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Resumo 
 
Recentemente as aplicações conhecidas como sistema de álgebra computacional, CAS, 

compostas por muitas funções para computação simbólica estão disponíveis ao público em 

geral. Com esse tipo de aplicação, utilizadores puderam delegar ao computador toda, ou uma 

parte significativa dos cálculos simbólicos presentes em muitos algoritmos matemáticos. Os 

modelos matemáticos, que são uma descrição de um sistema usando linguagem e conceitos 

matemáticos, são muito utilizados nas ciências naturais e engenharia, bem como nas ciências 

sociais. 

O principal objetivo deste trabalho é o de criar uma linguagem textual simples e eficiente para 

a formalização de modelos matemáticos no domínio das integrais singulares. Por outras 

palavras, facilitar o trabalho de programação a um não especialista, como é o caso dos 

matemáticos, quando estão formulando problemas e fazendo uso de linguagens de 

programação.  

A nova linguagem criada, também chamada linguagem de domínio específico (DSL), 

denominada SIOL, Linguagem para Operadores de Integrais Singulares, foi criada, não apenas 

para resolução de integrais singulares, mas para oferecer outras informações sobre conceitos 

da teoria de operadores, não tendo a complexidade que normalmente é encontrada nas 

linguagens de uso geral. Com recurso ao Xtext e Eclipse, os autores criaram uma linguagem 

com destaque de sintaxe, verificação de erros e um editor automático para alguma das tarefas 

da teoria dos operadores, relacionadas com integrais singulares, gerando resultados que usam 

o Wolfram Mathematica. 

 

 

Palavras-chave: Symbolic Computation, Mathematical Models, Xtext, DSL, Operator Theory 
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Abstract 
 
Recently, the applications known as computer algebra system, CAS, packed with extensive 

capabilities of symbolic computation have been available to the general public. With these 

software applications, users were able to delegated to the computer all, or a significant part, 

of the symbolic calculations present in many mathematical algorithms. Mathematical models, 

a description of a system using mathematical concepts and language, are largely used in 

natural sciences and engineering, as well as in social sciences. 

The main goal of this work is to provide a simple and efficient textual language to formalize 

mathematical models in the domain of singular integrals. In other words, to facilitate the 

programming task to a non-specialist, like mathematicians, when formulating problems using 

a computer language. 

The new created language, also known as a Domain-Specific Language (DSL), named SIOL, 

Singular Integral Operator Language, created not only to compute singular integrals but to 

provide with other information about operator theory concepts, will not have the complexity 

that is normally found in general-purpose languages. With Xtext and Eclipse, the authors will 

create a syntax highlighting, error checking and auto-completion editor for some of the 

operator theory tasks related to the singular integrals, that generates its outputs that uses 

Wolfram Mathematica. 

 

Keywords: Symbolic Computation; Mathematical Models; Xtext; DSL; Operator Theory. 
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1. Introduction 
 

1.1. Motivation 
 
“Normally when we think of computers, we imagine constructing machines or programs for 

specific purposes – to perform tasks we want. Certainly, this is what Turing had in mind when 

he set up Turing machines or discussed how intelligent machines could be built” (Wolfram, 

2011). Humans have been trying to develop, for a long time, machines that can assist them with 

several tasks, including performing calculations and processing data. As populations grew and 

society became more sophisticated over time, this need to process data increased dramatically. 

The lack of portability between different old computers, and computational scenarios, led to 

the need for the development of high-level languages — denominated this way because they 

permitted the computer programmer to ignore low-level details of a computer's hardware. 

Further, it was recognized that the closer the syntax, rules, and mnemonics of a programming 

language could be to the natural language, the less likely it became that the programmer would 

inadvertently introduce errors into the program (Malik, 1998). 

Computer programming languages, in general, are used to create algorithms, which are a 

precisely defined sequence of rules telling how to produce specific output information. In 

recent years, computer programming languages called algebraic modelling languages, have 

been accepted worldwide and have been adopted by all sorts of users as a key feature to develop 

computer systems, like large-scale optimization problems (Fourer, 1998). In an attempt to 

formulate mathematical equations, and consequently its algorithms, from given real-world 

problems, a methodology called mathematical modelling was created to aid mathematicians, 

physicists, and other scientists (Aris, 1995). Aligned with mathematical modelling concepts 

and provided with extensive capabilities of symbolic computation, the algebraic modelling 

languages are available to the general public and are known as computer algebra systems 

(CAS). They allow delegating to a computer all, or at least a significant part, of the symbolic 

calculations present in many mathematical algorithms (Heid & Edwards, 2001). 

These modelling languages provide the best approach for non-programmers to represent 

complex problems since no sophisticated programming skills are required. According to a 

recent survey among operator theory researchers, performed in May 2021, it was verified that 

they do not include themselves in the computer programming experts’ group. This research 

also verified that the lack of knowledge on programming can be itself an important barrier (see 
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chapter 4). So, it is crucial to provide simple and attractive languages to implement their 

systems without using general and complex programming languages (Martins & Conceição, 

2017). 

In mathematics, operator theory is concerned with the study of linear operators, usually on 

vector spaces whose elements are functions and whose vector spaces are usually infinite-

dimensional. These calculations normally involve a large number of properties and 

classification of great complexity operators, which can be a barrier to professionals and 

researchers using the available general-purpose languages (GPL), when developing new, or 

even when understanding related algorithms. 

 
1.2. Objective 

 
In software development and domain engineering, a domain-specific language (DSL) is a 

programming or specification language dedicated to a particular problem domain. In the market 

exists different kinds of mathematical modelling languages, dedicated to a particular domain, 

frequently used for describing and solving very complex problems in different mathematical 

areas of study. As an example, we mention the operational research area, that has used 

modelling languages to solve combinatorial optimization problems over the years.  

Although these languages are very interesting and have great features, they have focused on 

optimization problems limiting their expressiveness to this purpose of optimization. 

Considering the focus of our work, the main and more interesting feature of these languages 

resides in the fact that the model can be written in a style very close to the mathematical one, 

which is a facilitator to an audience that might not have an experience on common GPL 

languages (Martins & Conceição, 2017). Despite this, none of the languages could entirely 

satisfy the needs of this work, when working with problems involving operator theory concepts, 

in particular with Cauchy type singular integrals such as described in (Conceição et al., 2013), 

due to the extensive inherent symbolic and numeric calculations on its algorithm. Considering 

the lack of modelling languages and related tools, that can describe and process the different 

classes of problems related to singular integrals, we decided to develop a DSL for this particular 

application domain. Since this is an ongoing project, this work has the potential to be extended 

to many other problems inside operator theory. 
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1.3. Contributions 
 
During this work development, a paper was published, and three oral presentations were 

performed to reinforce the interest of the scientific community: 

§ Corrêa,T., Conceição, A.C., Martins, P.V. - A domain specific language for operator 

theory. Proceedings of the 5th International Conference on Numerical and Symbolic 

Computation. Developments and Applications (ECCOMAS Thematic Conference). A. 

Loja, M. Bezzeghoud, J.I. Barbosa, J.A. Rodrigues (Eds.), pp. 63-71	

§ Corrêa,T., Conceição, A.C., Martins, P.V. - A Domain-Specific Language for Operator 

Theory - International Congress on Interdisciplinarity in Social and Human Sciences, 

2016  - Universidade do Algarve, Portugal 

§ Corrêa,T. A domain-specific language to compute singular integrals  - (WOAT 2016) 

International Workshop on Operator Theory and Operator Algebras, 2016 – Instituto 

Superior Técnico, Lisbon, Portugal 

§ Conceição, A.C., Martins, P.V., Tiago Corrêa - The design of operator theory 

algorithms and the creation of a domain specific language – WOTCA 2021- Workshop 

on Operator Theory and Complex Analysis – (WOTCA 2021) - Instituto Superior 

Técnico, Portugal 

 
1.4. Document Structure 

The structure of this thesis is presented following a set of steps to create the final artefact. The 

second chapter is a description of operator theory fundamentals where some existing 

algorithms are described. Special attention was given to the singular integrals and the [SInt] 

algorithm since they are the basis of this project. As part of the state of the art, the chapter also 

includes an explanation of the DSL concept and a comparison of the existing market 

mathematical languages. 

The third chapter describes the investigation methodology used in the project development. 

The fourth chapter presents the problem concerning the lack of a language dedicated to operator 

theory. 

Following this set of steps, in the fifth chapter, we propose the creation of a DSL as a solution 

to solve the existing problem. Moreover, the development environment used for its creation is 

described. In chapter six, a detailed description of the created language is presented.  

In the seventh chapter, the newly created algorithms to test the application of the new language 

are described, and in the eighth chapter, an evaluation of the results obtained during the test of 
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the new DSL is shown. In the last chapter, conclusions were made and future developments 

were proposed to continue this work.  

This work also contains an extensive and updated bibliography – chapter 9, and two 

appendixes. 
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2.State of the Art 

This chapter presents the theory involved in the development of the topics of this research, both 

operator theory and DSL construction. In section 2.1 a brief introduction and explanation of 

the specific approached operator theory concepts on this research are made, as well as the [SInt] 

algorithm used as the basis of this project. Section 2.2 introduces the DSL concept and how it 

was used to reach the solution for the proposed problem in this thesis work and discussed 

further on. Finally, section 2.3 presents a comparison of the currently existing market solutions 

for mathematical languages that also serves as a justification for the need of developing a new, 

more efficient, and operator-oriented language for this purpose.  

 
2.1. Fundamentals of Operator Theory  

2.1.1. Introduction 
Operator theory is a branch of functional analysis that deals with bounded linear operators and 

their properties. The operator theory has many applications in several main scientific research 

areas, such as structural mechanics, aeronautics, quantum mechanics, ecology, probability 

theory, electrical engineering, among others, and the importance of its study is globally 

acknowledged (Conceição, 2021). 

Some progress has been achieved for some classes of singular integral operators whose 

properties allow the use of particular strategies. However, the existing algorithms allow, in 

general, to study the concepts but they are not designed to be implemented on a computer. 

In the last years, the computer algebra system Mathematica was used to implement on a 

computer, different analytical algorithms within the operator theory: calculation techniques to 

compute singular integrals, analytical algorithms for solving integral equations (Conceição, 

2007; Conceição et al., 2010), analytical algorithms to factorize scalar and matrix functions 

(Conceição et al., 2012; Conceição et al., 2010), and more recently analytical algorithms to 

study the spectrum (Conceição & Pereira, 2016; Conceição & Pereira, 2017) and the kernel 

(Conceição et al., 2016) of several special classes of singular integral operators. 

The design of the algorithms, referenced in this work, is focused on the possibility of 

implementing on a computer all, or a significant part, of the extensive symbolic and numeric 

calculations, present in analytical algorithms. Some of the already existing methods rely on 
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innovative techniques of the operator theory and have the potential for extension to more 

complex and general problems (Conceição & Pires, 2022).  

As the outcome of this work, the computer algebra system Wolfram Mathematica was used. 

This system is a symbolic mathematical computation program, conceived by Stephen Wolfram, 

used in many scientific, engineering, and computing fields.  

 
2.1.2. Basic Concepts 

Considering that T represents the unit circle in the complex plane, let T+ and T− denote the open 

unit disk and the exterior region of the unit circle including the ∞, respectively. As usual, L∞(T) 

represents the space of all essentially bounded functions defined on T and H∞(T) the class of 

all bounded and analytic functions in T+. Let R(T) be the algebra of rational functions without 

poles on T and R±(T) the subsets of R(T) whose elements have no poles in T±, respectively. 

It is well known that the singular integral operator with Cauchy kernel, ST, defined almost 

everywhere, by 

                                                        STj(t) = !
"# ∫

$(&)
&()

𝑑𝜏, 𝑡𝜖* 	T                                                            (1) 

where the integral is understood in the sense of its principal value, represents a bounded linear 

operator in the Lebesgue space L2(T). In addition, ST is a self-adjoint and unitary operator in 

L2(T) (Gohberg & Krupnik, 1992). Thus, we can associate with ST two complementary Cauchy 

projection operators 

                                                                   P± = (I ± ST) / 2                                                    (2) 

where I represents the identity operator. 

The projections (2) allow us to decompose the algebra R(T) in the topological direct sum  

                                                         R(T) = R+(T) Å R0-(T)                                            (3) 

Where R+(T) = P+R(T) and R0-(T) = P- R(T). We also have R- (T) = R0-(T) Å C  

 

2.1.3.  [SInt] Algorithm 
As the basis for this project, the [SInt] (Conceição et al., 2013) algorithm was used. This 

algorithm is capable of computing some classes of Cauchy-type singular integrals defined on 

the unit circle. 
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There exist several numerical algorithms and approximation methods for evaluating some 

classes of singular integrals. There are also several analytical techniques that allow the exact 

computation of singular integrals for particular cases. However, the [SInt] and the [SIntAFact] 

algorithms (Conceição et al., 2013), up to our knowledge, are the only analytical algorithm 

designed and implemented for computing singular integrals with essentially bounded functions 

defined on the unit circle. Both algorithms were implemented using the numeric and symbolic 

capabilities of the computer algebra system Mathematica. In particular, the implementation of 

the [SInt] algorithm, makes the results of lengthy and complex calculations available in a 

simple way to researchers of different areas (Conceição & Pires, 2022).   

The kind of algorithms like [SInt] is of big importance to the design of factorization and spectral 

algorithms. The reason why this algorithm was chosen was because of the relevance of its steps 

to many operator theory-related algorithms. These steps can be organized in a way to compose 

other interesting algorithms, by reusing the already created procedures.  

The [SInt] algorithm computes (1) when we can represent the function j as 

																																																									𝜑(𝑡) = r(t)[𝑥+(𝑡) + 𝑦((𝑡)]                                                 (4) 

where x+, 𝑦(333Î H¥(T) , where the overline denotes the complex conjugate of 𝑦( in the unit circle, 

and r Î R(T). 

The algorithm extensively uses the properties of the projection operators (2), that emerge when 

those operators are applied to function in H¥(T), (e.g., x+), and in H,(333333T), where the overline 

denotes the complex conjugate of H¥(T), (e.g., 𝑦(). The [SInt] explores the rationality of r(t) 

reducing all possible situations to a few basic cases. After the decomposition of the rational 

function r(t) in elementary fractions, the singular integrals are computed using the formulas 

described in (Conceição et al., 2013). 

Figure 2-1 illustrates the design of this algorithm where the auxiliary functions X(t) and Y(t) 

are defined as X(t) = r(t)x+(t) and Y(t) = r(t)𝑦((t). 

For each input of functions r(t), x+(t) and 𝑦((t) the [SInt] algorithm computes the singular 

integrals STX(t) and STY(t), i.e., compute the singular integral STφ(t). 

It must be noted that the user may choose not to assign any particular expression to the input 

functions x+(t) and 𝑦((t). In this case, the obtained singular integrals are general functions 

of x+ and/or 𝑦(. 
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Figure 2-1- Flowchart of the [SInt] algorithm 

 
On the output of the algorithm, the singular integrals STX(t) and STY(t) are defined as expressions 

in closed form and therefore, can be used in further calculations just like any other function in 

Mathematica (Conceição & Pires, 2022). 

When making use of the [SInt] algorithm, the user must be aware that, it is up to his 

responsibility to provide a rational function r belonging to the R(T), a function x+ in H¥(T), 

and a function 𝑦( that has its conjugate in H¥(T). If a non-valid input is considered, [SInt] 

outputs an error. Furthermore, since the poles of r are crucial information for this calculation 

technique, the success of the [SInt] algorithm is dependent on the possibility of finding these 

poles by solving a polynomial equation. For instance, if a rational function r is provided with 

a fifth-degree or higher polynomials, the algorithm will most of the time give an incorrect 

output since it cannot apply the properties of the projectors. 

 

2.1.4. [SInt] Example 
This subsection presents some examples of non-trivial singular integrals computed with 

[SInt](Conceição & Pires, 2022). For each input of functions r(t), x+(t), and 𝑦((t), the [SInt] 

algorithm computes the singular integrals STX(t) and STY(t), for X(t)=r(t)x+(t) and 

Y(t)=r(t)𝑦((t). It is important to remember that the user has the responsibility to introduce valid 

r, x+ and 𝑦(. 

The example on Figure2-2 uses the [SInt] algorithm to input the rational function r and 

considers x+ as a general expression and 𝑦((t) = t-k. 
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Figure 2-2 – Part of the [SInt] algorithm indicating the input of the rational function r(t). 

 

 
 

 
Figure 2-3 - Part of the structure of the [SInt] algorithm indicating the Input of the auxiliary 

functions x+ and 𝑦−. 

 

 
Figure 2-4 - Output given by [SInt] algorithm 

  
After the execution, the [SInt] will give as an output, the singular integrals presented in Figure 

2-4. In Figure 2-2, the [SInt] algorithm considers k ³ 0 and considers that in the input,	𝑦(333 ∈

𝐻,(T), that allows the user to include arbitrary constants, and the outputs visible on              

Figure 2-4. 

During the development of this work, it was possible to improve the existing [SInt], discovering 

the position of the poles, avoiding errors on the outputs (when a non-valid function is input) 

and showing the user the proper error message. 

Recently, a new algorithm was developed and named [SInt]2.0  (Conceição & Pires, 2022), 

which was created also to improve the original [SInt]. This improved version was created 

directly on Mathematica. The idea behind this project is different, since it aims to allow users 
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to directly create improvements using another approach involving a language using new 

simpler coding syntax to create and improve algorithms related to the operator theory.       

 

2.1.5. Other operator theory algorithms 
Besides the [SInt], other algorithms were used as inspiration for this work. The explicit rational 

function factorization algorithms [ARFact-Scalar] and matrix [ARFact-Matrix] can compute 

explicit factorizations of given non-singular rational matrix functions defined on the unit circle 

and can be used as a basis to design new operator theory algorithms.  

Both algorithms were also implemented using the CAS Mathematica. The design of new 

analytical methods, even if only for some restricted special classes of functions, is still very 

significant to the development of such a theory. The created [ARFact-Scalar] algorithm always 

computes the factorization index of any considered factorable scalar rational function defined 

on the unit circle (Conceição, 2020). On the other hand, the generalized factorization algorithm 

[AFact] uses the inner-outer factorization concept (Conceição A.C., 2020) 

On the study of the kernel of an operator, the importance of the factorization theory is also well 

known (Gohberg & Krupnik, 1992; Litvinchuk & Spitkovskii, 1987). It has already been 

demonstrated that the generalized factorization concept has relations with estimations of the 

dimension of the kernel of some classes of singular integral operators with the non-Carleman 

shift. It has also already been described how the use of algorithms like [AFact], [ARFact-

Matrix], and [SInt] (Conceição, 2021) can estimate the dimension of the kernel of some classes 

of singular integral operators. 

The analytical algorithms [ADimKerPaired-Scalar], [AKerPaired-Scalar], and 

[ADimKerPaired-Matrix] described in (Conceição, 2021), were designed reusing features of 

the already existing algorithm [ARFact-Scalar] and [ARFact-Matrix] (Figure 2-5).  

 
Figure 2-5 - Relations between the algorithms, adapted from Conceição (2021). 
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An interesting line of research is to improve the existing operator theory algorithms, creating 

new and more efficient versions. Some of the existing operator theory algorithms can be 

improved by introducing more possibilities for “input” and “output”. The possibility of storing 

information about “root objects”, obtained by the resolution of equations, can also improve the 

effectiveness of some algorithms. During the development of this language, detailed in section 

6, created to facilitate the development of algorithms related to the operator theory, the [SInt] 

algorithm could be improved by introducing the possibility of saving information obtained 

through the “root objects”. The information provided by such objects helps the user controlling 

whether the roots of the provided function lie over, inside, or outside the unit circle, and by 

knowing this, wrong outputs of the algorithm could be avoided. This improvement resulted in 

a new version of the algorithm with greater efficiency, called [SInt_SIOL]. 

It is obvious, the need for continuous design and development of new analytical algorithms in 

the area of operator theory, considering new concepts and new classes of operators and 

functions. In this sense, parts of the [SInt] algorithm code can be used to design new analytical 

algorithms for solving integral equations and for studying the spectrum and the kernel of 

special classes of singular integral integrals with essentially bounded coefficients.  

The success of the created algorithms depends on the possibility of finding zeros and poles by 

solving polynomial equations. This can be a serious limitation when working with polynomials 

of the fifth degree or higher. However, even in this case, thanks to the symbolic and numeric 

capabilities of Mathematica, it is still possible to obtain the zeros and the poles of a rational 

function. For instance, if a rational function  

                                                          r(t) = r1(t)/r2(t)                                                             (5) 

has a numerator with a high degree, we cannot find explicit formulas for its zeros. The root 

object is not a mere denoting symbol but rather an expression that can be symbolically 

manipulated and numerically evaluated. In particular, it is still possible to know if any given 

root lies in T, in the interior, or in the exterior of the unit circle, which is all the information 

needed by some algorithms to give the desired output.  

This limitation could be treated with the creation of the [SInt_SIOL] algorithm, by checking 

the conditions imposed by the algorithms, informing the user, and preventing the error to 

happen. The solution created analyses the poles and decides whether it was possible or not to 

have an accurate solution with the expression used (Conceição, 2021). Recently with the 

development of the [SInt]2.0 (Conceição & Pires, 2022) this problem could be fixed, but the 
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changes on the [SInt] that could overcome this limitation were not yet transferred to definitions 

of SIOL language. This is an improvement for the next version. 

Other algorithms, described with more details in chapter 7 were created with the help of the 

DSL, to verify when a function belongs to R +(T) or to R o-(T) and to compute singular integrals 

associated with the Cauchy projection operators P±. These calculations can be very useful when 

writing new algorithms. 

 

2.2. Domain-specific language (DSL) 
A programming language, as mentioned, is a notation for writing programs that are 

specifications of a computation or algorithm. It comprises a set of instructions used to produce 

outputs, that are very often computer software. The description of a programming language can 

be split into two components, syntax, which corresponds to its form, the way it is written, and 

semantics corresponds to its meaning. 

A domain-specific language is a programming language with a higher level of abstraction 

optimized for a specific class of problems. A DSL uses the concepts and rules, applied to its 

syntax and semantics, from the field or domain and can reduce the costs related to software 

development and maintenance, by facilitating the users’ ability to reuse code (Barisic et al., 

2011). The main purpose of a DSL is to encapsulate and abstract the generic code into a new 

interface, offering a restricted suite of notations and abstractions that can be easily understood 

by a domain expert user. This is contradictory to a GPL (Table 2-1). A GPL, as mentioned 

before, is a type of computer programming language designed to be used for software writing 

in the widest variety of application domains. By definition, it can run on or compile to any 

system. Even though some languages might seem fitter to a task than others, due to speed or 

hardware, programmer-friendly, or even simply because they are easier to learn, does not make 

them specific to a domain/purpose. As an example, three of the most well-known programming 

languages existing nowadays, Java, Python, and C++, could technically be called a GPL.  

In many knowledge areas, it is common to develop solutions using languages that focus on the 

problem’s specific purposes and algebraic modelling languages are the ones accepted and 

adopted for mathematical modelling. 

Language workbenches make the development of new languages affordable and, therefore, 

support a new quality of language engineering, where sets of syntactically and semantically 

integrated languages can be built with comparably little effort. They are tools that support the 

efficient definition, reuse, and composition of languages and their Integrated Development 
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Environment (IDE). The usage of the language workbenches can lead to multi-paradigm and 

language-oriented programming environments that can address important software engineering 

challenges (Fowler, 2006). Language workbenches are currently enjoying significant growth 

in number and diversity, driven by both academia and industry. Existing language workbenches 

are so different in design, supported features, and use terminology that it is hard for users and 

developers to understand the underlying principles and design alternatives. To this end, a 

systematic overview would be helpful. Textual workbenches like JastAdd, Rascal, Spoofax, 

and the one used on this project, Xtext, can be seen as very modern and up-to-date options, 

leveraging advances in editor technology of mainstream IDEs (Erdweg et al, 2011). 

 

Table 2-1 – Comparison between GPL and DSL. 

 DSL GPL 
Syntax Custom-made Generic use 

Expressiveness 
High, since it is focused on a 

Domain 

Lower, used for all sot of 

solutions 

Executability Does not need to be executed Needs to be executed 

Reuse 
The primary contribution is to 

enable reusable articles 

Can or cannot enable the 

reuse 

Efficiency High, since focused on what 
Lower, a lot of effort is 

invested on the how 

Development 
Easier, does not demand many 

computer programmer skills 

Demands sophisticated 

computer knowledge 

Target audience and 

usability 

Focus on a specific audience 

and easy to use 

For a general audience, and 

demands a complex training 

 
Having the concept of a DSL in mind, a variety of languages for a plethora of different domains 

was developed. In the next section, there is an analysis of some of the existing ones for the 

mathematical domain. 

 
2.3. Comparison of existing mathematical languages  

To make sure that there are no other DSL that could deal with the calculations required by the 

operator theory algorithms, other mathematical programming modelling languages GAMS, 

AMPL, and ZINC were analysed in detail. 
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These languages were developed to alleviate many of the difficulties associated with the 

development of large, complex mathematical programming models, and to allow their direct 

formulation and resolution on a computer (Martins & Conceição, 2017). These languages have 

a similar purpose but they have differences in the syntax and in the way they handle different 

presented problems (Bussieck & Meeraus, 2004; Fourer, 1998; Rafeh et al., 2005). The idea 

behind these languages is to write a solver program like writing math itself.  

The modelling language GAMS (General Algebraic Modelling System) impetus for 

development arouse at the World Bank to facilitate the solution of multi-sectoral economy-

wide models, where several manuals, time-consuming, and error-prone solutions using 

FORTRAN programs (Backus, 1957), had been previously used(Bussieck & Nelißen, 2020). 

The modelling language AMPL - a modelling language for mathematical programming - is a 

powerful algebraic modelling language for linear and non-linear optimization developed at 

AT&T Bell Laboratories, to express mathematical programs intuitively (Paarsch & Golyaev, 

2016). Zinc is a modelling language developed as part of the G12 project, a project started by 

National ICT Australia (NICTA) to develop a platform for solving large-scale combinatorial 

optimization problems (Rafeh et al., 2005; Stuckey et al., n.d.), and is the newest among these 

languages. 

From a syntax point of view, as expected, these CASs kept the problem definition and the 

actual solution implementation separated. During this research, it was possible to verify in 

(Fourer, 1998), (Chen et al., 2009), and (Bussieck & Nelißen, 2020) that the running code used 

by the solvers is generated in a process apart from problem design.  

Although all the presented languages are very interesting and have great features, their focus 

limits their expressiveness to the purpose of each one. Regarding the focus of this project, the 

most interesting feature of these languages resides in the fact that the solution can be written 

in a style very close to the mathematical one, which is a facilitator to an audience that might 

not have experience with common GPL languages, like Python or Java, among others (Martins 

& Conceição, 2017). Despite this, none of the presented languages could entirely satisfy this 

project’s needs when working with problems involving the operator theory and Cauchy 

integrals as the ones described in (Conceição et al., 2013), due to their extensive symbolic and 

numeric calculations on its algorithm. Also, the lack of a proper parameter structure and the 

fact that the language reserved words used do not match the context of the desired domain, 

shows that any attempt to build this type of solution would drastically fail. A brief comparison 

between the languages is shown in Table 2-2. 
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Table 2-2 - Comparison between languages. 

Dimension AMPL Zinc GAMS 

Mathematical-like notation Ö Ö Ö 

Language type 
Declarative 

and imperative 

Declarative and 

functional 

Declarative and 

procedural 

Types: Integer, float, array, sets Ö Ö Ö 

Types: Boolean, tuples, records  Ö  

Constraints Ö Ö Ö 

User-defined predicates and 

functions 
Ö Ö Ö 

Type checking Ö Ö Ö 

Libraries Ö Ö Ö 

Model separation Ö Ö Ö 

Solver Independent Independent Independent 

 
One good example of an existing DSL, that gets close to the needs of this project has been 

published in a paper called “Mathematical analysis using functional programming” (Ionescu & 

Jansson, 2016). The creators took as motivation a known problem: students of computer 

languages are comfortable with the “computer science perspective” which does not apply to 

mathematical expressions. The idea that a mathematical notation is often ambiguous and 

context-dependent, and that there is no attempt to even make this ambiguity explicit, explains 

the discomfort. Behind this lays the notion that any proofs in computer science tend to be more 

formal, and often uses an equational logic format with explicit mention of the rules that justify 

a given step, whereas mathematical proofs are presented in natural language, with many steps 

being justified by an appeal to intuition and semantic content, leaving a more precise 

justification to the reader. The solution proposed by the authors is that the students should 

approach a mathematical domain the same way they would for any other domain that they are 

supposed to model a software system, more specifically, the approach that a functional 

programmer would take. In computer science, functional programming is a programming 

paradigm where programs are constructed by applying and composing functions. It is called a 

declarative programming paradigm, the one, in which function definitions are trees of 

expressions that map values to other values, rather than a sequence of imperative statements 

which update the running state of the program. The importance of a well-designed syntax and 
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the creation of reusable functions that have a clear objective stated in their names are examples 

of inspirational ideas. Another inspiration that could be used is the creation of types that 

increase the readability and writability of the new code created using the language. 

A second work that has an interesting view on DSLs for mathematics is “A Domain-Specific 

Language for Discrete Mathematics” (Jha et al., 2013) which has been developed to enable the 

implementation of discrete mathematics concepts. The DSL consists of a library of functions 

and data structures for the branches of set theory, graph theory, mathematical logic, number 

theory, linear algebra, combinatorics, and functions. As well as the “Mathematical analysis 

using functional programming” mentioned before, this DSL focuses on a functional 

programming paradigm that treats computation as the evaluation of mathematical functions 

and avoids state and mutable data, because of that, they are an ideal choice for developing 

mathematical tools. The language is a pre-processed DSL, with the Haskell programming 

language as the base language and Glasgow Haskell Compiler (GHC) as the compiler. The 

reason for selecting Haskell is that it is purely functional and hence has no side effects. Among 

the advantages of using Haskell, the author cites: the lazy evaluation, where the evaluation of 

an expression is delayed until its value is needed; the expressive system, that creates and uses 

algebraic data types and performs pattern matching, polymorphic types, and functions; the fact 

that the language is list comprehensive and can have the logic theory and its operators and 

quantifiers implemented.  
 

Table 2-3 - Comparison between languages. 

 
Mathematical Analysis Using 

Functional Programming 

Domain Specific Language 

for Discrete Mathematics 

Functional 

Programming 
Ö Ö 

Well Designed Syntax Ö Ö 

Reusable Function Ö Ö 

Typing Ö Ö 

Pre-processed  Ö 

Advanced Mathematics 

Functions 
 Ö 

 

This language also presents support to mathematics relations and some other features like linear 

congruence and relations of the form ax ≡ b as well as the evaluation of modular operations 
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such as addition, multiplication, and exponentiation. The DSL also guarantees support to data 

structures for vectors. One of the main objectives of this created DSL was to keep its syntax 

very close to the notation followed for discrete mathematics. 

The two mentioned publications were a real contribution to inspiration in the creation of the 

DSL format proposed in this work, but, because of the extensive symbolic features of the 

operator theory, none of the proposed languages can be used as a solution to the problem. 

Considering the lack of a DSL that can provide a proper approach to the symbols and operators 

involved in the operator theory problems, section 6 will describe a new language focused on 

problems related to the computation of singular integrals defined in the unit circle.  

The following chapters will present the investigation methodology, the problem analysis, and 

the proposed solution. 
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3.Investigation Methodology 
3.1. Design Science Research  

Since the goal of this work was to build a new DSL, the methodology chosen to support this 

development was Design Science Research (DSR). Among all existent research 

methodologies, DSR presents itself as the ideal choice, once it is defined as a strict process to 

work with artefacts focusing on problem-solving, project analysis, or, in a case where it is 

already working, study its behaviour and after that, communicate the results obtained (Çağdaş 

& Stubkjær, 2011). It aims to produce actionable knowledge for professionals as well as 

contribute to the body of knowledge. DSR is motivated by the desire to improve the 

environment, and the human condition by the introduction of new and innovative artefacts and 

the processes for building these artefacts (Simon, 1996).   

DSR can be understood as an embodiment of three closely related cycles of activities, which 

are: the relevance cycle, the rigour cycle, and the central design cycle. Drechsler and Hevner 

(Drechsler & Hevner, 2016) also propose a fourth cycle for the DSR, change, and impact, to 

capture the impact in the time of the artefacts in the wider socio-technical system context where 

it is utilized. The recognition of these three cycles in a research project position differentiates 

design science from other research paradigms (Hevner, 2007).  

This methodology is driven by the desire to solve a field problem and not fill a knowledge gap, 

taking the perspective of the professional who has the problem, not from a neutral one, and 

aiming to develop generic solutions to field problems, not just describe or explain them. 

"Knowledge claims" and other research artefacts from DSR are based on pragmatic validity, 

whether or not they are true. It is used in transdisciplinary research, communicating among 

them through analogous thinking. In DSR, system thinking is used for the analysis and 

understanding of wholes and the relationships between the parts used to make them coherent 

(Lutkevich, 2021). DSR adds a pragmatic and normative orientation on how this understanding 

should be used to design actions or objects to achieve desired outcomes (Ropes, 2018). 

The relevance cycle (Figure 3-1) provides the research problem, the requirements, and the 

acceptance criteria for the artefact’s utility in the field (Drechsler & Hevner, 2016). This cycle 

links the environment to the artefact and constitutes an interface between its inner workings 

and the elements of its environment (Simon, 1996). From the starting point on the identification 

of the initial problem, co-creation and co-design play a prominent role in leading the design 

process. During this project’s problem explanation, a mathematics specialist and a computer 
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sciences researcher through exploratory group discussions elucidates the challenges related to 

the proposed problem. The identified challenges were then assessed through brainstorming 

technological solutions to create a prototype from the perspective of the end-users. Following 

this, through the process of co-creation, user requirements, proposed by the mathematics part, 

of the practical implementation of the technological solutions are brought into the light. More 

specifically, the problem to be addressed is the need of having a new DSL for mathematical 

purposes, with different features from the ones already in the market and evaluated by the final 

user. Finally, to ensure the relevance of the proposal, a questionnaire was presented to a group 

of relevant end-users proving the need for the project. 

The rigor cycle provides past knowledge to the research project to ensure its innovation. The 

aim is to identify what solution would provide a meaningfully contextualized artefact to tackle 

the problem under analysis. The end-user requirements are the cornerstone for the design and 

development of the artefact.  For this work, extensive research and analysis on the market and 

research options were done, and three of the most used options for mathematical languages 

have been selected to demonstrate the inexistence of a solution that can suffice the purposes of 

this project. The knowledge base is referenced in this project to guarantee that the methodology 

produced is research contribution and not routine designs based upon the application of well-

known processes (Drechsler & Hevner, 2016). “It is the rigour of constructing IT artefacts that 

distinguish Information Systems as design science from the practice of building IT artefacts.” 

(Hevner, 2007). So, the additions to the knowledge base as a result of this research will include 

extensions to the original theories and methods made during the research, the new meta-stages 

of the software development cycle artefacts (the language produced and the editor), and all 

experiences gained from performing the research and field tests of the artefact in the application 

environment.  

The design cycle is the most important part of any DSR project. This cycle of research activities 

iterates more rapidly between the construction of an artefact, its evaluation, and subsequent 

feedback to refine the design further. During the design and development of the solution 

artefact, there was a continuous iterative contact with end-users, represented in this project by 

the mathematics specialist, through codesign presentations to pool together the collective 

creativity and to adjust the original problem and user requirements to fit the needs to a 

satisfactory level. During the demonstration and evaluation, end-users used and gave their 

feedback on the implemented artefact. This feedback was used for improvements or changes 

in the solution to meet the users’ needs and to realize its full potential of intended usage as 

suggested in (Simon, 1996), where the author describes the nature of this cycle as generating 
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design alternatives and evaluating the alternatives against requirements until a satisfactory 

design is achieved. As discussed above, the requirements are input from the relevance cycle 

and the design and evaluation theories and methods. The deliverables of this work will be a 

DSL definition, a methodology of use, available in chapter 6, and an editor to be used with it.  

During the construction, Eclipse and Xtext (Efftinge, 2021), will be used as the development 

tools. As part of the development phase, tests were performed to identify possible defects and, 

when problem-free, the artefact was presented to the final users. At first, a small, selected group 

will be part of the quality assurance team and give feedback on the usage of the language. 

Progressively, the language can be improved with the use of those comments. 

The output from the DSR must be returned to the environment for study and evaluation in the 

application domain and analysed to examine how the environment has been improved and if 

this improvement can be measured (Cole et al., 2005; Jarvinen, 2007). The impact of the DSL 

will be visible by the way mathematical expressions, initially, the ones related to the operator 

theory can be represented and demonstrated, and this impact can be measured by the final 

user’s feedback, which will also determine whether additional iterations of the relevance cycle 

are needed. 

 
Figure 3-1 - DSR scheme. 

 

 

 



   21 

4.Problem Analysis 
4.1. 3 Introduction  

To better understand the research scenario, the impact of a DSL on the everyday life of the 

users, and the possible improvements in the results obtained by them, a questionnaire was 

applied to a discrete group of mathematicians. The questionnaire was performed in May 2021 

and the group involved 50 researchers whereas only 25 answered the questions. The questions 

were distributed using a Google forms survey template (Appendix A) and the complete set of 

results can be seen in Appendix B. Even though there is no direct mention of the participants’ 

age, this survey, answered by a diversified group of ages, was part of this experiment. All the 

group members had a mathematical background. The main goal, in the context of this group of 

researchers, was to understand how many users were able to effectively perform their 

programming tasks, and how much the specificities of the proposed language could affect their 

research production. 

The following charts were created from the survey responses. The final results allowed 

moving forward with the proposed project.  

 

4.2. Survey Results 
This section will display figures with graphs, created as a result of the previously explained 

questionnaire. Here the goal is to justify the creation of a DSL for operator theory by pointing 

out its relevancy and need throughout the scientific community, represented by the participants 

in the survey. The biggest part of the questioned group works at a research centre for 

mathematics. All of them are, somehow, connected to research in the area of operator theory 

(Figure 4-1). 

 
 

 

 

 

 
Figure 4-1 - Results obtained from the response to questions A “I am a member of a 

mathematic scientific research center”  and B “My research field includes topics related to 
the operator theory”. 

A B 
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None of them confirmed having any advanced knowledge in computer programming and a 

relevant group of researchers are beginners or have a basic knowledge of computer 

programming (Figure 4-2). Also, the Wolfram Mathematica has proven to be very popular 

among the participants (Figure 4-3). 

 
Figure 4-2 – Results obtained from the response to the question to measure the “Level of 

computer programming language knowledge of the participants”. 
 

 
Figure 4-3 – Results obtained from the response to the question related to: “Popularity of 

the Wolfram Mathematica among mathematics researchers”. 
 

From the evaluation of the results, a major part of the participants has declared a real interest 

in improving their skills in computer programming (Figure 4-4). Also, the smallest part of the 

questioned group affirmed that using a CAS is a significant part of their everyday tasks    

(Figure 4-5) but would like to take advantage of them more often (Figure 4-6). 

 

 
 

Figure 4-4 - Results obtained from the the participants’ response “Desire of programming 
skills improvement”. 
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Figure 4-5 – Results obtained from the participant’s response to “CAS is a significant part of 

their everyday tasks”. 
 
 

 
Figure 4-6 – Results obtained from the response of “interest of users in CAS’s”. 

 
 
In the end, most all users declared being interested in the existence of a high-level programming 

language to solve specific problems in operator theory, that can be used without the support of 

a programming expert (Figure 4-7). 

Concerning the results above, it is obvious the intention of using a language like SIOL, a 

language focused on the operator theory area, making use of a set of features that can diminish 

the existing barrier between the researcher and the programming language used for their 

everyday tasks. It is visible that the lack of experience with programming languages is real and 

that making this part of mathematician research easier is necessary and relevant. 

 
Figure 4-7 – Results obtained from the response of “interest of users on a programming 

language focused on the operator theory”. 
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When analysing these results, it is also possible to see a high participant percentage that would 

like to invest more in using any sort of CAS (Figure 4-8), showing interest in this type of 

solution. The answers from researchers using Wolfram Mathematica (Figure 4-9) also show 

that the results provided by SIOL are very useful for this type of user. Among those who 

participated, a considerable part of the scientists claimed to know the already existing 

Mathematica algorithms, focused by the DSL, for singular integrals and matrix factorization 

(Figure 4-10 A and B). 

 

 
Figure 4-8 – Results obtained from the response of “interest of the researchers on CAS”. 

 
 
 

 
Figure 4-9 – Results obtained from the response to the question related to: “researchers 

usage  Wolfram Mathematica”. 
 
 



   25 

 
Figure 4-10 – Results obtained from the response to the questions related to A“Knowledge of 

algorithms, implemented with the Wolfram Mathematica Language, for matrix functions 
factorizations and B “Knowledge of techniques for calculating singular integrals 

implemented with the Wolfram Mathematica language”. 
 

 Many of the participants know or at least would like to know more about the concept of a DSL 

(Figure 4-11) and the biggest part showed interest and affirmed that they would be a user of a 

new language created in the area of operator theory (Figure 4-12). With all this information, it 

is easy to see how the proposed language may help to improve the solution in operator theory 

tasks. 

 

Figure 4-11 – Results obtained from the response to the questions related to the knowledge 
of “the concept of Domain Specific Language (DSL)”. 

 

 
Figure 4-12 – Results obtained from the Acceptance of a created DSL for the operator theory 

evaluation. 

A B 
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5.The Proposed Solution 
5.1. Introduction 

The DSL proposed in this work aims to eliminate the need for an expert by a non-programmer 

specialist, the main goal of this project is to create a powerful extensible textual language that 

will formalize the mathematical models in the domain of the singular integrals focused on the 

"what" instead of the "how" and making the language as declarative as possible. In the end, 

instead of having to formulate complex algorithms in a generic environment, this DSL will 

allow the user to have models defined in a specialized language with reusable functions and 

parameters, focused on solving different classes of problems related to the computation of 

singular integrals. All the functions created for this new language were based on existing 

algorithms for operator theory, which could be combined to create other new algorithms. These 

methods were created with identifications (names) that are meaningful to this mathematica’s 

area of knowledge, thus making the usage simple and trivial for any user, but especially for the 

mathematicians. The created language is divided into three parts, the inputs, the block of 

functions, and the output. In the section called inputs, the necessary inputs to the algorithms 

are created, on the next section, the block is where the actual computation of the functions 

happens, and the methods can be used, for example, the [SInt] (Conceição et al., 2012), that 

calculates the Singular Integrals based on an algorithm of the same name, or the one responsible 

for calculating the singular integrals associated with the projection operator P+, designed by 

[PplusIntRationalSIOL]. The last section called output is where some types of results, like an 

algorithm result expression or the time taken to execute the created procedure, can be invoked.  

The advantage of using a DSL is that its syntax and semantics try to resemble the domain 

audience expertise, in this case, mathematical expression and the operator theory. Thus, to use 

the DSL, the users do not need to be familiar with the programming language. The syntax of 

the created DSL is kept close to the notation followed for the operator theory type of problems. 

The language grammar is an important characteristic of the project because it defines its syntax 

lexical rules.  

Another important part and very helpful for the end-user is the language validation. The 

syntactical correctness of any textual input is validated automatically by the DSL. After all the 

verifications are complete, and the code has no errors, the final part is converting the algorithm 

written in the new language to a final GPL language. 
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This DSL translations mechanism performs a conversion of programs written in SIOL into the 

equivalent Wolfram Mathematica representations (Figure 5-1). It is advantageous to use this 

approach for development as it allows the new language to have a converted language 

commonly used by computer programmers of this area of knowledge and takes advantage of 

the Mathematica computing power. An example of the produced code is included in Appendix 

C. 

 
Figure 5-1- Step by step on the output file generation. 

 

5.2. The Development Environment 
The main tool employed in creating this DSL was Eclipse. The reason to choose it lies, 

especially, in the Eclipse Modelling Framework (EMF) which is a modelling framework and 

code generation facility to build tools and other applications based on a structured data model 

(EMF, 2021), allowing Xtext to be used smoothly. EMF provides interesting features like code 

completion, syntax highlighting, outline automated parsing, support for quick fixes and 

warnings, and advanced bracket handling, which are very important for the end user’s everyday 

usage. 

Xtext is an open-source EMF-based tool used for developing programming languages and 

domain-specific languages (Guntli, 2010), and for this project was extensively used in the 

grammar design. Xtext (Efftinge, 2021) is a mature open-source framework for the 

development of programming languages and DSLs. It is designed based on proven compiler 

construction patterns and ships with many commonly used language features, such as a 

workspace indexer and a reusable expression language. Its flexible architecture allows 

developers to start by reusing well-established and commonly understood default semantics for 

many language aspects, but Xtext scales up to full programming language implementations, 

where every single aspect can be customized in straightforward ways through dependency 

injection. Companies like Google, IBM, BMW, and many others have built external and 

internal products based on Xtext (Erdweg et al., 2011) 
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Unlike standard parser generators, Xtext generates not only a parser, which converts text to an 

EMF model but also a simple and easy-to-read diagram for the abstract syntax tree. Another 

big advantage when using Xtext is that it is possible to make use of the fully-featured, 

customizable Eclipse-based IDE, Integrated Development Environment, very popular among 

developers, specially Java ones(Efftinge, 2006).  

Xtext uses concrete syntax. The concrete syntax focuses on how the structure of the data and 

how it is going to be represented; for example, it includes features like parentheses or commas, 

and how they are positioned on the code. It contrasts with the abstract syntax, which only 

includes information about the data (Howe, 2022).  

Concerning the validations, the error messages are generated by the underlying parser 

technology. Any syntax errors are shown in real-time and marked underlying the wrong 

declaration on the algorithm written in the new language. These rules are declared on an Xtend 

file part of the DSL (Efftinge, 2006). 

Xtend is a statically typed programming language that translates to comprehensible Java source 

code. Syntactically and semantically Xtend has its roots in the Java programming language. As 

soon as the Xtext artefacts are generated from the grammar, a code generator stub is put into 

the runtime project newly created language. Xtend is responsible to integrate its code generator 

with EMF (Efftinge, 2021) 

The EMF uses another Xtend file with a set of rules that will determine how every piece of 

code written in the new language will be translated to the solver language. The type and name 

of the final generated file are also defined in this step. 

To be able to use the SIOL, and have its parts built, a user’s system should be able to compile 

and run Xtext codes on an Eclipse IDE. The minimum configuration used during testing is in 

Table 5-1. 

  
Table 5-1 – Minimum configuration. 

Java 
JustJ OpenJDK Hotspot JRE Complete 

16.0.1.v20210528-1205 

Xtext 2.25.0.v20210301-1429 

Operational System MacOs Big Sur version 11.6 

Wolfram Mathematica 12.3.1.0 for Mac OS X x86 (64-bit) 
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6.The SIOL Language   
6.1. Introduction 

Considering that there is no proper modelling approach to represent operator theory problems, 

in this section we intend to describe a new language related to the problem of singular integrals 

computation defined in the unit circle. The Singular Integral Operator Language (SIOL) was 

created to facilitate the development of operator theory algorithms, in most cases by people 

with little or no knowledge of any other programming language. 

The main goal of this work is to develop a Domain Specific Language (DSL) that has been 

idealized to enable the implementation of operator theory concepts, namely a set of reusable 

functions that provides the functionalities frequently required by users. The proposed 

programming language can be defined as a language that is used to execute instructions and 

algorithms on the user’s machine. The generated instructions or algorithms are Wolfram’s 

Mathematica files, more specifically, the type of file called Notebook with an extension nb. 

When developing the generated code, there was a particular concern that the program had the 

qualities of reliability, robustness, usability and efficiency.  

The use of SIOL enables the creation of new algorithms only by reusing existing ones.  

Relevant parts of the known algorithms have been divided into smaller reusable parts and 

encapsulated into easily recognizable functions, which, if necessary, can be used to shape new 

programs. Since the SIOL code is smaller, it has become easier to write and create new 

algorithms. Another important factor to which the foundation of this new DSL contributed is 

reliability for the final user, since in SIOL there is a large set of validations focused on operator 

theory, avoiding errors related to this specific domain. This means, in the end, that fewer things 

can go wrong, and with this, time and effort can be saved. This is very important, especially if 

the user is dealing with critical subjects. Since most mathematicians, as explained before in 

chapter 4, are not programming experts, the errors, whenever they happen, will be errors 

specific to the domain, thus, easier for them to understand. The key audience for this new 

language is academics and researchers. 

 
6.2. Concepts 

The language SIOL has rules on its grammar to check and validate the list of inputs used in the 

created algorithms. The rules involve the definition of the rational function r(t), the declaration 

of the poles and zeros, all the simple algebraic expressions used to compose any of the 

algorithm components, among other validations that concern deeper concepts of operator 
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theory. The language presented is an ongoing process that may have added to its features other 

modules associated with the operator theory. 

 
6.2.1. Module Structure 

The presented items represent the concepts that create the structure of the module. “Module”, 

is the name used to refer to the SIOL code itself. 

Module: The Module expression is used to name the algorithm. This string added also names 

the Mathematica file. For example, Module SInt, creates the file SInt.nb. 

inputs: This section will include a set of expressions that will represent the inputted data, by 

the user, to the algorithm. These are mathematical expressions, that must follow the known 

rules of mathematical writing. The section is delimited by the word end. The operations 

accepted so far are basic arithmetic. 

block: This section will contain a set of expressions representing the process of the algorithm. 

This is the section, where existing algorithms can be reused to perform tasks. This area is 

delimited by the word end. 

output: This section will include a set of expressions that will display the results from the 

processing performed in the block section. Here the user can select what kind of results will 

be printed. These outputs can be the direct expected results or supplementary information like 

the time took to operate. This section is delimited by the word end. 

 

6.2.2. Block functions 
The presented items represent the concepts that compose the structure of the Block. 
computeResultMinusX: Calculates the singular integral P-X(t).  

computeResultPlusX: Calculates the singular integral P+X(t).  

computeResultMinusY: Calculates the singular integral P-Y(t). 

computeResultPlusY: Calculates the singular integral P+Y(t). 

computeResultMinus: This function is used to verify if the rational function, r(t), provided as 

an input belongs or not to Ro-(T). The result is binary, meaning, 1 belongs, 0 does not belong. 

computeResultPlus: This function is used to verify if the rational function, r(t), provided as 

an input belongs or not to R+(T). The result is binary, meaning, 1 belongs, 0 does not belong. 

SInt: Executes the algorithm [SIntSIOL]. 

PMinusIntRational: Executes the algorithm [PMinusIntRationalSIOL]. This algorithm can be 

also written as a composition of other functions using SInt, computeResultMinusX. 



   31 

PPlusIntRational: Executes the algorithm [PPlusIntRationalSIOL]. This algorithm can be also 

written as a composition of other functions using SInt, computeResultPlusX.  

AMinusRational: Executes the algorithm [AMinusRationalSIOL]. This algorithm can be also 

written as a composition of other functions using PMinusIntRational, computeResultMinusX, 

and computeResultMinus. 

APlusRational: Executes the algorithm [APlusRationalSIOL]. This algorithm can be also 

written as a composition of other functions using PPlusIntRational, computeResultPlusX, and 

computeResultPlus. 

PPlusMinusInt: Executes the algorithm [PPlusIntRationalSIOL]. This algorithm can be also 

written as a composition of other functions using computeResultPlusX, computeResultMinusX, 

computeResultPlusY, computeResultMinusY, SInt. 

 

6.2.3. Output Functions 
The presented items represent the concepts that create the structure of the Output. 
printInputOptions: Prints on the screen all the input options used by the user on the input 

area.  

printResultMinus: Prints on the screen, whether r(t) belongs or not to Ro-(T). 

printResultPlus: Prints on the screen, whether r(t) belongs or not to R+(T). 

printResultXMinus: Prints on the screen the obtained P-X(t). 

printResultXPlus: Prints on the screen the singular integral P+X(t). 

printResultYMinus: Prints on the screen the singular integral P-Y(t). 

printResultYPlus: Prints on the screen the singular integrals P+Y(t). 

printPMinusRt: Prints on the screen the obtained P-r(t).  

printPPlusRt: Prints on the screen the obtained P+r(t). 

printOutputAPlusRational: Prints on the screen the results of the [APlusRationalSIOL] 

algorithm, meaning whether it belongs or not to the R+(T). 

printOutputAMinusRational: Prints on the screen the results of the [AMinusRationalSIOL] 

algorithm, meaning whether it belongs or not to the Ro-(T). 

printOutputPPlusMinusIntRational: Prints on the screen the results of the 

PPlusMinusIntRational algorithm, meaning whether it belongs or not to the Ro-(T) or R+ (T). 

printSingularIntegrals: Prints on the screen the singular integrals, STX, and STY calculated 

by the [SIntSIOL] algorithm. 
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printRBiggestExponent Responsible for printing on the screen the biggest exponent of the 

rational function 

printXBiggestExponent Responsible for printing on the screen the biggest exponent of the 

auxiliary function x+. 

printYBiggestExponent Responsible for printing on the screen the biggest exponent of the 

auxiliary function y-. 

printExecutionTime: Prints on the screen how long in seconds the procedure took. 

 

6.3. Grammar 
The kernel of a language and what makes it a language rather than an arbitrary sequence of 

symbols is its grammar. A grammar specifies the order in which the symbols of a language 

may be combined to make up legitimate statements in the language. Human languages have 

rather relaxed informal grammars that we pick up as children. Computer languages are 

sometimes called formal languages because they obey an explicitly specified grammar 

(Mikhail Barash, 2018).  
The EMF provides a simple mechanism to edit and maintain an Xtext created grammar. Xtext 

uses EMF models as the in-memory representation of any parsed text files. This in-memory 

object graph is called the abstract syntax tree (AST). The AST should contain the essence of 

the textual models. A model is every component of the grammar as seen in Figure 6-1, it 

abstracts over syntactical information. It is used in later processing steps, such as validation 

and compilation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 – Xtext AST. 
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In the EMF a model is made up of instances of EObjects that are connected. An EObject is an 

instance of an EClass. A set of EClasses can be contained in a so-called EPackage, which are 

both concepts of the Ecore language.  

The set of rules that defines SIOL includes the formal definition of the structure of the code, 

including the name of the algorithm created, and the divisions in input, block, and output (all 

visible in Figure 6-1). The need to create the main inputs of the base algorithms is due to the 

private words of the language and also to highlight their importance to the created solutions. 

Some of the rules go as follows:  

§ Rule to represent the different main components of the language: Figure 6-2 concerns 

the main structure containing the three main components: Inputs, Block (of Statements), 

and Output. We use the Module to name the algorithm as well as the generated .nb file. 

 
Figure 6-2 – Main Structure of the Operator Model. 

 

§ Rule to describe input data elements used in the mathematical model: 

In Figure 6-3 each Input element has an identifier that is initialised with a value or an 

expression. This component also includes the request of user inputs. The inputs used in 

this section are mathematical expressions, in Figure 6-4, we have the example of an 

expression rule.  

 
Figure 6-3 - Partial code of the input rule. 
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Figure 6-4 – Example of an expression rule. 

 
 

§ Rule to describe how the block section is created: Shown in Figure 6-6, are some of 

the possible functions to be used on the block section from Figure 6-5.  

 

 
Figure 6-5 – Rule of the composition of the "Block". 

 

 
Figure 6-6 – Some of the possible functions to be called on the block section. 

 
§ Rule to describe the result of the processing. 

The Output section includes a plethora of functions representing the information 

expected from the execution of the algorithms created in the block section. Figure 6-7 shows 

some of the possible functions that can be used as outputs. 
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Figure 6-7 – Partial code of the output rule. 

 
6.4. Validations 

When developing a DSL, the created model can be checked for errors according to certain 

validation rules. To make it custom, these rules will have to be defined by the modeller in the 

meta-model to fit the needs of the created language. A defined rule can generate errors, 

warnings, or info. Errors are marked with a red underline on the code itself, warnings, and info 

messages can be reported and attached to model elements or text locations. The syntactical 

correctness of any textual input is validated automatically by the parser. These messages are 

displayed in the Eclipse model text editor(Mooij & Hooman, 2017).  

Some kinds of validation are done automatically, but some of them need to be specified as 

additional constraints specific to the DSL Ecore model. Describing the code itself, a validation  

rule is marked as such with the annotation "@Check" in the xtend/java code. The argument is 

a model element of the type to be checked. After having it defined, the rule is checked by 

typing, in the new editor instance created by Eclipse during execution (Efftinge, 2021). 

In the case of this project DSL, a set of validations were created to check some rules concerning 

the basic mathematics, but more importantly the ones dedicated to operator theory. Part of the 

validators was created concerning the flow of the algorithm, to prevent the generator from 

creating faulty Wolfram Mathematica code when the user finishes the SIOL code 

implementation. 

In Figure 6-9, we present a set of rules that were created to guarantee the correct code flow 

generation. When analysing the first rule, it is possible to see the DSL controlling the need for 

an input when a block is declared. This means that the user will not be able to compile the code 

without the declaration of an input. The same applies to the outputs. No output can be defined 

without an input. Following the conditional expression (if constructs), it is possible to see some 

kind of rules to ensure that the generated code does not fail and also that the expected result is 
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obtained. These kinds of validations were designed simply to help SIOL users to avoid simple 

errors. 

 

 
Figure 6-8 – Xtext SIOL validations example. 

 
6.5. Conversion  

Xtend, part of the EMF, is a highly optimized tool to be used in the code generation step. The 

goal here is to transform the code created in SIOL in a Wolfram Mathematica code, compliable 

and executable, that has the same behaviour and result as if it was created directly with 

Mathematica.  

To accomplish this task, Xtend has an optimized template engine fully integrated with the 

Eclipse IDE. Among the characteristics that call the attention, we mention static typing, just 

like writing code for Java, seamless integration to any existing project since it compiles to java. 

Another important part regards the features focused on DSL developers. The IDE is prepared 

to make the code as readable as possible, marking the output with a grey zone and keeping the 

local indentation on the destination code and other interesting features like rename refactoring, 

content assist, formatting, among others. It has also a very easy-to-use debugger and since this 

is an ongoing project it allows easy increments to be created, due to its organization in classes. 

The generation process, as seen in Figure 6-9 uses the abstract syntax tree, AST, as a basis for 

code generation. 
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Figure 6-9 – Code Generation, adapted from (Mooij A. & Hooman J., 2017) 

 
6.6. Conversion in Practice 
When using the DSL, Eclipse creates a new instance of the IDE, with a prepared 

environment to be used with the newly created language. In this new instance, two 

important folders are created, one called src, where the files with the extension siol are 

created, and another one, src-gen, where the Wolfram Mathematica files are automatically 

generated after the compilation of the correspondent siol file. In Figure 6-10 it is possible 

to see the file structure created by EMF. 
 

 
Figure 6-10 – SIOL File Structure. 
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7.SIOL Algorithms (Test Cases) 
In sections 7.1 (general functions) and 7.2 (rational case) the tests cases for the proposed DSL 

– SIOL are described. The algorithms created try to cover as many possibilities as necessary to 

prove the relevance, demonstrate the operational way of dealing with the language, and also to 

exemplify DSL usage. Finally, section 7.3 presents the results concerning the expected and 

obtained data. 

 

 

7.1. General Functions 
During the development of this project, as a good opportunity to use the power of SIOL, some 

algorithms and changes to an existing one were developed. All these algorithms could be 

generated using the SIOL language, sometimes with a direct call to an exact function, otherwise 

using parts that together compose the algorithm. This is how SIOL can be used to implement 

not only known but also new algorithms.  

 

 

7.1.1. [SInt SIOL] algorithm 
Figure 7-1 shows the flowchart of the new version for the algorithm [SInt] (Conceição et al., 

2013) named [SInt_SIOL]. In this version, new verifications were added, symbolized by 3 

yellow diamonds. The first check is if none of the poles of the rational input, r(t), lies in T, in 

the case it happens, the output displays a message informing r ÏR(T). After that, if the auxiliary 

functions were declared, and any of these functions have any pole lying in T È T+, the algorithm 

will prevent failure of the execution or a wrong output, by showing a message informing that 

the auxiliary function, x+(t) and y-(t) does not belong to R+(T). These new verifications were 

also created as functions of the SIOL.  
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Figure 7-1 - SInt_SIOL algorithm. 

In Figure 7-2, it is possible to see the implementation of the algorithm [SInt_SIOL] algorithm 

as described in Figure 7-1. In the first line, the Module statement is mandatory as well as the 

following sections, inputs, block, and output. In this example, the rational function r(t) was 

declared. In the cases where no y-(t) or x+(t) were declared, such as Figure 7-2, the algorithm 

assumes that it is a general expression, meaning any function such that y+(t)= 𝑦((𝑡)3333333	ÎH¥(T) 

and x+(t) ÎH¥(T). In the block section, the [SIntSIOL] algorithm is called directly, simply by 

using the function SInt. In the output section, the interest was in displaying the singular 

integrals, STX and STY, done by simply calling the printSingularIntegrals function. 

 

 
 

Figure 7-2 – [SInt_SIOL] example using SIOL. 

 
In the first area, the selected inputs are displayed, and in the second one are the two expected 

singular integrals representing the output of the example from Figure 7-2. Besides this 
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example, others were created as described in Table 7-1. Figure 7-3, shows the result of an 

execution of [SInt SIOL] with  𝑟(𝑡) = 𝑡 + !
)
. 

 

 
Figure 7-3 – [SInt SIOL] output. 

 
Table 7-1 – [SInt] Examples. 

Inputs Outputs Rational Function Auxiliary Function 

𝒓(𝒕) = 𝒕 +
𝟏
𝒕  𝑥+(𝑡) = 	

1
𝑡  𝑥+	(𝑡)Ï𝑅+(T) 

𝒓(𝒕) =
𝟏

(𝒕 − 𝟏)(𝒕𝟐 + 𝟒) 
- 𝑟(𝑡)ÏR(T) 

𝒓(𝒕) = 𝟏 𝑥+(𝑡) = 	
1

𝑡 − 𝑖 𝑥+	(𝑡)ÏR+(T) 

𝒓(𝒕) =
𝟏

𝟓𝒕𝟒 + 𝒕𝟔 − 𝟔𝒕 + 𝟏 - 

It is not possible to 
solve the desired 

problem due to the 
polynomial degree of 

the expression 
𝒓(𝒕) = 𝒕 𝑦((𝑡) = 𝑡  𝑦(	(𝑡)33333333ÏR+(T) 

 
 

7.1.2. [PPlusMinusIntSIOL] algorithm 
In Figure 7-4, the [PPlusMinusIntSIOL] algorithm is described. The algorithm is composed of 

some steps and rewriting it directly on Mathematica could become quite complex, but with 

SIOL, the work is simplified by using the functions that compose the algorithm, or even by 

simply calling the specific created function directly. The goal of the [PPlusMinusSIOL] is to 

calculate the Cauchy singular integrals associated with the projection operators (2). 
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Figure 7-4 – [PPlusMinusIntSIOL]algorithm 

 
In Figure 7-5, it is possible to see the SIOL implementation of the algorithm 

[PPlusMinusIntSIOL] as described in Figure 7-4. In this example, it is possible to see the 

rational function r(t) declared in the inputs section. In the block section, the algorithm is 

decomposed into the steps that create it. The output requests the ResultPlusX(t), 

ResultMinusX(t), ResultPlusY(t), ResultMinusY(t).  

 

 
Figure 7-5 – [PPlusMinusIntSIOL] algorithm. 

The Output section is represented by the results of all the functions called from the output 

section on the example from Figure 7-5. Figure 7-6 shows the result of an execution of 

[PPlusMinusIntSIOL] algortihm with input 	𝑟(𝑡) = 𝑡 + !
)
. Also in this case, the functions x+(t) 

and y-(t) were not declared, so the algorithm assumes that are general valid functions. 
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Figure 7-6 – [PPlusMinusIntSIOL] algorithm Output. 

 

7.2. Rational Case 
This section is dedicated to the rational case. The rational case normally is easier to manipulate 

given the properties of this kind of function. 

 

7.2.1. [PPlusIntRationalSIOL] and [PMinusIntRationalSIOL] 

algorithms 
Figure 7-7 shows us the rational algorithms [PPlusIntRationalSIOL] and the 

[PMinusIntRationalSIOL]. The goal of this algorithm is to compute the singular integral P+r(t) 

and P-r(t) respectively. Using SIOL, this algorithm can be written in two different ways:  

§ one calling directly a function; 

§ or by the concatenation of other SIOL other functions that will result in the steps 

described. 

It is interesting to notice that the colour scheme refers directly to the sections of the SIntSIOL 

algorithm, where the blue boxes represent the inputs, the green represents the Block section, 

and the orange one is the outputs.  
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Figure 7-7 – [PMinusIntRationalSIOL] – A and [PPlusIntRationalSIOL]- B algorithm. 

In Figure 7-8, the example shows the [PPlusIntRationalSIOL],  having the rational function 

and the auxiliary function x+ (t) declared. Since one of the building blocks of this algorithm is 

the SInt_SIOL, we consider x+ (t) º 1, to obtain the correct output to the rational function r(t). 

In the block section, this time, it was used the decomposition of the [PPlusIntRationalSIOL], 

as explained in Figure 7-7. In this case, the Computation of the Poles, mentioned in the 

flowchart, is already part of the SInt() call in the SIOL code. The function printPPlusR(t), in 

the output area, is responsible for printing P+r(t), the output of the algorithm.  

Figure 7-9, has the same input as Figure 7-8, that executes the [PPlusIntRationalSIOL] 

algorithm, but this time the idea was to minimize the code and use the created function to call 

the [PMinusIntRationmalSIOL] algorithm, on the block section, directly, without having to 

explicitly indicate that the [SInt_SIOL] is being used. The output will follow the flowchart in 

Figure 7-7 and print P-r(t). 

 

 
Figure 7-8 – [PPlusIntRationalSIOL] algorithm using SIOL. 
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Figure 7-9 – [PMinusIntRationalSIOL] algorithm using SIOL. 

 

Figure 7-10 shows the result of an execution of [PMinusIntRationalSIOL] algorithm. The 

Output section is represented by the selected inputs, and the output, as expected, is P-r(t) = 1/t, 

and in Figure 7-11 the output provided by the [PPlusIntRationalSIOL] example, the output as 

shown is P+r(t) =t. Many other examples were created and Table 7-2 shows some of them.  

 

 

Figure 7-10 – [PMinusIntrationalSIOL] algorithm Output. 

 
 

 
Figure 7-11 – [PPlusIntRationalSIOL] algorithm Output. 
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Table 7-2 – [PPlusIntRationalSIOL] and [PMinusIntRationalSIOL] algorithms Examples 

 Rational Function Output 

PPlusIntRationalSIOL 𝑟(𝑡) =
1

1 + 𝑡0 

It is not possible to solve the 

desired problem due to the 

polynomial degree of the 

expression 

PMinusIntRationalSIOL 𝑟(𝑡) = 𝑡 +
1
𝑡  P+r(t)=t 

 
7.2.2. [AMinusRationalSIOL] algorithm 

In Figure 7-12, the steps for [AMinusRationalSIOL] are described. The goal of the created 

algorithm was to verify if the rational function r(t) Î Ro-(T), as it is visible on the orange output 

boxes of the diagram. As well as the [PPlusIntRationalSIOL] mentioned before, this algorithm 

can call a direct function or use the specific SIOL functions PminusIntRational_SIOL(r), 

ResultminusX(t), and Resultminus(t) to obtain these results.                      

 

 
    Figure 7-12 – [AMinusRationalSIOL] algorithm. 
 
 
Figure 7-13 shows the [AMinusRationalSIOL] algorithm, in this example, it can be noted the 

imaginary number, i, here used as I, can also be used. Inside the output block, it is possible to 

have several function calls, representing as many outputs as desired. In this case, the use of the 
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functions printOutputAPlusRational(), ResultXMinus() and ResultMinus() compose the 

expected output. 

 

 
Figure 7-13 – AMinusRationalSIOL using SIOL. 

Figure 7-14 shows the result of an execution of  an [AMinusRationalSIOL] algorithm 

example, the selected input is not displayed this time, and the outputs, as expected, are 

ResultMinus(t) = -1, ResultMinusX(t) = i/(-i+2t) and also that r(t)ÏRo-(T).  

Besides this example, another one was created having input 𝑟(𝑡) = !
1)!+)"(0)+!

 and output 

informing that the polynomial has a exponent greater than 5. 

 

 

 
Figure 7-14 – [AMinusRationalSIOL] algorithm. 

 
 

7.2.3. [APlusRationalSIOL] algorithm 
In Figure 7-15, the algorithm follows the idea of the [AMinusRationalSIOL] algorithm but 

having as a final result an output showing if the rational function belongs to R+(T).  

Figure 7-16, shows the implementation of [APlusRationalSIOL], where the result for the 

execution is called, using the SIOL function printOutputAPlusRational().  
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Figure 7-15 – [APlusRationalSIOL] algorithm. 

 

 
 

Figure 7-16 – [APlusRationalSIOL] algorithm. 
Figure 7-17 shows the result of an execution of a [APlusRationalSIOL] example, the selected 

input is displayed this time, and the output, as expected, is r(t)ÎR+(T). 

 
Figure 7-17 – [APlusRationalSIOL] Output. 

 
Other examples were created using the data displayed in Table 7-3.  
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Table 7-3 – [AMinusRationalSIOL] algorithm examples. 

Input Output 

𝒓(𝒕) =
𝒕

𝒕 − 𝟐 r(t)ÎR+(T) 

𝒓(𝒕) =
𝒕

𝒕𝟔 + 𝟏 

It is not possible to solve the desired 

problem due to the polynomial degree of the 

expression 

 

7.3. Results 
In this section, the results of the algorithms built with SIOL and their correctness are analysed. 

To test the accuracy and proficiency of the generated codes by SIOL, the results of the tests are 

displayed in Table 7-5. Each line of the table is the execution of one of the created algorithms, 

and the columns are the results obtained. As mentioned before, it is not always possible to 

obtain the result due to the degree of the involving polynomials of the inputs. The first column 

indicates the name of the example. The second informs if the algorithm was able to display an 

expression as result, because sometimes it cannot due to the position of the poles of the inputs. 

The third indicates if one of the inputs was not valid functions, and consequently the output 

will not be an expression but a message pointing out which of the inputs was wrong and why. 

The fourth column indicates if it is an input expression with an exponent higher than 5, in 

which case the result will display a message explaining this impossibility from an explicit 

output.  

  

 

Table 7-4 – Results. 

 
Output is an 

expression 

r(t) Ï R(T) 

x+(t) Ï R(T) 

y- (t)Ï R(T) 

Polynomial with degree higher 

than 5 

SInt1 Ö   

SInt2  Ö  

SInt3  Ö  

SInt4  Ö  

SInt5   Ö 

SInt6  Ö  

PPlusMinusIntSIOL  Ö  

AMinusRationalSIOL1 Ö   
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AMinusRationalSIOL2   Ö 

APlusRationalSIOL1 Ö   

APlusRationalSIOL2 Ö   

APlusRationalSIOL3   Ö 

PMinusIntRationalSIOL1 Ö   

PMinusIntRationalSIOL2   Ö 

PPlusIntRationalSIOL1 Ö   

PPlusIntRationalSIOL2   Ö 

 

From the results displayed in Table 7-5, it is possible to affirm that the developed language 

performs as expected. It displays the correct results, even when they are warnings or 

information to the user regarding the validity of their inputs. Furthermore, to corroborate these 

results the same tests were performed on a solution generated directly in Wolfram 

Mathematica, being the outputs coincident for the cases with explicit output achieved. 
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8.Conclusions and Future Work 

The development of operator theory is stimulated by the need to solve problems emerging from 

several fields in mathematics and physics, as mentioned before.  

The language developed in this work, SIOL, includes a syntax accessible to mathematicians, 

making it easier and more efficient compared to the use of a general-purpose language (GPL). 

It shows itself as innovative with a big potential to facilitate the design of a new set of operator 

theory algorithms, since it is the first textual language tailored to this specific area. It allows 

the end-user to abstract the models and algorithms to a higher-level language and validates the 

expressions according to operator theory rules, creating a more user-friendly environment to 

work in, which we consider the most important feature of this language.  

The design of the created DSL and its analytical algorithms are focused on the possibility to 

implement on a computer all, or a significant part, of the extensive symbolic and numeric 

calculations, present in the algorithms. The developed methods rely on innovative techniques 

of operator theory and have the potential to be extended to more complex and general problems. 

This was the main reason to select them as a basis for the first version of this DSL. 

In the future, upon creating this language, we hope that this work within operator theory, and 

Mathematica, will help in the design and implementation of several other analytical algorithms, 

with numerous applications in many areas of research and technology.  

The reason to propose this new DSL, SIOL, is due to our common opinion that the design and 

implementation of analytical algorithms working with singular integral operators defined on 

the unit circle can constitute a very interesting research work. In section 7.3, there is a mention 

about the impossibility of using algorithms with an exponent bigger than 5, due to a limitation 

on the initial version of the algorithm [SInt] (Conceição et al., 2013). This problem was solved 

on the newly created version of the algorithm [SInt]2.0 for Mathematica (Conceição & Pires, 

2021). However, it was not implemented in this work due to time constraints between the 

conclusion of the other parallel project. 

As future work, we are considering the design and implementation of other factorization, 

spectral, and kernel algorithms, as well as associated with other concepts of operator theory. 

There are other features than the ones already started to implemented, related to other analytical 

algorithms within the field of operator theory that are very relevant and should be considered 

in the an improved version of the SIOL. 
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Appendix B– Survey participants answers  

 

 

 



   vii 

 

 

 



   viii 

 

 

 



   ix 

 

 

 



   x 

 

 

 



   xi 

 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   xii 

Appendix C – Wolfram Mathematica Code generated by SIOL 

 
SetDirectory[NotebookDirectory[]]; 

Clear[Evaluate[Context[] <> "*"]];  

ruleF = {FractionBox[x_, y_] -> x/y}; 

inicio0=AbsoluteTime[];  

hasError = False; 

start0=AbsoluteTime[]; 

biggestRExp=0; 

biggestXExp=0; 

biggestYExp=0; 

possibleExponents:=True; 

R[t_] = t+(1/t); 

Xplus[t_] = 1/t; 

 

(* +++++++++++ Computation of the Poles of r(t) +++++++++++++ *) 

biggestRExp = Exponent[Denominator[R[t]], t]; 

biggestXExp = Exponent[Denominator[Xplus[t]], t]; 

If[((biggestRExp > 5) || (biggestXExp > 5) || (biggestYExp > 5)), 

 possibleExponents=False; 

 hasErrors=True; 

]; 

rOver = Table[Abs[Root[Denominator[( #1+(1/#1))] &, i]] == 1, {i, biggestRExp}]; 

rHasPolesOver = AnyTrue[rOver, TrueQ]; 

If[(rHasPolesOver == False), 

(* +++++++ SINT_SIOL +++++++++ *) 

(* Initialization of r(t), P+ e P- *) 

Clear[Pplus]; 

Pplus[x_ + y_] := Pplus[x] + Pplus[y]; 

Pplus[a_ x_] := a Pplus[x] /; FreeQ[a, t]; 

Pplus[t^n_] := 0 /; n < 0; 

Pplus[(t + a_)^n_] := 0 /; Abs[a] < 1 && n < 0; 

Pplus[(a_ + b_ t)^n_] := 0 /; Abs[a/b] < 1 && n < 0; 

Pplus[Xplus[t]*t^n_] := Xplus[t]*t^n - \!\( 

\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(-n\)]\(( 

\*FractionBox[\((D[Xplus[t], {t, i - 1}] /.  

          t -> 0)\), \(\((i - 1)\)!\)]  

\*SuperscriptBox[\(t\), \(i + n - 1\)])\)\) /; n < 0; 

Pplus[Xplus[t]*(t + a_)^n_] := Xplus[t]*(t + a)^n - \!\( 

\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(-n\)]\(( 

\*FractionBox[\((D[Xplus[t], {t, i - 1}] /.  
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          t -> \(-a\))\), \(\((i - 1)\)!\)]  

\*SuperscriptBox[\((t + a)\), \(i + n - 1\)])\)\) /;  

   Abs[a] < 1 && n < 0; 

Pplus[Xplus[t]*(a_ + b_ t)^n_] := b^n*Pplus[Xplus[t]*(t + a/b)^n]; 

Pplus[Yminus[t]] := Conjugate[Yplus[0]]; 

Pplus[Yminus[t]*t^n_] := 0 /; n < 0; 

Pplus[Yminus[t]*t^n_.] := \!\( 

\*UnderoverscriptBox[\(\[Sum]\), \(i = 0\), \(n\)]\( 

\*FractionBox[\(Conjugate[D[Yplus[t], {t, i}] /. t -> 0]\), \(i!\)]  

\*SuperscriptBox[\(t\), \(n - i\)]\)\) /; n > 0;  

Pplus[Yminus[t]*(t + a_)^n_] := 0 /; Abs[a] < 1 && n < 0; 

Pplus[Yminus[t]*(t + a_)^n_] := \!\( 

\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(-n\)]\(( 

\*FractionBox[\((D[Yminus[t], {t, i - 1}] /.  

         t -> \(-a\))\), \(\((i - 1)\)!\)]  

\*SuperscriptBox[\((t + a)\), \(i + n - 1\)])\)\) /;  

   Abs[a] > 1 && n < 0; 

Pplus[Yminus[t]*(a_ + b_ t)^n_] := b^n*Pplus[Yminus[t]*(t + a/b)^n]; 

(*  *) 

Pminus[t_]=t-Pplus[t]; 

Pminus[R[t]]=R[t]-Pplus[R[t]]; 

If[((biggestRExp < 5) && (biggestXExp < 5) && (biggestYExp < 5)), 

 Pplus[x_]:=x; 

, 

 Pplus[t] := t; 

 Pplus[t^n_] := t^n /; n > 0; 

 Pplus[a_] := a /; FreeQ[a, t]; 

 possibleExponents:=False; 

]; 

   

(* Compute de Decomposition of r(t) *) 

LeadingCoeff[poly_, t_] := Coefficient[poly, t, Exponent[poly, t]]; 

decompR = Function[{}, den[t_] = Denominator[R[t]]; 

             a = LeadingCoeff[den[t], t]; 

             solP = Solve[den[t] == 0, t];(* List of rules: t ->  

   pole *) 

             p = Tally[solP[[All, 1, 2]]]; (*  

   List of poles and multiplicities *) 

             n = Length@p; 

             denominator[t_] = a*\!\( 

\*UnderoverscriptBox[\(\[Product]\), \(j = 1\), \(n\)] 

\*SuperscriptBox[\((t - p[\([\)\(j, 1\)\(]\)])\), \(p[\([\)\(j,  
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        2\)\(]\)]\)]\); 

             RFact[t_] = Numerator[R[t]]/denominator[t]; 

             Apart[RFact[t]] 

   ]; 

decR[t_] = decompR[]; 

(* Computation of the poles of x+ *) 

biggestXExp = Exponent[Denominator[Xplus[t]], t]; 

xIn = Table[Abs[Root[Denominator[(1/#1)] &, i]] < 1, {i, biggestXExp}]; 

xHasPolesInside = AnyTrue[xIn, TrueQ]; 

xOver = Table[Abs[Root[Denominator[(1/#1)] &, i]] == 1, {i, biggestXExp}]; 

xHasPolesOver = AnyTrue[xOver, TrueQ]; 

xOut = Table[Abs[Root[Denominator[(1/#1)] &, i]] > 1, {i, biggestXExp}]; 

xHasPolesOutside = AnyTrue[xOut, TrueQ]; 

 

(* Define X(t) *) 

X[t_] = Expand[decR[t]*Xplus[t]]; 

If[((xHasPolesInside === False) && (xHasPolesOver === False)), 

 (* Computation of PplusX(t) *) 

 PplusX[t_] = Simplify[Pplus[X[t]]]; 

 SX[t_] = Simplify[2*PplusX[t] - X[t]]; 

,  

 hasError = True; 

]; 

(* Define Y(t) *) 

Y[t_] = Expand[decR[t]*Yminus[t]]; 

(* Computation of PplusY(t) *) 

PplusY[t_] = Simplify[Pplus[Y[t]]]; 

SY[t_] = Simplify[2*PplusY[t] - Y[t]]; 

(* +++++++++++++ End of SInt-SIOL+++++++++++++++++*) 

,  

 hasError = True; 

]; 

 

(* +++++++ PMinusIntRational_SIOL +++++++++ *) 

ResultminusY[t_] = Simplify[1/2 (Y[t] - SY[t] /. ruleF)]; 

 

(* +++++++ PPlusIntRational_SIOL +++++++++ *) 

ResultplusY[t_] = Simplify[1/2 (SY[t] + Y[t] /. ruleF)]; 

 

(* +++++++ PMinusIntRational_SIOL +++++++++ *) 

ResultminusX[t_] = Simplify[1/2 (X[t] - SX[t] /. ruleF)]; 
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(* +++++++ PPlusIntRational_SIOL +++++++++ *) 

ResultplusX[t_] = Simplify[1/2 (SX[t] + X[t] /. ruleF)]; 

 

fim0=AbsoluteTime[];  

printFormat = {Xplus -> SubPlus[x], Yplus -> SubPlus[y], Yminus -> SubMinus[y], Conjugate[aa_] -> 

\!\(\*OverscriptBox[\(aa\), \(_\)]\)}; 

Print[Text[Style["Input Options", Black, Bold, 36]]]; 

Print[Text[Style["r(t) = t+(1/t)", Black, 20]]]; 

Print[Text[ 

   Style["\!\(\*SubscriptBox[\(x\), \(+\)]\)(t)=1/t", Black, 26]]]; 

If[biggestRExp < 5, 

 Print[Text[ 

    Style["X(t) = r(t)\!\(\*SubscriptBox[\(x\), \(+\)]\)(t) =", Black,  

     26]], Style[X[t] //.printFormat , 26]]; 

]; 

Print[""]; 

Print[Text[Style["Output", Black, Bold, 36]]]; 

If[(possibleExponents == False), 

 hasError = True; 

 Print[Text[ 

    Style[ 

     "It is not possible to solve the desired problem due to the \ 

polynomial degree of the expression", Black, 26]]]; 

]; 

If[(hasError == False), 

 Print[Text[Style["ResultMinusX(t)=", Black, 26]],  

   Style[ResultminusX[t] //.printFormat , 26]]; 

]; 

 

 

If[(hasError == False), 

 Print[Text[Style["ResultPlusX(t)=", Black, 26]],  

   Style[ResultplusX[t] //.printFormat , 26]]; 

]; 

 

If[(hasError == False), 

 Print[Text[Style["ResultMinusY(t)=", Black, 26]],  

   Style[ResultminusY[t] //.printFormat , 26]]; 

]; 

 

If[(hasError == False), 

 Print[Text[Style["ResultPlusY(t)=", Black, 26]],  
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   Style[ResultplusY[t] //.printFormat , 26]]]; 

If[((rHasPolesOver == True) && (hasError == True) && (possibleExponents == True)), 

 Print[Text[ 

    Style["r(t) has at least one of its poles over the unit circle",  

     Black, 26]]]; 

 Print[Text[ 

    Style[ 

     "r(t)\[NotElement]\!\(\*SubscriptBox[\(R\), \ 

\(\[DoubleStruckCapitalT]\)]\)", Black, 26]]]; 

 Print[""]; 

]; 

If[(((xHasPolesInside == True)||(xHasPolesOver == True)) && (hasError == True) && (possibleExponents == 

True)), 

 Print[Text[ 

    Style[ 

     "\!\(\*SubscriptBox[\(x\), \ 

\(+\)]\)(t)\[NotElement]\!\(\*SubscriptBox[\(R\), \(+\)]\)(\ 

\[DoubleStruckCapitalT])", Black, 26]]]; 

 Print[Text[ 

    Style[ 

     "At least one pole of \!\(\*SubscriptBox[\(x\), \(+\)]\)(t) lies \ 

in \[DoubleStruckCapitalT] \[Union] \!\(\*SubscriptBox[\(\ 

\[DoubleStruckCapitalT]\), \(+\)]\)", Black, 26]]]; 

 Print[""]; 

]; 
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Appendix D – User’s Manual  
Step 0: All the versions used in this project are in Table 5-1. 

Step 1:  Eclipse Xtext is implemented in Java, so you must have a Java Runtime Environment 

installed in order to proceed.  

Step 2: Install Eclipse (https://eclipse.org/downloads/). A pre-configured Eclipse distribution 

is available which has already all the necessary plug-ins installed. 

Step 3: Check if the correct version of Xtext is installed. 

 Step 3.1: On Eclipse menu select Help > About Eclipse IDE > Verify on the available 

icons if Xtext exists. 

Alternative Step 3: If the Xtext is not installed, it can be installed from Eclipse Marketplace. 

On Eclipse Menu select Help > Eclipse Market Place > Select tools on the dropdown list > On 

find search for “xtext”> On the result list find Eclipse Xtext and Eclipse Xtend > Select install 

Step 4: Add the DSL Files: SIOL.xtext, SIOLGenerator.xtend and SIOLValidator.java. 

Step 5: On SIOL.xtext, select “Run As…” > “Generate Xtext Artifacts”. 

Step 6: Launch Runtime Eclipse. 

 

 

 

 

 

 

 

 

 

 

 

 

 


