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RESUMO 
 

Unha das principais preocupacións para as autoridades gobernamentais a nivel mundial é a 

identificación de medidas para previr a perda de alimentos nos primeiros pasos da cadea de 

distribución pero tamén a nivel de venta ao por menor e de consumidor. Segundo a Comisión Europea 

(CE), anualmente xéranse 88 millóns de toneladas de residuos de alimentos na UE, cun custo 

estimado de 143 millóns de euros. Segundo a Organización das Nacions Unidas para a Alimentación 

e a Agricultura (FAO), globalmente un tercio de todos os alimentos producidos acaban en residuos 

ou perdas. Ademais, segundo o índice de perda de alimentos (FLI) da FAO, o 14 % dos alimentos 

producidos pérdese entre a post-colleita ata o comercio polo miúdo. Os residuos de alimentos non só 

teñen un impacto económico e ético, senón que leva ao esgotamento dos recursos naturais. Como 

resultado, a UE comprometeuse a reducir a perda de alimentos ao longo da cadea de produción e 

subministración e a reducir á metade os residuos de alimentos per cápita a nivel de venda polo miúdo 

e ao consumidor para o 2030. Neste sentido, o deterioro microbiolóxico xoga un papel importante na 

perda de alimentos e en particular, especialmente a causada por fungos. Ademais, os fungos 

toxigenicos, en condicións favorables, poden producir metabolitos secundarios denominados 

micotoxinas. Algunhas das micotoxinas poden ser extremadamente perigosas para a saúde humana e 

animal debido aos seus efectos canceríxenos e teratogénicos, pero tamén poden causar perdas 

económicas ao longo da cadea de subministración. Como resultado, a contaminación dos alimentos 

con fungos micotoxixénicos é de gran importancia debido aos problema que ocasiona tanto a 

seguridade alimentaria como ao comercio de alimentos. 

A día de hoxe, a detección de levaduras e fungos realízase fundamentalmente empregando 

técnicas tradicionais de microbioloxía clásica. Estas técnicas son laboriosas, implican un elevado 

consumo de tempo e requieren un enorme gasto de reactivos. Así, o tempo global de análise pódese 

estender ata 7 días, facendo que estas técnicas non sexan adecuadas para alimentos cunha vida útil 

curta e os sistemas de produción intensiva que existen hoxe en día. Por conseguinte, os resultados 

obtidos só se poden usar retrospectivamente e por tanto teñen un valor limitado para a calidade e o 

control do proceso. Outra desvantaxe destes métodos é que non poden detectar microorganismos 

viables pero non cultivables (VBNC). Este tipo de vida microbiana pode ser o resultado dos procesos 

de limpeza e/ou actividades de desinfección que fan que as células entren en un estado de actividade 

metabólica moi baixa e por tanto non crecen empregando as técnicas tradicionais de microbioloxía., 

Pero aínda en ese estado metabólico, estas células xogan un papel importante nos estragos producidos 

por enzimas ou outros metabolitos de importancia. Como consecuencia, son necesario métodos máis 

rápidos e sensibles para a detección de fungos que reduzan os custos xerais da industria alimentaria 

debido as perdas de produto e ás longas análises. 
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Durante as últimas décadas xurdiron técnicas de amplificación baseadas no ADN co obxectivo 

último de superar algúns dos inconvenientes dos métodos tradicionais de microbioloxía. Estes 

métodos baseados na detección de ADN destacan pola súa alta sensibilidade e especificidade. En 

particular, a reacción en cadea da polimerasa (PCR) e a PCR cuantitativa (qPCR) son moi utilizados 

para a detección de levaduras e mofos alterantes nunha grande variedade de produtos alimentarios. 

Unha das principais limitacións da maioría dos ensaios de PCR/qPCR desenrolados ata o momento, 

é que non inclúen un control de amplificación interna (IAC). Básicamente, o IAC é un ADN non 

diana (é decir, un fragmento de ADN engadido artificialmente a mostra) implementado no ensaio que 

co-amplifica co xene obxectivo e sempre debe amplificar en mostras negativas. Neste sentido, 

pódense evitar falsos negativos por inhibición da reacción.  

Ultimamente, alternativamente a PCR/ qPCR, apareceron técnicas de amplificación de ácido 

nucleico isotérmico permitindo a simplificación dos ensaios e os custos de redución. Estes ensaios só 

precisan un baño de auga ou un bloque de calor xa que funcionan a unha temperatura constante e, 

como resultado, non hai necesidade de equipos caros como un termociclador. Ademais, dado que os 

resultados na maioría dos casos poden visualizarse a simple vista, estes ensaios pódense implementar 

en dispositivos portátiles para aplicacións en puntos de interese. Entre as diferentes técnicas de 

amplificación isotérmica, a amplificación isotérmica mediada por bucle (LAMP) e a amplificación 

da polimerase de recombinase (RPA) son as máis populares para a detección de microorganismos. A 

pesar de que se informaron de moitos ensaios para a detección de bacterias e virus patóxenos, a 

aplicación destes métodos no campo dos fungos transmitidos por alimentos segue sendo limitada e 

está centrada principalmente na detección de fungos micotoxixénicos. Os resultados pódense 

visualizar de moitos xeitos diferentes segundo o ensaio, incluída a detección a simple vista do cambio 

de cor, electroforese en xel, tiras de fluxo lateral e fluorescencia en tempo real. Ademais, demostrouse 

que estas técnicas son máis robustas contra os inhibidores comúns de PCR que poden levar a falsos 

negativos. 

Unha das principais limitacións de todos os métodos baseados na detección de ADN é que non 

poden diferenciar entre microorganismos vivos e mortos. Isto é debido a que o ADN é unha molécula 

estable e, polo tanto, pode persistir e estar presente durante algún tempo despois da morte do 

microorganismo. Un enfoque para a detección de microorganismos viables basease na detección de 

ARN por transcriptasa inversa (RT-PCR) ou RT-qPCR. Non obstante, a manipulación do ARN é 

máis difícil xa que debe ser manipulado con coidado durante a extracción por mor das ARNasas, as 

enzimas que dixeren o ARN, xa que están omnipresentes no ambiente. Ademais, a contaminación 

pode producirse debido a un procesamento de mostras inadecuado, condicións de almacenamento ou 

contaminación con encimas degradantes do ARN. Outro inconveniente deste enfoque é que é 

necesario un paso de retrotranscrición para converter o ARN en ADN complementario (ADNc). 

Outro enfoque que se explorou ultimamente, implica o uso de colorantes intercalantes como PMA e 

EMA, que poden penetrar en células mortas e despois da fotoactivación, unirse irreversiblemente ao 

ADN, bloqueando así a súa amplificación. Unha das principais vantaxes do emprego de estes 

reactivos químicos é que se poden implementar fácilmente nos protocolos de extracción de ADN e 

tamén son compatibles con moitas técnicas de amplificación. Ademais, con estes colorantes é posible 

a detección de microorganismos en estado VBNC. 

O obxectivo desta tese foi o desenvolvemento e avaliación de diferentes métodos moleculares 

para a detección de fungos responsables do deterioro das froitas, así como de fungos micotoxixénicos, 

co obxectivo global de reducir o tempo total de análise, mantendo a sensibilidade en comparación cos 

métodos convencionais. Para conseguilo, propuxéronse diferentes obxectivos específicos. 
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O primeiro obxectivo específico compredeu o desenrolo dun protocolo para o pre-

enriquecemento, o tratamento de mostras e a extracción do ADN para a detección de fungos de 

interese nas matrices de alimentos seleccionados. Para lograr este, púxose a proba, de xeito que se 

puidese seleccionar o óptimo para o crecemento dos fungos de interese. Con base en estudos de 

cinética e nos protocolos existentes no sitio do noso socio industrial, MEB foi o caldo seleccionado 

para o paso previo ao enriquecemento. En continuación, avaliáronse diferentes volumes de mostra e 

condicións de incubación e cas condicións óptimas foron escollidas tendo en conta a experiencia 

anterior do socio industrial. Adicionalmente, o tratamento da mostra optimizouse con pasos de 

centrifugación diferencial, co fin de eliminar os restos de alimentos e concentrar os microorganismos 

antes da extracción do ADN. Finalmente, elixiuse un kit comercial para a extracción do ADN. Co 

protocolo de extracción optimizado, obtivose ADN de alta calidade. 

O segundo obxectivo específico implicou o desenrolo e avaliación dun método de qPCR para a 

detección de fungos totales, “panfungal”, cun NC-IAC, que despois podería servir como método de 

referencia para técnicas de amplificación isotérmicas do ADN. Neste sentido, seleccionouse un 

conxunto de cebadores universais dirixidos a unha rexión común dus fungos e unha sonda de hidrolise 

foi deseñada en este estudo. A especificidade do ensaio foi evaluada fronte a un panel de 

microorganismos que se atopan frecuentemente nos produtos alimentarios. Ademais, logrouse unha 

sensibilidade analítica de 10.4 fg/ µL de ADN puro. O último paso no desenvolvemento do ensaio 

panfungal qPCR foi a avaliación do método en mostras reais. Como resultado, as mostras de 

preparación de froitas foron inoculadas con diferente concentracións de levaduras e mofos, e 

determinouse o límite de detección (LOD) do ensaio. Os valores LOD95 obtidos foron 3.9 CFU/ 50 g 

para levaduras, 1.2 × 102 esporas/ 50 g e 3.7 × 10 esporas/ 50 g para mofos despois de 24 e 48 h de 

pre-enriquecemento, respectivamente. O LOD calculado para levaduras estaba dentro do rango de 

otros estudios realizados para a detección de levaduras alterantes dos alimentos, destacando así a alta 

sensibilidade do noso ensaio. A partir dos valores de LOD95 obtidos, calculáronse os parámetros de 

rendemento do método. Os valores obtidos foron superiores ao 85.0 % e o k de Cohen por encima de 

0,86 para todos os ensaios, o que significa que o noso método estaba case en concordancia completa 

co método de referencia, neste caso os métodos baseados en microbioloxía clásica. En xeral, o método 

desenvolvido resultou moi sensible para a detección de fungos e, en consecuencia, serviu como 

método de referencia para as técnicas de amplificación isotérmica que se desenvolveron máis tarde. 

O terceiro obxectivo específico desta tese implicou o desenvolvemento e avaliación de diferentes 

técnicas de amplificación isotérmicas xunto coa detección a simple vista para microorganismos 

alterantes e fungos micotoxixénicos. Para este fin, desenvolvéronse dous métodos panfúngicos, un 

ensaio de amplificación isotérmica mediada por bucle  (LAMP) dirixido ao xene 18S rRNA e un 

ensaio RPA dirixido á rexión ITS. En máis detalles, no ensaio de LAMP visualizáronse os resultados 

con fluorescencia en tempo real, pero tamén a simple vista por cambio de cor, mentres que para as 

tiras de fluxo lateral RPA usáronse para a detección a simple vista. Ademais, desenvolveuse e 

avaliouse un ensaio RPA xunto con SYBR Green I para a detección de fungos produtores de patulina. 

En canto ao ensaio panfungal baseado en LAMP, deseñouse un conxunto completo de cebadores 

co programa informático Primer Explorer v.4 e a súa inclusividade/ exclusividade foi valorada in 

vitro contra un panel de fungos e bacterias que se atopan habitualmente nos produtos alimentarios. 

Ademais, ao probar as dilucións seriadas obtivose unha sensibilidade analítica de 1.4 pg ADN 

levadura/ reacción foi alcanzada tanto polo ensayo fluorescente como polo colorimétrico. Ademais, 

cando se usou o ADN puro de Neosartorya fischeri, detectouse ata 17 pg ADN/ reacción e 170 pg 

ADN/ reacción co ensaio fluorescente e o colorimétrico, respectivamente. No último paso, a 

avaliación do método realizouse en preparados de amora e piña con diferentes concentracións de 
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levaduras. O método de referencia de comparación foi o ensaio Panfungal qPCR anteriormente 

desenvolvido e, ademais, os resultados foron comparados con un conxunto de cebadores de LAMP 

descritos previamente para a detección panfungal, dirixido ao mesmo xene. A detección realizouse 

tanto mediante observación do cambio de cor a simple vista, como a fluorescencia en tempo real para 

comparación directa. Así, en total avaliáronse catro metodoloxías diferentes. O LOD95 obtido foi de 

3.1 CFU/ 50 g para os dous ensaios fluorescentes, polo que ambos os ensaios foron igualmente 

sensibles. En canto aos ensaios colorimétricos, o desenvolvido neste estudo resultou ser máis sensible 

cun LOD95 de 3.0 CFU/ 50 g, mentres que o usado para a comparación resultou nun LOD95 de 10.9 

CFU/ 50 g. Ademais, o LOD obtido foi similar ao informado para a detección de levaduras por qPCR 

nesta tese (LOD95 1.0 CFU/ 50 g). Por conseguinte, o ensaio de LAMP recentemente desenvolvido 

foi tan sensible como o método de referencia, pero coas vantaxes engadidas de que o ensaio 

colorimétrico pode usarse para a detección en punto de interese en lugar de en laboratorios 

especializados de bioloxía molecular, y tamén produce unha redución de custos xa que non hai 

necesidade de equipos caros como un termociclador de tempo real. Con base nos LODs obtidos, 

determináronse os parámetros de calidade e en todos os ensaios os valores obtidos foron por encima 

do 90 % con algunhas excepcións para cada ensaio que foi o resultado de poucos PDs e/ou NDS. Isto 

pode ser o resultado da contaminación cruzada xa que nos ensaios de LAMP o risco de contaminación 

cruzada é moi elevado a través de produtos aerosolizados debido á alta produción de ADN que pode 

levar a resultados falsos positivos. Finalmente, baseándose nos valores k de Cohen, o recén 

desenvolvido ensaio colorimétrico estivo en "concordancia case completa" co método de referencia, 

é dicir, o ensaio panfugal qPCR, mentres que o fluorescente estivo en "acordo substancial". 

En canto ao ensaio de RPA panfungal, os cebadores universais ITS3/ITS4 foron seleccionados e 

etiquetados con digoxigenina e biotina, respectivamente. Neste sentido, evitouse o uso dunha sonda 

nfo, especialmente tendo en conta que TwistDX (o distribuidor principal dos reactivos RPA) 

descontinuou recentemente o kit nfo para a detección de fluxo lateral. A especificidade dos cebadores 

probouse como se explicou anteriormente para os outros ensaios. Todos os cebadores presentaron 

unha boa inclusividade cara aos fungos seleccionados e a boa exclusividade xa que todas as bacterias 

seleccionadas non se ampliaron. Ademais, co ensaio desenvolvido, logrouse unha sensibilidade 

analítica de 1.2 pg ADN/ µL, que abarca un rango dinámico de 4 logaritmos, tanto para levaduras 

como para mofos. A avaliación do método Panfungal RPA-LF realizouse tanto en levaduras como en 

mofos en mostras de marmelada de amoras. O LOD50 atopouse como 1.0 CFU/ 50 g para levaduras 

e 47.5 esporas/ 50 g para mofos, respectivamente. O LOD50 obtido para levaduras foi o mesmo que 

o informado para os ensaios de qPCR e LAMP Panfungal desenvolvidos nesta tese, o que indica que 

todos os métodos desenvolvidos durante este estudo foron igualmente sensibles para a detección de 

levaduras. Finalmente, todos os parámetros de calidade estaban por encima do 80 % e o k de Cohen 

foi 0.77 tanto para a detección de levaduras como para a detección de mofos, o que significa que os 

métodos desenvolvidos estaban de "acordo substancial" co método de referencia. 

O último obxectivo específico desta tese foi o desenrolo dunha metodoloxía para a diferenciación 

de fungos viables e non viables empregando colorantes intercalantes combinados con métodos 

baseados en moleculares. Desenvolvéronse e evaluáronse dous métodos baseados en técnicas 

moleculares, concretamente un qPCR e un RPA xunto con SYBR Green I (RPA-SG), para a detección 

de fungos produtores de patulina en mazás e subprodutos. Ademais, a detección de só fungos viables 

logrouse coa implementación de propidio monoazida (PMA) durante o tratamento da mostra. 

En canto ao ensaio qPCR, elixiuse un conxunto de cebadores PCR publicados anteriormente 

dirixidos ao xene idh e unha sonda fluorescente foi deseñada específicamente para ese estudo. A 

inclusividade/ exclusividade dos cebadores avaliouse como se describiu antes e todos os 



xii 

 

oligonucleótidos foron específicos. O ensaio de qPCR cubriu un rango dinámico de 5 logaritmos ata 

1.25 pg/ µl de ADN puro Penicillium expansum. A sensibilidade analítica reportada caeu dentro do 

rango de valores informados anteriormente para a detección de fungos micotoxixénicos. A avaliación 

do método realizouse en mazás picadas, puré de mazá e zume de mazá e o LOD50 calculouse como 

8.1 × 103 esporas/ 5 g. Finalmente, todos os parámetros de calidade estaban por encima do 90 % e o 

k de Cohen foi de 0.93, o que indica que o ensaio estaba "en concordancia case completa" co método 

de referencia, neste caso o método baseado na cultura. 

En canto ao ensaio RPA-SG, deseñouse un novo conxunto de cebador co uso do programa 

informático PrimedRPA. O xene diana foi o mesmo que o empregado no ensaio da qPCR xa que está 

implicado na vía biosintética da patulina. Unha vez máis, a especificidade dos cebadores avaliouse in 

vitro fronte a unha selección de microorganismos. Co ensaio desenvolvido, cubriuse un rango 

dinámico de 4 logaritmos detectando así ata 23.8 pg/ µl de ADN puro P. expansum. A avaliación do 

método global foi realizada mediante as mazás e os produtos das mesmas e o qPCR desenvolvido 

anteriormente para a detección de fungos produtores de patulina serviu como método de referencia. 

O LOD50 calculouse como 5.8 × 104 esporas/ 5 g. Finalmente, en función dos valores LOD obtidos, 

os parámetros de calidade atopáronse por encima do 90 % e o k de Cohen foi 0,92, o que significa 

que o ensaio estaba "en concordancia case completa" co método de referencia. 

Ademais, neste estudo demostramos que a PMA podería bloquear de xeito eficiente a 

amplificación do ADN orixinario de esporas mortas con concentracións de ata 107 esporas/ mL. 

Ademais, non se observaron efectos tóxicos nas esporas vivas. Ademais, avaliouse o efecto da PMA 

en mostras de mazá picadas e unha vez máis a PMA bloqueou a amplificación do ADN a partir de 

esporas mortas nos mesmos rango de concentracións. Tamén se avaliou o efecto da PMA en mazás 

inoculadas cunha mestura de esporas vivas e mortas en diferentes relacións. Observouse que cando 

as mazás foron picadas con 108 esporas mortas, a PMA non inhibiu plenamente a amplificación xa 

que unha das tres réplicas foi positiva. Estes resultados suxeriron que a PMA pode inhibir a 

amplificación do ADN procedente de esporas mortas con concentracións de ata 107, pero a presenza 

de concentracións máis altas de microorganismos mortos poden dificultar a capacidade de bloqueo 

do colorante. 

En xeral, na presente tese desenrolaronse e avaliáronse diferentes ensaios baseados en técnicas 

moleculares. A detección de fungos alterantes e micotoxixénicos en diferentes matrices alimentarias 

conseguiuse en 24-48 h, proporcionando unha alternativa máis rápida ás técnicas convencionais 

baseadas na microbioloxía clásica que requiren ata 7 días desde a mostraxe ata o resultado. Polo tanto, 

os métodos desenvolvidos demostraron ser unha opción interesante para a industria alimentaria que 

contribúe á redución dos custos asociados a longas análises. Máis concretamente un ensaio qPCR cun 

IAC para a detección de fungos nos preparados de froitas foi evaluado por separado para levaduras e 

mofos e debido ao seu excelente rendemento foi seleccionado como método de referencia para os 

métodos que se desenvolveron máis tarde. Neste sentido, nun segundo paso desenvolveuse un ensaio 

de LAMP seleccionando dúas formas diferentes para a visualización de resultados, é dicir, o cambio 

de cor observable a simple vista e a fluorescencia en tempo real. O ensaio de LAMP resultou 

igualmente sensible co ensaio qPCR con parámetros de calidade notables. Posteriormente, probouse 

outra técnica isotérmica de amplificación de ADN, é dicir, un ensaio RPA xunto con LF para a 

detección de fungos universais. Neste ensaio, os cebadores foron etiquetados con digoxigenina e 

biotina e evitouse deste xeito o uso dunha sonda NFO, simplificando así o ensaio. De novo, o ensaio 

desenvolvido foi tan sensible como os ensaios de panfungal qPCR e LAMP. A vantaxe do ensaio de 

LAMP colorimétricas e o ensaio RPA-LF é que se poden usar para aplicación en puntos de interés 

para cribado precoz de froitas e produtos ao longo da cadea de distribución. Por conseguinte, 
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desenrolaronse solucións analíticas altamente fiables e dependerá do usuario final para decidir que 

método é máis adecuado para a aplicación prevista. Finalmente, investigáronse métodos rápidos para 

a detección de fungos produtores de patulina, incluído un ensaio qPCR e máis tarde nun ensaio RPA 

xunto coa detección de cor verde a simple vista debido ao uso da molécula SYBR, que emite 

fluorescencia. Os dous ensaios, foron menos sensibles en comparación cos ensaios panfúngicos e, 

entre os dous, o qPCR foi lixeiramente máis sensible en comparación co RPA-SG. A diferenciación 

de células viables e non viables conseguiuse con éxito engadindo PMA antes da extracción do ADN. 

A adición da PMA na concentración seleccionada foi capaz de inhibir a amplificación orixinaria de 

células mortas sen causar ningún efecto tóxico nas células vivas. 
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ABSTRACT  
 

Identification of measures to prevent food losses in the primary steps of supply chain but also 

later on in order to prevent food waste at the retail and consumer level is of utter importance and still 

remains of major concern for the relevant authorities worldwide. According to the European 

Commission (EC), 88 million tons of food waste are generated annually in the EU, with an estimated 

cost of 143 billion euros. According to the Food and Agriculture Organization (FAO), globally 1/3 

of all the food produced results in waste or losses. Furthermore, according to FAO’s Food Loss Index 

(FLI), 14 % of the food produced is lost between post-harvest up to, but excluding, retail. Food waste 

does not only have an economical and ethical impact, but also leads to depletion of natural resources. 

As a result, the EU has committed to reduce food losses along production and supply chain, and to 

halve per capita food waste at the retail and consumer level by 2030.  In this sense, microbiological 

spoilage plays an important role in food spoilage, and in particular, fungi are the most important 

microorganisms implicated in food losses. Additionally, toxigenic fungi under favorable conditions 

can produce mycotoxins which are secondary metabolites. Some of the mycotoxins can be extremely 

dangerous for human and animal health due to their carcinogenic and teratogenic effects but also they 

can cause economic losses along the supply chain. As a result, contamination of foods from 

mycotoxigenic fungi is of utter importance due to food safety as well as for food trade issues. 

To this day, detection of yeasts and moulds is performed based on traditional culture-based 

methods. These techniques are laborious, time consuming and require huge amounts of reagents. In 

addition, the overall analysis time can be extended to up to 7 days, rendering these techniques not 

suitable for foods with short shelf-lives and also not suitable for the increased production systems 

that exist nowadays. Consequently, the obtained results can only be used retrospectively being of 

limited value for quality and process control. Another disadvantage of these methods is that they 

cannot detect Viable But Non-Culturable (VBNC) microorganisms, that can be the result of 

processing, cleaning and/or disinfection activities since at this state microorganisms cannot grow on 

media but they can still play an important role in spoilage by producing enzymes or other metabolites 

of importance.  As a consequence, there is a need for faster and more sensitive methods for fungal 

detection that will reduce the overall costs of the food industry due to product recalls and long 

analyses. 

In this sense, over the last decades DNA-based amplification techniques have emerged with the 

ultimate goal to overcome some of the drawbacks of the traditional methods due to their high 

sensitivity and specificity. In particular, PCR and qPCR have been widely used for the detection of 

spoilage yeasts and moulds in a variety of food products.  One of the major drawbacks of most 

reported PCR/qPCR assays is that they do not include an Internal Amplification Control (IAC). 

Basically, the IAC is a non-target DNA, implemented in the assay that co-amplifies with the target 

gene and should always amplify in negative samples. In this sense, false negative results due to 

reaction inhibition can be avoided. Nevertheless, only few assays for fungal detection have reported 

using an IAC, which can result in false diagnosis especially in the case of pathogenic fungi.   

Lately alternatively to PCR/qPCR, isothermal nucleic acid amplification techniques have 

appeared allowing the simplification of the assays and the reduction costs. These assays only require 



xvi 

 

a water bath or heat block since they run at a constant temperature, and as a result there is no need 

for expensive equipment like a thermocycler. Furthermore, since the results in most of the cases can 

be visualized by naked-eye, these assays can be implemented in portable devices for Point of Care 

(POC) applications. Among the different isothermal amplification techniques, Loop-mediated 

isothermal amplification (LAMP) and Recombinase Polymerase Amplification (RPA) are the most 

popular for the detection of microorganisms. Even though, many assays have been reported for the 

detection of pathogenic bacteria and viruses, application of these methods in the field of foodborne 

fungi still remains limited and is mainly focused on the detection of mycotoxigenic fungi. The results 

can be visualized in many different ways depending on the assay, including naked-eye detection of 

colour change, gel electrophoresis, lateral flow strips and real-time fluorescence. Furthermore, it has 

been proven that these techniques are more robust against common PCR inhibitors that can lead to 

false negative results.  

One of the major limitations of all DNA-based methods is that they cannot differentiate between 

live and dead microorganisms. This is because DNA is a stable molecule and thus can persist and be 

present for some time after the death of the microorganism. One approach for the detection of viable 

microorganisms relies on the detection RNA by RT-PCR or RT-qPCR. However, handling of RNA 

is more difficult and RNA should be carefully manipulated during extraction since RNase, the enzyme 

that digests RNA, is ubiquitous in the environment. In addition, contamination can occur due to 

improper sample processing, storage conditions or contamination with RNA-degrading enzymes. 

Another drawback of this approach is that a retrotranscription step is required in order to convert 

RNA to cDNA. Another approach that has been explored lately, involves the use of intercalating dyes 

such as PMA and EMA, which can penetrate dead cells, and upon photoactivation, irreversibly bind 

to the DNA, thus blocking its amplification. One of the main advantage of these assays is that they 

can easily be implemented in a DNA extraction protocol and also they are compatible with many 

amplification techniques. Furthermore, with these dyes detection of microorganism in the VBNC 

state is possible.  

The objective of this thesis, was the development and evaluation, of different molecular-based 

methods for the detection of selected spoilage responsible, and mycotoxigenic fungi in fruits, and 

products thereof, with the overall goal of reducing the total time of analysis, while maintaining the 

sensitivity when compared to the conventional methods. In order to achieve this, different specific 

objectives were proposed.  

The first specific objective included the development of a protocol for pre-enrichment, sample 

treatment, and DNA extraction for the fungi of interest in the selected food matrices. In order to 

achieve this, different media were tested, so that the optimal one for the growth of the fungi of interest 

could be selected. Based on kinetics studies, and on the protocols in place on our industrial partner’s 

site, MEB was the selected broth for the pre-enrichment step. In continuation, different sample 

volumes, and incubation conditions, were evaluated and the optimal ones were chosen taking into 

account the previous experience from the industrial partner. Additionally, the sample treatment was 

optimized involving differential centrifugation steps, in order to remove food debris and to pellet the 

microorganisms before the DNA extraction. Finally, a commercial kit was chosen for DNA 

extraction. With the optimized protocol, extraction of DNA of high quality was achieved.  

The second specific objective involved the development and evaluation of a panfungal qPCR 

method, with a NC-IAC, that could later on serve as the reference method for isothermal DNA 

amplification techniques. In this sense, a set of universal primers was selected targeting the ITS region 

and a TaqMan probe was designed in house. The assay was evaluated for its specificity against a 

panel of microorganisms frequently encountered in food products. In addition, an analytical 
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sensitivity of 10.4 fg/ µL of pure DNA was achieved. The final step in the development of the 

panfungal qPCR assay was the evaluation of the overall method in real samples. As a result, fruit 

preparation samples were spiked with different concentration of yeasts and moulds and the LOD of 

the assay was determined. The obtained LOD95 values were 3.9 CFU/ 50 g for yeasts, 1.2 × 102 spores/ 

50 g and 3.7 × 10 spores/ 50 g for moulds after 24 and 48 h of pre-enrichment, respectively. The 

calculated LOD for yeasts was within the range of previously reported assays for the detection of 

spoilage yeasts; thus highlighting the high sensitivity of our assay. Based on the obtained LOD95 

values, the performance parameters of the method were calculated. The obtained values were higher 

than 85.0 % and the Cohen’s k above 0.86 for all the assays, meaning that our method was almost in 

complete concordance with the reference method, in this case culture-based methods. Overall, the 

developed method proved to be very sensitive for the detection of fungi and consequently served as 

the reference method for the isothermal amplification techniques that were developed later on. 

The third specific objective of this thesis involved the development and evaluation of different 

isothermal based amplification techniques coupled with naked-eye detection for spoilage and 

mycotoxigenic fungi. To this end, two panfungal methods were developed, a LAMP assay targeting 

the 18S rRNA gene and a RPA assay targeting the ITS region. In more detail, in the LAMP assay the 

results were visualized with real-time fluorescence but also naked-eye by colour change, while for 

the RPA lateral flow strips were used for naked-eye detection. Furthermore, a RPA assay coupled 

with SYBR Green I for the detection of patulin-producing fungi was developed and evaluated.  

Regarding the panfungal LAMP assay, a full set of primers was designed with Primer Explorer 

v.4 and their inclusivity/ exclusivity was assessed in vitro against a panel of fungi and bacteria 

commonly found in food products.  In addition, by testing ten-fold serial dilutions an analytical 

sensitivity of 1.4 pg/ reaction of pure yeast’s DNA was reached by both the fluorescent and the 

colorimetric assay. Furthermore, when pure DNA from N. fischeri was used, detection down to 17 

pg/ reaction and 170 pg/ reaction were detected with the fluorescent and the colorimetric assay, 

respectively. In the last step, the evaluation of the method was performed in spiked blackberry and 

pineapple preparations with different concentrations of yeasts. The reference method for comparison 

was the previously developed panfungal qPCR assay and additionally the results were compared 

against a previously set of LAMP primers for panfungal detection, targeting the same gene. The 

detection was performed both by naked-eye observation of colour change, and real-time fluorescence 

for direct comparison. Thus in total four different methodologies were evaluated. The LOD95 obtained 

was 3.1 CFU/ 50 g for the two fluorescent assays, hence both assays were equally sensitive. Regarding 

the colorimetric assays, the one developed in this study proved to be more sensitive with a LOD95 of 

3.0 CFU/ 50 g, whereas the one used for comparison resulted in a LOD95 of 10.9 CFU/ 50 g. 

Furthermore, the obtained LOD was similar to the one reported for the yeasts detection by qPCR in 

this thesis (LOD95 1.0 CFU/ 50 g). Consequently, the newly developed LAMP assay was as sensitive 

as the reference method but with the added advantages that the colorimetric assay can be used for 

POC detection in decentralized settings and also result in costs reduction since there is no need for 

expensive equipment like a real-time thermocycler. Based on the obtained LODs the quality 

parameters were determined and in all the assays the values obtained were above 90 % with some 

exceptions for each assay that were the result of few PDs and/or NDs. This can be the result of cross-

contamination since in LAMP assays the risk of cross-contamination is very high through aerosolized 

products due to the high production of DNA that can lead to false positive results. Finally, based on 

the Cohen’s k values, the newly developed colorimetric assay was in “almost complete concordance” 

with the reference method, i.e. the panfugal qPCR assay, while the fluorescent one was in “substantial 

agreement”.  
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Regarding the panfungal RPA assay, the universal primers ITS3/ITS4 were selected and tagged 

with digoxigenin and biotin, respectively. In this sense, the use of a nfo probe was avoided especially 

taking into account that TwistDx (the main distributor of the RPA reagents) recently discontinued the 

nfo kit for lateral flow detection. The specificity of the primers was tested as previously explained for 

the other assays. All the primers presented good inclusivity towards the selected fungi and good 

exclusivity since all the selected bacteria failed to amplify. In addition, with the developed assay an 

analytical sensitivity of 1.2 pg/ µL, covering a 4-log dynamic range, was achieved for both yeasts and 

moulds. The evaluation of the panfungal RPA-LF method was performed both in yeasts and moulds 

in blackberry jam samples. The LOD50 was found to be 1.0 CFU/ 50 g for yeasts and 47.5 spores/ 50 

g for moulds, respectively. The obtained LOD50 for yeasts was the same as the one reported for the 

developed panfungal qPCR and LAMP assays in this thesis, indicating that all the methods developed 

during this study were equally sensitive for the detection of yeasts. Finally, all the quality parameters 

were above 80 % and the Cohen’s k was found to be 0.77 for both yeasts and moulds detection, 

meaning that the developed methods were in “substantial agreement” with the reference method.  

The ultimate specific objective of this thesis concerned the development of a methodology for 

the differentiation of viable and non-viable fungi using intercalating dyes combined with molecular-

based methods. Two molecular-based methods, namely a qPCR and a RPA coupled with SYBR 

Green I (RPA-SG), for the detection of patulin-producing fungi in apples and by-products were 

developed and evaluated. In addition, detection of only viable fungi was achieved with the 

implementation of propidium monoazide (PMA) during the sample treatment.  

Regarding the qPCR assay, a previously published set of PCR primers was chosen that targeted 

the idh gene and a fluorescent probe was designed in house. The inclusivity/ exclusivity of the primers 

was evaluated as it was described before and all the oligonucleotides were found to be specific. The 

qPCR assay covered a 5-log dynamic range down to 1.25 pg/ µL of pure P. expansum DNA. The 

reported analytical sensitivity fell within the range of previously reported values for the detection of 

mycotoxigenic fungi. The evaluation of the method was performed in spiked apples, apple puree and 

apple juice and the LOD50 was calculated to be 8.1 × 103 spores/ 5 g. Finally, all the quality parameters 

were above 90 % and the Cohen´s k was 0.93, indicating that the assay was “in almost complete 

concordance” with the reference method, in this case the culture-based method. 

Regarding the RPA- SG assay, a new set of forward and reverse primer were designed with the 

use of the PrimedRPA software. The target gene was the same as with the qPCR assay as it is involved 

in the biosynthetic pathway of patulin. Once more, the specificity of the primers was assessed in vitro 

against a selection of microorganisms. With the developed assay, a 4-log dynamic range was covered 

thus detecting down to 23.8 pg/ µL of pure P. expansum DNA. The evaluation of the overall method 

was performed by spiking apples and products thereof and the previously developed qPCR for the 

detection of patulin-producing fungi served as the reference method. The LOD50 was calculated to be 

5.8 × 104 spores/ 5 g. Finally, based on the obtained LOD values, the quality parameters were found 

to be above 90 % and the Cohen´s k was 0.92, meaning that the assay was “in almost complete 

concordance” with the reference method.  

Furthermore, in this study it was proved that the PMA could efficiently block the amplification 

of DNA originating from dead spores with concentrations up to 107 spores/ mL. Additionally, no toxic 

effects were observed on the live spores. In addition, the effect of the PMA was assessed in spiked 

apple samples and once again PMA successful blocked the amplification of DNA from dead spores 

in the same range of concentrations. The effect of PMA in apples inoculated with a mixture of live 

and dead spores in different ratios was also assessed. It was observed that when apples were spiked 

with 108 dead spores, the PMA did not fully inhibit the amplification as one of the three replicates 
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was positive. These results suggested that the PMA can inhibit the amplification of DNA coming 

from dead spores with concentrations of up to 107 but the presence of higher concentrations of dead 

microorganisms may hinder the blocking capacity of the dye. 

Overall, in the present thesis different molecular-based assays were developed and evaluated. 

Detection of spoilage-responsible and mycotoxigenic fungi in different food matrices was achieved 

in 24-48 h, providing a faster alternative to the conventional culture-based techniques which require 

up to 7 days from sampling to result. Therefore, the developed methods have proven to be an 

interesting option for the food industry contributing to reduction of costs associated with lengthy 

analyses.  More specifically one qPCR assay with an IAC for the detection of fungi in fruit 

preparations was evaluated separately for yeasts and moulds and due to its excellent performance it 

was selected as the reference method for the methods that were developed later on. In this sense, in a 

second step a LAMP assay was developed selecting two different ways for results visualization, 

namely naked-eye colour change and real-time fluorescence. The LAMP assay proved to be equally 

sensitive with the qPCR assay with remarkable quality parameters. Subsequently, another isothermal 

based DNA amplification technique was tested, namely a RPA assay coupled with LF for universal 

fungal detection. In this assay, the primers were tagged with digoxigenin and biotin and in this way 

the use of an nfo probe was avoided, thus simplifying the assay. Again, the developed assay was as 

sensitive as the panfungal qPCR and LAMP assays. The advantage of the colorimetric LAMP assay 

and the RPA-LF assay is that they can be used for POC applications for early screening of fruits and 

products along the supply chain. Consequently, highly reliable analytical solutions were developed, 

and it will depend on the final user to decide which method is more suitable for the intended 

application. Finally, rapid methods for the detection of patulin-producing fungi were investigated, 

including a qPCR assay and later on a RPA assay coupled with naked-eye SYBR Green detection by 

emission of fluorescence. Both assays, were less sensitive compared to the panfungal assays and 

between the two the qPCR was slightly more sensitive compared to the RPA-SG. Differentiation of 

viable and non-viable cells was successfully achieved by adding PMA before the extraction of the 

DNA. The addition of the PMA in the selected concentration was able to inhibit amplification 

originating from dead cells without causing any toxic effect in the live cells.  
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1 INTRODUCTION 

Food loss refers to the decrease in the quantity or quality of food resulting from decisions and 

actions by food suppliers in the chain, excluding retailers, food service providers and consumers while 

food waste refers to the decrease in the quantity or quality of food resulting from decisions and actions 

by retailers, food service providers and consumers [1]. According to the European Commission (EC), 

88 million tons of food waste are generated annually in the EU, with an estimated cost of 143 billion 

euros [2]. According to the Food and Agriculture Organization (FAO), globally 1/3 of all the food 

produced results in waste or losses [3]. Furthermore, according to FAO’s Food Loss Index (FLI), 14 

% of the food produced is lost between post-harvest up to, but excluding, retail [1]. Food waste does 

not only have an economical and ethical impact, but also leads to depletion of natural resources. 

Consequently, based on the 2030 Agenda for Sustainable Development, the EU has committed to 

reduce food losses along production and supply chain, and to halve per capita food waste at the retail 

and consumer level by 2030 [4]. As a result, identification of measures to prevent food losses in the 

primary steps of supply chain but also later on preventing food waste in the retail and consumer level 

is of utter importance.  

Food loss can be the result of insect or rodent damage, microbiological, physical and/ or chemical 

spoilage, losses during transportation and/ or further processing, and end of shelf-life. 

Microbiological spoilage plays an important role in food spoilage, and in particular, fungi are the 

most important microorganisms implicated in food losses. Contamination of food can occur in the 

pre-harvest stage from plants, animals, soil and water. Soil can be a source of contamination since it 

contains a large number of fungi, bacteria, etc. The contamination from soil can be direct during 

production, and harvesting, or indirect through deposition of wind-borne mould spores [5]. Regarding 

post-harvest contamination, a variety of raw materials and food have a structure integrity that protects 

most of their mass from microorganisms [6]. For example, the rind, or skin, of fruits and vegetables 

protects their interior from microbial contamination. However, upon processing (cutting, trimming, 

crushing, etc.) the interior of the fruit can get contaminated from the microorganisms that have been 

on the surface of the fruit.  

Furthermore, contamination can occur during human handling. Dirty hands/ gloves, talking, 

sneezing/ coughing can be sources of contamination. In addition, cross-contamination can occur when 

food comes in contact with raw materials, and dirty equipment or utensils [5]. Finally, in a given food 

type, based on parameters, such as the pH, water activity (aw) and storage temperature, only one or 

few microorganisms will manage to grow and cause spoilage [7]. Microbial spoilage occurs due to 

the biochemical activity of the microorganisms present in the food; frequently resulting in changes in 

their appearance, taste, smell and texture [5].  

Fungi under favourable conditions can also produce secondary metabolites that are known as 

mycotoxins and can have an impact on human and animal health. In addition, they can result in 

economic losses along the supply chain. Consequently, the relevant authorities worldwide have set 

limits for the different mycotoxins in foodstuffs and the timely detection of mycotoxin-producing 

fungi is very important.   
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1.1 FRUITS, BY-PRODUCTS AND SPOILAGE 

1.1.1 Whole and fresh cut fruits 

Over the last decades, consumption of fruits has risen due to the increased awareness in healthy 

eating habits, the increased availability of fresh produce, and the fast development of fresh-cut and 

ready-to-eat (RTE) products. According to the International Fresh-cut Product Association [8], fresh-

cut fruit is defined as any fruit that has been physically altered from its original form but still remains 

in a fresh state. These type of products offer to consumers a RTE, convenient, nutritious and fresh-

like alternative to whole fruits [5].  

Contamination of whole fruits can occur in all the different stages of the supply chain including: 

cultivation, pre-harvesting and post-harvesting handling, storage and distribution. However, the 

majority of microorganisms that are found on the surface of whole fruits are soil inhabitants that are 

spread to fruits through airborne spores, irrigation water and soil particles. Fruits contain high 

amounts of sugars and other nutrients. This composition, combined with the high water activity that 

fruits possess, make them suitable for microbial growth. However, because of their low pH, bacterial 

spoilage in this food category is limited since bacteria typically grow at neutral pH [9]. Thus, spoilage 

is mainly associated with three acid-tolerant groups, namely: aciduric bacteria, moulds and yeasts. In 

particular, yeasts and moulds are the main type of spoilage microorganisms found in fresh fruits [10]. 

Yeasts of the genera Saccharomyces, Candida, Torulopsis and Hansenula have been isolated from 

fruits, and are associated with fruit fermentation, resulting in off-flavour and off-odour. 

Contamination and spoilage of fruits from moulds is mainly related with species belonging to the 

class of Ascomycetes. In particular, species of Penicillium, Botrytis, Alternaria, Fusarium, 

Aspergillus, Cladosporium, Phytophthora, Phoma, Trichoderma, Rhizopus, Aureobasidium, and 

Colletotrichum are commonly culprits of fruit spoilage. Symptoms include visible growth, rots (blue 

mould rot, gray mould rot, brown mould rot and botrytis rot) and discoloration [5]. A detailed list of 

the fungi affecting the different categories of fruits can be found in Table 1.1.  

Regarding fresh-cut RTE fruits, contamination is often the result of the existing microorganisms 

on the surface of whole fruits. Other sources of contamination and subsequently spoilage include 

contact of the fruits with processing equipment and improper handling from workers. As a result, the 

same fungi that are encountered in whole fruits, can be also found in the fresh-cut ones. Furthermore, 

other yeasts related to quality problems including Rhodotorula mucilaginosa, R. glutinis, 

Zygosacchramocyes baillii, Z. rouxii and Z. bisporus have been isolated from a variety of fresh-cut 

fruits [5].  

 

Table 1.1. Frequently encountered fungi in different fruit categories 

Fruit Common fungi 

Citrus fruits 

Penicillium italicum (blue rot), P. digitatum (green rot), P. ulaiense (whisker 
mould) 

Geotrichum candidum (sour rot) 
Alternaria spp. belonging to A. alternata clade* (black rot) 

Cladosporium sphaerospermum (soft rot) 
Colletotrichum gloeosporioides (Anthracnose) 

Pome fruits 
P. expansum*, P. solitum (blue rot) 

Botrytis cinerea (grey rot) 
Rhizopus stolonifer (transit rot) 

Stone fruits 
Monilinia fructicola, M. fructigena (brown rot) 

R. stolonifer, R. oryzae (transit rot) 
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P. expansum* (blue rot) 
Trichothecium spp.*(pink rot) 

Alternaria spp.* (black/brown spots) 

Tomatoes and other 
solanaceous fruits 

A. alternata *(black rot), A. solani (early blight rot) 
B. cinerea (grey rot) 

G. candidum (sour rot) 
R. stolonifer (watery rot) 

Melons and other Cucurbits 

C. lagenarium (anthracnose) 
A. alternata* (black rot) 

Cladosporium spp.* 
Fusarium spp.* 

Grapes 

B. cinerea (grey rot) 
Penicillium spp.* 

Aspergillus niger*, A. Carbonarius* 
A. alternata* 

Berries 
B. cinerea (grey rot) 

R. stolonifer (leaking rot) 
Mucor piriformis (leaking rot) 

Figs 

A. niger* (black rot) 
Fusarium spp.* (soft rot)  

A. alternata* 
Hanseniospora uvarum (souring) 

Tropical fruit 

Colletotrichum musae, C. gloeosporioides (anthracnose) 
Fusarium spp.* (brown rot) 

A. alternata* 
R. oryzae 

The information of this table was retrieved from [11,12]. *Fungi that have been identified as mycotoxin producers. 

 

1.1.2 Fruit juices 

Fruit juices can be divided in two categories: chilled and ambient fruit juices. The former refers 

to a diverse category of products with juice contents between 20 to 100 %. The latter refers to products 

that have been pasteurized at temperatures of about 80- 90 °C and have been aseptically filled in 

bottles for storage at ambient temperature [5].  

The main spoilage microflora of chilled fruit juices includes fermentative yeasts, moulds and few 

aciduric bacteria as a result of the low pH, reduced O2 content and low protein and amino nitrogen 

content. The most dangerous microorganisms for this category are those with the ability to grow at 

temperatures of, or below, 5- 7 °C. The main source of contamination is assumed to be the fruits that 

are used for the juice production. Fruits can be contaminated with a variety of spoilage 

microorganisms at various stages such as cultivation, harvesting, handling, transportation, and 

storage. Nevertheless, soil appears to be the main source of microorganisms with a huge variety of 

soil-borne yeasts being able to contaminate fruits during growing and harvesting [5]. Saccharomyces, 

Deberomyces, Hansenula, Pichia, and Kluyveromyces are the main genera of concern. Results of 

spoilage from fermentative yeasts include off-flavours, turbidity, sliminess and bloated packages. 

Regarding contamination from moulds the most predominant species include Penicillium spp., 

Cladosporium spp., Aspergillus niger and A. flavus, Botrytis cinerea, and Aureobasidium pullulans 

[13,14]. However, these fungi are readily destroyed during heat treatment; hence their presence in the 

final product is the outcome of post-process contamination due to bad hygienic conditions, 

environmental air/ dust, and contaminated material [5]. Spoilage defects due to moulds, include off-

flavours, visible mycelial fibres or mould “mats” in the surface of the juice or in the interior of the 

packaging [10,14].  
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Ambient juices are also susceptible to spoilage by fermentative yeasts and environmental moulds 

that can enter during packaging or due to the loss of aseptic conditions. In addition, ambient juices 

can be spoiled by heat-resistant moulds and alicyclobacilli. Since these microorganisms do not 

produce CO2 that could deform the bottle, spoilage is not apparent immediately and usually results in 

flavour, smell and visual defects.  The principal heat-resistant moulds related to fruit juice spoilage 

include Byssochlamys fulva, Neosartorya fischeri, Talaromyces macrosporus and Eupenicillium 

brefeldianum. These microorganisms can survive juice pasteurization thanks to their ability to 

produce heat-resistant ascospores [5]. Since the source of the heat-resistant fungi is the soil, juices of 

pineapple, berries and passionfruit are more susceptible due to the contact of the fruit with the soil 

before or after harvesting [15].  

1.1.3 Dried fruits 

The process of making dried fruits includes an initial preservation step with SO2 that inhibits 

microbial growth even during long storage. However, if the levels of SO2 fall below 1 g/ kg the 

product is susceptible to spoilage by xerophilic yeasts like Z. rouxii and xerophilic moulds like 

Eurotium spp. and Xeromyces bisporus [11]. In addition, species belonging to Aspergillus section 

Nigri that are responsible for ochratoxin A production, including A. niger, A. ochraceus and A. 

carbonarius, have been isolated from a variety of dried vine fruits and figs [16–18]. Furthermore, 

species belonging to Aspergillus section Flavi, the main aflatoxin producers, have been also isolated 

[16,19]. Finally, in glazed fruits, like glazed pineapple slices, the SO2 is added in the syrup that the 

fruit is infused in varying concentrations. In this case, Schizosaccharomyces pombe can be present 

that has the ability to resist the SO2 and the low aw and thus grow during the infusion process [11].  

1.1.4 Jams 

Jams and canned fruits, are traditionally prepared from fruits and sucrose followed by boiling or 

evaporation in order to reach a aw of 0.75 or lower. Subsequently, they are hot filled into jars rendering 

them microbiologically stable. Spoilage incidents are often related with inadequate heating treatments 

that result in products with aw between 0.80 and 0.82 that can support mould growth. Fungi related 

to the spoilage of jams most frequently include Eurotium spp. and Aspergillus restrictus; however, 

xerophilic Penicilia, in particular P. corylophilum, have also been isolated from this type of samples. 

Even though jams are hot filled, and the yeast Z. rouxii should not pose a risk, incidents of spoilage 

from this yeast have been reported and have been associated with contamination after opening of the 

product [11].  

1.1.5 Fruit concentrates 

Fruit concentrates are fruit juices with a Brix of 65-80°, low pH and aw, that have been 

pasteurized, evaporated and hot filled. Hence, these type of products are also microbiologically stable. 

During the pasteurization process all the microorganisms are killed with the exception of heat-

resistant fungi; however, this group of fungi cannot grow due to the low aw that concentrates possess. 

In some instances, Z. rouxii a xerophilic yeast, can contaminate, and spoil, fruit concentrates through 

the filling system. This yeast, is able to grow in foods with aw as low as 0.62, and produce CO2 leading 

to swollen and exploded containers [11].  
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1.2 MICROORGANISMS 

In this section information is given about some of the most important fungal species (filamentous 

and unicellular fungi) related to food spoilage and mycotoxin production, with a special focus on 

those associated to fruits, and their by-products. 

1.2.1 Filamentous fungi (moulds) 

Moulds can grow in a wide range of temperatures and water activities, with specific genera being 

able to grow in products with a aw as low as 0.62 and as high as nearly 1.0. They can grow in a pH 

range between 2 to 11, but they prefer acidic environments. They are obligate aerobes, with oxidative 

metabolism and they are the most common food spoilage microorganisms throughout the supply 

chain. Representative genera of food spoilage include Penicillium, Aspergillus, Alternaria, Mucor, 

Fusarium, Byssochlamys, Cladosporium, Rhizopus, Geotricum, and Eurotium [5]. 

1.2.1.1 Genus Penicillium 

Penicillium species are ubiquitous, opportunistic saprophytic fungi. Some species like P. 

expansum, P. digitatum and P. italicum are fruit pathogens, and a few can grow at aw below 0.80, for 

example P. brevicompactum, P. chrysogenum and P. implicatum. Furthermore, species like P. 

roqueforti are resistant to preservatives and can grow at low oxygen tension. In addition, many species 

being psychotrophic, meaning that they can grow at low temperatures but have optimal and maximal 

growth temperatures above 15 and 20 °C [20], can cause spoilage even at refrigeration temperatures. 

Species belonging to Penicillium subgenus Penicillium are the most important in terms of food 

spoilage. They can grow at low temperatures and aw, and as a result they can be found in a variety of 

food products. Related to mycotoxin production, all of the species belonging to subgenus Penicillium, 

with the only exception of the fruit-rotting species, P. italicum, P. digitatum, P. solitum and P. 

ulaiense, are considered mycotoxin producers [11].  

P. digitatum is the main cause of rot in citrus fruits [21]; however it has also been isolated from 

nuts, cereal crops, meat [22], and olives [23]. It is universally distributed but has a preference for 

warmer climates [24]. P. digitatum can grow in temperatures between 6-7 °C up to 37 °C [24]. 

Regarding the aw, the minimum for growth is 0.90, 0.95 and 0.99 aw at 25 °C, 30 °C and 5 °C, 

respectively. In addition, at 37 °C or at 0.87 aw no germination occurs [25,26].  

P. expansum is the main cause of rot in pomaceous fruits (apples and pears) but has been isolated 

from a variety of other fruits including tomatoes, strawberries, mangoes and grapes [21,22]. 

Frequently, it is also associated with spoilage of meat, and meat products [22,27]. Furthermore, even 

though less common, it has been encountered in vegetables, cereals [28], nuts [22,28] and cheese 

[29]. P. expansum can produce the mycotoxins patulin and citrinin [30,31]. This species is a 

psychrophile meaning that it can grow at temperatures as low as -6 °C [32]. It has been reported that 

the fungus can grow quite well at 0 °C [33]; however the optimal growth temperature is set at 25 °C 

[34]. The maximum temperature for growth is near 35 °C [34]. Regarding the aw, the minimum 

requirement for germination is at 0.82-0.83 [26,35]. In addition, P. expansum can produce patulin in 

temperatures ranging between 0 to 25 °C at least, with the optimal temperature been 25 °C [36]. The 

minimum aw value for patulin production is set at 0.95 at 25 °C [37].  

P. griseofulvum is mainly encountered in cereals, bakery products and nuts [22,28]. Even though, 

it can create lesions when inoculated in pomaceous fruits, it is not considered as a common spoilage 
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fungi for this category [38]. P. griseofulvum can produce different mycotoxins, namely patulin, 

cyclopiazonic acid, roquefortin C and griseofulvin [39]. It can grow in a range of temperatures 

between 4 and 35 °C, with 23 °C considered to be the optimal one. Regarding the minimum aw 

requirements, 0.81 and 0.83 are the minimum values for germination at 23 °C and at 16 or 30 °C, 

respectively [35].  

P. italicum is also an important cause of spoilage in citrus fruits [21]. In few occasions it has also 

been isolated from other fruits [22], fruit juices [40], cheese, and meat and by-products [41,42]. The 

fungus can grow at temperatures ranging from -3 to 32-34 °C, with an optimum around 22-24 °C. It 

can also grow in a wide range of pH values, in particular from 1.6 to 9.8 [34]. Finally, 0.87 is the 

minimum aw for growth at 10 and 25 °C [25,34].  

P. solitum is a common spoilage agent of pomaceous fruits [38,43] and it has also been isolated 

from cheeses [44,45] and sausages [41]. Due to the fact that this species was only recently recognised, 

there is a lack of data related to its physiology; however since it belongs to the Penicillium subgenus 

Penicillium, it can grow at low temperatures and aw values but not at 37 °C [11].  

P. verrucosum, is almost always encountered in cool temperate zones and in cereals. It is endemic 

in European and Canadian cereals, and has also been isolated from cheese. P. verrucosum, is the main 

source of ochratoxin A in this environment and food category. Additionally, some strains can also 

produce citrinin. Regarding growth requirements, between 0 and 31 °C growth can occur, with an 

optimum set at 20 °C. Also, it can grow in a wide pH range from 2.1 to 10.0 at least. Finally, the 

minimum aw value for germination and growth is around 0.80 [46–49].  

1.2.1.2 Genus Aspergillus 

Aspergillus species are one of the most frequently encountered fungi in the world. They are of 

great economic importance, on the positive side due to their use for production of enzymes, synthesis 

of chemicals and biosynthetic transformation, but on the negative side due to their ability to spoil 

foods and produce aflatoxins [11].  

A. carbonarius is typically found in grapes and vineyard environment. It has been isolated from 

dried vine fruits and figs [17,50,51], coffee beans [52,53] but also from other food products [54,55]. 

A. carbonarius can produce ochratoxin A and it is considered the main producer of this mycotoxin in 

grapes and by-products [50,56]. Since the drying of grapes for production of dried vine fruits occurs 

under the sun with no preservatives, Aspergillus can continue to grow and produce high levels of the 

toxin [57,58]. Also regarding the production of ochratoxin A in coffee beans, the contamination 

typically occurs post-harvest and the toxin can be introduced as a consequence of inadequate drying 

of the beans [52].  Regarding the physiology of the fungus, it can grow in a temperature range between 

10 to 41 °C, with an optimum near 30 ° C. Furthermore, the optimum aw for growth is between 0.96-

0.98 and the minimum is set at 0.85 at 25-30 °C [59–63]. Finally, A. carbonarius can grow in a wide 

range of pH values between 2 to 10 and produce ochratoxin A [64]. The optimal conditions for 

ochratoxin A production are, cool temperatures around 15 °C, and 0.95-0.97 aw or 20 °C and 0.98-

0.99 aw. Above 35 °C, or lower than 0.92 aw, the mycotoxin cannot be produced [61–63,65,66].  

A. flavus is a ubiquitous fungus that has been encountered in the majority of foodstuffs. It has a 

preference for tropical climates, and is mainly isolated from nuts and cereals [11]. Maize, and by-

products, are of particular concern [22,67,68]; however it has been reported commonly in other 

cereals and products thereof [22,69–71]. In addition, it can be found in green coffee beans and spices 

[53,72]. Other sources of A. flavus include beans [73], processed meats [22] and dairy products [29]. 
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Regarding fruits and vegetables, it can spoil a variety of them including citrus, tomatoes, pineapples 

and peaches among other, but it is not of great importance compared to other fungal species [21,74]. 

Furthermore, A. flavus is the main producer of aflatoxins. Some strains of the fungus can also produce 

cyclopiazonic acid [11]. Regarding its pathogenicity, A. flavus can cause human allergic bronchial 

aspergillosis and pulmonary infections in immunocompromised patients. In addition, it has been 

reported to cause ear infections [75].  A. flavus can grow in temperatures ranging from 10-12 °C up 

to 43-48 °C, with an optimum around 33 °C [22]. In addition, it can grow in a wide range of pH from 

2.1 to 11.2 with an optimal growth reported in the range of 3.4 to 10 and a peak near 7.5. The pH 

range of growth was assessed in three different temperatures namely 25, 30 and 37 °C [46,76]. 

Regarding the minimum aw values for growth, different values have been reported. For example, Pitt 

& Hocking [77] reported a minimum of 0.84 aw at 25 °C while Pitt & Miscamble [78] reported a aw 

of 0.82 at the same temperature. The latter, also reported minimum values of 0.80 and 0.81 aw at 37 

and 30 °C, respectively. Finally, regarding production of aflatoxins it appears that it can occur in a 

range of temperatures between 13-37 °C and above 0.82 aw. Optimal conditions are regarded 

temperatures between 16 to 31 °C and 0.95-0.99 aw [79].  

A. niger is considered a ubiquitous fungus, like A. flavus, and it has been isolated from a variety 

of foodstuffs, mainly in warmer climates [11]. It is considered the most important Aspergillus spp. 

that can cause post-harvest decay in a variety of fresh fruits including apples, pears, figs, grapes and 

strawberries among other [21,22]. In addition, it frequently occurs in nuts [80,81], cereals [28,70,82], 

meat products [83,84] and sun dried products like dried vine fruits [17,85], dried, cured and smoked 

fish, cocoa beans [22] and spices [72]. Less frequent sources include vegetables [74,86,87] and 

cheeses that can cause thread lesions [45]. Regarding mycotoxins production, A. niger can produce 

ochratoxin A and fumonisin B2 [59,88,89].Regarding the growth conditions, A. niger is xerophile 

that can germinate in water activity as low as 0.77 aw at 37 °C [90]. In addition, it can grow at low 

pH such as 2.0 when the water activity is high [91]. Finally, the growth temperatures range from 6-8 

°C up to 45-47 °C, with an optimum around 35-37 °C [34,63]. However, Palacios-Cabrera et al. [92] 

reported no growth in three different media at 8 °C.  

A. ochraceus is considered a great source of contamination for dried and stored products. In 

particular, it is frequently encountered in green coffee beans [52,93,94] and nuts [22,28]. Other 

sources, include pepper [95] and dried fruits [58] and less frequently cereals [71,82] and cheeses 

[22,96]. A. ochraceus can produce ochratoxin A as well as B and C, which are less toxic. However, 

it was discovered that only a few strains of this species are toxigenic, and that the main ochratoxin A 

producers are the closely related species A. westerdijkiae and A. steynii [97–99]. In addition, A. 

westerdijkiae, can also produce other toxins like penicillic acid, xanthomegnin, viomellein, and 

vioxanthin and consequently is of great importance in foods like coffee beans, cereals and beverages 

[11]. In addition, A. ochraceus also produces penicillic acid in temperatures ranging from 10 to 35 

°C and minimum aw of 0.81 [79,99].  A. ochraceus can grow optimally at 37 °C, with a maximum of 

40 °C [11]. Optimal aw, is reported between 0.95 to 0.99, with a minimum at 0.80 and 0.85 aw at 20 

or 30 °C and at 10 °C, respectively. Additionally, no germination occurs at 0.75 aw [79,100–102]. The 

pH range for fungal growth is set between 3 and 10 [46]. Finally, regarding the optimal conditions 

for ochratoxin A production, in barley grains it is found to be 0.98-0.99 aw and 25-30 °C. Similar 

conditions have been reported in coffee beans with the highest yield occurring at 20 °C.  The lowest 

aw for ochratoxin A production in coffee beans is set at 0.85; however no mycotoxin production 

occurs at this condition neither in barley grains, nor in grapes [100,103–105]. The pH range for 

ochratoxin production is from 5.5 to 8.5 [106].  



FOTEINI ROUMANI 

10 

 

A. parasiticus is considered a tropical and subtropical species and the main food source is peanuts 

that according to Pitt & Hocking [11] the species is considered to be endemic. Other nuts have also 

been reported to be contaminated by A. parasiticus [22]. Less frequent sources include cereal grains 

[107], meat products [108], herbs and spices [22,72]. Along with A. flavus are considered the main 

aflatoxin producers, with only a few strains of A. parasiticus been non-toxigenic [109,110]. 

Regarding its physiology, growth is reported in the range from 12 to 42 °C, with an optimum at 32 

°C [79]. Pitt & Miscamble [78] reported similar minimum aw values to A. flavus. The optimal pH 

range for growth is considered to be 3.5 to 8, however growth can occur between pH 2.4 to 10 at 25, 

30 and 37 °C [46]. Final optimal conditions for aflatoxins productions were found to be temperatures 

between 12-40 °C, water activity down to 0.86 aw and pH values in the range of 3 to 8 or higher [79]. 

1.2.1.3 Genus Neosartorya 

In terms of food spoilage, among the different Neosartorya spp., only N. fischeri is of interest to 

the food industry due to the heat resistance of its ascospores. N. fischeri has been isolated mainly 

from heat-treated fruit products like canned strawberries, fruit purees and pasteurised fruit juices. In 

rare occasions, it has also been isolated from non-heat treated or non-processed foods [11,22,111]. It 

has been reported that N. fischeri can produce mycotoxins such as fumitremorgens A and C and 

verruculogen that are highly toxic [112–114]. Ascospores of N. fischeri, along with those of 

Byssochlamys, are considered to be the most heat resistant fungal spores known, with the ascospores 

of N. fischeri being more resistant than those of B. fulva [11].  

1.2.2 Unicellular fungi (yeasts) 

Yeasts are typically mesophilic and they showcase optimal growth at aw above 0.90. They can 

grow in a pH range from 3 to 10. They can be classified into two categories, namely fermentative and 

oxidative yeasts. Fermentative yeasts are the most common spoilage yeasts. They are facultative 

anaerobes that can produce ethanol and CO2 from sugars [5].  Some yeasts species belonging to this 

category are characterized as the most known osmophilic microorganisms with the ability to grow at 

aw as low as 0.60 [115]. Representative genera of this category include Saccharomyces and 

Zygosaccharomyces. Oxidative yeasts, that appear to be less common, can grow on fermented foods 

and metabolize alcohol and organic acids. These yeasts seem to possess the morphological 

characteristics of yeasts but the metabolic characteristics of moulds. Representative genera include 

Candida, Pichia, Debaryomyces and Mycoderma [5]. According to Pitt & Hocking [11], around 10 

species of yeasts are mainly responsible for spoilage of food products. Below the most relevant for 

the spoilage of fruits and by-products will be introduced.  

Candida krusei has been isolated from citrus and other fruit products, figs, grapes, fermenting 

mango, olives and soft drinks [22,116–118]. In addition, it has been found in other food products 

including dairy [119] and meat products [120]. C. krusei grows on the surface of the foods by forming 

films. It can grow at temperatures ranging from 8 to 47 °C and in very low pH [121,122]. Furthermore, 

it is quite resistant towards preservatives [123]. 

Debaryomyces hanseii has been isolated from a variety of fruits, fruit juices, soft drinks and 

canned fruits [22,115,116,124]. It has also been found in high numbers in yoghurts [125]. The yeast 

can grow at temperatures ranging from 2 to 33 °C however, the maximum temperature can be as high 

as 38 °C in products with 60 % w/w glucose. The optimum growth temperature is 24-25 °C in 10% 

w/w glucose or 27-30 °C in 60 % w/w glucose [126,127]. In addition, it can grow in a pH range from 

2.0-2.5 up to at least 8.0 at 25 °C [128].  
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Pichia anomala has been reported to cause spoilage to fruits, fruit juices and beverages, wine 

and beer, meat, dairy products and low aw products [116,129]. Furthermore, it has been isolated from 

yoghurts with fruit purees or fruit flavorings [11]. According to Deak & Bechaut [116], it is the third 

most common foodborne yeast after S. cerevisiae and D. hanseii. In addition, it can cause infections 

in immunocompromised and paediatric patients [75,130]. Regarding its physiology, it can grow in 

pH as low as 3.0 at 37 °C or 2.0 at 25 °C, while the highest pH value for growth is set at 12.4 [131]. 

It is also considered relatively resistant to preservatives.  

Rhodotorula mucilaginosa is found in fresh fruits and vegetables but also in heat-treated products 

like apple sauce and strawberries [11,132–134]. It can grow at temperatures between 0.5-5 up to 35 

°C and the minimum aw for growth is set at 0.92 [11,122]. Finally, the minimum pH for growth is 

reported to be around 2.2 in the presence of HCl or organic acids  [121].  

Saccharomyces cerevisiae is a yeast widely spread in foods since it occurs naturally on the leaves 

of fruits and in nectars and exudates. It has been reported to cause spoilage in soft drinks, fruit juices, 

concentrates and purees [22,116,135,136]. The minimum growth temperature is set at 4 °C in the 

presence of 10 % glucose, or at 13 °C in 50 % glucose. The maximum growth temperature is between 

38-39 °C with an optimal around 33-35 °C with10-30 % glucose [127]. Finally, growth of the yeast 

was reported in aw as low as 0.89 in glucose media at neutral pH [137].  

Zygosaccharomyces bailii has been reported to cause spoilage in products like fruit juices and 

concentrates [22,138,139], fruit syrups [132], sauces [140,141] and olives [142]. Since it is highly 

resistant to weak acid preservatives, like benzoic, sorbic, acetic, propionic acids and SO2, the food 

products must be packed sterile or pasteurised in order to avoid spoilage by this yeast. The minimum 

temperature for growth is 6.5 °C in 10 and 30 % w/w glucose or 13 °C in 60 % glucose. Maximum 

growth temperatures were reported to be 40 °C in 60 % w/w glucose or 37 °C in the presence of lower 

glucose concentrations. Optimal temperatures range from 30-32 °C in 10% w/w glucose or 34-36 °C 

in 60% w/w glucose [127]. Furthermore, Z. bailii is a xerophile yeast with the ability to grow in 

products with water activity as low as 0.80 aw at 25 °C. However, at 30 °C the minimum aw was 

reported to be 0.86 in fructose [143,144].  

Z. rouxii can grow in products with very low water activity and as a result it has been isolated 

from products like fruit concentrates, glazed fruits, honey and syrups, and sauces [140,145–147]. It 

is considered to be the second most xerophilic organism known with the ability to grow in water 

activities as low as 0.62 aw in fructose solutions, or 0.65 aw in sucrose/glycerol [143,145]. The optimal 

growth temperature varies from 24 °C in 10 % w/w glucose (0.99 aw) to around 33 °C in 60 % w/w 

glucose (0.87 aw). Similarly, maximum growth temperatures range from 37 °C in 10 % glucose and 

42 °C in 60 % glucose. The minimum temperature was reported to be 4 °C in 10 % glucose or 7 °C 

in 60 % glucose [127].  

1.3 MYCOTOXINS 

Mycotoxins are secondary metabolites that are produced by several fungi under favourable 

conditions, and can cause adverse health effects to humans and animals. Favourable conditions for 

mycotoxin production include high temperatures, and humidity, as well as poor hygiene during 

transportation and storage. Mycotoxicoses, the diseases caused by the consumption of mycotoxins, 

can be acute or chronic. Chronic toxic effects can lead, amongst others, to cancer and 

immunosuppression. Up to date, approximately 400 different mycotoxins have been identified; 

however, the most frequently encountered in foods include: aflatoxins, ochratoxin A (OTA), patulin, 

Fusarium toxins (fumonisins, zearalenone, trichothecenes), ergot alkaloids, and Alternaria toxins 
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amongst others. The fungi that produce mycotoxins can be classified in two categories, namely field 

fungi and storage fungi. Field fungi contaminate the crops before harvest including plant pathogens, 

fungi that grow on stressed plants, and fungi that colonize the crops before harvest and contaminate 

after harvest. On the other hand, storage fungi contaminate the crops after harvest [148,149].   

Apart from their importance for public health, mycotoxins can impact world trade and lead to 

economic losses. In particular, according to the annual report of 2020 published by the Rapid Alert 

System for Food and Feed (RASFF), mycotoxins were classified as the 2nd most frequently reported 

hazard for food products originating from non-member countries with a total of 400 notifications. 

Aflatoxins were the most reported mycotoxins and “nuts, nut products and seeds”, “fruits and 

vegetables”, and “herbs and spices” were the most affected food categories. Pesticide residues were 

at the top of the list due to the ethylene oxide incident that had a great impact on the reported 

notifications [150]. In addition, according to Eskola et al. [151], 60-80 % of the grains worldwide is 

contaminated by mycotoxins. For all the above mentioned reasons the European Food Safety 

Authority (EFSA) [152], the World Health Organisation (WHO) and the Food and Drug 

Administration (FDA) have set maximum limits for mycotoxins in foodstuff.  

1.3.1 Patulin 

Patulin was originally discovered in the 1940’s as an antibiotic agent against Gram-positive and 

Gram-negative bacteria. Furthermore, it can act as a phytotoxin and is active against pathogenic fungi. 

Its use has also been suggested for treating the common cold, and as an antiviral agent. However, due 

to its toxicity, clinical trials on humans were paused [153,154]. Patulin (molecular formula C7H6O4) 

is a crystalline, water-soluble and colourless compound that belongs to the group of toxic lactones 

[155]. The main fungal species that produce patulin belong to the genera of Penicillium, Aspergillus, 

Paecilomyces and Byssochlamys, being P. expansum the main patulin-producing mould [156].  It is 

frequently associated with fruits and fruit products, in particular apples and their by-products; 

however, it has been isolated from pears, figs, grapes and tomatoes. In addition, patulin has been 

reported in vegetables like bell peppers, grains including wheat, rice and corn and in some cheeses 

[149,157].  

Different processing steps (clarification/filtration, heat treatment, fermentation) and reduction 

techniques (biological control agents, chemical additives, physical treatment) have been applied with 

the overall goal of eliminating patulin. However, with these techniques elimination of patulin was not 

complete. As a result, prevention for the presence of patulin-producing fungi is better [157].  

Patulin toxicity can be divided into acute and sub-acute toxicity, and chronic toxicity. Symptoms 

of acute toxicity include gastrointestinal (GI) symptoms like nausea, vomiting and ulcers. Sub-acute 

toxicity in rats led in weight loss, GI disturbances and inhibition of several enzymes [149]. Related 

to long-term exposure to patulin, in vitro and in vivo studies in animals have shown that this 

mycotoxin can lead to carcinogenicity, immunotoxicity, teratogenicity, genotoxicity and 

embryogenicity [155]. However, due to inadequate data the International Agency for Research on 

Cancer (IARC) has classified patulin as a Group 3 carcinogen, meaning that it cannot be classified 

towards its carcinogenicity to humans [158]. Maximum patulin levels have been established by EFSA 

for apples and by-products, fruit juices and baby foods (Table 1.2) [152]. Furthermore, the WHO 

[159] and the FDA [160] have set limits of 50 µg/ L for patulin in foodstuff.  
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The biosynthetic pathway of patulin production has been described and consists of about 10 steps as 

suggested by several biochemical studies and by the identification of several mutants that are 

blocked during the biosynthesis of patulin (Figure 1.1) [156].  

 

 

 

Figure 1.1. Biosynthetic pathway of patulin production (Image used with license from Creative Commons Attribution 
License 3.0 Unported [156]). 

1.3.2 Aflatoxins 

Aflatoxins were initially isolated in the 1960´s, they are the most studied mycotoxins and are 

produced by species belonging to the genus Aspergillus section Flavi [161,162]. There are six main 

aflatoxins, namely AFB1, AFB2, AFG1, AFG2, AFM1 and AFM2, which are dihydrofuran or 

tetrahydrofurano moieties fused to a coumarin ring. Like many other heterocyclic compounds, 

aflatoxins have fluorescence properties. In particular, AFB1 and AFB2, exhibit blue fluorescence 

under UV, while AFG1 and AFG2 fluoresce green. Hence, the letters B and G. Furthermore, AFM1 

and AFM2 which are metabolites in milk (hence the letter M) also fluoresce blue [162,163]. The main 

aflatoxin-producing fungi are A. flavus and A. parasiticus which are found to be pathogenic to both 

humans and animals [148]. Other species in this section, like A. nomius, A. pseudotamarii and A. 
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bombycis, have also been identified as aflatoxin producers [164]. A. flavus mainly produces AFB1 

(and its metabolite AFM1) and AFB2, while A. parasiticus can produce AFB1, AFB2, AFG1 and AFG2 

[165]. 

Aflatoxins are frequently associated with cereal crops, where pre-harvest contamination can 

occur in temperate and tropical regions. Related to fruits, aflatoxins can grow in figs, dates and citrus 

fruits [166,167]. In addition to these, aflatoxin contamination has also been reported in spices [168] 

and nuts [169]. Factors contributing to fungal invasion and aflatoxin production include dry 

environmental conditions, insect damage and timing of irrigation. Post-harvest contamination is 

facilitated when storage conditions are optimal for production of the mycotoxin. Aflatoxins are very 

stable compounds and can be quite resistant against processing techniques like roasting, extrusion, 

cooking and baking. As a result, they can be a problem in foods like roasted nuts and baked goods 

[161].  

Aflatoxins have been characterized as very potent carcinogens in all the tested animals as well 

as in some organs with the liver been the main target. In addition, they are genotoxic compounds and 

according to IARC the main aflatoxins (AFB1, AFB2, AFG1 and AFG2) are classified as Group 1 

carcinogens, while AFM1 is classified as Group 2B meaning that is a possible carcinogen for humans 

[158,170]. Variations are observed in the toxicity of the different aflatoxins [148]. In particular, AFB1 

is the most toxic aflatoxin in both acute and chronic toxicity and has been characterised as both 

carcinogenic and cytotoxic, while AFM1 can be equally hepatotoxic as AFB1 but not carcinogenic 

[162]. Aflatoxicosis, the disease caused by aflatoxins, is an important health problem in poor areas 

with bad hygienic conditions and drought [171]. Symptoms of acute aflatoxicosis include vomiting, 

abdominal pain and pulmonary or cerebral oedemas. Acute toxicity is more common in animals since 

highly contaminated feed is more frequent. Symptoms of chronic toxicity to humans include liver 

cancer, problems with the reproductive and the immune system, interstitial fibrosis, and 

encephalopathy [161]. The EFSA has established maximum levels of aflatoxins (AFB1, AFM1 and 

sum of all) in foodstuff which can be found in Table 1.2 [152]. In the US, the FDA has described 

aflatoxins as “adulterants”, and has set a limit of 20 ppb in food and feed, and 0.5 ppb in milk [162].  

1.3.3 Ochratoxin A (OTA) 

Ochratoxin A (OTA), originally isolated by A. ochraceus in 1965, is a phenylalanine derivative 

of a substituted isocoumarin and is mainly produced by species belonging to Aspergillus and 

Penicillium genera. The main producers are species belonging to Aspergillus section Circumdati, 

Aspergillus section Nigri, P. verrucosum and P. nordicum [161]. Aspergillus spp. typically produce 

OTA in humid and warm places, whereas Penicillium spp. can produce OTA in temperatures as low 

as 5 °C [148].  

OTA is a very stable compound that can withstand common processing techniques. For example, 

heating for several minutes in temperatures above 250 °C are required to reduce OTA concentration 

[172]. Since removal of the mycotoxin is not feasible from food products, the main strategy of the 

food industry includes the inhibition of the growth of OTA-producing fungi [173]. OTA is mainly 

found in cereals, grapes/ raisins, wine, dried fruits, green coffee and spices. In addition, cocoa beans, 

as raw materials, are susceptible to OTA contamination [148,161]. Penicillium spp. have also been 

associated with production of OTA in fermented meats and cheeses [174].  

Regarding its carcinogenic potency, OTA has been classified by IARC as a Group 2B, meaning 

that there is insufficient evidence for carcinogenicity in humans, but adequate data from studies in 

experimental animals [158].  OTA has been recognized as a potent nephrotoxin since kidneys are the 
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main target organ. In addition, OTA has proved to be teratogenic, genotoxic, mutagenic and 

immunotoxic. Symptoms of acute toxicity include multifocal haemorrhages in many organs and fibrin 

throbin in the spleen [161]. Regarding its chronic effects in humans, OTA has been associated with a 

typical kidney disease in the Balkans, namely Balkan Endemic Nephropathy (BEN). Symptoms of 

BEN typically include anaemia, proteinuria, jaundice, headache, anorexia and uraemia. Nevertheless, 

even though the exposure data of OTA seem to be consistent, they are insufficient to make an 

association with BEN [161,175]. EFSA has established maximum levels of OTA in foodstuffs that 

can be seen in Table 1.2 [152].  

The biosynthetic pathway of OTA has not been completely described even though some have 

been proposed [176].  Huff & Hamilton [177] proposed a biosynthetic pathway for OTA however, 

attending to the most recent results by Harris & Mantle [178] some discrepancies can be observed. In 

particular mellein, a precursor suggested by Huff & Hamilton [177], does not play a role in the 

biosynthesis of OTA, and the ubiquitous ochratoxin B is totally ignored.  
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Table 1.2. Maximum levels allowed for mycotoxins as established by EFSA 

Foodstuffs Maximum levels (µg/ kg) 

 

2.1 
Aflatoxins B1 

Sum of B1, 
B2, G1 & G2 

M1 

2.1.1 Groundnuts to be subjected to sorting, or other physical treatment, before human consumption or use as an ingredient in foodstuffs 8.0 15.0 - 

2.1.2 Nuts to be subjected to sorting, or other physical treatment, before human consumption or use as an ingredient in foodstuffs 5.0 10.0 - 

2.1.3 Groundnuts and nuts and processed products thereof, intended for direct human consumption or as an ingredient in foodstuffs 2.0 4.0 - 

2.1.4 Dried fruits to be subjected to sorting, or other physical treatment, before human consumption or use as an ingredient in foodstuffs 5.0 10.0 - 

2.1.5 Dried fruits and processed products thereof, intended for direct human consumption or as an ingredient in foodstuffs 2.0 4.0 - 

2.1.6 
All cereals and all products derived from cereals, including processed cereal products, with the exception of foodstuffs listed in 
2.1.7, 2.1.10 and 2.1.12 

2.0 4.0 - 

2.1.7 Maize to be subjected to sorting or other physical treatment before human consumption or use as an ingredient in foodstuffs 5.0 10.0 - 

2.1.8 Raw milk, heat-treated milk and milk for the manufacture of milk-based products - - 0.050 

2.1.9 

Following species of spices: 

Capsicum spp. (dried fruits thereof, whole or ground, including chillies, chilli powder, cayenne and paprika) 

Piper spp. (fruits thereof, including white and black pepper) 

Myristica fragrans (nutmeg) 

Zingiber officinale (ginger) 

Curcuma longa (turmeric) 

5.0 10.0 - 

2.1.10 Processed cereal-based foods and baby foods for infants and young children 0.10 - - 

2.1.11 Infant formulae and follow-on formulae, including infant milk and follow-on milk - - 0.025 

2.1.12 Dietary foods for special medical purposes intended specifically for infants 0.10 - 0.025 

2.2 Ochratoxin A  

2.2.1 Unprocessed cereal 5.0 

2.2.2 
All products derived from unprocessed cereals, including processed cereal products and cereals intended for direct human 
consumption with the exception of foodstuffs listed in 2.2.9 and 2.2.10 

3.0 
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2.2.3 Dried vine fruits (currants, raisins and sultanas) 10.0 

2.2.4 Roasted coffee beans and ground roasted coffee, excluding soluble coffee 5.0 

2.2.5 Soluble coffee (instant coffee) 10.0 

2.2.6 Wine (including sparkling wine, excluding liqueur wine and wine with an alcoholic strength of not less than 15 % vol) and fruit wine 2.0 

2.2.7 Aromatised wine, aromatised wine-based drinks and aromatised wine-product cocktails 2.0 

2.2.8 
Grape juice, concentrated grape juice as reconstituted, grape nectar, grape must and concentrated grape must as reconstituted, 
intended for direct human consumption 

2.0 

2.2.9 Processed cereal-based foods and baby foods for infants and young children 0.50 

2.2.10 Dietary foods for special medical purposes intended specifically for infants 0.50 

2.2.11 
Green coffee, dried fruit other than dried vine fruit, beer, cocoa and cocoa products, liqueur wines, meat products, spices and 
liquorice 

- 

2.3 Patulin  

2.3.1 Fruit juices, concentrated fruit juices as reconstituted and fruit nectars 50 

2.3.2 Spirit drinks, cider and other fermented drinks derived from apples or containing apple juice 50 

2.3.3 
Solid apple products, including apple compote, apple puree intended for direct consumption with the exception of foodstuffs listed 
in 2.3.4 and 2.3.5 

25 

2.3.4 
Apple juice and solid apple products, including apple compote and apple puree, for infants and young children and labelled and sold 
as such 

10.0 

2.3.5 Baby foods other than processed cereal-based foods for infants and young children 10.0 

Adapted from COMMISSION REGULATION (EC) No 1881/2006 [152]. 
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1.3.4 Other toxins 

Ergot alkaloids (EAs) are classified as indole alkaloids and they are mainly produced as a toxic 

cocktail in the sclerotia of Claviceps spp., which are well-known pathogens of various grass species. 

Reports of diseases related to ingestion of contaminated cereals, flour and other by-products by these 

mycotoxins are dated back to the ancient years. Claviceps purpurea is the main species encountered 

in grains originating from Europe and a number of EAs including ergotamine, ergometrine, and 

ergosine amongst others are found in its sclerotia. The human disease is called ergotism of St. 

Anthony’s fire and generally two forms exist the gangrenous and the convulsive. The former affects 

the blood supply while the latter one the central nervous system. Nevertheless, ergotism as a human 

disease is eliminated today thanks to the modern methods for grass cleaning. However, it still of great 

concern for animals like cattle, sheep, pigs, and chickens. Symptoms in animals include gangrene, 

abortion, convulsions, suppression of lactation, hypersensitivity and ataxia [161,179].  

Fumonisins are a family of mycotoxins mainly produced from different Fusarium species 

belonging to the Liseola section, with F. verticillioides and F. proliferatum being the main producers. 

Fumonisins belonging to B series (FBs) namely B1, B2 and B3, are the most important ones. 

Fumonisin B1 is the most important toxin due to its toxic potency. F. verticillioides is of a great 

economic importance since it is a corn endophyte that typically does not cause plant disease; however, 

under the appropriate conditions and in the presence of the necessary fungal and plant genotype it can 

cause seedling blight, stalk rot, and ear rot. In addition, even if the fungus is visible present this does 

not mean that the toxins are produced since most of the strains are not capable of producing them. 

Regarding its carcinogenic potency IARC has classified fumonisins as a group 2B, meaning that they 

are probably carcinogenic to humans [161,179].  

Trichothecenes is a family of more than 170 metabolites that are produced from various species 

including Fusarium, Myrothecium, Phomopsis, Stachybotrys, Trichoderma and Trichodermium 

amongst others. Based on their chemical structure they are classified in 4 types (A-D). The most 

important metabolites of type A are HT-2 and T-2 toxins, and for group B is deoxynivalenol (DON). 

Types C and D include trichothecenes of lesser importance. Fumonisins from type A and B are 

typically produced by different Fusarium spp. and in some cases from species of Trichoderma. DON 

is one of the toxins most frequently encountered in grains that upon ingestion can cause nausea, 

vomiting and diarrhoea in farm animals. Even though it less toxic compared to other toxins is of major 

importance due to its high prevalence in cereals like barley, wheat and corn. Furthermore, 

diacroxyscripenol and T-2 are considered to be cytotoxic and immunosuppressive. Acute effects 

include gastrointestinal, dermatological and neurologic symptoms. Finally, they have been associated 

with a human disease called alimentary toxic aleukia that causes inflammation of the skin, vomiting 

and damage to hematopoietic tissues [161,179].  

Zearalenone (ZEN) is a secondary metabolite produced by different Fusarium spp., F. 

graminearum being the main producer of this toxin. All the species associated with ZEN production 

are common contaminants of cereal crops worldwide. Fusarium spp. related with ZEN production 

can also produce other metabolites like α-zearalenol and β-zearalenol. Even though, ZEN is classified 

as a mycotoxin the definition of mycoestrogen would be more accurate since this metabolite is hardly 

toxic, while resembling 17β-estradiol, the basic hormone produced by ovaries in order to allow 

estrogen receptors to bind in mammalian target cells. Among the different zearalenones, α-zearalenol 

exerts the highest estrogenic potential [161,179].  
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Alternaria toxins are structurally divided in three groups namely the dibenzopyrone derivatives, 

the perylene derivatives and the tetramic acid derivatives. From the first group the most known toxins 

are alternariol (AOH), alternariol monomethyl ether (AME) and altenuene (ALT), from the second 

group the altertoxins (ATX-I and II) and from the third group the tenuazonic acid (TeA) and iso-

tenuazonic acid (iso-TeA). Alternaria alternata is considered the most important producer of the 

Alternaria toxins.  Regarding their toxic effects, AOH, AME, TeA and ATX have been found to 

teratogenic and fetotoxic in animals, while AOH and AME have been proved to be mutagenic and 

clastogenic in many in vitro studies [161].  

EFSA has established maximum levels on foodstuffs for DON, ZEN, fumonisins B1 and B2, T-2 

and HT-2 toxins but not for EAs and Alternaria toxins [152]. Since most of the above mentioned 

toxins and their related fungal producers are mainly encountered in cereal crops they remained out of 

the scope of this study. Regarding Alternaria toxins, even though they can contaminate fruits and 

products thereof, they are considered a relatively new group of mycotoxins and as a result up to date 

only a few studies have been focused on the detection of their respective producers.   

1.4 METHODS FOR THE DETECTION OF YEASTS AND MOULDS IN FOOD PRODUCTS 

1.4.1 Culture-based methods 

Up to date, detection of yeasts and moulds is based on cultural procedures. Typically, the process 

starts with a 1:10 dilution of the sample (25- 50 g) with a buffer such as Phosphate-buffered Saline 

(PBS), Butterfield’s buffer, or 1% buffered peptone water, in a stomacher bag followed by 

homogenization with a Stomacher or a Pulsifier. Blending can also be used but is generally less 

effective. In continuation, spread plating of serial dilutions on agar plates and incubation is performed. 

For liquid foods, like juices, pour plating can also be performed; however, with this technique fungi 

grow slower below the agar surface and might be hidden by faster growing colonies from surface 

spores. As a result, spread plating provides a more uniform colony development while improving the 

accuracy of the colonies enumeration. Typically, the plates are incubated for 5 days at 25 °C and the 

results are expressed as viable counts per gram or sample. If there is no growth after 5 days, incubation 

can be extended for another 48 h [5,11].  

Selection of a suitable medium is of outmost importance for correctly enumerating the fungi of 

interest and some considerations must be taken into account before choosing. The most important 

factor to be considered is if the method is destined for foods with high or low aw. Based on the 

different categories of dried foods, namely foods low in soluble solids, food high in sugars, and salty 

foods, the most adequate media can be selected. Additionally, attention should be paid to the targeted 

microorganism, i.e. moulds, yeasts or both as well as in the presence or absence of preservatives. In 

Table 1.3 a list of media recommended for enumeration, detection and isolation of fungi from fruits 

and by-products can be found [11,180]. 

Another method for detection, enumeration and isolation of fungi is based on direct plating, 

serving as the method of preference for foods that can be handled with forceps like grains and nuts. 

With this approach, food particles are placed directly on solidified agar plates after an initial surface 

disinfection step, in order to remove dust and other particles that might hinder the recovery of the 

fungi. The plates are incubated for 5 days at 25 °C and at the end of the incubation period the number 

of contaminated particles are counted and the results are expressed as a percentage. If there is no 

growth after 5 days, incubation can be extended for another 48 h. For optimal results the selection of 

media, a stereomicroscope and laboratory experience are very important [11,180]. 
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For heat-resistant moulds more elaborated procedures are required due to the low number of heat-

resistant ascospores present in fruits and fruit juices. These procedures typically include the use of 

large amount of samples (often 100 mL or g), heat inactivation of the ascospores and plating at 

different agar plates followed by incubation at 30 °C for up to 30 days [5].  

As a consequence, culture-based methods are time-consuming, extending the overall time of 

analysis up to 7 days, rendering them not suitable for products with short shelf-lives, and do not 

provide the short sample-to-result time in agreement with the needs of the food industry. Hence, the 

obtained results can only be used retrospectively being of limited value for quality and process 

control. In addition, they are laborious and require large amounts of media and reagents [181,182]. 

Another disadvantage of these methods is that they cannot detect Viable But Non-Culturable (VBNC) 

microorganisms, that can be generated during processing, cleaning and/or disinfection activities since 

at this state they cannot grow on media but they can still play an important role in spoilage by 

producing enzymes or other metabolites of importance [183].  

 

Table 1.3. Recommended media for fungal detection, enumeration and isolation from fruits and by-products 

Food Target microorganism Medium 

Fruits 
Moulds DRBC 
Yeasts TGY, MEA, OGY 

General DRBC 
Fresh fruit juices Yeasts TGY, MEA, OGY 

Preserved fruit juices 
Preservative resistant 

yeasts 
TGYA, malt acetic agar 

Fruit juices to be 
pasteurised, or 

pasteurised products 
Heat resistant moulds PDA, MEA 

Fruit juice concentrates Xerophilic yeasts MY50G 

DRBC: dichloran rose bengal chloramphenicol agar, TGY: tryptone glucose yeast extract agar, MEA: malt extract agar, 
OGY: oxytetracycline glucose yeast extract agar, PDA: potato dextrose agar, MY50G: malt extract yeast 50 % glucose 
agar. Adapted from Pitt & Hocking [11]. 

 

1.4.2 DNA-based methods 

1.4.2.1 End-point Polymerase Chain Reaction (PCR) 

PCR has been used for the detection of a number of microorganisms. A typical PCR reaction 

requires a forward and a reverse primer with complementing sequences to the target DNA sequence, 

the DNA template, a DNA polymerase, dNTPs, and salts. PCR consists of multiple cycles, typically 

between 30 and 35, and each cycle consists of 3 steps namely the denaturation, annealing and 

extension. The amplification occurs exponentially, and after some cycles enough copies of the target 

DNA sequence will have been accumulated enabling its detection. The PCR product is typically 

visualized by agarose gel electrophoresis. The detection is based on the size of the amplicon with the 

use of fluorescence dyes [184,185].  

One of the main disadvantages of end-point PCR is that the amplification and the detection occurs 

separately, in a two-step process. Even though the amplification is “automatic” by using a 

thermocycler, the reading of the results still remains a manual process [185].   
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1.4.2.2 Real-time PCR (qPCR) 

The difference between conventional or end-point PCR and qPCR is that the amplification and 

visualization of the results occurs simultaneously by measuring the fluorescence in real time. In 

particular, the fluorescence is measured after each cycle at the end of the extension step. The cycle at 

which the fluorescence intensity increases above the detectable level corresponds proportionally to 

the initial number of template DNA molecules in the sample is called the quantification cycle (Cq) 

[186,187]. The amplification curves obtained can be used for quantification purposes. Different 

chemistries can be applied being able of generating a fluorescence signal; however fluorescent dyes 

that are double-stranded DNA (dsDNA) specific or fluorescent hydrolysis probes that are sequence-

specific, are the most common ones [184,188]. The first dye to be used was ethidium bromide 

[189,190] and since then others have been used such as YO-PRO-1 [191,192]; however the most 

frequently used is SYBR-Green I [190,193]. Other detection chemistries include the use of molecular 

beacons, scorpion and hybridization probes [184,188].   

In qPCR assays implementing SYBR-Green I, the products can be differentiated by performing 

a melt-curve analysis after the amplification. A given amplicon will have a characteristic melting 

temperature (Tm)  which is dependent on the GC content, size and sequence of the amplicons [185]. 

The melt-curve is obtained by measuring the gradual loss of fluorescence of the dye near the 

denaturation temperature of the PCR product [190]. Tm is the defined temperature at which the 

steepest decrease of signal occurs. Typically, amplicons generated due to non-specific amplification 

of primer dimers can be distinguished since they have lower Tm because of their small size [188]. An 

advantage of melt-curve analysis over gel electrophoresis is that it can distinguish products with the 

same size but different GC/AT ratios as well as amplicons with the same size and GC content but 

different distribution of the GC bases [185]. An example of typical amplification plots along with 

their corresponding melt-curve analysis can be seen in Figure 1.2. Furthermore, high-resolution 

melting (HRM) technology is a low cost approach for the detection of specific single nucleotide 

polymorphisms (SNPs), the discrimination of alleles defined by multiple SNPs or tandem-repeat 

number, and the determination of DNA methylation status. It can be performed directly in a real-time 

thermocycler after the qPCR assay with the use of specific dyes like LCGreen, SYTO9, and 

EVAGreen [194].  
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Figure 1.2. Typical amplification plots (A) and their corresponding melt-curve analysis (B). 

The hydrolysis probes, such as TaqMan®, are sequence-specific oligonucleotide sequences 

which are labelled in the 5’-end with a fluorophore and in the 3’-end with a quencher. While the probe 

is intact, the quencher absorbs the fluorescence and no signal is detected however, upon proper 

hybridization of the primers and the probe, during the amplification, and when the DNA polymerase 

reaches the probe, due to its 5’→ 3’ exonuclease activity, the polymerase degrades the probe 

physically separating the fluorophore from the quencher resulting in detectable emission of 

fluorescence [188]. One advantage of hydrolysis probes compared to SYBR-Green I is the increased 

specificity of the assay since the probe will selectively bind to the complementary sequence of the 

amplicon [184].  

Among the advantages of the qPCR some include that it is a robust, fast and relatively easy to 

perform assay, and the risk of cross- contamination is minimal since it is performed in a close-tube 

format [188]. In addition, other advantages of the qPCR over end-point PCR is that it does not require 

post-amplification processing, that it has a wide dynamic range (with more than eight order of 

magnitude) [195] and its high reliability since amplification data are acquired in real-time. 

Furthermore, the ability to multiplex and detect more than one target simultaneously is possible with 

the use of hydrolysis probes tagged with different fluorophores, or by performing a melt-curve 

analysis [184]. Finally, qPCR contrary to the end-point PCR allows for quantification, since the Cq 
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value of a certain sample can be compared against a standard curve, generated from serial dilutions 

of known amounts of DNA, in order to define its initial DNA concentration [196]. 

End-point PCR and qPCR assays, can be both affected by the presence of compounds that inhibit 

the amplification of the DNA; thus there is a strong need for adequate purification protocols that can 

eliminate these compounds. Inhibiting substances may originate from the food matrices, the culture 

media, but they can also be introduced during sample processing and/ or the DNA extraction process 

[197,198]. Consequently, this can lead to reduced sensitivity, or false negative results, due to reaction 

inhibition. PCR inhibitors can be inorganic like calcium ions, but the majority are organic compounds, 

for example, polysaccharides, phenols, ethanol, proteins and proteinases [197,199]. In foods the main 

PCR inhibitors are fats, polysaccharides, glycogen and minerals [200,201]. Additionally, some 

compounds can be introduced during handling of the sample and DNA extraction process. This 

includes powder from gloves, salts like NaCl or KCl, and detergents or organic compounds like 

EDTA, ethanol, isopropyl alcohol or phenol [202–204]. Even though these compounds are necessary 

for cell lysis, cleaning and elution of the DNA during the extraction, they can also lead to PCR 

inhibition [198]. The mechanism of action of the PCR inhibitors can be one or more of the following: 

a) interference with the cell lysis, b) degradation or capturing of nucleic acids and c) inactivation of 

the DNA polymerase [205].  

One way to identify problems related with false-negative results due to reaction inhibition is the 

addition of an amplification control in the PCR assay. An Internal Amplification Control (IAC) is 

analysed in the same tube as the target; while an external control is analysed separately [206]. 

Basically, IAC is a non-target DNA, present in the assay that co-amplifies with the target gene and 

should always amplify in negative sample. In this way, false negative results due to reaction inhibition 

can be identified. In addition, the IAC can be competitive or non-completive. A competitive IAC is 

amplified with the same primers of the target, and can be separated based on the size of the product 

or the sequence or with the use of a hydrolysis probe tagged with a different fluorophore of that of 

the target sequence. On the other hand, a non-competitive IAC is amplified with its own set of primers 

and thus, can be universal  [198]. The different types of IAC and their application in PCR and qPCR 

assays have been extensively studied [207,208]. Furthermore, Paterson [209] highlighted the need for 

implementing an IAC in fungal PCR assays. In his review, only one group of researchers was 

identified that implemented an IAC in their assay for the detection of Aspergillus spp. responsible for 

invasive pulmonary aspergillosis [210]. Furthermore, in a few more studies for the detection of 

mycotoxin producing fungi the implementation of an IAC has been reported  [211–213]. 

 

1.4.2.3 Isothermal amplification techniques 

Isothermal amplification techniques have emerged over the last decades as an alternative to PCR 

and qPCR since they are usually faster than PCR and performed at constant temperature, and therefore 

with the potential to be used for point-of-care (POC) testing [214]. In Table 1.4 a list of the main 

isothermal amplification tenchiques along with possible detection methods can be found. 

Additionally, the main advantages and disadvantages of each method are presented in the same table.  

1.4.2.3.1 Loop-mediated isothermal amplification (LAMP) 

LAMP is an isothermal amplification technique that was first described by Notomi et al. (2000) 

[215], claiming that can amplify few copies of DNA to 109 in less than an hour and with great 

specificity. Typically, a LAMP reaction uses two inner primers, namely FIP and BIP, and two outer 
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primers, namely F3 and B3, as well as a DNA polymerase with high strand displacement activity, the 

Bst DNA polymerase. In addition, one or two loop primers (LF/LB) that hybridize to the stem-loops 

can be added to accelerate the reaction. The reaction runs between 60-65 °C for up to 1 hour. The 

final LAMP products are a mixture of stem-loop DNAs with different stem lengths and cauliflower-

like structures with multiple loops [215,216]. During the reaction large amounts of pyrophosphate 

are produced that bind with Mg2+ to form the insoluble magnesium pyrophosphate [217]. The 

mechanism of a LAMP reaction can be seen in Figure 1.3. 

The amplified DNA can be visualized by naked-eye due to the formation of magnesium 

pyrophosphate that causes turbidity in the tube; thus a gel electrophoresis is not necessary. Even 

though results interpretation by naked-eye is the easiest, and more economic method, sometimes skills 

for assessing the results are needed. Since the turbidity of the reaction is related to the amount of the 

DNA produced, quantification can occur with the use of a real-time turbidimeter [218]. In order, to 

facilitate the naked-eye detection an intercalating dye like SYBR-Green [219,220], Picogreen 

[221,222] or propidium iodide [220] can be added at the end of the reaction, resulting in a colour 

change when the reaction is positive. However, the main disadvantage of this approach is that it 

requires opening of the reaction tubes that increases the risk of cross-contamination. Since the amount 

of Mg2+ is decreasing throughout the reaction, quantification can occur by measuring its concentration 

[223]. In this sense, colorimetric assays have been developed that utilize a fluorescence metal 

indicator like calcein [224], hydroxy napthol blue (HNB) [223] or malachite green [225,226]. In the 

case of LAMP assays with calcein and HNB the addition of MnCl2 in the pre-mixture is essential for 

observing the colour change. Another possibility is the use of pH-sensitive dyes such as phenol red, 

cresol red, neutral red and/ or m-cresol purple for detection of DNA amplification, since the pH of 

the reaction shifts from alkaline to acidic [227]. The main advantage of these approaches compared 

to intercalating dyes is that they can be added before the reaction starts reducing the risk of cross-

contamination. Another possibility for colorimetric detection of LAMP products is the use of 

carboxyl acid-functionalized gold nanoparticles (AuNPs). The colour change is generated upon 

aggregation-disaggregation of the AuNPs triggered by a complex mechanism that involves the 

carboxyl acid-contained molecules in the Au surface and the magnesium pyrophosphate that is 

generated from the reaction [228–230].  Finally, LAMP products can be detected in a real-time format 

with the use of a device that measures fluorescence and that can be combined with melt-curve analysis 

for discrimination of products [231,232].  

Some of the advantages of the LAMP assay include its increased specificity due to the use of 

four primers that recognize six distinct regions in the initial steps of LAMP, and later on of two 

primers that recognize four independent regions on the target sequence, and sensitivity with a 

detection limit down to a few copies of DNA. Furthermore, LAMP can be easily used for the detection 

of RNA by adding in the reaction a reverse transcriptase (RT). In addition, LAMP based protocols 

are relatively easy to follow and there is no need for expensive equipment since the reaction only 

requires a water bath or a heat block [215]. Finally, this technique is less susceptible to common PCR 

inhibitors [233,234].  

 



Chapter 1. Introduction 

   

25 

 

 

Figure 1.3. Mechanism of LAMP reaction (Image used with license from John Wiley and Sons License [235]). 

1.4.2.3.2 Recombinase Polymerase Amplification (RPA) 

RPA is an isothermal technique, first described by Piepenburg et al. [236], that instead of melting 

of the dsDNA, utilises recombinase-primer complexes that scan for homologous dsDNA followed by 

strand exchange and extension with the help of a polymerase with strand-displacement ability. 

Repetition of the process results in exponential amplification of the target DNA. The mechanism of 

the assay can be seen in Figure 1.4. Typically, RPA reactions run in a temperature ranging from 37 

to 42 °C, and usually an incubation for 20–40 min is adequate for DNA amplification. Kits with 

freeze-dried reagents are commercially available in different formats (TwistAmp® basic, exo and 

nfo) as well as for RNA detection by TwistDx (TwistDX Limited, Maidenhead, UK). The amplified 

product can be visualized by gel electrophoresis, by measuring real-time fluorescence or by lateral 

flow (LF). For real-time detection, a RPA- exo, or fpg, probe is used, while for lateral-flow detection 

the design of a nfo probe is necessary [237].  
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Some of the main advantages of RPA are that is highly sensitive and specific, simple and rapid 

due to the low and constant run temperature, without the need of a denaturation step or multiple 

primers (like in the case of LAMP). Furthermore, it presents multiplexing capabilities and although 

initially longer primers, 30–35 bp, were designed for RPA assays, it has been observed that PCR 

primers can be successfully used. Thus, the primer selection process, and design, can be the same of 

that of PCR. Finally, the RPA has proven to be less sensitive to common PCR inhibitors [237,238]. 

On the other hand, the conditions of RPA reactions are stringent and the commercial available kits 

are expensive [239].  

 

 

Figure 1.4. Mechanism of RPA reaction (Image used with license from John Wiley and Sons License [235]). 

1.4.2.3.3 Other isothermal techniques 

In this section other isothermal amplification techniques will be briefly explained due to the fact 

that even though they present the advantages of an isothermal method they have not been explored 

yet for the detection of fungi in food products. 
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1.4.2.3.3.1 Helicase-Dependent Amplification (HDA) 

HDA is an isothermal technique that utilizes DNA helicases for separating the complementary 

strands of dsDNA in order to create single strands for primer hybridization and extension with the aid 

of a DNA polymerase. Hence, the thermal dissociation step of a PCR is not necessary. This technique 

is very similar to the in vivo DNA replication. The helicase can act again on the newly synthesized 

dsDNA and the cycle repeats with kinetics similar to those of PCR, at 60-65 °C. The protocol requires 

60- 120 min and the detection can be performed with any of the existing fluorescent chemistries that 

are used for PCR  [240,241]. Some of the advantages of HDA include the simple primer design and 

the elimination of an initial denaturation step. On the other hand, main disadvantages of the assay 

include the high possibility of false positive results and its low specificity and sensitivity [239]. 

1.4.2.3.3.2 Rollicing Cycle Amplification (RCA) 

RCA is an isothermal method that utilizes the continuous amplification of circular DNA template 

by a strand displacing DNA polymerase.  The DNA polymerase displaces the synthesized strand and 

“rolls” with the DNA synthesis, resulting in long single-stranded amplicons with tandem repeats of 

circular template. Two types of RCAs have been developed, namely linear and exponential. The RCA 

requires small and circular ssDNA as template; however, many DNA targets relevant in diagnostics 

are linear dsDNA molecules. In order to overcome this shortcoming, oligonucleotides called padlock 

probes have been designed with the ability to transform dsDNA into circular ssDNA that can act as 

template. However, before the circularization process begins, a pre-treatment is required including 

digestion by restriction enzymes and degradation [240].  

1.4.2.3.3.3 Nucleid Acid Sequence-Based Amplification (NASBA) 

NASBA is an isothermal transcription-mediated amplification method for ssRNA or ssDNA 

sequences that is performed at 41 °C. The method is especially suited for RNAs (mRNA, rRNA, 

tmRNA, and gRNA) while dsDNA cannot be amplified without an initial denaturation step. The assay 

utilized two RNA primers and three enzymes and an initial heating step at 65 °C is required for 

removal of secondary structures before the addition of the enzymes. The ssRNA products can be 

detected with electroluminescence, LF and electrochemical detection upon implementation of 

sequence-specific probes. In addition, molecular beacons can be utilized as an alternative detection 

method [240,241].  

 

Table 1.4. Main isothermal amplification techniques and their advantages/disdvantages 

Technique Detection methods Advantages Disadvantages 

LAMP 

Real-time fluorescence 
Real-time turbidity 

Turrbidimetric (naked-
eye) 

Colorimetric (naked-eye) 
 

Highly specific (4 to 6 primers for 
amplification) 

Tolerant to common PCR inhibitors 
RNA amplification with the addition of RT 

Prone to cross-
contamination 

Complex primer design 
Difficulty in performing 
multiplex amplification 

RPA 
Real-time fluorescence 

LF strips 
Gel electrophoresis 

Low amplification temperature (37- 42 
°C) 

Very fast (20- 40 min) 
Simple primer design 

Tolerant to common PCR inhibitors 

Strict reaction conditions 
Expensive reagents 
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HDA 
Real-time fluorescence 

Gel electrophoresis 
ELISA 

No need for need for an initial 
dissociation step 

Simple primer design 

High chance of false 
positive results 

Not possible to perform 
multiplex amplification 

Low sensitivity and 
specificity 

RCA Gel electrophoresis 
Low amplification temperature 

Simple primer design 

Requires small and 
circular ssDNA as 

template 
Not possible to perform 
multiplex amplification 

NASBA 

Electroluminescence 
LF 

ELISA 
Real-time fluorescence 

RNA amplification 
Low amplification temperature (41 °C) 

Need for need for an 
initial dissociation step 
Less efficient for long 

RNA targets 
 

ELISA: Enzyme Linked Immunosorbent Assay 

 

1.5 DETECTION OF VIABLE MICROORGANISMS 

One major limitation of all the DNA-based methods is that they cannot differentiate between 

viable and non-viable microorganisms. This is because DNA is a stable molecule and thus can persist 

and be present for some time after the death of the microorganism [184]. One approach to overcome 

this problem is the detection of RNA by RT-PCR/RT-qPCR, since certain types of RNA like mRNA 

and/ or rRNA, have short half-lives, or are present in high numbers. Since most mRNA molecules 

have a short lifespan, in the range of minutes, and do not amplify after a moderate heat treatment, 

they can be used as viability indicators [242,243]. On the other hand, rRNA can be used for detection 

of viable cells under extreme conditions, like autoclaving, since moderate heating might not lead to 

complete degradation [244]. However, since rRNA is a universal component of ribosomes, and some 

rRNA types are present in high amounts in cells, the use of this RNA can greatly improve the limit 

of detection [245].  

Nevertheless, handling of RNA is more difficult. Great care should be taken while extracting the 

RNA since RNase, the enzyme that digests RNA, is ubiquitous in the environment, and RNA is prone 

to contamination due to improper sample processing, storage conditions or contamination with RNA-

degrading enzymes. A second difficulty of this approach is that an extra step is required in order to 

convert RNA to cDNA, the reverse transcription. In addition, the mRNA expression level depends 

on the physiological status of the cell, rendering it difficult to accurately estimate the size of the 

microbial population which might lead to overestimation [184,246].  

Another approach that has been investigated lately is the use of intercalating dyes like propidium 

monoazide (PMA) and ethidium monoazide (EMA) which can penetrate cells with compromised cell 

walls and membranes, and upon photoactivation, irreversibly bind to the DNA, thus blocking its 

amplification [247–249]. These dyes can be easily implemented in a conventional DNA extraction 

protocol and are compatible with different amplification techniques [232]. Furthermore, 

implementation of the dyes represents an added advantage since they can detect VBNC cells, that can 

be generated during processing, cleaning and/or disinfection activities [250–252].  
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1.6 EXISTING LITERATURE ON THE DETECTION OF SPOILAGE AND MYCOTOXIGENIC FUNGI IN FOOD 

PRODUCTS 

Over the last decades, DNA-based methods have emerged in order to overcome the 

disadvantages of traditional culture-based methodologies due to their high sensitivity and specificity. 

In this sense, different protocols have been developed for the detection of spoilage, and 

mycotoxigenic, fungi in a variety of food products. In addition, a variety of molecular-based methods 

have been utilized including PCR, qPCR, LAMP and RPA assays as well as different methodologies 

for results visualization. However, one of the main challenges while reviewing these assays is the 

discrepancies in the way the results are expressed that does not facilitate the comparison between 

studies. Below examples of already existing studies will be discussed, additionally a detailed list of 

the different assays available can be found in the Tables 1.5 to 1.7. 

Different conventional PCR assays have been developed for the detection of spoilage yeasts in 

foods targeting the ITS region and 18S rRNA gene, that are considered universal for fungi detection. 

In particular, Mayoral et al. [253] and Garcia et al. [181] developed methods for the detection of 

yeasts in dairy products with a Limit of Detection (LOD) of 10 CFU/ mL. In addition, Ros-Chumillas 

et al. [254] reported a LOD of 103 CFU/ mL for yeasts detection in orange juice. Apart from studies 

for the detection of spoilage microorganisms, many methods have been published for the detection 

of mycotoxigenic fungi. Some studies are targeting genes that are involved in the biosynthetic 

pathways of the different mycotoxins while others are using universal primers. In this sense, Luque 

et al. [174,255,256] developed methodologies for the detection of patulin-, aflatoxin- and OTA-

producing moulds targeting the idh, omt-1 and otanpsPN genes that are involved in the biosynthesis 

of the abovementioned mycotoxins, respectively. Different food matrices were selected for each toxin 

and LODs ranging from 102-104 CFU/ g, were reported. On the other hand, A. flavus and A. 

parasiticus were detected on wheat flour by targeting the ITS1-5.8S rRNA-ITS2 [257,258]. 

Furthermore, various multiplexed-PCR assays have been published for the detection of beer spoilage 

yeasts [259] or mycotoxigenic fungi [260,261]. Finally, a RT-PCR for the detection of viable fungi 

has been reported with a LOD of 10 CFU/ mL in milk [243] and another one for the detection of K. 

marxianus with a LOD of 102 CFU/ mL in yoghurt [245]. 

Regarding qPCR assays, many articles have been published for real-time detection of spoilage 

and mycotoxigenic fungi utilizing one of the two most common chemistries of SYBR-Green 

combined with melt-curve analysis or TaqMan® probes. For instance, two studies deal with the 

detection of spoilage yeasts in fruit juices by developing qPCR-SG assays with melt-curve analysis 

[262,263] and another one with the detection of spoilage moulds in fruit juices but this time a 

hydrolysis probe was used [264]. For the latter, a LOD of 103 CFU/ mL was achieved. Furthermore, 

as with the conventional PCR, many methods have been developed for the detection of mycotoxigenic 

fungi. In particular, patulin-producing fungi have been detected by targeting the patF or idh genes of 

the biosynthesis of patulin [176,265]. Rodriguez et al. [176] reported a LOD of 10 conidia/ g. 

Additionally, assays for the detection of A. carbonarius on grapes and wine have been developed 

targeting the PKS or the calmodulin genes [266–268]. Soares-Santos et al. [269,270] developed two 

cells-qPCR assays for yeasts, B. bruxellensis, and S. cerevisiae in grape must and wine. 

Different multiplex qPCR assays have been developed for the simultaneous detection of 

mycotoxigenic fungi [271–274]. Furthermore, studies dealing with the detection of viable fungi either 

by RT-qPCR or with the use of intercalating dyes, have been published. In particular, Hierro et al. 

[275] developed a RT-qPCR assay for the detection of viable yeasts in wine targeting the 26S rRNA 

gene and with a LOD of 10 CFU/ mL. Pavon et al. [276] reported a RT-qPCR assay for the detection 

of viable Alternaria spp. with a LOD of 1 CFU/ mL in tomato pulp. On the other hand, Crespo-
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Sempere et al. [277] developed a qPCR with PMA for the detection of viable Alternaria spp. with a 

LOD of 102 conidia/ g in tomatoes. Finally, other studies have been published for the detection of 

viable yeasts by qPCR coupled with PMA or EMA in beverages [183,278,279]. 

Compared to the vast amount of PCR/qPCR assays developed for fungi, a limited number of 

isothermal amplification assays have been published, most of them applying LAMP for the detection 

of mycotoxigenic fungi. Frisch & Niessen [280] developed a colorimetric LAMP for the detection of 

patulin-producing Penicillium spp. in grapes and apples targeting the idh gene. In the same way, 

Storari et al. [281] developed a methodology for OTA producing A. carbonarius and A. niger in 

grapes. Apart for the assays targeting mycotoxigenic fungi, Zhang et al. [282] developed a panfungal 

colorimetric LAMP in pepper and paprika powder with a LOD of 104 CFU/ g. In addition, Liu et al. 

[283] developed a LAMP assay coupled with LF dipstick for the detection of Zygosaccharomyces 

spp. Finally, a RPA assay coupled with gel-electrophoresis and naked-eye green fluorescence has 

been developed for the detection of A. flavus in corn and peanuts. The reported LOD was 10 conidia/ 

g for the naked-eye method and 102 conidia/ g when electrophoresis was used [284]. Unfortunately, 

we could not identify other RPA assays targeting spoilage and mycotoxigenic fungi in food products. 

Lastly, one important issue of the molecular-based fungal assays is the absence of internal 

controls in order to eliminate problems related to false negative results due to reaction inhibition 

[209]. Indeed, we were able to identify only a few studies that implemented internal controls in their 

assays. Zur et al. [285] developed a PCR assay with an IAC for the detection of Alternaria spp. in 

grains. Contreras et al. [286] also developed a PCR assay for the detection of B. bruxellensis in wine. 

Diguta et al. [287] developed a qPCR assay with an IAC for the detection of B. cinerea in grapes and 

Rodriguez et al. [211] for the detection of cyclopiazonic-producing moulds. Additional assays that 

implemented an IAC can be found in Tables 1.5 and 1.6 [212,261,265,271,277,288–292]. 
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Table 1.5. Published PCR methods for the detection of spoilage and mycotoxigenic fungi in foods 

Microorganism Assay Target gene Detection Matrix Sensitivity LOD Reference 

Aflatoxigenic moulds PCR 
ver-1 
omt-1 
apa-2 

Gel 
electrophoresis 

Ground corn grains - 
102 spores/ g 

(ver-1) 
[293] 

Aflatoxigenic moulds PCR 
nor-1 
ver-1 
omt-A 

Gel 
electrophoresis 

Figs 
25 pg DNA/ rxn 

250 pg DNA/ rxnb  
- [167] 

Penicillium spp. PCR ITS- 5.8S rRNA 
Gel 

electrophoresis 
Camembert 
Roquefort 

- - [294] 

Alternaria spp. PCR 5.8S rDNA 
Gel 

electrophoresis 
Tomato sauce and tomato 

powder  
- - [295] 

Alternaria spp.a PCR 5.8S rDNA 
Gel 

electrophoresis 
Grains - - [285] 

P. expansum PCR pepg1 
Gel 

electrophoresis 
- 25 spores - [296] 

Yeasts PCR 18S rRNA 
Gel 

electrophoresis 
Dairy products - 

105 CFU/ mLc  
10 CFU/ mLd  

[181] 

A. carbonarius PCR - 
Gel 

electrophoresis  
Coffee beans - - [297] 

B. bruxellensis 
B. anomalus 

PCR 
D1/D2 loop of 
the 26S rRNA 

Gel 
electrophoresis  

Wine - 104-105 CFU/ mL [298] 

Yeasts PCR 18S rRNA 
Gel 

electrophoresis 
Vacuum packed ham - 

106 CFU/ cm2 c 
102 CFU/ cm2 e 

[299] 

Yeasts PCR 18S rRNA 
Gel 

electrophoresis 
Yoghurt - 

106 CFU/ mLc 
10 CFU/ mLe  

[253] 

Aflatoxigenic moulds PCR aflR 
Gel 

electrophoresis 
Groundnuts 

Maize 
102 spores 102 CFU/ g [300] 

Aspergillus spp. in the section 
Nigri 

PCR ITS 
Gel 

electrophoresis 
- 10 pg DNA - [301] 

OTA producing A. carbonarius and 
A. ochraceus 

PCR ITS 
Gel 

electrophoresis 
- 1-10 pg DNA - [302] 

OTA producing fungi PCR PKS 
Gel 

electrophoresis 
- - - [303] 

Yeasts PCR ITS- 5.8S rRNA 
Gel 

electrophoresis 
Orange juice 20 pg DNA/ rxn 103 CFU/ mL [254] 

A. niger 
A. tubigensis 

PCR calmodulin 
Gel 

electrophoresis 
- 10 pg DNA/ rxn - [304] 

A. flavus PCR 
ITS1- 5.8S 
rRNA- ITS2 

Gel 
electrophoresis 

Wheat flour - 102 spores/ g [257] 
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B. bruxellensisa PCR - 
Gel 

electrophoresis 
Wine - - [286] 

OTA producing Aspergillus section 
Circumdati spp. 

PCR 
ITS1- 5.8S 
rRNA- ITS2 

Gel 
electrophoresis 

- - - [173] 

A. parasiticus PCR 
ITS1- 5.8S 
rRNA- ITS2 

Gel 
electrophoresis 

Wheat flour - 
106 spores/ gc 
104 spores/ gf  
102 spores/ gd  

[258] 

Mycotoxigenic Aspergillus spp. PCR 
ITS1- 5.8S 
rRNA- ITS2 

Gel 
electrophoresis 

Paprika 
Chilli 

5.5 pg DNA - [305] 

Patulin producing moulds PCR idh 
Gel 

electrophoresis 

Cooked products 
Ripened foods 

Fruits 

0.5 ng DNA 
15 ng DNAb  

1.8 × 102- 2.7 × 
103 conidia/g for 
the different food 

products 

[255] 

Aflatoxigenic moulds PCR omt-1 
Gel 

electrophoresis 

Fruits 
Nuts 

Cooked products 
Ripened foods 

15 pg DNA 
25 pg DNAb  

102- 103 CFU/g for 
the different food 

products 
[256] 

OTA producing moulds PCR otanpsPN 
Gel 

electrophoresis 

Cooked products 
Ripened food 

Fruits 
Nuts 

Spices 

25 pg DNA 
50 pg DNAb  

102- 104 CFU/ g 
for the different 

food products 
[174] 

B. bruxellensis PCR 
ITS1 
ITS2 

Gel 
electrophoresis 

Red wine 
10 ng of DNA/ 

mL 
10 CFU/ mL [306] 

Aflatoxin producing moulds PCR 
nor-1 
apa-2 
omt-1 

Gel 
electrophoresis 

- - - [307] 

B. bruxellensis PCR VPR1 
Gel 

electrophoresis 
Wine 5 pg of DNA 102 CFU/ mL [308] 

Byssochlamys spp. 
Hamigera spp. 

PCR 
nested PCR 

β-tubulin 
Gel 

electrophoresis 
- 

1 ng of DNA/ µL 
(PCR) 

10 pg of DNA/ µL 
(nested PCR) 

- [309] 

Neosartorya spp. 
PCR 

nested PCR 
β-tubulin 

calmodulin 
Gel 

electrophoresis 
Acidic beverages 

40 pg of DNA/ µL 
(PCR) 

4 pg of DNA/ µL 
(nested PCR) 

- [310] 

Byssochlamys spp. 
PCR 

nested PCR 
β-tubulin  

Gel 
electrophoresis 

- 

0.1 ng of DNA/ 
µL (PCR) 

10 pg of DNA/ µL 
(nested PCR) 

- [311] 

C. globosum 
C. funicola 

PCR 
nested PCR 

β-tubulin 
Gel 

electrophoresis 
- 

10 pg DNA (PCR) 
1 pg DNA (nested 

PCR) 
- [312] 
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Thermoascus spp. 
PCR 

nested PCR 
RPB1 

Gel 
electrophoresis 

Beverages 

100 pg of DNA 
(PCR) 

10 pg of DNA 
(nested PCR) 

- [313] 

Dekkera-Brettanomyces spp. nested PCR - 
Gel 

electrophoresis 
Sherry 10 CFU 104 CFU/ mL [314] 

Alternaria spp.a 
duplex PCR 
seminested 

PCR 
Alt a 1 

Gel 
electrophoresis 

Tomato products 
Cereal based infant food 

102 CFU/ mL 
102 CFU/ mL of 

tomato pulp 
[288] 

OTA producing Aspergillus spp. 
PCR 

m-PCR 
- 

Gel 
electrophoresis 

Coffee beans - - [315] 

Aflatoxigenic fungi 
PCR 

m-PCR 

omt 1 
ver 1 
afl R 

Gel 
electrophoresis 

Maize kernels 
10 pg DNA (PCR) 

500 pg DNA 
(mPCR) 

100 pg of fungi/ g 
of maize kernels 

[316] 

Aflatoxin and sterigmatocystin 
producing fungi 

m-PCR 
nor-1 
ver-1 
omt-A 

Gel 
electrophoresis 

- - - [317] 

A. flavus group m-PCR 

nor-1 
ver-1 
omt-A 
apa-2 

Gel 
electrophoresis 

Peanut kernels - - [318] 

Aflatoxigenic moulds m-PCR 
avfA 
omtA 
ver-1 

Gel 
electrophoresis 

Korean fermented foods 
and grains 

- - [260] 

Mycotoxigenic fungia m-PCR 

nor1 
Tri6 

FUM13 
otanps 

Gel 
electrophoresis 

Maize  
100 pg of pure 

DNA 

2 × 103 CFU/ g 
(nor-1 positive 
Aspergillus spp. 

and Tri6 and 
FUM13-positive 
Fusarium spp.) 
2 × 104 CFU/ g 

(otanps-positive 
Penicillium spp.) 

[261] 

Patulin, OTA and aflatoxin 
producing moulds 

m-PCR 
idh 

otanpsPN 
omt-1 

Gel 
electrophoresis 

Dry-fermented sausage 
Paprika 
Apple 
Wheat 

Peanuts 

1 ng DNA 
103 – 104 CFU/ g 
for the different 

food products 
[319] 

Beer–spoilage yeasts m-PCR 
26S rDNA 

ITS 
Gel 

electrophoresis 
Beer 103 CFU - [259] 

Viable fungi RT-PCR 
EF-Tu 
EF-1α 

Gel 
electrophoresis 

Milk 
Yoghurt 

Beer 
- 10 CFU/ mL  [243] 
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Viable K. marxianus RT-PCR 18S rRNA 
Gel 

electrophoresis 
Yoghurt 102 CFU/ mL 102 CFU/ mL [245] 

a: An IAC was implemented in the assay 
b: Reported sensitivity when the target DNA was mixed with non-target DNA 
c: Reported LOD without incubation 
d: Reported LOD after 16 h of incubation 
e: Reported LOD after 24 h of incubation 
f: Reported LOD after 8 h of incubation 

 

 

Table 1.6. Published qPCR methods for the detection of spoilage and mycotoxigenic fungi in foods 

Microorganism Assay Target gene Detection Matrix Sensitivity LOD Reference 

A. flavus qPCR nor1 SYBR-Green Black pepper - 
4.5 × 103 CFU/ 

g 
[320] 

D. bruxellensis qPCR 26S rRNA SYBR-Green Wine - 1 CFU/ mL [321] 
Alternaria spp. qPCR AM-toxin I SYBR-Green Apples 4 pg of DNA 2 × 102 spores [322] 

A. westerdijkiae qPCR β-tubulin SYBR-Green Coffee beans 
100 haploid genomes/ g 

of coffee beans 
- [323] 

Saccharomyces spp. 
Hanseniaspora spp.a 

qPCR 5.8S rRNA-ITS2 SYBR-Green 
Wine 
Wine 

fermentations 
10 cells/ mL 102 cells/ mL [290] 

A. carbonarius qPCR PKS SYBR-Green Grapes - - [266] 

B. bruxellensis qPCR rad4 
SYBR-Green/ Melt curve 

analysis 
Wine 103 CFU/ mL 104 CFU/ mL [324] 

S. cerevisiae qPCR - 
SYBR-Green/Melt-curve 

analysis 
Sweet wine 
Red wine 

5.6 CFU/ mL 

3.8 CFU/ mL 
of sweet wine 
5.0 CFU/ mL 
of red wine 

[325] 

Z. bailii qPCR 
D1/D2 loop of 
the 26S rRNA 

subunit 

SYBR-Green/ Melt curve 
analysis 

Fruit juices 
Wine 

11 CFU/ mL 

2 CFU/ mL of 
cranberry 

raspberry and 
apple juices 

22 CFU/ mL in 
grape juice 

6 CFU/ mL in 
wine 

[326] 

Dekkera/ 
Brettanomyces 
bruxellensisa 

qPCR 
D1/D2 loop of 
the 26S rRNA 

rad4 

SYBR-Green/Melt curve 
analysis 

Grapes - 
103-104 cells/ 

mL 
[327] 

Spoilage yeasts qPCR 
5.8S rRNA 

ITS 
SYBR-Green/ Melt curve 

analysis 
Orange juice - - [263] 
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A. ochraceus 
A. westerdijkiae 

qPCR ITS 
SYBR-Green/ Melt curve 

analysis 

Green coffee 
beans 
Grapes 

2.5 pg DNA/ rxn 106 spore/ mL [328] 

Brettanomyces spp. qPCR RAD4 
SYBR-Green/ Melt curve 

analysis 
Wine 31 CFU/ mL 3 GU/ mL [289] 

B. cinerea qPCR RNA helicase 
SYBR-Green/Melt curve 

analysis 
Grapes - - [329] 

B. cinerea qPCR IGS 
SYBR-Green/ Melt curve 

analysis 
Grapes 6.3 pg DNA - [287] 

A. flavus 
A. parasiticus 

qPCR ITS2 
SYBR-Green/Melt curve 

analysis 
Wheat flour 0.5 ng of DNA/ µL 

106 spores/ 
mL (without 
enrichment) 
102 spores/ 

mL 
(enrichment 

for 16 h) 

[330] 

Brettanomyces spp. qPCR 26S rRNA 
SYBR-Green/ Melt curve 

analysis 
Red wine 10 CFU/ mL 10 CFU/ mL [331] 

Aflatoxin B1, OTA 
and patulin 

producing mouldsa 
qPCR 

omt-1 
otanpsPN 

idh 

SYBR-Green/Melt curve 
analysis 

Dry-cured ham - 1 log CFU/ g [291] 

C. oxysporum BPS qPCR β-tubulin 
SYBR-Green/ Melt curve 

analysis 

Dry-cured 
fermented 
sausages 

- 
1.4 log CFU/ 

cm2 
[332] 

P. expansuma qPCR patF 
SYBR-Green/ Melt curve 

analysis 
Apples 0.1 ng DNA/ rxn  - [265] 

K. servazzii qPCR 
ITS1 

5.8S rRNA 
ITS2 

SYBR-Green/Melt curve 
analysis 

Packaged fresh 
pizza 

- - [333] 

T. flavus qPCR rlf 
SYBR-Green/ Melt curve 

analysis 
Strawberries 200 fg of DNA/ rxn 

640 
ascospores/ g  

[334] 

A. flavus qPCR nor-1 TaqMan® 
Maize  

Pepper  
Paprika 

- - [335] 

A. carbonariusa qPCR calmodulin TaqMan® Grapes 5 × 10-4 ng DNA/ rxn - [268] 
Spoilage moulds qPCR 18S rRNA TaqMan® Orange juice - 103 CFU/ mL [264] 

A. flavusa qPCR 
5.8S rRNA 
28S rRNA 

ITS2 
TaqMan® - 0.4 DNA templates/ rxn - [292] 

Aspergillus section 
Flavi spp. 

qPCR nor-1 TaqMan® Peanuts 125 pg of DNA/ µL - [336] 
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Cyclopiazonic acid 
producing mouldsa 

qPCR dmaT TaqMan® 

Dry-cured ham, 
Dry-ripened 

cheese 
Paprika 
Peanut 

Durum wheat 
semolina 

- 

1-2 log CFU/ g 
for the 

different food 
products 

[211] 

Z. rouxii qPCR 

5.8S rRNA 
18S rRNA 
28S rRNA 

ITS1 
ITS2 

TaqMan® 
Sugars 

Dried fruits 
10 fg of DNA / µL  - [337] 

K. servazzii 
C. sake 

qPCR ITS TaqMan® Kimchi 

1.2 × 102 CFU/ mL (K. 
servazzii) 

3.1 × 102 CFU/ mL (C. 
sake) 

- [338] 

A. carbonarius qPCR PKS 
SYBR-Green/ Melt curve 

analysis 
TaqMan® 

Wine 

2.4 genome 
equivalents/ rxn (SYBR-

Green) 
24 equivalents/ rxn 

(TaqMan) 

5 × 102 

conidia/ g 
(SYBR-Green) 

5 × 103 
conidia/ g 
(TaqMan) 

[267] 

A. carbonarius qPCR ITS2 
SYBR-Green/Melt curve 

analysis 
TaqMan® 

Grapes 2.5 × 10-5 ng DNA/ rxn 0.4 pg DNA/ g [339] 

OTA producing 
strains of the A. 
niger aggregate 

qPCR PKS 
SYBR-Green/ Melt curve 

analysis 
TaqMan® 

Corn kernels 104 copies - [340] 

Patulin producing 
moulds 

qPCR idh 
SYBR-Green/ Melt curve 

analysis 
TaqMan® 

Cooked meat 
products 

Dry-cured meat 
products 

Fruits 

- 10 conidia/ g [176] 

OTA producing 
moulds 

qPCR otanpsPN 
SYBR-Green/ Melt-curve 

analysis 
TaqMan® 

Cooked meat 
products 

Ripened foods 
Fruits 

0.01 pg of DNA 

1-10 conidia/ 
g for the 

different food 
products 

[341] 

Aflatoxin producing 
moulds 

qPCR omt-1 
SYBR-Green/ Melt curve 

analysis 
TaqMan® 

Cereals 
Nuts 

Spices 
Ripened foods 

- 

1-2 log CFU/ g 
for the 

different food 
products 

[342] 

Yeasts Cells- qPCR 26S rRNA 
Eva-Green/ Melt curve 

analysis 
Grape must 

Wine 
102 CFU/ mL - [269] 

Yeasts Cells-qPCR 
26S rRNA 

5.8S rRNA-ITS2 
Eva-Green/ Melt curve 

analysis 
Grape must 

Wine 
102 CFU/ mL - [270] 
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Mycotoxigenic 
Aspergillus, 

Penicillium and 
Fusarium spp. 

m-qPCR ITS TaqMan® Distiller’s grain 1 pg of DNA - [272] 

Patulin, OTA and 
aflatoxin producing 

moulds 
m-qPCR 

idh 
otanpsPN 

omt-1 
TaqMan® 

Fruits 
Nuts 

Cereals 
Dry-ripened 

meat and cheese 

- 

1- 3 log CFU/ 
g for the 

different food 
products 

[274] 

Verrucosidin 
producing mouldsa 

m-qPCR - TaqMan® 
Dry-ripened 

foods 
0.1 pg of DNA 1 log CFU / g [212] 

Mycotoxigenic 
Aspergillus, 
Penicillium, 

Fusarium spp. 

m-qPCR 
Pks 

28S rRNA 
Tri5 

TaqMan® Barley 3 pg of DNA/ rxn - [273] 

P. chrysogenum 
Aflatoxin producing 

mouldsa 
m-qPCR 

pgafp 
omt-1 

β-tubulin 
TaqMan® Dry-cured ham 

0.01 pg of DNA 
(aflatoxin producers) 

0.1 pg of DNA (P. 
chrysogenum) 

2-3 log CFU/ 
cm2 

[271] 

viable Alternaria 
spp. 

RT-qPCR ITS TaqMan® 

Fresh fruits and 
vegetables 
Processed 
foodstuffs 

1 CFU/ mL 
1 CFU/ mL in 
tomato pulp 

[276] 

Viable Z. bailii 
qPCR with 

EMA 

D1/D2 loop of 
the 26S rRNA 

subunit 

SYBR-Green/ Melt curve 
analysis 

Fruit juices 
12.5 CFU/ mL (in the 
presence of 105 CFU/ 

mL dead cells) 
- [183] 

Viable Alternaria 
spp. 

qPCR with 
PMA 

ITS 
SYBR-Green/ Melt curve 

analysis 
Tomatoes - 

102 conidia/ g 
of tomato 

[277] 

Viable wine yeasts 
qPCR with 
PMA qPCR 
with EMA 

26S rRNA 
5.8S rRNA-ITS2 

SYBR-Green 
Grape must 

fermentation 
Ageing wines 

- - [279] 

A. niger aggregate 
species 

A. carbonarius 

qPCR 
m-qPCR 

PKS 
SYBR-Green/Melt curve 

analysis 
TaqMan® 

Grapes 
30 genome equivalents/ 

rxn 
- [343] 

(VBNC) B. 
bruxellensis 

qPCR 
RT-qPCR 

D1/D2 domain 
of the 26S rRNA 

RAD4 
actin 

SYBR-Green Wine - 

103 CFU/ mL 
(DNA RAD4) 
102 CFU/ mL 
(26S rRNA, 

mRNA RAD4) 
10 CFU/ mL 

(actin) 
 

[344] 

(Viable) yeasts 
qPCR 

RT-qPCR 
D1/D2 domain 

of the 26S rRNA 
SYBR-Green/ Melt curve 

analysis 
Wine 

102 CFU/ mL (qPCR) 
10 CFU/ mL (RT-qPCR) 

103 CFU/mL 
(qPCR) 

[275] 
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Viable total yeasts 
P. anomala 

P. guillermondii 
P. kluyveri 

qPCR 
RT-qPCR 

ITS  
D1/D2 domain 

of the 26S rRNA  

SYBR-Green/Melt curve 
analysis 

Table olives 
Table olives 

brine 

10 CFU/ mL (P. anómala 
with qPCR) 

102 CFU/ mL (P. 
kluyveri, P. 

guilliermondii with 
qPCR) 

103 CFU/ mL (RT-qPCR , 
total yeasts with qPCR) 

- [345] 

viable B. bruxellensis 

qPCR with 
PMA 

RT-qPCR 
 

ITS 
EvaGreen/ Melt curve 

analysis 
Wine 
Beer 

- 

0.83 log CFU/ 
mL of red 

wine (qPCR 
with PMA) 

0.63 log CFU/ 
mL of white 
wine (qPCR 
with PMA) 

0.23 log CFU/ 
mL of beer 
(qPCR with 

PMA) 
4 log CFU/ mL 
of wine (RT-

qPCR) 
7 log CFU/ mL 
of beer (RT-

qPCR) 

[278] 

Total eumycetes 
S. fibuligera 
W. anomalus 

qPCR 
ddPCR 

26S rRNA 
car1 

SYBR-Green/ Melt curve 
analysis 

Bread 

0.6 pg of DNA/ µL (total 
yeasts with qPCR and W. 
anomalus with qPCR and 

ddPCR) 
0.06 pg/ µL (total yeasts 

with ddPCR) 
6 pg of DNA/ µL (S. 

fibuligera with qPCR 
and ddPCR) 

 

103 CFU/ mL 
(S. fibuligera 
with qPCR and 

ddPCR) 
102 CFU/ mL 
(W. anomalus 
with qPCR) 
10 CFU/ mL 

(W. anomalus 
with ddPCR) 

[346] 

Spoilage yeasts 
PCR 
qPCR 

5.8S rRNA 
ITS2 
cs1 

Gel electrophoresis 
SYBR-Green/ Melt curve 

analysis 

Fruit juice 
samples 

120 pg of C. krusei DNA - [262] 

A. ochraceus 
PCR 
qPCR 

- 
Gel electrophoresis 

SYBR-Green/ Melt curve 
analysis 

Green coffee - 

0.4 ng DNA/ 
rxn (PCR) 

4.7 pg DNA / 
rxn (qPCR) 

[347] 
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A. carbonarius 
A. niger aggregate 

strains 

PCR 
qPCR 

PKS 
Gel electrophoresis 

SYBR-Green/ Melt curve 
analysis 

Table grapes - 
2.37 × 10-2 ng/ 

µL 
[348] 

OTA producing 
moulds 

PCR 
qPCR 

β-tubulin  
otanpsPN 

Gel electrophoresis 
SYBR-Green/ Melt curve 

analysis 

Ripened foods 
Nuts 

Grapes 
- - [349] 

OTA producing 
Penicillium spp. 

PCR 
qPCR 

otapksPN 
otanpsPN 

Gel electrophoresis 
TaqMan® 

Cured ham - - [350] 

Viable fungi 
RT-PCR  
RT-qPCR 

act 
Gel electrophoresis 

SYBRGreen 

Yoghurts 
Pasteurized 
fruit-derived 

products 

25 pg RNA/ µL (RT-PCR) 

103 CFU/ g in 
yoghurt (RT-

PCR) 
102 CFU/ g in 
fruit juice and 
fruit preserves 

(RT-PCR) 

[351] 

a: An IAC was implemented in the assay 

 
 

Table 1.7. Published isothermal amplification methods for the detection of spoilage and mycotoxigenic fungi in foods 

Microorganism Assay Target 
gene 

Detection Matrix Sensitivity LOD Reference 

Brettanomyces/Dekker
a spp. 

LAMP ITS  
Real-time 
turbidity 

Wine 
Beer 

1 × 101 CFU/ mL 

1.5 × 101 CFU/ mL of 
wine  

5.4 × 101 CFU/ mL of 
beer  

[352] 

Aflatoxigenic moulds LAMP 
acl1  
amy1  

Naked-eye 
calcein 

fluorescence 

Brazil nuts 
Peanuts 

Green coffee 
beans 

2.4 pg DNA/ rxn (A. flavus) 
7.6 pg DNA/ rxn (A. nomius) 

20 pg DNA/ rxn (A. parasiticus) 
- [353] 

OTA producing A. 
carbonarius and A. 

niger clade 
LAMP PKS 

Colorimetric 
(HNB) 

Grapes 0.1 ng/ rxn - [281] 

A. flavus 
A. nomius 
A. caelatus 

 

LAMP 
acl1  
amy1 

Naked-eye 
calcein 

fluorescence 
Brazil nuts 

101 conidia/ rxn for A. flavus 
102 conidia/ rxn for A. nomius 

- [354] 
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Aflatoxin producing 
fungi 

LAMP 
acl-1 
amy-1 

Real-time 
turbidity 

Shelled Brazil 
nuts 

Maize 
Peanuts 

10 conidia/ rxn (A. flavus) 
102 conidia/ rxn (A. parasiticus, A. 

nomius) 

10 conidia/ g of Brazil 
nuts (A. nomius, A. 

flavus) 
102 conidia/g of 

peanuts (A. flavus) 
105 conidia/ g of 

peanuts (A. parasiticus) 
104 conidia/ g of maize 

(A. flavus, A. 
parasiticus) 

[355] 

P. nordicum LAMP 
otapksP

N 
Colorimetric 

(HNB) 
Dry-cured meat 

products 
100 fg DNA/ rxn - [356] 

Panfungal LAMP 
18S 

rRNA 
Colorimetric 

(HNB) 
Pepper 

Paprika powder 
100 copies/ rxn 1.1 104 CFU/ g [357] 

Aflatoxin producers 
within Aspergillus 

section Flavi 
LAMP nor1 

Naked-eye 
calcein 

fluorescence 
Colorimetric 
(neutral red) 

Rice 
Nuts 

Raisins 
Dried figs 

Powdered spices 

9.03 pg of DNA/ rxn - [358] 

T. flavus LAMP rlf 
Real-time 

fluorescence 
Strawberries 1 fg of DNA/ µl  64 spores/ g  [359] 

Patulin producing 
Penicillium spp. 

LAMP idh 
Colorimetric 
(neutral red) 

Grapes 
Apples 

2.5 pg of DNA/ rxn - [280] 

P. expansum LAMP 

coding 
sequenc

e of 
gene 

PEX2_04
4840 

Colorimetric 
(neutral red) 

Apples 
Grapes 

Apple juice 
Apple puree 
Grape juice 

25 pg of DNA/ rxn - [360] 

P. oxalicum LAMP 

gene 
coding 

for 
protein 
PDE_071
06 of P. 
oxalicu

m 

Naked-eye 
calcein 

fluorescence 
Colorimetric 
(neutral red) 

Grapes 100 pg of DNA/ rxn - [361] 

Zygosaccharomyces 
spp. 

LAMP ITS 
Lateral flow 

dipstick 
- 1.0 × 101 copies/ µL - [283] 

Panfungal LAMP ITS 
Colorimetric 

(HNB) 
Dry food 9.6 copies - [362] 
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A. flavus RPA 

ITS1 
5.8S 
rRNA 
ITS2 

Gel 
electrophoresis 

Naked-eye 
fluorescence 

(SYBR Green I, 
Celfinder™) 

Corn 
Peanuts 

- 

10 conidia/ g (naked-
eye detection) 

102 conidia/ g (gel 
electrophoresis) 

[284] 

HNB: Hydroxyl Napthol Blue 
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2 HYPOTHESIS & OBJECTIVES 
 

Detection of fungi still relies on culture-based methods, in particular plating on selective or 

differential media. These techniques are laborious and usually require up to 7 days for results, making 

them non-suitable for products with short shelf-lives. As a consequence, there is a need for faster and 

more sensitive methods for fungal detection that will reduce the overall costs for the food industry 

due to product recalls and lengthy analyses. In this sense, DNA-based methods can help overcome 

some of these disadvantages due to their high sensitivity and specificity.  

The main objective of this thesis was the development, and evaluation, of different molecular-

based methods for the detection of selected spoilage responsible, and mycotoxigenic fungi in fruits, 

and products thereof, with the overall goal of reducing the total time of analysis, while maintaining 

the sensitivity when compared to the conventional methods. In order to achieve this, the following 

specific objectives were proposed:  

 To develop a protocol for pre-enrichment, sample treatment, and DNA extraction for the fungi 

of interest in the selected food matrices. (Articles 1-4) 

 To develop and evaluate a panfungal qPCR method, with an IAC, that will serve as the 

reference method for isothermal DNA amplification techniques. (Article 1) 

 To develop and evaluate different isothermal amplification techniques combined with naked-

eye detection of spoilage-responsible and mycotoxigenic fungi. (Articles 2-3) 

 To develop a methodology for the differentiation of viable and non-viable fungi using 

intercalating dyes combined with molecular-based methods. (Article 4) 
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3 METHODOLOGY 

3.1 FUNGAL STRAINS AND CULTURE MEDIA 

A detailed list of all the species used in each assay can be found in Table 3.1, including 

previously identified spoilage responsible fungi isolated from real fruit preparation samples and 

reported as problematic by our industrial collaborators. In addition, other strains responsible for 

spoilage as well as mycotoxin production (e.g. Penicillium spp.) were acquired from external sources. 

All the microorganisms used in this study were stored at -80 °C with 30 % glycerol. Fresh yeast 

cultures were prepared by inoculating a loopful of stock culture in 5 mL of Malt Extract Broth (MEB, 

Liofilchem S.r.l., Italy). The inoculum was incubated for 24 h at 30 °C. Fresh mould cultures were 

prepared by streaking a loopful of the stock culture in Potato Dextrose Agar (PDA, Biokar diagnostics 

S.A., France) followed by incubation for 7 days, either at 30 or 25 °C, depending on the fungus. In 

particular, only N. fischeri, N. glabra and N. laciniosa were incubated at 30 °C. After the incubation, 

fungal spores were harvested by adding 10 mL of Milli-Q water on the plate and scraping its surface. 

The recovered liquid was passed by a syringe filled with cotton in order to retain the hyphae. Viable 

reference values of each strain were calculated by making 100-fold serial dilution in MEB, or Milli-

Q water, from the fresh cultures and plating on PDA. The plates were incubated at 25 °C or 30 °C for 

24–96 h. In addition, Dichloran Rose Bengal Chloramphenicol agar (DRBC, Biokar diagnostics S.A., 

France) and PDA were used for confirmation of the molecular-based techniques. In particular, 100 

µL of the spiked samples were plated on PDA and DRBC plates followed by incubation at either at 

25 or 30 °C, depending of the microorganism, for up to 96 h. Finally, a panel of bacteria was selected 

for testing the inclusivity/ exclusivity of the assays.  



FOTEINI ROUMANI 

 

50 

 

 

 
Table 3.1 List of species selected for the inclusivity/ exclusivity tests 

Microorganism Source 
patulin 

production 
panfungal 

qPCR 

panfungal LAMP 
fluorescent 
(LAMP 18S) 

panfungal LAMP 
colorimetric (LAMP 

18S) 

panfungal 
RPA (RPA-LF) 

qPCR for 
patulin-

producing fungi 

RPA-SG for patulin-
producing fungi 

P. expansum 

MUM 17.41 + + + + N/A + + 

MUM 17.69 + + + + N/A + + 

CECT 2278 + + + + + + + 

fruit 
preparation 

N/D + + + N/A N/A N/A 

P. griseofulvum CECT 2919 + + + + + + + 

P. tunisiense MUM 17.62 - + + + + - - 

Penicillium spp. chestnuts N/D + + + N/A N/A N/A 

+ + + N/A N/A N/A 

N. fischeri FRULACT S.A. - + + + + - - 

N. glabra MUM 9836 - + + + + - - 

N. delicata CBS101754 - N/A + + + - - 

N. coreana CBS117059 - N/A + + + - - 

N. laciniosa CBS117721 - N/A + + + - N/A 

C. albicans ATCC 24433 - + + + + - N/A 
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C. intermedia CECT 1431 - + + + + - - 

M. guilliermondii fruit 
preparation 

- + + + + - - 

M. caribbica fruit 
preparation 

- + + + + - - 

P. fermentans fruit 
preparation 

- + + + + - - 

P. anomala CECT 1113 - + + + + - - 

Mucor spp. chestnuts - + + + N/A N/A - 

T. rugulosus - - N/A N/A N/A N/A N/A - 

Salmonella spp. WDCM 00031 - - N/A N/A N/A - - 

AMC 82 - - - - - N/A N/A 

L. monocytogenes WDCM 00021 - - - - - - - 

L. innocua CUP 1325 - - - - N/A - N/A 

L. ivanovii WDCM 00018 - N/A - - N/A N/A N/A 

Y. enterocolitica WDCM 00038 - - - - - - N/A 

C. difficile CECT 531 - N/A N/A N/A N/A - N/A 

S. aureus WDCM 00033 - N/A - - - - N/A 

WDCM 00034 - - N/A N/A N/A N/A N/A 

Staphylococcus  
coagulase + 

interlaboratory 
test 

- N/A N/A N/A N/A N/A - 

C. jejuni AMC - - - - N/A N/A N/A 

C. coli 
UM - N/A - - - - N/A 
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- - N/A N/A N/A N/A N/A - 

E. faecalis WDCM 00009 - - - - - N/A - 

E. coli  WDCM 00012 - - N/A N/A N/A N/A - 

WDCM 00014 - - - - - N/A N/A 

MUM: Micoteca da Universidade do Minho, CECT: Spanish Type Culture Collection, CBS: Collection from the Westerdijk Fungal Biodiversity Institute, ATCC: American 
Type Culture Collection, WDCM: World Data Centre for Microorganisms, CUP: Catholic University of Porto, UM: University of Minho collection. N/D: not determined. 
N/A:  not applicable 
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3.2 SAMPLE TREATMENT 

3.2.1 Fruit preparations and commercial blackberry jam 

Blackberry and pineapple preparations were provided by FRULACT S.A. (FRULACT S.A., 

Maia, Portugal). In addition, blackberry jam was purchased from a local supermarket. These products 

were the selected food matrices for inoculation in the panfungal qPCR, LAMP and RPA assays. 

Samples were prepared by weighing 50 g of product and mixing with 50 mL of MEB in a stomacher 

bag with filter (pore size <250 μm). After spiking with the desired microorganism, the samples were 

homogenized for 30 s in a Stomacher 400 Circulator (Seward Limited, West Sussex, UK). In addition, 

non-spiked samples were also analysed and served as negative controls. The samples were incubated 

at 30 °C with constant agitation (150 rpm). In the case of samples spiked with yeasts, incubation was 

performed for 24 h. For samples spiked with moulds, two different incubation times were tested, 

namely 24 and 48 h. After the incubation, 10 mL of sample were recovered and transferred in a clean 

15 mL tube. The tube was centrifuged at 400 × g for 2 min, to remove food debris, and the supernatant 

was transferred to a new tube and centrifuged at 9000 × g for 5 min. After the centrifugation, the 

supernatant was removed and the pellet was resuspended in 1 mL of PBS, following a centrifugation 

under the same conditions. The supernatant was removed and the resulting pellet was used for DNA 

extraction. 

3.2.2 Apples, apple juice and apple puree 

Apples, as well as commercial apple juice and apple puree, were purchased from a local 

supermarket, and were the selected food matrices for the inoculation experiments, in the study 

concerning the detection of viable patulin-producing fungi. Initially, 5 g of sample were mixed with 

10 mL of MEB in a stomacher bag, followed by homogenization and incubation at 25 °C with 

constant agitation (150 rpm) at 25 °C for 24 h.  Furthermore, as in the previous section, non-spiked 

samples were also analysed in parallel to serve as negative controls. After the incubation, all the liquid 

was recovered and the cleaning protocol previously described in section 3.2.1was followed.  

3.3 INACTIVATION OF FUNGI AND VIABILITY TREATMENT 

For the inactivation of fungi, 1 mL of a fresh spore culture was heated at 85 °C for 40 min. 

Following the heat treatment, a loopful was streaked on PDA, in order to ensure correct inactivation 

of the fungi. The plates were incubated at 25 °C for up to 96 h. 

Regarding the viability treatment, the pure cultures and/ or the spiked samples were centrifuged 

at 9000 × g for 5 min and the supernatant was removed. The pellet was resuspended in 1 mL of PBS 

and 5 µL of Propidium Monoazide (PMA, Biotium, Hayward, CA, USA) were added. Following this 

procedure, the final PMA concentration was 100 µM.  The tubes were flicked occasionally and 

incubated for 5 min at room temperature in the dark. The photoactivation of the dye was performed 

in a PMA-Lite™ LED Photolysis Device (Biotium) for 30 min. The tubes were centrifuged at 9000 

× g for 5 min and the supernatant was removed. The remaining pellet was used for DNA extraction 

as described below. In the case of spiked samples, the inactivation was performed directly after the 

sample cleaning that was described in section 3.2. 

In order to assess possible inhibitory effects of the dye, PMA, in live cells, as well as the 

efficiency of the inactivation protocol, live and dead spore suspensions of P. expansum were analysed 
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with and without the PMA treatment. The experiment was performed in biological triplicates meaning 

that three different samples were inoculated at the same time with the same number of 

microorganisms and later on they were processed and analysed in parallel. In addition, for 

determining the capacity of the PMA treatment to block the amplification of DNA only from dead 

cells, apples were inoculated with a mixture of live: dead cells in different ratios. The selected ratios 

were 107:107, 106:107, 105:107 spores/ mL, respectively. In addition, apples were spiked with only 

live or dead cells. These experiments were performed in biological duplicates. 

 

3.4 DNA EXTRACTION 

DNA was extracted using the DNeasy® PowerSoil® Pro kit (Qiagen, Dusseldorf, Germany) 

following the manufacturer’s instructions. The pellet resulting from the initial treatments, i.e. the 

sample cleaning and the PMA treatment, was resuspended in 800 µL of the first buffer of the kit 

(CD1) and transferred to the bead tube provided for DNA extraction. DNA extracts were stored at -

20 °C until they were analysed. DNA concentration was measured with a Qubit™ 4 Fluorometer 

(Invitrogen™, Carlsbad, CA, USA) with the use of the Qubit™ dsDNA HS Assay Kit. 

3.5 GENE AND PRIMERS/PROBE DESIGN 

The design of the primers/ probes for the molecular-based assays was performed as follows: in 

the first step sequences of the targeted gene were retrieved from the GenBank and aligned with the 

CLC Sequence Viewer 8 (CLC Bio, Qiagen, Aaarhus, Denmark). Next, the consensus that resulted 

from the alignment was used for the design of the desired oligonucleotides. For designing the qPCR 

oligonucleotides the online software Primer3Plus [363] was selected. The LAMP primers were 

designed with the assistance of the Primer Explorer V4 software 

(http://primerexplorer.jp/elamp4.0.0/index.html) and the RPA primers with the PrimedRPA Software 

[364]. All the primers and probes were purchased from Integrated DNA Technologies Inc. (IDT, 

Leuven, Belgium). A detailed list of the sequences can be found in Table 3.2. 

 

Table 3.2 Primers and probes list 

Assay Prime/Probe Sequence (5’→3’) Modification Reference 

panfungal qPCR ITS3 (F) GCA TCG ATG AAG AAC GCA GC - 
[365] 

ITS4 (R) TCC TCC GCT TAT TGA TAT GC - 
ITSP TCC AGA GGG CAT GCC TGT TTG AGC FAM/IABkFQ [366] 

NC-IAC F AGT TGC ACA CAG TTA GTT CGA G - 
[367] 

NC-IAC R TGG AGT GCT GGA CGA TTT GAA G - 

IAC P AGT GGC GGT//GAC ACT GTT GAC CT 
YY/ZEN/ 
IABkFQ 

[368] 

panfungal LAMP 
(LAMP 18S) 

F3 18S ACG GGG AAT AAG GGT TCG A - 

[369] 

B3 18S TTG GAG CTG GAA TTA CCG C - 

FIP 18S 
ATT GGG TAA TTT GCG CGC CTG TTT 

TAG AGG GAG CCT GAG AAA CG 
- 

BIP 18S 
TAC AGG GCC CTT TCG GGT CTT TTT 

CTT GCC CTC CAA TTG TTC CT 
- 

LF 18S GCC TTC CTT GGA TGT GGT AGC - 
LAMP POW F3 POW CAA AGT CTT TGG GTT CTG G - 

[357] 
B3 POW CCA ACT AAG AAC GGC CAT - 

http://primerexplorer.jp/elamp4.0.0/index.html
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3.5.1 Panfungal qPCR assay 

For the panfungal qPCR assay, the fungi detection was achieved by targeting the internal 

transcribed spacer (ITS) region. In this sense, the universal primers ITS3 and ITS4 [365] were 

selected and a hydrolysis probe (ITSP) was designed in house for the assay. To this end, the following 

sequences of the ITS region were retrieved from the GenBank in order to design the hydrolysis probe: 

Candida santamariae: KJ707034, KY102388; Meyerozyma guilliermondii: MW217204; 

Wickerhamomyces anomalus: KJ70630, MT875243; Aspergillus fischeri: MH858698, MN121343; 

Penicillium expansum: MT872092, MT738604; Penicillium griseofulvum: MH866419; Candida 

albicans: MW335163, MT777659; Pichia fermentans: MT645427, MT136540; Candida intermedia: 

FJ515166, MT731452. In addition, a non-competitive Internal Amplification Control (NC-IAC) was 

included in each reaction to eliminate false negative results due to reaction inhibition [367].  

3.5.2 Panfungal LAMP assay (LAMP 18S) 

For the panfungal LAMP assay the 18S rRNA gene was targeted. In this sense, sequences for the 

18S rRNA gene were retrieved from GenBank (C. intermedia EF142412, EF152415 and AB013571; 

C. santamariae NG_063403 and NG_063417; P. fermentans NG_063276, EF550372, AB053241, 

GQ458040, DQ489318, AY497743, KX150667 and KX150681; P. anomala NG_062034, 

MG712300, KU147479 and KU147484; N. fischeri NFU21299, EU278602 and GU733354; S. 

cerevisiae MF662289 to MF662299, MF662300 to MF662309, MF662311, MF662312, MF662313 

and MF662314). Furthermore, a set of previously published LAMP primers, from now on LAMP 

POW, also targeting the 18S rRNA gene, was used for comparison purposes against the developed 

assay [357]. The previously developed panfungal qPCR assay (section 3.5.1) served as the 

confirmation method.  

3.5.3 Panfungal RPA assay (RPA-LF) 

As with the panfungal qPCR, the ITS region was selected for the development of this assay. In 

particular, the universal primers ITS3 and ITS4 [365] were chosen. Based on the study by Liu et al. 

[371], the forward primer was tagged with digoxigenin and the reverse primer with biotin, at their 5′ 

end for detection with the lateral flow (LF) strips (Abingdon Health, York, UK). Once more, the 

panfungal qPCR assay was used as the confirmation method.  

FIP POW 
CAA ATT AAG CCG CAG GCT CCT ATG 

GTC GCA AGG CTG AA 
- 

BIP POW 
CTC AAC ACG GGG AAA CTC ACC CAC 

CAT CCA AAA GAT CAA GAA 
- 

LF POW GCC CTT CCG TCA ATT TCT TTA AGT - 
panfungal RPA-

LF 
ITS3-DIG (F) GCA TCG ATG AAG AAC GCA GC Digoxigenin 

[365] 
ITS4-Bio (R) TCC TCC GCT TAT TGA TAT GC Biotin 

qPCR for 
patulin-

producing fungi 

idh2444 (F) ATG CAC ATG GAA GGC GAG AC - 
[313] 

idh2778 (R) 
CAA VGT GAA TTC CGC CAT CAA CCA AC 

 
- 

idhP2 (P) TGG GAG GGC CGA CAG AGG TG 
FAM/ZEN/IA

BkFQ 
[370] 

RPA-SG for 
patulin-

producing fungi 

idhRPA F 
ACG CGG GAA CTA GGA GGC ACG CGG 

GGT ATG 
- 

[370] 
idhRPA R 

CGA TAA TCA CGT CAA TTC GTC CGA 
GTC GCT 

- 

YY (Yakima Yellow), IABkFQ (Iowa Black®FQ) and ZEN (secondary, internal quencher) are trademarks from IDT. 
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3.5.4 qPCR assay for patulin-producing fungi  

Detection of patulin-producing fungi was achieved by targeting the isoepoxydon dehydrogenase 

(idh) gene which is involved in the biosynthetic pathway of patulin production. To this end, the 

previously published primers idh2444 and idh2778 [313] were selected and a hydrolysis probe 

(idhP2) was designed in house. For this purpose, sequences of the idh gene were retrieved from 

GeneBank: P. paneum DQ343635, DQ343636; P. carneum DQ343637, DQ343638; P. gladioli 

DQ343625, DQ343626; P. expansum DQ084388, DQ343639, DQ343640, DQ343642, AY885568, 

AY885569, AY885570; P. sclerotigenum DQ343632, DQ343634; P. clavigerum AY885571, 

AY885572; P. dipodomyicola DQ343643; P. glandicola DQ343627, DQ343631. 

3.5.5 RPA-SG assay for patulin-producing fungi 

For the RPA assay the idh gene was targeted again. In this sense, a forward and a reverse primers 

were designed using the same consensus sequence as the one selected for the design of the probe of 

the qPCR assay. The results of the RPA-SG assay were compared against the results of the qPCR 

assay for the patulin-producing fungi.  

3.6 ASSAYS OPTIMIZATION 

All the real-time assays (i.e. panfungal qPCR, panfungal LAMP with fluorescence detection, and 

qPCR for patulin-producing moulds) were performed in a StepOne Plus™ Real-Time PCR system 

(Applied Biosystems™) with StepOne™ Software v2.3. In addition, the end-point assays that were 

coupled afterwards with naked-eye detection (i.e. colorimetric LAMP, RPA-LF, and RPA-SG) were 

performed in a Veriti Thermal Cycler (Applied Biosystems™).  

3.6.1 Panfungal qPCR assay 

For the optimization, the following parameters were considered: primers and probe 

concentration, amplification temperature and template volume. The qPCR amplification reactions 

were carried out in a final volume of 20 μL out of which 10 μL corresponded to TaqMan® Fast 

Advanced Master Mix (Applied Biosystems™, Foster City, CA, USA). For the NC-IAC, 100 nM of 

primers and probe were added along with 1 μL of NC-IAC DNA which corresponded to 926 copies/ 

μL. Initially, the following thermal profile was used: 2 min at 50 °C for Uracil-DNA Glycosylase 

(UDG) treatment, 2 min at 95 °C for Hot-Start polymerase activation and 40 cycles of denaturation 

at 95 °C for 15 s followed by annealing at 58 °C for 1 min and extension at 72 °C for 20 s. To 

determine the optimal primer concentration, the range between 300 to 700 nM were tested. 

Subsequently, the probe concentration was optimized by testing 250, 350 and 500 nM. Thirdly, 3 to 

5 μL of template DNA were evaluated. Finally, the optimal amplification temperature was determined 

in a gradient from 55 to 60 °C. 

3.6.2 Panfungal LAMP assay (LAMP 18S) 

Regarding the optimization of the panfungal LAMP assay the following parameters were 

evaluated: ratio of outer and inner primers, loop primer concentration, amplification temperature, and 

template volume. The evaluation was performed by real-time fluorescence detection coupled with 

melt curve analysis. The optimal conditions were adopted for the colorimetric assay. The experiments 

were performed in a final reaction volume of 20 μL out of which 12 μL corresponded to GspSSD 
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Isothermal Mastermix (Optigene Ltd., Horsham, UK). For the colorimetric assay the Visual detection 

RT Isothermal Mastermix (Optigene Ltd.), was selected. Initially, the optimal ratio of outer and inner 

primers was optimized. In this sense, the concentration of the F3/B3 primers was kept constant at 200 

nM and concentrations of 800, 1000 and 1200 nM of FIP/BIP primers were tested. This corresponded 

to 1:4, 1:5 and 1:6 of outer: inner primers ratio, respectively. Secondly, the loop primer concentration 

was optimized by testing 300, 400 and 500 nM. Subsequently, the template volume was evaluated 

between 3 to 6 μL of DNA. Finally, the optimal amplification temperature was determined in a 

gradient from 61 to 66 °C. During the optimization process, experiments were run at 65 °C for 30 

min with fluorescence detection every 30 s. To perform the melt curve analysis, once the 

amplification step was completed, the samples were heated at 95 °C for 15 s, 80 °C for 60 s and 

heating up to 95 °C with temperature increments of 0.2 °C, and fluorescence acquisition after each 

increment. The colorimetric LAMP experiments were performed at 66 °C for 30 min. For 

interpretation of the results, tubes with a blue/turquoise colour were considered positive while 

colourless tubes were negative. In addition, the positive tubes were incubated for extra 10 min to 

generate a more intense colour change. 

3.6.3 qPCR assay for patulin-producing fungi 

For this assay the same conditions as for the panfungal qPCR assay were optimized. In addition, 

the time of annealing/ extension was evaluated. Initially, the primers concentration was optimized in 

a range from 200 to 500 nM, and the probe between 150 and 350 nM. The optimal amplification 

temperature was determined in a gradient from 57 to 62 °C. Subsequently, the thermal profile was 

assessed by reducing the annealing time and elimination of the extension step in order to reduce the 

time of the assay without compromising the sensitivity. Finally, 2 to 5 µL of template were evaluated. 

During the optimization experiments, the following thermal profile was used: 2 min at 50 °C 2 min 

at 95 °C and 40 cycles of denaturation at 95 °C for 15 s followed by annealing at 59 °C for 1 min and 

extension at 72 °C for 1 min.  

3.7 RPA ASSAYS 

3.7.1 Panfungal RPA assay (RPA-LF) 

The panfungal RPA was performed with the TwistAmp® basic kit (TwistDX Limited, 

Maidenhead, UK) in a final volume of 50 μL. The primer concentration was set at 400 nM, and the 

DNA template was 2 μL. The volumes of the rehydration buffer (29.5 μL) and the magnesium acetate 

(2.5 μL) were the ones recommended by the manufacturer. All the experiments were run at 39 °C for 

30 min. Five microliters of the amplified product were mixed with 1 μL of 6 × NZYDNA loading 

dye (NZYTech, Lisbon, Portugal) and subsequently separated in a 2 % agarose gel electrophoresis in 

sodium borate buffer (SB) [372] containing 4 μL of GreenSafe (NZYTech). The electrophoresis was 

run for 30 min at 300 V, and the gel was visualized in a Gel Doc EZ Imager (Bio-Rad laboratories, 

Inc., USA). The NZYDNA Ladder VI (NZYTech) was included to verify the size of the amplicons. 

For the LF detection, the PCRD FLEX strips (Abingdon Health, York, UK) were used. Five 

microliters of the amplified product were mixed with 145 μL of PCRD FLEX Extraction Buffer, and 

the LF strip was immersed in the tube. The results were visualized after 2 min of incubation at room 

temperature. 
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3.7.2 RPA-SG assay for patulin-producing fungi 

The assay was performed with the TwistAmp® Basic kit (TwistDx Limited) in a final volume of 

25 µL out of which 14.75 µL corresponded to rehydration buffer and 1.25 µL to magnesium acetate. 

The primer concentration was 400 nM and the template volume was set at 2 µL. All the experiments 

ran for 20 min at 39 °C.  At the end of the experiment the amplified product was mixed with 1 µL of 

1000X SYBR Green I (SG, Invitrogen™, Carlsbad, CA, USA) and fluorescence was observed naked-

eye with a help of a handheld UV Lamp in the “short wave” mode which corresponded to 254 nm 

(Analytik Jena, Upland CA, USA). In addition, the fluorescence was also visualized in the Gel Doc 

EZ Imager (Bio-Rad laboratories, Inc.). 

3.8 EVALUATION OF THE ASSAYS 

3.8.1 Inclusivity/ exclusivity 

The inclusivity/ exclusivity of all the primers and probes was tested in silico using the Basic 

Local Alignment Search Tool (BLAST®, https://blast.ncbi.nlm.nih.gov/Blast.cgi). In continuation, 

confirmation was performed in vitro against a selected panel of yeasts, moulds and bacteria, relevant 

to food quality and safety. In Table 3.1, a detailed list of the microorganisms tested in each assay 

with the obtained results can be found. 

3.8.2 qPCR efficiency and dynamic range 

The efficiency of the qPCR assays, as well as the dynamic range, was determined by testing 10-

fold serial dilutions of pure fungal DNA in sterile Milli-Q water. The efficiency was calculated based 

on the equation [186]: 

𝑒 = 101/𝑠 − 1 Equation 1 

 

where “s” corresponds to the slope of the standard curve. The determination of the efficiency was 

performed in biological triplicates. All experiments were performed in technical triplicates, providing 

a total of 9 data points per concentration level. The determination of the dynamic range was performed 

in biological triplicates using one technical replicate.  

3.9 EVALUATION OF THE METHODS 

3.9.1 Determination of the Limit of Detection (LOD) in food samples 

The LOD50 and LOD95, meaning the LOD with 50 % and 95 % probability of providing a positive 

result, were calculated based on the PODLOD calculation program described by Wilrich & Wilrich 

[373]. Food samples were spiked with decreasing concentrations of fungi in biological 

quadruplicates. The number of positive and negative samples for each spiking level were inputted to 

the model to calculate the LOD. Simultaneously, non-spiked samples were tested to confirm that the 

original sample was not previously spoiled or contaminated.  

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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3.9.2 Fitness-for-purpose 

For the evaluation of the fitness for purpose additional samples were spiked with different 

concentrations of fungi. Each spiking experiment was performed in biological duplicates. The 

samples were classified as Positive/Negative Agreements (PA/NA), if the results obtained were in 

accordance with the reference method or as Positive/Negative Deviations (PD/ND) if the results did 

not match. All the parameters were calculated attending to the equations and definitions previously 

described [374,375]. In particular, the following quality parameters were calculated: relative 

sensitivity (SE), relative specificity (SP), accuracy (AC), positive and negative predictive values 

(PPV/NPV) and the Cohen’s kappa (k). 

 SE: percentage of positive samples giving a correct positive signal.  

𝑆𝐸 =
𝑃𝐴

(𝑃𝐴 + 𝑁𝐷) 
× 100 

Equation 2 

 

 

 SP: percentage of negative samples giving a correct negative signal.  

𝑆𝑃 =
𝑁𝐴

(𝑃𝐷 + 𝑁𝐴) 
× 100 

   Equation 3 

 

 

 AC: degree of correspondence between the response obtained by the expected result and the 

method on identical samples.  

𝐴𝐶 =
(𝑃𝐴 + 𝑁𝐴)

𝑁 
× 100 

Equation 4 

 

 

N= total number of samples analysed.  

 

 PPV and NPV: measure the performance of the method by calculating the probability of a 

sample being truly positive or negative when the method results in a positive or negative 

result.  

𝑃𝑃𝑉 =
𝑃𝐴

(𝑃𝐴 + 𝑃𝐷) 
× 100 

Equation 5 

 

 

𝑁𝑃𝑉 =
𝑁𝐴

(𝑁𝐴 + 𝑁𝐷) 
× 100 

Equation 6 

 

 

 The Cohen’s kappa (k): degree of concordance between the method and the expected result. 

𝑘 =  2 x
(PA x NA)  − (ND x PD)

(PA +  PD) x (PD +  NA) + (PA +  ND) x (ND +  NA)
 

Equation 7 
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5 DISCUSSION 
 

Fast and sensitive methods for the detection of fungi is of utter importance for the food industry, 

particularly the detection of spoilage-responsible fungi in order to reduce costs related with product 

recalls and lengthy analyses, and to prevent food loss and waste [376]. Furthermore, these methods 

can be an important tool for food safety and quality control of mycotoxin-producing fungi due to the 

adverse health effects that mycotoxins represent to human and animal health 

(https://food.ec.europa.eu/safety/chemical-safety/contaminants/catalogue/mycotoxins_en). In this 

sense, DNA-based amplification techniques have been utilised in the last years for the detection of 

spoilage-responsible, and mycotoxigenic fungi in a variety of food products. In particular, many 

different PCR/ qPCR assays have been reported for fungal detection due to their high sensitivity and 

specificity [176,253,256,262,332]. However, over the last years alternatives to PCR/ qPCR based on 

isothermal nucleic acid amplification techniques, like LAMP and RPA, have been explored. These 

techniques do not require expensive equipment since they run at a constant temperature, and 

consequently only a thermal block or water bath is needed. In addition, visualisation of the results 

can be performed by naked-eye observation of colour change [282], fluorescence [284], turbidity 

[377] or even combined with lateral-flow dipsticks [283]. This represents an added advantage of these 

techniques since they can be implemented in POC (Point-Of-Care) or PON (Point-Of-Need) devices 

for on-site testing as a tool for rapid screening of raw materials and foods. In this thesis, different 

molecular-based amplification methods for panfungal detection as well as for the detection of patulin-

producing fungi in fruits and products thereof were developed and evaluated.  

Initially, different media were tested, including YPD, MEB and SDB, in order to select the 

optimal one for the growth of the fungi of interest. Based on kinetics studies, and on the protocols in 

place on our industrial partner’s site, MEB was the selected broth for the pre-enrichment step. In 

continuation, the sample size, and incubation conditions, were determined based on previous studies 

and the previous experience from the industrial partner. Additionally, the sample treatment was 

optimized according to previous experiments performed in our laboratory. Finally, regarding the 

DNA extraction, two commercial kits were tested, being the PowerSoil Pro kit from Qiagen the one 

providing the best results, and thus it was the selected one for the experiments to follow.  

Regarding the molecular methods, in the first step a qPCR assay was developed and evaluated. 

The method targeted both, yeasts and moulds, and was evaluated in different fruit preparations. In 

this sense, the universal primers ITS3 and ITS4, which have been previously described by White et 

al.  [365], were selected. To further increase the specificity of the assay a fluorescent hydrolysis probe 

was designed and evaluated in house. The selectivity of the primers and probe was evaluated both in 

silico by running a BLAST® analysis as well as in vitro against a panel of 18 fungal strains and 8 

bacterial species, typically found in food products.  

Furthermore, up to date, only a few assays for the detection of fungi in food products, have been 

published that include an IAC [211,212,265,271]. Implementation of an IAC in the assay provides 

increased confidence against false negative results that are the outcome of reaction inhibition. In 

https://food.ec.europa.eu/safety/chemical-safety/contaminants/catalogue/mycotoxins_en
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particular, Paterson [209] stressed out the importance of including an IAC in fungal PCRs, especially 

in the case of pathogenic fungi that false negative results can have a strong effect on human’s health 

as well as due to the fact that many fungi can produce secondary metabolites that might have 

inhibitory properties. In this sense, a NC-IAC was implemented in our assay that had been previously 

reported by Garrido-Maestu et al. [367,368].  

The analytical sensitivity of the qPCR assay was assessed by testing ten-fold serial dilutions of 

C. intermedia’s pure DNA and building a standard curve. Although, no guidelines have been 

established for fungal qPCR assays, Fredlund et al. [378] suggested that the criteria that have been 

set for GMO can be used. According to those, the slope of the standard curve typically lies between 

-3.1 to -3.6, the efficiency between 90 and 110 % and the R2 should be equal or above 0.98. In our 

assay, the efficiency was calculated to be 83 %, which was below the aforementioned range. 

However, since the aim of the developed assay was the detection of the presence of a wide range of 

fungi, rather than the quantification of a specific species, the decreased efficiency was considered as 

no problematic. This was confirmed later on during the evaluation of the method.  In addition, the 

reported efficiency was in the range previously reported by Op De Beeck et al. [379] that used the 

same set of primers. Additionally, the size of the amplification product is 337 bp, which is 

considerable larger than the recommended amplicon length for qPCR assays that should not exceed 

the 150 bp [380]. This might explain the lower efficiency that was obtained and consequently in this 

case was considered optimal.  

With the optimized assay, detection of down to 10.4 fg/ µL of pure DNA could be detected. Our 

reported analytical sensitivity fell within the range of previously reported assays. In particular, 

Syromyatnikov et al. [337] were able to detect down to 10 fg/ µL of pure Z. rouxii DNA. The same 

analytical sensitivity was reported by Rodríguez et al. [341] for the detection of OTA-producing 

moulds. Additionally, González-Salgado et al. [339] reported an analytical sensitivity of 25 fg/ µL 

for A. carbonarius. Bernáldez et al. [271] developed a multiplex qPCR for the detection of aflatoxin-

producing moulds and P. chrysogenum, being able to detect down to 10 fg/ µL and 100 fg/ µL of pure 

DNA, for each target microorganism respectively.  

The final step in the development of the panfungal qPCR assay was the evaluation of the overall 

method in real samples. In this sense the evaluation was performed separately for yeasts and moulds 

in fruit preparations. In addition, for moulds two different pre-enrichment times were selected, 

namely 24 and 48 h; while samples inoculated with yeasts were incubated only for 24 h. The obtained 

LOD95 values were 3.9 CFU/ 50 g for yeasts, 1.2 × 102 spores/ 50 g and 3.7 × 10 spores/ 50 g for 

moulds after 24 and 48 h of pre-enrichment, respectively. The calculated LOD for yeasts was within 

the range of previously reported assays for the detection of spoilage yeasts; thus highlighting the high 

sensitivity of our assay. In particular, Phister & Mills [321] reported a LOD of 1 CFU/ mL for the 

detection of D. bruxellensis in wine. Additionally, Martorell et al. [325] were able to detect S. 

cerevisiae with a LOD of 3.8 and 5.0 CFU/ mL in sweet and red wine, respectively. Rawsthorne & 

Phister [326] developed a qPCR assay for the detection of Z. baillii in fruit juices and wine with an 

estimated LOD ranging from 2- 22 CFU/ mL for the different food products. Finally, Tofalo et al. 

[331] reported a LOD of 10 CFU/ mL for the detection of Brettanomyces spp. in red wine. Regarding, 

the LOD of moulds, once more the obtained values fell within the range of previously reported assays. 

In a similar study, Sardiñas et al. [330] reported LODs of 106 spores/ mL and 102 spores/ mL without 

enrichment, and after a 16 h enrichment for the detection of A. flavus and A. parasiticus in wheat 

flour; thus highlighting the importance of a pre-enrichment step in order to decrease the LOD of the 

assay. In addition, Rodríguez et al. [211,342] reported LODs ranging from 1 to 2 log CFU/ g for the 

different food products tested in two assays developed for the detection of cyclopiazonic acid-
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producing and aflatoxin-producing moulds. Based on the obtained LOD95 values, the performance 

parameters of the method were calculated. The obtained values were higher than 85.0 % and the 

Cohen’s k above 0.86 for all the assays, meaning that our method was almost in complete concordance 

with the reference method [374,381], i.e. traditional culture-based plating. In total 8 deviations were 

observed that corresponded to 4 PDs of non-spiked samples, with a Cq value close to the cut-off value 

of the qPCR assay, and 4 NDs. Two of the samples that were classified as NDs showcased reaction 

inhibition since the NC-IAC did not amplify either. Consequently, a 1:10 dilution was tested in order 

to remove possible qPCR inhibitors; however, the samples resulted again negative for our target but 

positive this time for the NC-IAC. Nevertheless, we cannot discard the fact that due to the low initial 

concentration, by performing the dilution in order to remove the inhibitors the fungal DNA might 

have also been diluted in excess resulting in a negative result. Furthermore, the third sample that gave 

a false negative result corresponded to a spiked sample close to the LOD, which can explain the 

deviation. Finally, the fourth sample that deviated was a DNA extract obtained more than a year ago 

prior to the analysis with the final qPCR assay, that was frozen and thawed several times, that might 

have resulted in a decrease of the quantity and quality of the extracted DNA; thus explaining the false 

negative result. Overall, the developed method was sensitive for the detection of both yeasts and 

moulds and consequently served as the reference method for the isothermal amplification techniques 

that were developed later on.  

After the development of the qPCR assay with a NC-IAC for panfungal detection, two isothermal 

amplification techniques were developed. First, a LAMP assay targeting the 18S rRNA gene and in 

continuation a RPA assay coupled with LF detection that targeted the ITS region. In more detail, a 

newly designed set of primers for the LAMP assay was optimized and evaluated. Two different 

detection strategies were selected, namely real-time fluorescence and colour change. Regarding the 

RPA assay, the universal primers ITS3/ ITS4 [365] were selected and tagged with digoxigenin and 

biotin, respectively. This approach was adapted by Liu et al. [371] with the aim of simplifying the 

assay by avoiding the use of a nfo probe. As with the qPCR, the specificity of the primers for both 

assays was assessed in silico as well as in vitro against a selection of microorganisms. In particular, 

20 fungal strains, including 6 yeasts and 14 moulds, and 10 bacterial species, including 5 Gram-

positive and 5 Gram-negative bacteria, were selected for testing the specificity of the assay. The 

bacteria that were tested for the exclusivity are commonly encountered in food samples. All the 

primers presented good inclusivity towards the selected fungi and good exclusivity since all the 

selected bacteria failed to amplify.  

Subsequently, the analytical sensitivity of the assays was evaluated by testing ten-fold serial 

dilutions of M. caribbica and N. fischeri pure DNA. Both the colorimetric and the fluorescent LAMP 

assays were able to cover a 5-log dynamic range down to 1.4 pg/ reaction when pure DNA from M. 

caribbica was used. When pure DNA from N. fischeri was used, detection down to 17 pg/ reaction 

and 170 pg/ reaction were detected with the fluorescent and the colorimetric assay, respectively. The 

reported results were in the range of previously published studies. In particular, Luo et al. [353] 

reported an analytical sensitivity of 2.4 pg/ reaction for A. flavus in their LAMP assay combined with 

calcein fluorescence detection by naked-eye. In another study, Niessen et al. [358] were able to detect 

down to 9.03 pg/ reaction of pure DNA from aflatoxin-producing moulds belonging to the Aspergillus 

section Flavi. Vogt et al. [361] developed a LAMP assay coupled with naked-eye detection of colour 

change or clacein fluorescence for P. oxalicum  with an analytical sensitivity of 100 pg/ reaction. 

Frisch et al. [360] detected down to 25 pg/ reaction of pure DNA from P. expansum with their 

developed naked-eye colorimetric LAMP. Even though, in some of the studies the reported sensitivity 

was higher it should be noted that the amplification time was increased, in some instances even up to 

60 min [280,382–384]. In this sense, Shan et al. [385] reported different analytical sensitivities after 



FOTEINI ROUMANI 

 

70 

 

incubating at different times for the detection of F. temperatum using SYBR Green and gel 

electrophoresis as the detection methods. In particular, after 60 min of incubation up to 10 pg/ reaction 

were detected, after 45 min 100 pg and after 30 min 100 ng could be successfully detected. Similarly, 

Panek & Fraç [359] reported values ranging from 100 to 1 fg/ μL after 30 and 55 min, for the detection 

of T. flavus in a real-time fluorescence LAMP assay. However, it should be taken into account that 

extended incubation times can lead to false positive results [386,387]. Consequently, optimization of 

the amplification time is of utter importance in LAMP assays in order to avoid these type of issues.  

Regarding, the RPA-LF assay an analytical sensitivity of 1.2 pg/ µL, covering a 4-log dynamic 

range, was achieved for both yeasts and moulds. Since detection of fungi frequently encountered in 

foods has still not been explored with RPA, the results were compared against assays for the detection 

of fungal pathogens. In this sense, different groups have reported an analytical sensitivity of 10 pg/ 

μL of pure fungal DNA for Phytophthora spp. and Verticillium dahliae [388–390]. In another study, 

Dai et al. [391] reported an analytical sensitivity of 0.1 ng/ µL for P. hybernalis pure DNA. In other 

studies, more sensitive assays have been developed like Lu et al. [392] who were able to detect down 

to 0.5 pg/ µL of pure P. infestans DNA and Karakkat et al. [393] that reported values ranging from 

1-100 fg/ µL for the detection of different root-infecting fungi.  

The final step in the development of the panfungal isothermal assays consisted on their evaluation 

in food samples. The quality parameters of both the colorimetric and the fluorescent LAMP were 

assessed by spiking fruit preparations with different yeasts. In addition, the quality parameters were 

evaluated with a previously published set of LAMP primers [282] and the detection was performed 

both by naked-eye observation of colour change, and real-time fluorescence for direct comparison. 

Thus in total four different methodologies were evaluated. The LOD95 obtained was 3.1 CFU/ 50 g 

for the two fluorescent assays, hence both assays were equally sensitive. Regarding the colorimetric 

assays, the one developed in this study proved to be more sensitive with a LOD95 of 3.0 CFU/ 50 g, 

whereas the one used for comparison resulted in a LOD95 of 10.9 CFU/ 50 g. Furthermore, the 

obtained LOD was similar to the one reported for the yeasts detection by qPCR in this thesis (LOD95 

1.0 CFU/ 50 g). As a result, the newly developed LAMP assay was as sensitive as the reference 

method but with the added advantages that the colorimetric assay can be used for POC detection and 

additionally reduce the cost of analyses, since only a thermal block for heating is needed. 

Furthermore, the reported LOD was similar with a previously reported study by Hayashi et al. [352] 

for the detection of Brettanomyces/ Dekkera spp. in wine and beer. Finally, Zhang et al. [282] who 

developed the comparative LAMP assay selected for this study, reported a LOD of 1.1 × 103 CFU/mL 

for A. niger in spiked paprika samples without an enrichment step. However, we were able to reduce 

this limit down to 10.9 CFU/ 50 g and 3.1 CFU/ 50 g for the colorimetric and fluorescent assay by 

implementing a pre-enrichment step. Even though the inclusion of a pre-enrichment step delays the 

results by 24 h, it allows to highly improve the LOD, and when compared with the lengthy culture-

based methods it still represents a significant time reduction from 7 days to next-day detection that 

can be a great advantage for the food industry. Regarding the determination of the quality parameters, 

in all the assays the values obtained were above 90 % with some exceptions for each assay that were 

the result of few PDs and/or NDs. This can be probably explained by the fact that one of the 

disadvantages of the LAMP assays is the risk of cross contamination through aerosolized products 

due to the high production of DNA that can lead to false positive results [394]. Finally, based on the 

Cohen’s k values, the newly developed colorimetric assay was in “almost complete concordance” 

with the reference method, i.e. the panfugal qPCR assay, while the fluorescent one was in “ substantial 

agreement” [374,381].  
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The evaluation of the panfungal RPA-LF method was performed both in yeasts and moulds in 

blackberry jam samples. The LOD50 was found to be 1.0 CFU/ 50 g for yeasts and 47.5 spores/ 50 g 

for moulds, respectively. The obtained LOD50 for yeasts was the same as the one reported for the 

developed panfungal qPCR and LAMP assays in this thesis, indicating that all the methods developed 

during this study were equally sensitive for the detection of yeasts. On the other hand, the reported 

LOD50 for moulds was higher compared to the one of the panfungal qPCR assay which was found to 

be 8.6 spores/ 50 g. Nevertheless, our assay was more sensitive compared to the one of Ju et al. [389] 

that reported a LOD of 103 spores/ g for the detection of V. dahliae in soil samples and it was in the 

same range with the study of Liu et al. [284] for the detection of A. flavus in grains. Regarding the 

quality parameters, all of them were above 80 % and the Cohen’s k was found to be 0.77 for both 

yeasts and moulds detection, meaning that the developed methods were in “substantial agreement” 

with the reference method [374,381]. Regarding the recorded deviations, two samples spiked with 

1.0 CFU of yeast were found to be positive for the RPA-LF but negative for the qPCR; thus, they 

were classified as PDs. However, the inoculation level of these samples was equal to the LOD50 of 

both assays, meaning that there is a 50 % possibility of getting a positive result at this spiking level.  

This can explain the fact that one assay resulted positive while the other was negative. Furthermore, 

one sample spiked with mould spores was classified as PD. This specific sample should have been 

positive for both assays; however, a positive result was only obtained for the RPA-LF whilst the 

qPCR was negative, and additionally a reaction inhibition was observed since the IAC did not amplify 

as well. As a result, a 1:10 dilution of the sample was tested, but again the qPCR was negative for the 

ITS target but positive this time for the IAC. These results can be explained by the fact that RPA has 

reported to be more robust against common PCR inhibitors [237].  In addition, 2 samples spiked with 

yeasts were classified as NDs; however, the inoculation level was low.  

Lastly, we developed two molecular-based methods, namely a qPCR and a RPA coupled with 

SYBR Green I, for the detection of patulin-producing fungi. Apples and products thereof were the 

selected food matrices, since P. expansum, which is the main patulin producer, is also responsible for 

food spoilage incidents in this fruit that can lead to huge economic losses. In addition, detection of 

only viable fungi was achieved with the implementation of an intercalating dye (PMA) during the 

sample treatment. In this sense, a previously published set of PCR primers was chosen [313] that 

targeted the idh gene and a fluorescent probe was designed in house. For the RPA assay a new set of 

forward and reverse primer were designed with the use of the PrimedRPA software [364]. The 

selected gene, idh, is involved in the biosynthetic pathway of patulin by encoding for an enzyme that 

catalyses the conversion of isoepoxydon to phyllosistine [156]. The inclusivity/ exclusivity of the 

primers was evaluated as it was described before and all the oligonucleotides were found to be 

specific.  

In continuation, the analytical sensitivity of both assays was assessed by testing ten-fold serial 

dilutions of P. expansum DNA. The amplification efficiency of the qPCR assay was calculated to be 

89 %, which is slightly lower from the recommended minimum value of 90 % [378]. Nevertheless, 

as with the panfungal qPCR assay, this assay was intended for detection rather than quantification. 

Furthermore, the assay covered a 5-log dynamic range down to 1.25 pg/ µL of pure P. expansum 

DNA. The reported analytical sensitivity fell within the range of previously reported values for the 

detection of mycotoxigenic fungi. In particular, Tannous et al. [265] reported a value of 0.1 ng of 

pure P. expansum DNA. Passone et al. [336] reached an analytical sensitivity of 125 pg/ µL and 

Sardiñas et al. [330] of 0.5 ng/ µL both for the detection of aflatoxin-producing moulds. Furthermore, 

Gil-Serna et al. [328] detected down to 2.5 pg/ reaction for OTA-producing fungi. Finally, Vegi et al. 

[273] were able to detect down to 3 pg/ µL in a multiplex PCR for the simultaneous detection of 

mycotoxigenic fungi.  Regarding the RPA-SG assay, a 4-log dynamic range was achieved thus 
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detecting down to 23.8 pg/ µL. The reported value is similar to the one reported by other studies (10 

ng/ µL) for the detection of fungal pathogens [388–390]. However, the panfungal RPA assay that was 

developed during this thesis was more sensitive compared to this assay, with the ability to detect 

down to 1.2 pg/ µL. Nevertheless, it should be taken into account that in all the above mentioned 

assays, detection with lateral flow was performed, while in this particular study emission of 

fluorescence was observed.  

One of the main limitations of DNA-based amplification techniques is that they cannot 

differentiate between viable and dead cells. In order to overcome this problem, PMA was included in 

the assays, which is an intercalating dye with the ability to penetrate dead cells, bind to their DNA 

and, upon photoactivation, block its amplification. Consequently, in this study we proved that the 

PMA could efficiently block the amplification of DNA originating from dead spores with 

concentrations up to 107 spores/ mL. Additionally, no toxic effects were observed on the live spores. 

Furthermore, the effect of the PMA was assessed in spiked apple samples and once again PMA 

successful blocked the amplification of DNA from dead spores in the same range of concentrations. 

The effect of PMA in apples inoculated with a mixture of live and dead spores in different ratios was 

also assessed. It was observed that when apples were spiked with 108 dead spores, the PMA did not 

fully inhibit the amplification as one of the three replicates was positive. These results suggested that 

the PMA can inhibit the amplification of DNA coming from dead spores with concentrations of up 

to 107 but the presence of higher concentrations of dead microorganisms may hinder the blocking 

capacity of the dye. These results are in line with previously reported assays for the detection of viable 

fungi [183,277–279].  

In the final step the evaluation of both methods was performed in spiked apples, apple puree and 

apple juice. The LOD50 was calculated to be 8.1 × 103 spores/ 5 g and 5.8 × 104 spores/ 5 g, for the 

qPCR and the RPA-SG method, respectively. Even though, the calculated LOD for the qPCR was 

higher compared to the one of the panfungal qPCR assay (LOD50 2.9 × 10 spores/ 50 g) that was 

developed during this thesis, it was within the range of other assays for detection of fungi. More 

specifically, Bagnara et al. [320] reported a LOD of 4.5 × 103 CFU/ g for the detection of A. flavus. 

Gil-Serna et al. [328] were able to detect OTA-producing fungi in green coffee beans and grapes with 

a LOD of 106 spores/ mL. Wan et al. [264] and Hierro et al. [275] both reported a LOD of 103 CFU/ 

mL for the detection of spoilage moulds and yeasts present in wine, respectively. In addition, Selma 

et al. [267] achieved a LOD of 5 × 103 conidia/ g for the detection of A. carbonarius in wine. In 

relation to the LOD of the RPA-SG assay, this was also higher compared to the LODs of the RPA-

LF as well as the panfungal qPCR, which were evaluated during this thesis. However, the limit of 

detection was comparable with the one previously reported by Ju et al. [389] for the detection of V. 

dahliae in artificially contaminated soil samples. Finally, based on the obtained LOD50 values the 

quality parameters were evaluated. All the qPCR tests were performed using the original DNA 

extracts as well as a 10-fold dilution to exclude the possibility of false negative results due to reaction 

inhibition since an IAC was not implemented in this assay. Indeed, inhibitors were present in some 

occasions but this inhibition could be avoided with the additional dilution. In the case of the RPA-SG 

assay that was not considered problematic since it has been proved to be more robust to inhibitors 

compared to qPCR [237]. Even though in this specific assay an IAC was not included due to time 

restrictions, it should be highlighted its importance in order to overcome problems related to false 

negative samples due to PCR inhibitors present in the samples [209]. For both developed methods 

the quality parameters were above 90 % and the Cohen´s k was 0.93 and 0.92, for the qPCR and the 

RPA-SG, indicating that both assays were “in almost complete concordance” with the reference 

method [374,381]. During the evaluation of the qPCR assay two deviations were recorded, 1 PD and 

1 ND. The ND corresponded to an apple sample spiked with a mix of live: dead spores. Even though 
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this sample was expected to be positive, no amplification was observed. This can be the result of 

reaction inhibition since it was correctly identified as positive by the RPA-SG assay. Additionally, it 

has been previously reported that the RPA is more robust against common PCR inhibitors [237]. The 

PD corresponded to a sample spiked with 2.1 × 108 dead spores and as a result it was expected to be 

negative. Nevertheless, a positive result was recorded that can be the outcome of the inability of the 

PMA to block the DNA amplification from such a high number of dead microorganisms. In particular, 

previous studies have reported that the capacity of PMA is limited [232,395]. Furthermore, the same 

sample was classified as PD by the RPA-SG assay, further enhancing our theory about the limited 

capacity of the PMA to block the amplification of DNA from high concentrations of dead cells. 

Finally, during the evaluation of the RPA-SG another sample was classified as PD.  

Overall, during this thesis different molecular-based assays were developed and evaluated. More 

specifically one qPCR assay with an IAC for the detection of fungi in fruit preparations was evaluated 

separately for yeasts and moulds and due to its excellent performance it was selected as the reference 

method for the methods that were developed later on. In this sense, in a second step a LAMP assay 

was developed selecting two different ways for results visualization, namely naked-eye colour change 

and real-time fluorescence. The LAMP assay proved to be equally sensitive with the qPCR assay 

with remarkable quality parameters. The advantage of the colorimetric assay is that it can be used for 

POC applications; however extreme care should be taken when handling the LAMP reactions to avoid 

problems related to cross-contamination through aerosolized products [394]. Subsequently, another 

isothermal based DNA amplification technique was tested, namely a RPA assay coupled with LF for 

universal fungal detection. In this assay, the primers were tagged with digoxigenin and biotin and in 

this way the use of an nfo probe was avoided, thus simplifying the assay and taking into account that 

the nfo kit from TwistDx was discontinued recently. Again, the developed assay was as sensitive as 

the panfungal qPCR and LAMP assays. In the same way as with the LAMP assay, the added 

advantage of the RPA is that it can be used for POC applications and on-site testing for rapid screening 

of raw materials and products along the food value chain. Consequently, highly reliable analytical 

solutions were developed, and it will depend on the final user to decide which method is more suitable 

for the intended application. After the development of the panfungal assays, it was decided to 

investigate rapid methods for the detection of patulin-producing fungi. In this sense, initially a qPCR 

assay was developed and later on a RPA assay coupled with naked-eye SYBR Green detection by 

emission of fluorescence. Both assays, were less sensitive compared to the panfungal assays and 

between the two the qPCR was slightly more sensitive compared to the RPA-SG. The reasons for the 

decreased analytical sensitivity and increased LODs can be the use of different matrix, apples instead 

of fruit preparations, as well as the different target fungi since in this case it was Penicillium spp., 

while in the panfungal assays it was mainly N. fischeri. By optimizing the sample size and/ or the 

incubation time and temperature, can result in increased sensitivity.  

Finally, even though traditional culture-based methods remain the selected techniques for 

detection of yeast and moulds by the food industry they present many disadvantages. In particular, 

they are laborious, time consuming, and needing up to 7 days for results thus rendering them 

unsuitable for products with short-shelf lives [181,182]. In this sense, DNA-based methods can 

overcome some of these disadvantages due to their high sensitivity and sepcificity. As a consequence, 

during this thesis, it was successfully managed the decrease of the analysis time from 7 days to a 

next-day or two-day detection with the optimization of a protocol including, pre-enrichment, sample 

treatment and DNA extraction and ultimately a molecular-based assay for detection with high 

specificity and sensitivity. In addition, with the simple implementation of an intercalating dye before 

the DNA extraction, detection of only viable cells can be easily achieved.  Consequently, the 

developed methods are representing an interesting alternative for food industry that can result in faster 



FOTEINI ROUMANI 

 

74 

 

and more economic analyses. In addition, they can be implemented for POC applications in order to 

perform early-screening and control of raw ingredients and/ or foods across the supply chain.  
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6 CONCLUSIONS 
 

In the present thesis, the detection of spoilage-responsible and mycotoxigenic fungi in different 

food matrices was achieved in 24-48 h, providing a faster alternative to the conventional culture-

based techniques which require up to 7 days from sampling to result. Therefore, the developed 

methods have proven to be an interesting option for the food industry contributing to reduction of 

costs associated with lengthy analyses. Small modifications of the proposed methodology including 

enrichment time and temperature as well as sample size have proven to contribute to higher sensitivity 

and/or specificity, which gives the developed methodology the required flexibility to fit the needs of 

the food industry. Furthermore, the different methods showcased different advantages. In particular, 

the real-time PCR assays were found to be more sensitive; however, they require a real-time 

thermocycler in order to be performed. On the other hand, the isothermal amplification techniques 

coupled with naked-eye detection could be used for POC testing and early screening since they only 

require a heating device; providing in many cases a comparable sensitivity to the qPCR assays. 

The main achievements of the study are summarized below: 

 A protocol for pre-enrichment, sample treatment, and DNA extraction and purification was 

developed in order to increase the sensitivity of the assays by removing possible inhibitors 

from the food matrices in the most efficient possible manner. In particular, a pre-enrichment 

step of 24-48 h was included to enhance the sensitivity of the method. Furthermore, 

differential centrifugation and cleaning steps followed by DNA extraction and purification 

with a commercial kit were adopted resulting in fungal DNA extracts of good quality and 

yield as well as free of DNA inhibitors.  

 

 In the first step, a panfungal qPCR assay targeting the universal ITS region was developed 

and evaluated. The universal primes ITS3/ITS4 were used and a hydrolysis probe was 

designed in order to increase the specificity of the assay. The implementation of a NC-IAC in 

the assay resulted in higher confidence by elimination of false negative results due to reaction 

inhibition. This assay served as the reference method for the isothermal amplification 

techniques that were designed later on.  

 

 Two isothermal DNA amplification techniques were developed, and evaluated, combined 

with different detection strategies for panfungal detection. First, a LAMP assay was designed 

based on the 18S rRNA gene and coupled with either real-time fluorescence or naked-eye 

detection by colour change. In addition to this, a RPA assay targeting the ITS region using the 

universal primers ITS3/ITS4 was evaluated, and upon modification of the primers with 

digoxigenin and biotin, naked-eye detection with LF strips was possible. The colorimetric 

LAMP and the RPA-LF have the potential to be used for POC testing throughout the food 

chain since they do not require expensive equipment. 

 

 Two molecular assays were developed and evaluated, namely a qPCR and a RPA, for the 

detection of patulin-producing fungi in apples and apple-based products. Both assays targeted 

the idh gene. Results visualization of the RPA assay was performed by naked-eye after the 

addition of SYBR Green in the amplified product. The developed qPCR assay was proved to 

be more sensitive compared to the RPA-SG; however, the proposed RPA assay had the 
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advantage of enabling naked-eye detection of the results and consequently, could be used for 

on-site testing and be a helpful tool for an early screening of the fruits.  

 

 Differentiation of viable and non-viable cells was successfully achieved by adding PMA 

before the extraction of the DNA. The addition of the PMA in the selected concentration was 

able to inhibit amplification originating from dead cells without causing any toxic effect in 

the live cells.  
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does not require the Collection apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You must, to the extent
practicable, remove from the Collection any credit as required by Section 4(b), as requested. If You
create an Adaptation, upon notice from any Licensor You must, to the extent practicable, remove
from the Adaptation any credit as required by Section 4(b), as requested.

b. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless
a request has been made pursuant to Section 4(a), keep intact all copyright notices for the Work
and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor
designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution
("Attribution Parties") in Licensor's copyright notice, terms of service or by other reasonable means,
the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably
practicable, the URI, if any, that Licensor specifies to be associated with the Work, unless such
URI does not refer to the copyright notice or licensing information for the Work; and (iv) , consistent
with Section 3(b), in the case of an Adaptation, a credit identifying the use of the Work in the
Adaptation (e.g., "French translation of the Work by Original Author," or "Screenplay based on
original Work by Original Author"). The credit required by this Section 4 (b) may be implemented in
any reasonable manner; provided, however, that in the case of a Adaptation or Collection, at a
minimum such credit will appear, if a credit for all contributing authors of the Adaptation or
Collection appears, then as part of these credits and in a manner at least as prominent as the
credits for the other contributing authors. For the avoidance of doubt, You may only use the credit
required by this Section for the purpose of attribution in the manner set out above and, by
exercising Your rights under this License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution
Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution Parties.

c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by
applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part
of any Adaptations or Collections, You must not distort, mutilate, modify or take other derogatory
action in relation to the Work which would be prejudicial to the Original Author's honor or
reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise of the
right granted in Section 3(b) of this License (the right to make Adaptations) would be deemed to be
a distortion, mutilation, modification or other derogatory action prejudicial to the Original Author's
honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the
fullest extent permitted by the applicable national law, to enable You to reasonably exercise Your
right under Section 3(b) of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO
EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS
LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You
of the terms of this License. Individuals or entities who have received Adaptations or Collections
from You under this License, however, will not have their licenses terminated provided such



10/20/22, 6:42 PM Creative Commons Legal Code

https://creativecommons.org/licenses/by/3.0/legalcode 4/4

individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of
the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to
release the Work under different license terms or to stop distributing the Work at any time;
provided, however that any such election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the terms of this License), and this
License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the
recipient a license to the Work on the same terms and conditions as the license granted to You
under this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a
license to the original Work on the same terms and conditions as the license granted to You under
this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to the minimum extent
necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver
or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to the
Work not specified here. Licensor shall not be bound by any additional provisions that may appear
in any communication from You. This License may not be modified without the mutual written
agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced, in this License were drafted utilizing
the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of
1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright
Convention (as revised on July 24, 1971). These rights and subject matter take effect in the
relevant jurisdiction in which the License terms are sought to be enforced according to the
corresponding provisions of the implementation of those treaty provisions in the applicable national
law. If the standard suite of rights granted under applicable copyright law includes additional rights
not granted under this License, such additional rights are deemed to be included in the License;
this License is not intended to restrict the license of any rights under applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection
with the Work. Creative Commons will not be liable to You or any party on any legal theory for any
damages whatsoever, including without limitation any general, special, incidental or consequential
damages arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if
Creative Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and
obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL,
Creative Commons does not authorize the use by either party of the trademark "Creative Commons"
or any related trademark or logo of Creative Commons without the prior written consent of Creative
Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark
usage guidelines, as may be published on its website or otherwise made available upon request from
time to time. For the avoidance of doubt, this trademark restriction does not form part of this License.

Creative Commons may be contacted at https://creativecommons.org/.
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In the present thesis, the detection of spoilage and 
mycotoxigenic fungi in different food matrices was achieved in 
24-48 h, 
providing a faster alternative to the conventional culture-based 
techniques which require up to 7 days from sampling to 
result. Consequently, the developed methods present an 
interesting alternative for the food industry as each method
showcased different advantages. In particular, the real-time 
PCR assays have proven to be more sensitive; however, they 
require a real-time thermocycler in order to be performed. On 
the other hand, the isothermal amplification techniques 
coupled with naked-eye detection could be used for POC testing 
and early screening since they only require a heating 
device; providing in many cases a comparable sensitivity to the 
qPCR assays.
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