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Aim and outline 

Vital cellular functions rely on dynamic soft materials known as microtubules and actin 

filaments. The role of these polymerization motors consists in converting the free energy of 

supramolecular polymerization into mechanical forces, through which purposeful motion can 

be generated, for example chromosomes separation or cell movement.  

The goal of this PhD project is to create fully artificial and waste-free polymerization motors 

capable of converting light into mechanical forces at the nanoscale and beyond. The first 

challenge is to control the aqueous supramolecular polymerization of dynamic tubular self-

assemblies (artificial microtubules) and dynamic networks of helical supramolecular 

polymers (artificial actin networks) by light. The second challenge is to demonstrate the 

exertion of mechanical forces exerted by their light-fueled self-assembly. 

 

Chapter 1 reviews the use of molecular self-assembly processes for the exertion of 

mechanical forces and work. First, the basic mechanistic principles of how the mechanical 

force can be exerted by supramolecular polymerization and depolymerization are discussed. 

This is followed by the description of the biological polymerization motors and how these 

machineries were reconstituted in the artificial context. Finally, we discuss fully synthetic 

self-assembling systems that in part address challenges on the way towards artificial 

polymerization machines including a perspective on where this research should go. 

In Chapter 2 we demonstrate cyclic peptide nanotubes with non-equilibrium steady states 

that are fuelled by light via the photoacid-mediated protonation of carboxylic acid residues. 

Light intensity is used to control the speed of the assembly processes. This supramolecular 

system operates continuously and repeatedly, without any waste, and demonstrates a dynamic 

behaviour that is key to the operation of artificial polymerization machines. We take onto the 

challenge of harnessing the self-assembly of cyclic peptides to exert pushing forces. We 

demonstrate that the movement of microbead cargo, confined in water-in-oil droplets, can be 

controlled by the pH-responsive self-assembly of cyclic peptide nanotubes. We discuss the 

limits of this approach, and we conclude that the synthesis and characterization of new 

molecular building blocks, intrinsically photo-responsive, is required to demonstrate the 

biomimetic mechanism of force generation e.g., Brownian ratcheting.  



 

 

2 

 

In Chapter 3 we demonstrate giant nano-ribbons and tubules with non-equilibrium steady 

states that are fuelled by light. We present the design, synthesis, and characterization of linear 

peptide building blocks that are decorated with photo-responsive moieties. We investigate 

the most important thermodynamic and kinetic aspects of their (de)polymerization through 

various spectroscopic, microscopic, and rheological techniques. In particular, we 

demonstrate a light-fueled depolymerization mechanism that is key to the operation of 

artificial actin filaments. 

In Chapter 4 we harness the pulling forces exerted by the light-fueled disassembly of peptide 

based supramolecular ribbon networks. The pulling forces drive the clustering of microbeads 

that are multivalently bound to the disassembling ribbons. The re-assembly of the ribbon 

networks does not push the beads apart, so that the light-fueled disassembly cycles can drive 

the process of microbeads clustering forward i.e. processively. We demonstrate pulling forces 

operating at length-scales that can be modulated by molecular design of the building blocks. 

In Chapter 5 Beyond light-fueled hydrogelation, we demonstrate the first light-fueled 

hydrogelator that also acts as an effective photoacid at the supramolecular level, i.e. 

supramolecular photoacid. The proton-catching reaction is the supramolecular 

polymerization of the azobenzene-peptide into β-sheets (ribbons) under visible light 

irradiation, and the proton-releasing reaction is the UV light-fueled depolymerization of the 

ribbons. The β-sheets within the hydrogel consist in a reservoir of protons which are 

released/caught on demand by light-fueled disassembly of the ribbon network. Therefore, 

gel-sol transitions are associated with tunable and reversible pH changes. pH and stiffness 

are modulated in synergy with spatio-temporal control in a non-contact and waste-free 

manner. This concept may find applications in biotechnology, for example the pH change 

could be harnessed to locally activate a pH-responsive drug during its release from the gel. 

Here as a proof of principle, we trigger the color change of the pH-indicator Bromothymol 

blue, allowing to visualize the pH profile of the system during the light-fueled disassembly 

of the transparent hydrogel. 

Chapter 6 describes the discovery of biased macroscopic motion emerging from the shear 

anisotropy of peptide ribbons hydrogels. We explore the asymmetric mechaniscs of  twisted 

versus helical ribbon networks through shear rheology. We investigate and hypothesize on 
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the mechanism of this unpresented transfer of asymmetry from the nano up to the macro 

scale.  

In Chapter 7 we demonstrate giant nano-sheets emerging from the hierarchical co-assembly 

of cyclic peptides. Due to their high versatility, D-,L-α cyclic peptides are promising building 

blocks for the fabrication of various bottom-up nano/micro-objects and supramolecular 

machines.  

In Chapter 8 we demonstrate the light-fueled 1D to 2D supramolecular polymerization of 

cyclic peptides nanotubes. We present the design, synthesis, and characterization of cyclic 

peptide building blocks that are decorated with photo-responsive moieties. We investigate 

the most important thermodynamic and kinetic aspects of their (de)polymerization through 

various spectroscopic and microscopic techniques. 
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