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Abstract: The sea surface elevations are generally stated as non-Gaussian processes in the current
literature, being considered Gaussian for short periods of relatively low wave heights. The objective
here is to study the evolution of the distribution of the sea surface elevation from Gaussian to non-
Gaussian as the period of time in which the associated time series is recorded increases. To do this,
an empirical study based on the measurements of the buoys in the US coast downloaded at a casual
day is performed. This study results in rejecting the null hypothesis of Gaussianity in below 25% of
the cases for short periods of time and in over 95% of the cases for long periods of time. The analysis
pursued relates to a recent one by the author in which the heights of sea waves are proved to be
non-Gaussian. It is similar in that the Gaussianity of the process is studied as a whole and not just
of its one-dimensional marginal, as it is common in the literature. It differs, however, in that the
analysis of the sea surface elevations is harder from a statistical point of view, as the one-dimensional
marginals can be Gaussian, which is observed throughout the study and in that a longitudinal study
is performed here.

Keywords: Gaussian process; normal distribution; nortsTest R package; random projections; stationarity;
time series analysis

1. Introduction

Much attention in the literature is dedicated to the study of the sea surface height [1–3], a
function of the sea surface elevation which is generally obtained by making use of the zero-up
or down crossing methodology. The sea surface height is relevant because of design and
analysis of off-shore structures [4] and ships [5] and, therefore, the literature is large in terms
of studying its distribution [6–10]. The sea surface height has been modeled, for instance, as

• a Rayleigh distribution [11,12],
• a, more general, Weibull distribution [13],
• a Forristall distribution [1],
• a Naess distribution [14],
• a Boccotti distribution [15],
• a Klopman distribution [16],
• a van Vledder distribution [17],
• a Battjes–Groenendijk distribution [18],
• a Mendez distribution [19], or
• a LoWiSh II distribution [20].

In [21] it is experimentally proved that the sea heights do not follow a Gaussian distribution.
This study is dedicated, however, to the analysis of the sea surface elevation, as op-

posed to the sea heights. The measurements of sea surface elevation are obtained by buoys
throughout the sea, which are later preprocessed to obtain the sea heights. Sea surface
elevations have been studied from a statistical point of view, studying its distribution [22],
the skewness of the distribution [23], and the modellization of the process [24,25]. Con-
sideration has also being given to how to measure [26] and record the data [27]. From an
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applied perspective, the literature contains works on sea surface elevations to, for instance,
ship motion forecasting [28] and the development of sea surface elevation maps [29]. Fur-
thermore, ref. [30] studies that for certain wave groups the periods of stationarity are
short and [31] that the sea surface elevation is only Gaussian in short periods of relatively
low wave heights. For many sea states the process is nonlinear due to its second order
structure [32], and even to much higher order structures for high waves [33].

This work goes beyond the existing literature and it is dedicated to empirically study
how the Gaussianity of the distribution of the sea surface elevation evolves along an
increase of the time period of the associated time series. For that, the measurements of
59 buoys along the US coast are studied. It is obtained that over 50% of the cases are
non-Gaussian with a length time period corresponding to 2× 104 observations. This results
increases to over 95% of the cases if the length time period increases to correspond to 105

observations. From a statistical point of view, the importance of studying the sea surface
elevation is high and lies in that it is a raw measurement. While experimental studies show
that the distribution of sea heights are clearly non-Gaussian, having a non-Gaussian one
dimensional marginal, the non-Gaussianity of the sea surface elevation is not so obvious;
which makes the problem more interesting.

In fact, in proving the non-Gaussianity, it is here demonstrated that some cases that
common hypothesis tests consider as Gaussian correspond to non-Gaussian processes with
Gaussian one-dimensional marginals. It is worth saying that out of a 22.03% rejection
rate for a length time period corresponding to 103 observations, a 6.78% correspond to
non-Gaussian processes with Gaussian one-dimensional marginals, the Guassianity of
which would not have been rejected but for the use of the methodology applied here. This
methodology is based on the random projection test [34], a goodness of fit test that checks
the Gaussianity of the process as a whole and not just of a finite order marginal, as other
established test in the literature do; see, for instance [35,36]. The obtained findings are
important due to the cases that the literature considered as Gaussian are numerous. These
cases include very large waves and, in fact, according to [37], very large waves might be
much more frequent than commonly assumed.

The rest of the manuscript includes: The description of the studied dataset in Section 2
and of the applied methodology in Section 3. The results of the analysis are described in
Section 4. The analysis makes use of the nortsTest package of the R software. Section 5
contains the obtained conclusions.

2. Datasets

The Coastal Data Information Program (https://cdip.ucsd.edu (accessed on 20 August
2022)) contains surface elevations measured by buoys that are along the cost of the US. For the
present study, these measurement where downloaded on the 20 August 2022 from the web
page https://thredds.cdip.ucsd.edu/thredds/catalog/cdip/realtime/catalog.html (accessed
on 20 August 2022). In particular, the variable downloaded is that named xyzZDisplace-
ment. The set of data used here differs from that in [21] and it has not being used in the
literature before.

There are a total of 59 datasets, each corresponding to the collected time series of a
station (buoy). Each buoy has an identification number, which is displayed in the first
and fourth columns of Table 1. The latitude and longitude coordinates of these buoys are
displayed in Figure 1 and, rounded to 2 decimal values, also included in the table. The top
plot of Figure 1 contains a world map where the coordinates have been drawn. The bottom
plot is a zoom of the top one that contains only the coordinate of the buoys that are close to
the US mainland coast.

In Table A1, in Appendix A, it can be observed the time period of the time series
associated to each of the 59 buoys, under the columns designated with the names Start Time
(columns 2 and 3) and End Time (columns 4 and 5). The shortest time period is depicted in
bold, which is that of station 244. This is the buoy with the shortest time period because
the length of the associated time series is the smallest among that of the 59 time series. This

https://cdip.ucsd.edu
https://thredds.cdip.ucsd.edu/thredds/catalog/cdip/ realtime/catalog.html
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information is presented in Table A2, also in Appendix A, under the columns designated
with the name length.

Table 1. Buoys identification number, with associated longitud and latitude coordinates, whose
surface elevation measurements constitute the datasets analyzed in this paper.

Buoy Latitude Longitude Buoy Latitude Longitude

028 33.86◦ −118.64◦ 185 36.7◦ −122.34◦

029 37.94◦ −123.46◦ 188 19.78◦ −154.97◦

036 46.86◦ −124.24◦ 189 −14.27◦ −170.5◦

045 33.18◦ −117.47◦ 191 32.52◦ −117.43◦

067 33.22◦ −119.87◦ 192 35.75◦ −75.33◦

071 34.45◦ −120.78◦ 194 30◦ −81.08◦

076 35.2◦ −120.86◦ 196 13.68◦ 144.81◦

092 33.62◦ −118.32◦ 197 15.27◦ 145.66◦

094 40.29◦ −124.73◦ 198 21.48◦ −157.75◦

098 21.41◦ −157.68◦ 201 32.87◦ −117.27◦

100 32.93◦ −117.39◦ 202 22.28◦ −159.57◦

106 21.67◦ −158.12◦ 203 33.77◦ −119.56◦

121 13.35◦ 144.79◦ 204 59.6◦ −151.83◦

132 30.71◦ −81.29◦ 209 39.77◦ −73.77◦

134 27.55◦ −80.22◦ 213 33.58◦ −118.18◦

139 43.77◦ −124.55◦ 214 27.59◦ −82.93◦

142 37.79◦ −122.63◦ 215 33.7◦ −118.2◦

143 28.4◦ −80.53◦ 217 34.21◦ −76.95◦

144 27.34◦ −84.27◦ 220 32.75◦ −117.5◦

147 36.92◦ −75.72◦ 222 34.77◦ −121.5◦

150 34.14◦ −77.72◦ 224 37.75◦ −75.33◦

154 40.97◦ −71.13◦ 230 48.03◦ −87.73◦

157 36.33◦ −122.1◦ 239 20.75◦ −157◦

158 36.63◦ −121.91◦ 240 37.02◦ −76.15◦

160 42.8◦ −70.17◦ 241 64.47◦ −165.48◦

162 46.22◦ −124.13◦ 243 36◦ −75.42◦

166 50.03◦ −145.2◦ 244 24.41◦ −81.97◦

168 40.9◦ −124.36◦ 430 36.26◦ −75.59◦

171 36.61◦ −74.84◦ 433 36.2◦ −75.71◦

181 18.38◦ −67.28◦

Each of the 59 datasets under study is restricted to a time series of length 5 × 105.
The first 5 × 105 are the ones selected. The datasets consist of raw data, which contains
unknown, unobserved, values. After taking out those from the first 5 × 105 selected, the
length of the time series associated to each of the 59 buoys can also be observed from
Table A2, in Appendix A. It is designated by the name studied. It can be observed from
Table A2, in Appendix A, that there is one buoy for which the whole 5 × 105 first elements
have been observed: buoy 249. There, it can also be observed that there are two buoys, 188
and 202, that have the minimum value under the label studied .
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Figure 1. Top panel: World map with the coordinates of the 59 buoys whose measurements constitute
the datasets analyzed in this paper. Bottom panel: Zoom of the top panel that shows the US mainland
with the coordinates of the buoys close to it. The identification number is that in Table 1.

In the left panel of Figure 2, it is displayed part of the recorded data for buoy 433. The
displayed data results from restricting the 1,622,186 observations stored for buoy 433 and
taking the ones corresponding to the first 105 time points. As it is obvious from the plot,
the first 105 time points contain unobserved elements. Indeed, 410,144 observations have
been made out of the 5 × 105 selected for the study (see Table A2, in Appendix A). From
the left panel of the figure, it is also observable that the unobserved data splits the time
series in ten parts. The right panel of Figure 2 is a zoom of the left panel containing solely
the part to the left of the time series.

Greenwich mean time (GMT) in the format year-month-day and hours:minutes:seconds
is used for the x-axis of the plots in the figure.
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Figure 2. Left panel: representation of the 105 first recordings, including unobserved (missing) data,
of the time series associated to buoy 433. The nine observed voids represent unobserved data. Right
panel: representation of the first segment of the time series in the left panel. Sea surface elevation in
meters and time in seconds GMT with the format year-month-day and hours:minutes:seconds.

3. Methodology

Given Xt a real valued random variable for each t ∈ Z,

X := {Xt}t∈Z

is a stochastic process [38]. Most common hypotheses on stochastic processes are those of
stationarity [39] and Gaussianity [40]. X is stationary if

• E[Xt] = E[Xt+k] for all k, t ∈ Z, where E denotes the expectation function,
• Cov(Xt, Xk) = Cov(Xt−k, X0) for all k, t ∈ Z, where Cov denotes the covariance

function and
• Var[Xt] < ∞ for all t ∈ Z, where Var denotes the variance.

X is Gaussian if

(Xt1 , . . . , Xtn) is a Gaussian random vector for all n ∈ N.

It occurs that a stationary Gaussian process is strictly stationarity. X is strictly stationary if

(Xt1 , . . . , Xtn) and (Xt1+k , . . . , Xtn+k )

are equally distributed for all n ∈ N and k, t1, . . . , tn ∈ Z. Consequently, given a stationary
process X, it is Gaussian if

(Xt, . . . , Xt) is a Gaussian random vector for all t ∈ N. (1)

3.1. Tests for Stationarity

This manuscript is about testing the Guassianity of stocastic processes. Typically, those
tests assume that the process is stationary. Thus, this assumption has to be previously
checked. For that, the most common tests in the literature are

1. Ljung-Box test [41],
2. Augmented Dickey-Fuller test [42],
3. Phillips-Perron test [43] and
4. kpps test [44].

For the first three tests, the tests can be simplified as contrasting the null hypothesis

H0,1 : X is non stationary (2)

against the alternative
Ha,1 : X is stationary
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while the kpps test results in the null hypothesis

H0,2 : X is stationary (3)

against the alternative
Ha,2 : X is non stationary.

The hypotheses are tested in different ways. For instance, Ljung-Box test makes use of
the autocorrelation function, which, at lag k for a stationary process is

Cov(Xt, Xt+k)

Var(Xt)
.

This is observable from its statistic:

n(n + 2)
h

∑
k=1

ρ̂2
k

n− k
,

where ρ̂k denotes the sample autocorrelation at lag k and n the sample size. Note that it
depends on a constant h.

3.2. Tests for Gaussianity

Most tests for Gaussianity of stochastic processes assume the process is stationary
and test whether a finite marginal distribution of the process is Gaussian, generally, the
one-dimensional marginal. That is, instead of testing whether (1) is satisfied, these tests
contrast the null hypothesis

H0,3 : Xt is a Gaussian random variable (4)

against the alternative

Ha,3 : Xt is not a Gaussian random variable

by checking whether Xt is a Gaussian random variable. Let us reflect that, because of the
stationarity, the distribution of Xt is the same for all t ∈ Z; that is, it is independent of t.

Common tests to check the Gaussianity of a real valued random variable require a
sample of independent and identically distributed random variables [45]. As this work
deals with stochastic processes, the independence assumption is not verified. However,
there are also many tests for this situation. Here, it is made use of the Epps test [35], which
checks that the characteristic function of the one-dimensional distribution of the process is
that of a Gaussian distribution, and of the Lobato and Velasco test [36], which checks that
the third and fourth order moments of the one-dimensional distribution of the process are
those of a Gaussian distribution.

If the null hypothesis H0,3 is rejected, with the above mentioned tests, the null hypothesis

H0,4 : X is a Gaussian process (5)

is rejected against the alternative

Ha,4 : X is not a Gaussian process.

However, it may occur that

Xt is a Gaussian random variable

while
X is not a Gaussian process.
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The above mentioned tests are at nominal level again this type of alternatives. For
this, it is used here the random projection test [34], which test the Gaussianity of the whole
distribution of the process and not just of a finite dimensional marginal. For elaboration on
it, see Section 3.2.

Random Projection Test

The random projection test was introduced in [34] as a tool to test the Gaussianity
of stationary processes that is able to reject the null hypothesis of Gaussianity (5) against
alternatives with Gaussian finite-dimensional marginals. The procedure is based on a result
in [46] that implies that if

〈{Xj}j≤t, d〉,

with d drawn from a Dirichlet distribution [47], is Gaussian, then

{Xj}j≤t

is Gaussian. Note that due to the stationarity assumption, the Gaussianity of {Xj}j≤t is
equivalent to (1). In what follows, the procedure is explained in detail.

Let
λ1, λ2 > 0

be two parameters. Making use of the following stick-breaking procedure, a Dirichlet
distribution is considered:

1. Let
β(λ1, λ2)

denote a beta distribution with parameters λ1, λ2.
2. Let d0 be drawn from the distribution β(λ1, λ2). Note that

d0 ∈ [0, 1].

3. For any k ∈ N, the natural numbers, let dk be the result of multiplying

1−
k−1

∑
i=0

di

and an element drawn independently from he distribution β(λ1, λ2). Note that

dk ∈ [0, 1−
k−1

∑
i=0

di].

Let X be a stationary process. The associated projected process based on {dk}k∈N is

Y := {Yt}t∈Z

with

Yt :=
∞

∑
i=0

diXt−i.

Then, making use of this randomly projected process, it suffices to apply to it a test for
the null hypothesis of Gaussianity (4).

The selection of the parameters λ1, λ2 is important. It is explained in [34] that values
such as

λ1 = 100 and λ2 = 1

result in an projected process Y similar to X. However, values such as

λ1 = 2 and λ2 = 7
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result in projected processes different from X while providing an effective method.

3.3. False Discovery Rate

When multiple tests are performed, the multiplicity has to be taken into account. For
that it is used here the false discovery rate [48]. The false discovery rate aims at controlling
the expected proportion of falsely rejected hypothesis. It was first introduced in [49] to
take into account the multiplicity of independent tests. In [48] it was established that the
definition in [49] remains valid for certain types of dependency. However, for general
dependent cases [48] has to be applied.

4. Results of the Analysis

This section analyzes whether each of the 59 datasets provided in Section 2, one per
buoy, is drawn from a Gaussian process as the length of the time series increases. For that,
the tests described in Section 3.2 are used here. As commented in Section 2, our datasets
have been restricted to 5 × 105 observations that include missing data; with the amount
of non-missing observations being recorded in Table A2 of Appendix A under the label
studied. The length of the time series along which this longitudinal study is performed,
makes use of the following values

Length ∈ {103, 104, 2× 104, 4× 104, 6× 104, 8× 104, 105} (6)

and is computed by selecting that amount of non-missing observations from the buoys that
have them.

To relate the above length quantities to time, it is important to take into account that
the time in seconds UTC (Coordinated universal time) associated to an observation t ∈ N is
computed as

Tt := T0 +
t− 1

r
− d

where T0 is the time at which the recording starts, r is the sample rate and d is the filter
delay. r takes value 1.28 and d 133.3 but for buoys in

B := {132, 142, 171, 194, 204 and 244}

that r takes value 2.56 and d value 130. Thus, the amount of recorded time, Tt − T0, for
t = 103 observations corresponds to 647.1688 s in UTC time in general and to 260.2344 for
the buoys in B. This results in GMT time in 10.79 min and 4.34 min, respectively. Table 2
displays these results, rounded to two decimal values, for each t equal to the length in (6).
The table also includes the translation of seconds UTC into GMT time. Thus, it is observable
from the table that the analysis we pursue here is of time series that have been recorded
for a period that varies between 4 min and 21 h. In fact, in general, for a length of 103 the
periods are close to 11 min while the are just abobe 2 h for a length of 104 and of more
than 4 h for a length of 2 × 104.

Let us select, for instance, a time period of 2.13 h in general and of 1.05 h for the
buoys in B. Then, for each of the buoys (but for buoys 188, 189, 202 and 204), the first
non-missing observations corresponding to those time periods would be selected. Buoys
188, 189, 202 and 204 are not studied for these time periods because, as reported in Table A2
under the label studied, their non-missing observations are less than 104. Thus, 55 out of the
59 buoys are studied in this scenario. This is not the case, however, when we study buoys
recorded for 4.34 min as the time series duration associated to all the buoys is larger than
that time period.

First, despite the time series associated to each buoy consists of non iid (independent
identically distributed) drawn observations, in Figure 3 it is plotted the histogram and
kernel density estimated curve associated to each of the 55 time series for a time period
of 2.13 h in general and of 1.05 h for the buoys in B. For each histogram 70 cells have
been used; but for buoy 241 that is plotted based on 40 cells. A Gaussian kernel is used
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for the density estimations with the bandwidth resulting of applying least squares cross
validation [50,51]. The obtained bandwidths are reported in Table A3, in Appendix A.
These plots are done to display descriptive information on the datasets. Note that the null
hypothesis of Gaussianity in (5) cannot be rejected by just inspecting the plots. This is
due to the fact that when testing the null hypothesis of Gaussianity it is assumed X is a
Gaussian process and the objective is to reject such assumption by the evidence provided
by the data. This is done at certain significance level. Here, it is used 0.05. By inspection of
the plots in Figure 3, one cannot guarantee whether there is enough evidence for such a
rejection as it cannot be quantified.

Table 2. Time period in UTC and GMT associated to each length in (6). The times are divided in
those for the 6 buoys in B and the rest of 53 buoys, which are labelled by general.

Length UTC GMT
General B General B

103 647.17 s 260.23 s 10.79 min 4.34 min

2.5 × 103 1819.04 s 846.1719 s 30.32 min 14.10 min

104 7678.42 s 3775.86 s 2.13 h 1.05 h

2 × 104 15,490.92 s 7682.11 s 4.30 h 2.13 h

4 × 104 31,115.92 s 15,494.61 s 8.64 h 4.30 h

6 × 104 46,740.92 s 23,307.11 s 12.98 h 6.47 h

8 × 104 62,365.92 s 31,119.61 s 17.32 h 8.64 h

105 77,990.92 s 38,932.11 s 21.66 h 10.81 h
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Figure 3. Histogram, based on 70 cells (but for buoy 241 on 40 cells), and kernel density estimated
curve associated to each of the 55 buoys (time series) analyzed for a time period of 2.13 h in general
and of 1.05 h for the buoys in B.

As the tests for testing the null hypothesis of Gaussianity reported in Section 3.2
require the stationarity assumption for the process, making use of the tests provided in
Section 3.1, it is first checked whether each of the datasets, when making used of each of
the time periods in Table 2, is drawn from a stationary process. The results obtained from
checking the stationarity are displayed in Table 3. Only one result is provided by test and
time period because the maximum of the obtained p-values is reported for the Augmented
Dickey-Fuller, Phillips-Perron and Ljung-Box tests while the minimum is reported for the
kpps test. Note that in the first three tests the null hypothesis of non-stationarity is tested,
as in (2), and in the fourth it is the null hypothesis of stationarity, as in (3). Thus, p-values
smaller than 0.01 are obtained for the Augmented Dickey-Fuller test and the Phillips-Perron
test and larger than 0.1 for the kpps test.

p-Values that are close to zero are obtained for the Ljung-Box test, but for time periods
of 17.32 h and 21.66 h in general, and of 8.64 h and 10.81 h for buoys in B. For a time period
of 17.32 h in general, and of 8.64 h for buoys in B, the minimum p-value is 0.18 in the
Ljung-Box test and is obtained for buoy 241. The other p-values of that test for that time
period are technically zero. It is also for buoy 241 that the Ljung-Box test gives a p-value
of 0.36 when the time period is of 21.66 h in general, and of 10.81 h for buoys in B. For
that time period and test, the p-values associated to the rest of buoys are smaller than 0.01.
When considering low time periods, the ultimate case being 4.34 min, all the tests provides
the aimed result. Thus, it can be assumed (with the possible exception of buoy 241 for time
periods of 17.32 h and 21.66 h in general and of 8.64 h and 10.81 h for buoys in B) that the
studied datasets are drawn from stationary processes, and check their Gaussianity under
the mentioned assumption.
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Table 3. Summary of the obtained p-values, for different time periods, for each of the 59 studied
datasets under four different stationarity tests: Augmented Dickey-Fuller (first column), Phillips-Perron
(second column), Ljung-Box test (third column) and kpps (fourth column). The null hypothesis is of
stationarity for the kpps test and of non-stationarity for the other three. For each of the lengths, the
minimum p-value value over the studied buoys is displayed for the kpps test and the maximum in the
other three cases.

Time Period Tests
General B Augmented Dickey-Fuller Phillips-Perron Ljung-Box kpps

10.79 min 4.34 min <0.01 <0.01 8.66 × 10−8 >0.1

30.32 min 14.10 min <0.01 <0.01 6.09 × 10−10 >0.1

2.13 h 1.05 h <0.01 <0.01 1.48 × 10−6 >0.1

4.30 h 2.13 h <0.01 <0.01 0 >0.1

8.64 h 4.30 h <0.01 <0.01 2.60 × 10−7 >0.1

12.98 h 6.47 h <0.01 <0.01 0 >0.1

17.32 h 8.64 h <0.01 <0.01 0.18 >0.1

21.66 h 10.81 h <0.01 <0.01 0.36 >0.1

In order to study the Gaussianity of the datasets under study, it is first analyzed the
one-dimensional marginal distribution of the process. This is because a rejection of the
null hypothesis (4) implies the sought rejection of the whole distribution of the process,
in (5). For analyzing the one-dimensional marginal distribution, it is made use of the Epps
and Lobato and Velasco tests commented in Section 3. The results are displayed in Table 4
for the particular case of a time period of 2.13 h in general and of 1.05 h for the buoys
in B. There, for each dataset, associated to a buoy (columns 1 and 5), it can be observed
the p-values resulting from applying the Epps test (columns 2 and 6) and the Lobato and
Velasco test (columns 3 and 7). As multiplicity has to be taken into account, columns 4
and 8 display the FDR values. It can be observed from the table that 20 of the 55 FDR
values are smaller than 0.05. They have been highlighted in bold. If the less conservative
FDR introduced in [49] had been used, the number of rejections would have increased. If
multiplicity had not been taken into account at all and the null hypothesis (4) were rejected
when the minimum of the two p-values was smaller than 0.05, the number of rejections
would have increased to 22.

Table 4. p-Values resulting from applying the Epps test (columns 2 and 6) and the Lobato and Velasco
test (columns 3 and 7) per dataset associated to each of the 55 buoys (columns 1 and 5) studied under
a time period of 2.13 h in general and of 1.05 h for the buoys in B. FDR (columns 4 and 8) combination,
for dependent p-values, of the two p-values per buoy, with the ones smaller than 0.05 highlighted
in bold.

Buoy Epps L.-V. FDR Buoy Epps L.-V. FDR

028 0.91 0.05 0.09 171 0.66 7.14 × 10−11 1.43 × 10−10

029 0.42 0.61 0.61 181 1.61 × 10−3 1.54 × 10−4 3.07 × 10−4

036 0.15 0.14 0.15 185 0.91 0.6 0.91

045 0.97 0.28 0.56 191 0.52 0.31 0.52

067 0.28 0.15 0.28 192 0.88 0.07 0.14

071 0.47 0.61 0.61 194 8.07 × 10−3 2.76 × 10−9 5.53 × 10−9

076 0.20 0.24 0.24 196 0.07 0.35 0.15

092 0.09 0.01 0.03 197 0.81 0.16 0.33

094 0.87 0.27 0.54 198 0.49 1.58 × 10−4 3.17 × 10−4

098 0.39 0.79 0.77 201 0.01 0.31 0.02
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Table 4. Cont.

Buoy Epps L.-V. FDR Buoy Epps L.-V. FDR

100 0.58 0.99 0.99 203 0.93 0.74 0.93

106 3.29 × 10−4 0.02 6.58 × 10−4 209 0.73 0.01 0.01

121 0.41 1.43 × 10−6 2.86 × 10−6 213 0.43 0.42 0.43

132 0.08 3.08 ×
10−11

6.16 ×
10−11 214 0.04 6.35 × 10−6 1.27 × 10−5

134 0.76 0.76 0.76 215 0.81 0.04 0.09

139 0.82 0.22 0.43 217 0.03 0.00 0.01

142 3.56 × 10−4 1.59 × 10−8 3.18 × 10−8 220 0.56 0.77 0.77

143 0.02 1.49 × 10−4 2.98 × 10−4 222 0.86 0.60 0.86

144 0.01 5.51 × 10−4 1.10 × 10−3 224 0.01 3.13 × 10−9 6.27 × 10−9

147 0.48 0.36 0.48 230 0.66 0.04 0.09

150 0.33 0.47 0.47 239 0.22 0.77 0.44

154 0.63 0.06 0.11 240 0.74 0.64 0.74

157 0.16 0.45 0.33 241 0.10 0.20 0.19

158 0.60 0.67 0.67 243 0.06 0.01 0.01

160 0.18 0.02 0.04 244 0.51 0.02 0.04

162 0.92 0.20 0.40 430 0.17 0.32 0.32

166 0.68 6.87 × 10−4 1.37 × 10−3 433 0.19 0.08 0.15

168 0.72 0.96 0.96

To better illustrate the findings, the results of Table 4 are summarized in the left plot of
Figure 4. The x-axis represents the buoy’s identification number while the y-axis displays
the obtained FDR for dependent tests. A grey line at y = 0.05 is drawn to show what buoys
have a FDR above or below that value, which result in a rejection of the null hypothesis (4).
It can observe that there are three FDR that are just above 0.05. They correspond to buoys
028, 215 and 230.
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Figure 4. Left panel: FDR values corresponding to the studied buoys in Table 4. Right panel: FDR
values corresponding to the buoys studied in Table 5. The line y = 0.05 is displayed in both panels in
color grey.

In what follows it is pursued a further study in the 35 buoys for which there is yet no
evidence to reject the null hypothesis of Gaussianity, displayed in (5). This further study
consists in applying the random projection test based on the Epps and Lobato and Velasco
tests with parameters (100, 1) and (2, 7). The results of applying the random projection test are
reported in Table 5. There it can be observed that the random projection test is able to reject the
null hypothesis of Gaussianity in 2 out of the 35 buoys, which results in a total of 22 rejections
out of 55 (the 40%). The FDR values that result in a rejection are highlighted in bold.
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Table 5. FDR values (column 6) resulting of applying the random projection test for each buoy
(column 1) with a FDR adjusted p-value larger than 0.05 in Table 4 (time period of 2.13 h in general
and of 1.05 h for the buoys in B). The parameters and the one-dimensional tests used in performing
the random projection test are included for each buoy.

Buoy Epps
(100,1)

Epps
(2,7)

L.-V.
(100,1)

L.-V.
(2,7) FDR

028 0.89 0.62 0.04 0.01 0.04

029 0.42 0.46 0.61 0.65 0.65

036 0.20 0.26 0.16 0.26 0.26

045 0.98 0.98 0.27 0.26 0.81

067 0.34 0.26 0.15 0.16 0.34

071 0.46 0.53 0.62 0.78 0.78

076 0.21 0.73 0.24 0.62 0.73

094 0.87 0.81 0.27 0.76 0.87

098 0.39 0.56 0.79 0.85 0.85

100 0.62 0.84 1.00 1.00 1.00

134 0.72 0.24 0.76 0.32 0.76

139 0.80 0.56 0.24 0.39 0.80

147 0.54 0.75 0.36 0.55 0.75

150 0.19 0.53 0.48 0.61 0.61

154 0.60 0.50 0.07 0.29 0.30

157 0.19 0.16 0.43 0.52 0.52

158 0.59 0.51 0.69 0.76 0.76

162 0.91 0.98 0.19 0.24 0.72

168 0.73 0.76 0.96 0.87 0.96

185 0.91 0.77 0.60 0.60 0.91

191 0.50 0.47 0.33 0.63 0.63

192 0.69 0.09 0.08 0.08 0.18

196 0.10 0.32 0.36 0.45 0.39

197 0.58 0.07 0.14 0.01 0.04

203 0.93 0.95 0.74 0.72 0.95

213 0.43 0.65 0.42 0.87 0.87

215 0.67 0.50 0.05 0.11 0.19

220 0.60 0.88 0.78 0.35 0.88

222 0.84 0.62 0.59 0.64 0.84

230 0.79 0.83 0.02 0.08 0.08

239 0.22 0.29 0.77 0.79 0.79

240 0.78 0.93 0.76 0.96 0.96

241 0.11 0.18 0.26 0.11 0.26

430 0.21 0.41 0.34 0.63 0.63

433 0.31 0.72 0.14 0.65 0.58

The results in Table 5 have been summarized in the right plot of Figure 4. There, the
FDR values larger and smaller than 0.05 can be clearly observed; and that there is a p-value
just above 0.05, the one corresponding to buoy 230.
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This procedure that we have exemplified through the use of a time period of 2.13 h
in general and of 1.05 h for the buoys in B, has been performed for all the time periods
displayed in Table 2. This has resulted in a rejection rate displayed in Table 6 with the
label with projection. Thus, if it is used a time period of 4.34 min for the buoys in B and
of 10.79 min in general, the Gaussianity of 22.03% of the processes is rejected. This rate
increases to 58.49% and 82.35% for time periods of 2.13 h and 4.30 h in general and of 1.05 h
and 2.13 h for buoys in B, respectively. It reaches 96.08% for a time period of 21.66 h in
general and 10.81 h for buoys in B.

Table 6. Rejection rates along different length periods when no projections are used (first row), when
the proposed projection procedure is used (second row) and when no multiplicity is taken into
account (third row), i.e., the minimum of the p-values is used for the rejection. m stands for minutes
and h for hours.

General 10.79 m 30.32 m 2.13 h 4.30 h 8.64 h 12.98 h 17.32 h 21.66 h
Time Period B 4.34 m 14.10 m 1.05 h 2.13 h 4.30 h 6.47 h 8.64 h 10.81 h

no projection 15.25 19.30 36.36 58.49 78.43 80.39 90.20 96.08

with projection 22.03 22.81 40.00 58.49 78.43 82.35 92.16 96.08

minimum 30.51 24.56 43.64 66.04 80.39 82.35 92.16 96.08

If the random projection was not applied, that is, if only the Epps and Lovato and
Velasco tests were applied, the rejection rates would have been just below for time periods
of 10.79 min, 30.32 min, 2.13 h, 12.98 h and 17.32 h in general and of 4.34 min, 14.10 min,
1.05 h, 6.47 h and 8.64 h for buoys in B. The corresponding rejection rates are in Table 6
with the label no projection. Meanwhile, if the multiplicity would have not been taken into
account altogether and the minimum p-value would have been selected, the rejection rates
would also have been similar, just a bit over as the time period decreases, separately in
general and in B. These values are displayed in Table 6 with the label minimum. To better
illustrate all these rejections, we have plotted them in Figure 5. There, the rejections rates of
the proposed procedure are plotted with a back plus symbol, those obtained without using
the random procedure are plotted with green triangles and the ones where the minimum
of the p-values is computed are plotted with blue circles. It can observed from the figure
that the three values get closer as the time period increases.
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Figure 5. Display of the rejection rates in Table 6: the values labelled by no projection are in green
triangles, those by with projection in back plus symbols and those by minimum with blue circles. The
time period in the x-axis corresponds to the buoys in general. For the buoys in B, it is 4.34 min,
14.10 min, 1.05 h, 2.13 h, 4.30 h, 6.47 h, 8.64 h and 10.81 h.
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5. Conclusions

For the analysis, the sea surface elevations provided by the measurements of the
buoys along the US coast have been analyzed along different time periods. It has been
obtained in the analysis section that the rejection rates increase when the time peri-
ods increase. Thus, while less than 25% of the studied processes can be considered
as non-Gaussian when the time period consists of less than 11 min, it reaches over
the 95% of the cases when the time period is larger than 21 h in general and of 10 h
for the buoys in B. Thus, it is clear the non-Gaussianity of the sea surface elevation
and that only enough information (in terms of the time period) is need for its rejection.
If we had only used non-randomized tests, as it is common in the literature, the obtained
rejection rates would have been a bit lower, with the larger differences being obtained as
the time period decreases. For the obtained results, a more complex and new goodness of
fit test has been required. This is that known as random projection test and requires of the
selection of a distribution used to draw a vector in which to project the data and a good-
ness of fit test for the one-dimensional marginal distribution of the process to apply on the
projected data. This leads to the conclusion that the sea surface elevations are generally non-
Gaussian despite that their one-dimensional distribution is Gaussian in a few of the cases.
The obtained results are significant as they indicate two important aspects:

• The sea surface elevations are generally not Gaussian as the time period increases,
from time series recorded in just 4 to 10 min to time series recorded in 10 to 21 h.

• In a few of the cases the one-dimensional marginal is Gaussian for small and moderate
time periods. For instance, for time series recorded in just 4 to 10 min, in 14 to 30 min
and those recorded in 1 to 2 h.

These two facts result in that sea surface elevations cannot be modeled as Gaussian
processes but in a few of the cases can be modeled as non-Gaussian processes with one-
dimensional Gaussian marginals. Note that this is not a contradiction due to, as explained
in Section 3, there a non-Gaussian processes with one-dimensional Gaussian marginals.

In testing the non-Gaussianity, multiple tests are performed and consequently multi-
plicity has to be taken into account. However, if it was not to be taken into account, the
same results would have been obtained when all the buoys are studied for time periods of
6.47 h and over; with the rejection rates getting larger than those based on the FDR rate
when the length period decreases.
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Appendix A

Table A1. Start and end times for which the measurements have been recorded by each of the 59 buoys.
These are GMT times which are reported in the format year-month-day and hours-minutes-seconds.
In bold, the buoy whose measurements have been recorded for a smaller period of time.

Buoy Start Time (GMT) End Time (GMT)
Date (yyyy-mm-dd) Time Date (yyyy-mm-dd) Time

028 2021-04-29 19:00:00 2022-08-20 08:59:57
029 2022-01-26 21:00:00 2022-08-20 08:59:58
036 2022-05-25 23:00:00 2022-08-20 08:59:58
045 2022-03-01 20:00:00 2022-08-20 08:59:58
067 2020-12-02 21:00:00 2022-08-20 08:59:57
071 2022-08-02 19:32:13 2022-08-20 08:59:58
076 2022-06-02 18:00:00 2022-08-20 08:59:58
092 2021-08-04 21:00:00 2022-08-20 08:59:57
094 2020-10-08 21:00:00 2022-08-20 08:59:57
098 2022-02-04 21:00:00 2022-08-20 08:59:58
100 2021-02-19 18:00:00 2022-08-20 08:59:57
106 2022-01-20 23:00:00 2022-08-20 08:59:58
121 2021-06-21 13:32:13 2022-04-10 22:59:58
132 2020-09-15 22:30:00 2022-03-01 01:22:48
134 2022-01-15 15:00:00 2022-08-20 08:59:58
139 2021-11-14 20:00:00 2022-08-20 08:59:58
142 2022-03-02 15:00:00 2022-05-20 08:22:49
143 2022-08-16 23:00:00 2022-08-20 08:59:58
144 2021-11-11 17:00:00 2022-08-20 09:29:58
147 2022-03-21 15:00:00 2022-08-20 08:59:58
150 2021-11-18 15:00:00 2022-08-20 08:59:58
154 2021-01-12 17:00:00 2022-06-27 21:59:57
157 2020-06-20 20:00:00 2022-08-20 08:59:57
158 2022-07-06 02:02:13 2022-08-20 08:59:58
160 2022-05-02 21:02:13 2022-08-20 08:59:58
162 2021-11-20 18:00:00 2022-08-20 08:59:58
166 2022-05-16 21:00:00 2022-05-18 03:29:58
168 2022-03-25 20:00:00 2022-08-20 08:59:58
171 2022-01-14 16:00:00 2022-05-12 07:52:49
181 2022-08-11 21:02:13 2022-08-20 08:59:58
185 2022-08-06 02:00:00 2022-08-20 09:29:58
188 2021-11-03 10:23:10 2022-08-20 09:20:55
189 2021-10-20 20:02:13 2022-08-20 08:59:58
191 2021-12-13 20:00:00 2022-08-20 08:59:58
192 2022-08-04 17:00:00 2022-08-20 08:59:58
194 2021-11-05 15:00:00 2022-02-06 23:52:49
196 2022-07-19 04:02:13 2022-08-20 09:29:58
197 2022-07-19 04:02:13 2022-08-20 08:59:58
198 2021-06-16 21:00:00 2022-08-20 08:59:57
201 2021-11-10 21:00:00 2022-08-20 08:59:58
202 2021-07-21 08:02:13 2022-05-04 23:59:58
203 2021-05-12 19:00:00 2022-08-20 08:59:57
204 2021-08-20 23:00:00 2022-05-10 02:52:49
209 2022-06-10 18:32:13 2022-08-20 08:59:58
213 2022-03-15 17:00:00 2022-08-20 08:59:58
214 2022-06-28 04:02:13 2022-08-20 08:59:58
215 2022-04-14 19:00:00 2022-08-20 08:59:58
217 2022-08-08 23:02:13 2022-08-20 08:59:58
220 2022-04-26 22:00:00 2022-08-20 08:59:58
222 2021-11-15 15:00:00 2022-08-20 08:59:58
224 2020-07-16 15:00:00 2022-08-20 08:59:57
230 2022-05-19 17:00:00 2022-08-20 08:59:58
239 2022-07-17 19:05:10 2022-08-20 09:03:56
240 2022-07-22 19:02:13 2022-08-20 08:59:58
241 2022-08-02 00:00:00 2022-08-20 08:29:58
243 2021-09-13 20:00:00 2022-08-20 08:59:57
244 2022-03-31 04:30:00 2022-03-31 10:12:49
430 2022-07-15 18:02:13 2022-08-20 08:59:58
433 2022-08-05 17:00:00 2022-08-20 08:59:58
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Table A2. The 59 available buoys are labelled by an identification number in descending order. The
length of the associated time series is also reported, the smallest being highlighted in bold. The studied
label represents the length of the studied time series after selecting the first 5 × 105 time points and
eliminating the unobserved, missing, values.

Buoy Length Studied Buoy Length Studied

028 52,817,065 412,278 185 1,583,018 216,438
029 22,722,218 423,968 188 32,062,463 2304
036 9,557,162 458,528 189 33,569,279 6912
045 18,966,698 488,480 191 27,592,874 419,360
067 69,170,857 334,112 192 1,732,778 451,754
071 1,942,272 394,016 194 20,652,288 162,047
076 8,695,466 317,984 196 3,564,288 396,288
092 42,080,425 500,000 197 3,561,984 463,136
094 75,258,025 412,448 198 47,499,433 306,294
098 21,726,890 444,704 201 31,237,802 476,960
100 60,447,913 453,920 202 31,813,631 2304
106 23,376,554 145,322 203 51,379,369 403,232
121 32,447,231 29,952 204 57,986,303 6912
132 117,484,797 14,592 209 7,808,256 426,272
134 23,966,378 474,656 213 17,432,234 446,838
139 30,800,042 347,766 214 5,884,416 301,856
142 17,403,648 10,752 215 14,109,866 481,855
143 378,026 336,554 217 1,262,592 403,232
144 31,147,946 447,008 220 12,768,938 449,142
147 16,777,898 476,960 222 30,712,490 430,880
150 30,380,714 412,448 224 84,575,400 449,312
154 58,742,953 479,264 230 10,248,362 481,568
157 87,427,752 467,574 239 3,714,125 352,544
158 5,008,896 479,264 240 3,161,088 375,584
160 12,109,824 467,744 241 2,029,994 456,224
162 30,145,706 435,488 243 37,661,353 467,744
166 140,714 126,890 244 52,992 29,952
168 16,312,490 453,920 430 3,939,840 426,272
171 26,015,999 205,088 433 1,622,186 410,144
181 940,032 493,088

Table A3. Bandwidth, per buoy, rounded to 2 decimal values used for the kernel density estimated
curves in Figure 3.

buoy 028 029 036 045 067 071 076 092 094 098 100
bandwidth 0.04 0.12 0.05 0.04 0.06 0.08 0.07 0.04 0.06 0.08 0.04

buoy 106 121 132 134 139 142 143 144 147 150 154
bandwidth 0.1 0.14 0.08 0.03 0.09 0.13 0.02 0.03 0.01 0.03 0.04

buoy 157 158 160 162 166 168 171 181 185 191 192
bandwidth 0.04 0.01 0.03 0.05 0.07 0.05 0.11 0.02 0.06 0.04 0.03

buoy 194 196 197 198 201 203 209 213 214 215 217
bandwidth 0.13 0.04 0.04 0.05 0.04 0.04 0.04 0.03 0.02 0.04 0.04

buoy 220 222 224 230 239 240 241 243 244 430 433
bandwidth 0.08 0.07 0.04 0.01 0.13 0.01 0.01 0.02 0.13 0.03 0.02
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