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By March 14th 2022, Spain is suffering the sixth wave of the COVID-19 pandemic. All the previous waves have
been intimately related to the degree of imposedmobility restrictions and its consequent release. Certain factors
explain the incidence of the virus across regions revealing theweak locations that probably require somemedical
reinforcements. The most relevant ones relate with mobility restrictions by age and administrative competence,
i.e., spatial constrains. In this work, we aim to find amathematical descriptor that could identify the critical com-
munities that are more likely to suffer pandemic outbreaks and, at the same time, to estimate the impact of dif-
ferentmobility restrictions. We analyze the incidence of the virus in combination with mobility flows during the
so-called second wave (roughly from August 1st to November 30th, 2020) using a SEIR compartmental model.
After that, we derive a mathematical descriptor based on linear stability theory that quantifies the potential im-
pact of becoming a hotspot. Once the model is validated, we consider different confinement scenarios and con-
tainment protocols aimed to control the virus spreading. The main findings from our simulations suggest that
the confinement of the economically non-active individuals may result in a significant reduction of risk, whose
effects are equivalent to the confinement of the total population. This study is conducted across the totality of
municipalities in Spain.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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SEIR pandemic model
Risk factors
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1. Introduction

Mathematical models describing the evolution of an epidemic
spread have been comprehensively studied in previous years with ap-
proaches that cover both deterministic and stochastic natures [1].
Based on the classic SIR family of compartmental models, a large num-
ber of simulations have been carried out in order to assess the evolution
of the COVID-19 spread [2–6]. Many of them analyzed the SARS-CoV-2
virus spreading on several countries by implementing different impact
scenarios, which could help government authorities to adopt non-
pharmaceutical interventions and mobility restrictions in order to con-
tain the virus [7]. In this sense, metapopulationmodels [8] have become
very useful and adequate thanks to their ability to incorporate both the
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age population structure and the human mobility within a region. The
interaction between dwellers from neighboring cities and the daily
flux of commuters is accounted in order to explicitly model the
spatial evolution of the virus, obtaining rich and valuable information
that can then be used to assess the impact of different mobility
policies, in addition to their efficiency and feasibility [9–11]. Besides,
due to the non-uniform impact of COVID-19 on the age stratification
[12], separating the population in clearly distinguished age groups has
also been reported to be a key feature in successfully tackling the repro-
duction of the pandemic [9,13–15]. However, increasing refinement
and complexity in the model exponentially increases computational
costs, whereas data analysis becomes more intricate and intractable.
This poses the difficult challenge of finding a suitable descriptor that
could quantify all the factors related while minimizing the number of
variables.

In this study, we focus on the interplay between the different infec-
tivity patterns caused by socio-spatial distinctions and mobility flows
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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among localities. By using the dynamic parameters of the model and
data related to mobility infrastructures, we define a mathematical de-
scriptor that is solely based on analytical calculations [15]. This descrip-
tor is able to evaluate the spatial behavior of the virus across any region
by considering different administrative units such as municipalities in
the Spanish case. Thus, it is possible to infer what municipalities are
more susceptible of suffering an outbreak. Using data related to the pan-
demic incidence in previous weeks and mobility measures adopted as
input, the descriptor returns a specific value unique to each population,
that tells us how fast one outbreak could spatially evolve and highlights
the critical hotspots by considering the population structure in a certain
region. In a previous study, we validated this descriptor by considering
themunicipalities (lowest-level administration units) in a very particu-
lar region, Galicia [16], whereas in this paper we refine its analysis and
implement it to the whole country, Spain.

The paper is organized as follows. First, we introduce the study area
based on its spatiotemporal context. After that, in Section 3 we describe
the mathematical model as well as the tools developed for the analysis.
In Section 4 we validate the model by verifying that the model predic-
tions were fulfilled during the second pandemic wave in Spain. In
Section 5 we analyze different scenarios with mobility restrictions in
order to achieve a significant reduction of the COVID-19 impact within
this region. Finally, the discussion of the results and brief conclusions
are presented in Section 6.

2. Study area

In this section, we introduce the study area in two successive sub-
sections by considering both the spatial context (Sub-section 2.1) and
the COVID-19 impact over time (Sub-section 2.2).

2.1. The spatial context

Administratively, Spain is fragmented into seventeen regions (so-
called Autonomous Communities) and two autonomous cities with sim-
ilar governmental status. All of them correspond to the first level of ter-
ritorial administration, just after the central government. The second
administrative level corresponds to provinces (50 in total), while the
third one corresponds to municipalities (8131).

In the case of COVID-19management, wemust note that Spain is an
administratively decentralized country with most of the relevant com-
petences in health management transferred to the regions. While dur-
ing the first wave (since COVID-19 emergence to around June 30th,
2020) the national government took charge of imposing the lockdown
measures, the regional authorities mostly managed the successive
waves considering the general guidelines suggested from the national
government [17].

According to the most recent census year (2021), Spain has 47.35
million inhabitants [18]. Uniquely four regions (Andalucia, Catalonia,
Madrid and Valencia) concentrate around 58.8% of the population in
the 29.7% of the total national area. The population density is about 92
people per km2, although spatially distributed in a very unbalanced
way. Most of the population is concentrated in the coast, especially in
the southern and eastern sectors, and some inland urban spots such as
the metropolitan area of Madrid, besides a reduced number of cities
withmore than 250,000 inhabitants such as Zaragoza, Córdoba and Val-
ladolid. In recent decades, the process of urbanization and concentra-
tion of the population has been very marked across multiple scales
[19], with more than 80% of urban population and 51% of people living
in high-density agglomerations [20]. At municipal level, 61.5% of them
have fewer than 1000 inhabitants and only 9.2% have more than
10,000 inhabitants.

During the COVID-19 pandemic, the Spanish Statistical Office (in
short, INE) periodically collected mobility data nation-wide [21]. A
huge dataset with individual locations over time for more than 80% of
cellphones was registered. People inflows and outflows were
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aggregately presented across mobility areas. The whole country is spa-
tially fragmented into 3200mobility areas, whose delimitation partially
coincides with the municipal division. These mobility areas contain be-
tween 5000 and 50,000 inhabitants. In depopulated regions, these mo-
bility areas will be the sum of tiny, populated municipalities (less than
5000 inhabitants), whereas in urban areas they correspond with
urban districts.

In this work, we run themathematical model in the 3121most pop-
ulatedmunicipalities. This corresponds to the 38.4% of the total number
of municipalities, but they contain around 99% of the Spanish popula-
tion concentrated in an area that is equivalent to the 58.3% of the
whole Spain. We analyze demographic data by municipalities, whereas
the flows of people collected from the INE'smobility areas are estimated
by municipalities (grouping or separating those mobility areas that do
not territorially match the municipality area) (Fig. 1).

2.2. COVID-19 territorial impact

Up to the present date in Spain, more than 10 million cases and
around 100,000 deaths from COVID-19 have been confirmed [22].
The first wave produced officially 28,985 deaths and 130,749 infec-
tions, this latter one a clearly underestimated figure that could be up
to 10 times higher. During the secondwave (until Dec 2020), the num-
ber of deaths was about 20,504 people, reaching the sum of 46,646
people since the emergence of the virus. The third wave (until Feb
2021) meant death for 19,200 people. The fourth wave (until May
2021) accounted for more than 5170 deaths and 288,445 infections.
The fifth wave (until mid–Sept 2021) added 5800 deaths and about
1.3 million new infections. All the data are estimates, offering impor-
tant differences with the official mortality monitoring (MoMo) data-
base that shows differences with the officially reported mortality
rates [23].

Fatality data related to COVID-19 clearly shows very relevant in-
equalities across the country. The four most populated regions were
the most affected (58.4% of deaths). However, the fatality rate (per
100,000 inhabitants) shows how most of the interior provinces regis-
tered much higher fatality rates compared to the coastal and island
provinces (i.e. Soria: 497 deaths per 100,000 people; Las Palmas: 35 in
September 23rd, 2021) [24,25].

3. Methods

This section is subdivided in the following sub-sections: Age-
structured epidemic model (Sub-section 3.1), metapopulation network
and mobility map (Sub-section 3.2), and mathematical descriptors and
linear stability analysis (Sub-section 3.3).

3.1. Age-structured epidemic model

We use a deterministic SEIR model with individuals separated into
different compartments according to infection status: susceptible (S),
exposed (E), infected (I) and removed (R); and also according to
age: less than 20 years old (AG1), 20–39 (AG2), 40–69 (AG3), and
70 years and older (AG4). Inside each one of the 16 compartments,
the main assumption is that the population is distributed homoge-
neously. Following a similar approach as in [26], social mixing is then
included considering different interaction rates between each possible
combination of age groups. On the other hand, the infection transmis-
sion works as follows: susceptible individuals of any age in compart-
ment l can become exposed at a rate βlr via interaction with infected
individuals of any age from compartment r. Exposed ones become in-
fectious with rate ν and the infected ones are either removed or recov-
ered with rate μ. This process is summarized in the flowchart shown in
Fig. 2.

We consider that the total population is conserved, so that at the lo-
cation i the population of age group lwill be equal to the sum of all their



Fig. 1. (a) Location of the study area and characterization of its urban system based on population. Representation of all the citieswithmore than250,000 people. (b) Population density by
municipalities.
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respective compartments, that is Sil + Ei
l + Ii

l + Ri
l = Ni

l. In mathematical
terms, epidemic transitions for a given age group l at any municipality i
are described by the equations,
Fig. 2. Compartments of the epidemic model for any two age groups α and γ. The solid
grey arrows indicate the transition probabilities between compartments, the red dashed
arrows indicate the interactions between infected and susceptible individuals of the
same age group and the yellow dashed arrows the interactions among individuals of dif-
ferent age groups.

3

dSli
dt

¼ � ∑4
r¼1

1
2
βr
i I
r
i

1

Nl
i

þ 1
Nr

i

 !
βl
iS

l
i

dEli
dt

¼ ∑4
r¼1

1
2
βr
i I
r
i

1

Nl
i

þ 1
Nr

i

 !
βl
iS

l
i � νEli

dIli
dt

¼ νEli � μIli

dRl
i

dt
¼ μIli

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð1Þ

where the sum in r is performed over the four age compartments and
l = r is allowed. At this stage, the spatial distribution of the population
is not yet included. This set of differential equations is then fitted using
the function curve_fit implemented in Python, which is based on non-
linear least squares minimization to the regional cumulative incidence
data of the pandemic's second wave allowing to estimate the parame-
ters βi

l (one for each age group). This is, we fit the total cumulative inci-
dence of each community i to ∑l=1

4 (Iil(t) + Ri
l(t)), computed by means

of a Runge-Kutta integration method. Fitting the curves of each age
group to its separated data was pursued unsuccessfully due to small ir-
regularities in the datasets and lack of further parameters that could fit
complicated epidemic curves. Besides, the pairwise infective transmis-
sion ratesβlrwere factorized into two separate termsβlr=βl ·βr to gain
simplicity during the fitting process. This way, instead of pursuing a
complex estimation of sixteen parameters at a time (the 4 × 4 elements
of the βlrmatrix), we only fit four parameters simultaneously. Note that
the fitting process is carried out in 3121municipalities, representing the

Image of Fig. 1
Image of Fig. 2
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99% of the Spanish population. The factorization of the infective trans-
mission rates will also result useful in the linear stability analysis de-
scribed below. The cumulative incidence data was collected from the
Health Institute Carlos III (ISCIII) [27] for the period covering the second
wave, which ranges from August 1st, 2020 to November 30th, 2020.

3.2. Metapopulation network and mobility map

Once the epidemic incidence across municipalities is estimated, we
introduce a mobility-based coupling between each pair of communities
including demographic data obtained from the Spanish Institute of Sta-
tistics [18]. The nature of the coupling is based mainly on people com-
muting among the different regions for whatever reason. This flux of
mobile individuals between any two locations i and j is represented in
the model by the quantity pij, then normalized by the local population
in each community i, Ni. In order to consider different mobilities
among the age groups, we define thematrix qij

l , whose elements follow,

qlij ¼
0 i ¼ j

rl �
pij
Nl

i

i ≠ j

8<
: ð2Þ

where l refers to a specific age group and rl is a control parameter that
allows us to tune the relative mobilities among different age groups
such that the age group l holds a percentage rl of the total mobility.
One can think of this whole mathematical abstraction as a weighted
metapopulation network [8], where nodes represent the number n of
municipalities and the weighted links the amount of mobility between
them. These weighted connections are represented mathematically by
the adjacency matrix Cij

l , which is directly built from qij
l ,

Cl
ij ¼

1
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1þ∑n
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In other words, in the same municipality (i = j), Cijl shows the pro-
portion of people present at node i taking into account the people of
age l that leaves node i, ∑k

nqik
l , and the people of age l that enters i

from node k,∑k
nqki

l . On the other hand, when i ≠ j, Cij
l directly

represents the normalized flux of individuals of age l from node i to
node j. Thus, we can introduce the complete model,

dSli
dt

¼ � ∑n
j¼1∑

4
r¼1

Cl
ji

Nl
i

þ Cl
ij

Nr
j

 !
βr
j I
r
jβ

l
iS

l
i

dEli
dt

¼ ∑n
j¼1∑

4
r¼1

Cl
ji

Nl
i

þ Cl
ij

Nr
j

 !
βr
j I
r
jβ

l
iS

l
i � νEli

dIli
dt

¼ νEli � μIli

dRl
i

dt
¼ μIli

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð4Þ

In close analogy to what occurred in the fitting process, the idea be-
hind the completemodel is that susceptible individuals fromnode i and
age group l can become exposed when they come into contact with in-
fected individuals of all age groups of node jwhen they either travel to it
(represented by the mobility term Cij

l /Nj
l) or when the infected

individuals from j are the ones traveling to i (Cjil /Ni
l). Population

normalization is carried out by considering the population where the
infective interactions take place. Although this normalization should
consider the local variations due to daily mobility, we will assume that
these are negligible regarding the total population in each municipality

Nl
i þ∑n

j plji � plij
� �

≈ Nl
i ð5Þ
4

Thus, we can perform the desiredmathematical analysis by avoiding
intricate terms related to the denominator's derivatives (this will be-
come evident in the next section). Notice that when we only check in-
teractions within the same municipality (i = j), the mobility term is
repeated and thus we need to introduce the 1/2 factor in Eq. (3). Also
notice that, if we do not consider mobility between regions, qij will be
zero for all i and j, leading to Cij = 1/2 when i = j, turning our
mobility-based model (Eq. (4)) into the simple model we used for
fitting β (eq. 1).

With the complete model, we can estimate a mathematical descrip-
tor that can give us a preliminary assessment of howquickly anoutbreak
could develop in the different nodes, based on both the force of infection
of each node and themobility weight of its links. In other words, we can
evaluate the risk that each network element holds against the pandemic.
Furthermore, we can easily evaluate the evolution of this descriptor in
different possible scenarios by tuning either the force of infection of a
given age group (βi

l), the proportion of mobility corresponding to each
group (rl), or the mobility between different communities (qij). This
means isolating a specific age group from the rest or to cut down the
mobility across the country either by limiting interactions within the
municipalities or selected groups of municipalities.

Themathematical descriptor at hand is based on linear stability the-
ory and network theory [28]. Given a dynamical system in a stationary
state, it analyzes how each node of the network will respond to a
small perturbation of the state based on its internal dynamics and the
interaction pattern existing in the network. Prior studies demonstrated
how these descriptors are heavily influenced by both the network to-
pology and the mathematical form of the dynamic system [29]. This
was recently tested on an epidemical model by considering a relatively
small geographical network of 313 municipalities that corresponds to a
particular region of Spain [16,30,31]. In this paper, we come upwith the
following hypothesis: considering as the unstable stationary state of the
system the situation where all individuals belong in the susceptible
compartment, we introduce a small perturbation to the system as a
small initial number of infected individuals into every node. In this sce-
nario, the epidemic in each node should evolve at different rates, based
on its local dynamics and interaction patterns, acquiring a unique posi-
tive value for the mathematical descriptor. The higher this value, the
more quickly will this small perturbation grow, indicating a stronger
impact of the disease. Thus, we obtain a quantitative measure for each
node, which we can then compare to reproduce a nation-wide map of
infection risk.

3.3. Mathematical descriptors and linear stability analysis

We simplify the index notation and the summatory by combining all
4 n × n adjacencymatrices Cl into one, with dimension (4 · n) × (4 · n).
This means that, in the complex network, eachmunicipality is now split
into 4 nodes, each representing a different age group. In otherwords, we
had a network with four interconnected layers (one layer for each age
group) and now we have a clearer, more tractable mathematical situa-
tion where each pair of nodes has only a single link. With this transfor-
mation, Eq. (4) become,

dSi
dt

¼ � ∑
n

j¼1

Cji

Ni
þ Cij

Nj

� �
βjIjβiSi

dEi
dt

¼ ∑
n

j¼1

Cji

Ni
þ Cij

Nj
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βjIjβiSi � νEi

dIi
dt
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dRi

dt
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8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð6Þ

which are easier to workwith from the point of view of our scheme. Let
us recall then a stationary state of the system, namely Si, Ei, Ii,Ri

� �
, and

let us introduce in each node a small perturbation to the state:



Table 1
Spearman's correlation rank for the four age groups and for different illustrative combina-
tions of the relative mobility rl.

rl (AG1-AG2-AG3-AG4) 0–19 (AG1) 20–39 (AG2) 40–69 (AG3) 70+ (AG4)

0.1-0.4-0.4-0.1 0.7272 0.7916 0.7817 0.5345
0.01-0.49-0.49-0.01 0.7222 0.7933 0.7835 0.5342
0.2-0.3-0.3-0-2 0.7270 0.7905 0.7669 0.5363
0.25-0.25-0.25-0.25 0.7283 0.7894 0.7569 0.5370
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(Si, Ei, Ii,RiÞ ¼ Si, Ei, Ii,Ri

� �
þ δSi, δEi, δIi, δRið Þ

After that, we can apply linear stability theory in order to estimate
the growth factor as described in [16,28,29] for each node in the net-
work. The mathematical derivation of this analysis is included in the
Supplementary Information. These factors describe the growth rate of
the perturbation to the non-stable epidemic-free steady, allowing us
to estimate the vulnerability of each node.

4. Results

This section is subdivided in the following sub-sections: Fitting the
model and validation (Sub-section 4.1) and different scenarios for epi-
demic control (Sub-section 4.2).

4.1. Fitting the model and validation

All parameters βi are estimated fitting the model to the incidence
data as commented in the Methods section, while parameters μ and ν
are extracted from [11]. To get the virus transmissibility for each
municipality, wemade non-linear least squares fits using data extracted
from mobility areas. In many cases, mobility areas match with munici-
palities, but some neighboring small municipalities are grouped into
one mobility area, while the bigger ones are split into two or more mo-
bility areas. This becomes useful for the smaller ones, since they do not
have enough cases to make the fits properly. The same parameters that
are obtained from these fits are used for themunicipalities thatmake up
themobility areas. For the bigger localities, we fit themdirectly, without
Fig. 3. Sample distribution of Growth Rates (red) and maximum cumulative incidence data (bl
Each variable was normalized to the maximum value its own series so the comparison can be
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splitting them in any way, as the pandemic data do not differentiate the
differentmobility areas corresponding to a single town.We have, there-
fore, a set of 4 βi parameters for each one of the 3121 municipalities we
are considering. To have a measure of the goodness of the fits, we use
the Pearson's correlation coefficient [32], with values from 0 to 1, to
compare the observed curves for each age group with the simulated
ones using the model given by Eq. (1). Their distribution, represented
in the Supplementary Information (Fig. S2), shows that for most
municipalities the obtained βi parameter is in good agreement
with the data, finding correlation values around 0.8 or higher for most
of the cases. The rest of the cases for which fitting was unfeasible
were usually linked to municipalities with really low incidence or
with data not smooth enough for the fitting to converge, achieving
underestimated values for the βi parameters. The latter was especially
true for the age group concerning people older than 70 years, where
data were the most irregular showing major differences from our
simulated infection curves.

Once we obtained the local infectivity transmission rates βi, we
computed the distribution of growth rates (GR from here on) for each
age group and compared them with the maximum values of
cumulative incidence data of each age group to adjust the relative
mobilities rl from Eq. (2). For this, we use the Spearman's rank
correlation coefficient [32], which finds correlations among the
monotonic tendencies of two given variables. We opt for this
coefficient because GR do not share a linear relationwith the cumulated
cases and thus the Pearson correlation loses applicability.

For simplification, we shall refer to the group of peoplewith ages be-
tween 0 and 19 as AG1 (age group 1), to peoplewith ages 20–39 as AG2,
people from 40 to 69 as AG3, and people with more than 70 years as
AG4. Following the same trend as with the infectivities (see Fig. S2 of
the Supplementary Information), we obtained higher correlation values
for age groups 2 and 3while medium ones for age group 4, as shown on
Table 1 for different combinations of rα. The latter is a result of the less
convergent fitting for the infectivities. For this age group, there is a
higher scattering in the GR values around the populations of 104 than
in the incidence data, which induced the lower values in the correlation.
The purpose of comparing these two variables is not to find a perfect
agreement between the points in both series, since we expect the GR
to represent the inherent risk or the probability of suffering an outbreak
ack) against the node's population for the case with relative mobility of (0.1, 0.4, 0.4, 0.1).
feasible. Only 10% of the points are shown for visualization purposes.

Image of Fig. 3
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Image of Fig. 4


Fig. 5. (a) Average of the 10maximumvalues of the GR distributions for each specific age group in each scenario. The numbers on the x labels refer to isolation of a single or a combination
of age groups,while restrictions to themobility are shown in different colors (al) and consecutive columns (b). (b) Summary of the previous results in a color-codedmap. Relativemobility
between municipalities is fixed to (0.1, 0.4, 0.4, 0.1).
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which is in nature a very different quantity than the number of cumula-
tive cases. Thus, any communitywith non-zeromobilityfluxmayhave a
non-zero value of the descriptor although its actual incidence was al-
most null. Regarding the free parameter rl, there were no significant
differences for these combinations attending to the correlation
Fig. 4. (a) Average of the 10maximumvalues (a, upper panel) and themedian values (a, lower p
restriction for different age groups. The points represent averaging over the four age groups and
the eye when comparing the two control measures at hand, this is, local mobility restrictions w
the information of the top upper panel bymobility restriction, showing the impact of isolating d
Itmust be remarked that themobility restriction by autonomous communities' results in a very
d). Thus, in panels (a) these lines appear overlapped. Relative mobility between municipalities

7

coefficient, as it is shown in Table 1. In the following, we shall choose
the combination rl = (0.1,0.4,0.4,0.1) as the main one for our
computations and further analysis, setting out a clear difference
between the adult population (groups 2 and 3) which contains the
main bulk of working population that is involved in periodic mobility
anel) of the growth rates (GR) distributions for different scenarios of isolation andmobility
the error bars the standard deviation for each case. The black dashed line is drawn to guide
ith no isolation to no-mobility restrictions with age groups isolation. Panels (b–e) itemize
ifferent age groups in each situation. Here, only the average of the four age groups is shown.
similar outcome as themobility restriction by provinces, as can be grasped from panels (c,
is fixed to (0.1, 0.4, 0.4, 0.1).

Image of Fig. 5
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patterns, from the retired elderly people and the younger individuals
who are still attending school. The GR distribution for this configuration
is shown in Fig. 3 where they are compared against the data of cumu-
lated cases. Based on this comparison, the correlation values of Table 1
can be better understood. We can conclude that the growth rates calcu-
lated as indicated in the Methods section constitute an appropriate pa-
rameter to describe the pandemic risk at each location. For the curious
reader, the tabled values of the growth rates represented in Fig. 3 are
presented at the end of the Supplementary Information.

4.2. Different scenarios for epidemic control

In the following, we will consider different scenarios and using the
GR will estimate the best options to minimize the effects of a pandemic
wave. The implemented model allows two different approaches to halt
a possible epidemic outbreak. The first one consists in severing the mo-
bility across different scales nationwidemodifying themobility fluxes of
matrix Cij (and so the set of eigenvalues Λα of the network's Laplacian
matrix that are used in the computing of the growth rates). The
second one consists of removing or isolating a given age group (or a
combination of two age groups) by turning their infectivity βi to
almost zero. The latter translates to these groups being unable to
become carriers of the disease, so it could be interpreted either as a
totally effective protection or simply a home isolation of the given
group. Notice that this is different to equating the parameter rl to zero
since the latter means mobility among different municipalities and the
former would also affect the infections at a local scale. Regarding the
mobility scales, Spain is hierarchically subdivided into three different
scales (regional autonomous communities, provinces and municipali-
ties). Following the different levels of restrictions posed by the govern-
ment during the different virus waves, we will analyze the effect of
breaking down the mobility across these three different scales.

Attending to these considerations, we summarized our main find-
ings on Figs. 4 and 5. Since we obtained one distribution of growth
rates for each age group and mobility scenario, we define a set of
Fig. 6. Spatial maps of the growth rates without mobility restrictions by age group. Re
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suitable statistics to summarize all the information at hand. We opted
for using the upper bound and the median value of each distribution,
being the former an average of the ten highest growth rates. This
gives us an idea of which are the highest values of the distribution
(highest risk factors then) while reducing the bias of the most popu-
lated cities, which show exponential growing values. Thus, the upper
bound anticipates how fast the outbreaks emerge in the most critical
locations, whereas the median value shows the behavior in most of
them. Note that we discard the mean value since it is highly biased by
the outcome in the upper bounds of the distributions. We consider the
following different scenarios with different age groups confined or re-
stricted mobility. Panel (a) of Fig. 4 presents a summary view of the re-
sults obtained. Each statistic indicator was weighted over the four
age groups for each situation, being included the standard deviation of
the average value as a dispersion estimator. Panels (b–e) of Fig. 4 repre-
sent the same information itemized by mobility restrictions and in ra-
dial shape, while Fig. 5 breaks down all this information by age group,
highlighting the impact of the different configurations in each of the
groups.

Regarding themobility restrictions, we observe that cutting themo-
bility down by provinces has a very small effect on the GR values, while
the control measure at local a scale seems to be the most efficient, de-
creasing the overall risk in more than half in almost every scenario.
Note that in Fig. 4 the points corresponding to the restrictions adopted
by autonomous communities (AC) are hidden behind, overlapped by
the points corresponding to the provinces. We believe that this is re-
lated to the mobility data rather than a model prediction, since during
the second wave there were still some restrictions to travel even
among different provinces and thus the existing variations were not
strong enough to induce a different outcome with our model.

Focusing now only on the protection by age groups, it is especially
significant the impact that comes from isolating a combination of AG1
with any of the other groups. These combinations without mobility re-
strictions (red line), decrease the overall GR distributions below the sit-
uation with local level mobility restrictions and no age isolation
lative mobility between municipalities by age groups is fixed to (0.1, 0.4, 0.4, 0.1).

Image of Fig. 6


A. Carballosa, J. Balsa-Barreiro, P. Boullosa et al. Chaos, Solitons and Fractals 160 (2022) 112156
measures (first point of the blue line). This is highlighted on panel (a) of
Fig. 4 by the dashed black line, where we can also see that isolating AG2
and AG3 at the same time returns a similar outcome. In particular,
a combination of AG1 and AG4 seems to be the one that best reduces
the GR in the remaining age groups, as Figs. 4 and 5 suggest. While
isolating a substantial portion of the population logically halts the
virus spreading, it is interesting that the rest of the combinations with
AG4 cannot achieve such improvements on the other age groups. At-
tending more specifically to Fig. 5, it is noticeable that isolating
either AG3 or AG4 keeps the values on AG1 and AG2 almost equivalent
with the scenario with no isolations. This is mainly related to the fact
that AG4 has in general lower transmission rates in our fittings than
the other three groups, but it is also slightly biased with the underesti-
mation of some of these rates from the fitting issues commented
above. In the same way, isolating only a single age group of population
barely modifies the GR obtained on the remaining groups, suggesting
that it would be a pointless measure to adopt solely according to our
model.

5. Discussion

The aim of our approach lies in developing a single and efficient tool
in which several scenarios can be simulated while keeping the compu-
tational cost minimized. We present a mathematical descriptor that is
able to incorporate empiric information on commuting flows and the
individual infective dynamic to recreate the infective risk map across
municipalities. An age stratification in eachmunicipality allows for con-
trol measures that aim to slow down the virus impact by reducing the
age-structure mixing in the population. The manual modification of
both variables, mobility flows and population mixing, allows to mini-
mize the risk of each node while comparing different mobility restric-
tions in order to keep in operation the active people, which means
those between 20 and 69 years old (i.e., AG2 + AG3).

From a purely mathematical perspective, no assumptions were
made over the age-specific transmissibility of COVID-19. Thus, the rela-
tive rates of infection transmissionwere obtained fromfitting themodel
to the cumulative infection data series by municipalities. Since our
model is minimal and it is based only on four homogeneous compart-
ments, we believe that this local-oriented fitting helped us capture the
unique features of each municipality by introducing the necessary het-
erogeneity to accurately reproduce the pandemic evolution. One of
the main results from our analysis shows that isolating individuals
younger than 19 (AG1) shows a particular impact on the growth rates
(GR), especially when the isolation restrictions are combined with any
of the other groups. In fact, the combination of the latter with the eldest
people (AG4) seems to be the one to reduce the most the risk factors in
the other remaining groups; closely followed by a combined isolation of
AG2 and AG3, that is, between 20 and 69 years old. However, the latter
Fig. 7. Growth rates in AG2 and AG3 with mobility restrictions in AG1 and AG4. Rela
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would imply a total freezing of the population's active sector that is one
of the less desirable outcomes. On the other hand, our mobility analysis
shows that, given the mobility traffic allowed during the second wave,
only restrictions adopted by municipalities would have significantly
reduced the risk of pandemic outbreaks. Furthermore, by combining
all the controlmeasures bymobility and age, one of the key implications
of our model is that the already discussed combination of AG1 with
any other achieves a further reduction in the risk factors than imposing
local mobility restrictions across the whole country. This could suggest
that efficiently protecting AG1 and AG4 simultaneously while allowing
AG2 and AG3 to pursue their normal activity would achieve one of
the optimal scenarios with the ongoing pandemic. Although our
model does not incorporate a time variable and therefore is not able
to predict for how long these restrictions should hold, it does show
some interesting new insights on the age-structure mixing that could
help to adopt.

In Spain, the distribution of growth rates is mainly determined by
the spatial pattern of population distribution. The metropolitan area of
Madrid, the Mediterranean coastline (especially in the eastern sector)
and certain areas located on the north coast concentrate the largest
urban regions. These urban regions show high economic dynamism
and young age-structures. Highest growth rates are observed in these
regions. The inland provincial cities emerge as isolated foci presenting
significantly high growth rates. In a scenario without restrictions, such
as the one shown in Fig. 6, growth rates trace this spatial pattern show-
ing highest values in the youth (AG1) and the active population groups
(AG2 + AG3).

The scenario shown in Fig. 7 represents the growth rates in the
active groups (A2 + A3) by considering mobility restrictions in the
youngest and eldest groups (A1 + A4). The effects on the active
population describe a very similar effect, showing much lower impact
values in growth rates. The yellow hue dominates most of the map,
whereas the red tones are restricted to main cities and most populated
urban regions.

The rate between growth rates obtained in a free-mobility scenario
(Fig. 6) and the one with mobility restrictions in AG1 and AG4 (Fig. 7)
is estimated for the intermediate age groups, i.e. AG2 + AG3, in Fig. 8.
Aswe can observe,major reduction rates are visible on the suburban re-
gions, while moderate reduction rates are observed precisely in the
main cities and urban regions.

The present methodology could be easily applied to other regions
with a population structure heterogeneously distributed and, also, to
other kinds of spreading phenomena whose mechanisms can be
modelled mathematically. Following the line presented here, further
studies will be mandatory in near future to determine how to optimal
trade-off between the expected positive effect on public health with
the negative impact on freedomofmovement, economy impact, and so-
ciety at large.
tive mobility between municipalities by age groups is fixed to (0.1, 0.4, 0.4, 0.1).

Image of Fig. 7
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6. Conclusions

In this articlewe implement amethod based on a SEIR compartmen-
tal model for analyzing the COVID-19 impact in combination with mo-
bility flows. This method allows quantifying the potential impact for
becoming a hotspot. For the study, we consider different confinement
scenarios and containment protocols aimed to control the virus spread-
ing. These are based on mobility restrictions by age and administrative
competences. Our results show how the confinement of the economi-
cally non-active individuals results in a significant reduction of risk,
whose effects are equivalent to the confinement of the total population.
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