

 University of Groningen

Obstacle Avoidance for Robotic Manipulator in Joint Space via Improved Proximal Policy
Optimization
Wang, Yongliang; Mohades Kasaei, Seyed

Published in:
ArXiv

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Wang, Y., & Mohades Kasaei, S. (2022). Obstacle Avoidance for Robotic Manipulator in Joint Space via
Improved Proximal Policy Optimization. Manuscript submitted for publication.
https://arxiv.org/pdf/2210.00803

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://research.rug.nl/en/publications/5803f905-2905-41cd-b308-3a0fc344063d
https://arxiv.org/pdf/2210.00803

Obstacle Avoidance for Robotic Manipulator in Joint Space via
Improved Proximal Policy Optimization

Yongliang Wang and Hamidreza Kasaei

Abstract— Reaching tasks with random targets and obstacles
can still be challenging when the robotic arm is operating in un-
structured environments. In contrast to traditional model-based
methods, model-free reinforcement learning methods do not
require complex inverse kinematics or dynamics equations to
be calculated. In this paper, we train a deep neural network via
an improved Proximal Policy Optimization (PPO) algorithm,
which aims to map from task space to joint space for a 6-DoF
manipulator. In particular, we modify the original PPO and
design an effective representation for environmental inputs and
outputs to train the robot faster in a larger workspace. Firstly, a
type of action ensemble is adopted to improve output efficiency.
Secondly, the policy is designed to join in value function updates
directly. Finally, the distance between obstacles and links of
the manipulator is calculated based on a geometry method as
part of the representation of states. Since training such a task
in real-robot is time-consuming and strenuous, we develop a
simulation environment to train the model. We choose Gazebo
as our first simulation environment since it often produces a
smaller Sim-to-Real gap than other simulators. However, the
training process in Gazebo is time-consuming and takes a long
time. Therefore, to address this limitation, we propose a Sim-
to-Sim method to reduce the training time significantly. The
trained model is finally used in a real-robot setup without fine-
tuning. Experimental results showed that using our method,
the robot was capable of tracking a single target or reaching
multiple targets in unstructured environments. The video is
available at https://youtu.be/xm5lNAgYaWM

I. INTRODUCTION
Goal reaching task is considered as one of the fundamental

capabilities for robotic manipulators, which is accomplished
by motion planning in traditional methods [1]. When the
targets and obstacles change at random, the motion planning
task for high-degree of freedom manipulators will become
notoriously challenging in such uncertain environments as
mathematical models that are complex and difficult to estab-
lish [2]. Meanwhile, traditional control approaches are often
unable to navigate in unstructured environments. Besides,
most methods are based on solving inverse kinematics or
dynamics equations to map the task space to joint space
for collision avoidance, which requires high accurate robot
dynamics model and is not easy to generalize for diverse
tasks and various robots [3], [4].

Deep reinforcement learning (DRL) is now frequently
used in robotic manipulation in place of analytical techniques
in traditional control systems [5], [6]. For instance, Adarsh
Sehgal et al. proposed a deep deterministic policy gradi-
ent (DDPG) and hindsight experience replay (HER) based

Yongliang Wang and Hamidreza Kasaei both are with Department of Ar-
tificial Intelligence, Bernoulli Institute, Faculty of Science and Engineering,
University of Groningen, The Netherlands

Emails: {yongliang.wang, hamidreza.kasaei}@rug.nl

method using of the genetic algorithm (GA) to fine-tune
the parameters values. They experimented on six robotic
manipulation tasks and got better results than baselines [7].
Franceschetti et al. proposed an extensive comparison of
the trust region policy optimization (TRPO) and deep Q-
Network with normalized advantage functions (DQN-NAF)
with respect to other state of the art algorithms, namely
DDPG and vanilla policy gradient (VPG) [8]. Unlike our
work, these research only focus on single target position
reaching.

For multi-target trajectory planning, Wang et al. intro-
duced an action ensembles based on poisson distribution
(AEP) to PPO, their method could be easily extended to
realize the task that the end-effector tracks a specific tra-
jectory [9]. For space robots, the workspace is enough to
complete task, but for industrial robots, it is insufficient.
Thus, the algorithm requires further development. In another
work, Kumar et al. proposed a simple, versatile joint-level
controller via PPO. Experiments showed the method capable
of achieving similar error to traditional methods, while
greatly simplifying the process by automatically handling
redundancy, joint limits, and acceleration or deceleration
profiles [10]. Nevertheless, the output of neural network is
velocity of the end-effector. Additionally, the majority of
DRL-based research completes learning in task space rather
than joint space, which is prone to produce a weak results
for reaching tasks. Furthermore, such approaches still need
to calculate the inverse kinematics and cannot accomplish
reaching tasks when obstacles are close to the manipulator’s
links.

In this paper, we propose an improved PPO to tackle
these problems, which enables the 6-DoF manipulator to
accomplish reaching multi-target without colliding with ob-
stacles. In comparison to the previous works [11], [12], [13],
[14], our main contributions are threefold: 1) Introducing
an action ensembles method to enhance the efficiency of
the policy. 2) Designing an adaptive discount factor for
PPO, which makes the policy join in value function update
directly. 3) Calculating the distance between obstacles with
manipulator’s links utilizing a type of geometry method, as
part of state representation, which is beneficial for reaching
task with obstacles. Experimental results showed that the
proposed approach performed better than other baselines in
various test scenarios.

II. PRELIMINARY

We aim to develop an efficient method for manipulators in
reaching tasks with obstacle avoidance, which necessitates

ar
X

iv
:2

21
0.

00
80

3v
1

 [
cs

.R
O

]
 3

 O
ct

 2
02

2

Fig. 1. The environment of 6-DoF manipulator in the Pybullet (left) and
the Gazebo (right): The goal is shown by a red block and obstacles are
highlighted by blue spheres.

the manipulator to safely interact with the environment
numerous times. As Gazebo owns better compatibility than
Pybullet in combining with ROS, we initially design our
training process in Gazebo. Nevertheless, DRL methods
suffer from long training time in Gazebo. To overcome
such a time-consuming problem, we develop a fairly similar
environment in Pybullet to initially train the model there, and
then transfer and evaluate the learnt model in Gazebo through
a Sim-to-Sim transfer. Finally, using a Sim-to-Real transfer
process, we assess the efficiency of the learned model in real
robot using the trained model.

A. Environment

As previously stated, we develop two simulation environ-
ments, one in Gazebo, and the other in Pybullet. As shown
in Fig. 1, in both environments, a UR5e robot equipped with
robotiq 140 is used as the manipulator. During training and
testing phases, we randomly set the pose of the target (shown
in red) and obstacles (shown in blue) in workspace.

B. Proximal Policy Optimization

PPO, one of the state-of-the-art on-line DRL methods, is a
type of policy gradient training that alternates between sam-
pling data through environmental interaction and optimizing
a clipped surrogate objective function using stochastic gra-
dient descent [15]. The clipped surrogate objective function
improves training stability by limiting the size of the policy
change at each step. In PPO, the clipped surrogate objective
function is designed as follows:

LCLIP (θπ) = Ėt[min(rt(θπ)Ât,
clip(rt(θ

π), 1− ε, 1 + ε)Ât)]
(1)

Ât = δt + (γλ)δt+1 + · · ·+ · · ·+ (γλ)T−t+1δT−1 (2)

δt = rt + γV (st+1)− V (st) (3)

V (s) = Es,a∼π[G(s)|s] (4)

G(s) =

∞∑
i=t

γi−tr(si) (5)

where θπ is the parameters of policy neural network, Ât
represents the generalized advantage estimator (GAE) and is
used to calculate the policy gradient. The reward value at t is
shown by rt, and the ε is a constant between 0 and 1, which is

set to 0.2 in the baseline algorithm. γ = 0.99, V (s) refers to
the expected return of state s and G represents the discounted
cumulative reward. Likewise, Vtarget(s) is the target value.
Additionally, the value loss function is expressed as follows:

LV (θ
V) = Es,a∼π[(V (s)− Vtarget(s))2] (6)

C. Sim-to-Sim and Sim-to-Real Transfer

We train the policy in Pybullet first and then transfer the
learnt policy from Pybullet to Gazebo in order to overcome
the time-consuming training process in Gazebo for DRL
approaches. Finally, we deploy the model in our real-robot to
evaluate how well it performed in real-world circumstances.
Although there are so many research about Sim-to-Real in
the filed of learning of navigation and manipulation policies
[16], [17], most of research mainly focused on bridging the
Sim-to-Real gap in domain adaptation [18], [6]. Furthermore,
visual cues were considered as input information directly or
indirectly [19]. However, in our work, obstacle avoidance
is accomplished in joint space. On the other hand, our
primary goal is to achieve the best accuracy in simulation
for downstream applications in real-world scenarios. Sim-to-
Sim transfer is a productive method for reducing training
time and evaluate the robustness of the proposed approach
over noises and inaccurate robot’s model before deploying
the learnt model on a real-robot platform. Therefore, we
take into account both Sim-to-Sim and Sim-to-Real transfers,
allowing us to quickly train and test the proposed model in
various tasks and domains.

III. STRATEGY FOR LEARNING

We adopt the PPO to accomplish obstacle avoidance
with the mapping from task space to joint space. For
reinforcement learning, one of the important aspects is to
devise a good learning strategy, which includes selecting
appropriate state and action representation. The strategy is
implemented as a deep policy, which is designed as a multi-
layer perception network with two hidden-layers.

A. State and Action Representation

It is crucial for DRL methods to chose appropriate state
and action space. Most researchers prefer to represent both
states and actions in task space, which is ineffective for
avoiding collision between links and obstacles. To accom-
plish collision avoidance in whole workspace, we consider
the position of 6 joints, end-effector, and targets as part of
state representation. Furthermore, the errors in X, Y, and Z
axes, and distance between obstacles and the five links are
also considered as state representation. It is worth mentioning
that we do not consider the distance of the obstacles to the
base link. Therefore, the state is represented as a vector: s ∈
R19. For action representation, we consider the position of
the six joints in order to avoid complex and time-consuming
inverse kinematics calculations and map from task space to
joint space. In the following subsections, we discuss the state
and action spaces in more detail.

1) States in Reaching Task without Obstacles: In the case
of obstacle free goal reaching task, we represent the state as:

st =< qt,pe,pt, error > (7)

where qt = (qt1 . . . qt6) is the position of the six joints,
pe = (pex, pey, pez) represents the position of the end-
effector, pt = (ptx, pty, ptz) is referred to the target position.
error = (e, ex, ey, ez) is the error vector including absolute
distance and distances in X, Y, Z axes, respectively.

2) States in Reaching Task with Obstacles: When there
are obstacles in the environment, the state is represented as:

st =< qt,pe,pt, error,dobs > (8)

where dobs is the shortest distances between obstacles and
links in space. As depicted in Fig. 2, to calculate the
distance between the obstacle and each link in joint space,
we transform it into a geometric problem to find the shortest
distance between any point in space and different links. We
provide an example on the left side of Fig. 2 to make it
clearer. Let a three-dimensional line be specified by two
points, p1 = (x1, y1, z1) and p2 = (x2, y2, z2), where ·
represents the dot product. Therefore, a vector along the line
is given by the following equation:

v =

 x1 + (x2 − x1)t
y1 + (y2 − y1)t
z1 + (z2 − z1)t

The squared distance between a point on the line with
parameter t and a point p0 = (x0, y0, z0) is therefore:

d2 = [(x1 − x0) + (x2 − x1)t]2

+[(y1 − y0) + (y2 − y1)t]2

+[(z1 − z0) + (z2 − z1)t]2
(9)

Set d(d2)/dt = 0 and solve for t to obtain the shortest
distance:

t = − (x1 − x0) · (x2 − x1)
|x2 − x1|2

(10)

The shortest distance can then be calculated by plugging Eq.
(10) back into Eq. (9). Thus, as shown on the right side of
Fig. 2, we consider each link of the robot as the line and the
obstacle as the point. We then calculate the shortest distance
between every obstacle and link.

3) Actions: In both cases, the action space is represented
by a vector, at =< q̇t >, where q̇t = (q̇t1 . . . q̇t6) represents
the position of the six joints.

B. Reward Function

The following function represents how we calculate the
reward for various situations:

R(s, a) = −[ω1e
2 + ln (e2 + τe) + ω2

n∑
i=1

ψi] (11)

ψi = max(0, 1− ||di||/dmax) (12)

where e = ‖pt−pe‖ refers to the euclidean distance between
the target pose and the end-effector. The middle term (ln(·))

Fig. 2. The distance calculation between a point and a line in space (left).
dobs is obtained by calculating the distance between the obstacle (blue) and
5 links.

encourages the end-effector error tend to be zero, and the ψi
represents the penalties of obstacle avoidance, ω1, and ω2

are two coefficients, and τe represents the threshold on error
between the end-effector and the target pose. Based on trial
and errors, we set ω1 = 10−3, ω2 = 0.1, dmax = 0.05 and
τe = 10−4.

C. Neural Network Structure

In our system, the Actor and Critic (AC) neural network
consist of three layers, where each layer consists of 256
neurons. The first two layers use tanh activation function.
The only distinction between actor and critic networks is that
the critic network generates only a single scalar value, while
the actor produces a vector of six values, representing the
robot joints’ position. For both networks, we consider the
Adam optimizer. The overall framework of our approach is
depicted in Fig. 3.

Fig. 3. The framework of strategy for learning: The state of robot consists
of the current joint angles qt , the position of end-effector pe, and the target
position pt, which extends with the distance of three obstacles when the
task is with obstacles. The grey layers are the network structure. The action
layer produces the desired joint angles.

IV. IMPROVED PROXIMAL POLICY
OPTIMIZATION

Original PPO does not perform well in solving complex
robotic problems (i.e., the discussed reaching task while
there are obstacles in the environment). In particular, we
observed that PPO took too long time to be trained in the

entire workspace, and the accuracy was poor for reaching
task, even without collision avoidance. To overcome these
limitations, we propose two improvements for the PPO to
achieve better results, which are discussed in detail in the
following subsections.

A. Action ensembles Based on Poisson Distribution

For most tasks that applied learning methods in robotics,
Gaussian distribution is utilized to describe the optimal
policy distribution, which is on the grounds that Gaussian
distribution is more realistic. In reaching task, the distribu-
tion of choosing action can be considered as: πθ(at|st) ∼
N(µθ(st), δθ), where δ represents the uncertainty and unsta-
ble of distribution to output optimal action. To some extent,
average the multiple outputs can solve this problem but it
will limit the exploration ability at the initial steps and make
the policy easily prone to local optima.

To make the policy robust, balance the exploration and
avoid inclining to optima, we select the number of samples
through Poisson distribution [9]. In particular, the specific
calculation is defined as:

i ∼ clip(Poisson(β), 1, 2β), β = 1 + α
en
ea

(13)

at,j ∼ N(µθ(st), δθ), at = mean
j

(at,j) (14)

where β indicates the Poisson distribution mean, α = 5,
j ∈ [1, j), en and ea represent the number of episodes at the
current episode and the final episode, respectively.

B. AC Architecture with Policy Feedback

PPO uses the standard AC architecture, which means that
the critic network estimates the value function that the actor
network uses to improve policy performance. However, the
policy does not participate in the update of value function
directly, which increases the instability of DRL algorithms.
Thus, inspired by [20], we include the policy in the value
function update. Using this strategy, the critic network can
recognize policy differences rapidly. To put the strategy into
action, we utilize an adaptive clipped discount factor:

γ(s, a; η) = clip(π(s, a), η, 1) η ∈ (0.55, 0.99) (15)

in which π(s, a) represents the policy and the adaptive γ can
join in the update of critic network.

C. Improved PPO

According to previous advancements, the loss functions of
actor-critic networks can be represented as follows:

L(θπ) = Ėt[min(rt(θπ)At,
clip(rt(θ

π), 1− ε, 1 + ε)At)]
(16)

L(θV) = Ėt[(Rπt − Vt)2] (17)

Fig. 4 is the framework of the improved PPO. Algorithm 1
contains the pseudocode of the improved PPO.

By combining all the proposed strategies together, the
entire algorithm for robot to avoid obstacles while reaching
the goal is summarized in Algorithm 2.

Fig. 4. The framework of the improved PPO: The action ensemble (shown
in red block) and the policy feedback (red line) are the improvements that
we proposed.

Algorithm 1 Improved PPO Pseudocode
Orthogonal initialize the actor and critic networks
Initialize optimizer as Adam with learning rates
Set λ, amax = 3.14, clip parameter: ε
Set AEP parameter: α = 5
Set Policy Feedback parameter: η ∈ [0.55, 0.99]
while True do

Get st from the environment
Sample at from the baseline policy πbθ(at|st)
Using at ∼ AEP (µθ(st), δθ) to publish at
Execute at, get < st, at, πθ, rt, st+1 > and store them
into buffer D
Calculate clipped discount factor γ(s, a; η) by Eq.(16)

Compute reward: Rπt =
T∑
i=t

ri
n∏
j=t

γ(s, a; η)

Compute advantage function: Aπt = rt + γV πt+1 − V πt
Use Eq.(17) to accumulate gradients with respect to θπ
Use Eq.(18) to accumulate gradients with respect to θV

end

V. EXPERIMENTS

To illustrate the efficiency of the improved PPO, we
performed a serious of experiments in simulation and real-
robot settings. We divided our experiments to four steps. In
the first round of experiment, we compared the proposed
approach with two baseline methods. Then, we measured
the success rate for completing the goal reaching task with
and without obstacles. Afterwards, the trained model was
transferred from Pybullet to Gazebo, and also used directly
on real-robot without fine-tuning. We used the same code and
network in both real and simulation experiments. Note that
all tests were performed with a PC running Ubuntu 20.04
with a 3.20 GHz Intel Xeon(R) i7, and a Quadro P5000
NVIDIA.

A. Sim-to-Sim Transfer

We performed two round of experiments to measure the
training time as well as the performance of the robot in goal
reaching task. We ran one round of experiments in Gazebo
environment and the other round in Pybullet for 106 time

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. Summary of experiments: (a) Comparison result for reaching task without obstacles utilizing 5 random seeds; (b) Comparison of success rate
on reaching task without obstacles; (c) Comparison result for reaching task with obstacles utilizing 1 random seed; (d) Comparison of success rate on
reaching task with obstacles; (e) The train and test simulation experiments in Pybullet and Gazebo; (f) The real robot experiments.

Algorithm 2 The Manipulator Control via Improved PPO
for number of epochs do

Set i epoch as random seed
Orthogonal initialize the actor and critic networks
Set λ, maximum action, learning rates, clip parameter ε
for number of episodes do

Set a target position pt randomly
for numbers of maximum time steps do

Get st from the environment
Chose the action using at ∼ AEP (µθ(st), δθ)
Clip at to ensure safety for the environment
Execute at, get < st, at, πθ, rt, st+1 > and store
them into buffer D

end
end
for every time step t do

for k epochs do
Select a minibatch bk in D
Utilize the Algorithm 1 to Update networks

end
end

end

steps. Table I summarizes the time spent during training in
Gazebo and Pybullet. By comparing these results, it is clear
that training the agent in Gazebo required much more time
than training in Pybullet. Regarding the accuracy of reaching
task, we ran 100 obstacle-free reaching tasks using the same
model. Fig. 6 showed that the agent could achieve equivalent
performance, with the average error of 0.04± 0.02 m.

We also transferred the model that has been trained in
Pybullet to the Gazebo to check the possibility of Sim-to-

Fig. 6. The distance error for reaching task without obstacles in Gazebo
and Pybullet using the same trained model obtained from Pybullet.

TABLE I
TRAINING TIME COMPARISON

Task Time steps Gazebo Pybullet

Reaching without obstacles 106 50 h 06 min 2 h 40 min
Reaching with obstacles 106 ∗∗ 11 h 28 min

Sim Transfer. We ran similar experiments (100 obstacle-
free reaching tasks), and compared the obtained results
with the results of the model that was trained in Pybullet.
Experimental results showed that the agent could achieve
equivalence performance in both Pybullet and Gazebo. This
experiment showed the usefulness of Sim-to-Sim transfer
regarding training time and goal reaching accuracy.

B. Comparison with Other Methods

As the output of the neural network was a multivariable
and PPO was one of widely used state-of-the-art on-policy
algorithm in the field of robotic control, we chose the
following methods as baseline: PPO [15] and PPO-AEP [9].

Fig. 5 shows the comparison between the proposed method
with the baseline methods. It should be noted that the base-
lines used the same neural network, parameters, state-action
representation and reward function. The learning curves, as
shown in Fig. 5 (a) and (c), indicated that our method could
get higher reward in the same condition. Fig. 5 (b) and (d)
also illustrated that the success rate of our method reached
the higher value in reaching task with and without obstacles.

C. Reaching Task without Obstacle Avoidance

The previously mentioned strategy was used to train the
neural network, which was then used in a UR5e robot arm.
Based on our experiments, the trained neural network in
Pybullet could be directly used in Gazebo and real robot.
Considering the workspace in our real-robot setup, the whole
workspace was defined as a quarter spherical annulus with
major radius 0.95m, minor radius 0.4m. We also established
a set of constraints for six joints in order to avoid collisions
between the manipulator and the table, as well as self
collisions among all joints during test.

For observing the performance of reaching task with-
out obstacle avoidance, the success rate was produced by
recording the number of times the robot could reach to
the target pose within a predefined threshold, ranging from
1cm to 10cm with the interval of 1cm. For each of the
threshold value, we performed 100 experiments by randomly
setting the target point in each experiment. We repeated such
experiments with five random seeds and reported the average
success rate for each threshold value. The obtained results
is summarized in Fig. 5 (b). By comparing the results, it is
visible that our approach outperformed the other baselines.
In particular, by setting the threshold to 5cm, our method
achieves 100 percent success rate.

D. Reaching Task with Obstacle Avoidance

As our main goal was to propose an efficient method
of collision avoidance for robotic manipulators, we tested
our method in an environment with random obstacles and
a target. In this round of experiments, 3 spherical obstacles
with size 0.05m were placed randomly in the workspace. The
learning curve of our method in reaching task with obstacles
is shown in Fig. 5 (c). We didn’t average out the rewards
as in the previous section because of the longer training
time (≈ 11.28 hours). Although our method could end the
training faster it didn’t reach the highest value at the end
of the training as shown in Fig. 5 (c). We hypothesis that
it happened because we just ran the experiment once and it
was an occasional training session. Fig. 5 (d) was the success
rate obtained by the same method as the previous task, which
showed our method still performed best.

E. Sim-to-Real Transfer

To validate the efficient of our algorithm in real robot, we
performed 10 real-robot experiments of reaching task with
and without obstacles. Fig. 5 (e) and (f) show two snapshots
of the robot during these experiments. Results demonstrated
that our algorithm performs as good as it worked in sim-
ulation. A video summarizing these experiments has been
attached to the paper as a supplementary material.

VI. CONCLUSIONS

In this paper, we presented an efficient DRL method for
manipulator obstacle avoidance at the joint-level. The learn-
ing strategy was designed as a multi-layer neural network
optimized by an improved PPO. Particularly, to begin with,
we designed a special calculation for the shortest distance
between obstacles and links of the manipulator. Then, we
proposed two improvements for the original PPO, which
outperformed other relative baseline methods. Finally, we
utilized a sim-to-Sim and Sim-to-Real transfer method to
train and verify our method rapidly, which could guide
other researchers in testing their modification without suf-
fering time-consuming. To sum up, our proposed method
was efficient for reaching tasks with obstacles and it is
simple to generalize to various robots and robotic tasks. In
the continuation of this work, we would like to look into
the feasibility of using the proposed approach in dynamic
scenarios where the pose of the target and the obstacles
changes over time.

REFERENCES

[1] P. Martin and J. D. R. Millán, “Reinforcement learning of sensor-based
reaching strategies for a two-link manipulator,” in Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IROS’96, vol. 3. IEEE, 1996, pp. 1345–1352.

[2] E. Aljalbout, J. Chen, K. Ritt, M. Ulmer, and S. Haddadin, “Learning
vision-based reactive policies for obstacle avoidance,” in Conference
on Robot Learning. PMLR, 2021, pp. 2040–2054.

[3] D. Zhou, R. Jia, H. Yao, and M. Xie, “Robotic arm motion planning
based on residual reinforcement learning,” in 2021 13th Interna-
tional Conference on Computer and Automation Engineering (ICCAE).
IEEE, 2021, pp. 89–94.

[4] S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-
based rapidly-exploring random tree,” in Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006. ICRA
2006. IEEE, 2006, pp. 895–900.

[5] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[6] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE international conference
on robotics and automation (ICRA). IEEE, 2017, pp. 3357–3364.

[7] A. Sehgal, N. Ward, H. La, and S. Louis, “Automatic parameter
optimization using genetic algorithm in deep reinforcement learning
for robotic manipulation tasks,” arXiv preprint arXiv:2204.03656,
2022.

[8] A. Franceschetti, E. Tosello, N. Castaman, and S. Ghidoni, “Robotic
arm control and task training through deep reinforcement learn-
ing,” in International Conference on Intelligent Autonomous Systems.
Springer, 2022, pp. 532–550.

[9] S. Wang, X. Zheng, Y. Cao, and T. Zhang, “A multi-target trajectory
planning of a 6-dof free-floating space robot via reinforcement learn-
ing,” in 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2021, pp. 3724–3730.

[10] V. Kumar, D. Hoeller, B. Sundaralingam, J. Tremblay, and S. Birch-
field, “Joint space control via deep reinforcement learning,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 3619–3626.

[11] Y. Gu, Y. Cheng, K. Yu, and X. Wang, “Anti-martingale proximal
policy optimization,” IEEE Transactions on Cybernetics, 2022.

[12] H.-L. Hsu, Q. Huang, and S. Ha, “Improving safety in deep re-
inforcement learning using unsupervised action planning,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 5567–5573.

[13] P. Sadhukhan and R. R. Selmic, “Multi-agent formation control with
obstacle avoidance using proximal policy optimization,” in 2021 IEEE
International Conference on Systems, Man, and Cybernetics (SMC).
IEEE, 2021, pp. 2694–2699.

[14] T. Kobayashi, “Proximal policy optimization with relative pearson
divergence,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 8416–8421.

[19] A. Pashevich, R. Strudel, I. Kalevatykh, I. Laptev, and C. Schmid,
“Learning to augment synthetic images for sim2real policy transfer,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 2651–2657.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[16] T. Zhang, K. Zhang, J. Lin, W.-Y. G. Louie, and H. Huang, “Sim2real
learning of obstacle avoidance for robotic manipulators in uncertain
environments,” IEEE Robotics and Automation Letters, vol. 7, no. 1,
pp. 65–72, 2021.

[17] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation
and domain adaptation to improve efficiency of deep robotic grasping,”
in 2018 IEEE international conference on robotics and automation
(ICRA). IEEE, 2018, pp. 4243–4250.

[18] K. Fang, Y. Bai, S. Hinterstoisser, S. Savarese, and M. Kalakrishnan,
“Multi-task domain adaptation for deep learning of instance grasping
from simulation,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2018, pp. 3516–3523.

[20] Y. Gu, Y. Cheng, C. P. Chen, and X. Wang, “Proximal policy
optimization with policy feedback,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 2021.

	I INTRODUCTION
	II PRELIMINARY
	II-A Environment
	II-B Proximal Policy Optimization
	II-C Sim-to-Sim and Sim-to-Real Transfer

	III STRATEGY FOR LEARNING
	III-A State and Action Representation
	III-A.1 States in Reaching Task without Obstacles
	III-A.2 States in Reaching Task with Obstacles
	III-A.3 Actions

	III-B Reward Function
	III-C Neural Network Structure

	IV IMPROVED PROXIMAL POLICY OPTIMIZATION
	IV-A Action ensembles Based on Poisson Distribution
	IV-B AC Architecture with Policy Feedback
	IV-C Improved PPO

	V EXPERIMENTS
	V-A Sim-to-Sim Transfer
	V-B Comparison with Other Methods
	V-C Reaching Task without Obstacle Avoidance
	V-D Reaching Task with Obstacle Avoidance
	V-E Sim-to-Real Transfer

	VI CONCLUSIONS
	References

