UMOP 1.2 Software Demonstr ation

RuneM. Jensen and Manuela M. Veloso
Computer Science Department,Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh,PA 15213-3891, USA
{runej,mmv}@cs.cmu.edu

The UM OP Planning System

UMOP (Jensen 2000; Jensen & Veloso 2000; Jensen,
Veloso, & Bowling 2001) is a universal planning system
for multi-agent and non-deterministic domains. As input
UMOP takes a planning problem described in the Non-
deterministic Agent Domain Language (NADL). The NADL
problem is translated to a search problem in a finite tran-
sition system. The transition system is represented by a
conjunctive partitioned transition relation encoded symboli-
cally as a set of reduced ordered Binary Decision Diagrams
(BDDs) (Bryant 1986).

Version 1.2 of UMOP includes the three original BDD-
based universal planning algorithms: weak, strong, and
strong cyclic planning where the actions of the uncontrol-
lable environment agents are abstracted (Cimatti, Roveri, &
Traverso 1998a; 1998b; Cimatti et al. 2001). An execution
of a strong universal plan is guaranteed to reach states cov-
ered by the plan and terminate in a goal state after a finite
number of steps. An execution of a strong cyclic plan is also
guaranteed to reach states covered by the plan and terminate
in a goal state, if it terminates. However, a goal state may
never be reached due to cycles. An execution of a weak plan
may reach states not covered by the plan, it only guarantees
that some execution exists that reaches the goal from each
state covered by the plan.

function NDP(Sy, G)

1 P« 0;C+@G

2 whileSy C C

3 P, < PRECOMP(C)

4 if P, = () then return “no solution exists”
5 else

6 P+~ PUP,

7 C + C USTATES(P,)

8 return P

Figure 1: A generic algorithm for synthesizing non-deterministic
plans. Sy isaset of initial states, while G isaset of goal states.

In addition, UMOP 1.2 includes adversarial versions of

Copyright (© 2003, American Association for Artifi cia Intelli-
gence (www.aaai.org). All rights reserved.

the weak and strong-cyclic algorithms where explicit rea-
soning about the actions of the environment leads to solu-
tions of substantial higher quality (Jensen, Veloso, & Bowl-
ing 2001). All of these algorithms iteratively compute a
BDD representing a universal plan during a breadth-first
search backward from the goal states to the initial states. The
search algorithms rely on efficient techniques developed in
symbolic model checking for computing components of the
plan and searching the state space. The algorithm is shown
in Figure 1. The set of states Sy is the possible initial states,
while G is the goal states. In each iteration, a precomponent
of the plan is generated from the current set of covered states
C and added to the plan P. The algorithms only differ by
the way the precomponent is defined.

\Y,

7 ]I

~
= H

0O 1 2 3 M 5 6 7

Figure 2: The work cell domain.

Usage

UMORP is implemented in C++/STL under Linux 7.1. The
main options of the planner are

UMOP -d <dom> -a <alg> -o <plan>

where dom is an ASCII file containing a planning problem
in NADL, alg is the name of the planning algorithm the
system should apply, and plan is the name of a BDD-file
UMOP should write the plan to. In addition, UMOP pro-
vides options to adjust the BDD package parameters such as



cache sizes and dynamic variable ordering. A complete list
of options is printed by the -h option.

The software package also includes an executor that can
be used to study produced plans. In addition, there is an
X-based visual executor for plans generated for the two do-
mains described in this demonstration. The software is open
source and can be used for teaching and research purposes.
UMOP has been used in a graduate level class on planning,
learning and execution for three years at the Computer Sci-
ence Department of Carnegie Mellon University.

Demonstration

The demonstration will show two applications of the UMOP
planning system. The first application is for controlling a
factory work cell. The work cell is shown in Figure 2. It
consists of two magnetic arms that can slide metal objects
from a random position on a grid to a feed belt. The ac-
tions of the arms are constrained by rules that guarantee that
no collisions happen between objects on the two arms. The
purpose of this application is to show that UMOP can com-
pute optimal plans for a multi-agent system by reasoning on
the complete space of joint actions. It will first be shown
how the problem is described in NADL. The command line
options of UMOP will then briefly be described and an ex-
ample call of the system will be shown. The resulting BDD,
representing the universal plan will then be analysed visu-
ally via the X-based plan executor.

The second application is a hunter and prey problem on a
chess board. The domain is shown in Figure 3. The hunter

0o 1 2 3 4 5 6 7

Figure 3: The hunter and prey domain.

and prey move simultaneously in each iteration. The goal is
to match the position of the hunter and prey from some ran-
dom initial position. There are two versions of the domain.
In the first, both the hunter and prey can make a Kings move
in each iteration. In the second, the hunter can only make
a single-step Bishop move. The purpose ofd the domain is
to show the difference between the ordinary weak and strong
cyclic universal plans and adversarial plans. For the first ver-
sion of the domain, both a strong cyclic and a strong cyclic
adversarial plan exists. The reason is that no matter what
strategy the hunter chooses, it will eventually catch the prey.
For the second version, only a strong cyclic solution exists.

The reason is that the prey has a simple strategy to avoid the
hunter. If the hunter starts at a black position, it will stay at
black positions. Thus, the prey just needs to move to a white
position and stay at white positions. This problem is only
realized by the strong cyclic adversarial planning algorithm,
not the ordinary strong cyclic algorithm.

The demonstration will present the NADL description of
the problem. The two versions of the domains are then vi-
sually demonstrated using the X-based executor as above.
The demonstration shows a dramatic difference between the
quality of ordinary and adversarial universal plans both in
terms of goal reachability and expected execution time.

References

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
8:677-691.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2001. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Technical Report 0104-11, ITC irst,
Trento, Italy.

Cimatti, A.; Roveri, M.; and Traverso, P. 1998a. Auto-
matic OBDD-based generation of universal plans in non-
deterministic domains. In Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI’98), 875-881.
AAAI Press.

Cimatti, A.; Roveri, M.; and Traverso, P. 1998b. Strong
planning in non-deterministic domains via model check-
ing. In Proceedings of the 4th International Conference on
Artificial Intelligence Planning System (AIPS’98), 36-43.
AAAI Press.

Jensen, R. M., and \Veloso, M. M. 2000. OBDD-
based universal planning for synchronized agents in non-
deterministic domains. Journal of Artificial Intelligence
Research 13:189-226.

Jensen, R. M.; Veloso, M. M.; and Bowling, M. 2001.
Optimistic and strong cyclic adversarial planning. In Pre-
proceedings of the 6th European Conference on Planning
(ECP’01), 265-276.

Jensen, R. M. 2000. The UMOP 1.2 software pack-
age. http://www.cs.cmu.edu/"runej/umop/
umop -html.



