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a b s t r a c t

Harmful algal blooms (HABs) and the consequent contamination of shellfish are complex processes
depending on several biotic and abiotic variables, turning prediction of shellfish contamination into
a challenging task. Not only the information of interest is dispersed among multiple sources, but
also the complex temporal relationships between the time-series variables require advanced machine
methods to model such relationships. In this study, multiple time-series variables measured in
Portuguese shellfish production areas were used to forecast shellfish contamination by diarrhetic she-
llfish poisoning (DSP) toxins one to four weeks in advance. These time series included DSP con-
centration in mussels (Mytilus galloprovincialis), toxic phytoplankton cell counts, meteorological, and
remotely sensed oceanographic variables. Several data pre-processing and feature engineering methods
were tested, as well as multiple autoregressive and artificial neural network (ANN) models. The best
results regarding the mean absolute error of prediction were obtained for a bivariate long short-
term memory (LSTM) neural network based on biotoxin and toxic phytoplankton measurements,
with higher accuracy for short-term forecasting horizons. When evaluating all ANNs model ability
to predict the contamination state (below or above the regulatory limit for contamination) and
changes to this state, multilayer perceptrons (MLP) and convolutional neural networks (CNN) yielded
improved predictive performance on a case-by-case basis. These results show the possibility of
extracting relevant information from time-series data from multiple sources which are predictive
of DSP contamination in mussels, therefore placing ANNs as good candidate models to assist the
production sector in anticipating harvesting interdictions and mitigating economic losses.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Shellfish farming is a sustainable solution to the growing de-
and for seafood products and for nutritious and healthy food,
eing a good protein source to feed an increasing world pop-
lation. With a small ecological footprint and requiring neither
resh water nor artificial feed, shellfish farming also contributes
o eutrophication management by active nutrient extraction [1,2],
ince shellfish are filter-feeding organisms taking their energy
o grow from small particles, such as microalgae, available in
he seawater column. However, of the thousands of microalgae
pecies present in the oceans, estuaries, and coastal lagoons,
ome produce toxins that can accumulate in shellfish and become
threat to human health [3]. Symptoms of acute intoxication
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950-7051/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
due to consumption of contaminated shellfish can be serious,
including diarrhea, amnesia or paralysis [3], making it necessary
to monitor contamination in shellfish-producing areas. To pro-
mote seafood safety, most coastal countries conduct a monitoring
program of their shellfish-producing areas. A survey of toxic algae
abundance in seawater and determination of the algae toxins,
also known as biotoxins, in representative shellfish samples is
carried out on a weekly basis. When biotoxin concentration ex-
ceeds the legal safety limit, harvesting and commercialization
of shellfish are prohibited. This prohibition may last weeks or
months since algal bloom intensity and shellfish toxin kinetics
and metabolism affect how long contamination remains high [4].
This reactive approach of mandatory closures in case of contam-
ination, established in the European Union (EU) directives [5,6],
makes farmers susceptible to severe economic losses. Hence the
interest in proactive strategies for predicting shellfish contamina-
tion from environmental changes associated with harmful algal
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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looms (HABs) formation and the subsequent contamination of
hellfish (e.g., [7–10]).
HABs formation is a natural process induced and regulated

y atmospheric (light, wind, precipitation), oceanographic (sea-
ater temperature, salinity, currents), chemical (nutrients, metal
lements) and biological drivers (grazers, prey for mixotrophic
pecies) [11–15], which stand, alongside biological parameters,
s natural candidates for predictors of HABs and subsequent
iotoxin shellfish contamination. As reviewed in [16], HABs fore-
asting based on available time-series data has been attempted
ith autoregressive models, such as the autoregressive integrated
oving average (ARIMA) model and the vector autoregressive

VAR) model (e.g., [17,18]). However, autoregressive models are
ot able to capture non-linear relationships among variables,
hich is important because relations between biological and
nvironmental variables in organisms and ecosystems are often
omplex and highly non-linear [19]. Hence, artificial neural net-
orks (ANNs), namely, multilayer perceptrons (MLP), which are

ully connected feed forward networks, have been used for these
urposes (e.g., [20–22]). However, due to limitations such as
ifficulty in tuning the parameters, slow convergence speed and
equiring a significant amount of training data to obtain a stable
orecasting result [23], these networks have been increasingly
eplaced by convolutional neural networks (CNNs) and recurrent
eural networks (RNNs), which are better able to model time
eries.
Hill et al. (2020) [24] used a CNN to extract feature vectors

rom several remotely sensed variables, including reflectance
ands, chlorophyll-a (chl-a) concentrations, and sea surface tem-
erature (SST). These vectors were then input to other machine
earning models to detect and predict HAB events in the Gulf
f Mexico. Recent works have also used RNNs to forecast chl-
concentration. Lee and Lee (2018) [25] proposed an RNN and
long short-term memory (LSTM), a variant of standard RNNs,

o predict one-week ahead chl-a concentration on four major
ivers in South Korea. Cho et al. (2018) [26] and Cho and Park
2019) [27] used data from multiple sources and a deep recurrent
etwork composed of LSTM units to forecast chl-a concentration.
hese models achieved high predictive performance, outperform-
ng MLP with different numbers of hidden layers. Also, Yussof
t al. (2021) [28] trained an LSTM and a CNN with remotely
ensed chl-a time-series data to forecast HABs eight days in
advance in the West Coast of Sabah, Malaysia. The results showed
that the CNN was outperformed by the LSTM, which had the
ability to handle long-term dependency data.

ANNs have extensively been used in a wider scope beyond
ABs to model and forecast water quality (e.g., [29–32]). Recent
fforts encompassing the development of deep neural networks,
amely deep LSTM models for time-series forecasting, have also
een made for water quality prediction [33–35]. However, while
everal studies have attempted to forecast water quality and
ABs, very few works dedicated to forecasting shellfish contam-
nation, a natural consequence of HABs. Grasso et al. (2019) [36]
redicted closures to shellfish harvesting areas due to paralytic
hellfish poisoning (PSP) toxins in blue mussels one to ten weeks
n advance. The authors used four years of weekly toxin data and
reated four classification categories based on toxin concentra-
ions, and used an MLP with one hidden layer to perform the
lassification task. The model was able to predict closure-level
oxic events at a two-week advance notice with high accuracy.

Similarly, Harley et al. (2020) [37] used several environmental
ime series, such as salinity, air temperature, and SST, to predict
he concentration of PSP toxins in blue mussels. The authors
reated a random forest (RF) model to classify shellfish above and
elow a toxicity threshold one week in advance. However, the

btained forecast accuracies were very low (below 50%).

2

This study addressed the challenge of integrating several bio-
logical and environmental time-series variables involved in HABs’
formation and shellfish contamination, available from multiple
sources, and modeling the complex dependencies between them.
The goal was to predict when the concentration of biotoxins in
bivalve molluscs exceeds the safety limits, leading to the closure
of affected production areas. For that, multiple autoregressive
and ANNs forecasting models based on multivariate time-series
data from shellfish-producing areas along the Portuguese coast
were comprehensively explored to predict biotoxin concentration
in mussels up to four weeks in advance. The ability to forecast
interdictions to shellfish harvesting and production represents an
invaluable contribution to decision-making, in particular, in the
definition of proper actions to be taken upon closures regard-
ing production management, stock distribution and storage, thus
reducing waste and economic losses.

2. Methods

In this work, multiple in-situ, remotely sensed and climate
time series were used to forecast biotoxins concentration in
shellfish in various producing areas of Portugal. The overall meth-
odology, from sample acquisition to time-series analysis and fore-
casting can be found in Fig. 1, with a detailed description of each
step provided next.

2.1. Study area and data acquisition

This study was focused on predicting the concentrations of di-
arrhetic shellfish poison (DSP) toxins, which is the type of toxins
that leads to most contamination cases in several European coun-
tries, including Portugal [38,39]. Eight shellfish production areas
were chosen, corresponding to known areas regarding the fre-
quency and extension of the contamination events, showing dis-
tinct biotic and abiotic characteristics, and at the same time
containing the most complete time-series data. These include
Ria de Aveiro (RIAV1), Litoral Cabo Raso – Lagoa de Albufeira
(L5b), Estuário do Tejo (ETJ1), Lagoa de Albufeira (LAL), Litoral São
Vicente – Lagos (L7c1), Ria de Alvor (LAG, POR2), and Ria Formosa
(FAR1).

The model organism chosen for DSP forecasting was the shell-
fish species Mytilus galloprovincialis, a mussel species that is usu-
ally used as an indicator species for shellfish contamination. The
weekly concentration of DSP toxins in M. galloprovincialis from
2015 to 2020 was obtained from the Portuguese Institute for
Sea and Atmosphere (IPMA) website,1 which runs a monitoring
system for shellfish contamination that collects shellfish samples
from 41 shellfish production areas along the Portuguese coast.
For each shellfish production area, IPMA also determines toxic
phytoplankton cell counts in seawater samples collected along
with mussels specimens, and these data were also used in this
study.

During preprocessing, non-numerical codes (i.e., ‘‘non detec-
ted’’ and ‘‘non quantifiable’’) were replaced by the detection limit
of the methods used to determine biotoxin concentration and
phytoplankton cell counts, and errors resulting from the incorrect
insertion of the samples were corrected.

Besides biotoxins and phytoplankton in-situ measurements,
relevant meteorological and oceanographic variables, as previ-
ously identified as HAB drivers for the Portuguese coast [40,41],
were also collected and used in this study. The meteorological
data were obtained from IPMA, including mean, maximum and
minimum air temperature, mean wind direction, mean wind in-
tensity, and rainfall from several meteorological stations along

1 https://www.ipma.pt/

https://www.ipma.pt/
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Fig. 1. Overall methodology for predicting mussel contamination by DSP toxins across Portuguese shellfish production areas (AR, autoregressive; ARIMA, autoregressive
integrated moving average; VAR, vector autoregressive; ANN, artificial neural network; MLP, multilayer perceptron; CNN, convolutional neural network; LSTM, long
short-term memory; AE, autoencoder).
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the Portuguese coast (Fig. 1). For each production area, the online
meteorological station closest to the sampling point in that area
was chosen and the weekly means of the meteorological data for
each week of the year was computed.

Finally, remotely sensed SST and chl-a time-series data for the
onsidered production zones were collected from the Coperni-
us Marine Environment Monitoring Service (CMEMS) website,2
hich is part of the European Union’s Earth Observation Pro-
ramme [42]. The data were provided on a network common
ata form (netCDF) format, which contained, for each time step
nd latitude/longitude grid point, SST and chl-a concentration
alues. The coordinates for the sampling point in each production
rea were then used to choose the closest grid point and daily
ime series for SST and chl-a concentration were obtained for that
oint. The weekly means of these variables were used for each
orresponding week of the year.
After merging all the variables, a dataset containing 11 weekly

ime series was obtained for each production area. The descrip-
ion of these variables can be found in Tables S1 and S2 for the
IAV1 and L5b production areas, respectively.

.2. Time-series forecasting

A time series is a set of values measured sequentially through
ime. Time series forecasting aims at predicting one or more
uture values, {xT+h, xT+h+1, . . .}, from an observed time series
x1, x2, . . . , xT }, where h is an integer called the lead time or
he forecasting horizon [43]. Forecasting can be univariate, if
redictions depend only on the present and past values of the
ariable being forecast, or multivariate if forecasts of a given
ariable depend not only on its own past values but also on past
alues of one or more additional variables [43].

.2.1. Autoregressive models
The first forecasting models used to predict shellfish contam-

nation were autoregressive models, namely ARIMA and VAR.
RIMA is a univariate model that combines an autoregressive
odel (AR) with a moving average model (MA). An AR(p) model is
linear model in which the current value of a variable is obtained
hrough a weighted sum of its past p values plus a random shock,

2 https://marine.copernicus.eu/
 t

3

ε [43,44]. While an AR(p) model captures the autocorrelations
of the series values up to lag p, an MA(q) model captures the
autocorrelations of the random shocks up to lag q [45]. Thus, in an
ARIMA(p, d, q) model, the current value of a time series is given
by

Xt = φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + εt + θ1εt−1 + θ2εt−2

+ · · · + θqεt−q (1)

Since ARIMA presumes the series to be stationary, it includes
differencing step to remove trends. This consists in converting

he series of values into the differences between consecutive
alues and can be done several times. The order of differencing
n an ARIMA(p, d, q) model, d, indicates how many rounds of
ifferencing are performed.
The VAR model is an extension of the AR model to the multi-

ariate setting. A VAR model is an n-equation, n-variable linear
odel in which each variable is explained by its own lagged
alues, plus current and past values of the remaining n − 1
ariables [44]. In a VAR model of order p, the current values of
vector Xt =

[
X1,t , X2,t , . . . , Xn,t

]
are given by

t = φ0 +

p∑
i=1

(φiX t−i) + at , (2)

here φ0 is a n-dimensional constant vector, φi are n×n matrices
or i > 0, and at is a sequence of independent and identically
istributed random vectors with mean zero and time invariant
ovariance matrix Σa [46]. Both ARIMA and VAR are very simple
nd popular models that can be used as a baseline to which more
omplex models, namely ANNs, can be compared.
ARIMA and VAR models were built for RIAV1 and L5b, two

istinct (estuarine and coastal, respectively) and problematic pro-
uction areas, with the highest number of contamination cases
egistered from 2015 to 2020. The model building process was
imilar for both production areas and will only be described for
IAV1.
As a univariate method, ARIMA was only applied to the DSP

oxins variable. This variable contained a small percentage of
issing values (Table S1), which were replaced using linear in-

erpolation, a simple imputation method that creates a straight
ine between the gaps created by the missing values.

The data was then split into a training set, which was used

o train the ARIMA model, a validation set for model tuning

https://marine.copernicus.eu/
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nd selection, and a test set for final evaluation. The first 130
eeks of the time series, corresponding to two and a half years
f data, were used as the training set, and the last 52 weeks,
orresponding to one year of data, were used as the test set. The
emaining data, corresponding to the period between the training
nd test sets, was used as the validation set.
The order (p, d, q) of the model were then determined. Since

he augmented Dickey–Fuller (ADF) test showed the time series
o be stationary (with a p-value of approximately 0) there was
o need for a differencing step, and thus d = 0. The parameters
p, q) were determined by finding the optimal order for an ARIMA
odel based on the training set using the Akaike information
riterion (AIC). Several combinations of p and q, in which each
arameter was varied between 0 and 5, were tested. The com-
ination that allowed to obtain the lowest AIC value was p = 1
nd q = 1. The selected model for the RIAV1 production area was
n ARIMA(1, 0, 1). The model for the L5b area was selected in a
imilar way, resulting in an ARIMA(2, 0, 0).
As a multivariate method, VAR can be applied to more than

ne variable. A first bivariate VAR was trained with the DSP toxins
oncentrations and phytoplankton cell count variables, since the
SP-producing phytoplankton are the direct cause of shellfish
ontamination by DSP toxins. The procedure for imputing missing
alues, testing for stationarity and splitting data was the same
s described for the ARIMA model. The order p was determined
ased on the AIC, Schwarz–Bayesian (BIC), and Hannan–Quinn
HQ) selection criteria, which are commonly used information
riteria across many application domains [46–48], with p = 1
howing as the best order for both RIAV1 and L5b production
reas.
A VAR model was also trained on all available variables. Miss-

ng values were imputed as described above for most variables.
owever, wind variables contained many missing values, with
arge time gaps without measurements (Table S1). For these,
ariables containing more than 25% missing values were not
onsidered when building the VAR model, reserving the linear
mputation method for those with less than 25% missing values.
hus, in RIAV1, wind intensity and direction were discarded, and
n L5b wind direction was discarded.

To determine which variables to include in the VAR model
ased on their predictive value to the DSP toxins variable, the
ranger causality test [49] was used. This statistical method
ests the null hypothesis that the past values of a time series
ariable {X1,t} do not provide significant information about the
uture values of another time series variable {X2,t} [50]. For the
5b production area the phytoplankton cell counts and the wind
ntensity variables were not found to be predictive of the DSP
oxins variable and were discarded. In all other cases the p-
alues for the Granger causality test were lower than 0.05, so all
ther variables were retained. The data was split into training,
alidation and test sets and the p was selected based on the AIC,
IC, and HQ selection criteria as described for the bivariate VAR
odel. The values obtained were p = 1, for both RIAV1 and L5b
roduction areas.

.2.2. Artificial Neural Networks
An Artificial Neural Network (ANN) is a model composed of

any simple non-linear computing units, called neurons, and can
eneralize from examples to produce useful solutions. ANNs are
ood candidates for HABs and shellfish contamination forecast-
ng because they are universal approximators, meaning that, in
heory, they can approximate any relation between independent
nd dependent variables [51]. With enough training data, ANNs
an generalize and transfer the learned relations to new data [51].
The multi-layer perceptron (MLP) is the simplest example of

n ANN architecture. In a MLP, the neurons are organized in
 d

4

ayers, with weighted links from each neuron in the kth layer
being directed to each neuron in the (k + 1)th layer [52]. A MLP
is usually composed of one input layer, which receives inputs
from the environment, one output layer that yields the network’s
response, and one or more intermediate hidden layers [53].

A convolutional neural network (CNN) is a type of neural
network specialized for processing data with a grid-like topology,
such as images and time series [54]. In each hidden layer of a
CNN, a weight matrix (also called kernel or filter) slides over the
input and computes the dot product between the input and the
weight matrix to create a feature map. The intuition behind a CNN
is thus to learn in each layer a weight matrix that will be able to
extract useful features from the input [55,56].

Recurrent neural networks (RNNs) are specialized for process-
ing sequential data, such as time series [54]. This processing is
achieved by maintaining an internal memory state which acts
as a compact summary of past information and is recursively
updated with new observations at each time step [57]. This is
made possible by the existence of feedback loops in an RNN unit,
which connect its previous state to the current state, allowing for
information about the past to be transmitted to the present.

One disadvantage of using RNNs is their weakness in manag-
ing long-term dependencies due to the vanishing gradient prob-
lem. To solve this problem, a variant of standard RNNs, long
short-term memory (LSTM) [58], has been proposed. An LSTM
unit has two components to its state: the hidden state and the
cell state. At each time step t , the LSTM unit is presented with
the corresponding data element in the input sequence and, in
addition, the hidden state and cell state at the previous time step
t−1. As in a generic RNN, the hidden state results from non-linear
transformations of the LSTM unit input. However, since the cell
state is linear function of previous states, it preserves gradient
information better and can learn longer patterns in the data,
making it useful when prediction requires considering longer
time windows [51].

Several ANN architectures were applied to DSP toxins concen-
tration forecasting in mussels, namely, MLP, CNN, and LSTM, three
ANN architectures which are applicable to the problem under
study. A first pre-processing task was undertaken, which involved
multiple steps, as described next.

Data preparation. Since ANNs need to have a large training set in
order to learn a desired function from the data, the data from
all the acquired production areas (RIAV1, L5b, ETJ1, LAL, L7c1,
LAG, POR2, and FAR1) were first merged. To guarantee that all
variables, each showing different units and ranges (Tables S1 and
S2), have the same weight in the final result, the variables were
normalized to a scale of [0, 1].

Two different approaches were then considered to deal with
the missing values. For the variables where the percentage of
missing values was less than 25%, these values were replaced
using a linear interpolation method, as for the autoregressive
models. For the cases where the percentage of missing values was
superior to 25%, these values were replaced by −1, since the data
had previously been scaled to [0, 1], and, therefore, the networks
should be able to identify these values and not use them to make
predictions.

To predict one step in the future, the observations at previous
time steps (i.e., lag observations) are used as input X , and the
utput y is the observation at the current time step [59]. For
MLP, each batch of examples consists of a two-dimensional
atrix of [samples, time steps × features] as input into the
etwork, to predict the future value, since all feature values in
he time window are presented as a flattened vector for each
xample in the batch. In the case of CNNs and LSTMs, the input
ust be three-dimensional, with a [samples, time steps, features]
ata shape since the time will be a different dimension for these
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etworks. The features represent the number of variables used
o train the model, which can be 1, in the case of univariate
orecasting, or more, in the case of multivariate forecasting.

In this study, the goal was to predict the future values of
he DSP toxins variable, using the past values of the DSP toxins
ariable and the remaining ten explanatory variables described
n Tables S1 and S2. In different cases the number of features
sed could be one or two, for univariate and bivariate models,
1 for models using the complete data, or 5 for models using a
educed representation of the meteorological data obtained with
n autoencoder (see below). Since the objective was to predict the
oncentrations of the toxins up to four weeks ahead, the shape
f y had to be [samples, 4, 1]. In the case of X , the time steps

refer to the number of past weeks used as input to the models.
Multiple time steps were tested, with 12 being the value that
worked best for the different ANN models. For the case of the
univariate models, instead of 11 features only 1 was used, the
past DSP values.

After transforming the data into X and y, these sets were split
nto training, validation and test sets. Like for the autoregressive
odels, for each production area and variable, the first two and
half years of data were used as the training set, the following
ne and a half years as the validation set, and the remaining one
ear as the test set.

etwork building. Three types of ANNs were implemented, nam-
ly, MLP, CNN, and LSTM. The networks were built using Keras,3
deep learning API written in Python, running on top of the
achine learning platform TensorFlow. The MLP models were
uilt using one to three hidden layers with ReLU as the activation
unction, and a final layer with four neurons and linear activation.
his final layer outputs a vector with four elements that can be
nterpreted as the forecasts up to four weeks in advance.

The CNN models were implemented with two to four convol-
tional hidden layers. The kernel size was set to 2 for all the con-
olutional layers. Furthermore, the padding was set to ‘‘causal’’
o create a causal convolution network, as described in Borovykh
t al. (2018) [55]. Each hidden layer used the LeakyReLU activa-
ion function. A Flatten layer was then used to flatten the input
n order to be used by a Dense layer with four neurons and a
inear activation function. As for the MLP models, this final layer
utputs a vector with four elements that can be interpreted as
he forecasts up to four weeks in advance.

Lastly, several LSTM models were built, with one to two hidd-
n layers, using the Keras default activation functions. In the end,
Dense layer with four neurons and a linear activation function
as used to output the forecasts up to four weeks in advance.
MLP and CNN experiments were performed using the Adam

ptimiser, whereas LSTM experiments used the RMSProp opti-
iser. All experiments considered a batch size of 8, 75 training
pochs, and the Huber function as the loss function.
In order to determine the best hyper-parameters for each

rchitecture, several experiments were conducted by testing sev-
ral ANN models with increasing complexity with respect to the
umber of layers and the number of neurons in each layer. Fur-
hermore, for some experiments, L1 and L2 regularization were
pplied to the networks. For each experiment, the training and
he validation MAE values were monitored in order to identify
hich models were underfitting or overfitting. The experiment
ith the lowest validation error was chosen for each architecture.
or more detail regarding these experiments and the parameter
etting strategy, refer to the Supporting Information.

3 https://keras.io/
5

Network training and validation. As with ARIMA, univariate ANN
models were trained only with past values of the DSP toxins and
bivariate ANNs were trained with the DSP toxins and the phy-
toplankton cell counts variables. Multivariate ANNs were trained
with all the variables described in Tables S1 and S2. In addition,
an autoencoder was used to decrease the number of features. An
autoencoder is a neural network trained to reconstruct its input
in its output from a constrained inside the network. It can be con-
sidered in two parts: an encoder, which maps the input to a latent
space, h = f (x), and a decoder, that maps the representation in
the latent space back to the input, r = g(h) = g(f (x)). If the latent
space has fewer dimensions than the input, the encoder learns
to map the data into a lower dimensional representation [54].
An autoencoder was built to reduce the dimension of the seven
meteorological variables provided by IPMA (mean, maximum and
minimum air temperature, wind intensity, wind direction, and
rainfall) to one feature. Daily data from twenty meteorological
stations along the Portuguese coast, from January 2015 to De-
cember 2020, were used. As with the data used by the prediction
models, these data were normalized to a scale of [0, 1] and split
into training and validation sets.

The encoder part, composed of three dense layers with a ReLU
activation function, reduced the dimension of the features from
seven to one. Then, the decoder part, composed of two dense
layers with a ReLU activation function and a final layer with
a linear activation function, reconstructed the input back to its
original shape. The autoencoder was trained during 20 epochs,
using a batch size of 8 and Adam optimiser with a learning rate
of 0.001. The mean squared error was used as the loss function,
and this measure was also used to monitor the error on training
and validation sets during the training process.

After training, the encoder part of the model, which had been
trained to map the seven original variables to a useful repre-
sentation, was stored. This encoder was then applied to the
meteorological variables used as input to the prediction models,
reducing their dimension from seven to one and allowing the
ANN models to be trained using five variables (DSP toxins, phyto-
plankton cell counts, SST, chl-a, and the meteorological variable
obtained by the encoder) instead of eleven.

For all the considered approaches, several ANN models with
different complexities with respect to the number of layers and
the number of neurons in each layer were tested. Then, models
with the lowest validation mean absolute error (MAE) were cho-
sen for each approach and architecture. The MAE is a commonly
used metric to evaluate forecast accuracy [60], for its ease of
interpretation. This error is given by

MAE =
1
n

n∑
t=1

|yt − ŷt | , (3)

where yt and ŷt are the actual and predicted values for time step
t , respectively, and n is the number of predicted values.

Besides being used to select the best experiments, the MAE
measure was also used to analyze the results obtained by each
model (Section 3).

For practical purposes, it is also important to correctly predict
whether toxins concentration will be above (positive) or below
(negative) the regulatory limit, which, for the case of DSP toxins,
corresponds to 160 µg OA equiv. kg−1 [5]. The ability of a model
to predict this can be evaluated by creating a confusion matrix
comparing the predicted classes to the actual classes and com-
puting the true positive rate (TPR) and true negative rate (TNR)
values, given, respectively, by

TPR =
True positives

True positives + False negatives
(4)

https://keras.io/
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Table 1
MAE values obtained for each forecasting horizon in the training, validation and test sets of the RIAV1 production area.
Models Training set Validation set Test set

t + 1 t + 2 t + 3 t + 4 t + 1 t + 2 t + 3 t + 4 t + 1 t + 2 t + 3 t + 4

Univariate

ARIMA 155.6 187.6 204.2 207.5 100.8 131.1 150.0 165.1 140.2 155.9 175.1 181.4
MLP 83.8 175.4 198.0 235.6 41.9 90.1 113.8 122.5 75.8 169.7 183.0 208.2
CNN 72.6 153.0 185.7 207.2 40.9 96.2 111.8 128.5 66.9 157.5 171.6 177.1
LSTM 62.8 146.8 182.0 189.9 32.8 84.9 96.5 114.9 67.7 148.0 168.8 177.4

Bivariate

VAR 156.5 194.7 211.9 212.6 115.9 158.2 181.7 191.1 148.0 153.8 167.5 170.8
MLP 60.8 156.1 180.1 200.6 49.9 99.2 114.0 127.2 77.5 158.1 176.2 179.9
CNN 65.2 150.1 183.6 195.4 43.7 98.9 113.5 124.4 69.8 151.9 164.6 174.6
LSTM 50.9 141.4 175.2 186.9 24.8 74.5 96.3 107.1 58.8 135.8 156.2 163.1

Multivariate

VAR 145.2 178.8 192.8 202.5 120.3 156.7 169.1 179.6 141.3 143.2 147.4 147.6
MLP 101.4 157.8 187.6 198.9 84.3 111.5 126.7 131.8 137.9 162.0 172.2 180.8
CNN 113.6 158.5 162.9 170.8 83.9 110.0 125.6 130.5 126.9 164.1 164.6 173.1
LSTM 111.3 156.1 173.9 184.9 69.1 98.9 114.2 123.4 102.6 155.2 174.0 178.4

Multivariate
(Autoencoder)

MLP 91.6 148.1 175.4 189.2 63.9 91.2 109.7 117.2 107.5 157.1 168.9 181.1
CNN 90.9 156.3 181.8 192.2 41.9 85.9 104.9 120.6 87.0 149.8 168.1 177.3
LSTM 85.4 152.8 176.9 186.1 45.0 84.3 104.0 116.1 86.8 149.1 169.6 175.2
Table 2
MAE values obtained for each forecasting horizon in the training, validation and test sets of the L5b production area.
Models Training set Validation set Test set

t + 1 t + 2 t + 3 t + 4 t + 1 t + 2 t + 3 t + 4 t + 1 t + 2 t + 3 t + 4

Univariate

ARIMA 134.4 169.9 200.3 214.5 96.0 124.3 142.0 156.4 98.4 120.7 132.5 139.2
MLP 86.0 138.7 175.0 184.9 39.0 87.1 106.7 110.6 36.4 96.5 114.2 121.6
CNN 71.9 137.5 162.0 190.7 44.2 99.4 116.9 122.5 37.2 99.9 116.1 121.7
LSTM 58.0 111.2 134.1 146.1 34.6 66.3 80.6 87.7 33.6 89.3 106.1 115.1

Bivariate

VAR 138.5 181.5 206.8 220.8 164.2 171.3 180.6 186.1 242.3 226.2 222.3 201.6
MLP 62.3 133.7 156.2 171.9 36.3 89.7 109.2 109.4 33.2 95.6 112.7 119.6
CNN 65.3 138.7 168.1 186.9 39.7 92.5 109.5 117.3 36.6 96.6 113.6 115.5
LSTM 44.4 118.7 151.5 170.0 33.3 75.9 93.4 100.0 32.1 84.4 98.4 101.4

Multivariate

VAR 137.5 170.4 194.1 208.3 98.0 128.9 146.4 164.9 99.4 114.8 124.5 137.2
MLP 101.1 140.9 172.1 183.6 79.5 98.7 112.7 119.2 76.4 103.0 123.0 119.2
CNN 109.3 139.3 146.4 155.5 67.3 90.6 101.2 107.6 80.8 102.7 111.0 106.3
LSTM 92.4 128.6 148.6 163.5 61.9 78.2 91.0 97.9 73.7 94.1 105.1 108.7

Multivariate
(Autoencoder)

MLP 90.6 129.2 153.4 166.1 67.8 85.4 102.2 106.9 72.6 93.0 110.2 108.1
CNN 98.1 143.1 153.7 168.9 56.1 84.6 94.2 105.7 57.0 95.8 102.4 107.4
LSTM 79.9 131.3 151.6 165.5 49.7 78.1 93.4 100.5 52.4 89.9 99.7 102.1
TNR =
True negatives

True negatives + False positives
(5)

Lastly, it is useful to evaluate whether the models can predict
changes to the contamination state, i.e., if toxins concentration
below the regulatory limit in a certain week will rise above
the limit in the following week, or vice-versa. This can also be
evaluated by creating a confusion matrix and analyzing the TPR
and TNR values as above. More than evaluating the overall error
of prediction, confusion matrices represent an easy and more
intuitive way for model selection regarding the ability to predict
the contamination state (above or below the regulatory limit)
and transitions between contamination states, leading to opening
or closure of the production area. A model that better predicts
contamination state and state transitions is more useful from
the shellfish production sector point of view. This is expected to
increase knowledge transferability and better support decision.

2.2.3. Model comparison
To evaluate the significance of the differences between the 15

models generated, the Friedman non-parametric test was used on
the model residuals, paired by prediction, to reject the hypothesis
that all models behave in a statistically similar manner. Then
the Nemenyi test was used for pairwise comparisons between
the models, focusing on the models with the best performance.
The Benjamini–Hochberg correction was applied due to multiple
significance tests (each model is compared to the other 14 mod-
els) and the statistical significance of the differences between the
models was obtained.
6

3. Results and discussion

This section shows the results obtained for the forecast of
DSP toxins in mussels in the RIAV1 and L5b production areas
using different prediction models: ARIMA, VAR, MLP, CNN and
LSTM models. At first these were trained with data from each
production area in separate but, due to the small amount of data
collected for each area, this led to overfitting (results not shown).
Thus, to increase the size of the training set, the data from
eight production areas were merged to train the ANN models, as
described in Section 2.2.2. Table S3 shows the combinations of
ANN models and hyper-parameters used.

The MAE values obtained for the univariate models on the
training, validation and test sets up to four weeks in the future
are shown in Tables 1 and 2, for the RIAV1 and L5b areas,
respectively. The results show a large increase in the error from
the forecasting horizon t + 1 to t + 2 for the ANN models in all
the datasets, suggesting that the models had much more difficulty
predicting beyond one week into the future.

Comparing the classical ARIMAmodel with the univariate ANN
models in the RIAV1 and L5b production areas (Tables 1 and 2),
the ANNs outperformed ARIMA in the training and validation
sets at nearly all forecasting horizons. These results indicate that
the ANNs could better capture the patterns in the data when
compared to the simpler autoregressive models. According to the
validation MAE, among the ANNs, the LSTM outperformed all
other univariate models at all forecasting horizons in both RIAV1
and L5b areas.
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Fig. 2. Observed values for the DSP concentration in mussels (in blue) in the RIAV1 production area and one-week ahead forecasts (in red) obtained by the bivariate
VAR (upper figure) and LSTM (bottom figure) models. The dashed lines separate the training, validation and test sets.
The DSP-producing phytoplankton are the direct cause of
hellfish contamination by DSP toxins. Thus, in order to try to
mprove the results for the univariate models, multiple bivariate
NNs (Table S3) and a bivariate VAR model were built, which
ere trained using both the DSP toxins and the DSP-producing
hytoplankton cell counts variables as input.
The bivariate VAR was outperformed by the univariate ARIMA

n both training and validation sets from both production areas
Tables 1 and 2). For MLP and CNN, the bivariate models yielded
lower training error for RIAV1 but a slightly higher valida-

ion error than the univariate models. The bivariate LSTM model
ielded better results than the univariate model in both training
nd validation sets. For the L5b area (Table 2), the use of the
hytoplankton data as an explanatory variable in ANNs allowed
o improve the results at the forecasting horizon t + 1 in the
alidation set, with the best results among the bivariate models
eing obtained by the LSTM.
Including the phytoplankton improved the results of some

orecasting models. To try to improve these results, the me-
eorological and oceanographic variables described in Table S1
ere also included. With this addition, multivariate VAR yielded
etter results than bivariate VAR (Tables 1 and 2). However, for
he ANNs the multivariate models were generally outperformed
y the univariate and bivariate models. The increased in the
AE, observed mainly in the validation set, suggested overfitting,

.e., the increase in the number of variables lead to the use of more
omplex models, which caused them to adapt too much to the
etails in the training data.
Thus, in order to improve the results of the multivariate mod-

ls, an autoencoder was used to decrease the dimension of the
7

seven meteorological variables into one feature. Networks trained
on the data obtained by the autoencoder generally performed
better than networks trained with all variables both for RIAV1
and L5b production areas (Tables 1 and 2), obtaining a lower
validation error, indicating less overfitting. These results sug-
gest that encoding meteorological data might be more suitable
than using all the variables without transformation. However,
univariate and bivariate ANNs perform even better at the first
forecasting horizons for the MLP and CNN models, and at all
forecasting horizons for the LSTM. Thus for the MAE, the univari-
ate and bivariate models achieved a better performance than the
multivariate models, especially at the first forecasting horizons.
These results indicate that the additional variables used in this
study are not as informative as expected, with the most useful
variables for predicting toxins concentration being previous toxin
concentration values and the phytoplankton that produces those
toxins.

To summarize the results in terms of MAE, of all the models
examined, for the RIAV1 production area the best results were
obtained by the bivariate LSTM, followed by the univariate LSTM.
In the test set, the best results were also obtained by the bivariate
LSTM at the first forecasting horizons. However, the networks
were outperformed by VAR at long forecasting horizons. For the
L5b production area, the best models in both validation and test
sets were also the univariate and bivariate LSTMs.

Besides evaluating the MAE values obtained by each model,
it is also very useful to compare the predicted toxin values with
the actual values using time plots. Taking the RIAV1 area at the
forecasting horizon t + 1 as an illustrative example, the best
results were obtained by the bivariate LSTM. The time plots
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Fig. 3. MAE values obtained by autoregressive and LSTM models in (a) RIAV1 and (b) L5b production areas, for the training (wider bars) and test (narrower bars)
sets.
for this model and its classical autoregressive counterpart for
comparison, the bivariate VAR model, are shown in Fig. 2.

The VAR model seems to obtain predictions with a delay of
about one week, i.e., the forecasts for the following week seem
to be identical to the values of the current week, which despite
leading to a relatively low MAE, is not useful. The bivariate LSTM
gives better results, with very accurate predictions obtained for
all data sets.

For a closer inspection of the predictive ability of the LSTM
models, Fig. 3 compares their training and test MAE values with
the corresponding values for the classic autoregressive models.

For both production areas, LSTM outperformed autoregressive
models, in particular at t + 1, though the advantage was not as
evident for longer forecast horizons in the RIAV1 area (Fig. 3).
Among the autoregressive models, ARIMA and multivariate VAR
performed similarly in both areas, with the multivariate model
outperforming the univariate model at long forecasting horizons
in RIAV1. Among the LSTMs, the best performance was with the
univariate and bivariate LSTMs, followed by the LSTM combined
with the autoencoder. Using all variables with the LSTM seems to
result in overfitting.

The ability to predict whether toxins concentration will be
above or below the regulatory limit was evaluated computing the
TPR and TNR (Eqs. (4) and (5)) values for each model and fore-
casting horizon, shown in Fig. 4 for the autoregressive and ANN
models for the RIAV1 and L5b areas. The autoregressive models
yielded high TPR values at all forecasting horizons, particularly
in RIAV1, but TNR values were low, meaning a high rate of false
positives, with the model mistakenly predicting DSP values above
the regulatory limit. This error can lead to unnecessary mitigation
8

efforts in anticipation of interdictions that do not occur, leading
to economic losses.

With the ANN models these errors were not as common. The
TPR values in RIAV1 were similar among the models evaluated,
with the CNN and LSTM models outperforming the MLP models
and bivariate models outperforming all others for long forecasting
horizons. The CNN and LSTM models also have a high TNR at
t + 1, but not at longer forecasting horizons. For L5b, the models
yielded lower TPR values in comparison to the RIAV1. In contrast,
TNR values were significantly higher for L5b than for RIAV1. This
is probably due to L5b having fewer high concentration events
(Figures S1 and S2)). In fact, about 62% of the DSP time series
values for this area are below the regulatory limit. On the other
hand, for the RIAV1 area, only about 45% of the DSP concentration
values are below the regulatory limits. This might have enabled
forecasting models to better learn the dependencies between the
variables under study for non-toxic events in L5b. For this region,
multivariate models, namely the LSTM, had the best results with
these metrics.

Aside from predicting when toxins are above or below the
regulatory limit, it is particularly important that models predict
when contamination changes from one state to the other, since
the exact timing is crucial for the producer to take appropriate
measures. This can also be evaluated by analyzing TPR and TNR
values obtained for each model (Fig. 5), though in this case a
positive event corresponds to a change of state, and a negative
event to remaining in the same state as the previous week. In
both production areas this seems to be more difficult than pre-
dicting contamination events. Nevertheless, TPR for ANN models
are clearly superior to those for autoregressive models at all
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Fig. 4. TPR and TNR values for the toxins concentration above or below the regulatory limit obtained by the autoregressive and ANN models in (a) RIAV1 and (b)
L5b production areas, for the training (wider bars) and test (narrower bars) sets.
forecasting horizons, although this metric is lower for forecasting
horizons higher than t + 1. Among the ANN models differences
are not consistent, with univariate and multivariate CNN and the
LSTM giving higher TPR values in RIAV1 but bivariate MLP giving
better results than the other networks in the L5b, particularly at
t + 1.

Model comparison. The p value obtained with the Friedman test
was very low (10−184), indicating the models are not all behaving
in the same way. the Nemenyi posthoc test was then used for the
pairwise comparisons. Fig. 6 shows the results focusing on those
models that seem to perform the best under the different criteria
we used. These seem to be those using the features extracted with
the autoencoder and the univariate and bivariate LSTM models.

The best performing models are nearly all significantly differ-
ent from each other, with the exception of the CNN and MLP
models using the features extracted with the autoencoder. Com-
paring with the remaining models, the LSTM models are not
significantly different from some of these, especially the univari-
ate LSTM, which seems to be indistinguishable from most other
models.

4. Conclusions

Shellfish production can be affected by contamination by ma-
rine biotoxins, which causes sudden closures to the Portuguese
production areas and leads to economic losses. Thus, it becomes
necessary to forecast biotoxins concentration in shellfish in order
to assist the productive sector in anticipating and mitigating these
negative impacts.

In this study, several prediction models were explored with
the goal of understanding which are the most useful and accurate
9

in making these forecasts. We focused on predicting DSP toxins
concentrations in mussels one to four weeks in advance, us-
ing univariate, bivariate, and multivariate time series forecasting
methods.

The results showed that the models were considerably more
accurate for one-week ahead predictions than for longer forecast-
ing horizons. Thus, even though the forecasts beyond one week
into the future are still useful to warn the production sector about
possible closures to the shellfish production areas, they cannot be
used with the same confidence as the one-week ahead forecasts.

Furthermore, in the areas under study, ANN models gener-
ally outperformed the autoregressive models, VAR and ARIMA,
showing the potential for ANNmodels for these predictions. LSTM
models seem to provide the lowest MAE, a global measure of
performance to compare the models, but for the more useful met-
rics of contamination state and state change predictions, different
combinations of ANN architectures (MLP, CNN and LSTM) and
inputs (univariate, bivariate and multivariate) produced better
results on a case-by-case basis, depending on the specificities
of the time series under study. Interestingly, bivariate models
yielded comparable and for some cases superior results compared
to the multivariate models. Indeed, the oceanographic and me-
teorological variables used for model building showed not be as
informative as expected. For instance, remotely sensed chl-a is
used as a proxy for phytoplankton, but contamination only arises
from toxic phytoplankton, which might turn this variable not as
relevant as foreseen. Moreover, the meteorological variables were
obtained by IPMA’s meteorological stations, not exactly at the
same location as the sampling points, which might lower the
contribution of these variables to the model outcome. Further
modeling efforts to predict shellfish contamination by marine

biotoxins might encompass the incorporation of other time-series
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Fig. 5. TPR and TNR values for the changes to the contamination state obtained by the autoregressive and ANN models in (a) RIAV1 and (b) L5b production areas,
for the training (wider bars) and test (narrower bars) sets.
Fig. 6. Pairwise comparison of models using a significance value of 0.05. Black circles indicate statistically significant differences, using the corrected Nemenyi test.
White circles indicate p values greater than 0.05.
y

variables which are expected to have a role in HABs forma-
tion and subsequent shellfish contamination, namely, salinity, pH,
oxygen concentration, dissolved organic matter, and hydrody-
namic variables. In which concerns model development, future
research might consider the use of deep neural networks for
time-series forecasting, as recently shown promising for water
quality prediction scenarios.

In conclusion, forecasting shellfish contamination by marine
iotoxins is a complex and challenging problem. Nonetheless,
sing, for example, a bivariate LSTM trained on the biotoxins
nd the phytoplankton variables, which are variables routinely
easured within shellfish monitoring systems worldwide, it is
ossible to obtain accurate predictions one week into the fu-
ure. This represents an invaluable contribution to the shellfish
roduction sector, by enabling anticipating and mitigating the
10
negative impacts that closures impose on all players involved in
the shellfish production chain, and a great step forward towards
the development of a forecasting system for shellfish contam-
ination by marine biotoxins. Further research efforts might be
employed to extend the present methodology to less frequent
toxins and other shellfish species.
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