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Abstract
In this paper,we introduce a two-point nonlinear boundary value problem for afinite fractional
difference equation. An associated Green’s function is constructed as a series of functions
and some of its properties are obtained. Some existence results are deduced from fixed point
theory and lower and upper solutions.
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1 Introduction

In this paper, we consider the following discrete fractional problem coupled to mixed frac-
tional boundary conditions,{

−�α y(t) + a(t + α − 1)y(t + α − 1) = f (t + α − 1, y(t + α − 1)), t ∈ N
T +1
0 ,

y(α − 2) = �β y(α + T + 1 − β) = 0,
(1)

where �α is the standard Riemman–Liouville type discrete fractional difference operator,
t ∈ N

T +1
0 , 1 < α ≤ 2, 0 ≤ β ≤ 1, T is a positive integer and function f : Nα+T

α−1 ×R −→ R

is continuous. Here we denote N
K+r
r = {r , . . . , K + r} for any r ∈ R and K a positive

integer. So, we will look for solutions y : NT +α+1
α−2 −→ R.
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The continuous fractional calculus has a long history, but the discrete fractional calculus
has been investigated recently. The development of this theory starts with the paper of Díaz
and Osler [5] where is defined a fractional difference as an infinite series and a generalization
of the binomial formula for the n-th order difference �n f operator. This study continues
with the work of Miller and Ross [10] which deals with the linear υ-th order fractional
differential equation as an analogue of the linear n-th order ordinary differential equation.
Since them, a great progress has been made in the study of boundary value problems for
fractional difference equations (see [1, 2, 6–8] and references therein).

We recall some classical definitions from discrete fractional calculus theory and prelimi-
nary results.

Definition 1 We define t (ν) = �(t + 1)/�(t + 1 − ν), for any t and ν for which the right
hand side is well defined. We also appeal to the convention that if t + 1 − ν is a pole of the
Gamma function and t + 1 is not a pole, then t (ν) = 0.

Definition 2 The ν-th fractional sum of a function f, for ν > 0 and t ∈ Nr+ν , is defined as

�−ν f (t)(≡ �−ν f (t, r)) = 1

�(ν)

t−ν∑
s=r

(t − s − 1)(ν−1) f (s).

We define the ν-th fractional difference for ν > 0, by �ν f (t) := �N �ν−N f (t), where
t ∈ Nr+ν and N ∈ N is chosen so that 0 ≤ N − 1 ≤ ν ≤ N .

Lemma 3 [9] Let 0 ≤ N − 1 ≤ ν ≤ N. Then �−ν�ν y(t) = y(t) + c1t (ν−1) + c2t (ν−2) +
· · · + cN t (ν−N ) for some ci ∈ R, with 1 ≤ i ≤ N .

The paper is scheduled as follows: In next section we deduce some properties of the
Green’s function related to the linear problem{

−�α y(t) + a(t + α − 1)y(t + α − 1) = h(t + α − 1), t ∈ N
T +1
0 ,

y(α − 2) = �β y(α + T + 1 − β) = 0,
(2)

for the particular case of a(t + α − 1) = 0 for all t ∈ N
T +1
0 .

The case 0 < α −β < 1 has been treated in [9], we will continue this study, by improving
some of the obtained results in [9] and by considering the case 1 ≤ α − β ≤ 2. Section 3
is devoted to deduce the expression of the Green’s function related to the problem (2) for a
nontrivial function a(t), with small enough bounded absolute value. Moreover, some a priori
bounds of the Green’s function are obtained. The arguments are in the line of the ones given
in the paper [3]. In last section we show the applicability of the given results by obtaining
some existence and uniqueness results of the nonlinear problem (1).

2 Properties of functionG0

In this sectionwewill extendprevious results related to theGreen’s functionG0 of problem (2)
witha identically zero. Someof these results have beengiven in [9] for the case 0 < α−β < 1,
we improve some of them and study also the case 1 ≤ α − β ≤ 2.

Lemma 4 [9] The unique solution of the linear fractional mixed boundary value problem{
−�α y(t) = h(t + α − 1), t ∈ N

T +1
0 ,

y(α − 2) = �β y(α + T + 1 − β) = 0,
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has the form

y(t) =
T +1∑
s=0

G0(t, s)h(s + α − 1),

where G0 : NT +α+1
α−2 × N

T +1
0 −→ R is given by the expression

G0(t, s) = 1

�(α)⎧⎪⎪⎨
⎪⎪⎩

t (α−1)(α + T − β − s)(α−β−1)

(α + T − β + 1)(α−β−1)
− (t − s − 1)(α−1), 0 ≤ s < t − α + 1 ≤ T + 2,

t (α−1)(α + T − β − s)(α−β−1)

(α + T − β + 1)(α−β−1)
, 0 ≤ t − α + 1 ≤ s ≤ T + 2.

(3)

In the following Lemma, we will show the properties of the Green’s function, which extends
the one given in [9, Lemma 3.3].

Lemma 5 The Green’s function G0(t, s) given by (3) has the following properties:

(i) Suppose that 0 < α − β ≤ 2, then G0(t, s) > 0 for t ∈ N
α+T +1
α−1 and s ∈ N

T +1
0 .

(ii) Suppose that 0 < α − β ≤ 2, then

max
t∈Nα+T +1

α−1

G0(t, s) = G0(s + α − 1, s), for each s ∈ N
T +1
1 .

Proof The case 0 < α − β < 1 has been proved in [9, Lemma 3.3 (i)], so, we only need to
prove the case 1 ≤ α − β ≤ 2.
(i) For 0 ≤ t − α + 1 ≤ s ≤ T + 1, it is clear that

�(α)G0(t, s) = �(T + 3)t (α−1)

�(α + T − β + 2)
(α + T − β − s)(α−β−1)

= �(T + 3)�(t + 1)�(α + T − β − s + 1)

�(α + T − β + 2)�(t − α + 2)�(T − s + 2)
> 0.

Now, for 0 ≤ s < t − α + 1 ≤ T + 1, we have

�(α)G0(t, s) = (t − s − 1)(α−1)

(
t (α−1)(α + T − β − s)(α−β−1)

(t − s − 1)(α−1)(α + T − β + 1)(α−β−1)
− 1

)
. (4)

Let

F(t, s, α, β) := t (α−1)(α + T − β − s)(α−β−1)

(t − s − 1)(α−1)(α + T − β + 1)(α−β−1)

= t (α−1)�(T + 3)

(t − s − 1)(α−1)�(T − s + 2)
(α + T − β − s)(−s−1).

Since

∂

∂β
F(t, s, α, β) = �(t + 1)�(T + 3)�(−s + t − α + 1)�(−s + T + α − β + 1)

�(t − s)�(−s + T + 2)�(t − α + 2)�(T + α − β + 2)

×(ψ(0)(T + α − β + 2) − ψ(0)(−s + T + α − β + 1)) > 0,
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where by ψ(0) it is denoted the PolyGamma special function [11]. This implies that

F(t, s, α, β) > F(t, s, α, 0)

= t (α−1)(α + T − s)(α−1)

(t − s − 1)(α−1)(α + T + 1)(α−1)

= t(t − 1) · · · (t − s)(T + 2)(T + 1) · · · (T − s + 2)

(t − α + 1)(t − α) · · · (t − α + 1 − s)(α + T + 1)(α + T ) · · · (α + T + 1 − s)

=
s∏

i=0

P(t, α, i),

where, for every i ∈ {0, . . . , s}, we denote

P(t, α, i) := (t − i)(T + 2 − i)

(t − α + 1 − i)(α + T + 1 − i)
.

Since

∂ P

∂i
(t, α, i) = (α − 1)(2i − t − T − 2)(−α + t − T − 1)

(α + i − t − 1)2(α − i + T + 1)2
> 0, 0 ≤ i ≤ s,

we have that P(t, α, i) > P(t, α, 0) = t(T +2)
(−α+t+1)(α+T +1) .

Now, using that ∂ P
∂t (t, α, 0) = (1−α)(T +2)

(−α+t+1)2(α+T +1)
< 0, we deduce that P(t, α, i) >

P(T + 1+ α, α, 0) = 1, for all i ∈ {1, . . . , s} and, from (4), the positiveness of the Green’s
function is shown.
(ii) The case 0 < α−β < 1 has been proved in [9, Lemma 3.3 (ii)]. Now, let 1 ≤ α−β ≤ 2.
If 0 ≤ t − α + 1 ≤ s ≤ T + 1. Then

�t G0(t, s) = (α − 1)�(T + 3)�(t + 1)�(α + T − β − s + 1)

�(α)�(α + T − β + 2)�(t − α + 3)�(T − s + 2)
> 0.

Hence, we deduce that �t G0(t, s) > 0 for 0 ≤ t − α + 1 ≤ s ≤ T + 1. And so, G0(t, s) is
increasing with respect to t for 0 ≤ t − α + 1 ≤ s ≤ T + 1, which implies that

G0(t, s) ≤ G0(s + α − 1, s).

If 0 ≤ s < t − α + 1 ≤ T + 1. Then

�(α)�t G0(t, s) = (α − 1)t (α−2)(α + T − β − s)(α−β−1)

(α + T − β + 1)(α−β−1)
− (α − 1)(t − s − 1)(α−2)

= (α − 1)(t − s − 1)(α−2)

×
[

t (α−2)(α + T − β − s)(α−β−1)

(α + T − β + 1)(α−β−1)(t − s − 1)(α−2)
− 1

]
.

Thus, to show that �(α)�t G0(t, s) < 0, we must prove that

H(t, s, α, β) := t (α−2)(α + T − β − s)(α−β−1)

(α + T − β + 1)(α−β−1)(t − s − 1)(α−2)
< 1. (5)
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Now, since

�t H(t, s, α, β)

= (2 − α)(s + 1)�(t + 1)�(T + 3)�(−s + t − α + 2)�(−s + T + α − β + 1)

�(−s + t + 1)�(−s + T + 2)�(t − α + 4)�(T + α − β + 2)
> 0,

we have that

H(t, s, α, β) ≤ H(T + 1 + α, s, α, β)

= (−s + T + 2)�(T + α + 2)�(−s + T + α − β + 1)

(T + 3)�(−s + T + α + 1)�(T + α − β + 2)
.

So, by using that

�s H(T + 1 + α, s, α, β)

= (−α + 2β − βs + s + (β − 1)T )�(T + α + 2)�(−s + T + α − β)

(T + 3)�(−s + T + α + 1)�(T + α − β + 2)
,

since −α + 2β − βs + s + (β − 1)T ≤ 0 for all s ∈ {0, . . . , T } if and only if α − β ≥ β,
which is true whenever α − β ≥ 1, we have that

�s H(T + 1 + α, s, α, β) ≤ 0 for all s ∈ {0, . . . , T }.
As a direct consequence, we deduce that

H(T + 1 + α, s, α, β) ≤ H(T + 1 + α, 0, α, β)

= (T + 2)(α + T + 1)

(T + 3)(α − β + T + 1)
for all s ∈ N

T +1
0 .

Now, from the fact that

∂

∂β
H(T + 1 + α, 0, α, β) = (T + 2)(α + T + 1)

(T + 3)(α − β + T + 1)2
> 0,

we conclude that

H(t, s, α, β) ≤ H(T + 1 + α, 0, α, α − 1) = α + T + 1

T + 3
< 1,

for all t ∈ {α − 1, . . . , T + 1 + α}, 0 ≤ t − α + 1 ≤ s ≤ T + 1 and 0 < β ≤ α − 1 < 1,
which implies, from (5), that

G0(t, s) ≤ G0(s + α − 1, s).

As a result, we get that G0(t, s) is increasing with respect to t for 0 ≤ t −α +1 ≤ s ≤ T +1
and decreasing with respect to t for 0 ≤ s < t − α + 1 ≤ T + 1. Hence, it follows that

max
t∈Nα+T +1

α−1

G0(t, s) = G0(s + α − 1, s)

and the proof is concluded. ��
In the following, we obtain a bound from above of the Green’s function.

Theorem 6 Let G0(t, s) be the Green’s function defined by (3). Then, for any (t, s) ∈
N

α+T +1
α−1 × N

T +1
0 , the following inequalities are fulfilled:
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(i) If 0 < α − β ≤ 1, then

G0(t, s) ≤ C1(T , α, β) := (T + 2)�(α − β)�(T + α + 1)

�(α)�(T + α − β + 2)
.

(ii) If α − β > 1, then

G0(t, s) ≤ C2(T , α, β)

:=
�(T + 3)�

(
α + −αT +T −β

−2α+β+2

)
�

(
α − β + −αT +βT +T +β

−2α+β+2 + 1
)

�(α)�(T + α − β + 2)�
(
− (T +2)(α−1)

−2α+β+2

)
�

(−αT +βT +T +β
−2α+β+2 + 2

) .

Proof From previous result we know that

0 < G0(t, s) ≤ G0(s + α − 1, s) = �(T + 3)�(s + α)�(−s + T + α − β + 1)

�(α)�(s + 1)�(−s + T + 2)�(T + α − β + 2)
.

So, the bounds come from the ones of the previous inequality.
Since,

�s G0(s + α − 1, s)

= �(T + 3)�(s + α)(β + s(−2α + β + 2) + (α − 1)T )�(−s + T + α − β)

�(α)�(s + 2)�(−s + T + 2)�(T + α − β + 2)
, (6)

we have that

�s G0(s + α − 1, s)|s=0 = (T + 2)(β + (α − 1)T )

(α − β + T )(α − β + T + 1)
> 0.

Moreover, it is clear that (6) vanishes if and only if

s = s0(α, β) := β + (α − 1)T

2α − β − 2
.

It is immediate to verify that s0(α, β) ∈ {0, . . . , T + 1} if and only if α − β > 1.

(i) Consider the first case: 0 < α − β ≤ 1.
In this situation we have that G0(s + α − 1, s) is increasing in s ∈ N

T +1
0 . Thus

G0(s + α − 1, s) ≤ G0(T + α, T + 1) = C1(T , α, β).

(ii) Assume now that 1 < α − β.
Now the maximum is attained at s0(α, β), in consequence:

G0(s + α − 1, s) ≤ G0(s0(α, β) + α − 1, s0(α, β)) = C2(T , α, β)

and the proof is concluded. ��

3 Green’s function of problem (2)

In this section we deduce the existence of the Green’s function G related to Problem (2). The
expression of the function G is given as a functional series and we prove its convergence for
suitable values of the function a(t). The arguments are in the line to the ones given in [3].
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Let G : NT +α+1
α−2 × N

T +1
0 −→ R by

G(t, s) =
∞∑

n=0

(−1)nGn(t, s) (7)

where G0(t, s) is given by (3) and

Gn : NT +α+1
α−2 × N

T +1
0 −→ R

is defined as

Gn(t, s) =
T +1∑
τ=0

a(τ + α − 1)G0(t, τ )Gn−1(τ + α − 1, s), n ≥ 1. (8)

In order to express the Green’s function associated with the linear problem (2) we shall use
the spectral theory in Banach space given by the following Lemma:

Lemma 7 [12, Theorem1.B]Let X be a Banach space andA : X −→ X be a linear operator
with the operator norm ‖A‖. Then if ‖A‖ < 1, then (I − A)−1 exists and (I − A)−1 =∑∞

n=0 An, where I stands for the identity operator.

Let

X := {y : NT +α+1
α−2 −→ R : y(α − 2) = �β y(α + T + 1 − β) = 0}

be the Banach space with norm

‖y‖ = max{|y(t)|; t ∈ N
T +α+1
α−2 }.

Consider the following assumption:
(H) There exists a > 0 such that

(i) If 0 < α − β ≤ 1, then

|a(t + α − 1)| ≤ a <
1

(T + 2) C1(T , α, β)
for all t ∈ N

T +1
0 .

(ii) If α − β > 1, then

|a(t + α − 1)| ≤ a <
1

(T + 2) C2(T , α, β)
for all t ∈ N

T +1
0 ,

where C1(T , α, β) and C2(T , α, β) are introduced in Theorem 6.

In next result we prove the existence and uniqueness of solution of problem (2) by means
of the construction of its related Green’s function.

Theorem 8 If condition (H) is fulfilled, then the function G(t, s) defined in (7) as a series
of functions is convergent for all (t, s) ∈ N

T +α+1
α−2 ×N

T +1
0 . Moreover, G(t, s) is the Green’s

function related to problem (2).

Proof The solution y of (2) satisfies, for all t ∈ N
T +α+1
α−2 , the following equality:

y(t) =
T +1∑
s=0

G0(t, s)
(

h(s + α − 1) − a(s + α − 1)y(s + α − 1)
)
,

where G0 is defined by (3).
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This expression can be reformulated as

y(t) +
T +1∑
s=0

G0(t, s)a(s + α − 1)y(s + α − 1) =
T +1∑
s=0

G0(t, s)h(s + α − 1). (9)

Now, denote operators A and B by

Ah(t) =
T +1∑
s=0

G0(t, s)h(s + α − 1) (10)

By(t) =
T +1∑
s=0

G0(t, s)a(s + α − 1)y(s + α − 1). (11)

Then, Eq. (9) becomes

(I + B)y = Ah.

First, let us show that ‖B‖ < 1. For any y ∈ X with ‖y‖ = 1 and t ∈ N
T +α+1
α−2 , by (11), we

have

(i) If 0 < α − β ≤ 1, then, using Theorem 6 (i) and condition (H), we have that for all
t ∈ N

T +α+1
α−2 the following inequalities are fulfilled:

|B y(t)| ≤
T +1∑
s=0

aG0(t, s) ≤
T +1∑
s=0

a C1(T , α, β) = (T + 2) a C1(T , α, β) < 1.

(ii) If α − β > 1, then using Theorem 6 (ii) and condition (H), we get

|B y(t)| ≤
T +1∑
s=0

aG0(t, s) ≤
T +1∑
s=0

a C2(T , α, β) = (T + 2) a C2(T , α, β) < 1.

Therefore, by Lemma 7, we deduce that

y = (I + B)−1Ah =
∞∑

n=0

(−B)nAh. (12)

By using analogous arguments to [3], we show that for n ∈ N0 = {0, 1, 2, . . .} the
following identity holds:

((−B)nAh)(t) =
T +1∑
s=0

(−1)nGn(t, s)h(s + α − 1). (13)

In the sequel we obtain the following a priori bounds for function Gn for all n ∈ N0:

(i) If 0 < α − β ≤ 1, then

|(−1)nGn(t, s)| ≤ an ((T + 2) C1(T , α, β))n+1 . (14)

(ii) If α − β > 1, then

|(−1)nGn(t, s)| ≤ an ((T + 2) C2(T , α, β))n+1 , (15)

where a is defined in (H).
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In the first case, for n = 0, (14) holds. Assume (14) holds for n = m ≥ 0. Then, for any
(t, s) ∈ N

T +α+1
α−2 × N

T +1
0 , we have

|(−1)m+1Gm+1(t, s)| ≤
T +1∑
τ=0

|a(τ + α − 1)|G0(t, τ )Gm(τ + α − 1, s)

≤
T +1∑
τ=0

a C1(T , α, β) Gm(τ + α − 1, s)

≤
T +1∑
τ=0

am+1(T + 2)m+1 (C1(T , α, β))m+2

= am+1(T + 2)m+2 (C1(T , α, β))m+2 ,

hence (14) holds for n = m + 1.
By induction, (14) if fulfilled for any n ∈ N0.
Arguing as at the first case, we conclude that (15) is true for all n ∈ N0.
Finally, by (H) and (7), for all (t, s) ∈ N

T +α+1
α−2 × N

T +1
0 , we deduce the following

inequalities:

(i) If 0 < α − β ≤ 1, then

|G(t, s)| =
∣∣∣∣∣

∞∑
n=0

(−1)nGn(t, s)

∣∣∣∣∣ ≤
∞∑

n=0

an ((T + 2) C1(t, α, β))n+1 < ∞.

(ii) If α − β > 1, then

|G(t, s)| =
∣∣∣∣∣

∞∑
n=0

(−1)nGn(t, s)

∣∣∣∣∣ ≤
∞∑

n=0

an ((T + 2) C2(t, α, β))n+1 < ∞.

Therefore, G(t, s) is uniformly convergent on NT +α+1
α−2 × N

T +1
0 .

Moreover, from (7), (12) and (13), we obtain

y(t) =
∞∑

n=0

T +1∑
s=0

(−1)nGn(t, s)h(s + α − 1) =
T +1∑
s=0

G(t, s)h(s + α − 1). (16)

On the other hand, let y be defined by (16). Using (7), (10) and (11) together (8) and (13),
we conclude that y satisfies (12). Then, y is the unique solution of problem (2) and G is the
Green’s function related to problem (2). ��

As a direct consequence of Theorem 8 and Eqs. (7) and (8), we deduce the following
result

Corollary 9 If a(t) ∈ [−ā, 0] for all t ∈ N
α+T +1
α−1 , then G(t, s) > 0 for all t ∈ N

α+T +1
α−1 and

s ∈ N
T +1
0 .

In next result, we obtain an upper bound for function |G(t, s)| for any s fixed.

Lemma 10 We introduce the following function G : NT +1
0 → (0,∞):

(i) For 0 < α − β ≤ 1 and for all (t, s) ∈ N
α+T +1
α−2 × N

T +1
0

G(s) := G0(s + α − 1, s)

(
T + 2

1 − a (T + 2) C1(t, α, β)

)
. (17)
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(ii) For α − β > 1 and for all (t, s) ∈ N
α+T +1
α−2 × N

T +1
0

G(s) := G0(s + α − 1, s)

(
T + 2

1 − a (T + 2) C2(t, α, β)

)
.

Then |G(t, s)| ≤ G(s) for all (t, s) ∈ N
T +α+1
α−2 × N

T +1
0 , where G is given by (7) .

Proof (i) For 0 < α − β ≤ 1 and for all (t, s) ∈ N T +α+1
α−2 ×N

T +1
0 , as a direct combination

of expression (8) and inequality (14), we have

|(−1)nGn(t, s)| ≤ G0(s + α − 1, s) (T + 2) (a (T + 2) C1(T , α, β))n . (18)

Using condition (H), (17) and (18), for all (t, s) ∈ N
α+T +1
α−2 × N

T +1
0 , we have

|G(t, s)| =
∣∣∣∣∣

∞∑
n=0

(−1)n Gn(t, s)

∣∣∣∣∣ ≤ G0(s + α − 1, s) (T + 2)
∞∑

n=0

(a (T + 2) C1(T , α, β))n .

The case α − β > 1 is proved in the same way. ��

4 Existence and uniqueness of solutions

In this section, we discuss the existence and uniqueness of solutions to problem (1).
Define the operator S : X −→ X by

(Sy)(t) :=
T +1∑
s=0

G(t, s) f (s + α − 1, y(s + α − 1)), y ∈ X . (19)

The proof of that S is completely continuous is analogous to the one done in [3]. It follows
that the fixed points of the operator S are the solutions of the boundary value problem (1).

Arguing as in [3], one can prove the following result

Theorem 11 Assume that condition (H) holds and f satisfies the following condition:
(H∗) There exists a constant K ∈ (0,

( ∑T +1
s=0 G(s)

)−1
) (G given in Lemma 10) such that

| f (t, u) − f (t, v)| ≤ K |u − v|, for (t, v) ∈ N
α+T
α × R.

Then Problem (1) has a unique solution.

Example 12 Let a satisfy condition (H) and K ∈ (0,
( ∑T +1

s=0 G(s)
)−1

). Consider

f (t, v) := K

2
cot−1

(
2

v3

)
+ g(t), t ∈ N

α+T
α−1 , v ∈ R,

with g : Nα+T
α−1 → R an arbitrary nontrivial given function.

It is not difficult to verify that for any t ∈ N
α+T
α−1 and u, v ∈ R, u < v, there exist x ∈ [u, v],

such that

| f (t, u) − f (t, v)| = 3 K
∣∣∣ x2

x6 + 4

∣∣∣ |u − v| ≤ K |u − v|.
From Theorem 11 the considered problem has a unique solution.

In the sequel we deduce an existence result for the nonlinear Problem (1).
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Theorem 13 Assume that condition (H) holds and f satisfies the following condition:

| f (t, v)| ≤ g(t) h(|v|) ∀(t, v) ∈ N
α+T
α × R, (20)

where h : [0,+∞) → [0,+∞) is a continuous function such that

lim
s→+∞

s

h(s)
= +∞. (21)

Then Problem (1) has at least one solution.

Proof We know that the solutions of problem (1) are given as the fixed points of operator S
defined on (19). So, to deduce the existence of a fixed point we consider, for any λ ∈ (0, 1),
a function y ∈ X , such that y = λ S y. As a consequence, for all t ∈ N

α+T
α we have:

|y(t)| = λ

∣∣∣∣∣
T +1∑
s=0

G(t, s)
(

f (s + α − 1, y(s + α − 1))
)∣∣∣∣∣

≤
T +1∑
s=0

|G(t, s)| | f (s + α − 1, y(s + α − 1))|

≤
T +1∑
s=0

G(s) |g(s + α − 1)| |h(y(s + α − 1))|

≤
(

T +1∑
s=0

G(s) g(s + α − 1)

)
‖h(y)‖.

Thus, we have that

‖y‖
‖h(y)‖ ≤

T +1∑
s=0

G(s) g(s + α − 1).

So, from (21) we deduce that there is a constant K > 0, independent of λ, such that

‖y‖ ≤ K .

In consequence, we deduce from Schaefer’s fixed point Theorem [12], that operator S has a
fixed point and it is a solution of Problem (1) ��
Example 14 Let a satisfying condition (H). Let us consider Problem (1) with function

f (t, v) = t2−α(
√|v| + cos(v)), t ∈ N

α+T
α−1 , v ∈ R,

which satisfies inequality (20) and property (21) for functions h(s) = √
s + 1, s ≥ 0, and

g(t) = t2−α , t ∈ N
α+T
α−1 .

So, from Theorem 13, the considered problem has at least one solution.

Remark 15 Notice that in the two previous theorems we cannot ensure that the obtained
solution is not trivial. This property can be deduced when f (t, 0) �≡ 0 onNα+T

α . In particular,
the obtained solutions in the two previous examples are non trivial.

Now we will develop the monotone iterative technique for problem (1). To this end we
must assume the existence of a pair of well ordered lower and upper solutions, which are
defined as follows.
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Definition 16 A function γ is said to be a discrete lower solution of problem (1) if{
−�αγ (t) + a(t + α − 1)γ (t + α − 1) ≤ f (t + α − 1, γ (t + α − 1)), t ∈ N

T +1
0 ,

γ (α − 2) = �βγ (α + T + 1 − β) = 0.
(22)

Definition 17 A function δ is said to be a discrete upper solution of problem (1) if{
−�αδ(t) + a(t + α − 1)δ(t + α − 1) ≥ f (t + α − 1, δ(t + α − 1)), t ∈ N

T +1
0 ,

δ(α − 2) = �βδ(α + T + 1 − β) = 0.
(23)

Definition 18 We say that y is the minimal (maximal) solution of Problem (1) on the sector
[γ, δ] if any other solution z such that γ (t) ≤ z(t) ≤ δ(t) on N

α+T +1
α−2 satisfies y(t) ≤ z(t)

(y(t) ≥ z(t)) on Nα+T +1
α−2 .

The existence result is the following

Theorem 19 Assume that γ is a lower solution of (1) and δ is an upper solution of (1)
satisfying γ (t) ≤ δ(t) on N

α+T +1
α−2 . Moreover function f (t, y) is monotone nondecreasing

with respect to y ∈ R and a(t) ∈ [−ā, 0] on N
α+T
α (a defined in condition (H)). Then

there exist two monotone sequences {γn} and {δn}, with γ0 = γ and δ0 = δ, that converge,
respectively, to the minimal and maximal solutions on [γ, δ] of Problem (1).

Proof Define γ0 = γ and, for any n ≥ 1, γn as the unique solution of the following linear
problem:{

−�αγn(t) + a(t + α − 1)γn(t + α − 1) = f (t + α − 1, γn−1(t + α − 1)), t ∈ N
T +1
0 ,

γn(α − 2) = �βγn(α + T + 1 − β) = 0.

From the assumptions, we have that such unique solution is given by the expression

γn(t) =
T +1∑
s=0

G(t, s) f (s + α − 1, γn−1(s + α − 1)), t ∈ N
α+T +1
α−2 .

For n = 1, from the definition of lower solution given in (22) and the positiveness of the
Green’s function G(t, s) stated at Corollary 9, we have, for all t ∈ N

α+T +1
α−2 , that

γ1(t) − γ0(t) ≥
T +1∑
s=0

G(t, s)
[

f (s + α − 1, γ (s + α − 1))

− f (s + α − 1, γ (s + α − 1))
] = 0.

By recurrence, by assuming that γn ≥ γn−1 on N
α+T +1
α−2 , using that f is monotone non-

decreasing with respect to the second variable, from the positiveness of the Green’s function
G, we deduce that

γn+1(t) − γn(t) =
T +1∑
s=0

G(t, s)
[

f (s + α − 1, γn(s + α − 1))

− f (s + α − 1, γn−1(s + α − 1))
] ≥ 0.
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Fig. 1 Graph of �βδ0(t), t ∈ N
α−β+T +1
α−β−1

It is immediate to verify that, by defining δ0 = δ and, for any n ≥ 1, δn as the unique solution
of the following linear problem:{

−�αδn(t) + a(t + α − 1)δn(t + α − 1) = f (t + α − 1, δn−1(t + α − 1)), t ∈ N
T +1
0 ,

δn(α − 2) = �βδn(α + T + 1 − β) = 0,

the sequence {δn} is monotone nonincreasing and it is satisfied that γ (t) ≤ γn(t) ≤ δn(t) ≤
δ(t) for all n ≥ 1 and t ∈ N

α+T +1
α−2 .

The convergence of both sequences to the minimal and maximal solutions of Problem (1)
holds immediately from the continuity of function f . ��
Example 20 Let us consider Problem (1) with α = 5

4 , β = 1
2 , T = 10, and a(t) = −10−4t2.

Define the function:

f (t, y) = 10−6(y3 + t) − 105,

which is nondecreasing with respect to y ∈ R.
Moreover

−ā ≈ −0.0177956 < −0.0121 ≤ a(t) ≤ 0, t ∈ N
α+T
α .

Let γ0(t) = 0 and

δ0(t) =
{

t − α + 2, if t < α + 10,
λ(α + 10 − t

2 ), if t ≥ α + 10,

where λ = 12459153
9699328 .

It is clear that γ0 ≤ δ0 on N
α+T +1
α−2 and that γ0 is a lower solution of problem (1).

Let us see that δ0 is an upper solution of problem (1).
It is obvious that δ0(α − 2) = 0. Moreover, a simple calculation, see Fig. 1, shows that

δ0(α − 2) = �βδ0(α + T + 1 − β) = 0

and, see Fig. 2,

−�αδ0(t) + a(t + α − 1)δ0(t + α − 1) − f (t + α − 1, δ0(t + α − 1)) ≥ 0, t ∈ N
T +1
0 .
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Fig. 2 −�αδ0(t) + a(t + α − 1)δ0(t + α − 1) − f (t + α − 1, δ0(t + α − 1)), t ∈ N
T +1
0

Therefore, from Theorem 19, there exist twomonotone sequences {γn} and {δn}, with γ0 = γ

and δ0 = δ, that converge, respectively, to the minimal and maximal solutions on [γ, δ] of
Problem (1).
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