
Memory-Efficient Symbolic Heuristic Search

Rune M. Jensen
IT University of Copenhagen

2300 Copenhagen S, Denmark
rmj@itu.dk

Eric A. Hansen andSimon Richards
Dept. of Computer Science and Eng.

Mississippi State University
Mississippi State, MS 39762 USA

hansen@cse.msstate.edu

Rong Zhou
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304 USA

rzhou@parc.com

Abstract

A promising approach to solving large state-space search
problems is to integrate heuristic search with symbolic
search. Recent work shows that a symbolic A* search al-
gorithm that uses binary decision diagrams to compactly rep-
resent sets of states outperforms traditional A* in many do-
mains. Since the memory requirements of A* limit its scal-
ability, we show how to integrate symbolic search with a
memory-efficient strategy for heuristic search. We analyze
the resulting search algorithm, consider the factors that affect
its behavior, and evaluate its performance in solving bench-
mark problems that include STRIPS planning problems.

Introduction
There has been much recent interest in improving the scal-
ability of AI planning algorithms by using symbolic data
structures and search techniques developed originally for
model checking, a widely-used approach to hardware and
software verification (Clarke, Grumberg, & Peled 2000). A
model checker determines whether a system satisfies a for-
mal property by using a search algorithm to explore the state
space that represents all possible execution paths. The cen-
tral challenge in scaling up model-checking algorithms is
the same as the challenge in scaling up planning algorithms
– thestate explosion problem, that is, the size of the state
space grows exponentially in the number of variables in the
problem description. Among the techniques that have been
developed in the model checking community to deal with
the state-explosion problem, one of the most effective is an
approach to state abstraction that uses a data structure called
a decision diagram to implicitly represent sets of states and
operations on sets of states. Use of decision diagrams in
model checking is calledsymbolic model checking. Over
the past few years, planning researchers have successfully
adopted a symbolic approach based on decision diagrams to
improve the scalability of algorithms for planning in non-
deterministic domains (Cimatti, Roveri, & Traverso 1998),
for multi-agent planning (Jensen & Veloso 2000), for plan-
ning using Markov decision processes (Hoeyet al. 1999;
Feng & Hansen 2002), for conformant planning (Cimatti,
Roveri, & Bertoli 2004), and for planning in partially ob-
servable domains (Bertoliet al. 2001).
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In this paper, we consider a symbolic approach to deter-
ministic planning. As a starting point, we consider recent
work that uses decision diagrams to improve the scalabil-
ity of the A* search algorithm (Edelkamp & Reffel 1998;
Jensen, Bryant, & Veloso 2002; Hansen, Zhou, & Feng
2002; Jensen 2003; Nymeyer & Qian 2003; Edelkamp
2005). Symbolic implementations of A* have been shown
to outperform traditional A* in several domains. But in
common with traditional A*, the bottleneck of a symbolic
implementation of A* is its memory requirement, that is,
the need to store a representation of all visited states in
memory. Although various techniques for reducing the
memory requirements of A* have been developed, they
have not yet been adapted for use in a symbolic heuristic
search algorithm that uses decision diagrams. In fact, tech-
niques that reduce the memory requirements of A* by using
depth-first search, such as Depth-First Iterative-Deepening
A* (Korf 1985), are not obviously compatible with deci-
sion diagrams, which were developed for use in breadth-first
search. Other approaches to memory-efficient A*, such as
frontier search (Korfet al. 2005) and sparse-memory graph
search (Zhou & Hansen 2003), seem incompatible with a
symbolic approach because they rely on data structures that
assume states are represented individually.

In this paper, we show how to integrate decision diagrams
with a recent approach to memory-efficient search called
breadth-first heuristic search(Zhou & Hansen 2006). As in
frontier and sparse-memory graph search, this approach re-
duces memory requirements by using a divide-and-conquer
technique for solution recovery that makes it unnecessary
to store all states generated during the search in memory.
In a symbolic algorithm, this means it is unnecessary to
store all decision diagrams generated during the search in
memory. Although development of a symbolic version of
breadth-first heuristic search (BFHS) requires some innova-
tion, especially in the method of solution recovery, we show
that a breadth-first approach (BFHS relies on breadth-first
branch-and-bound search) makes it easier to integrate these
two techniques for improving scalability – symbolic search
using decision diagrams, and use of divide-and-conquer so-
lution recovery to reduce memory requirements. We analyze
the resulting algorithm and study the factors that affect its
performance in solving a range of benchmark search prob-
lems, including propositional planning problems.



Background
We begin by reviewing relevant background about state-
space search, decision diagrams, symbolic reachability
analysis and previous work on BDD-based heuristic search.

State-space search
A state-space search problem is defined as a tuple
(S, G, s0, A, T ), whereS denotes a set of states;G ⊂ S
denotes a set of goal states;s0 denotes a start state;A de-
notes a set of actions (or operators); andT denotes a set of
transition relations{T a : S×S}, one for each actiona ∈ A,
such that(s, s′) ∈ T a if and only if taking actiona in state
s results in a transition to states′. We assume transitions
are deterministic. In this paper, we also assume that all tran-
sitions have unit cost and the objective is to find a shortest
path from the start state to a goal state.

Decision diagrams and symbolic graph traversal
Decision diagrams, especially binary decision diagrams, are
widely used as a form of state abstraction in symbolic model
checking. Binary decision diagramsprovide an efficient
way of representing and manipulating Boolean functions. A
binary decision diagram (BDD) is a rooted directed acyclic
graph with internal nodes of out-degree two, and two ter-
minal nodes, one for the value of 0 and one for the value
of 1. Every non-terminal node is labeled with a Boolean
variable and its two outgoing edges correspond to the val-
ues of 0 and 1. The value of the Boolean input variables is
mapped to an output Boolean value by following a path from
the root of the BDD to a terminal node. Anordered binary
decision diagramis a BDD with the constraint that the in-
put variables are ordered and every path in the BDD visits
them in the same order. Areduced ordered BDDis a BDD
in which every node represents a distinct logic function. In
their reduced, ordered form, and with a fixed variable order-
ing, BDDs provide a canonical representation of Boolean
functions. This canonicity allows efficient algorithms for
manipulating them. BDDs can leverage problem structure
to achieve significant state abstraction in representing and
manipulating Boolean functions, and this often leads to a re-
duction in time and space complexity from exponential to
polynomial in the number of state variables. Furthermore, a
set of BDDs can be represented compactly in a global multi-
rooted BDD. Since the BDDs often are related, this can lead
to further space savings.

In order to use BDDs in state-space search, the problem
state must be described by a set of Boolean state variables,
~x = {x1 . . . xn}. For propositional planning problems, as
well as for circuit verification problems, this is the natural
representation. For other state-space search problems, an
efficient Boolean encoding must be designed. Given such
an encoding, a set of statesF can be represented by its
Boolean characteristic functionF (~x), such thats ∈ F ⇐⇒
F (~x) = 1, and this Boolean characteristic function can be
represented compactly by a BDD. The transition relation
for each action can also be represented by a BDD. Given
a set of present state variables~x = {x1 . . . xn}, and a set of
next state variables~x′ = {x′1 . . . x′n}, the transition relation

T a(~x, ~x′) has a Boolean characteristic function with a value
of 1 when actiona in state~x causes a transition to state~x′,
and otherwise has a value of 0.

A symbolic approach to state-space search manipulates
sets of states, instead of individual states. Given a set of
statesF , a central task is to find all successors of these states
after actiona. This task is calledimage computation, and the
image ofF according toT a is given by

Image(F, T a) =
(
∃~x.F (~x) ∧ T a(~x, ~x′)

)
[~x′/~x].

The operator on the right-hand side of the assignment is
called therelational productoperator. It represents a se-
ries of nested existential quantifications, one for each vari-
able in~x. The conjunctionF (~x) ∧ T a(~x, ~x′) selects the set
of valid transitions and the existential quantification extracts
and unions the successor states together. Similarly, it is pos-
sible to compute the predecessors of a set of states, called
thepre-image, as follows:

PreImage(F, T a) =
(
∃~x′ .F (~x′) ∧ T a(~x, ~x′)

)
[~x/~x′].

The image and pre-image operators are used in symbolic
search algorithms that traverse the state space of a transition
system. For example, the set of states that is reachable from
an initial state can be determined by a simple breadth-first
search starting from an initial state. LetRi denote the set of
states reachable from the initial states0 in i steps, initialized
by R0 = {s0}. Given any setRi, we can use the image
operator to compute the setRi+1 as follows:

Ri+1 → ∪aImage(Ri, T a)

Both the relational-product operator and symbolic traversal
algorithms are well studied in the symbolic model checking
literature, and we refer to that literature for further details.

Symbolic A*
The heuristic search algorithm A* organizes its search using
a priority queue (or Open list) to store unexpanded states
on the frontier of the search, and a Closed list to store all
expanded states. A* determines the order in which to expand
states by using a state evaluation function,f(s) = g(s) +
h(s), whereg(s) is the cost of a best path from the start state
to states, andh(s) is a lower-bound function that estimates
the cost of a best path from states to a goal state.

Edelkamp and Reffel (1998) were the first to develop a
symbolic A* algorithm that is implemented using BDDs. A
symbolic implementation of A* must do more than symbolic
reachability analysis; it mustevaluatestates, that is, com-
pute theirf -costs, in order to focus the search and find an
optimal path. Their algorithm, called BDDA*, represents
the Open list as a set of BDDs, one for each distinctf -cost.
It selects the BDD with leastf -cost to expand, and computes
successor states using the image operator. Then it computes
thef -costs of the successors states using BDDs that encode
the search heuristic and transition costs in binary. They show
that this symbolic implementation of A* significantly out-
performs symbolic breadth-first search, and is effective in
solving propositional planning problems.



Figure 1: Comparison of best-first and breadth-first fron-
tiers. The outer ellipse encloses all nodes withf -cost less
than or equal to an (optimal) upper bound.

Hansen et al. (2002) describe a symbolic implementation
of A* called ADDA* that usesalgebraic decision diagrams,
an extension of BDDs that allows more than two terminal
nodes in order to represent multi-valued functions. ADDA*
can represent the heuristic function, as well as state and
transition costs, without encoding them in binary. But both
BDDA* and ADDA* suffer from the overhead of perform-
ing arithmetic using decision diagrams when computingf -
costs of successor states.

Jensen et al. (2002) significantly improved the perfor-
mance of symbolic A* by using a partitioning technique
calledbranching partitioningthat avoids BDD-level arith-
metic. In a branching partitioning, the transition relation is
partitioned into a set of BDDs, such that all transitions in
the same BDD change thef -cost by the same amount. (If
all transitions have unit cost, this is equivalent to changing
theh-cost by the same amount.) When a BDD representing
a set of states with the samef -cost is selected for expan-
sion, the image operator is performed once for each BDD in
the branching partitioning, and a set of successor BDDs is
produced, one for each possible change in thef -cost. Using
this method of partitioning, the successor states are parti-
tioned byf -cost, and thef -cost of all successor states is
known without performing any arithmetic at the BDD level.

The approach is calledstate-set branching. Because
it doesn’t perform arithmetic using decision diagrams, it
avoids the bottleneck of BDDA* and ADDA* and dramati-
cally improves performance. We use this same partitioning
technique in the algorithm developed in the rest of this paper.

Memory-efficient BDD-based heuristic search
We now describe a memory-efficient approach to BDD-
based heuristic search. The approach is based on
the breadth-first heuristic searchalgorithm of Zhou and
Hansen (2006), with some differences to accommodate the
use of decision diagrams. Breadth-first heuristic search fo-
cuses its search using the same heuristic used by A*. But
as shown in Figure 1, it expands the search frontier in
breadth-first order, instead of best-first order. Essentially,
it is a memory-efficient form of breadth-first branch-and-
bound search, where memory efficiency is achieved by only
storing layers of the search graph that are on (or near) the
search frontier, and recovering the solution path by a divide-
and-conquer technique.

We begin by explaining how to implement breadth-first
branch-and-bound search using BDDs. Then we introduce
our techniques for memory-efficient search.

Symbolic breadth-first branch and bound
Breadth-first branch-and-bound search generates a search
graph that consists of a sequence oflayers, in which all
states in the same layer have the same depth andg-cost.
(Since we assume unit-cost actions, the depth of a layer is
equal to itsg-cost.) We could use a single BDD to repre-
sent the states in each layer. But in order to apply state-set
branching, we partition each layer into a set of BDDs, one
for eachf -cost (or, equivalently,h-cost, since theg-cost of
every node in a layer is the same). We will call each of these
BDDs, anf -cost layer-BDD. We also use the branching par-
titioning method of Jensen et al. to partition the transition
relation into a set of BDDs, one for each change inf -cost.

We use state-set branching to expand the search frontier.
Hence, for each pair off -cost layer-BDD and branching
partitioning BDD, we use the image operator to compute
a BDD that represents the set of successor states. Thus the
number of image computations performed in generating the
next layer of a breadth-first search graph is the product of
the cardinality of the layer partition and the cardinality of
the branching partitioning. Because we know thef -cost of
the parent states and the amount by which each partition in
the branching partitioning changes thef -cost, we know the
f -cost of all of the successor states without performing any
arithmetic at the BDD level. Moreover, we know what the
f -cost of the successor states will be before performing the
image computation. Therefore, given an upper bound on the
optimal cost,we can prune successor states before even gen-
erating them– an important advantage of this approach. The
search algorithm generates successive layers of the breadth-
first search graph until it generates a layer-partition that con-
tains a goal state. (Such a layer partition must have anh-cost
of zero, given an admissible heuristic.)

Table 1 shows the pseudocode of the symbolic breadth-
first branch-and-bound algorithm (SBFBnB). It includes
three subroutines that support the memory-saving tech-
niques we introduce next. The subroutine used in line 12,
DeleteLayers, recovers memory by deleting previous lay-
ers of the breadth-first search graph. Layers are deleted in
order from the beginning of the search graph, and only as
many layers are deleted as needed to recover enough mem-
ory to continue the search. The challenge for this approach
to reducing memory requirements is that previous layers of
the graph are used in both duplicate elimination (line 8) and
solution reconstruction (line 11). In the rest of this section,
we describe how to perform duplicate elimination and solu-
tion reconstruction after layers have been deleted.

Solution reconstruction
Line 11 of the pseudocode in Table 1 invokes a subroutine
for solution reconstruction. Although removing previous
layers of the search graph from memory can substantially
reduce the memory requirements of BDD-based heuristic
search, one challenge this creates is how to reconstruct a
solution after the search terminates.



procedureSBFBnB(BDD start, goal, transitions, INT U )
1. BP ← BranchingPartitioning(transitions)
2. Layer[0, h(start)] ← start
3. for g = 1 to U do
4. for h = 0 to U − g do
5. for i = 0 to |BP | do
6. if h + δh(BP [i]) < U − g then
7. Succ ← Image(Layer[g − 1, h], BP [i])
8. Succ ← RemoveDuplicates(Succ)
9. Layer[g, h + δh(BP [i])] ← Succ
10. if h + δh(BP [i]) = 0 and Layer(g, 0) ∩ goal 6= ∅ then
11. return ExtractSolution(start, goal, g, Layer)
12. if memory is lowthen DeleteLayers(Layer, g)

Table 1: Pseudocode for symbolic breadth-first branch and
bound search.

We first review how to reconstruct a solution when all lay-
ers of the breadth-first search graph are retained in memory.
Then we describe a divide-and-conquer method for recon-
structing a solution that does not require retaining all layers
of the search graph in memory.

Sequential solution reconstruction After a symbolic
heuristic search algorithm finds a goal state, it cannot re-
construct a solution path in the same way as a non-symbolic
heuristic search algorithm – by tracing pointers backward
from the goal state to the start state. Not only are there no
pointers, but individual states are not even represented. Path
information must be maintained in a different way.

One way to allow reconstruction of the solution path is to
keep all of the BDDs generated during the search in mem-
ory, as well as a record of their successor relationships.
Jensen (2003) describes a symbolic implementation of A*
that builds anabstract search graphthat preserves path in-
formation. Each node of the abstract search graph corre-
sponds to a BDD generated during the search. One node in
the abstract search graph is a successor of another if its cor-
responding BDD was generated by the image operator from
the BDD corresponding to its predecessor node; it follows
that the states it represents are successors of the states rep-
resented by the prececessor node. A solution path begins
at the start state (represented by the BDD corresponding to
the start node of the abstract search graph); it terminates at
a goal state (represented by the BDD corresponding to the
goal node of the abstract search graph); and it consists of a
sequence of successor states, with one state represented by
each BDD corresponding to an abstract node along a short-
est path from the start node to the goal node of the abstract
search graph. In breadth-first branch-and-bound search (BF-
BnB), the search space is divided into layers and a solution
path consists of one state from each layer of the search graph
such that each state is a successor of the previous one. In
SBFBnB search, each layer is represents by a set of BDDs.

To explain how the solution path is recovered, we con-
sider the case of BFBnB; a similar idea works in A*. Once
the search terminates, a goal state on an optimal path has

been identified. The state in an optimal path that comes just
before the goal state must be in the next-to-the-last layer. For
a unit-cost search problem, it can be identified by determin-
ing which state in this layer has the goal state as a successor.
(For a non-unit cost problem, it is the state in the previous
layer such that it’sg-cost and the cost of a transition to the
goal state is the minimum.) This can be determined effi-
ciently by computing the pre-image of the goal state, for
each action, and intersecting the result with the previous
layer. The process is repeated for each layer backwards from
the goal state to the start state, in order to identify every state
and action along an optimal path. Because the pre-image is
only computed for a single state in each layer, this method
of solution reconstruction is very fast. The problem is that it
requires keeping all layers of the search graph (i.e., all BDDs
generated during the search) in memory. We next consider
how to avoid this.

Divide-and-conquer solution reconstruction To recon-
struct a solution path without saving all generated BDDs in
memory, we propose to use a divide-and-conquer technique
for solution reconstruction. The basic idea is to use the lay-
ers that can fit in memory to reconstruct part of the optimal
solution path, and then recursively call the same search al-
gorithm to reconstruct the rest of the solution, by solving
smaller subproblems of the original search problem.

For this divide-and-conquer technique to work, the search
algorithm must have at least one layer of the search graph in
memory (not including the start and goal layers) when the
search terminates. We will assume it is the last layer before
the goal state (although it does not have to be). The search
algorithm should also store as many additional layers as fit
in memory, backwards from the goal layer. If all layers fit in
memory, sequential solution reconstruction can be used. If
not, the algorithm traces the solution path backwards from
the goal state for as many layers as fit in memory, in the
same way as in sequential solution reconstruction. When it
reaches a missing layer, it creates a new search problem in
which the start state is the original start state and the goal
state corresponds to the shallowest state (i.e., the state clos-
est to the start state) on the partial solution path constructed
backwards from the goal. This subproblem is exponentially
easier to solve than the original search problem, assuming
search complexity is exponential in the length of a solution
path, and so it can be solved relatively quickly to identify
the rest of the solution path. The number of subproblems
that need to be solved in the worst case is bounded by the
length of the solution path, but usually just one or two levels
of recursion will be sufficient to solve the problem within
the constraints on available memory. This offers a memory-
time tradeoff in which memory is saved in exchange for the
time needed to reconstruct some of the layers.

Duplicate elimination

The subroutineRemoveDuplicates in line 8 of the
pseudocode performs duplicate elimination. This is not nec-
essary for the correctness of the search algorithm, but has
a big effect on its efficiency. Since the set of successor



states generated by the image operator may include states
that have previously been generated, efficiency is improved
by eliminating these duplicates. In the model-checking liter-
ature, duplicate elimination is calledfrontier (or forward) set
simplification, and involves comparing the successor states
against already-generated states in the current and previous
layers of the search graph.

Although it is possible to perform duplicate elimination
by using a single BDD to represent the set of all previously-
generated states, the layered structure of the search graph
encodes path information that is needed for solution re-
construction. Therefore, an implementation of BDD-based
breadth-first branch-and-bound search needs to keep distinct
BDDs in memory for the different layers of the search graph.

For many graph-search problems, it is not necessary to
store and check all previously visited states in order to
completely eliminate duplicates. In particular, Zhou and
Hansen (2006) point out that in breadth-first search of undi-
rected graphs, it is only necessary to store and check the
immediate previous layer, in addition to the current layer
and the next layer, in order to eliminate all duplicates. The
reason for this is that in undirected graphs, every potential
successor of a state is also a potential predecessor. In di-
rected graphs, it is not possible to say, in general, how many
previous layers need to be stored in memory in order to com-
pletely eliminate duplicates. It depends on the structure of
each problem. But given knowledge of the structure, it is
often possible to bound the number of layers that need to be
retained in order to completely eliminate duplicates.

In complex directed graphs in which it is impossible to
completely eliminate duplicates without retaining all layers,
retaining as many previous layers as fit in memory allows
the number of duplicates to be reduced in a principled way.
If l is the number of layers in a breadth-first search graph,
andk is the number of previous layers stored in memory for
duplicate elimination, thenlk bounds the number of layers
in which a particular state can occur as a duplicate. This
suggests a tradeoff between the memory used to store pre-
vious layers in memory, and the performance improvement
that results from duplicate elimination. It is also a reason
for deleting layers from the beginning of the graph, when
memory is low.

One of the advantages of breadth-first search is that it
makes it easy to determine which layers of the search graph
can be deleted to recover memory, and which should be re-
tained for duplicate elimination. It is not as easy to see how
a similar layered approach to duplicate detection could be
used in a memory-efficient implementation of symbolic A*.

Upper bounds and iterative deepening
Use of breadth-first branch-and-bound search requires an
upper bound on the cost of an optimal solution, and the
tighter the upper bound, the more efficient the search. An
upper bound can be obtained by running a fast approximate
search algorithm that finds a (possibly) sub-optimal solu-
tion relatively quickly; possibilities include weighted A*
and beam search, in either their symbolic or non-symbolic
forms. As an alternative to finding an approximate solu-
tion, an iterative-deepening strategy can be used in which

the algorithm is run with a hypothetical upper bound, and
the hypothetical upper bound is increased as necessary, until
an optimal solution is found. Zhou and Hansen (2006) call
this algorithmbreadth-first iterative-deepening A*. In this
iterative-deepening algorithm, solution reconstruction is not
performed until the last iteration, when a solution is found.

Symbolic admissible heuristics
Symbolic heuristic search requires a lower-bound function
(i..e, an admissible heuristic) that is represented symboli-
cally as a decision diagram. For specific domains, such
heuristics can be created by hand. For example, a symbolic
encoding of the Manhattan distance heuristic for the Fif-
teen Puzzle is easily created. For domain-independent plan-
ning, an automatic method of creating symbolic admissi-
ble heuristics is necessary. Edelkamp (2002) describes how
to createsymbolic pattern databasesfor use by a domain-
independent planner. We consider a different and more
widely-used approach to automatically creating admissible
heuristics for a domain-independent planner, thehm heuris-
tic of Haslum and Geffner (2000), and describe how to effi-
ciently compute a symbolic generalization of it.

Briefly, the hm(m = 1, 2, . . .) heuristic (or family of
heuristics) is computed as follows. For each group ofm
atoms in a state, an optimistic estimate of the cost of achiev-
ing these atoms is determined via a relaxed reachability
analysis that can be computed efficiently using dynamic pro-
gramming. The heuristic estimate is the maximum of these
costs and is guaranteed to be both admissible and consis-
tent. For large values ofm, it converges to the optimal cost
but is prohibitively expensive to compute. In practice, the
max-pair heuristic(wherem = 2) is most widely used. It
is particularly efficient when used for regression planning,
since the reachability analysis of each pair of atoms only
needs to be computed once.

For search algorithms that use an explicit state represen-
tation, the maximization part of the heuristic is computed in
each iteration. For symbolic algorithms, on the other hand,
we need to compute a branching partitioning of the heuris-
tic. Since the max-pair branching partitioning turns out to be
somewhat challenging to compute efficiently, we describe
our approach in detail below. To our knowledge, this is the
first use of the max-pair heuristic in symbolic search.

For most heuristics, there is a simple relation between the
state the action is applied in and the change of the heuristic
estimate. For instance, when moving a tile down in the Fif-
teen Puzzle, we haveδh = −1 if the move is towards the
goal row of the tile, and otherwiseδh = 1. Thus in many
cases, it is easy to compute the branching partitioning by
splitting the transition relation of each action according to
these different situations. For the max-pair heuristic, how-
ever, there is no simple relation between the state an action
is applied in and the change of the heuristic estimate.

To overcome this problem, our approach is to build a BDD
hi(~x) for each possible heuristic valuei that represents the
set of states withh = i. It is easy to use these BDDs to build
a branching partitioning. We first compute a vector of BDDs
δi(~x, ~x′) for each transition withδh = i and then use it to
partition the transition relation of the search space. For the



max-pair heuristic, however, theδi(~x, ~x′) BDDs turns out
to be prohibitively large. To avoid this problem, we exploit
the fact that the planning domains we consider have bidirec-
tional search graphs. For a consistent heuristic like max-pair
this means that|δh| ≤ 1. Thus, we can make the branching
partitioning a function of the heuristic valuei of the set of
states it expands and split the transition relation of an action
by conjoining only withhi−1, hi, andhi+1. This technique
is quite efficient, and we believe that it can be used for other
heuristics with high combinatorial complexity. Even if the
search graph is not bidirectional, it may be possible to bound
|δh| and use a similar technique.

Experimental evaluation
We evaluate the performance of our memory-efficient ap-
proach to symbolic heuristic search in three domains: the
Fifteen puzzle and two planning problems from the STRIPS
track of the International Planning Competitions of 1998 and
2002, respectively. Our evaluation includes a comparison
of the time and space consumption of the following algo-
rithms; symbolic and non-symbolic versions of breadth-first
branch-and-bound search (SBFBnB and BFBnB), A*, and a
symbolic generalization of A* called SetA* (Jensen, Bryant,
& Veloso 2002). Results of the comparison are summarized
in Table 2 and in additional graphs to be explained below.

Domains and implementation details We tested the al-
gorithms on six instances of the Fifteen puzzle of increas-
ing difficulty taken from Korf’s 100 random instances (Korf
1985). In Table 2, we use Korf’s numbering scheme to iden-
tify the instances. For the Fifteen puzzle, we implemented
the search algorithms in C++/STL. States are represented as
vectors of tile positions and STL hash sets are used to rep-
resent sets of states. SBFBnB and SetA* were implemented
in the BIFROST planning framework (Jensen 2003). The
Boolean state representation used by SBFBnB and SetA*
consists of a bit vector for each tile position that is a binary
encoding of the identity of the tile located at the position.
The representation is similar to the one used in (Nymeyer
& Qian 2003). All algorithms use the sum of Manhattan
distances as an admissible heuristic.

The two STRIPS planning problems used in our eval-
uation are Blocks and Zenotravel. The domains are de-
fined in PDDL. The planning algorithms are implemented
in BIFROST and use the max-pair heuristic to guide a back-
ward search. When given a PDDL input, BIFROST reduces
the state space by using a preprocessing reachability analy-
sis that identifies static and balanced predicates (Edelkamp
2001). Static predicates cannot change truth-value and are
compiled out of the state and action representation. Bal-
anced predicates likeat(x, y) have a variable (in this case
x) such that when this variable is bound to an object, ex-
actly one of the facts obtained by binding the remaining
variables is true in a state. Balanced predicates typically
encode locations. Thus, if there aren balanced facts, we
only needdlog ne bits to represent their truth-values. This is
exploited by the Boolean state representation used by SetA*
and SBFBnB. The explicit state representation of A* and

BFBnB uses an STL integer set to identify the true facts in a
state. More compact state representations may be possible,
but have not been explored in this work.

For all of the domains used in our evaluation, all actions
have unit cost and the search graph is undirected. In such
domains, BFBnB and SBFBnB can achieve duplicate elim-
ination by keeping only three layers in memory (Zhou &
Hansen 2006). To achieve best performance, SBFBnB only
deletes layers from memory when it approaches its mem-
ory limit. For evaluation purposes, however, we arranged
for SBFBnB to use as little memory as possible while still
ensuring complete duplicate elimination. Often, this means
that it deletes all but three layers from memory, even when
more memory is available.

In Table 2, we report results for BFBnB and SBFBnB
given an optimal upper bound. This corresponds to the last
iteration of breadth-first iterative-deepening A*, which uses
iterative deepening to find the optimal upper bound (Zhou &
Hansen 2006). The last iteration determines the peak mem-
ory use of the algorithm and takes much longer than ear-
lier iterations. The time required for solution recovery is in-
cluded in the running time shown in Table 2. In divide-and-
conquer solution recovery, the divide-and-conquer process
never required more than one level of recursion for any of
the problem instances.

The experiments were conducted on a Linux PC with a
3.2 Ghz Pentium Xeon CPU, 1024 KB L2 cache, and 3 GB
RAM. To avoid excessive duration of the experiments, how-
ever, the available memory was adjusted down to 1.8 GB
for the Fifteen puzzle and 1 GB for Blocks and Zenotravel.
The memory consumption of an algorithm was measued as
the peak amount of memory allocated by its process. The
algorithms were adjusted to use the least possible amount
of memory in order to solve a problem. Thus, BFBnB
and SBFBnB would at some point have only three layers in
memory. Note also that the symbolic algorithms reserve 5%
of the BDD nodes to operator caches. (Experimental stud-
ies of reachablility analysis in formal verification show that
caches with between 5 and 10 percent of the total number of
nodes have fairly good performance (Yanget al. 1998).)

Analysis of results Table 2 shows the time and space con-
sumption of the algorithms. Our new algorithm, SBFBnB,
is the only one able to solve all problems within the mem-
ory bounds. For the largest problems in each domain, it also
consistently uses less memory than any other algorithm.

For the Fifteen Puzzle problems, the performance of A*
and SetA* confirms previous results in (Jensen 2003).1 A*
has lower time overhead than SetA*, but quickly exhausts
memory. As for the algorithms that use divide-and-conquer
solution recovery, BFBnB uses less memory than both A*
and SetA*, and SBFBns scales even better than BFBnB.

In our experiments, BFBnB and SBFBnB remove all but
three layers of the search graph from memory. To esti-

1The results, however, do not support the hypothesis in
(Nymeyer & Qian 2003) that the sum of Manhattan distances is
too strong a heuristic for SetA*, and prevents if from being more
memory efficient than A*



A* BFBnB SetA* SBFBnB
Problem Len Time Space Time Space Time Space Time Space
15puzzle-12 45 0.4 10 1.3 8 12.1 26 11.7 16
15puzzle-55 41 2.3 44 1.7 10 39.0 67 13.7 23
15puzzle-19 46 2.2 44 6.1 25 51.3 67 43.8 35
15puzzle-20 52 48.1 531 89.4 277 618.7 456 484.8 176
15puzzle-69 53 163.1 1173 206.3 732 1389.2 820 832.5 387
15puzzle-32 59 - >1800 - >1800 - >1800 3727.9 1733
Blocks-4 6 0.1 3 0.1 3 0.1 4 0.4 4
Blocks-5 12 0.3 3 0.3 3 0.4 4 1.1 4
Blocks-6 12 0.6 4 0.6 4 0.7 4 2.4 4
Blocks-7 20 1.7 4 1.7 4 2.0 5 5.7 6
Blocks-8 18 1.9 4 2.1 4 3.5 8 10.5 9
Blocks-9 30 6.3 6 11.1 5 7.0 9 19.6 10
Blocks-10 34 11.3 9 47.3 8 13.0 16 22.1 16
Blocks-11 32 35.7 24 143.8 12 69.2 33 90.8 31
Blocks-12 34 132.7 129 689.2 45 33.1 35 52.3 32
Blocks-13 42 1025.5 737 14982.5 344 226.6 95 375.4 71
Blocks-14 38 - >1000 - >1000 363.9 132 500.8 111
Zenotravel-1 2 0.1 3 0.2 3 0.1 4 0.2 4
Zenotravel-2 8 0.2 4 0.3 3 0.2 4 0.6 4
Zenotravel-3 8 0.6 4 1.5 4 0.7 4 2.2 4
Zenotravel-4 12 10.4 15 33.4 7 1.0 5 3.2 5
Zenotravel-5 16 94.5 80 204.2 21 1.9 7 5.5 6
Zenotravel-6 16 560.6 332 1169.0 90 2.7 10 7.2 10
Zenotravel-7 17 - >1000 - >1000 13.3 31 22.2 28
Zenotravel-8 16 - >1000 - >1000 28.1 48 66.7 35

Table 2: Time (sec) and space (MB) consumption of the algorithms on the 15-Puzzle, Blocks, and Zenotravel problems.

mate the additional time overhead for divide-and-conquer
solution recovery in the symbolic algorithm, we compared
SBFBnB to a version of the same algorithm that keeps all
layers in memory and recovers a solution in the conven-
tional way (SBFBnB*). We ran the algorithms on the five
Fifteen Puzzle problems that both could solve. The results,
presented in Figure 2, show that the additional overhead for
performing divide-and-conquer solution recovery instead of
conventional solution recovery is negligible.

In the two planning domains, the symbolic state repre-
sentation is quite compact leading to good performance of
SetA* and SBFBnB compared to A* and BFBnB. There
may be several reasons for this. First, since the state-space
of the Fifteen Puzzle is a permutation subspace, it does not
have an efficient BDD representation. Second, the gen-
eral explicit-state representation used by BIFROST is not as
memory efficient as the specialized representation used for
the Fifteen Puzzle problems.

The space savings of BFBnB and SBFBnB compared to
A* and SetA* are significant but less dramatic in the Blocks
and Zenotravel domains. In part, this is because the memory
needed to store the max-pair heuristic is included in the re-
sults reported in Table 2. The symbolic max-pair heuristic,
in particular, requires a significant amount of memory. This
affects the ratio of memory used by SBFBnB compared to
memory used by SetA*. They both must allocate space for
the max-pair heuristic, but if we only consider the memory

used to store the layers of the search graph, the memory sav-
ing of SBFBnB relative to SetA* is closer to that observed
for the Fifteen Puzzle. But other factors also limit the ef-
fectiveness of SBFBnB for these planning problems. To un-

 1

 10

 100

 1000

6920195512

T
ot

al
 C

P
U

 ti
m

e 
(lo

g 
sc

al
e)

Problem number

SBFBnB
SBFBnB*

Figure 2: The time overhead for deleting layers and recov-
ering a solution by the divide-and-conquer method is shown
by comparing the time it takes SBFBnB to solve the first
five Fifteen Puzzle problems with and without using divide-
and-conquer solution recovery. (SBFBnB* denotes the al-
gorithm that does not use the divide-and-conquer method.)
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Figure 3: Layer size as a function of search depth for BFBnB and SBFBnB on 15puzzle-19, Blocks-11, and Zenotravel-5.
(Note that they-axis is logarithmically scaled.)

derstand this better, we plot the layer size as a function of
search depth of BFBnB and SBFBnB on a selected problem
for each domain. The results are shown in Figure 3.

Because the BDD package uses a multi-rooted BDD to
share structure between active BDDs, it is non-trivial to es-
timate how much memory each layer of SBFBnB uses. In
the graphs, a BDDli representing the states in layer 0 toi is
constructed and the estimated size of layeri is defined to be
|li| − |li−1|. In the last half of the search,li often becomes
more structured when adding more states. For this reason a
layer may have negative size. Due to the logarithmic scale,
such layers have been given size 1 in the graphs.

It is useless for SBFBnB and BFBnB to remove layers
from memory if the layer size doubles or more in each it-
eration. In this case, deleting all previous layers does not
release enough memory for even a single new layer, and at
least three layers must reside in memory. The stronger the
heuristic, the smaller the growth rate of layer size. Further-
more, using a strong heuristic, layer size reaches a maximum
in the middle of the search; using a weak heuristic, layer size
reaches its maximum later. Thus, the stronger the heuristic,
the wider the area in which SBFBnB and BFBnB can benefit
from removing layers from memory. The BDD representa-
tion has an effect similar to a stronger heuristic. It reduces
the growth rate and thus widens the area where it is fruitful
to delete layers in memory.

Going back to the graphs, we see that the area with suf-
ficiently small growth rate is much narrower for Blocks-11
than 15puzzle-19. For Zenotavel-5, the peak is pushed even
further to the right. This reflects the fact that the max-pair
heuristic is much less informative than the sum of Manhat-
tan distances. This leads to some performance degradation
of SBFBnB and BFBnB.

Another important factor that affects the relative perfor-
mance of these algorithms is their tie-breaking behavior.
Because all of the test problems we used have unit action
costs, there aremanyties. Unfortunately, a breadth-first ap-
proach to heuristic search has worst-case tie-breaking be-
havior. Nodes with the samef -cost can occur in all layers
of the search graph; because all nodes in one layer are ex-
panded before the next layer is considered, most nodes with
anf -cost equal to the optimalf -cost are expanded before an
optimal solution is found. By contrast, A* and SetA* break

ties by preferring to expand nodes with the leasth-cost and
this leads to near-optimal tie-breaking behavior. In the re-
sults reported in Table 2, A* and SetA* enjoy near-optimal
tie-breaking and BFBnB and SBFBnB suffer worst-case tie-
breaking. This has a significant effect on the results. Al-
though BFBnB and SBFBnB still show a benefit, their rela-
tive performance would be significantly improved by finding
a way to improve on their worst-case tie-breaking behavior.

Enhancements
We are optimistic that we can improve on the results re-
ported in the previous section by continuing to develop the
approach proposed in this paper. Here we briefly outline
some enhancements that we will consider in future work.

Bidirectional search
We have seen that the effectiveness of the memory-efficient
approach is somewhat diminished for the STRIPS planning
problems because of the weakness of the max-pair heuristic.
With a more informative heuristic, we expect the relative
improvement to be greater. Developing more informative
admissible heuristics for domain-independent planners is an
important direction for future research.

But for search problems where the heuristic is very weak,
another way to improve memory efficiency might be to use
bidirectional search. The divide-and-conquer solution re-
construction technique described in this paper is used in a
unidirectional search algorithm that searches forward from
the start state to a goal state, and then traces the solution
path backwards from the goal to the start state. But it is pos-
sible to use the same divide-and-conquer approach to im-
prove the memory efficiency of bidirectional search. In fact,
Korf (1999) first used divide-and-conquer solution recovery
in a bidirectional search algorithm.

In bidirectional breadth-first heuristic search (Richards
2004), one search algorithm searches forward from the start
state, the other searches backwards from the goal state, and
when they reach the same layer, the states in the intersection
of the two frontiers must be on an optimal path. Given a state
on the optimal path, two subproblems can be created, one
that involves searching for an optimal path from the original
start state to an intermediate state in the intersection of the



Figure 4: Successor relationships between sets of states with
the sameg-cost andh-cost illustrate transition locality. Sets
of states in the same row have the sameg-cost; sets of states
in the same column have the sameh-cost; and sets of states
in the same diagonal have the samef -cost.

two frontiers, and one that involves searching for an optimal
path from the intermediate state to the goal state. A similar
divide-and-conquer recursion is then used to reconstruct the
optimal path for the original search problem.

When the heuristic is very weak, the layers of the breadth-
first search graph generated in unidirectional search con-
tinue to grow in size past the midpoint of the search. Fig-
ure 3 shows this for the Zenotravel problem. A bidirectional
search algorithm would not generate these largest layers.
Instead, its two frontiers would meet in the middle of the
search space and its memory requirements would be roughly
equal to twice the size of the middle layer. If the heuristic
is very weak, this could be less than the size of the largest
layer generated by unidirectional search. In that case, bidi-
rectional search would have an advantage. In fact, the ad-
vantage it would have in the case of a very weak heuristic is
similar to the advantage that bidirectional search is already
known to have in the case of blind search. If the heuristic
is strong enough, however, the largest layers will tend to be
the middle of the search graph, as they are for the Fifteen
Puzzle, and bidirectional search will not have an advantage.

Leveraging transition locality

Recall that in branching partitioning, the transition relation
is partitioned by the change inh-cost caused by a transi-
tion. In undirected graphs with unit edge costs, and when the
heuristic is consistent, it is easy to prove that a transition can
only change theh-cost by +1, 0, or -1. To leverage this in-
formation to simplify state evaluation, we have already rep-
resented the set of states on the frontier of the search graph
by a set of BDDs, where each BDD contains states with the
sameg-cost andh-cost. Figure 4 illustrates this by showing
a matrix in which each row corresponds to a distinctg-cost,
each column corresponds to a distincth-cost, and each cell
of the matrix (represented by a box or “bucket”) corresponds

to a set of states with the sameg-cost and the sameh-cost.
Note that each bucket can be represented by a distinct BDD.
Figure 4 shows buckets that are generated when the upper
bound onf -cost is 7.

Figure 4 also shows that each bucket of states has only
three child buckets, where each child bucket has ag-cost
that is one greater than theg-cost of the states in its par-
ent bucket, and the three child buckets correspond to the
sets of states with anh-cost that differs from theh-cost of
the states in the parent bucket by -1, 0, or +1, respectively.
This is a form oftransition locality that can be exploited
in breadth-first heuristic search to reduce memory require-
ments, as follows. In the algorithm presented in this paper,
the previous layer of the search graph is not removed from
memory until the current layer is completely expanded. But
if buckets in the matrix are expanded in row-major order, as
in breadth-first search, it is clear that a bucket withg-cost
equal toi andh-cost equal toj can be deleted as soon as
the breadth-first search algorithm has finished expanding the
bucket withg-cost equal toi+1 andh-cost equal toj+1. In
other words, parts of the previous layer can be removed from
memory while the current layer is still being expanded. In
practice, this means that breadth-first heuristic search only
needs to keep about two layers in memory instead of three.
Although this only applies to undirected search graphs with
unit edge costs and a consistent heuristic, it could signifi-
cantly improve efficiency in this case.

Conclusion
We have shown how to synthesize complementary tech-
niques for improving the scalability of state-space search:
an approach to state abstraction based on decision diagrams,
and a memory-efficient approach to heuristic search that re-
lies on divide-and-conquer solution reconstruction. We have
also described how to efficiently compute a symbolic gener-
alization of the max-pair heuristic for domain-independent
planning. The resulting algorithm leverages this combina-
tion of techniques to achieve state-of-the-art performance
in solving a selection of benchmark problems, including
propositional planning problems.

Testing the algorithm in additional domains will con-
tribute to a better understanding of the factors that affect its
performance. It may also further demonstrate the advantages
of an algorithm that uses complementary techniques to im-
prove scalability. Since these techniques will not be equally
effective in all domains, when one is less effective in a par-
ticular domain, another can compensate.

Although we have described a memory-efficient algo-
rithm for symbolic heuristic search, it is not a memory-
bounded algorithm. Eventually, it runs out of memory. Zhou
and Hansen (2005) describe a memory-bounded search al-
gorithm calledbeam-stack searchthat is closely related
to breadth-first heuristic search. A symbolic version of
this algorithm seems promising. Another promising direc-
tion is to integrate symbolic search with external-memory
search (Edelkamp 2005). Even when a search algorithm can
use external memory, it performs better when it uses inter-
nal memory as efficiently as possible, and so, these are also
complementary techniques.
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