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Abstract 

STimulated Emission Depletion (STED) nanoscopy uniquely combines a high spatial resolution 
(20-50nm in cells) with relatively fast imaging (frame rate of ~1-30Hz), straightforward sample 
preparation and direct image output (no postprocessing required). Although these characteristics 
in principle make STED very suitable for high-throughput imaging, only few steps towards 
automation have been made. Here, we have developed fully automated STED imaging, 
eliminating all manual steps including the selection and characterisation of the relevant (cellular) 
regions, sample focusing and positioning, and microscope adjustments. This automatic STED 
image acquisition increases the data output by roughly two orders of magnitude, resulting in a 
more efficient use of the high-end microscope, and the ability to detect and characterise objects 
that are only present in a small subset of the sample.  

Main 

STimulated Emission Depletion (STED)1 nanoscopy is a light microscopy technique, which 
achieves high spatial resolutions (20-50nm) in cells2. STED thus can reveal important cellular 
structures that are too small to unravel using traditional methods like confocal and widefield 
microscopy, as these techniques are diffraction limited to resolutions >~250 nm. In comparison 
to super-resolution PALM3 and STORM4 imaging, STED has the advantage of having a 
relatively high temporal resolution (frame rate up to ~1-30Hz5). These short acquisition times, 
together with a straightforward sample preparation and direct imaging (no post-processing 
required), make STED a suitable technique for high-throughput imaging. However, the current 
imaging workflow requires time-consuming input by an expert user to manually find, select, 
characterise (e.g. 3D confocal overview) and STED image specific regions of interest (ROIs). 
Automating this workflow can exploit the full potential of STED. Besides a more efficient use 
of the high-end microscope and less manual labour for data acquisition, the probably most 
important benefits of automated high-throughput imaging are the decreased bias during data 
acquisition, and the significantly improved statistics and thus increased reliability of the results. 
Furthermore, automation increases the opportunity to detect transient structures without 
(chemically) altering cellular processes. Thus, to overcome the current low-throughput, there is 
a demand for unsupervised fully-automated STED imaging, which is not met up to date. 
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Thus far, automated high-throughput imaging has been successfully developed for several lower-
resolution microscope techniques (e.g. Micropilot6), including methods that adjust microscope 
settings (Micromator7). Although similar methods do not yet exist for STED nanoscopy, an 
important step has been made by enabling microscope control through Python code (ImSwitch8 
for home-built systems and Imspector9 for commercial Abberior microscopes). This basis 
allowed for the imaging of regions larger than the typical field of view (FOV) by STED10, and 
the implementation of event-triggered STED nanoscopy5. While these important developments 
enable to image structures larger than the typical FOV or at a relevant point in time at a specific 
location, they do not yet enable automated high-throughput imaging of large numbers of 
structures. 

In this work, we present a method for unsupervised, fully-automated detection and imaging of 
objects using STED nanoscopy. The protocol starts by scanning a large sample area using fast 
and low-resolution imaging to localise the ROIs that contain the objects which should be 
measured by STED. These ROIs are classified, after which a selection (either random or based 
on predefined features) is further characterised at higher resolution, and finally imaged using 
STED nanoscopy. To exemplify this approach, we have used automated STED nanoscopy to 
image ESCRT-III proteins in unsynchronised wild type populations of fixed Sulfolobus 
acidocaldarius cells, with the goal of characterising the structure of division rings at different 
stages in the division process.  

Results 
The automation that we have developed enables high-throughput STED imaging by detecting 
objects in a large sample area (many FOVs, not limited), and applying STED microscopy in an 
unsupervised manner. This automation was achieved through dedicated python software which 
enabled the control of microscope settings and stage positions, and further included image 
analysis and decision making. Our workflow consists of several sequential steps: (i) (low 
resolution) sample overview, (ii) segmentation, (iii) classification, (iv) selection, (v) 
characterisation and (vi) STED measurement (Fig. 1). Each of these steps is discussed in further 
detail below. 

Overview. The first step of the automation workflow is obtaining an overview of the sample 
placed on the microscope. This overview is used to characterise the sample and identify objects. 
The imaging modality and parameters used for the overview images should provide sufficient 
detail to identify possible regions of interest, and at the same time minimise the imaging time 
and light dose (to reduce phototoxicity and photobleaching). It is important to optimise the pixel 
size (as large as possible) and dwell times (as short as possible) to minimise the acquisition time 
and imaging impact, while still enabling segmentation. If merely the locations of prominent 
features (e.g. cell locations) need to be found, a lower magnification objective could be used 
and/or epifluorescence illumination in combination with camera based detection. A simple 
coordinate transformation between this imaging modality and the subsequent confocal/STED 
imaging would suffice to obtain correct microscope stage positions for the latter. In case smaller 
features (e.g. subcellular structures) need to be detected for further decision making, these 
overviews should be obtained by confocal imaging. In our example, we used confocal 

microscopy. As a single FOV in our microscope measures 80x80m², tiling was used to obtain 
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a large overview. In our tiling approach, multiple adjacent FOVs were obtained by automatically 

moving the microscope stage by 80m, after which the images are stitched together. The quality 
of the stitching can be improved by having a slight (e.g. up to 10%) overlap of neighbouring 
FOVs, but for merely detecting regions of interest, moving the stage a full FOV is often desired 
in view of photodamage and imaging speed. As an alternative to tiling, non-overlapping regions 
(randomly chosen) from a much larger sample area could be imaged. The benefit of this approach 
is that in the same acquisition time, a broader, less region-dependent sample overview can be 
obtained. To extend the axial information, a z-stack can be recorded. Again, in view of speed and 
photodamage, the height increment between z-slices should be chosen at the maximum distance 
that still enables sufficient object detection. In our example, we obtained a z-stack consisting of 
three slices. 

With regard to the applied illumination and possible excitation/detection multiplexing scheme, 
the minimum number of colour channels should be used that still enables object identification. 
In the here presented example study (see Fig. 2), we imaged confocal overviews in 4-colours, 
which were frame-multiplexed (individual frames for each if the 405nm, 488nm, 561nm and 
640nm excitation lasers). Frame-multiplexing enabled to trace back the fluorescence signal to 
the individual fluorescent labels (Hoechst, Alexa Fluor 488, Abberior STAR 580 and Abberior 
STAR 635). All overview images combined should at least contain enough objects to fill the 
desired experiment runtime with STED imaging, but ideally more overview images should be 
collected to enable data selection prior to STED imaging. In our example, 5x5 FOVs 
(400x400µm²) contained sufficient objects for an experiment runtime of ~3h. For an overnight 
run of ~12h, the overview size was set to 10x10 FOVs (800x800µm²). The acquisition time of 
an overview image depends on the sample brightness (brighter samples require less dwell time) 
and the number of frames per FOV (e.g. slices in a z-stacks, multiplexing instead of collecting 
all colour channels in a single scan, see Table 1), ranging from 1s (1 slice) up to 25s (multi-colour 
z-stack). It furthermore takes ~0.3s to move of the sample from one overview position to the 
next, using a standard Olympus motorised stage. We repeat the positioning of the stage three 
times to improve the precision of the stage position, resulting in an overall movement time of 
~0.5s (the last two positionings require minimal stage movement and are thus faster). Storing the 
overview images (four z-stacks, consisting of 3x400x400 pixels) took around 16ms. 

microscopy type multiplex acquisition 
time 

field of view 

confocal off (all colours simultaneous) 1-2s 80x80m 
confocal 4 colour sequence 4-8s 80x80m 
widefield off (all colours simultaneous) 1-2s 103.5x77.64m 

Table 1: typical acquisition times per FOV. Additionally ~0.3-0.5s are required for the 
stage movement and ~16ms for image storage. 

Segmentation. After obtaining the overview images, the labelled objects of interest (and their 
corresponding stage positions) are extracted through segmentation. In our example study, already 
a simple intensity thresholding proved sufficient to discriminate objects from background and 
thereby allowed to segment the ROIs. To reduce the impact of noise, the overview images are 
smoothed using a Gaussian Blur before thresholding. By adapting the thresholding, bright objects 
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with high intensity as well as fainter objects can be selectively identified. After thresholding, a 
combination of opening and closing sequences is applied.  

To determine the quality of this approach, we analysed the segmentation accuracy for overview 
images of fixed Sulfolobus acidocaldarius samples, in which several cell division proteins 
(CdvB, CdvB1 and CdvB2) and DNA were fluorescently labelled. We manually annotated 
segmented overview images and verified for each of these labels, which of the segmented objects 
should not have been segmented, and which of the objects had not been selected by the 
segmentation algorithm. Using 25 FOVs (~28k cells), the annotated segmentation maps resulted 
in a precision (correctly identified objects among all automatically segmented objects) between 
0.978 and 0.999 (Supplementary 1), and a recall (fraction of relevant objects that was segmented) 
between 0.731 and 0.901 (Supplementary 1) for the labelled ESCRT-III proteins. When 
determining optimal segmentation parameters, we optimised for better precision instead of better 
recall to reduce the number of STED images containing no object of interest while accepting to 
miss a few possible STED imaging locations, since the output was mostly limited by the 
characterisation and (STED) measurement time. The thresholding can be further optimised for 
every new type of sample. However, in general, most samples primarily consist of (lower 
intensity) background, and our approach is thus widely applicable. In case a sample requires 
more sophisticated segmentation (e.g. the sample does not contain many objects, or the objects 
of interest display less discernible features), deep learning applications11,12 can be implemented 
in a modular fashion. In our example, we have collected segmentation data of four labels in a 
single sample. For each of these colours, a list of segmented ROIs was created. In preparation 
for the consecutive measurement steps, which involve microscope stage movements, the pixel-
coordinates of each of the centres of the segmented ROIs were transformed to stage-coordinates 
and stored in lists. Here, we have shown that this relatively straightforward segmentation proved 
to be efficient (see precision and recall, Supplementary 1) on fluorescently labelled ESCRT-III 
proteins and DNA in archaea (Supplementary Fig. 1). 

Classification. An important benefit of automated imaging is the opportunity to quantify the 
sample composition. From the segmentation data, many features can be extracted. If the chosen 
labelling allows to identify individual cells (e.g. via DNA staining), all segmentation layers can 
be correlated to the identified cell positions. This results in a quantified sample composition with 
regard to for example the morphology, the combination of proteins present and their intensities, 
and the relative distances between proteins. For each of the segmented archaea cells (based on 
the location of the DNA signal) in our example study, we quantified the shape, size and the mean 
intensity of each labelled cell division protein (CdvB, CdvB1, and CdvB2) (Fig. 4). Furthermore, 
the combination of the different protein labels present in each cell was evaluated (Supplementary 
Fig. 3) and stored together with these quantifications and the corresponding stage coordinates in 
a list. In the current study, seven different combinations of present proteins are possible, ranging 
from the detection of one of the three proteins to the joint presence of all three labelled proteins. 

Selection. Traditionally, a microscopist selects the cells/objects to be imaged based on experience 
and/or expectation of what a good cell/object should look like, without taking any quantitative 
selection criteria as basis. Even if deliberately aiming for a random and unbiased object selection, 
by nature, the human eye is not very well suited for this task. Uniquely, automated imaging 
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allows to select a subset of objects based on well-defined quantitative object features, after a full 
characterisation of all objects in a large sample area is achieved,  

Three approaches can be applied in the object selection. The most straight forward one is to 
obtain STED images of all objects within the sample that qualify for a defined combination of 
features (e.g. protein A and B should be present, proteins C should be absent). However, 
measuring the complete sample can take a large amount of time to measure. Hence, choosing a 
subset objects that qualified for acquisition often is preferred. A selection of objects can be made 
either at random to obtain a pool of STED images representing the sample composition, or based 
on specific object characteristics. For example, the selection can depend on features such as the 
object’s size or its intensity. Quantitative rules then determine if an object lies within the subset 
of object to be imaged by STED. There are many different ways, in which these rules can be 
implemented (e.g. brightest x%, or equal ratios of the least bright 33%, medium bright 33% and 
brightest 33%). Key feature is the defined selection process leading to the final dataset, which 
allows the scientific community to directly evaluate the applied criteria. With progressing insight 
into the objects studied, a revision of these criteria can be made and other subsets of the data 
satisfying adapted selection criteria can be recorded. Also, even if only a small subset is selected 
for the final STED measurements (Fig. 5), knowledge on the sample composition as obtained in 
the previous low-resolution steps is still very valuable. In the present study on archaea, we 
selected a random subset for each given label combination (Supplementary Fig. 3). Furthermore, 
a subset was selected that represented the highest protein concentrations within the selected ROIs 
(highest average photon count in the object). We determined the number of objects to be imaged 
based on the intended runtime of the complete automation workflow. Note that the random subset 
was selected first and the high intensity subset was picked out of the remainder of objects to 
obtain a truly random dataset reflecting the sample composition.  

Characterisation. To characterise the selected objects in more detail, the stage is moved to the 
coordinates of each selected object sequentially. At a given stage position, a confocal z-stack is 
recorded to perform a 3D characterisation. This z-stack serves two purposes. First, it shows in 
greater detail the 3D distribution of all labelled proteins in the specific cell, as often more than 
just the proteins, which should be imaged by STED, are labelled (e.g. for our archaea samples, 
DNA is labelled additionally to the three cell division proteins, Fig. 6). Hence, important context 
for the final STED image of the selected object can be obtained in this step. Second, with the z-
stack, the precise lateral and axial position of the protein(s) of interest is obtained through an 
x,y,z-fit, enabling optimal focusing in the final STED measurement. Instead of applying a fit to 
the z-position, selecting the slice which has the maximum mean intensity often also suffices. It 
is worth to evaluate the optimal pixel size for the confocal 3D stack. As confocal imaging does 
not reach the resolution obtained in the final STED image, an intermediate pixel size of 80x80nm² 
is often reasonable to choose. If the information in this 3D stack does not require this precision, 
selecting a larger pixel size will limit possible phototoxicity or photobleaching and speed up the 
runtime. The same reasoning should be applied to the choice of the z-stack spacing. Here, an 
initial choice of 120nm or more is reasonable.  

Measurement. In the final step of our workflow, the selected objects are measured in STED 
mode. As in the previous characterisation step the x,y,z-positions were fitted, optimal focusing 
for STED imaging is set in an unsupervised manner. The lateral positions as previously identified 
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in combination with knowledge on the object size allows to image the smallest possible region 
with STED. As STED is a scanning technique, this approach reduces the time to perform a 
measurement, resulting in faster data acquisition, less sample drift during the measurement, and 
less phototoxicity when performing live cell measurements. To further minimise photodamage, 
adapted acquisition schemes such as ResCUE13 and DyMIN14 can be applied. In our study, all 
selected objects were measured within a FOV of 2.5x2.5µm², using a pixel size of 17x17nm², 
while we obtained a resolution of around 30nm15 (Fig. 7). With our chosen measurement 
conditions, the detailed confocal z-stack (important to give context to the detected objects 
measured by STED), the analysis, and the sequential dual colour STED measurement all together 
had a total runtime of ~68s per object. 

For the guiding example, we studied three different sample conditions in triplicates and with 

reversed labelling as a control (i.e. swapping labels on target proteins). We thus measured 18 
different samples and obtained a total of 5,586 dual colour STED images at 30nm resolution. All 
these images are supplemented with a confocal z-stack revealing up to three proteins and DNA. 
Furthermore, by the automatic bookkeeping, the imaged object can be found back in the 
segmentation maps for each of the four channels, allowing to analyse possible relations between 
the measured objects and the sample (e.g. sample density or spatial clustering of specific events). 
In a similar project we have measured peroxisome proteins in yeast. For this sample we found 
the same segmentation strategy to be again highly efficient (Supplementary Fig. 2), enabling us 
to analyse STED imaged objects of even more (8,063) individual cells. 

Discussion and conclusion 
Since its invention1, great progress has been made on all aspects of STED nanoscopy, enabling 
multi-colour imaging with 20-50nm resolution in (living) cells. STED even reaches sufficient 
resolution to detect the spatial separation between the N and C termini of the same protein16. 
Developments of the microscope technique itself have brought important optimizations 
improving the acquisition time17, and decreasing the imaging impact18-21 and imprecisions caused 
by for example aberrations22,23. These developments have made STED nanoscopy a widely used 
method to visualise cellular processes. Unique in comparison with other methods that obtain 
similar resolutions24-26 is the very short acquisition and image processing time of STED. 
Although some techniques obtain a better spatial resolution (e.g. MINFLUX27) or temporal 
resolution (fast camera-based imaging28), STED uniquely combines high spatial (20-50nm2) and 
temporal (framerate of 1-30Hz5) resolutions in live cell imaging. Unfortunately, even though 
STED imaging itself can take significantly less than a second, studies using this method are 
typically still based on few tens to few hundreds of acquired images, since prior to STED 
imaging, time consuming steps in object selection, characterisation and focussing are required. 
Another drawback of the characterisation steps is the potentially induced phototoxicity and 
photobleaching of the fluorescent labels. To achieve minimal photodamage, each 
characterisation step should be executed with different microscope settings (including changing 
between widefield, confocal and STED nanoscopy and acquisition settings like illumination 
intensities, pixel sizes, pinhole diameters, dwell times and microscope stage positions). Lacking 
any automation in this process so far, all current workflows demand manual microscope 
adjustments, which are strongly dependent on the user response time. The limiting factor in data 
acquisition is therefore the manual steps prior to STED imaging, and not the time it takes to 
acquire the actual STED image. 
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In this work, we have achieved completely automated STED imaging of labelled DNA and 
ESCRT-III proteins in archaea cells, without any user input after placing the sample on the 
microscope stage. We have eliminated all time-consuming manual elements, including the 
selection of data points, characterisation of the relevant (cellular) regions, stage positioning and 
focussing, and microscope adjustments. This automated image acquisition in STED microscopy 
increases the data output by roughly two orders of magnitude resulting in a more efficient use of 
the high-end microscope. This increase in the dataset size leads to better statistics and hence more 
reliable conclusions. Furthermore, as opposed to the conventional procedure, in which a 
microscopist manually selects objects to be imaged, our selection parameters are quantifiable and 
made explicit, and thereby can lead to a reduction in an implicit selection bias by the 
microscopist29. The stored overview images and segmentation information furthermore allow for 
post-analysis of the sample composition. Finally, a major advantage of using the proposed 
automation method is the ability to acquire data from rare states, such as late division rings in 
archaea. Without automation, these rare states are hard to find manually. A solution, which is 
generally applied to image such rare states, is to biochemically force cells into those specific 
states. Uniquely, our automation method now enables the imaging of these rare states in 
unmodified, asynchronous populations of wild type cells.  
We have demonstrated the reliability of our method by imaging 5,586 dual colour STED images 
at 30nm resolution in wild type samples of archaea, requiring the selection of only the dividing 
cells. Our results highlight that the automation made an incredibly large study possible with a 
feasible measurement time and with very limited handling time at the microscope. 
 

Materials and Methods 

Microscopy setup 
The microscope used for performing the automatic measurements was an Abberior Expert Line 
STED microscope. The used objective was an 100x immersion oil objective (Olympus Objective 
UPlanApo 100x/1.40 Oil). Prior to imaging, the lasers were aligned using 0.1µm TetraSpeck™ 
(Invitrogen, T7279) Beads. The excitation was done by a continuous wave laser of 405nm 
wavelength (2mW at laser head), a 40MHz pulsed laser of 488nm wavelength (220µW at laser 
head), a 40MHz pulsed laser of 561 wavelength (200µW at laser head) and a 40MHz pulsed laser 
of 640nm (1mW laser at head). The depletion was done by a 40MHz pulsed laser with 
wavelength 775nm (3.2W at laser head). Avalanche Photodetectors were used for each laser 
channel. 

Imaging parameters 
The overview images were created as a confocal z-stack consisting of three slices (spaced 
350nm) each had a FOV of 80x80µm². The pixel size used was 200x200nm². The pinhole was 
set to 3.0 A.U.. The excitation laser and detection window settings were set as follows: the 405nm 
laser at 8% (160µW at laser head) and a detection window of 415-478nm. The 488nm laser at 
5% (11µW at laser head) and a detection window of 505-550nm. The 561nm laser at 10% (20µW 
at laser head) and a detection window of 575-630nm, and the 640nm laser to 0.1% (1µW at laser 
head) and a detection window of 650-700nm. 
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A confocal z-stack consisting of twelve slices (spaced 120nm) was acquired to characterise the 
relevant objects, with a FOV set to 2.96µm², a pixel size of 80x80nm², and a pinhole of 0.8 A.U.. 
The excitation laser and detection window settings were set as follows: The 405nm laser at 15% 
(300µW at laser head) and a detection window of 415-478nm. The 488nm laser at 15% (33µW 
at laser head) and a detection window of 495-550nm. The 561nm laser at 20% (40µW at laser 
head) and a detection window of 575-630nm, and the 640nm laser at 0.4% (4µW at laser head) 
and a detection window of 650-763nm. 

The STED measurements images were created with a FOV set to 2.5x2.5µm² with a pixel size 
of 17x17nm² and a pinhole set to 0.8 A.U.. To reduce the photobleaching, ResCUE13 and 
DyMIN14 were used. The settings of the excitation and depletion lasers were sample dependent. 
Six different combinations of samples were measured. The corresponding settings are presented 
in Table 2. 

640nm 
channel 

561nm 
channel 

Line steps 
Intensity Confocal laser 

(%) 
Intensity STED 
doughnut (%) 

confocal 
Low 
int. 

STED 

High 
int. 

STED 
confocal 

Low 
int. 

STED 

High 
int. 

STED 

Low int. 
STED 

High int. 
STED 

CdvB   5 6 19 0.4 0.5 1.1 4.6 45 

  CdvB 2 8 8 7.8 13 20 15 90 

CdvB1   3 5 18 0.2 0.45 1.1 3.6 45 

  CdvB1 1 4 5 3 4 15 12 90 

CdvB2   3 5 18 0.2 0.45 1.1 3.6 45 

  CdvB2 2 10 8 17 20 25 15 90 
Table 2: Excitation and depletion settings for the STED images. 

Sample preparation and cell lines 
The archaea samples used for imaging in this work were prepared as described in Hurtig et al.15. 
DNA was labelled with Hoechst and imaged in the 405nm channel. The ESCRT-III proteins 
(CdvB, CdvB1 and CdvB2) were labelled with Alexa Fluor 488, Abberior STAR 580 and 
Abberior STAR 635 and imaged in the remaining channels (488nm, 580nm and 640nm, 
respectively). 

Samples of Hansenula polymorpha yeast cells were prepared similar as described in ref 30. First, 
they were grown overnight at 37 °C, after which they were diluted to an OD of 0.1 in mineral 
medium (MM)31 supplemented with 0.5% glucose as carbon source. Next, they were grown for 
6h on MM supplemented with 0.5% methanol as carbon source to obtain an OD of 0.5. For the 
experiments 5 OD units were harvested. At this point, the cells were fixed (30 min, 2% 

formaldehyde in 500 ul PBS on ice in dark), and stained for 1h with 1 M SiR-647 Halo32 in 100 
ul in PBS at RT. Next, the sample was washed three times with PBS, and incubated for 15 
minutes on a Poly-L-lysine-coated coverslip. The excess sample was removed after which the 
slide is mounted on a microscope slide using Mowiol. The sample slides were stored at 4 degrees 
Celsius in the dark until use. 
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Software 

The software to control the Abberiort Expert Line STED microscope is Imspector v16.3.11069-
w2020 (https://imspector.abberior-instruments.com/). Imspector allows for controlling the 
microscope through Python code through the package Specpy v1.2.3 
(https://pypi.org/project/specpy/). Python 3.7.9 is used to develop the code for the presented 
automation. 
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Figures 

 

Figure 1. Workflow for automated STED measurements. (i) In the first step of our automated 
workflow low resolution overview images are acquired. Multiple FOVs are measured to obtain 
a large scanned area of the sample. (ii) The second step is the segmentation of objects of interest 
as separate objects in the overview measurements. The centre positions of these objects are 
translated to the stage coordinates of the microscope. (iii) Next, all segmented objects are 
classified based on the joint presence of objects and object features such as morphology and 
intensity. (iv) The objects to measure using STED are selected from the overall list of objects. 
Either a subset (based on characteristics as determined in the classification step), or a random 
subset of the complete set can be selected. (v) Of each selected object, a confocal z-stack is 
measured of all fluorescent labels in the sample. (vi) In the final step, the object is measured in 
STED mode. The stage positions for this scan are obtained from x,y,z-fitting of the z-stack 
images. The FOV is minimised for minimum impact on the cells, minimum drift, and maximum 
imaging speed of the consecutive STED image. 
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Figure 2. Overview image acquisition of images, in which the DNA and the different ESCRT-
III proteins in Sulfolobus acidocaldarius cells have been labelled with Hoechst (DNA), Alexa 
Fluor 488, Abberior STAR 580 and Abberior STAR 635 respectively. (a) From each FOV 
(80x80µm²), all four labels were separately imaged: DNA (blue), CdvB2 (magenta), CdvB1 
(green) and CdvB2 (red). (b) At every stage position, a z-stack consisting of three slices was 
created (120nm spaced). Tiling was used to obtain a large summary of the sample. 5x5 FOVs 
(400x400µm²) and 10x10 FOVs (800x800µm²) are obtained for short runs (~3h) and long runs 
(~12h), respectively. The pixel size was 200x200nm² to minimise photobleaching. 
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Figure 3. Segmentation performed on every label of the overview images to obtain the objects 
and their corresponding coordinates. The presented segmentation maps correspond to (a) DNA 
labelled with Hoechst, excited with a 405nm laser, (b) CdvB2 labelled with Alexa Fluor 488, 
excited with a 488nm laser, (c) CdvB1 labelled with Abberior STAR 580, excited with a 561nm 
laser and CdvB labelled with Abberior STAR 635, excited with a 640 laser. The overview images 
are averaged in the z-dimension (the mean of the three slices z-stack) to segment objects, which 
lie in different focal planes. 
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Figure 4. Classification of the segmented ROIs. The presented example shows joint presence of 
all proteins (CdvB, CdvB1 and CdvB2). The individual numbers correspond to the segmentation 
number in the individual channels, which can be used to locate a measured object in the overview 
images. Furthermore, for each channel, the mean intensity per slice of z-stack is stored, which 
can be used to determine the z-position, in which the object is in focus. The intensity, next to 
information on the morphology, is also stored to be later used in the selection step of the 
workflow. The morphology information that we used in the guiding example is the size of the 
segmented object. 
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Figure 5. Selection of the segmented and classified objects. To obtain sample representative 
measurements, a random subset of the segmented ROIs can be selected. However, instead, the 
quantifications from the classification step can be used to select a specific subset of the identified 
ROIs. The presented example is a segmentation map of the 488nm channel consisting of labelled 
CdvB2. The FOV is 80x80µm². The yellow boxes show which of the objects are selected to be 
measured using STED. 
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Figure 6. Characterisation of an individually selected object of interest performed by a confocal 
z-stack, consisting of twelve slices (spaced 120nm), a FOV of 2.96x2.96µm² with 80x80nm² 
pixels. The z-stack enables to visualise the structure and its environment in a 3D context. 
Furthermore, an x,y-fit is used to find the optimal lateral stage position for the final STED image. 
An additional z-fit or just the selection of the brightest slice of the stack enable to position the 
stage in the axial direction for the subsequent STED image. The z-stack consists of DNA labelled 
with Hoechst (blue), CdvB2 labelled with Alexa Fluor 488 (magenta), CdvB1 labelled with 
Abberior STAR 580 (green) and CdvB labelled with Abberior STAR 635 (red).  
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Figure 7. Acquisition of STED images. Example images of confocal and corresponding STED 
images of objects found in the previous sample characterisation steps. (a-d) ESCRT-III protein 
ring consisting of CdvB1 labelled with Abberior STAR 640 (red) and CdvB2 labelled with 
Abberior STAR 580 (green). (a-b) Face-on representation of a protein ring, measured using (a) 
confocal and (b) STED. (c-d) Perpendicular representation of a protein ring, measured using (c) 
confocal and (d) STED. The pixel size in the STED images is 17x17nm². The presented STED 
images have a resolution of around 30nm.   
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Supplementary 1. Segmentation results of 25 overview images with DNA (405 channel), and 
three cell division proteins (640, 561, 488 excitation channels) 

Analysis of the 640 channel: 
Precision: 0.978 
Recall: 0.731 

Image Positives 
False 

Positives 
False 

negatives 
0 9 0 6 
1 13 1 6 
2 9 0 9 
3 6 0 1 
4 16 2 5 
5 6 0 4 
6 14 1 3 
7 14 0 1 
8 9 0 1 
9 18 0 5 
10 9 0 4 
11 6 0 2 
12 11 0 3 
13 4 0 6 
14 12 0 0 
15 8 0 2 
16 7 0 2 
17 13 0 2 
18 7 1 2 
19 9 0 4 
20 7 0 4 
21 5 0 2 
22 10 0 0 
23 3 0 4 
24 3 0 4 
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Analysis of the 561 channel  
Precision: 0.999 
Recall: 0.901 

Image Positives 
False 

Positives 
False 

negatives 
0 87 0 6 
1 84 0 9 
2 88 0 5 
3 71 0 5 
4 74 0 5 
5 67 0 5 
6 78 0 10 
7 72 0 8 
8 81 0 5 
9 93 0 8 
10 69 0 16 
11 69 0 12 
12 77 0 13 
13 71 0 10 
14 85 0 13 
15 80 1 8 
16 95 0 8 
17 72 0 3 
18 67 0 7 
19 78 0 9 
20 63 0 12 
21 66 0 6 
22 82 0 10 
23 56 0 8 
24 72 0 7 
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Analysis of the 488 channel  
Precision: 0.997 
Recall: 0.888 

Image Positives 
False 

Positives 
False 

negatives 
0 60 2 6 
1 57 0 3 
2 75 0 5 
3 59 0 5 
4 62 0 3 
5 59 0 5 
6 63 0 6 
7 54 1 5 
8 59 0 5 
9 87 0 6 
10 47 0 11 
11 51 0 5 
12 55 0 6 
13 55 0 12 
14 71 0 9 
15 64 1 12 
16 86 0 9 
17 66 0 5 
18 59 0 7 
19 64 0 11 
20 46 0 14 
21 48 0 10 
22 59 0 7 
23 39 0 10 
24 53 0 12 

 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510126doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510126


Supplementary figures 

 

 

Supplementary Figure 1. Segmentation map of a CdvB2 labelled with Alexa Fluor 488 and 
imaged in the 488nm excitation channel. The segmentation shows two falsely positive segmented 
objects (arrows). Both objects show noise. FOV is 80x80µm². 

 

Supplementary Figure 2. Segmentation map of a single FOV (80x80µm²) of a peroxisomal 
protein labelled in Hansenula polymorpha (yeast). Using our developed automation method, a 
dataset of 8,063 STED images of individually measured cells had been acquired. 
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Supplementary Figure 3. Examples of the identified combinations of protein presence of 
ESCRT-III proteins involved in cell division in archaea. The combination of present proteins in 
close proximity is determined in the selection step, using the segmented coordinates from the 
overview images. The above shown examples show all the different combinations of present 
ESCRT-III proteins found in the sample. Here, CdvB2 was labelled with Alexa Fluor 488 
(magenta, 488nm channel), CdvB1 was labelled with Abberior STAR 580 (green, 561nm 
channel) and CdvB was labelled with Abberior STAR 635 (red, 640nm channel). Additionally, 
DNA (blue, 405nm channel) was imaged. Each row is a representation of one specific subregion 
from the sample. The pixel size in each image is 200x200nm², and the regions displayed are 
2.8x2.8µm².  
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