
Searching for Technical Debt – An Empirical,
Exploratory, and Descriptive Case Study

Rolf-Helge Pfeiffer
IT University of Copenhagen

Copenhagen, Denmark
ropf@itu.dk

Abstract—Commonly, Technical Debt (TD) is used as metaphor
to describe “technical compromises that are expedient in the short
term, but that create a technical context that increases complexity
and cost in the long term” [1]. Since TD is a metaphor, there
does not exist a uniform understanding of what concretely such
“technical compromises” are. Practitioners, researchers, and tools
all subsume and consider widely different concepts as TD. In
this paper, we set out to empirically and exploratorily, identify
potential “technical compromises” that increase cost and complex-
ity of modifications of two open-source database systems (Apache
Cassandra and GCHQ Gaffer). In a manual investigation of 217
commits that are associated to 40 of the most costly and complex
issues, we find that refactorings in the sense of Ur-TD [2] are
often related to high complexity of modifications and that high
cost is due to organization and coordination of work. Other than
that, we cannot identify any “technical compromises” that can
explain high cost and complexity of the studied contributions.

I. INTRODUCTION

In 1992, Cunningham describes the iterative development
of the financial system WyCash and introduces the Technical
Debt (TD) metaphor: “Shipping first time code is like going
into debt. A little debt speeds development so long as it
is paid back promptly with a rewrite.” [3]. Since then, the
metaphor has attracted a lot of attention leading to many
different interpretations on what TD actually is. For example,
practitioners consider TD anything from “a metaphor for the
accumulation of unresolved issues in a software project” [4],
“the difference between what was promised and what was
actually delivered”1, over “hard-to-read code, lack of test
automation, duplication, tangled dependencies, etc.”2, to “de-
layed technical work that is incurred when technical shortcuts
are taken” [5]. Tools, such as, SonarQube with the underlying
Squale model or CAST AIP, consider TD to be mainly code
smells or other structural patterns that can be detected via static
analysis [6], [7]. Also researchers present various definitions of
TD, e.g., as “. . . the invisible results of past decisions about
software that affect its future” [8], “those internal software
development tasks chosen to be delayed, but that run a risk of
causing future problems if not done eventually” [9], or as “a
metaphor, referring to the eventual financial consequences of
trade-offs between shrinking product time to market and poorly
specifying, or implementing a software product, throughout all
development phases” [10].

This lack of common understanding of TD and its sources
is confirmed by research [11]–[13]. Countering that con-
ceptual fragmentation, the participants of Dagstuhl Seminar

16162 observe that the “software engineering community is
converging on defining technical debt as making technical
compromises that are expedient in the short term, but that
create a technical context that increases complexity and cost
in the long term” [1]. Since it is not defined what such
technical compromises (TCs) precisely are –they are only
generally described as certain “design or implementation
constructs”–, our goal in this paper is to identify concrete
instances of TCs that are constitutional for TD. That is, we
take the definition of TD [1] literally and apply it in our
empirical and exploratory study of two open-source database
systems (Apache Cassandra and GCHQ Gaffer). The driving
research question for our work is: Can we identify technical
compromises that cause work to be most costly and complex?

After introducing two case systems (Sec. II), we manually
inspect 40 of the most complex and costly contributions
from these two systems (Sec. III). We conclude (Sec. V),
finding that developers actually pay back TD in the sense
of Cunningham’s intended meaning of TD (now called Ur-
TD [2]), i.e., refactorings to adapt systems to new mental
models and use cases. Other than that, we cannot identify
any TCs that can explain increased cost and complexity of the
studied contributions.

The main contribution of this paper is the empirical case
study, in which we attempt to distill TC (and thereby TD)
out of costly and complex development work (tickets with
associated commits). We are not aware of a similar study. A
reproduction kit with all code and data is available online3.

II. BACKGROUND

1) Terminology: Software projects often organize work
via issue trackers, such as, Atlassian’s Jira. Work items in
issue trackers are called tickets or issues; we use both terms
synonymously. Issues can contain descriptions of any task,
e.g., enhancements, new features, bugs, etc. Amongst others,
tickets can be created and closed or resolved (we use the
latter two synonymously). Tickets can be resolved without
any modification of software, e.g., unwanted features or not
reproducible bugs are marked as won’t fix (or similar) and
the respective issue is closed without a modification of the
respective software. Alternatively, tickets are resolved via work
that modifies the respective software via one or more commits
to the project’s Version Control System (VCS). We call one
or more commits that resolve a ticket a contribution. Usually,

commits refer to a corresponding ticket via a ticket identifier
in the commit message. The lead time of a contribution [14] is
the difference of ticket closing time and ticket creation time.

In the body of this paper, we are relying the definition of TD
as “technical compromises that are expedient in the short term,
but that create a technical context that increases complexity
and cost in the long term” [1]. Since not further specified by
the authors, we use the term complexity similar to Basili [15],
to denote the difficulty of contributing and integrating work
into existing software, the Contribution Complexity (CC) [16].
We consider cost to be the lead time of contributions.

Note, we use the term refactoring not only for behavior-
preserving code transformations but to describe any work that
tries to improve maintainability, understandability, etc. [17].

2) Case Systems: Due to limited resources and space,
we decide a priori to study only two open-source Database
Management Systems (DBMSs). Gaffer is a large-scale entity
and relation DBMS4 (graph database), which is created mainly
by the British Government Communications Headquarters
(GCHQ). Since 2015 it is an open-source project. Its sources
are available on Github5, and the project uses Github’s issue
tracker6. Originally developed by Facebook [18], Apache
Cassandra7 is an open-source, distributed, wide-column store,
NoSQL DBMS. In 2008 it was open-sourced and since 2010
it is an Apache top level project. The project uses Jira8 as
issue tracker and its sources are available on Github9. Both
systems are written mainly in Java and both are under Apache-
2.0 license.

III. RQ: CAN WE IDENTIFY TECHNICAL COMPROMISES
THAT CAUSE WORK TO BE MOST COSTLY AND COMPLEX?

In this section, we try to identify TCs that may cause
contributions to take long or to be complex.

1) Method: We export all tickets, ticket identifiers, creation
and closing times, etc., from the projects’ issue trackers
and store them as CSV files. For all closed tickets with
contribution, we compute the lead time (tlead) as the difference
between ticket closing and creation time.

We identify contributions by mapping commits to respective
issues via string references in commit messages. For example,
commits refer to tickets via strings matching the regular
expressions (Gh |gh-)\d+(|$) or CASSANDRA-\d+(|$) in
Gaffer and Cassandra respectively.

For all resolved issues, we compute the contribution com-
plexity with the ConCom tool [16], which maps complexities
of contributions to a score labeled low, moderate, medium,
elevated, or high. Inspired by Basili [15], CC is a metric
that indicates, how difficult it is for a developer to modify
existing software with a given contribution. The metric com-
bines size-based and entropy-based metrics to assess the size
and dispersion of changes (change scattering within files and
across methods) and thereby the complexity of contributing
and integrating a change to a system.

There are 7,877 and 821 resolved tickets with contribution
for Cassandra and Gaffer respectively. Average lead times
for Cassandra are ca. 61.9d (min ≈ 2min, max ≈ 2 320d,

std ≈ 156.6d, median ≈ 9.3d) Cassandra and ca. 38.9d
(min ≈ 6min, max ≈ 1 399d, std ≈ 120.3d, median ≈
7.2d) for Gaffer.

From all closed issues with contributions (filtered for out-
liers with 1.5 × IQR rule) [19], which excludes those lead
times larger than 1.5 times the interquartile range of the 0.25
and 0.75 quantiles, we select the ten issues with longest lead
times from Cassandra and Gaffer respectively. Furthermore,
we select ten of the most complex (CC) issues from both
systems respectively. That is, we select all issues with high CC
score (five from Cassandra and three from Gaffer) and we
randomly sample five issues with elevated CC from Cassandra

and seven from Gaffer. The 40 selected issues with links
to issue trackers and links to the corresponding commits
are automatically converted into a Jupyter notebook, which
serves as protocol during manual inspection of contributions.
During inspection, we first read each of the 40 tickets with
associated discussions and thereafter, we examine each of
the 217 associated commits on Github directly. We map
each contribution to a kind of change to be able to coarsely
indicate the purpose of a contribution. We use the four change
types corrective (Cor), preventive (Prv), adaptive (Adp), and
perfective (Prf) change from ISO/IEC 14764 [20] for catego-
rization. Corrective changes address errors and faults in the
software, preventive changes increase its understanding and
maintainability, adaptive changes adapt software to changing
environments, and perfective changes introduce new features
and adapt it to evolving requirements.

We have no a priori list of precise “design or implementa-
tion constructs” that are TCs [1]. Our goal is to exploratively
identify these. This open-ended process is inspired by Guo et
al. [21], who let developers identify underspecified TD items,
where in our case the main author performs identification of
TC. Essentially, we try to identify TCs similar to Kitchenham’s
transcendental view of software quality [22], that equates
quality to “something that can be recognized but not defined”.
During identification, we note our observations in our protocol,
decide on the kind of change, and finally, we decide for each
contribution if cost or complexity is caused by TCs that have
to be circumvented.

2) Results: The left-hand side of Tab. I lists the 20 most
costly tickets that are resolved with contributions, 10 for
Gaffer and Cassandra respectively. To the right-hand side, the
20 tickets that are resolved with most complex contributions
are listed. The full protocol with results is accessible online10.

In Gaffer, issues with longest lead times are closed after
65 to 71 days, which is almost twice the average lead time.
These issues are of low, normal, or high priority (prior.),
where GH-2024 does not have a priority assigned (n/a). Most
contributions to these issues are perfective changes (Prf), i.e.,
new features, such as, GH-139, which adds Python scripting
support to the database or GH-2145, which adds a feature to
return partial walks from the underlying graph. GH-259 and GH-

1826 are corrective changes (bug fixes), where the former fixes
a link in Javadoc and the latter fixes a serialization bug caused
by a dependency. The preventive change GH-516 adds a new

https://issues.apache.org/jira/projects/CASSANDRA
https://github.com/gchq/Gaffer/issues/2024
https://github.com/gchq/Gaffer/issues/139
https://github.com/gchq/Gaffer/issues/2145
https://github.com/gchq/Gaffer/issues/259
https://github.com/gchq/Gaffer/issues/1826
https://github.com/gchq/Gaffer/issues/1826
https://github.com/gchq/Gaffer/issues/516

Table I
THE 40 MOST COSTLY AND MOST COMPLEX CONTRIBUTIONS WITH MANUALLY IDENTIFIED KIND OF CHANGE AND TECHNICAL COMPROMISES (TCS).

Most costly (tlead) Most complex (Contribution Complexity (CC))

Gaffer Cassandra Gaffer Cassandra
Issue tlead CC prior. kind TC Issue tlead CC prior. kind TC Issue tlead CC prior. kind TC Issue tlead CC prior. kind TC

GH-2145 71d low high Prf 7 CAS-2691 113d low norm. Prf 7 GH-1884 14d high n/a Cor/Prf 7 CAS-15066 79d high high Prf 7
GH-1099 70d elev. norm. Prf 7 CAS-8290 113d low low Cor 7 GH-776 35d high norm. Prf 7 CAS-13304 544d high urgent Prv/Prf 7
GH-139 70d inter. high Prf 7 CAS-13760 113d low low Prf 7 GH-538 302d high norm. Prf 7 CAS-9705 21d high norm. Prv 7
GH-516 69d inter. low Prv 7 CAS-10625 112d low low Cor 7 GH-375 49d elev. high Cor 7 CAS-9459 91d high norm. Prv 7
GH-2024 69d inter. n/a Prf 7 CAS-11464 112d low norm. Cor 7 GH-720 4d elev. high Prf 7 CAS-8099 322d high norm. Prv 7
GH-234 68d inter. high Prf 7 CAS-5074 112d low low Prf 7 GH-677 20d elev. norm. Prv 7 CAS-11383 6d elev. norm. Cor 7
GH-254 68d inter. low Prf 7 CAS-5695 112d inter. low Prf 7 GH-1564 82d elev. critical Adp 7 CAS-14772 63d elev. norm. Cor/Prf/Prv 7
GH-259 68d low low Cor 7 CAS-13119 112d low urgent Cor 7 GH-1099 22d elev. norm. Prf 7 CAS-2412 320d elev. low Adp 7
GH-306 67d elev. norm. Prf 7 CAS-11127 112d inter. norm. Cor 7 GH-822 34d elev. norm. Prf 7 CAS-5062 5d elev. norm. Prf 7
GH-1826 65d low high Cor 7 CAS-11152 112d low norm. Cor 7 GH-855 92d elev. n/a Cor 7 CAS-7920 264d elev. norm. Prf 7

example to Gaffer’s user guide. For Cassandra, most costly
issues have lead times of 112/113 days, which is also almost
twice the average lead time. These issues are mostly of low
and normal priority, only CAS-13119 is of priority urgent. Most
long lasting contributions to Cassandra are corrective changes,
e.g., CAS-8290, which fixes failing system start due to erroneous
log file handling, or CAS-10625, which fixes a bug that prevents
large dates from being read from the database.

Remember, the most complex issues in Tab. I, are not
filtered for lead time outliers. Consequently, multiple lead
times of the most complex contributions are bigger than
those of the most costly issues. For both systems, there are
contributions that implement more than a single change type,
e.g., GH-1884, CAS-13304, and CAS-14772 fix bugs, refactor, or
implement new features in one contribution. Note, the issues
with highest CC in Tab. I have a quite wide spread of lead
times ranging from 14 to 302 days in Gaffer and from 21 to
544 days in Cassandra.

3) Analysis: Many of the contributions of long lasting
issues are small. The many low and intermediate CC scores
indicate small and concise changes. For example, a) commit
6c5ea1 resolves CAS-13119 (tlead ≈ 112d) by adding a single
truth value as argument to a method call, which fixes a bug in
a test. The issue is created on Jan. 11th 2017 together with a
fix but it is first reviewed on May 3rd. b) Commit 4008e9 adds
an extra parameter to a method call, which fixes inconsistent
behavior between different versions of the database’s query
language (CAS-11152, tlead ≈ 112d). The issue is created on
Feb. 10th 2016 together with a fix but it is first reviewed on
May 31st. c) Commits 2f1d6c and 021df0 remove a link in Javadoc
to resolve GH-259 (tlead ≈ 68d). The issue is created on Jun.
10th 2016, the first commits are from Aug. 16th, and a day
later the issue is closed after review.

More complex contributions with long lead times follow
similar distributions of work activity. For example, 27 commits
add support for visibilities to Gaffer’s Parquet store (GH-

1099, created on Jul. 26th 2017). It is a non-trivial feature,
since the concept of visibility depends on the concept of
authorizations, both of which have to be implemented with
corresponding tests. The commit that introduces most of the
new functionality (2611e5) is a refactoring that decouples two
packages by moving code across them. Subsequently, the new
feature evolves into its final form, mainly via code structure

reorganization (f37ed3, 2089f5), a rename refactoring (ea3223),
addition and modification of tests (11c1a7, 36a682, bc85d1, 1fafec),
etc. The first commit of the contribution is from Sep. 4th 2017,
most development happens between Sep. 6th to 14th, and after
review (Sep. 19th), the contribution is merged to the main
branch and the ticket is closed on Oct. 4th.

For none of the issues with longest lead times, we can
identify TCs as a cause. Long lead times appear to be caused
mainly by the way work is organized and coordinated, see the
long periods of inactivity illustrated above.

Two of the most complex contributions are, e.g., CAS-8099

and GH-538. All the complex contributions (Tab. I to the right)
that we examine, follow a similar pattern: A bigger change
that addresses the core of the issue is accompanied by many
smaller changes that integrate the solution into its environment
or that evolve it into a final state. Due to constrained space,
we illustrate this only for GH-538 and CAS-8099.

Ticket GH-538 requires implementation of a second –more
RESTful– web-API besides the current one. The contribution
that resolves the issue consists of 32 commits, which introduce
the new feature and refactor the previous API accordingly. The
first commit (d025bb) introduces a major share of the code of
the new API, where much seems to be generated by the API
development tool Swagger. The initial commit is followed by
many smaller changes, which add and adapt tests (e.g., 57f987,
02e127), adapt code styling (5c31a1), adapt configuration files
(d06236, 9794e6), rename methods and classes and adjust imports
(cf25a2, 9fc35d, 13e5b2), remove unnecessary code (418a73), add
new examples (07d883), integrate results from code reviews
(01884a, 9f9c66), or clean up code (e.g., 73bd96, 2e4546).

The work in this contribution is not complex due to a TC in
the original web-API. It is complex due to the size of the new
API and that it has to be integrated and harmonized with the
existing solution. Alone the many tests for the new API and
those that have to be adapted to accommodate two versions
of an API render the contribution complex.

A large scale refactoring of Cassandra’s storage engine
(CAS-8099, created Oct. 10th 2014, resolved Aug. 28th 2015)
is realized by one of the most complex contributions (a991b6).
The author explains in a guide to the refactoring (832459) and
in a blog post11 that the original storage engine was processing
tables as maps of ordered maps of binary data (illustrated
as Map<byte[], SortedMap<byte[], Cell>>), where the byte

https://github.com/gchq/Gaffer/issues/2145
https://issues.apache.org/jira/browse/CASSANDRA-2691
https://github.com/gchq/Gaffer/issues/1884
https://issues.apache.org/jira/browse/CASSANDRA-15066
https://github.com/gchq/Gaffer/issues/1099
https://issues.apache.org/jira/browse/CASSANDRA-8290
https://github.com/gchq/Gaffer/issues/776
https://issues.apache.org/jira/browse/CASSANDRA-13304
https://github.com/gchq/Gaffer/issues/139
https://issues.apache.org/jira/browse/CASSANDRA-13760
https://github.com/gchq/Gaffer/issues/538
https://issues.apache.org/jira/browse/CASSANDRA-9705
https://github.com/gchq/Gaffer/issues/516
https://issues.apache.org/jira/browse/CASSANDRA-10625
https://github.com/gchq/Gaffer/issues/375
https://issues.apache.org/jira/browse/CASSANDRA-9459
https://github.com/gchq/Gaffer/issues/2024
https://issues.apache.org/jira/browse/CASSANDRA-11464
https://github.com/gchq/Gaffer/issues/720
https://issues.apache.org/jira/browse/CASSANDRA-8099
https://github.com/gchq/Gaffer/issues/234
https://issues.apache.org/jira/browse/CASSANDRA-5074
https://github.com/gchq/Gaffer/issues/677
https://issues.apache.org/jira/browse/CASSANDRA-11383
https://github.com/gchq/Gaffer/issues/254
https://issues.apache.org/jira/browse/CASSANDRA-5695
https://github.com/gchq/Gaffer/issues/1564
https://issues.apache.org/jira/browse/CASSANDRA-14772
https://github.com/gchq/Gaffer/issues/259
https://issues.apache.org/jira/browse/CASSANDRA-13119
https://github.com/gchq/Gaffer/issues/1099
https://issues.apache.org/jira/browse/CASSANDRA-2412
https://github.com/gchq/Gaffer/issues/306
https://issues.apache.org/jira/browse/CASSANDRA-11127
https://github.com/gchq/Gaffer/issues/822
https://issues.apache.org/jira/browse/CASSANDRA-5062
https://github.com/gchq/Gaffer/issues/1826
https://issues.apache.org/jira/browse/CASSANDRA-11152
https://github.com/gchq/Gaffer/issues/855
https://issues.apache.org/jira/browse/CASSANDRA-7920
https://issues.apache.org/jira/browse/CASSANDRA-13119
https://issues.apache.org/jira/browse/CASSANDRA-8290
https://issues.apache.org/jira/browse/CASSANDRA-10625
https://github.com/gchq/Gaffer/issues/1884
https://issues.apache.org/jira/browse/CASSANDRA-13304
https://issues.apache.org/jira/browse/CASSANDRA-14772
https://github.com/apache/cassandra/commit/6c5ea192c75072ba3f7369dfc23592d6ed0c319f
https://issues.apache.org/jira/browse/CASSANDRA-13119
https://github.com/apache/cassandra/commit/4008e9bd3fd8b6fca2f3c9f935b9f5dfa97116ad
https://issues.apache.org/jira/browse/CASSANDRA-11152
https://github.com/gchq/Gaffer/commit/2f1d6c7254342af98c2919bd74d37b9944c41a6b
https://github.com/gchq/Gaffer/commit/021df085074b761f2b3539355ecfc4c237a54a76
https://github.com/gchq/Gaffer/issues/259
https://github.com/gchq/Gaffer/issues/1099
https://github.com/gchq/Gaffer/issues/1099
https://github.com/gchq/Gaffer/commit/2611e58485dc55f4efadb1c1750842b8306becb1
https://github.com/gchq/Gaffer/commit/f37ed30d2a682c9c248b34bb23bf2fbab43ce50d
https://github.com/gchq/Gaffer/commit/2089f53e12bd9eef197c4b0504d28d4a7d3a8c74
https://github.com/gchq/Gaffer/commit/ea32235cfb28b640c602fb90dc9aa9ed21fda9ab
https://github.com/gchq/Gaffer/commit/11c1a7f692a11f294e1d437582c4f6c6d754567e
https://github.com/gchq/Gaffer/commit/36a6821dfb35e85c5cc322801ed0d9b52bb8d0f4
https://github.com/gchq/Gaffer/commit/bc85d1ddbec75f6c8b452d648ed4bbd020349ce6
https://github.com/gchq/Gaffer/commit/1fafec2e0358c622ec71a3687bafc6fb9abf2299
https://issues.apache.org/jira/browse/CASSANDRA-8099
https://github.com/gchq/Gaffer/issues/538
https://github.com/gchq/Gaffer/issues/538
https://issues.apache.org/jira/browse/CASSANDRA-8099
https://github.com/gchq/Gaffer/issues/538
https://github.com/gchq/Gaffer/commit/d025bb3b82fd73ecc9b1bfb0fb7278446f150dfd
https://github.com/gchq/Gaffer/commit/57f987d1140ccf7b609d2763cafdafbce627868c
https://github.com/gchq/Gaffer/commit/02e127a56f974e7820a6a010c203e12b276696f4
https://github.com/gchq/Gaffer/commit/5c31a186f4108098282d3de197ef09a6c3742761
https://github.com/gchq/Gaffer/commit/d062367ea2ab3c9ed2bacd0d352cf17a7847d656
https://github.com/gchq/Gaffer/commit/9794e6bf9dc29daa6f685f119a9c24494fb519e2
https://github.com/gchq/Gaffer/commit/cf25a2c8a8f0c0486a85339551cc488b0bb9d24f
https://github.com/gchq/Gaffer/commit/9fc35d867412fe9a148c82d2a5a741f10cb84d40
https://github.com/gchq/Gaffer/commit/13e5b2cc3d210f44b48e2b624a520eb84f077881
https://github.com/gchq/Gaffer/commit/418a7314ee99ba9fe5ee80a9281e6d8934b2beef
https://github.com/gchq/Gaffer/commit/07d883d2522c0b023c75983fd1035b502468c9b1
https://github.com/gchq/Gaffer/commit/01884a80e4916f8c08f5b546a95f27a8d6c2b060
https://github.com/gchq/Gaffer/commit/9f9c663eada406bd85e24aa0e9138c8d405344f7
https://github.com/gchq/Gaffer/commit/73bd9630aa5e92ace4bf293f61ef7ad72eb4a1b9
https://github.com/gchq/Gaffer/commit/2e45463d1a1a3f9f7dcfa53612a3ee1c64cb3dea
https://issues.apache.org/jira/browse/CASSANDRA-8099
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19#diff-832459e86261a9937b61cdcb769930cfbfdf1994387a46c2afec97b060a459bb

array contains partition keys and a Cell contains binary data
and a timestamp for conflict resolution. He describes, that
the original design was chosen due to its simplicity and
since it “was an almost direct match for the original API of
Cassandra”. After the implementation of the Cassandra Query
Language (CQL) (CAS-1703 in version 0.8.0-beta1), developers
realize that storage engine and CQL operate on different
abstractions and therefore, the original version of the stor-
age engine cannot effectively handle all expressible queries.
Consequently, developers decide to refactor the storage engine
to process maps of ordered maps of Clusterings and Rows
(Map<byte[], SortedMap<Clustering, Row>>), where Rows
aggregate more data than the previous Cells and Clusterings
aggregate more than the previous partition keys. The contri-
bution that implements this refactoring is so complex, since
the corresponding new abstractions (classes) have to be im-
plemented (e.g., Clustering.java 66ce38 or Row.java 0ee9db)
together with multiple other new super- and subclasses. The
new abstractions have to be integrated into code that refers
to previous abstractions (e.g., ea9ab6 or 07a665), the storage
format has to be refactored (e.g., f53baa, c6a66e, or 24deb6), and
in total 185 tests have to be removed (e.g., e4101c), adapted
(e.g., 323a7f), or added (e.g., 154080).

The original version of the storage engine is not a TC. Origi-
nally, it implemented the most apt representation of a solution.
First a later change (introduction of CQL), revealed a more
appropriate new representation, which developers implement
with the refactoring. For none of the most complex issues,
we can identify TCs causing them. Instead, we observe that
complexity is caused by the size of solutions in combination
with required work for evolution or integration and respective
tests.

4) Threats to Validity: We are no experts in either of
the two systems. However, we believe that the main author
who performed the manual inspection of contributions is
sufficiently experienced to identify TCs. On top of eight years
computer science education and more than five years teaching
in programming and software engineering, he has more than
five years of experience as professional software developer.

We examine only a tiny sample of 40 issues. A larger
sample size might have yielded contributions containing TCs.
Furthermore, the set of selected contributions depends on the
ability of the two metrics lead time and CC score to accurately
represent cost and complexity. However, the project’s issue
trackers do not provide more precise time information and
we are not aware of an alternative to ConCom to automatically
determine the complexity of contributions.

Filtering lead times for outliers before examining costly
contributions may hinder identification of TCs. However, we
decide a priori that we do not want to manually examine
abandoned or low importance contributions, which cause ex-
treme lead times [23]. If long lead times are caused by high
complexity, then we identify such issues via CC scores as
illustrated in Tab. I.

The risk of “overlooking” potential TCs or searching in
the wrong place can be minimized by extending the set of

cases, the amount of studied contributions, and the amount of
investigators inspecting them. We plan that as future work.

Open-source systems are less-likely subject to tight sched-
ules, which may cause TD, compared to proprietary software.
Our case systems that are developed by a public agency or
originally by a large company presumably resemble propri-
etary software in that regard.

IV. RELATED WORK

Previous work on TD identification relies on the assumption
that small code patterns (code smells) that can be detected via
static code analysis have detrimental effects on maintainability.
For example, a study of 745 systems with CAST AIP (and its
1,200 static analysis rules) [24], an analysis of Hadoop with
FindBugs, codevizard, etc. [25] or a study of 66 open-source
Java systems with SonarQube [26] all identify the number of
certain code patterns and equate these to TD. Similarly, Tufano
et al. [27] associate code smells to TD when showing that these
are usually introduced on artifact creation and remain in them.
However, it is unclear if code patterns that are identifiable by
static analysis rules increase development cost and complexity
over time. For example, Abbes et al. [28] show that first
the combination of two object-oriented anti-patterns increase
cost of maintenance whereas Sjøberg et al. [29] demonstrate
a limited effect of code smells on increased maintenance
effort. Therefore, we decide in this study to investigate the
reverse, i.e., can TD be identified in most costly and complex
contributions.

Recent work on self-admitted TD aims to identify TCs
via matching text patterns in source code that hint at sub-
optimal solutions [30] or via correspondingly labeled tickets
in issue trackers [31]. Xavier et al. [31] find, that design
and architecture related refactorings are the main TD issues
in issue trackers. That corresponds to our finding of large
refactorings, i.e., resolution of Ur-TD [2], amongst the most
complex contributions.

Researchers devise TD into various sub-forms, e.g., design
debt, architecture debt, etc. [9]. However, it remains unclear
what precisely constitutes these forms of debt and to which
degree they are responsible for increased cost and complexity.

V. CONCLUSIONS & FUTURE WORK

In this paper, we search for TD by identifying “technical
compromises (TCs) that are expedient in the short term, but
that create a technical context that increases complexity and
cost in the long term” [1]. We manually inspect 40 of the most
complex and costly contributions with associated 217 commits
from Cassandra and Gaffer to identify TCs.

We find that high lead times are caused mainly by orga-
nization and coordination of work and that high complexity
is caused by the size and non-triviality of applied changes
that require thorough testing and integration. Concerning our
research question: in the studied contributions, we cannot iden-
tify any TCs, i.e., “design or implementation constructs” [1],
that can explain their high cost and complexity.

https://issues.apache.org/jira/browse/CASSANDRA-1703
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19#diff-66ce38fe8a846aa51776993fa4a0fcdfad00736e5b69f3debde21557a25726cb
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19#diff-0ee9db2765ff2308fc5ed8eab7dd50005ad648f914abdbe5ae40b3e3c6aeb694
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19#diff-ea9ab63e16b21c20f447a2e84fbeb0bc7c392be26fcca3277b39ce20a18b1532
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19#diff-07a665db0768ace8b885533d0aa3b3747479d4215ce2ad556e0cd232ddbc34cf
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19#diff-f53baae30fe1ab8d1cfad7e590b731bde8b8fa7d68ba3e821f42b41056e91dd3
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19#diff-c6a66e3512b2327f9e8ac88667d7562bc8a88e143140d1781680c465c3a615b9
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19#diff-24deb68e28a41ffdaa2d568946a5e116af3d5e338308046f81fafaea6dea0d36
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19#diff-e4101c6e588cf362bddb3dbefcd94d144718817eacd1629ebcafecc8a608a9a0
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19#diff-323a7f9c40bfb8e3702a0825b87b29994e2f64e5a74381ff98f4ffcd48e766f4
https://github.com/apache/cassandra/commit/a991b64811f4d6adb6c7b31c0df52288eb06cf19#diff-15408000f294f7e5b707cfda2ad84d3aea0d312ba2dc08df3fd2210958647177

In future work, we plan to extend this work by studying
more contributions, by extending the set of case systems and
by verifying our results with the actual developers of the case
systems and other domain experts.

1) Implications for Research: Since we cannot find any
TCs that are constituting TD, but since we can find that
developers apply refactorings when the abstractions encoded
in software and mental models diverge, we believe that TD
should be used as described in Ur-TD [2], [3]. Ur-TD occurs
“when my ideas diverge from my code” [2]. The drawback
for research is, that Ur-TD “is generally not detectable by
static analysis [since] thoughts are stubbornly hidden from
static analysis tools” [2]. To identify diverging mental models
and their manifestations in software, one would have to switch
research focus more on how developers work and interact with
software than analyzing software artifacts solely automatically.

2) Implications for Practice: Since TD is such an over-
loaded metaphor, see Sec. I, we believe that practitioners
should refer directly to the software qualities that are of con-
cern instead of relying on a metaphor. However, an important
lesson is that when mental models and the abstractions that
are encoded in software diverge too much from each other it
is important to “bite the bullet”12 and apply even large scale
refactorings as, for example, done in CAS-8099.

REFERENCES

[1] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering (dagstuhl seminar 16162),” in
Dagstuhl Reports, vol. 6, no. 4. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[2] G. Fairbanks, “Ur-technical debt,” IEEE Software, vol. 37, no. 04, 2020.
[3] W. Cunningham, “The wycash portfolio management system,” 1992.
[4] C. Birchall, Re-Engineering Legacy Software. Manning Publications

Co.
[5] S. McConnell, “Managing technical debt,” Construx Soft-

ware Builders, Inc, Tech. Rep., 2008. [Online]. Avail-
able: http://www.construx.com/uploadedfiles/resources/whitepapers/
Managing%20Technical%20Debt.pdf

[6] J.-L. Letouzey, “The sqale method for managing technical debt
definition document,” 2016. [Online]. Available: http://www.sqale.org/
wp-content/uploads/2016/08/SQALE-Method-EN-V1-1.pdf

[7] F. A. Fontana, R. Roveda, and M. Zanoni, “Technical debt indexes
provided by tools: A preliminary discussion,” in 2016 IEEE 8th Inter-
national Workshop on Managing Technical Debt (MTD). IEEE, 2016.

[8] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical debt:
towards a crisper definition report on the 4th international workshop on
managing technical debt,” ACM SIGSOFT Software Engineering Notes,
vol. 38, no. 5, 2013.

[9] N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spı́nola, F. Shull,
and C. Seaman, “Identification and management of technical debt:
A systematic mapping study,” Information and Software Technology,
vol. 70, 2016.

[10] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“The financial aspect of managing technical debt: A systematic literature
review,” Information and Software Technology, vol. 64, 2015.

[11] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,”
Journal of Systems and Software, vol. 86, no. 6, 2013.

[12] R. O. Spı́nola, A. Vetrò, N. Zazworka, C. Seaman, and F. Shull, “Inves-
tigating technical debt folklore: Shedding some light on technical debt
opinion,” in 2013 4th International Workshop on Managing Technical
Debt (MTD). IEEE, 2013.

[13] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure
it? manage it? ignore it? software practitioners and technical debt,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2786848

[14] G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook::
How to Create World-Class Agility, Reliability, and Security in Technol-
ogy Organizations. IT Revolution, 2016.

[15] V. R. Basili, “Qualitative software complexity models: A summary,” Tu-
torial on models and methods for software management and engineering,
1980.

[16] R.-H. Pfeiffer, “Automatically assessing complexity of contributions
to git repositories,” in International Conference on the Quality of
Information and Communications Technology. Springer, 2021.

[17] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring
challenges and benefits,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
2012.

[18] A. Lakshman and P. Malik, “Cassandra: Structured storage system
on a p2p network,” ser. PODC ’09. New York, NY, USA:
Association for Computing Machinery, 2009. [Online]. Available:
https://doi.org/10.1145/1582716.1582722

[19] G. Upton and I. Cook, Understanding statistics. Oxford University
Press, 1996.

[20] ISO Central Secretary, “Software engineering – software life
cycle processes – maintenance,” International Organization for
Standardization, Geneva, CH, Standard ISO/IEC 14764:2006, 2006.
[Online]. Available: https://www.iso.org/standard/39064.html

[21] Y. Guo, R. O. Spı́nola, and C. Seaman, “Exploring the costs of tech-
nical debt management–a case study,” Empirical Software Engineering,
vol. 21, no. 1, 2016.

[22] B. Kitchenham and S. L. Pfleeger, “Software quality: the elusive target
[special issues section],” IEEE software, vol. 13, no. 1, 1996.

[23] R. Kikas, M. Dumas, and D. Pfahl, “Issue dynamics in github projects,”
in International Conference on Product-Focused Software Process Im-
provement. Springer, 2015.

[24] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost,
and types of technical debt,” in 2012 Third International Workshop on
Managing Technical Debt (MTD). IEEE, 2012.

[25] N. Zazworka, C. Izurieta, S. Wong, Y. Cai, C. Seaman, F. Shull et al.,
“Comparing four approaches for technical debt identification,” Software
Quality Journal, vol. 22, no. 3, 2014.

[26] G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The evolu-
tion of technical debt in the apache ecosystem,” in European Conference
on Software Architecture. Springer, 2017.

[27] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad
(and whether the smells go away),” IEEE Transactions on Software
Engineering, vol. 43, no. 11, 2017.

[28] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension,” in 2011 15Th european conference on
software maintenance and reengineering. IEEE, 2011.

[29] D. I. Sjøberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dybå,
“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, 2012.

[30] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2014.

[31] L. Xavier, F. Ferreira, R. Brito, and M. T. Valente, “Beyond the
code: Mining self-admitted technical debt in issue tracker systems,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, 2020.

REFERENCED URLS
1https://www.atlassian.com/agile/software-development/technical-debt
2https://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt
3https://github.com/HelgeCPH/searching-for-techdebt
4https://gchq.github.io/gaffer-doc/
5https://github.com/gchq/Gaffer
6https://github.com/gchq/Gaffer/issues
7https://cassandra.apache.org
8https://issues.apache.org/jira/projects/CASSANDRA
9https://github.com/apache/cassandra

10https://github.com/HelgeCPH/searching-for-techdebt/blob/master/notebooks/
Manual%20Search%20Protocol.ipynb

11https://www.datastax.com/blog/putting-some-structure-storage-engine
12https://issues.apache.org/jira/browse/CASSANDRA-8099

https://issues.apache.org/jira/browse/CASSANDRA-8099
http://www.construx.com/uploadedfiles/resources/whitepapers/Managing%20Technical%20Debt.pdf
http://www.construx.com/uploadedfiles/resources/whitepapers/Managing%20Technical%20Debt.pdf
http://www.sqale.org/wp-content/uploads/2016/08/SQALE-Method-EN-V1-1.pdf
http://www.sqale.org/wp-content/uploads/2016/08/SQALE-Method-EN-V1-1.pdf
http://doi.acm.org/10.1145/2786805.2786848
https://doi.org/10.1145/1582716.1582722
https://www.iso.org/standard/39064.html
https://www.atlassian.com/agile/software-development/technical-debt
https://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt
https://github.com/HelgeCPH/searching-for-techdebt
https://gchq.github.io/gaffer-doc/
https://github.com/gchq/Gaffer
https://github.com/gchq/Gaffer/issues
https://cassandra.apache.org
https://issues.apache.org/jira/projects/CASSANDRA
https://github.com/apache/cassandra
https://github.com/HelgeCPH/searching-for-techdebt/blob/master/notebooks/Manual%20Search%20Protocol.ipynb
https://github.com/HelgeCPH/searching-for-techdebt/blob/master/notebooks/Manual%20Search%20Protocol.ipynb
https://www.datastax.com/blog/putting-some-structure-storage-engine
https://issues.apache.org/jira/browse/CASSANDRA-8099

	Introduction
	Background
	Terminology
	Case Systems

	RQ: Can we identify technical compromises that cause work to be most costly and complex?
	Method
	Results
	Analysis
	Threats to Validity

	Related Work
	Conclusions & Future Work
	Implications for Research
	Implications for Practice

	References

