1, 0), s
S

j
i

(−1, 0), s
S

j
i

(1, 1) and s
S

j
i

(−1, 1). Taking this into account in the expression of DFT in Definition 6.1, 

we obtain

DFT (S
j
i ,Xj ) = min

u∈{−1,1},α∈{0,1}DT (s
S

j
i

(u,α); sXj
(u,α)), (11)

for each i = 1, . . . , nj and j = 1, 2, 3, where DT denotes the Tukey depth for real-valued data. This provides a 
simplified formula which avoids considering all α ∈ [0, 1] and only uses α ∈ {0, 1}; moreover, one can use existing 
algorithms for the calculation of the univariate Tukey depth.

Making use of Equation (11), the first column of Fig. 2 displays the center-outward ordered sample based on 
the Tukey depth for each species. Blue color represents the lowest depth and red the highest, with purple shades in 
between. Thus the most reddish fuzzy value in each sample is the analog of the median (the innermost value). The 
most blueish fuzzy values are the analogs of the maximum and the minimum. Since the outward directions in the real 
line are obvious, the interpretation of the plots in the example is very clear.

The fuzzy sets representing quality make up a fuzzy scale (with nine values) which was agreed upon by the re-
searchers and the experts. Hence, each fuzzy quality value appears with a different multiplicity in each sample as 
shown in the second column of Fig. 2. The third column of Fig. 2 is suitable for comparison with the color-coded 
depth values that appear in the first column, as it represents what the depth values would be if each quality value 
appeared in the sample equally many times. In that case, the colors in the plot are symmetric and the shift from red to 
blue happens at a constant rate in each direction. Also note that, in the third species, only 7 values appear (the rowan 
sample is quite smaller and not all possible quality values were used).

In the actual depth plots (first column of Fig. 2) that color symmetry is broken. This is clearest in the middle row 
(sessile oak sample). The deepest value (corresponding to the median) is below the middle of the quality range, and 
lower quality values consistently have higher depth than their symmetric values. Even the lowest quality value in the 
fuzzy scale is clearly non-blue (corresponding to it having a relatively high relative frequency in the second column). 
That shows visually that the quality of sessile oaks is lower than that of the other two species. In contrast, the center 
of the quality distribution (the area with the highest depth values) for birches appears at higher (center to relatively 
high) values.

The rowan plot looks quite symmetric but it illustrates that the Tukey depth of a fuzzy set tries to measure how much 
of the distribution is ‘from that fuzzy set outwards’. The depth of a datum in the sample, then, depends critically on the 
position of the other data besides its own frequency. That is shown here as the second and sixth values (counting from 
the left) have approximately the same depth, while the grey-scale plot shows that they have rather different frequencies. 
What the plot shows is that approximately the same amount of data are at the second quality value or worse, than at 
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the sixth quality value or better. The plot also shows that there are more highest-quality than lowest-quality rowans; 
this is consistent with the frequencies in the rowan sample’s grey-scale plot.

8. Proofs

This section includes the proofs of our results, as well as some necessary lemmas.

Proof of Lemma 4.6. We prove the first part, the second is analogous. Since A is F -symmetric with respect to X , by 
Definition 4.1, we have

sX (u,α) − sA(u,α) =d sA(u,α) − sX (u,α)

for all u ∈ Sp−1 and α ∈ [0, 1]. For every x ∈ R,

P (sX (u,α) − sA(u,α) ≤ x) = P (sA(u,α) − sX (u,α) ≤ x) .

Fixing x = 0 we have

P (sX(u,α) ≤ sA(u,α)) = P (sX (u,α) ≥ sA(u,α)) .

Then, sA(u, α) is a median of the random variable sX (u, α) for all u ∈ Sp−1 and α ∈ [0, 1]. �
Proof of Proposition 5.1. Let H be the set of all fuzzy random variables taking on values in Rp and let D :Rp ×H
be a depth function as in Definition 3.1.

Proof for P1. Set A = I{a}, B = I{b} ∈ Rp and let M ∈ Mp×p(R) a non-singular matrix. Then

(M · A)(t) = I{a}(M−1 · t) = I{M·a}(t).

Clearly, M · A + B = I{M·a+b}. Identifying I{x} ∈ Rp with x ∈ Rp proves M1. The converse is shown analogously.

Proof for P2. Let A = I{a} ∈ Rp and X : � → Rp a fuzzy random variable with X (ω) = I{X(ω)} ∈Rp such that X
is F -symmetric with respect to A. By Definition 4.1,

sA(u,α) − sX (u,α) =d sX (u,α) − sA(u,α)

for all u ∈ Sp−1 and α ∈ [0, 1]. It is clear that sA(u, α) = 〈u, a〉. Writing a = (a1, . . . , ap) and X(ω) =
(X1(ω), . . . , Xp(ω)), it is equivalent to say

p∑
i=1

ui · ai −
p∑

i=1

ui · Xi(ω) =d

p∑
i=1

ui · Xi(ω) −
p∑

i=1

ui · ai, (12)

for all u = (u1, . . . , up) ∈ Sp−1. If we fix t = (t1, . . . , tp) ∈ Rp , there exists some u0 = (u0,1, . . . , u0,p) ∈ Sp−1 such 
that u0 = (1/‖t‖) · t , which is equivalent to t = ‖t‖ · u0. By Equation (12)

p∑
i=1

‖t‖ · u0,i · ai −
p∑

i=1

‖t‖ · u0,i · Xi(ω) =d

p∑
i=1

‖t‖ · u0,i · Xi(ω) −
p∑

i=1

‖t‖ · u0,i · ai

Equivalently, it is easy to see that,

p∑
i=1

ti · ai −
p∑

i=1

ti · Xi(ω) =d

p∑
i=1

ti · Xi(ω) −
p∑

i=1

ti · ai, (13)

for all t = (t1, . . . , tp) ∈ Rp . Note that by the Cramér–Wold theorem [4, Theorem 29.4], two random vectors Y =
(Y1, · · · , Yp) and Z = (Z1, · · · , Zp) are identically distributed if and only if the random variables 

∑k
i=1 tiYi and ∑k

i=1 tiZi are identically distributed for each (t1, · · · , tk) ∈ Rp . Thus, Equation (13) is equivalent to a −X =d X − a, 
i.e. X is centrally symmetric with respect to a.

Since the Cramér–Wold theorem is an equivalence, the converse is proved the same way.
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Proof for P3a. It results from the equality (1 − λ) · A + λ · B = I{(1−λ)·a+λ·b}, when taking A = I{a} ∈ Rp , B =
I{b} ∈ Rp and λ ∈ [0, 1]; with a, b ∈Rp , and the possibility of taking x = [a − (1 − λ)θ ]/λ.

Proof for P3b. Let A = I{a} and B = I{b}. Thus,

d∞(A,B) = dH ({x}, {y}) = ‖x − y‖.
If we take C = I{c} ∈ Rp such that d∞(A, B) = d∞(A, C) + d∞(B, C). It is equivalent to say ‖a − b‖ = ‖a − c‖ +
‖c − b‖. As (Rp, ‖ · ‖) is a strictly convex normed space, then c = (1 − λ) · a + λ · b for some λ ∈ [0, 1]. Thus, 
C = (1 − λ) · A + λ · B . As we have said dH ({a}, {b}) = ‖a − b‖, then the result is valid for any dr distance with 
r ∈ [1, ∞).

For L2-type fuzzy distances (such as ρ2) the two properties are also equivalent, by taking into account Theorem 5.4
and the fact that (Rp, ‖ · ‖), being a Hilbert space, is strictly convex.

Proof for P4a. If M4 is satisfied, for all sequences {xn}n ⊆ Rp such that limn ‖xn‖ = ∞ we have limn D(xn; X) =
0. Let a, b ∈ Rp be such that a maximizes D(·; X). Then, limn D(a + nb; X) = 0. Then, limn(Ia+nb; X ) = 0 and P4a 
holds.

Proof for P4b. Case of dr distance. Let I{a} ∈ Rp be a fuzzy set which maximizes D(·; X ). Let {I{an}}n be 
a sequence of elements of Rp such that limn dr(I{a}, I{an}) = ∞. By definition of dr distance, it is clear that 
dr(I{x}, I{y}) = ‖x − y‖, where ‖ · ‖ is the Euclidean norm. Thus, property P4b can be viewed as

lim‖x‖→∞D(I{x};X ) = 0,

which is equivalent to M4.
Case of ρr distance. Since ρr and dr are equivalent metrics and property P4b is stated in terms of convergence, it 

holds for ρr if and only if it holds for dr . �
Proof of Proposition 5.2. Proof of part (a). P4a* restricted to Rp reads:

limn→∞ D(I{a} + I{bn}; X ) = 0 for a sequence {bn}n of elements of Rp such that there exists i ∈ {1, 2, · · · , p}
such that limn→∞ |bn,i | = ∞, where bn,i is the i-th component of the vector bn for all n ∈N .

In order to prove the equivalence of the two properties, we show that the two following sets of sequences of Rp are 
equal:

C1 := {{xn}n : lim
n

‖xn‖ = ∞}
C2 := {{a + bn}n : there exists i ∈ {1,2, . . . , p} such that lim

n
|bn,i | = ∞}.

Let (xn)n ∈ C1. It is clear that there exists some component of vector xn going to infinity, that is, there exists 
i ∈ {1, 2, . . . , p} such that limn xn,i = ∞, because limn ‖xn‖ = ∞. Then, if we take bn = xn − a, it is clear that 
{xn}n ∈ C2.

Let {a + bn}n ∈ C2. By the triangle inequality,

‖a + bn‖ ≥ |‖bn‖ − ‖a‖|
for all n ∈N . Without loss of generality, we suppose that limn |bn,1| = ∞. Thus

‖bn‖ =
√√√√ p∑

i=1

b2
n,i ≥ |bn,1|,

for all n ∈ N . If we take limits, we have limn→∞ ‖bn‖ ≥ limn→∞ |bn,1| = ∞. Then, limn→∞ ‖bn‖ = ∞ and 
limn→∞ ‖a + bn‖ = ∞. We have that {a + bn}n ∈ C1.

Proof of part (b). By part (a), it is enough to show M4 ⇒ P4a. Let A = I{a} ∈ Rp maximize depth in Rp, and let 
B = I{b} ∈Rp . Then

D(A + λB;X ) = D(I{a+λb};X ) → 0
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as λ → ∞ by the fact that ‖a + λb‖ → ∞ and property M4.

Proof of part (c). Let A maximize depth and Bn be such that |sBn(ei, α)| → ∞ for some α ∈ [0, 1] and i = 1, . . . , p. 
Since

d∞(A + Bn,A) = d∞(Bn, I{0}) = sup
u∈Sd−1,α∈[0,1]

|sBn(u,α)| ≥ |sBn(ei, α)| → ∞,

by property P4b for the d∞-metric we indeed have

D(A + Bn;X ) → 0

as n → ∞. �
Proof of Proposition 5.3. Let A, B ∈Fc(Rp) be fuzzy sets, with A attaining maximal depth. It suffices to prove that 
for every λ ∈ [0, 1], the fuzzy set C = (1 − λ) · A + λ · B satisfies d(A, B) = d(A, C) + d(C, B). This follows from 
the fact that

d(A,C) = d(A, (1 − λ) · A + λ · B) =
= d((1 − λ) · A + λA, (1 − λ) · A + (λ − 1) · A + λ · B) =
= d(λ · A,λ · B) = λ · d(A,B),

(14)

(where the second equality is due to A1 and the third to A2) and that, analogously to (14), we have d(C, B) =
(1 − λ) · d(A, B). �
Proof of Theorem 5.4. The proof is split into two steps. In the first step we prove that j (C) is in the sphere 
S(j (A), d(A, C)) having center j (A) and radius d(A, C), as well as in S(j (B), d(B, C)). In the second step, we 
prove that if non-empty, the set S(j (A), d(A, C)) ∩ S(j (B), d(B, C)) is a singleton.

Step I. By (9), it is clear that d(A, C) ≤ d(A, B). Then there exists λ0 ∈ [0, 1] such that

d(A,C) = λ0 · d(A,B). (15)

By A1, A2, and the convexity of A,

d(A,C) = d(λ0 · A,λ0 · B) = d(A, (1 − λ0) · A + λ0 · B). (16)

Additionally,

d(B,C) = d(A,B) − d(A,C) = d(A,B) − λ0 · d(A,B) =
= (1 − λ0) · d(A,B) = d((1 − λ0) · A, (1 − λ0) · B) =
= d(B, (1 − λ0) · A + λ0 · B).

(17)

where the first equality is due to (9), the second to (15), the fourth to A2 and the fifth to A1 by adding up λ0 · B . By 
(16) and (17),

d(A,B) = d(A, (1 − λ0) · A + λ0 · B) + d(B, (1 − λ0) · A + λ0 · B) (18)

Since j is an isometry,

‖j (A) − j (B)‖ = ‖j (A) − j ((1 − λ0) · A + λ0 · B)‖+
+ ‖j (B) − j (λ0 · A + λ0 · B)‖. (19)

Thus, by equations (15), (17) and (19),

j (C), j ((1 − λ0) · A + λ0 · B) ∈ S(j (A), d(A,C)),

j (C), j ((1 − λ0) · A + λ0 · B) ∈ S(j (B), d(B,C)).
(20)

Step II. Reasoning by contradiction, assume that there exist x, y ∈ E with x �= y such that x, y ∈ S(j (A), d(A, C)) ∩
S(j (B), d(B, C)). Necessarily, d(A, C) > 0 and d(B, C) > 0. Then
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‖d(A,C)−1(j (A) − x)‖ = ‖d(A,C)−1(j (A) − y)‖ = 1

whence, by the strict convexity of E,

‖1

2
d(A,C)−1(j (A) − x) + 1

2
d(A,C)−1(j (A) − y)‖ < 1,

equivalently

‖j (A) − 1

2
(x + y)‖ < d(A,C).

We analogously prove

‖j (B) − 1

2
(x + y)‖ < d(B,C).

Therefore

‖j (A) − 1

2
· (x + y)‖ + ‖j (B) − 1

2
· (x + y)‖ < d(A,C) + d(B,C) = d(A,B). (21)

Using the triangle inequality and (21),

d(A,B) = ‖j (A) − j (B)‖ ≤ ‖j (A) − 1

2
· (x + y)‖ + ‖j (B) − 1

2
· (x + y)‖ < d(A,B),

which leads to a contradiction. We deduce that such x �= y cannot exist and, hence, the set S(j (A), d(A, C)) ∩
S(j (B), d(B, C)) is a singleton.

To conclude the proof note that, by (20),

j (C) = j ((1 − λ0) · A + λ0 · B)

whence

C = (1 − λ0) · A + λ0 · B
because j is an isometry and so d(C, (1 − λ0) · A + λ0 · B) = 0. �
Proof of Proposition 5.8. Let A ∈ Fc(Rp) be a fuzzy set with maximal depth and let B ∈ Fc(Rp) \ I{0}. By the 
assumptions on the metric d ,

d(A + λ · B,A) = d(λ · B, I{0}) = λ · d(B, I{0}) → ∞ as λ → ∞.

Then the sequence of fuzzy sets {A +λ ·B}λ∈N satisfies the hypothesis of P4b and, consequently, limλ→∞ D(A + λ ·
B; X ) = 0. �

The next result is used in the proof of Theorem 6.2.

Lemma 8.1. Let f, g : A → [0, 1] be two functions such that A ⊆Rp . Then

min{ inf
a∈A

f (a), inf
a∈A

g(a)} = inf
a∈A

min{f (a), g(a)}.

Proof of Theorem 6.2. Let X be a fuzzy random variable. We denote by D∗
FT (·; X ) the expression in statement of 

the theorem and by DFT (·; X ) the fuzzy Tukey depth from Definition 6.1. By Lemma 8.1, DFT (U ; X ) equals

min

{
inf

(u,α)∈Sp−1×[0,1]
P [ω ∈ � : X (ω) ∈ S−

u,α], inf
(u,α)∈Sp−1×[0,1]

P [ω ∈ � :X (ω) ∈ S+
u,α]

}
, (22)

for all U ∈ Fc(Rp). Note that for any u ∈ Sp−1 and α ∈ [0, 1], we have

S− = S−
u,α and S+ = S+

u,α. (23)
u,α,sU (u,α) u,α,sU (u,α)
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Furthermore, making use of (23), it is clear that, for each fixed u ∈ Sp−1 and α ∈ [0, 1],
inf

(u,α,t)∈I−
U

P [ω ∈ � : X (ω) ∈ S−
u,α,t ] ≤ P [ω ∈ � :X (ω) ∈ S−

u,α,sU (u,α)]

= P [ω ∈ � : X (ω) ∈ S−
u,α].

Thus

inf
(u,α,t)∈I−

U

P [ω ∈ � : X (ω) ∈ S−
u,α,t ] ≤ inf

(u,α)∈Sp−1×[0,1]
P [ω ∈ � :X (ω) ∈ S−

u,α]. (24)

For any given u ∈ Sp−1, α ∈ [0, 1] and t ≥ sU (u, α), we have that S−
u,α,sU (u,α)

⊆ S−
u,α,t , and consequently

P [ω ∈ � :X (ω) ∈ S−
u,α,t ] ≥ P [ω ∈ � :X (ω) ∈ S−

u,α,sU (u,α)].
Thus, using (23) again,

inf
(u,α,t)∈I−

U

P [ω ∈ � : X (ω) ∈ S−
u,α,t ] ≥ inf

(u,α)∈Sp−1×[0,1]
P [ω ∈ � :X (ω) ∈ S−

u,α]. (25)

By (24) and (25) we have the following equality:

inf
(u,α,t)∈I−

U

P [ω ∈ � : X (ω) ∈ S−
u,α,t ] = inf

(u,α)∈Sp−1×[0,1]
P [ω ∈ � : X (ω) ∈ S−

u,α].

Analogously,

inf
(u,α,t)∈I+

U

P [ω ∈ � : X (ω) ∈ S+
u,α,t ] = inf

(u,α)∈Sp−1×[0,1]
P [ω ∈ � : X (ω) ∈ S+

u,α].

From the expression in (22), D∗
FT (U ; X ) = DFT (U ; X ) for all U ∈ Fc(Rp). �

Proof of Proposition 6.3. Since X (ω) = I{X(ω)} for all ω ∈ � and sI{a}(u, α) = 〈u, a〉 for all a ∈ Rp , u ∈ Sp−1 and 
α ∈ [0, 1],

DFT (I{a},X ) = min{ inf
u∈Sp−1

P [ω ∈ � : 〈u,X(ω)〉 ≤ 〈u,a〉], inf
u∈Sp−1

P [ω ∈ � : 〈u,X(ω)〉 ≥ 〈u,a〉]}. (26)

Besides, for any u ∈ Sp−1,

P [ω ∈ � : 〈u,X(ω)〉 ≥ 〈u,a〉] = P [ω ∈ � : 〈−u,X(ω)〉 ≤ 〈−u,a〉].
Thus,

DFT (I{a};X ) = inf
u∈Sp−1

P [ω ∈ � : 〈u,X(ω)〉 ≤ 〈u,a〉] = DT (a,X). �
Proof of Theorem 6.4. For any A ∈ Fc(R) we have sA(1, α) = supAα and sA(−1, α) = − infAα and, as S0 =
{1, −1},

DFT (A;X ) = inf
α∈[0,1] min{P (supXα ≤ supAα),P (supXα ≥ supAα),

P (infXα ≤ infAα),P (infXα ≥ infAα)}.
Since, by Theorem 2.5, s

M̃e(X )
(u, α) = Med(sX (u, α)) for all u ∈ S0 and α ∈ [0, 1],

DFT (M̃e(X );X ) = 1/2.

Let U ∈Fc(R)\{M̃e(X )}. Then there exist u0 ∈ S0 and α0 ∈ [0, 1] such that

sU (u0, α0) �= sMe(X )(u0, α0) = Med(sX (u0, α0)).

As the medians of supXα and infXα are unique for each α ∈ [0, 1], we have either
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P (sX (u0, α0) ≤ sU (u0, α0)) < 1/2

or

P (sX (u0, α0) ≥ sU (u0, α0)) < 1/2

and, consequently, DFT (U ; X ) < 1/2. �
The following result is for later use; for instance, to prove that DFT is affine equivariant.

Proposition 8.2. Let A ∈Fc(Rp) and let M ∈ Mp×p(R) be a non-singular matrix. Then,

sM·A(u,α) = ‖MT · u‖ · sA(
1

‖MT · u‖ · MT · u,α),

for all u ∈ Sp−1 and α ∈ [0, 1].

Proof. As A ∈Fc(Rp) is a fuzzy set and M ∈Mp×p(R) a non-singular matrix, we have that M · A ∈ Fc(Rp) and it 
is defined as the fuzzy set with α-levels

(M · A)α = {M · x : x ∈ Aα} = M · Aα.

Taking into account the definition of the support function of fuzzy sets and Claim 1 below,

sM·A(u,α) = sup
v∈Aα

〈u,M · v〉 = sup
v∈Aα

〈MT · u,v〉, (27)

which yields the result. �
Claim 1. 〈x, M · y〉 = 〈MT · y, x〉 for any x, y ∈ Rp and M ∈Mp×p(R).

Proof. Let x = (x1, . . . , xp), y = (y1, . . . , yp) ∈ Rp . Let M = (mi,j )i,j ∈Mp×p(R) be a non-singular matrix. Then,

〈x,M · y〉 = 〈x, (

p∑
i=1

m1,i · yi, . . . ,

p∑
i=1

mp,i · yi)〉 =

= x1 ·
p∑

i=1

m1,i · yi + . . . + xp ·
p∑

i=1

mp,i · yi =

= y1 ·
p∑

i=1

mi,1 · xi + . . . + yp ·
p∑

i=1

mi,p · xi =

= 〈MT · x, y〉,
where the second and fourth equalities are by definition of the inner product and third equality is due to a reordering 
of the summands. �

The following proposition is used in the proof of property 4b for the Tukey depth.

Proposition 8.3. Let {An}n be a sequence of fuzzy sets and let A ∈ Fc(Rp) such that limn d∞(An, A) = ∞. Then, 
there exists u ∈ Sp−1 such that limn sAn(u, 0) = ∞.

Proof. By the assumption, limn d∞(A, An) = ∞. As A is a fixed fuzzy set, it is equivalent to say that limn d∞(An,

I{0}) = ∞, thus

lim
n→∞ sup dH (An,α, {0}) = ∞,
α∈[0,1]
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where dH denotes the Hausdorff distance and An,α is the α-level of An for all α ∈ [0, 1] and n ∈ N . It is a basic 
property of the Hausdorff distance that dH (An,α, {0}) = sup{‖x‖ : x ∈ An,α} for all α ∈ [0, 1]. As An,α ⊆ An,0 for all 
α ∈ [0, 1] and n ∈N , we have that

d∞(An, I{0}) = dH (An,0, {0}) = sup{‖x‖ : x ∈ An,0}.
The function fn : An,0 → R defined by fn(x) = ‖x‖ is a continuous function defined over a compact set, thus we 
have that fn is bounded and attains its supremum on An,0 for all n ∈ N . Let xn be an element of An,0 at which fn is 
maximized. By hypothesis, we have that limn ‖xn‖ = ∞. In particular, there exists u ∈ Sp−1 such that limn〈u, xn〉 =
∞ (we can take u to be one of the vectors in the standard basis of Rp). By definition of the support function, we have 
that 〈u, xn〉 ≤ sAn(u, 0) and limn sAn(u, 0) = ∞. �
Proof of Theorem 6.6. Let (�, A, P ) be the probabilistic space associated with a fuzzy random variable X .

Proof of P1. Due to the linearity of the support functions of fuzzy sets, for any non-singular matrix M ∈ Mp×p(R)

and A, B ∈Fc(Rp),

P (sM·X+B(u,α) ≤ sM·A+B(u,α)) = P (sM·X (u,α) + sB(u,α) ≤ sM·A(u,α) + sB(u,α))

= P (sM·X (u,α) ≤ sM·A(u,α))

for all u ∈ Sp−1 and α ∈ [0, 1]. Then, it suffices to prove DFT (A; X ) = DFT (M · A; M ·X ). By Proposition 8.2,

inf
(u,α)∈Sp−1×[0,1]

P (sM·X (u,α) ≤ sM·A(u,α)) =

= inf
(u,α)∈Sp−1×[0,1]

P (sX (
1

‖MT u‖ · MT u,α) ≤ sA(
1

‖MT u‖ · MT u,α)).

(28)

Let us consider the map f : Sp−1 → Sp−1 defined by f (u) := (1/‖MT u‖)MT u for all u ∈ Sp−1. Its inverse map is 
f −1(u) = (1/‖(MT )−1u‖)(MT )−1u, which is well defined, thus f is bijective. Then

inf
u,α

P (sX (
1

‖MT u‖ · MT u,α) ≤ sA(
1

‖MT u‖ · MT u,α)) =
= inf

u,α
P (sX (f (u),α) ≤ sA(f (u),α))

= inf
u,α

P (sX (u,α) ≤ sA(u,α)).

(29)

Analogously,

inf
u,α

P (sM·X (
1

‖MT u‖ · MT u,α) ≥ sM·A(
1

‖MT u‖ · MT u,α)) =
= inf

u,α
P (sX (u,α) ≥ sA(u,α)).

(30)

Now (28), (29) and (30) imply together DFT (A; X ) = DFT (M · A; M ·X ).

Proof of P2. If X is F -symmetric with respect to a fuzzy set A then

P (sX (u,α) − sA(u,α) ≤ t) = P (sA(u,α) − sX (u,α) ≤ t)

= P (sX (u,α) − sA(u,α) ≥ −t),

for all u ∈ Sp−1, α ∈ [0, 1] and t ∈R. In particular, for t = 0,

P (sX (u,α) ≤ sA(u,α)) = P (sX (u,α) ≥ sA(u,α)) (31)

for all u ∈ Sp−1 and α ∈ [0, 1].
Let B ∈ Fc(Rp). We first study the case in which sB(u, α) ∈ Med(sX (u, α)) for all u ∈ Sp−1 and α ∈ [0, 1]. Let us 

fix u ∈ Sp−1 and α ∈ [0, 1]. Without loss of generality, let us assume that sA(u, α) ≤ sB(u, α) (the other case follows 
analogously). In this case, (−∞, sA(u, α)] ⊂ (−∞, sB(u, α)] and [sB(u, α), ∞) ⊂ [sA(u, α), ∞), which implies
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P (sX (u,α) ≤ sB(u,α)) ≥ P (sX (u,α) ≤ sA(u,α))

and

P (sX (u,α) ≥ sA(u,α)) ≥ P (sX (u,α) ≥ sB(u,α)).

By this and Equation (31),

P (sX (u,α) ≥ sB(u,α)) ≤ P (sX (u,α) ≥ sA(u,α)) =
P (sX (u,α) ≤ sA(u,α)) ≤ P (sX (u,α) ≤ sB(u,α)).

Consequently,

min{P (sX (u,α) ≤ sB(u,α)),P (sX (u,α) ≥ sB(u,α))} ≤
min{P (sX (u,α) ≤ sA(u,α)),P (sX (u,α) ≥ sA(u,α))}

and, as u ∈ Sp−1 and α ∈ [0, 1] have been taken arbitrarily, we have that

DFT (A;X ) ≥ DFT (B;X ). (32)

Let us study the case in which there exists u ∈ Sp−1 and α ∈ [0, 1] such that sB(u, α) /∈ Med(sX (u, α)). Then, 
P (sX (u, α) ≤ sB(u, α)) < 1/2 or P (sX (u, α) ≥ sB(u, α)) < 1/2. Then, making use of the Definition 6.1, we have 
that DFT (A; X ) > DFT (B; X ). This together with (32) implies DFT (A; X ) = supU∈Fc(Rp) DFT (U ; X ).

Proof of P3a. Let A ∈Fc(Rp) have maximal Tukey depth. For any U ∈Fc(Rp), set

DT1(U ;X ) := inf
(u,α,t)∈I−

U

P (X ∈ S−
u,α,t ) and DT2(U ;X ) := inf

(u,α,t)∈I+
U

P (X ∈ S+
u,α,t );

thus

DFT (U ;X ) = min{DT1(U ;X ),DT2(U ;X )}.
Then, to prove DFT ((1 − λ) · A + λ · B; X ) ≥ DFT (B; X ), it suffices to show

DT1((1 − λ) · A + λ · B;X ) ≥ DFT (B;X )

and

DT2((1 − λ) · A + λ · B;X ) ≥ DFT (B;X ).

Let us focus on DT1 , as the process for DT2 is analogous. The set

A = {(u,α, t) ∈ Sp−1 × [0,1] ×R : (1 − λ) · A + λ · B ∈ S−
u,α,t }

can be written as the union A1 ∪A2 ∪A3 of

A1 = {(u,α, t) ∈ Sp−1 × [0,1] ×R : A ∈ S−
u,α,t ,B ∈ S−

u,α,t },
A2 = {(u,α, t) ∈ Sp−1 × [0,1] ×R : A ∈ S−

u,α,t ,B ∈ S+
u,α,t , (1 − λ) · A + λ · B ∈ S−

u,α,t }
and

A3 = {(u,α, t) ∈ Sp−1 × [0,1] ×R : A ∈ S+
u,α,t ,B ∈ S−

u,α,t , (1 − λ) · A + λ · B ∈ S−
u,α,t }.

Then

DT1((1 − λ) · A + λ · B;X ) =min{ inf
(u,α,t)∈A1

P (X ∈ S−
u,α,t ),

inf
(u,α,t)∈A2

P (X ∈ S−
u,α,t ), inf

(u,α,t)∈A3

P (X ∈ S−
u,α,t )}.

(33)

Since A1 ⊆ {(u, α, t) ∈ Sp−1 × [0, 1] ×R : A ∈ S−
u,α,t },

inf
(u,α,t)∈A1

P (X ∈ S−
u,α,t ) ≥ inf

(u,α,t)∈I− P (X ∈ S−
u,α,t ) ≥ DT F (A;X ) ≥ DT F (B;X ), (34)
U
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where the second inequality is due to Theorem 6.2. Analogously,

A2 ⊆ {(u,α, t) ∈ Sp−1 × [0,1] ×R : A ∈ S−
u,α,t }

which implies

inf
(u,α,t)∈A2

P (X ∈ S−
u,α,t ) ≥ DFT (B;X ). (35)

Finally, A3 ⊆ {(u, α, t) ∈ Sp−1 × [0, 1] ×R : B ∈ S−
u,α,t } and then

inf
(u,α,t)∈A3

P (X ∈ S−
u,α,t ) ≥ inf

(u,α,t)∈I−
B

P (X ∈ S−
u,α,t ) ≥ DT F (B;X ). (36)

Thus, recalling (33), we have

DT1((1 − λ) · A + λ · B;X ) ≥ DFT (B;X )

as wished.

Proof of P3b. Using the ρ2 distance in Theorem 5.4, we have that P3a and P3b are equivalent.

Proof of P4b and P4a*. We begin by proving property P4b for the metric d∞.
Let {An}n be a sequence of fuzzy sets and let A ∈ Fc(Rp) such that limn d∞(A, An) = ∞. It is equivalent to 

limn d∞(An, I{0}) = ∞. By Proposition 8.3, there exists u0 ∈ Sp−1 such that limn sAn(u0, 0) = ∞. By the definition 
of the Tukey depth,

0 ≤ DFT (An;X ) ≤ P (sX (u0,0) ≥ sAn(u0,0)) =
1 − Fu0,0(sAn(u0,0)) + P (sX (u0,0) = sAn(u0,0))

(37)

where Fu,α denotes the cumulative distribution function of the real random variable sX (u, α). Clearly,

lim
n

P (sX (u0,0) = sAn(u0,0)) = 0,

lim
n

Fu0,0(sAn(u0,0)) = 1,

both from the fact that limn sAn(u0, 0) = ∞. Taking limits in (37), we obtain limn DFT (An; X ) = 0 as wished.
By Proposition 5.2.(c), DFT satisfies P4a* as well. Moreover, P4b for d∞ implies P4b for ρr , as follows from the 

statement of property P4b and the fact that ρr ≤ d∞.

Proof of P4a. It is fulfilled by virtue of Proposition 5.8, as ρr satisfies A1 and A2 and the fuzzy Tukey depth has 
just been shown to satisfy P4b. �
Proof of Proposition 6.7. It is a direct consequence of Example 5.6, which shows that the DFT function violates P3b 
when considering dr metrics. �
9. Concluding remarks

We proposed two different notions of depth functions for fuzzy sets: semilinear depth and geometric depth. The 
former generalizes in a natural way the notion of depth proposed for the multivariate case. The latter takes into account 
that fuzzy sets can be considered as a metric space and we consider some of the most well-known metrics (ρr and dr

metrics). We showed the viability of these definitions by giving an instance of depth function which fulfills both and 
generalizes the corresponding instance of multivariate depth function. Tukey’s halfspace depth was the first proper 
instance of depth function proposed and remains one of the best understood and most useful. We gave an example 
which shows that for dr distances, the fuzzy Tukey depth is not a geometric depth function due to the failure of 
property P3b.

The notion of a semilinear depth function is easy to understand and it is easier to prove whether a certain function 
satisfies it, because it only depends on the arithmetics of fuzzy sets. Another conclusion is that geometric depth is 
similar to semilinear depth when the metric ρ2 is considered (see Theorem 5.4), but metrics based on the Hausdorff 
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distance generate some different situations. Note that ρ2 embeds Fc(Rp) into a separable Hilbert space and hence has 
the most similar geometry to that of the Euclidean space.

Semilinear depth is specially interesting when one does not have salient reasons for a specific metric to be preferred. 
However, if some metric is considered most appropriate one can resort to the notion of geometric depth for that 
metric, taking into account that properties A1 and A2 are enough to ensure that the geometric depth function is also a 
semilinear depth function.

For future work, it is interesting to adapt more notions of multivariate depth to the fuzzy setting. Notice that the 
effort needed to prove the depth properties for a specific function is harder than in the multivariate case. It would also 
be interesting to consider a wider family of metrics in the properties of geometric depth.

It should be remarked that the computation of the depth function induced by a data sample is related to compu-
tational geometry problems which admit faster algorithms (see [1] for details). Those ideas and random projection 
techniques may be useful to create algorithms in the fuzzy case.

Some connections between statistical depth and fuzzy sets have been discussed in the literature [41]. Conceptu-
ally, a statistical depth function is similar to a fuzzy set where the degree of membership indicates how deep in the 
distribution a given point is. This is related, semantically, to the notion of a fuzzy set of central points in [42], where 
the degree of membership tries to capture the extent to which a given point is the center of the distribution. Some 
multivariate depth functions were shown to be fuzzy sets of central points, in particular Tukey depth. But depth in a 
space where each point is a fuzzy set was not consider in those papers.

The effect of replacing the transformation A �→ M ·A +B by A �→ M ·A + I{b} in property P1 (where B ∈Fc(Rp)

but b ∈ Rp) is not clear yet. As we have shown, Tukey depth satisfies P1 in its current (stronger) form. So will depth 
functions whose definition involves a metric satisfying property A2. It remains plausible that some functions may 
satisfy this weaker version but not property P1.
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