
An Efficient BDD-Based A* Algorithm

Rune M. Jensen, Randal E. Bryant, and Manuela M. Veloso
Computer Science Department,Carnegie Mellon University,

5000 Forbes Ave, Pittsburgh,PA 15213-3891, USA�
runej,bryant,mmv � @cs.cmu.edu

Abstract

In this paper we combine the goal directed search of
A* with the ability of BDDs to traverse an exponen-
tial number of states in polynomial time. We introduce
a new algorithm, SetA*, that generalizes A* to expand
sets of states in each iteration. SetA* has substantial ad-
vantages over BDDA*, the only previous BDD-based
A* implementation we are aware of. Our experimen-
tal evaluation proves SetA* to be a powerful search
paradigm. For some of the studied problems it outper-
forms BDDA*, A*, and BDD-based breadth-first search
by several orders of magnitude. We believe exploring
sets of states to be essential when the heuristic function
is weak. For problems with strong heuristics, SetA*
efficiently specializes to single-state search and conse-
quently challenges single-state heuristic search in gen-
eral.

Introduction
During the last decade, powerful search techniques using an
implicit state representation based on the reduced ordered
binary decision diagram (BDD, Bryant 1986) have been de-
veloped in the area of symbolic model checking (McMillan
1993). Using blind exploration strategies these techniques
have been successfully applied to verify systems with very
large state spaces. Similar results have been obtained in
well-structured AI search domains (Cimatti et al. 1997).
However for hard combinatorial problems the search fringe
often grows exponentially with the search depth.

A classical AI approach for avoiding the state explosion
problem is to use heuristics to guide the search toward the
goal states. The question is whether heuristics can be ap-
plied to BDD-based search such that their ability to effi-
ciently expand a large set of states in each iteration is pre-
served. The answer is non-trivial since heuristic search al-
gorithms require values to be associated with each state and
manipulated during search. A task for which BDDs often
have proven less efficient.

In this paper, we present a new search algorithm called
SetA*. The main idea is to avoid the above problem by gen-
eralizing A* (Hart, Nilsson, & Raphael 1968) from single
states to sets of states in the search queue. Recall that A*
associates two values � and � to each state in the search
queue. � is the cost of reaching the state and � is an esti-
mate of the remaining cost of reaching the goal given by a

heuristic function. In SetA* states with similar � and � val-
ues are merged such that we can represent them implicitly
by a BDD without having to store any numerical informa-
tion. In each iteration, SetA*: 1) pops the set with highest
priority, 2) computes its next states, and 3) partitions the next
states into child sets with unique � and � values, which are
reinserted into the queue. A straightforward implementa-
tion of the three phases has disappointing performance (see
PreSetA*, Table 2). A key idea of our work is therefore
to combine phase 2 and 3. The technique fits nicely with
the so called disjunctive partitioning of BDD-based search
(Clarke, Grumberg, & Peled 1999). In addition it can be ap-
plied to any heuristic function. Our experimental evaluation
of SetA* proves it a powerful search paradigm. For some
problems it dominates both A* and BDD-based breadth-
first search (see Table 2). In addition, it outperforms the
only previous BDD-based implementation of A* (BDDA*,
Edelkamp & Reffel 1998), we are aware of, with up to two
orders of magnitude (see Table 4).

The remainder of the paper is organized as follows. First
we briefly describe BDDs and BDD-based search. We then
define the SetA* algorithm and evaluate it experimentally in
a range of search and planning domains. Finally we discuss
related work and draw conclusions.

BDD-based Search
A BDD is a canonical representation of a Boolean function
with � linear ordered arguments ���	�
���������������� . It is a rooted,
directed acyclic graph with one or two terminal nodes la-
beled � or � , and a set of variable nodes � of out-degree
two. The two outgoing edges are given by the functions��������� �! and "�#%$ � �& (drawn as solid and dotted arrows).
Each variable node is associated with a propositional vari-
able in the Boolean function the BDD represents. The graph
is ordered in the sense that all paths in the graph respect the
ordering of the variables. A BDD representing the function' � � � �
� �)(*� �,+ � � is shown in Figure 1 (left). Given
an assignment of the arguments � � and � � , the value of

'
is determined by a path starting at the root node and itera-
tively following the high edge, if the associated variable is
true, and the low edge, if the associated variable is false.
The value of

'
is -/.1032 if the label of the reached terminal

node is � ; otherwise it is 4�5	"7682 . A BDD is reduced so that
no two distinct nodes � and 9 have the same variable name

1

x2

x1

1 0

x x x

(a) (b)

u v u

Figure 1: A BDD representing the function
' � � � �
� � (

� � + � � . True and false edges are drawn solid and dotted,
respectively. (a) and (b) Reductions of BDDs.

and low and high successors (Figure 1(a)), and no variable
node � has identical low and high successors (Figure 1(b)).
The BDD representation has two major advantages: first,
many functions encountered in practice have a polynomial
size. Second, any operation on two BDDs, corresponding
to a Boolean operation on the functions they represent, has a
low complexity bounded by the product of their node counts.

A search problem is a 4-tuple
� � ��� ��� ��� . �

is a set
of states. ��� �	�
� is a transition relation defining the
search graph.

��� � �� ���� iff there exists a transition lead-
ing from

�
to
��

. � is the initial state of the search while� is the set of goal states. A solution to a search problem
is a path � (��� ������� � � � where

��� (�� and
� � ��� and� ���&���� � ��� � � � ��� � �!� . Assuming that states can be encoded

as bit vectors, BDDs can be used to represent the character-
istic function of a set of states and the transition relation. To
make this clear, consider the simple search problem shown
in Figure 2. A state

�
is represented by a bit vector with two

elements "� (��� � � � � . Thus the initial state is represented
by a BDD for the expression # � � + # � � . Similarly we have� (��� + � � . To encode the transition relation, we need to
refer to current state variables and next state variables. We
adopt the usual notation in BDD literature of primed vari-
ables for the next state

� ����� � � � � � � � � � (# ��� + # � � + � � + # � �$ # � � + # � � + # � � + � �$ # � � + � � + � � + � �$ ��� + � � + � � + # � � �
The main idea in BDD-based search is to stay at the BDD
level when finding the next states of a set of states. This can
be done by computing the image of a set of states % encoded
in current state variables

Img ('&)(*"� �+% � "� + � � "� �,"� �-/.0"�21 "� 43 �
Consider the first step of the search from � in the example
domain. We have % �)� � � � �8 (5# � � + # � � . Thus,

Img (& (6"� �7# � � + # � � + � �)� � � � �%� � � � � � - .0"�21 "� 3
(& � � + # � � $ # � � + � � -,.0"�21 "� 43
(� � + # � � $ # � � + � ���

The image computation is applied for searching in forward

(0,1)

(0,0)

(1,1)

(1,0)

G

i

h=0

h=1

h=0

a

b

c

d

h=1

Figure 2: An example search problem consisting of four
states and four transitions 8 , 9 , : , and ; . The dashed lines in-
dicate the two search fringes of a BDD-based breadth-first
search from the initial state � (� �/� � to the goal states� (� � ���� � . The � -values is a heuristic function equal
to the vertical goal distance.

direction. For searching backward an analogous computa-
tion called the preimage is applied. In this section, we focus
on techniques for performing the image computation effi-
ciently, but similar techniques exist for the preimage com-
putation.

A common problem in BDD-based search is that interme-
diate BDDs in the image computation tend to be large com-
pared to the BDD representing the result. In symbolic model
checking, a range of techniques has been proposed to avoid
this problem. Among the most successful of these are transi-
tion relation partitioning. For search problems, where each
transition normally only modifies a small subset of the state
variables, the suitable partitioning technique is disjunctive
partitioning (Clarke, Grumberg, & Peled 1999). To make a
disjunctive partitioning, the part of the individual transition
expressions keeping the unmodified variables unchanged is
removed. The transition expressions are then partitioned ac-
cording to what variables they modify. For our example we
get two partitions<

� (# � � + # � � + � � $ # � � + � � + � �= � (�)��� <
� (# ��� + # � � + � � $ ��� + � � + # � �= � (�)� � 1�

In addition to large space savings, disjunctive partitioning
often lowers the complexity of the image computation which
now can skip the quantification of unchanged variables and
operate on smaller expressions

Img (
> ?@>A
��� � & (= � �+%

� "� +
< � � "� � = � - . = � 1 = � 3 �

The complexity of the image computation depends on the
number of partitions. Notice that for each new partition, a
new conjunction with % � "� is introduced. For this reason
the best performance is often obtained by clustering some of
the partitions according to an upper bound on the size of the
BDD representing a partition (Burch, Clarke, & Long 1991;
Ranjan et al. 1995).

2

SetA*
SetA* is a generalization of weighted A* where the defi-
nition of

'
is changed from

' (� � � to
' (� ���� � � � ��� � � . �/�8� 3 (Pohl 1970). Similar to BDDA*,

SetA* assumes a finite search domain and unit-cost transi-
tions. SetA* expands a set of states instead of just a sin-
gle state. The main input is what we will call, an improve-
ment partitioning. That is, a disjunctive partitioning where
the transitions of a partition reduce the � -value by the same
amount. The improvement partitioning is non-trivial to com-
pute. The reason is that it may be intractable to calculate
each transition expression in turn. Fortunately large sets of
transitions are often described in more abstract terms (e.g.
by actions or guarded commands) that can be directly trans-
lated into BDDs. This allows for an implicit way to partition
a set of transitions according to their improvement. Assume
that a set of transitions are represented by a BDD � � "� �,"� .
Given a BDD � � "� � "9/ encoding the heuristic function, such
that "9 is a bit vector representation of the � -value associated
with state

�
, the set of transitions with improvement equal to�

is

� � "� � "� + � � "� �,"9 + � � "� �,"9 + "9�� "9 ("� �
The improvement partitioning is computed only once prior
to the search, and in practice it turns out that it often can be
produced directly from the description of transitions or by
splitting the disjunctive partitioning. In fact, for the heuris-
tics we have studied so far, no BDD encoding of the heuristic
function has been necessary. The improvement partitioning
may containing several partitions with similar improvement.
This may be an advantage if the partitions otherwise grow
too large.

SetA* uses two main data structures: a prioritized queue�
and a reach structure � . Each node in

�
contains a BDD

representing a set of states with particular � and � values.
The node with lowest

'
-value has highest priority. Ties are

solved by giving highest priority to the entry with lowest � -
value. An important parameter of

�
is an upper bound �

on the BDD sizes. When inserting a new node it is unioned
with an existing node in

�
with the same � and � value if

the sum of the size of their two BDDs is less than � . Other-
wise a new entry is created for the node. The reach structure
is for loop detection. � keeps track of the lowest � -value
of every reached state and is used to prune states from a set
of next states already reached with a lower � -value. The al-
gorithm is shown in Figure 3. All sets and set operations
are carried out with BDDs. SetA* takes five arguments. �
	
is the improvement partitioning described above. � � ��� and
��28�� are the initial and goal states of the search. � is the
upper bound parameter of

�
and � is the usual weight pa-

rameter of weighted A*. Initially the algorithm inserts the
initial state in

�
. Observe that the � -value of the initial state

has to be found. However since � � ��� is a single state this is
trivial. Similar to the regular A* algorithm, SetA* continues
popping the top node of the queue until the queue is either
empty or the states of the top node overlaps with the goal.
The top node is expanded by finding the image of it for each
improvement partition in turn (l.9). Before being inserted
in

�
, the new nodes are pruned for states seen at a lower

function �!2���� *
� �
	 � ���3� � � � # 5%" ��� � �

1
� � ����� � � 5	" ��� 2 � � � � �
��28��

2 ���*�
3 ��� � �
���3� ��
4

� � ��� 6 28.�� � ����� �8�
��� ��
5 � ��0��! 5"� 2 � ���3� ��� �/
6 while # � � 2�#$�%�'& � and # � ��� #(�)�*�,+ # 5%" �
7 � #(�-� � � �3#(� �
8 for . (� to / ��	�/
9

� 2(01�2� � # 5 � 2 � � #(� �(3(4 �
10 � � ��.10 � 2 �5� 2(06�

11 �7�8� #9� � � � �
12 ���8� #9� �7�:� � #$�!. � 3(4 �
13

� � ��� 6 28.�� �;� 2,06� �
��� ��
14 � ��0��! 5"� 2 �;� 2(06� � �/
15 if

� � 2�#$�%�'& � then NoPathExists
16 else � � 2(01� .�56<
�=4 5"� ���

Figure 3: The SetA* algorithm.

search depth, and the reach structure is updated (l.10-14). If
the loop was aborted due to

�
being empty no solution path

exists. Otherwise the path is extracted by applying transi-
tions backwards on the states in � from one of the reached
goal states.

SetA* is sound due to the soundness of the image com-
putation. Since no states reached by the search are pruned,
SetA* is also complete. Given an admissible heuristic and� (�/�?> , SetA* further finds optimal length paths. As for
A*, the reason is that a state on the optimal path eventually
will reach the top of

�
because states on finalized but sub-

optimal paths have higher
'

-value (Pearl 1984).
The upper bound � can be used to adjust how many states

SetA* expands. If each partition in �
	 contains a single
transition and � (� then SetA* specializes to A*. Interest-
ingly it is even a highly efficient implementation of A*. The
memory sharing of BDDs robustly scales to tens of thou-
sands of BDDs, and loop detection is still handled implic-
itly via BDDs in the � structure. For problems with many
shortest length solution paths like the DVM and Logistics
described in the next section, it may be an advantage to fo-
cus on a subset of them by choosing a low � -value. A similar
approach is used by @BAC described in (Pearl 1984)

The weight � has the usual effect. For � (�/�?> Set A* be-
haves like A*. For � (�� � it performs best-first search, and
for � (�/� � it carries out a regular breadth-first search. The
fact that � can take any value in the range . �/��� 3 is important
in practice, since it can be used to strengthen a conservative
heuristic and vice versa.

We end this section by demonstrating SetA* on our ex-
ample problem. For this demonstration we assume � (�3� >
and � (ED . The heuristic function is the vertical distance
to the goal state. In Figure 2 the states have been labeled
with � -values. We see that �
	 must contain at least three
partitions: one containing transition ; that improves by mi-
nus one, one containing 8 and : that improve by zero, and

3

one containing 9 that improves by one. Initially we have
� � (� � ' (�/�?> �
� (�3� � (�� � � �3��� 1�� ��
� � (� � � (�/� � � �3��� 1�� �� �

In the first iteration, state
� �/��� is expanded to one child

containing state
� � ��� and one child containing

� �3�8� . Ac-
cording to the improvements of the partitions, we get
� � (� � ' (�3� >/� � (�� � (�/� � � �/�8�� �% 1�� ' (�� �/�
� (� � � (�� � � � ��� 1�� ��
� � (� � � (�/� � � �/��� �% 1� � � (� � � � �/��� 1� � � ��� 1�� �� �

In the second iteration, only the : transition can fire resulting
in
� � (� � ' (� � �3� � (��/� � (�/� � � �3�8�� �� �� ' (�� �/� � (�� � (� � � � �� � �% ��
� � (� � � (�/� � � �3��� �� � � � (�� � � �3�8�� 1� � �� � �% 1�� � (��/� � � ���� �% �� �

The tie breaking rule causes the goal state to be at the top
of

�
at the beginning of the third iteration. Thus the while

loop is aborted and the solution path
� �/� � � � �3�8�� 1� � ���� is

extracted from �,� .
Experimental Evaluation

SetA* has been implemented in the UMOP multi-agent
planning framework (Jensen & Veloso 2000) to study its per-
formance characteristics relative to blind bidirectional BDD-
based breadth-first search (also implemented in UMOP) and
an A* implementation with explicit state representation and
cycle detection. In a second evaluation round we devel-
oped a domain independent STRIPS planning system called
DOP. The state encoding and heuristic function used by the
MIPS planner (Edelkamp & Helmert 2001) was reproduced
in order to conduct a fair comparison with BDDA* imple-
mented in MIPS. In addition to SetA*, two blind BDD-
based breadth-first search algorithms were implemented in
DOP, one searching forward and one searching backward.
MIPS also includes an algorithm called Pure BDDA*. Pure
BDDA* performs best-first search.

All experiments were carried out on a Linux 5.2 PC with
a 500 MHz Pentium 3 CPU, 512 KB L2 cache and 512
MB RAM. The time limit (TIME) was 600 seconds and the
memory limit (MEM) was 450 MB. For UMOP and DOP
the number allocated BDD nodes and the cache size used by
the BDD-package were hand-tuned for best performance. A
disjunctive partitioning with a minimum number of parti-
tions was applied unless otherwise noted.

Artificial Problems
Two problems IG

�
and �	� %�
��� were defined and studied

using the minimum Hamming distance to the goal states as
heuristic function (the mimimum number of different bits
between the bit vector representing the state and a goal
state). In these experiments the improvement partitioning
was computed by splitting a disjunctive partitioning using
a specialized BDD-function. Given an improvement

�
, this

SetA* A*
k #it � #it �

(sec) (sec)
1 16 0.2 16 0.13
2 16 0.2 145 0.39
3 16 0.2 514 1.26
4 16 0.2 2861 7.46
5 16 0.2 9955 29.02
6 16 0.2 24931 80.10
7 16 0.2 51098 181.77
8 16 0.2 90080 344.00
9 16 0.2 140756 579.22

10 16 0.2 - TIME
11 16 0.2 - -
12 16 0.2 - -
13 16 0.2 - -
14 16 0.2 - -
15 16 0.2 - -

Table 1: Results for the IG
�

problem. #it is the number of
iterations, and � is the total CPU time.

function traverses the BDD of an action and picks transitions
of the action improving

�
. The complexity of the function

is linear in the size of the action BDD when the goal is a
conjunction and the variable ordering interleaves current and
next state variables.

IG
�

This problem is simplest to define using the STRIPS
language (Fikes & Nilsson 1971). Thus a state is a set of
facts and an action is a triple of sets of facts. In a given state�

, an action
� ��. 2 � 51 6 &� 28" is applicable if �!.�2�� �

, and
the resulting state is

�@ (� ��� 51 6 3 ��B 2 " . The actions are
� �� � �� . (�� �������8�
� � �� . (� ������� �
�
��.�2 � ��� A%� �!.�2 � ��� A%�+� � �&�%� �!.�2 � � �
51 1 � � � ��� 56 1 � � � � � 56 1 � ��� � �
 28"6� � � 2 "*� � � 2 "6� ��� A%� �

The initial state is
��� A � and the goal state is

� � � / � � .��
� � . Only

� �� actions should be applied to reach the goal.
Applying an

� �� action in any state leads to a wild path since� A is deleted. The states on wild paths contain
� � facts. Since

any subset of
� � facts is possible, the number of states on

wild paths grows exponentially with � . The only solution is� �� �������8� � �� which is non-trivial to find, since the heuristic
gives no information to guide the search on the first

�
steps.

The purpose of the experiment is to investigate how well
SetA* copes with this situation compared to A*. For SetA*� (�/�?> and � (D . For the IG

�
problems considered, �

equals 16. This corresponds to a state space size of ����� . The
results are shown in Table 1.

The experiment shows a fast degradation of A*’s per-
formance with the number of unguided steps. A* gets lost
expanding an exponentially growing set of states on wild
paths. SetA* is hardly affected by the lack of guidance. The
reason is that all transitions on the unguided part improve
by zero. Thus on this part, SetA* performs a regular
BDD-based breadth-first search, which due to the structure

4

0

1

2

3

4

5

6

Figure 4: The initial state of � � % ��� �
.

of the problem scales well.

�������	��

In this domain a set of sliders are moved be-

tween the corner positions of hypercubes. In any state, a
corner position can be occupied by at most one slider. The
dimension of the hypercubes is � . There are sliders of
which � are moving on the same cube. The remaining $� �
sliders are moving on individual cubes. Figure 4 shows the
initial state of � � % ��� �

. When � (� all sliders are mov-
ing on the same cube. If further � (�
�� � all corners of
the cube except one will be occupied. In this form, DVM is
a permutation problem similar to the 15puzzle and Rubik’s
Cube. We choose to investigate DVM instead of these well-
known problems because it has a direct Boolean encoding.
In this way, the complexity of the problem is solely caused
by the interaction between sliders, allowing us to adjust the
dependency of sliders linearly with the � parameter. For the
15puzzle and Rubik’s Cube there would be two sources of
complexity. One due to the interaction between objects and
one due to the physical constraints of the puzzles.

The purpose of the first experiment is to investigate how
SetA* degrades when the dependency of the domain is in-
creased and to compare its performance to A* and BDD-
based breadth-first search. In this experiment we study the
� �/%���� � � problem. For all experiments the size of the state
space is ��� � . We also show the results of PreSetA*, a pre-
mature version of SetA* finding the next states and splitting
them in two separate phases. Both versions of SetA* were
run with � (�3� > and � (�	� � . In this experiment an upper
bound of 1000 on the size of the disjunctive partition BDDs
was chosen. The results are shown in Table 2.

The upper bound on the partitions is crucial for large val-
ues of � . Despite applying this technique, BDD-based bidi-
rectional search does not scale due to a blow-up of the search
fringe in both directions. A* works well when � is small
since

'
is a perfect or near perfect discriminator. How-

ever when the quality of the heuristic degrades A* gets lost
tracking equally promissing paths. The good performance
of SetA* is due to the low upper bound of the size of BDDs
in the search queue. It focuses the search on a reasonable
subset of the paths. Interestingly the search time is very low
even for the hardest problems. Time and memory are spent
on building and splitting the transition relation. Separating
the next state computation and the splitting as done by the
earlier version of SetA*, seems to come with a large perfor-
mance penalty.

In the second experiment we measure the performance of
SetA* for increasing upper bounds (�) of the size of BDDs

u #it � ��� ���
(sec) (sec) (sec)

100 73 7.4 3.3 1.3
200 34 6.8 3.3 0.7
400 34 7.3 3.3 1.1
800 52 8.3 3.3 2.2

1600 51 10.1 3.3 4.0
3200 49 14.1 3.3 8.0
6400 49 24.4 3.3 17.7

12800 45 47.5 3.3 39.6
25600 42 110.4 3.3 102.8
51200 34 474.4 3.3 466.8

Table 3: Upper bound results for SetA* on the ����%���� � �
problem. � is the upper bound, #it is the number of itera-
tions, � is the total CPU time, � � is the time used to generate
the improvement partitioning, and � � is time used on search.

in the search queue. The results are shown in Table 3 and
were obtained for the ����%���� � � problem using the same
disjunctive partitioning as in the previous experiment.

As depicted the performance degrades substantially for
large values of � . The problem is that the sets of most
promising states is large and have no compact BDD repre-
sentation. By choosing a low � -value we focus on a subset
of the most promising states in each iteration. As long as the
problem has many solution paths this approach may work
well. For ����%���� � � this is reasonable to assume, since
the sliders still are fairly independent. For highly dependent
problems, however, a low � -value may lead to SetA* getting
lost on wild paths.

Planning Problems
Like MIPS, the DOP planning system uses an approximation
to the HSPr heuristic (Bonet & Geffner 1999) for STRIPS
domains. In addition, it performs similar analysis to mini-
mize the state encoding length. HSPr is an efficient but non-
admissible heuristic. We approximate it by summing the
depth ; � ' of each fact in a state given by a relaxed forward
breadth-first search. The heuristic is applied in a backward
search from the goal states to the initial state. For any ac-
tion

� ��.�2 ��51 6 !�� 2 " leading from
�

to
�

(when applied in
forward direction), we assume

 28" � ��. 2���� � 56 1 "!� ��.�2 �
Since the search is backward the improvement of the action
is
� #$�!. (� � � � � � �

(� � � $# � �!.�2 � 56 1 �
 � � � � # � ��.�2 � 51 6 3

(%&�'	(*)*),+.- ; � ' �/%&�')*021 ; � ' �

Thus the improvement of an action can be computed without
any BDD-based encoding of the heuristic function. Each
action is partitioned in up to � > 354*4�> sets of transitions with
different improvement.

5

SetA* PreSetA* A* BiDir
x #it � #it � #it � #it �

(sec) (sec) (sec) (sec)
1 34 0.6 34 0.8 34 1.1 34 0.7
2 34 0.7 34 0.9 34 1.1 34 0.7
3 34 0.6 34 1.4 34 1.1 34 1.6
4 34 0.6 34 1.5 34 1.1 34 8.1
5 34 0.6 34 3.5 34 1.0 34 334.0
6 34 0.8 34 14.4 - TIME - TIME
7 34 1.3 34 39.8 - TIME - TIME
8 34 2.1 34 50.7 - TIME - TIME
9 94 6.8 34 202.6 - TIME - TIME

10 58 16.3 34 297.2 - TIME - TIME
11 34 39.3 - TIME - TIME - TIME
12 - MEM - TIME - TIME - TIME

Table 2: Results for the �	� %���� � � problem. #it is the number of iterations, and � is the total CPU time.

The problems we consider, are Gripper from the STRIPS
track of the AIPS-98 planning competition (Long 2000) and
Logistics from the first round of the STRIPS track of the
AIPS-00 planning competition (Bacchus 2001). The pur-
pose of these experiments is to compare the performance of
SetA* and BDDA*, not to solve the problems particularly
fast. In that case, a more informative heuristic like the FF
heuristic (Hoffmann 2001) should be applied.

Gripper This domain considers a robot with two grip-
pers moving an increasing number of balls between two
connected rooms. The first experiment compares forward
BDD-based breadth-first search, SetA* with � (�� � and
� (D , backward BDD-based breadth-first search, pure
BDDA*, and BDDA*. Recall that Pure BDDA* performs
best-first search like SetA* with � (�� � . The results are
shown in Table 4.

This domain is efficiently solved using blind BDD-based
breadth-first search. The reason is that the search fringe
grows only polynomially with the search depth. As is often
observed both for planning and model checking problems,
the best performance is obtained when searching forward.
The performance of SetA* is almost as good as forward
search even though, this algorithm relies on the slower back-
ward expansion. BDDA* spends considerable time prior to
search computing BDD formulas for arithmetic operations.
During search the fringe expansion of BDDA* seems to de-
grade fast with the size of the fringe. Pure BDDA* on the
other hand successfully completes a large number of itera-
tions due to a lower growth rate of the fringe. All algorithms
find shortest plans.

The second experiment shows the impact of the weight
setting in problem 20. The results are shown in Table 5.
Since the problem can be solved efficiently by blind BDD-
based breadth-first search, it is not surprising that the weight
setting turns out to be less important for the performance of
SetA*.

Logistics This domain considers moving packages with
trucks between sub-cities and with airplanes between cities.
In the first experiment SetA* was run with � (� � � and

w #it / � / � ���
(sec) (sec)

0.0 360 125 7.6 4.6
0.1 358 125 7.7 4.5
0.2 354 125 7.9 4.7
0.3 347 125 8.0 4.7
0.4 338 125 8.0 4.8
0.5 373 125 9.2 5.9
0.6 204 125 6.1 2.9
0.7 204 125 6.1 3.0
0.8 204 125 6.2 3.0
0.9 204 125 6.2 3.2
1.0 204 125 5.9 2.9

Table 5: Results of the second Gripper experiment. � is
the weight, / � / is the solution length, #it is the number of
iterations, � is the total CPU time, and � � is time used on
search.

� (�	� � . The upper bound of the size of partitions in the
disjunctive partitioning was 400. The results are shown in
Table 6.

Due to the fact that there are no resource constraints in the
Logistics domain, and thus no conflicts between subgoals,
the HSPr heuristic is quite efficient. Both SetA* and Pure
BDDA* search fast in this domain. However, Pure BDDA*
and BDDA* have a significant overhead due to their precom-
putation of arithmetic formulas. For SetA* the upper bound
on the size of the partitions in the disjunctive partitioning is
crucial for the larger Logistics problems. In addition the up-
per bound on the size of BDDs in the search queue speeds up
SetA* on the last five problems. The search fringe for blind
BDD-based search blows up in both directions. The plans of
SetA* are slightly longer than Pure BDDA*. The plans of
BDDA* are shorter than both SetA* and Pure BDDA*, but
only BDD-based breadth-first search finds optimal length
plans.

The second experiment was carried out on problem 7 of
the Logistics domain. In this experiment SetA* was run with

6

Forward SetA* Backward Pure BDDA* BDDA*
#p / � / � #it � ��� � #it � ��� #it � ���

(sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)
1 � � � 0.1 14 0.1 0.0 0.1 22 3.0 0.0 14 2.8 0.0
2 � � � 0.1 24 0.1 0.0 0.1 62 4.0 0.1 22 3.9 0.1
3 � � � 0.2 34 0.2 0.1 0.3 138 5.5 0.5 30 5.3 0.4
4 � � � 0.2 44 0.3 0.1 0.6 250 8.0 1.8 38 7.1 1.2
5 � � � 0.3 54 0.5 0.1 1.0 398 12.9 5.5 46 10.3 3.2
6 �� � 0.4 64 0.6 0.2 1.4 582 22.4 13.6 54 15.4 7.0
7 �� � 0.6 74 0.7 0.2 2.1 802 40.4 29.5 62 25.2 15.5
8 ��.� 0.9 84 1.0 0.4 2.9 1058 72.5 59.4 70 47.1 36.2
9 � � � 1.0 94 1.2 0.4 4.1 1350 137.4 120.7 78 123.5 111.8

10 ��� � 1.2 104 1.4 0.5 5.3 1678 317.2 295.8 - TIME -
11 � � � 1.4 114 1.7 0.7 7.1 - TIME - - TIME -
12 � �.� 1.7 124 2.0 0.8 9.1 - TIME - - TIME -
13 � � � 2.0 134 2.3 1.0 13.0 - TIME - - TIME -
14 ����� 2.2 144 2.7 1.2 17.2 - TIME - - TIME -
15 ��� � 2.7 154 3.1 1.4 16.4 - TIME - - TIME -
16 � � � 3.5 164 3.5 1.6 19.7 - TIME - - TIME -
17 � � � 3.4 174 4.0 1.9 23.1 - TIME - - TIME -
18 � � � 3.9 184 4.9 2.3 27.5 - TIME - - TIME -
19 � � � 4.5 194 5.1 2.6 32.4 - TIME - - TIME -
20 � � �

5.0 204 5.8 3.0 37.2 - TIME - - TIME -

Table 4: Results of the first Gripper experiment. #p is the problem number, / � / is the size of the state space, #it is the number
of iterations, � is the total CPU time, and � � is time used on search.

SetA* Pure BDDA* Forward BDDA*
#p / � / #it /

<
/ � � � #it /

<
/ � � � /

<
/ � #it /

<
/ � � �

(sec) (sec) (sec) (sec) (sec) (sec) (sec)
4 � �1� 21 21 0.2 0.1 22 22 6.5 0.0 20 0.3 54 22 7.7 1.2
5 � �1� 33 33 0.3 0.1 30 30 6.7 0.1 27 0.5 65 28 9.5 2.7
6 � �1� 31 31 0.3 0.1 30 30 6.7 0.1 25 0.4 64 26 8.4 1.6
7 � � � 46 44 0.9 0.3 44 42 13.9 0.3 36 99.0 - - TIME -
8 � � � 41 40 1.0 0.3 36 36 14.1 0.2 31 59.5 94 32 138.5 118.5
9 � � � 48 46 0.9 0.2 46 45 14.0 0.3 36 100.0 102 38 132.6 115.8

10 � � � 66 56 2.5 1.1 54 51 25.1 1.1 - MEM - - TIME -
11 � � � 71 61 2.2 0.7 62 60 25.2 1.2 - - - - TIME -
12 � � � 60 54 2.0 0.6 52 49 24.9 0.8 - - - - TIME -
13 � � � 154 94 8.5 5.0 96 94 57.5 6.5 - - - - TIME -
14 � � � 127 78 7.7 3.9 70 65 56.7 8.3 - - - - TIME -
15 � � � 140 96 7.3 3.2 92 91 53.9 5.5 - - - - TIME -

Table 6: Results of the first Logistics experiment. #p is the problem number, / � / is the size of the state space, #it is the number
of iterations, /

<
/ is the plan length, � is the total CPU time, and � � is time used on search.

7

w #it / � / � ���
(sec) (sec)

0.0 279 25 8.6 7.9
0.1 248 25 9.0 8.3
0.2 203 25 8.9 8.1
0.3 154 25 7.9 7.1
0.4 102 25 4.7 4.0
0.5 180 27 2.3 1.6
0.6 49 29 0.9 0.1
0.7 31 31 0.8 0.1
0.8 31 31 0.8 0.1
0.9 31 31 0.8 0.1
1.0 31 31 0.9 0.1

Table 7: Results of the second Logistics experiment. � is
the weight, / � / is the solution length, #it is the number of
iterations, � is the total CPU time, and � � is time used on
search.

� (D . The results are shown in Table 7. As depicted HSPr
is a good heuristic for this domain increasing the speed sig-
nificantly while preserving a relative high solution quality.
Notice that the relaxation of the upper bound does not affect
the performance of SetA for this problem.

Related Work
Directed BDD-based search has received little attention in
symbolic model checking. The reason is that the main ap-
plication of BDDs in this field is verification where all reach-
able states must be explored. For Computation Tree Logic
(CTL) checking, guiding techniques have been proposed to
avoid a blow-up of intermediate BDDs (Bloem, Ravi, &
Somenzi 2000). However these techniques are not appli-
cable to search since they are based on defining lower and
upper bounds on the fixed-point. Directed search techniques
are relevant for falsification where the goal is to find a state
not satisfying an invariant. The first work on BDD-based
directed search, we are aware of, was for this application
(Yang & Dill 1998). The proposed algorithm is a simple
best-first search where the search fringe is partitioned with
a specialized BDD-operator according to the Hamming dis-
tance to the goal state. Even though this operation is fairly
efficient for the Hamming distance, it is not obvious how to
define it in general.

As far as we know, the only previous BDD-based im-
plementation of A* is BDDA*. BDDA* can use a general
heuristic function and has been applied to planning as well
as model checking. Similar to SetA*, it assumes unit-cost
transitions and Boolean encoding of states. In contrast to
SetA*, however, BDDA* requires arithmetic operations at
the BDD level during search and includes no tools to con-
trol the growth of the search fringe or for cycle detection. In
addition BDDA* is non-trivial to generalize to weighted A*.

The search queue in BDDA* is represented by a BDD� �/2 � ��� � ' that associates each state
�

in the queue with
its

'
-value. Given a BDD encoding of the heuristic func-

tion � �)� ��9� and a BDD encoding of the set of states with
minimum

'
-value � ��� �)� , BDDA* expands all states with

minimum
'

-value by computing� �32 � �)� � ' � (� ��� ��� ��� + � �)� � � +(�� � � ��� ��� + (�� � � �)� ���% +� ' ('	��
� � � ��� � � �
Since the BDDs representing the heuristic function and the
transition relation often are large, a naive implementation of
this computation would be very slow. The MIPS implemen-
tation of BDDA* seems to use another strategy where the
largest possible subset of the computations are carried out
prior to the search. However this strategy has not been de-
scribed in the literature and as indicated by our experiments,
it still leads to substantial performance degradation.

Conclusion and Outlook
In this paper, we have combined BDD-based search and
heuristic search into a new search paradigm. The experimen-
tal evaluation of SetA* proves it a powerful algorithm often
several orders of magnitude faster than BDD-based breadth-
first search and A*. Today planning problems are efficiently
solved by heuristic single-state search algorithms. However
as recently noticed, the success may be due to an inherent
simplicity of the benchmark domains when using the right
heuristics (Hoffmann 2001). For less domain-tuned heuris-
tics, we believe that the ability of SetA* to explore an expo-
nential growing set of paths in polynomial time is essential.
Our ongoing research includes identifying such problems
and comparing the performance of SetA* and single-state
search algorithms.

Acknowledgments
This research is sponsored in part by the United States Air Force
under Grants Nos F30602-00-2-0549 and F30602-98-2-0135. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of the Defense Advanced Research Projects Agency (DARPA), the
Air Force, or the US Government.

References
Bacchus, F. 2001. AIPS’00 planning competition : The
fifth international conference on artificial intelligence plan-
ning and scheduling systems. AI Magazine 22(3):47–56.
Bloem, R.; Ravi, K.; and Somenzi, F. 2000. Symbolic
guided search for CTL model checking. In Proceedings of
the 37th Design Automation Conference (DAC’00), 29–34.
ACM.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proceedings of the European Con-
ference on Planning (ECP-99). Springer.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
8:677–691.
Burch, J.; Clarke, E.; and Long, D. 1991. Symbolic model
checking with partitioned transition relations. In Interna-
tional Conference on Very Large Scale Integration, 49–58.
North-Holland.

8

Cimatti, A.; Giunchiglia, E.; Giunchiglia, F.; and Traverso,
P. 1997. Planning via model checking: A decision proce-
dure for

���
. In Proceedings of the 4th European Confer-

ence on Planning (ECP’97), 130–142. Springer.
Clarke, E.; Grumberg, O.; and Peled, D. 1999. Model
Checking. MIT Press.
Edelkamp, S., and Helmert, M. 2001. MIPS the
model-checking integrated planning system. AI Magazine
22(3):67–71.
Edelkamp, S., and Reffel, F. 1998. OBDDs in heuristic
search. In Proceedings of the 22nd Annual German Con-
ference on Advances in Artificial Intelligence (KI-98), 81–
92. Springer.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A
formal basis for heuristic determination of minimum path
cost. IEEE Transactions on SSC 100(4).
Hoffmann, J. 2001. Local search topology in planning
benchmarks: An empirical analysis. In Proceedings of
the 17th International Joint Conference on Artificial Intel-
ligence (IJCAI-01), 453–458. Morgan Kaufmann.
Jensen, R., and Veloso, M. M. 2000. OBDD-based univer-
sal planning for synchronized agents in non-deterministic
domains. Journal of Artificial Intelligence Research
13:189–226.
Long, D. 2000. The AIPS-98 planning competition. AI
Magazine 21(2):13–34.
McMillan, K. L. 1993. Symbolic Model Checking. Kluwer
Academic Publ.
Pearl, J. 1984. Heuristics : Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley.
Pohl, I. 1970. First results on the effect of error in heuristic
search. Machine Intelligence 5:127–140.
Ranjan, R. K.; Aziz, A.; Brayton, R. K.; Plessier, B.; and
Pixley, C. 1995. Efficient BDD algorithms for FSM syn-
thesis and verification. In IEEE/ACM Proceedings of the
International Workshop on Logic Synthesis.
Yang, C. H., and Dill, D. L. 1998. Validation with guided
search of the state space. In Proceedings of the 35th Design
Automation Conference (DAC’98), 599–604. ACM.

9

