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A Hybrid Compositional Reasoning Approach
for Interactive Robot Manipulation

Georgios Tziafas1 and Hamidreza Kasaei1

Abstract— In this paper we present a neuro-symbolic (hybrid)
compositional reasoning model for coupling language-guided
visual reasoning with robot manipulation. A non-expert human
user can prompt the robot agent using natural language,
providing a referring expression, a question or a grasp action
instruction. The model tackles all cases in a task-agnostic
fashion through the utilization of a shared library of primitive
skills. Each primitive handles an independent sub-task, such
as reasoning about visual attributes, spatial relation compre-
hension, logic and enumeration, as well as arm control. A
language parser maps the input query to an executable program
composed of such primitives depending on the context. While
some primitives are purely symbolic operations (e.g. counting),
others are trainable neural functions (e.g. image/word ground-
ing), therefore marrying the interpretability and systematic
generalization benefits of discrete symbolic approaches with
the scalability and representational power of deep networks.
We generate a synthetic dataset of tabletop scenes to train our
approach and perform several evaluation experiments for visual
reasoning. Results show that the proposed method achieves very
high accuracy while being transferable to real-world scenes with
few-shot visual fine-tuning. Finally, we integrate our method
with a robot framework and demonstrate how it can serve
as an interpretable solution for an interactive object picking
task, both in simulation and with a real robot. Supplementary
material is available in this https URL.

I. INTRODUCTION

As modern developments in robotics are beginning to move
robots from purely industrial to human-centric environments,
it becomes essential for them to be able to interact naturally
with non-expert human users. This necessary feature poses
additional challenges to traditional autonomy, as the agent
should not only perceive and reason about its environment,
but do so in a manner that is fully interpretable to its human
cohabitants. Consider for instance the scenario presented
in Fig. 1, where a user asks a question about a tabletop
scene, referring to visual attributes and/or spatial relations
between objects. Our intuition is that, for a human, the logic
behind solving this task is compositional (a hierarchy of
elementary steps) and disentangled from the actual scene
content, meaning that the reasoning steps illustrated in Fig. 1
can be generalized to all similar questions regardless of the
actual scene content.

Deep multi-modal learning methods for vision-language
tasks such as referring expression comprehension (REC) and
visual-question answering (VQA) tackle such challenges, how-
ever, due to their black-box nature, the desired compositional
reasoning behavior can not be retrieved from the final answer,
since it is often implicitly learned in the model representations.
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Human: Hey Luca!

Are there an equal number
of green and white items?
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Executable Program

Fig. 1: Illustration of an HRI scenario where a robot interacts with a
non-expert human user in free-form natural language. Understanding the
input question / instruction often requires reasoning about properties or
relations of appearing objects in a compositional manner. The robot parses
the input question into the underlying reasoning program and executes it
step-by-step in order to reach the final answer.

Therefore, such methods suffer from lack of interpretability
as well as data-hungriness in order to be adapted to novel
domains. To battle this, modern hybrid approaches combine
deep representation learning with symbolic program synthesis
over domain-specific primitives, an approach which is highly
data-efficient and fully interpretable, due to disentangling
discrete reasoning (symbolic) from perception (neural). How-
ever, prior arts ( [13], [24]) usually study abstract domains
with a poor variety of object and relation semantics, and fix
their primitives to be aware of the domain vocabulary. In this
work, we wish to propagate hybrid compositional reasoning
approaches to the robotics domain and utilize it as an auxiliary
process for interactive manipulation. Additionally, we re-
formulate components of the overall framework and design
our primitives in an open-vocabulary fashion. In summary,
the key contributions of this work are threefold:

• We develop a domain of synthetic tabletop scenes with
a broad collection of object categories and rich spatial
relation concepts and generate data for language-based
visual reasoning. We further collect a real RGB-D dataset
for evaluation, which we make publicly available.

• We propose a novel hybrid model for visual reasoning
that uses domain-agnostic primitives and open-ended
vision-language grounding, granting it transferable to
novel scene content with minimal adaptation.

• We performed extensive experiments to show the merits
of the suggested approach in terms of (i) high reasoning
accuracy evaluated through a VQA task, (ii) data-efficient
adaptation to real scenes and (iii) easiness of integration
with a robot framework for an interactive object picking
task, tested both in simulation and with a real robot.
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Fig. 2: A schematic of the proposed framework. First, objects are segmented and localized in 3D space (top left) and the scene is represented as a graph
of extracted object-based features (visual, grasp pose) as nodes and their spatial relations as edges (top middle). A human user provides an instruction
and a language parser synthesizes an executable program (bottom left), built out of a primitives library (bottom middle). A program executor utilises a
Vision-Language Matching (VLM) module to ground word concepts to different objects (center) and executes the predicted program step-by-step (top right),
in order to identify the queried object and instruct the robot to grasp it (bottom right).

II. RELATED WORK

Recent approaches for vision-language reasoning can be
taxonomized [22] to holistic [7], [18], [21] and modular [1],
[5], [10], [14]. Holistic approaches embed visual and text
features into a common space and answer the question by
fusing features, while modular decompose the task into sub-
tasks treated by separate modules. The neuro-symbolic VQA
model (NS-VQA) [24] introduces strong inductive biases
for reasoning by integrating symbolic modules to pair the
neural perception and language backbones. Symbolic modules
are expressed as primitive operations within a Domain-
Specific Language (DSL) and the language module parses
the input query into an arbitrary composition of them as
the underlying program. In this line of work however, the
underlying scene is represented as a table of extracted attribute
labels [24] or features [13], without any relation information.
In our work, we integrate relation concepts with object-based
features in a latent scene graph representation and make our
primitives vocabulary-agnostic, allowing adaptation to novel
concepts without the need for updating the DSL. Additionally,
like NS-CL [13], we enable generalizable language parsing
by replacing lexical items in the input query with their
corresponding concepts, as defined in a concept memory.
Unlike NS-CL, which applies hand-crafted methods for
identifying concept values in the phrase, we learn the word
to concept mapping through a word tagging module.

More recently, there have been attempts to adapt hybrid
approaches for compositional reasoning in natural scene con-
tent [22] [8] [6]. In the robotics field, language-conditioning
has been an emergent theme in RL-based manipulation [12].
In the overlapping space between compositional reasoning

and manipulation, to the best of our knowledge, there are no
published methods. SHOP-VRB [16] is a benchmark inspired
from the CLEVR dataset [9], where the authors replicate the
language - program pair generation for a kitchen domain of
20 objects with a rich variety of attribute concepts (weight,
mobility etc.). Similarly, we adapt the CLEVR data generation
engine to generate a dataset of synthetic tabletop scenes
but extend it to include category and richer spatial relation
concepts, absolute relations (e.g. ”The rightmost bowl”) and
higher-order (hyper-) relations (e.g.“The bowl that is closer
to the book than the mug”).

III. APPROACH DESCRIPTION

Our architecture is comprised of four components: a) a
scene graph encoder (hybrid), b) a language parser (neural),
c) a dedicated language that implements reasoning / action
primitives, paired with a program executor (symbolic) and d)
a vision-language matching network (VLM - neural). Given
a visual world state, the scene encoder constructs a scene
graph representation which embeds object features as nodes
and their spatial relations as edges. The language parser
translates the input natural language query into the underlying
program, and the program executor executes it as a sequence
of message passing steps in the extracted scene graph. The
VLM is used to match natural language phrases that express
semantic concepts to appearing objects, serving as an open-
ended alternative to classification. The overall framework
with a running example are illustrated in Fig. 2.

A. Scene Graph Encoder

Given an input RGB-D pair of images, we first apply
Mask-R-CNN [4] in RGB for instance segmentation and
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Fig. 3: A Vision-Language Matching (VLM) module (left) is used to
ground word/phrase concepts to object instances and vice versa. Our program
executor invokes VLM to perform filtering (middle) and querying (right)
operations by computing matching scores for object-concept pairs. A Concept
Memory MC provides concept values and their embeddings to apply VLM
in domain-specific vocabulary.

crop the N detected object instances from both frames
{Icn ∈ Rhn×wn×3, Idn ∈ Rhn×wn}Nn=1. Segmented objects are
projected to 3D space using the camera intrinsics and approxi-
mated with a 3D bounding box bn =

(
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)T
,

where (W,L,H) denotes the workspace dimensions.
We then construct a scene graph G = {V, E ,XV ,XE} with

nodes V = {1, . . . , N}, edges E = V × V , node features
XV =

{
xVn = (vn,gn) , n ∈ V

}
and edge features XE ={

xEnmr = ζr(bn,bm), (n,m) ∈ E , r ∈ R
}

. We extract the
visual feature of each object by vn = H(Icn), where
H : Rhn×wn×3 → RDv is implemented by flattening the
feature maps of up to the penultimate layer of a standard
ImageNet-pretrained [3] CNN (we use MobileNetv2 [20]). We
parameterize grasping through 2D end-effector position, angle,
openning length and grasp quality and utilize a pretrained
vision-based grasp synthesis network (e.g. GG-CNN [15]),
that receives the input depth crops Idn and generates a grasp
proposal for each object gn ∈ R5.

For encoding relations, we define a vocabulary of spatial
concepts R = {”left”, ”right”, ”behind”, ”front”, ”closer”,

”further”, ”bigger”, ”smaller”, ”next to”} and implement a
heuristic function per concept ζr : E → {0, 1} that utilises
the 3D locations to decide whether the relation exists or not.
For example, for deciding whether object n is left from m,
we use the function ζ”left”(n,m) =

[
xn +

lxn
2 < xm − lxm

2

]
,

where the [·] operator evaluates the input condition. Similarly,
we calculate the relation value of all spatial concepts and
aggregate them as the edge representation xEnm ∈ {0, 1}|R|.
All locations are expressed at the robot reference frame and
so spatial relations are resolved from the robot’s perspective.

B. Vision-Language Matching

Visual attributes refer to an object’s properties (e.g. color,
material) as well as its semantic category. In order to reason
about such concepts, the agent needs to be able to ground the
scene objects n ∈ V to specific concept values (e.g. ’bowl’
for category, ’red’ for color, ’plastic’ for material etc.) and
vice-versa. We implement a module Fα that estimates a
matching score between any given visual feature vn of an
object, and a concept embedding ec, encoded as the GloVe
[17] embedding of the concept word c. The final matching

score is given by:

Fα(vn, ec) = Θα
o ·

Θα
v · vn �Θα

e · e
‖Θα

v · vn �Θα
e · e‖2

(1)

where � denotes element-wise multiplication and Θα
v ∈

RDv×Dj ,Θα
e ∈ RDq×Dj ,Θα

o ∈ RDj×1 are trainable matri-
ces. Fig. 3 illustrates the architecture of the VLM network
and how it is utilized to implement our visual reasoning
primitives, namely filtering objects based on a concept value
or querying for the concept value of a specific object. The
set of all concept values and their embeddings(extracted for a
given dataset) are maintained in the concept memory module
MC , which allows the VLM to query over all encountered
concepts.

C. Language Parser

The language parser consists of two sub-modules, a
concept tagger and a language-to-program encoder-decoder.
We implement the concept tagger as a uni-layer Bi-GRU
encoder of hidden size Dc (ConceptEncoder), followed by
a projection Θu ∈ RDc×|MC| that maps hidden states to
the most likely concept tag from the vocabulary included
in concept memory MC . We utilize pretrained GloVe [17])
word embeddings for representing words. After the tagging
step we replace tagged words with the corresponding con-
cept and add a unique index for that concept within the
phrase (see example in bottom left of Fig. 2). The replaced
sequence is fed to a seq2seq attention-enhanced encoder-
decoder architecture [2]. A Bi-GRU encoder of hidden
size Dπ (ContextEncoder) encodes the input embeddings
et to hidden states hπt = Bi-GRU(et,h

π
t−1), while the

ProgramDecoder will autoregressively generate a sequence of
primitive functions πt = softmax (Θπ · [hπt ; ct]) selected
through greedy decoding from the primitives library Π, using
a linear layer Θπ ∈ R2Dπ×|Π|. Here, ct =

∑
τ αtτh

c
τ , αtτ =

softmax (hπt ·Θattn · hcτ ) denotes the weighted average of
the attention scores over the output states of the encoder.
This formalism allows the decoder to recover attribute and
relation concepts as inputs to primitives without having to
define a new one for each concept-value pair, as in previous
works [24]. In Sec. IV-A, we show that this enables zero-shot
application of the parser in novel concept words, as long as
their concept is tagged correctly.

D. Primitives and Program Execution

We define our library of reasoning primitives Π similar
to the CLEVR domain [9], which we formally present in
Table I. We further implement three primitives with additional
semantics, namely: a) scene, which initializes an execution
trace returning all objects V , b) unique, which returns the
object contained in a single-element object set, and c) grasp,
which instructs the robot to grasp the object using the grasp
proposal gn of an input object n. Primitives are implemented
as modules in a functional language, developed in Python.
Our type system supports basic variable types, as well as
two special types for representing an object and a object set
through their unique indices in the scene graph nodes V . The



TABLE I: The library of reasoning primitives included in our language, implemented as Python modules. For brevity we don’t enumerate all combinations
of primitive and concept arguments, but illustrate the latter as a separate column. Visual modules interface with the VLM and the scene’s visual features
to reason about visual attributes. Spatial primitives interface with the scene graph edge features to resolve spatial relations, superlatives (locations) and
hyper-relations. Symbolic modules implement basic logic and arithmetics operations to incorporate integer and set semantics.

Reasoning Primitive Concept Argument (α) Type Signature Semantics Implementation

filter Color, Material, Category (V1: ObjSet, c: str) → ObjSet
Returns subset of objects with
given attribute concept value {n ∈ V1 | σ (Fα(vn, ec)) ≥ 0.5)}

visual query Color, Material, Category n1: Obj → str
Returns attribute concept

value for given object argmaxc {σ (Fα(v1, ec)) , c ∈MC [α]}

same Color, Material, Category n1: Obj → ObjSet
Returns subset of objects that have same
attribute concept value with given object filter (V − {n1}, query(n1))

relate Relation (µ: Obj, r: str) → ObjSet
Returns subset of objects with given

relation value to given object
{
n ∈ V | xEnµr = 1

}
spatial locate Relation (V1: ObjSet, r: str) → Obj

Returns object with most given relation
values from given object set argmaxn

{∑
m∈V1 x

E
nmr, n ∈ V1

}
hyper relate Relation (µ1: Obj, µ2: Obj, r: str) → ObjSet

Returns subset of objects with given
relation value to given object pair

{
n ∈ V | xEnµ1r − x

E
nµ2r > 0

}
union,

intersection - (V1: ObjSet, V2: ObjSet) → ObjSet
Returns union/intersection of

two given object sets V1 ∪ V2, V1 ∩ V2

symbolic
exist,
count - V1: ObjSet → bool/int Returns size of given object set [|V1| > 0] , |V1|

equal integer,
greater, less Integer (ν1: int, ν2: int) → bool Compares two given integers [ν1 = ν2] , [ν1 > ν2] , [ν1 < ν2]

equal Color, Material, Category (c1: str, c2: str) → bool Compares two given attribute concept values [c1 = c2]

modules share the same type system and input/output interface
and thus can be arbitrarily composed in any order and
length. Whenever there is type mismatch between expected
and retrieved inputs/outputs, the executor raises a suitable
response, enforcing the interpretability principle by explaining
to the user which reasoning step failed. This feature extends to
cases of ambiguous queries (i.e. queried object appears more
than once), as they will be similarly captured by the executor
due to failure of the unique primitive type-checking (input
set has more than one element).

E. Training Paradigm

The training process entails two optimization objectives:
a) the correctness of the parsed program and b) word-object
matching of the VLM module. Following insights from prior
works [13], we train using a curriculum learning approach.
In particular, we first train the VLM by isolating input/output
pairs from execution traces of visual reasoning primitives in
our dataset and express them as probability distributions over
the node edges, optimized using binary cross entropy loss. For
program synthesis, we first train the concept tagger on ground
truth tags for a single epoch and then the entire language
parser following [24]. First, we select a small diverse subset
of our dataset and train using the ground truth programs and a
softmax loss. Finally, we pair the language parser with frozen
VLM and the program executor and train it on the remaining
scenes with REINFORCE [23], using the correctness of the
executed program as the reward signal.

IV. EXPERIMENTS

In the subsections that follow we describe our experimental
setup, the datasets and the evaluation results. We conduct our
experiments in two datasets: a synthetic and a small-scale
real-world RGB-D dataset.

1) Simulation: We collect from public resources a cata-
logue of 60 3D models from five types (fruits (6), electronics
(6), kitchenware (17), books (5), stationery (10) and edible
products (16)), organized into 26 category, 10 color and 8

material concepts. For evaluating in novel vocabulary, we also
include special annotations for edible items according to their
brand, variety or flavour (e.g. “Coca-Cola“, “mango juice“).
We render synthetic scenes in the Gazebo environment [11]
and generate around 8k training and 1.6k validation scenes,
represented as symbolic scene graphs with all attribute-
relation information. We develop on top of the CLEVR data
generator [9] and extend the task templates to REC and
grasping tasks, ending up with 13 task families, spawning a
total of 289 templates. We instantiate 10 templates per scene
and end up with around 80k training and 16k validation
query-program-answer samples.

2) Real: In order to evaluate the adaptation performance of
our model in natural scenes we record a dataset of Household
Objects placed in Tabletop Scenarios (HOTS). The object
catalogue is a subset of the synthetic one but includes a
few unseen categories and attributes, for a total of 48 object
instances with 22 category, 9 color and 7 material concepts
in 108 scene setups. We extract scene graphs and repeat the
language-program-answer data generation step as above.

A. VQA Evaluation in Simulation

We report the overall accuracy of the executed programs
in the dev set of our synthetic dataset, as well as in each
question family separately. We compare out method with
three holistic [10], [18], [21] and the original NS-VQA [24]
baseline for VQA. The baseline models are trained with
default hyper-parameters as mentioned in their paper and
the DSL of NS-VQA is adapted for our synthetic domain.
The final results are summarized in Table II. Out model is
consistently above all holistic baselines across all question
types, with the most significant margin in counting questions.
Compared to vanilla NS-VQA, our approach achieves on-par
performance, with a small drop due to the reformulation
of our primitives library to be vocabulary-agnostic and the
addition of the concept tagging bottleneck. When moving
out-of-domain, the benefit of our formulation is shown in



TABLE II: VQA accuracy (%) per question type and overall for the dev
split of our synthetic dataset.

Method Count Exist Compare
Number

Compare
Attribute Query Overall

CNN-LSTM-SAN [10] 58.9 77.1 73.9 70.2 79.8 72.0
CNN-LSTM-RN [21] 86.3 93.7 87.05 91.6 92.8 90.3
CNN-GRU-FiLM [18] 88.3 93.4 89.35 92.9 93.2 91.4

NS-VQA [24] 98.6 98.1 97.8 96.4 97.1 97.6
Ours 97.6 97.0 96.9 96.1 96.3 96.8

TABLE III: VQA accuracy (%) for novel query instances, incl. novel
attribute-category combinations (Nov.Combs) and unseen category words
(Nov.Words). The NS-VQA baseline fails to parse unseen object descriptions
due to its domain-aware formalism of primitives.

Method Dev Nov.Combs Nov.Words
NS-VQA [24] 97.6 97.1 32.4

Ours (GTtags + seq2seq) 98.6 98.1 98.4
Ours (ConceptTagger + seq2seq) 96.8 97.0 80.9

Table III, where we evaluate the language parser in two
test splits, including: a) novel combinations of attribute and
category words, and b) unseen object category words. As
expected, the vocabulary-specific baseline of NS-VQA fails
to parse novel category concepts (as they are not part of
the training primitives library), while our approach achieves
significantly higher accuracy, with near-perfect results when
evaluating only the seq2seq network with ground truth tags.

B. Adapting to Real Scenes

In this subsection we wish to assess the transferrability of
our model to natural scenes by evaluating visual reasoning
performance in the HOTS dataset. The modular nature of our
approach allows us to bridge the sim-to-real gap solely in the
vision domain, only adapting the VLM to real images from the
HOTS dataset and transferring the language parser without
any further training. We evaluate in two splits, namely: a)
HOTS-Perception, where we only test the visual pipeline by
treating attribute words as class labels as in recognition task,
and b) HOTS-Reasoning, where we test the end-to-end system
for REC and VQA tasks. For the first split, we use VLM for
querying attribute concepts of input object images and report
the percentage of correct top-1 predictions as accuracy. We
initialize the VLM with the synthetic pretraining weights and
fine-tune in different amounts of training examples per object
instance (1, 5, 20 and in full dataset). Results are summarized
in Table IV. We observe that our method can be efficiently
transferred to real scenes, as 20 labeled examples per object
instance achieves very similar performance to fine-tuning in

TABLE IV: Top-1 accuracy (%) for classifying attributes - category (Cat),
color (Col) and material (Mat) - as well as end-to-end REC and VQA tasks
in annotated scenes of our HOTS dataset. GT denotes using ground truth
perception. The @{1, 5, 20,full} fields denote number of training images
per object instance used to fine-tune the VLM module.

Method HOTS-Perc. HOTS-Reas.
Cat Col Mat REC VQA

GT + Parser 100.0 100.0 100.0 99.4 96.5

VLM@1 + Parser 43.2 44.4 60.8 49.7 47.7
VLM@5 + Parser 62.5 67.6 73.1 66.1 61.9
VLM@20 + Parser 90.5 89.9 94.4 89.8 86.6
VLM@full + Parser 93.4 91.8 95.7 90.9 88.1

TABLE V: Evaluating the system for coupling visual reasoning with
robotic grasping in synthetic (top) and real (bottom) scenes.

Split #Trials #Failures #Perc.Fail. #Reas.Fail #Grasp.Fail.
A 12 4 (33.0%) 1 (8.3%) 0 (0.0%) 3 (25.0%)
B 16 2 (12.5%) 1 (6.3%) 0 (0.0%) 1 (6.3%)
C 24 5 (20.8%) 4 (16.6%) 1 (4.2%) 0 (0.0%)
D 20 8 (40.0%) 5 (25.0%) 1 (5.0%) 2 (10.0%)
total 72 19 (26.4%) 11 (15.3%) 2 (2.8%) 6 (8.3%)

Real 12 3 (25.0%) 1 (0.0%) 2 (16.6%) 0 (0.0%)

the entire dataset, both in the attribute recognition as well as
in the end-to-end reasoning tasks.

C. Coupling Visual Reasoning with Robot Grasping

In this subsection we integrate our method with a robot
framework and evaluate the end-to-end behavior for an
interactive object picking task. An illustration of the setup and
experiments is given in Fig. 4. In this round of experiments,
we randomly place objects on a table and a human supervisor
instructs the robot to grasp an object in real-time. The
transparent nature of our method allows us to examine the
program execution trace and diagnose the source of failures,
including: a) perception, where there is either a localization
error or the VLM has given an incorrect match, b) reasoning,
where the parsed program is incorrect, or c) grasping, where
the grasping fails (e.g. due to collision with obstacle).

For simulation, we report results in scenes separated
in four splits, comprised of different levels of scene and
query complexities, namely: (A): scattered scenes (up to 5
objects) and simple queries (with programs up to depth 3);
(B): crowded scenes (up to 11 objects) with same query
complexity, (C): scattered scenes with queries of arbitrary
complexity, and (D): crowded scenes with queries of arbitrary
complexity. For the real experiments, we conduct a total of
12 trials using objects from HOTS dataset the adapted visual
pipeline of the previous section. Results are summarized in
Table V. We observe that in both setups the averaged success
rate is similar (∼ 25%), with the reasoning module being
robust to grasping instructions across all trials. Exception are a
few queries in cases of complex question splits. Such failures
are mostly due to the use of unknown spatial concepts by the
human instructor (e.g. between). Perception errors occur more
frequently in the crowded scene setup, due to partial views of
objects leading to occlusion. The overall results showcase that
the system can indeed serve as an accurate and interpretable
interactive robotic grasper, as reasoning is demonstratively
relatively robust to input scene and query complexity. We
highlight that as our approach updates program execution
by the output of perception in real-time, changes to the
environment during execution will be captured within a given
efficiency (around 4 Hz in our hardware setup), with the main
bottleneck being the Mask-RCNN network.

V. CONCLUSION

In this work we bring together deep learning techniques for
perception, grasp synthesis and NLP with symbolic reasoning
in an end-to-end hybrid system, aimed for HRI applications.
Results demonstrate that our method is highly accurate



Fig. 4: A sequence of snapshots capturing the setup of our robot framework in Gazebo (top) and in a real-world environment (bottom). We generate a
random scene and command the robot to grasp a specific item with a text instruction, using a disambiguation query. For our examples the queries are, from
top-left to right-bottom: “cap in front of largest laptop”, “plastic cup”, “rightmost soda can”, “leftmost Pringles”, “soda drink right from the pink juice
box”, “rightmost item”. In the snapshots we demonstrate the robot during the picking action (left) and the localization results in RViz (right).

and can be adapted to natural scene content with minimal
adaptation. In particular, for adding new concepts, there is no
fine-tuning required for the parser but instead an adaptation
of the scene encoder (i.e., to include a new heuristic and edge
representation for spatial) or the VLM (i.e., fine-tuning for
visual). In order to alleviate the need for visual fine-tuning, in
the future we plan to employ a foundation model (e.g CLIP
[19]) for zero-shot visual-language grounding. For extending
our approach to more primitives in order to deal with more
complex reasoning and manipulation tasks, the new primitives
must be formally defined and new synthetic data have to be
generated to train the language parser. In the future, we plan
to replace our supervised parser with a large language model
for zero-shot code generation in unseen tasks.
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