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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Traditional methods of microbiological 
identification are complex and time- 
consuming. 

• Raman spectroscopy solves these prob
lems as it is a fast and cheap technique 
that does not require sample 
preparation. 

• Raman spectroscopy combined with 
machine learning algorithms has great 
potential for identifying and classifying 
pathogenic microorganisms.  
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A B S T R A C T   

One of the problems that most affect hospitals is infections by pathogenic microorganisms. Rapid identification 
and adequate, timely treatment can avoid fatal consequences and the development of antibiotic resistance, so it is 
crucial to use fast, reliable, and not too laborious techniques to obtain quick results. Raman spectroscopy has 
proven to be a powerful tool for molecular analysis, meeting these requirements better than traditional tech
niques. In this work, we have used Raman spectroscopy combined with machine learning algorithms to explore 
the automatic identification of eleven species of the genus Candida, the most common cause of fungal infections 
worldwide. The Raman spectra were obtained from more than 220 different measurements of dried drops from 
pure cultures of each Candida species using a Raman Confocal Microscope with a 532 nm laser excitation source. 
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After developing a spectral preprocessing methodology, a study of the quality and variability of the measured 
spectra at the isolate and species level, and the spectral features contributing to inter-class variations, showed the 
potential to discriminate between those pathogenic yeasts. Several machine learning and deep learning algo
rithms were trained using hyperparameter optimization techniques to find the best possible classifier for this 
spectral data, in terms of accuracy and lowest possible overfitting. We found that a one-dimensional Convolu
tional Neural Network (1-D CNN) could achieve above 80 % overall accuracy for the eleven classes spectral 
dataset, with good generalization capabilities.   

1. Introduction 

Candidiasis is one of the most important fungal infections in hospital 
settings [1]. This infectious disease may be caused by at least 20 
different yeast species of the genus Candida: Candida albicans, Candida 
glabrata, Candida tropicalis, Candida parapsilosis, Candida metapsilosis, 
Candida orthopsilosis, Candida krusei, Candida guilliermondii, Candida 
fermentati, Candida carpophila, Candida lusitaniae, Candida dubliniensis 
Candida pelliculosa, Candida kefyr, Candida lipolytica, Candida famata, 
Candida inconspicua, Candida rugosa, Candida norvegensis and Candida 
auris [1,2]. Although isolation ratios may vary, C. albicans remains the 
most common etiologic agent, followed by C. glabrata, C. tropicalis, 
C. parapsilosis and C. krusei, accounting for more than 95 % of candidi
asis in the last three decades [3]. Candidiasis encompasses a number of 
infections ranging from skin or mucosal infections to more severe con
ditions such as invasive candidiasis, including bloodstream infection 
(candidemia), endocarditis, central nervous system, urinary tract 
candidiasis, and chronic disseminated candidiasis [4]. Invasive candi
diasis is associated with high morbidity and mortality rates, especially in 
immunocompromised and critically ill patients [5]. 

On the other hand, resistance to antifungal treatments is another 
problem reported in the studies of fungal infections [6,7]. The inap
propriate and excessive use of antibiotics is one of the leading causes 
that have generated antimicrobial resistance due to the lack of time and 
precision in the identification of the pathogenic microorganism causing 
the infection [7]. Indiscriminate or prolonged antibiotic therapy is a 
major factor in developing candidiasis [8], and growth in culture is still 
the gold standard for Candida spp. its identification and diagnosis. 
However, culture-based methods have several drawbacks, such as spe
cies growth ratio, risk of inadequate sampling, and possible suppression 
by antifungal therapy [9]. 

Alternative techniques not based on cultures and widely used 
nowadays are the polymerase chain reaction (PCR) or the enzyme-linked 
immunosorbent assay (ELISA) [10]. Although these techniques are well 
established and reliable, they require complex sample preparation, high 
cost, and highly specific professional expertise [11]. 

Given the growing need for rapid and accurate identification of mi
croorganisms [12], more efficient methodologies have been developed 
in order to prevent the spread of infection and antibiotic resistance as 
well as the adverse outcomes due to treatment delay. One example is the 
MALDI-TOF mass spectrometry technique [13], which is highly suc
cessful in identifying clinical samples such as bacteria [14]. This tech
nique provides high reproducibility and labor-free measurements, but 
has the disadvantage of being time-consuming and expensive. 

To face these problems, Raman spectroscopy (RS) has been devel
oped to analyze biological samples by identifying chemical markers. 
This technique uses the energy of a laser source to irradiate the samples 
and generate inelastically scattered light. The captured signal contains 
unique information about the vibrational modes of the excited molec
ular bonds. It allows the generation of a spectroscopic fingerprint of the 
sample, providing quantitative and qualitative information to charac
terize samples in real-time, which would facilitate solving daily clinical 
problems [15]. In addition, it allows discrimination and classification of 
microorganisms in samples containing a mixture of species [16] and at 
the level of a single cell [17]. 

RS has shown to play an essential role in the field of chemical 

analysis in all types of samples, highlighting the biomedical field 
[18–20]. It is a non-destructive, low-cost technique that requires mini
mal sample preparation. Another of its main advantages is the imme
diacy of the measurement, around seconds, so it can replace other more 
laborious techniques conventionally used. Its use could mean skipping 
the cultivation step, which would be a significant advance in many fields 
when it comes to quickly find the right therapeutic treatments for pa
tients with severe infections [21]. 

Currently, machine learning has acquired a great interest in infor
mation extraction in sample classification and identification problems 
and, specifically, applied to Raman spectra [22]. However, as with other 
spectroscopic techniques, delicate spectral preprocessing is necessary 
before performing complex analysis. Raman spectra without this pre
treatment contain many artifacts, noise, and non-relevant information 
[23]. This preprocessing includes steps such as normalization, smooth
ing, baseline correction, or a study of contributing spectral features. 

To date, many studies have been published that apply Raman spec
troscopy and machine learning to problems of identification and clas
sification of bacterial species. However, studies dealing with fungal 
infections are limited, but all of them have shown high-impact results. 
For instance, In Chouthai et al. [24] used Raman spectroscopy to iden
tify and classify-five Candida species using Principal Component Anal
ysis (PCA) and Differential Functional Analysis (DFA) with 100 % 
accuracy. Samek et al. [25] acquired a significant number of Raman 
spectra of several isolates of C. parapsilosis separated by given time in
tervals to verify the reproducibility of the technique. Pezzotti et al. [26] 
studied the identification and resistance to antifungal drugs of the 
C. auris species using Raman imaging of the living yeast cells. Witkowska 
et al. [27] demonstrated that the Surface-enhanced Raman spectroscopy 
(SERS) technique combined with PCA allows for distinguishing many 
common fungal pathogens in several minutes. Although these studies 
have shown the benefits of Raman spectroscopy in fungal infections 
when combined with machine learning algorithms, the number of spe
cies in each study was limited. Further research is still needed to explore 
the challenge of identifying the many Candida species with clinical 
interest. 

In this work, we report the application of Raman spectroscopy 
combined with machine learning algorithms as a method of rapid 
identification and classification of different Candida species, with an 
emphasis on the analysis of the quality of the acquired spectra and the 
generalization capabilities of the models. From 3126 spectra of 11 
Candida species, we analyze their quality in terms of intra- and inter- 
class variability at species and isolate level, propose a preprocessing 
scheme with feature selection, data augmentation, and outliers removal, 
and train several machine learning and deep learning algorithms to 
obtain their classification performance figures, in terms of overall ac
curacy and generalization ability. 

2. Materials and methods 

2.1. Candida isolates 

A total of 67 clinical isolates from 11 different Candida species were 
included in this study. Most isolates were recovered from blood cultures. 
Other sources of isolation were urine culture, vaginal swab, bron
choalveolar lavage, surgical wound, cerebrospinal fluid, intravascular 
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catheter tip and prosthetic joint infection (Table 1). S pecies identifi
cation was confirmed by theMALDI-TOF MS system Vitek MS with the 
SARAMIS (Spectral Archive and Microbial Identification System) data
base (version 2.0, bioMérieux), and in the case of isolates from the 
C. parapsilosis complex (C. parapsilosis sensu stricto, C. metapsilosis and 
C. orthopsilosis), identification was also confirmed by ITS-rDNA 
sequencing [29]. 

2.2. Sample preparation 

On the day before Raman measurement, a single colony of each 
Candida spp. isolate was re-streaked onto Columbia blood agar medium 
(Oxoid ltd, England). Colonies were incubated overnight at 37 ◦C under 
aerobic conditions. Samples for measurement were prepared by taking a 
full inoculation loop of yeast cells and suspending it in 90 µL of sterile 
water. Three drops containing 30 µL of each yeast suspension were 
deposited on a microscope slide wrapped with aluminum foil. Samples 
were allowed to dry in a Class II biosafety cabinet for approximately 30 
min before measurement. Experiments were repeated at least 3 times, 
meaning that 9 technical and 3 biological replicates, respectively, were 
used for measurement. 

2.3. Raman instrumentation 

Spectra were acquired using a Confocal Raman Microscope NRS- 
4500 (JASCO Inc.) equipped with a 532 nm laser excitation source 
with a total power of 18 mW. Photodegradation of the sample was 
avoided using a neutral density filter, with which 25 % of the total 
power (4.5 mW) was used. The laser excitation source is followed by a 
Rayleigh scattering rejection filter and a 900 ln/mm grating spectrom
eter coupled to a high-resolution EMCCD detector (Newton EMCCD, 
1600x400 pixels). The detector, with a thermoelectric cooling system 
(-70 ◦C), achieves low dark noise and a high signal-to-noise ratio with a 
spectral resolution of approximately 2 cm− 1 and a better pixel resolution 
that was interpolated to 0.5 cm− 1 with a cubic function. Confocality was 
achieved by passing the Raman scattered signal through a 17 μm 
diameter pinhole. 

A 100x objective (Olympus MPlan N, 100x/0.9) was used, which 
produced a laser spot diameter close to 1 μm. The focus was obtained 
through brightfield viewing of the sample surface by moving the stage 
until the best focus was achieved. Each spectrum consisted of an average 
of 5 measurements with an exposure time of 5 s (total time of 25 s) in the 
range 600–1800 cm− 1. The instrument was calibrated for wavelength 
and intensity using a silicon wafer as a reference. 

The spectra were acquired and stored using the JASCO Spec
traManagerTM software, which controls the spectral acquisition param
eters and stores them for later analysis and interpretation. 

2.4. Spectra acquisition details 

We used an aluminum foil coating as a substrate to minimize the 
fluorescence signal in the Raman spectra. We deposited 30 μL of the pure 
cultures on the substrates and focused the laser beam on the surface of 
individual yeast cells using the brightfield display provided by the de
tector. Between 220 and 350 spectra of each species were acquired in 
random areas of the drops to assess reproducibility and avoid possible 
bias. Each spectrum was measured at a different spatial point but always 
on the surface of the yeasts. As the candidas cell bodies have round or 
oval shapes with the size of several microns, on the order of the laser 
spot diameter at the focal point, and due to the high numerical aperture 
of the laser beam, the captured Raman spectra can be considered an 
integration of the internal cell structures molecular fingerprints over the 
volume of the cell. We have obtained a dataset of 3126 Raman spectra 
(each one in the wavenumber range from 600 to 1800 cm− 1 in 0.5 cm− 1 

steps) of the Candida species considered in this work. Fig. 1 shows a 
schematic view of the acquisition process. 

Table 1 
Candida species analyzed in this study. BC: Blood culture, CSF: Cerebrospinal 
fluid, ICT: Intravascular catheter tip, BAL: Bronchoalveolar lavage, PJI: Pros
thetic joint infection, VS: Vaginal swab, UC: Urine culture.  

Candida species Number of isolates Isolate code Source 

C. albicans 5 Calb-1 
Calb-2 
Calb-3 
Calb-4 
Calb-5 

BC 
CSF 
ICT 
VS 
VS 

C. dubliniensis 4 Cdub-1 
Cdub-2 
Cdub-3 
Cdub-4 

BC 
BC 
BC 
BC 

C. glabrata 8 Cgla-1 
Cgla-2 
Cgla-3 
Cgla-4 
Cgla-5 
Cgla-6 
Cgla-7 
Cgla-8 

BC 
BC 
BC 
BC 
BC 
BC 
BC 
BC 

C. guilliermondii 6 Cgui-1 
Cgui-2 
Cgui-3 
Cgui-4 
Cgui-5 
Cgui-6 

BC 
BC 
BC 
BC 
BC 
BC 

C. inconspicua 2 Cinc-1 
Cinc-2 

BC 
BC 

C. krusei 7 Ckru-1 
Ckru-2 
Ckru-3 
Ckru-4 
Ckru-5 
Ckru-6 
Ckru-7 

BC 
BC 
BC 
BC 
BC 
BC 
BC 

C. lusitaniae 5 Clus-1 
Clus-2 
Clus-3 
Clus-4 
Clus-5 

PJI 
BC 
BC 
BC 
BC 

C. metapsilosis 6 Cmet-1 
Cmet-2 
Cmet-3 
Cmet-4 
Cmet-5 
Cmet-6 

UC 
UC 
UC 
UC 
BC 
BC 

C. orthopsilosis 4 Cort-1 
Cort-2 
Cort-3 
Cort-4 

BC 
BC 
BC 
BC 

C. parapsilosis 12 Cpar-1 
Cpar-2 
Cpar-3 
Cpar-4 
Cpar-5 
Cpar-6 
Cpar-7 
Cpar-8 
Cpar-9 
Cpar-10 
Cpar-11 
Cpar-12 

BC 
BC 
BC 
BC 
BC 
VS 
BC 
BC 
VS 
BC 
BC 
BC 

C. tropicalis 8 Ctro-1 
Ctro-2 
Ctro-3 
Ctro-4 
Ctro-5 
Ctro-6 
Ctro-7 
Ctro-8 

BC 
VS 
BC 
UC 
UC 
UC 
BC 
BC  
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2.5. Data preprocessing 

The raw spectra comprising 2400 wavenumbers were preprocessed 
as follows: first, each spectrum was normalized by its energy (dividing 
by the total optical intensity) to account for variations in the captured 
Raman scattering. Secondly, a Savitzsky-Golay smoothing filter (2nd 
order) was applied to reduce noise, using a window parameter of 21 that 
considers the small wavenumber step of 0.5 cm− 1 and the spectral res
olution. Next, the baseline was estimated and subtracted using the 
Asymmetric Least Square (ALS) algorithm based on the Whittaker 
smoother [28] and, finally, a Standard Normal Variate (SNV) trans
formation (zero mean and standard deviation of one) was applied on a 
per-spectrum basis. 

Fig. 2 shows the mean spectrum of the complete preprocessed dataset 
with variance bands in red (+/- standard deviation), from the average of 
the mean spectrum of each species, to accentuate the inter-class vari
ability. This mean spectrum was used to manually extract features, 
selecting all the apparent peaks in the average spectrum (24 features), 
the central wavenumber of high variance spectral zones (5 features), and 
relative minima of the spectrum with no significant variance (14 fea
tures), for a total of 43 selected features. Applying feature selection to 
datasets reduces the risk of overfitting and training time, and the effect 
of our proposed feature selection on the classification performance is 
analyzed in Section 3. 

The possibility of removing outliers from the dataset was also 
considered. The isolation forest algorithm [30] was applied to the 
dataset. This algorithm creates unsupervised ensembles of binary clas
sification trees and scores each spectrum based on its average path 
length, which is shorter for anomalies. A variable percentage of spectra 
with higher scores (potential outliers) was removed from the dataset, 
and the effect on the classification performance was analyzed. 

Finally, data augmentation techniques were explored to improve the 
generalization ability of the models. For this kind of spectral data, 

different possibilities have been suggested [31]: a linear combination of 
several spectra, adding noise, or spectral shifting, that could help with 
long-term instrumental drift. We have evaluated the effect on the clas
sification performance and generalization of the linear combination of 
three spectra with random weights, and of adding gaussian noise with 
several amplitudes. 

2.6. Machine learning algorithms 

This kind of spectral dataset (with hundreds or a few thousand ho
mogeneous numerical features) lies somehow between tabular data 
(typically with dozens of heterogeneous -continuous numerical and 
categorical- features) and very high dimensionality data, such as images 
and videos. For the latter, deep learning algorithms (in particular, 
convolutional neural networks [32]) have shown a clear advantage in 
performance in the last years; for tabular data, classical machine 
learning algorithms such as those based on decision trees (Random 
Forest, XGBoost…) still can outperform most recent deep learning 
models [33]. Spectral data poses another challenge: the high number of 
correlated features, i.e., the problem of multicollinearity, hinders clas
sification performance. As there is not a clear best approach, in this 
work, we have trained a representative set of machine learning and deep 
learning algorithms, and their classification performance was evaluated. 
We used custom code in python and the models included in the SciKi
tLearn [34] and Keras/Tensorflow [35] libraries. At the same time, the 
training, hyperparameter optimization and performance estimation 
were automated using the PyCaret [36] and Optuna [37] libraries. 

The tested algorithms were: Support Vector Machine (SVM), Logistic 
Regression (LR), Linear Discriminant Analysis (LDA), Random Forest 
(RF), Extra Trees Classifier (ET), XGBoost (XGB), Light Gradient Boost
ing Machine (LGBM), Multilayer Perceptron (MLP) and a one- 
dimensional Convolutional Neural Network (1-D CNN). 

The complete dataset was randomly split as follows: 20 % of spectra 

Fig. 1. Schematic view of the Candida spectra acquisition process.  

Fig. 2. Mean spectrum of each species (a) and the average of the mean spectrum of each species (b), with variance bands in red (standard deviation value has been 
multiplied x5 to better highlight variable bands). 
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as “unseen” to assess the classification and generalization performance, 
and the remaining 80 % of spectra for training with stratified cross- 
validation with 10 folds of training and validation data. 

3. Results and discussion 

3.1. Raman features 

From the averaged spectra in Fig. 2, it can be seen a consistency in 
the spectral information of all the species, with some unambiguous 
Raman peaks. A tentative identification of the Raman features is shown 
in Table 2. A visual inspection of the spectra does not suggest apparent 
distinct features that vary among the species and could help in its 
classification; only the 787 cm− 1 (DNA), 1612 cm− 1 (DNA/proteins), 
1642 cm− 1 (DNA) and 1550 cm− 1 (exo-polysaccharides) peaks show 
significant inter-species differences. 

3.2. Feature importance 

The importance of features on several models was studied to deter
mine if any of the Raman bands identified in Table 2 contribute signif
icantly to the classification metrics. The scores of each model were 
obtained after training with cross-validation and hyperparameters 
optimization from the spectra with manual feature selection applied. It 
was found that most of the models with better accuracy values had 
similar scores. Fig. 3 shows the mean score values of the tested models 
(LR, LDA, RF, ET and LGBM) with their corresponding standard de
viations to get an overview of the influence of these features on the 
classification performance. 

The Raman band with the most significant contribution is centered at 
786.5 cm− 1, associated with genetic material (see Table 2). This 
contribution is more than twice the rest of the features considered, all of 
them having similar scores and diverse associated compositions, such as 
proteins (855 cm− 1 band) or sugars (915 cm− 1 band). The discriminative 
nature of DNA bands for pathogen identification is in agreement with 
other works [43,47]. 

3.3. Quality of spectra and class separability 

Firstly, the preprocessed spectra of the eleven species were analyzed 
to estimate their quality based on their intra-class and inter-class vari
ability, which has a major impact on the achievable classification per
formance of a given dataset. Intra-class (i.e. intra-species) variance 
could be attributed to changing experimental conditions, noise, or 
sample heterogeneity, and has a negative impact on class separability 

Table 2 
Major Raman bands found in spectra obtained for the identification and classi
fication of Candida species and their tentative vibrational assignment based on 
the provided references.  

Raman shift 
(cm− 1) 

Band assignment Component Reference 

607 C–C twisting mode of 
phenylalanine 

Proteins [38] 

626 C–C twisting mode of 
phenylalanine 

Proteins [38] 

650 Amino acids Proteins [24] 
725 Adenine: ring breathing modes of 

purines 
DNA [38] 

787 O–P–O str. thymine, cytosine, 
uracil 

DNA [25] 

855 Ring breathing tyrosine Proteins [39] 
915 C–O–C str. glucose Sugars [24] 
1009 C–C skeletal str. aromatic ring 

phenylalanine 
Proteins [38] 

1090 C–N str. Proteins [40] 
1136 C–O and C–O skeletal str. Carbohydrates [41] 
1178 C–H wagging tyrosine Proteins [42] 
1217 Amide III; adenine; polyadenine DNA/Proteins [39] 
1268 Amide III Proteins [25] 
1317 Guanine, adenine DNA [42] 
1345 C–N str. of tryptophan, adenine, 

guanine 
DNA/Proteins [42] 

1374 CH2 wagging; b-1,3 glucans Lipids/Sugars [41] 
1402 COO– symmetric str. Proteins [39] 
1458 C–H deformation Lipids [43] 
1550 Exopolysaccharides Carbohydrates [44] 
1592 Cytochrome Proteins [45] 
1612 C–C phenylalanine, tyrosine, 

tryptophan 
DNA/Proteins [42] 

1642 C––O str. thymine DNA [42] 
1663 C–O str. amide I Proteins [39] 
1748 C––O str. esters Lipids [46]  

Fig. 3. Mean scores and standard deviations (error bars) of the most important features for several models (LR, LDA, RF, ET and LGBM) trained with 
feature selection. 
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[48]. Inter-species differences, on the other hand, are needed for proper 
classification. In Fig. 4, we show the average spectrum of the eleven 
species (between 220 and 350 spectra each). The variance at each 
wavenumber is shown as a red overlay (band extension is +/- standard 
deviation). 

It can be seen from Fig. 4 that some species have a low variability of 
measured spectra (notably, C. krusei) while others, in particular, 
C. guilliermondii, exhibit a high variance in several Raman features. The 
spectrum of those two species is shown in detail in Fig. 5. 

The low variance at certain spectral bands in all species suggests 
repetitive experimental conditions. Furthermore, the highest variability 
in all species seems to be located in two spectral bands, the peak at 1458 
cm− 1 associated with lipids (see Subsection 3.1 for a tentative assign
ment of Raman features), and, interestingly, a wide band around 1550 
cm− 1 with no clear peaks or features. This fact could be attributed to a 
higher spatial heterogeneity in the molecular fingerprints of the sam
ples, or to inter-isolates differences. Different isolates are known to come 
from different patients, but there is no a priori information about genetic 
or gene expression differences among them. For example, Candida spp. 
are known to secret substances under certain conditions [49] that can 
introduce spectral changes in different isolates or species under the same 
experimental conditions, thus affecting the performance of any 
classifier. 

To obtain more information about the origin of this variability 
(spatial heterogeneity or inter-isolates differences), we have performed 

the following procedure: for each species, the spectra of each of their 
isolates were averaged, and the resulting mean spectrum was plotted 
with variance bands. Then, the spectra were randomly assigned to 
groups in the same number as the isolates of each species, and the 
spectra of each group were averaged and plotted. The result is shown in 
Fig. 6, for two representative species, C. lusitaniae (low inter-isolates 
variance) and C. guilliermondii (higher inter-isolate variance). For all 
species, the variance is significantly reduced (right part of Fig. 6) when 
the spectra are grouped randomly instead of isolates-based. This sug
gests that different isolates have different molecular fingerprints, and 
spectral variability is not due to molecular composition heterogeneity. 

This inter-isolates variability could negatively impact the ability to 
classify at the species level. To assess class (inter-species) separability, 
we applied the Linear Discriminant Analysis (LDA) to the dataset. This 
supervised algorithm reduces the feature space to a lower number of 
dimensions, looking for a linear combination of the features that maxi
mize the inter-class separation (of the class centroids or means) and 
minimizes the intra-class variance [50]. Fig. 7 shows the LDA projection 
of the entire dataset to a 2-dimensional space (only the centroids of each 
class are shown). This figure gives an idea of the separability between 
the classes. Four major clusters seem to appear: C. inconspicua; C. krusei 
and C. glabrata; C. metapsilosis and C. parapsilosis; and a fourth cluster 
with the remaining species. These distances are expected to be trans
lated to the performance of any classification algorithms, as shown in 
Subsection 3.5. 

Fig. 4. Average spectrum (with variance overlay) of each Candida species.  

Fig. 5. Average spectrum of C. krusei (a) and C. guilliermondii (b), which show different levels of intra-class variance.  
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3.4. Outlier spectra 

The dataset was analyzed for outlier spectra that could have origi
nated from any experimental issue. The Isolation Forest algorithm was 
applied to the entire dataset to calculate anomaly scores for each 
observation, which are a measure of how difficult it is to classify each 
spectrum using a binary tree [51]. It was found that all spectra of a single 
isolate of C. guilliermondii (Cgui-5) have the highest scores. Its outlier 
nature was confirmed by means of the LDA algorithm previously dis
cussed in Subsection 3.3, but trained at the isolate level, as shown in 
Fig. 8(a). It is clearly apparent that this single isolate is projected far 
away from the rest of the isolates, thus indicating distinct features that 

make it easily (but wrongly) distinguishable from the others. 
In Fig. 8(b), this isolate’s mean spectrum (from 9 acquired spectra) is 

shown, compared with several other randomly chosen isolates from the 
dataset. There are clear differences between this isolate spectrum and 
the others, in particular, Raman features at 1550 cm− 1 (exo-poly
saccharides) and 1592 cm− 1 (cytochrome) have higher intensity, while 
others, such as the DNA fingerprint at 787 cm− 1 or 1612 cm− 1, are not 
present at all. Interestingly, the features with increased intensity in this 
isolate correspond with extracellular substances that are part of the 
Candida spp.’ secretome [52]. This suggests that extracellular substances 
could greatly affect Raman spectra of Candida spp., even if great care is 
taken to focus the laser spot on the cellular bodies. 

As those clear outlier spectra could be detected a priori in new 
measurements, we have removed this isolate from the dataset. Addi
tionally, we have still applied the Isolation Forest outlier removal al
gorithm with different numbers of spectra with the highest anomaly 
score removed to verify the presence of not-so-evident outliers and their 
impact on the classification performance. The impact of outlier removal 
is discussed in Subsection 3.5 and depicted in Fig. 9. 

3.5. Classifiers’ performance 

In this work, we have paid special attention to reducing and evalu
ating the degree of overfitting in the trained models, as there is an 
increasing concern in the spectroscopists community about the publi
cation of heavily overfitted models with impressive metrics that, actu
ally, have poor generalization capabilities and therefore are not valid for 
new measurements, let alone for different instrumentation or experi
mental conditions [48]. We have applied several techniques in the 
design and training of the models to reduce overfitting, such as cross- 
validation, feature selection and data augmentation. For the 1-D CNN 

Fig. 6. C. lusitaniae: averaged spectrum of independent isolates (a) and averaged spectrum of randomly-split data (b). C. guilliermondii: averaged spectrum of in
dependent isolates (c) and averaged spectrum of randomly-split data (d). 

Fig. 7. Centroids of the Candida species clusters on a 2D projection of the 
dataset using LDA. 
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deep learning model, its architecture includes dropout layers and a 
constrained model size. In addition, the training was performed with 
regularization and early stopping, as those techniques also help to 
reduce overfitting [53]. 

The classification algorithms (MLP, SVM, LR, LDA, LGBM, XGB, ET, 
RF and CCN) were trained using 6 different spectral treatments: spectra 
only standardized (RAW), only standardized with data augmentation 
(RAW + DA), preprocessed with normalization, baseline removal and 
standardization as discussed above (PREP), preprocessed with data 
augmentation (PREP + DA), preprocessed with feature selection (PREP 
+ FS) and preprocessed with outlier removal (PREP + IF). For all cases, 
cross-validation was used with 10 splits from the set reserved for 
training. All models except 1-D CNN were trained with Pycaret and its 
automatic hyperparameter optimization. In the case of 1-D CNN, Keras 
and optimization of hyperparameters with the Optuna library were 
used. 

As an evaluation method of the degree of overfitting, the accuracies 
of the unseen subset were compared with those obtained with the train 
subset. If the discrepancies between both values were high, the model 
would not be able to properly generalize to new unknown data. 

Fig. 9 compares the performance obtained by the models when 

trained with the different preprocessing schemes. The same hyper
parameters were set for all the models in order to evaluate the effect of 
each spectral treatment added to the original dataset. We have selected 
the hyperparameters that, in general, allowed us to obtain the highest 
accuracy of the unseen data while maintaining a low discrepancy with 
the train accuracy. 

From Fig. 9, it can be seen that all models based on decision trees 
(LGBM, XGB, ET, RF) have high overfitting (train accuracy = 1.0 in most 
cases), so they have not been considered suitable for this study. The rest 
of the models trained with Pycaret (MLP, SVM, LR and LDA) also showed 
a poor ability to adapt to new data properly. For these models, better 
results are achieved with the preprocessed with feature selection (PREP 
+ FS) dataset. However, the best model, achieving low overfitting for all 
datasets while maintaining the accuracy of the hold-out subset, is the 1- 
D CNN. From the figure, it can be seen that applying the data 
augmentation produces a slight increase in the hold-out accuracies and 
very high training accuracy values, so the degree of overfitting has not 
improved with this spectral treatment. 

On the other hand, hardly any changes were observed when applying 
feature selection or outliers removal with the isolation algorithm. 
Interestingly, the accuracy of the two ’RAW’ subsets is notably lower, 

Fig. 8. (a) LDA bi-dimensional projection at the isolate level (only centroids of isolate clusters are shown). The outlier isolate of C. guilliermondii (Cgui-5) is located at 
the top-right corner. (b) average spectrum of Cgui-5, compared with several other spectra randomly chosen. 

Fig. 9. Comparison between the classification models (MLP, SVM, LR, LDA, LGBM, XGB, ET, RF and CCN) trained with several spectral treatments (RAW, RAW +
DA, PREP, PREP + DA, PREP + FS and PREP + IF). The train accuracies are shown with yellow bars, and the accuracies of the hold-out (unseen) subset are shown 
with coloured bars. 
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but this is because the same hyperparameters were used for the com
parison. After a hyperparameter optimization for each particular dataset 
preprocessing scheme, we found a similar achievable accuracy of 
0.75–0.8, irrespective of the applied transformation to the spectral 
dataset. This is in agreement with other works that highlight the ability 
of deep neural networks, and in particular, Convolutional Neuronal 
Networks, to obtain good performance with minimal preprocessing 
[54]. Fig. 10 depicts the 1-D CNN architecture selected for training with 
the different datasets. The resulting accuracies after hyperparameter 
optimization of the 1-D CNN model for the different preprocessing 
schemes are shown in Fig. 11, showing the minimal impact of the 

preprocessing scheme on the achievable overall accuracy. 
Table 3 shows the hyperparameters considered in the search for the 

optimal architecture and the selected values, from which the accuracies 
and degree of overfitting of Fig. 9 were obtained. 

According to Table 3, the optimal 1-D CNN architecture has a con
volutional 1-D layer with 16 filters, kernel size 9, stride size 8 and ReLu 
activation, followed by a dropout layer with a rate of 0.21, and a max- 
pooling layer with pool size 2 and stride size of 2. It is followed by a 
second convolutional 1-D layer with 16 filters, kernel size 7, stride size 1 
and ReLu activation followed by a dropout layer with a rate of 0.11 and a 
max-pooling layer with pool size 2 and stride size of 2. The next layer is a 
flatten layer that converts the outputs of the convolutional filters to 1-D 
data for the fully connected layers. The first fully connected layer has 
128 units with a dropout rate of 0.41 and the second fully connected 
layer has 11 units with softmax activations. In addition, the trainings 
were performed by setting the learning rate to 2.3e-4 and the number of 
epochs to 15. 

To assess the contribution of each class to the overall accuracy, 
Fig. 12 shows the confusion matrix obtained for the 1-D CNN model 
trained with the preprocessed dataset (PREP), which could be consid
ered the best performing model in our work due to the high accuracy and 
the best generalization capability to unknown data. 

As expected, the model classifies some Candida species better than 
others. There are species that classify worse and it is not due to confusion 
with another specific one. We can affirm that all analyzed Candida 
species present spectral differences that allow their classification with 
high accuracy, while for specific species it is more difficult to find these 
differences. This could be explained by the high similarities among some 

Fig. 10. 1-D CNN architecture selected for Candida species classification.  

Fig. 11. Comparison between the accuracies obtained by training different 1-D CNNs with hyperparameter optimization (HPO) for each dataset.  

Table 3 
List of 1-D CNN hyperparameters tuned using the Optuna library.  

Layer Hyperparameter Search range Selected value 

Conv1D-1 ‘filters1′ [8,16,32] 16 
Conv1D-1 ‘kernel_size1′ [9,17,31] 9 
Conv1D-1 ‘strides1′ [1,8,16] 8 
Conv1D-1 ‘activation1′ [‘relu’, ‘linear’] ‘relu’ 
Dropout-1 ‘dropout1_rate’ (0.1, 0.5) 0.21 
Conv1D-2 ‘filters2′ [8,16] 16 
Conv1D-2 ‘kernel_size2′ [5,7,9] 7 
Conv1D-2 ‘strides2′ [1–2,4] 1 
Conv1D-2 ‘activation2′ [‘relu’, ‘linear’] ‘relu’ 
Conv1D-2 ‘dropout2_rate’ (0.1, 0.5) 0.11 
Fc-1 ‘dense1_units’ [32,64,128] 128 
Fc-1 ‘dropoutDense_rate’ (0.1, 0.5) 0.41  

learning rate (1e-5, 1e-2) 2.29e-4  
number of epochs [5,10,15,25,30] 15  
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species, i.e., C. parapsilosis, C. orthopsilosis and C. metapsilosis, which are 
phenotypically indistinguishable [55]. A detailed study of the per- 
species classification performance can be seen in Table 4, in which 
different metrics are calculated for each Candida species, for the best 1-D 
CNN model. 

Finally, to further assess the degree of overfitting and therefore the 
generalization capability of the models, Y-randomization, also known as 
permutation testing, was applied. This technique has been suggested as a 
necessary test for any regression or classification model dealing with 
spectroscopic data, not only to detect overfitting but also to assure that 
the dataset has real discriminative information to differentiate between 
classes [56]. It is based on re-training the models with a random per
mutation of the class labels. If good performance is obtained, i.e., the re- 
trained model can find a correlation between the spectral information 
and the (now) randomized labels, it is an indication that it is overfitted 
to spurious information unrelated to actual inter-class differences. By 
contrast, if low classification performance (close to chance) is obtained 
by the re-trained model, even for the new, randomized train dataset, we 

Fig. 12. Confusion matrix for unseen data obtained from 1-D CNN training with the preprocessed Candida species dataset.  

Table 4 
Performance metrics for 1-D CNN trained with the preprocessed Candida species dataset.   

Accuracy Recall Precision Specificity F1-score AUC 

C. albicans  0.90  0.64  0.55  0.93  0.59  0.79 
C. dubliniensis  0.97  0.68  0.79  0.99  0.73  0.84 
C. glabrata  0.96  0.69  0.92  0.99  0.79  0.84 
C. guilliermondii  0.94  0.65  0.72  0.97  0.68  0.81 
C. inconspicua  0.96  0.81  0.67  0.97  0.74  0.89 
C. krusei  0.98  1.00  0.75  0.98  0.86  0.99 
C. lusitaniae  0.97  0.70  0.98  1.00  0.82  0.85 
C. metapsilosis  0.96  0.71  0.87  0.99  0.78  0.85 
C. orthopsilosis  0.93  0.72  0.59  0.95  0.65  0.84 
C. parapsilosis  0.96  0.86  0.84  0.98  0.85  0.92 
C. tropicalis  0.94  0.74  0.65  0.96  0.69  0.85 
Macro average  0.95  0.75  0.76  0.97  0.83  0.86 
Overall accuracy 0.74        

Table 5 
Results of the Y-randomization test for some representative models and different 
preprocessing of the dataset. Those models showing a high train accuracy with 
the randomized labels (*) likely suffer a high degree of overfitting and lack of 
generalization. All of the models, however, show a test accuracy close to chance, 
thus indicating that the dataset includes relevant discriminative information.  

Model Data Train / Unseen acc. 
(original data) 

Train / Unseen acc. 
(randomized labels) 

RF* Preprocessed + FS 1.00 / 0.64 1.00 / 0.12 
LDA Preprocessed + FS 0.73 / 0.67 0.17 / 0.10 
SVM Preprocessed + FS 0.82 / 0.72 0.18 / 0.11 
RF* Preprocessed + DA 1.00 / 0.66 1.00 / 0.12 
MLP Preprocessed + DA 1.00 / 0.82 0.10 / 0.12 
SVM Preprocessed + DA 1.00 / 0.80 0.08 / 0.09 
1-D CNN Preprocessed + DA 0.91 / 0.77 0.10 / 0.06  
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can assume that the model has found and is exploiting a significant class 
structure based on real discriminant information [57]. We have applied 
this test to some of the previous models, considering two different 
transformations that result in high accuracy and should help to reduce 
overfitting: preprocessed with feature selection (PREP + FS) and pre
processed with data augmentation (PREP + DA). For each model, we 
have obtained its overall accuracy for the train and for the hold-out 
(unseen) dataset, with and without label randomization. The results 
are shown in Table 5. It can be seen that some of the models (in 
particular, tree-based such as Random Forest) show a high accuracy for 
the (randomized) training dataset, thus suggesting a high probability of 
overfitting. On the contrary, SVM, MLP and 1-D CNN obtain very low 
accuracy, thus suggesting a lower degree of overfitting. Nevertheless, all 
of them show a low accuracy (close to random, 9 %, for 11 classes) for 
the randomized unseen dataset, thus suggesting that the spectroscopic 
data has relevant information that ties the spectral data to the actual 
classes. 

4. Conclusions 

Raman spectra from 11 species of the genus Candida (C. albicans, C. 
dubliniensis, C. glabrata, C. guilliermondii, C. inconspicua, C. krusei, C. 
lusitaniae, C. metapsilosis, C. orthopsilosis, C. parapsilosis, C. tropicalis) 
were obtained from pure cultures under controlled and repetitive 
experimental conditions. 

The dataset includes between 220 and 350 spectra from each one of 
the 11 species (a total of 3126 Raman spectra), identified at the isolate 
level (67 different isolates). The quality of the spectra, the intra-class 
and inter-class variability, and the presence of outliers were assessed. 
Twenty-four Raman features were clearly identified in the spectra, that 
were assigned to specific molecular bands, based on previous literature. 
We have shown that some species have a low variability of measured 
spectra while others exhibit a high variance in several Raman features. 
We have found that the presence of secretions in some of the samples 
could have an impact on the classification performance of any Raman- 
based approach and need further research. A study of the importance 
of the features on different models has also been carried out and we have 
determined that there is a Raman band assigned to genetic material with 
much higher importance than other features. 

A total of 9 representative machine learning and deep learning 
models were trained and evaluated in this work: Support Vector Ma
chine (SVM), Logistic Regression (LR), Linear Discriminant Analysis 
(LDA), Random Forest (RF), Extra Trees Classifier (ET), XGBoost (XGB), 
Light Gradient Boosting Machine (LGBM), Multilayer Perceptron (MLP) 
and a one-dimensional Convolutional Neural Network (1-D CNN). Each 
one was trained with different variations of the dataset: raw spectra, 
preprocessed (energy normalization, smoothing, baseline correction and 
standardization), with and without feature selection (selecting the 43 
most significant features), with and without data augmentation (linear 
combination of spectra and noise addition), with and without outliers 
removal (5 % of spectra with higher outlier factor). A hyperparameter 
optimization to find the best parameter combination or architecture was 
performed on all models. Trained models achieve overall accuracy 
values between 0.7 and 0.8, a very good result considering the number 
of classes, but with different degrees of overfitting. To further assess the 
overfitting of each trained model, and thus their generalization capa
bilities, a Y-randomization test was performed. We consider that the best 
model to classify the Candida dataset at the species level automatically is 
the 1-D CNN, achieving slightly above 0.8 overall accuracy value but 
with a low degree of overfitting, and a robust performance irrespective 
of the preprocessing applied to the spectra. A per-species analysis of the 
classification performance shows values of specific accuracies ranging 
from 0.90 to 0.98, in accordance with their phenotypic similarities. 

We, therefore, believe that it is feasible to automatically classify 11 
pathogenic species of Candida with high accuracy based on their Raman 
spectra. Future works are focused on classification at the isolate level, 

for which genotype variations could not be directly related to phenotype 
differences, the improvement of the classification performance, and the 
inclusion of other species, in particular, C. auris, due to its worldwide 
expansion as a multi-drug resistant yeast. For the task of automatic 
pathogen identification, Raman spectroscopy has shown to be a 
powerful tool that could be transferable to daily clinical routine due to 
its simplicity of use, easy automation, reproducibility, rapid acquisition, 
low cost and minimum sample preparation, especially when combined 
with machine learning and deep learning algorithms. 
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