
INTERNATIONAL DOCTORAL
SCHOOL OF THE USC

Marcos
Matabuena

PhD Thesis

Contributions on metric spaces
with applications in
personalized medicine

Santiago de Compostela, 2022

Doctoral Programme in Information Technology Research





TESE DE DOUTORAMENTO

CONTRIBUTIONS ON METRIC
SPACES WITH APPLICATIONS
IN PERSONALIZED MEDICINE

Marcos Matabuena Rodríguez

ESCOLA DE DOUTORAMENTO INTERNACIONAL DA UNIVERSIDADE DE SANTIAGO DE
COMPOSTELA

PROGRAMA DE DOUTORAMENTO EN INVESTIGACIÓN EN TECNOLOXÍAS DA INFORMACIÓN

SANTIAGO DE COMPOSTELA
2022





Declaración do autor da tese

Don Marcos Matabuena Rodríguez
Título da tese: Contributions on metric spaces with applications in personalized medicine.

Presento a miña tese, seguindo o procedemento adecuado ao Regulamento, e declaro que:

1. A tese abarca os resultados da elaboración do meu traballo.

2. De ser o caso, na tese faise referencia ás colaboracións que tivo este traballo.

3. Confirmo que a tese non incorre en ningún tipo de plaxio doutros autores nin de traballos
presentados por min para a obtención doutros títulos.

4. A tese é a versión definitiva presentada para a súa defensa e coincide a versión impresa
coa presentada en formato electrónico.

E comprométome a presentar o Compromiso Documental de Supervisión no caso de que o
orixinal non estea na Escola.

En Santiago de Compostela, 28 de Septiembre de 2022

Asdo. Marcos Matabuena Rodríguez





Autorización do director da tese
Contributions on metric spaces with applications in personalized

medicine

Don Paulo Félix Lamas, Profesor Titular da Área de Ciencia da Computación e
Intelixencia Artificial da Universidade de Santiago de Compostela

Dona Balbina Casas Méndez, Profesora Titular da Área de Estatística e Investigación
Operativa da Universidade de Santiago de Compostela

INFORMAN:

Que a presente tese correspóndese co traballo realizado por Don Marcos Matabuena
Rodríguez, baixo a nosa dirección, e autorizamos a súa presentación, considerando
que reúne os requisitos esixidos no Regulamento de Estudos de Doutoramento da USC,
e que como directores desta non incorre nas causas de abstención establecidas na Lei 40/2015.

De acordo co indicado no Regulamento de Estudos de Doutoramento, declara tamén
que a presente tese de doutoramento é idónea para ser defendida en base á modalidade de
Monográfica con reproducción de publicaciones, nos que a participación do/a doutorando/a
foi decisiva para a súa elaboración e as publicacións se axustan ao Plan de Investigación.

En Santiago de Compostela, 28 de Septiembre de 2022

Asdo. Paulo Félix Lamas
Director/a tese

Asdo. Balbina Casas Méndez
Director/a tese







MARCOS MATABUENA RODRÍGUEZ

He never explained anything, just posed
problems, one of them, V. I. Arnold, once
said. He didn’t chew them over. He gave
the student complete independence...

(about Andrei Kolmogorov)

Who reads much and walks much sees
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maticians do not gang up, but the weak
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super-abstractness, anti-Semitism or ”ap-
plied and industrial” problems), but the
essence is always a solution of the social
problem - survival in conditions of more lit-
erate surroundings. By the way, I shall re-
mind you of a warning of L. Pasteur: there
never have been and never will be any ”ap-
plied sciences”, there are only applications
of sciences (quite useful ones!).

Vladimir Arnold

Freedom is learned in school: freedom or
slavery.

Emilio Lledó

It is impossible to be a mathematician
without being a poet in soul.

Sofia Kovalevskaya
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Notation

𝒳, 𝒴 set of covariates, set of responses
(𝒴,𝑑) metric space with set 𝒴 equipped with distance 𝑑
𝑓,𝑔 density functions 𝑓,𝑔
𝐹 ,𝐺 distribution functions 𝐹,𝐺

𝐹 −1,𝐺−1 quantile functions from 𝐹,𝐺
𝑑𝒲2

(𝑓,𝑔) 2-Wasserstein metric
𝑃𝑋, 𝑃𝑌 , 𝑃𝑋,𝑌 probability distributions over 𝑋, 𝑌 and (𝑋,𝑌 )

𝐸 expectation operator
𝑃 (𝒳) set of distribution functions over 𝒳

𝒲𝑝 (𝒳) 𝑝−Wasserstein space
𝑚(⋅) regression function

ℱ class of functions
ℋ reproducing kernel Hilbert space (RKHS)

𝑘 ∶ 𝒳×𝒳 → ℝ+ kernel function over 𝒳
𝜌(⋅, ⋅) semi-metric negative type

𝐹 (𝒳) ∶= {𝑓 ∶ 𝒳 → ℝ} set of real functions whose domain is 𝒳
⟨⋅, ⋅⟩ dot product

ℳ𝑓(𝒳) set of finite Borel measures on 𝒳
𝐶 (𝒳) ∶= {𝑓 ∶ 𝒳 → ℝ; f is continuous} set of continuous real functions whose domain is 𝒳

𝜙 ∶ ℳ𝑓(𝒳) → ℋ,𝜙(𝐹) Evaluation of kernel mean embedding in an arbitrary distribution 𝐹
𝕂 Kernel of Nadaraya-Watson estimator
ℎ smoothing parameter Nadaraya-Watson estimator
𝜎 smoothing parameter Gaussian and Laplacian kernel
𝛿 missing data indicator

𝜋(⋅) = 𝑃 (𝛿 = 1|𝑋 = ⋅) missing data mechanism under missing completely at random (MCAR)
𝑤∗

𝑖 standardized inverse probability weighting estimator
̃ empirical estimator





Resumen

En la última década se han producido avances reseñables en la transducción de señales biológ-
icas y el posterior reconocimiento de eventos de interés fisiopatológico [153]. Los progresos
en esta área han estimulado la aparición de una prometedora y robusta tecnología de biosen-
sores a partir de enfoques no invasivos y de bajo coste [274]. La adopción de esta tecnología
en la práctica clínica ha de conducir necesariamente al desarrollo de nuevos métodos para
obtener información más sofisticada sobre los cambios en la salud de los pacientes en tiempo
real [153, 274]. Un ejemplo paradigmático lo encontramos en los sistemas de lazo cerrado
para la dispensación de insulina mediante una bomba que se ajusta dinámicamente según la
lectura continua de la glucosa, que actualmente está revolucionando la gestión de pacientes
con diabetes tipo 1 [135, 229].

Con la ganancia de la información registrada sobre los pacientes y una mayor disponibil-
idad de estos sensores entre la población general, el desarrollo de modelos estadísticos y de
aprendizaje automático es el siguiente gran paso para establecer las bases metodológicas de los
nuevos paradigmas clínicos de la medicina digital y de precisión [93, 138, 139, 153, 162, 298].

La medicina de precisión pretende optimizar la calidad de la atención sanitaria individual-
izando el proceso asistencial de acuerdo a los cambios de la condición clínica del paciente a lo
largo del tiempo [138]. En este nuevo paradigma las decisiones se apoyan fundamentalmente
en enfoques guiados por datos. Matemáticamente, la medicina de precisión se formaliza como
un problema de optimización dinámica. Las acciones potenciales podrían ser: la selección del
fármaco a utilizar, la selección de la dosis, el momento de la administración, la recomendación
de una dieta o un ejercicio específico [138].

Desafortunadamente, la práctica generalizada en la actualidad es que los tratamientos no
se prescriben de forma personalizada y se centran en optimizar la salud del individuo medio de
la población de estudio. En consecuencia, el efecto de los tratamientos resulta subóptimo a
lo largo de una amplia lista de enfermedades y fenotipos de pacientes [27, 28, 240, 243, 266].

Indudablemente, la prescripción del tratamiento óptimo es el objetivo crucial de la medicina
personalizada [138], pero para alcanzarlo se requiere de la modelización de una amplia lista
de problemas previos [139]. De acuerdo con las contribuciones presentadas aquí, algunas de
las nuevas direcciones de investigación tienen como objeto el diseñar nuevas representaciones
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de los datos proporcionados por biosensores y dispositivos vestibles que nos permitan registrar
los cambios en la salud de los pacientes con mayor precisión y capturar más información
para alimentar diferentes algoritmos predictivos con más exactitud. En el contexto de la
medicina digital, centrada en la explotación de la información proporcionada por dispositivos
electrónicos de medida, cada vez resulta más común evaluar el impacto del tratamiento en el
estado del paciente mediante biomarcadores digitales (definidos a partir de métricas derivadas
de la monitorización de distintas variables ambientales, biomecánicas o fiosiológicas [153]),
presentando a menudo una naturaleza compleja, ya sea en forma de perfiles funcionales para
representar la variabilidad de la frecuencia cardíaca [196], el gasto energético [177], o la
concentración de glucosa [178], o bien como grafos de conectividad cerebral, que contienen
información fundamental acerca de la estructura y topología de los distintos patrones de
actividad neuronal [289]. En este contexto, resulta fundamental diseñar nuevas pruebas de
hipótesis como medida confirmatoria de la eficacia de un fármaco, por ejemplo, en el marco
de un ensayo clínico aleatorizado [49, 51, 57, 125, 139, 140].

Motivado por el progreso en el campo de la medicina de precisión con los elementos
de la medicina digital, el principal propósito de esta tesis es desarrollar nuevas metodologías
estadísticas y de aprendizaje automático para analizar objetos estadísticos complejos [62] como
son los datos funcionales euclidianos, o construcciones más generales en espacios métricos,
como las distribuciones de probabilidad, que viven en espacios no lineales sin estructura de
espacio vectorial [178, 215].

En primer lugar abordamos el reto de analizar series temporales biológicas en pacientes
que se encuentran monitorizados fuera del entorno hospitalario, durante aquellas actividades
que forman parte de su rutina diaria. Este reto presenta una dificultad de partida al abordar un
análisis global comparativo de las series de tiempo registradas, debido a que los pacientes son
monitorizados en periodos de distinta duración, siguen diferentes estilos de vida, o existen im-
portantes diferencias cronobiológicas entre ellos. Para solucionar dicho problema, encontramos
en la bibliografía distintas representaciones que extraen algunas características resumen de la
serie, en forma de valores promedio o de indicadores de la variabilidad [141, 187]. Así todo, a
día de hoy las métricas vectoriales de naturaleza composicional constituyen el estándar de facto
utilizado para resumir la información de los datos de los biosensores en múltiples dominios,
como en la diabetes a partir del uso de monitores continuos de la glucosa, o en la la actividad
física mediante dispositivos de acelerometría [31, 64, 177, 178]. Estas métricas cuantifican
la proporción de tiempo que el paciente se encuentra en cada una de las zonas objetivo o
en categorías definidas de antemano. Precisamente, su gran simplicidad e interpretabilidad
explican su éxito entre los usuarios [187].

No obstante, uno de los mayores inconvenientes del uso de las métricas vectoriales de
naturaleza composicional en la práctica es que no podemos cuantificar el impacto en la salud
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del tiempo que permanece el paciente sobre un continuo de valores registrados por el dispositivo
sensor. En su lugar, estas métricas proporcionan un resumen de la información de las series
temporales en un conjunto reducido de intervalos, con la consiguiente pérdida de información.
Aparte de esta importante desventaja, resumir la información en intervalos presenta otros
importantes inconvenientes. Necesitamos cierto conocimiento experto para definir los puntos
de corte, que pueden depender de la tarea de modelización específica y de la población de
estudio a analizar. Precisamente, este aspecto se viene cuestionando insistentemente en las
últimas investigaciones sobre la actividad física con acelerómetros [187].

En esta tesis, y con el fin de superar estos inconvenientes proponemos usar la extensión
natural a nivel funcional de las métricas vectoriales de naturaleza composicional, que permite
capturar más información. La idea de partida es considerar la distribución de probabilidad o
la función de densidad de los diferentes segmentos de la serie temporal biológica registrada
[178]. Una de las ventajas de esta nueva representación es que no requiere la categorización
de la información en intervalos definidos a partir de conocimiento experto.

Desde un punto de vista formal, proponemos una representación distribucional cuyo análisis
deriva del análisis de datos composicionales, pero según una perspectiva funcional [119, 265].
A este respecto, el análisis de datos con esta representación presenta algunos retos importantes.
Por ejemplo, dado que los datos composicionales viven en un simplex de probabilidad, no ex-
iste una estructura de espacio vectorial (a menos que nos restrinjamos a las combinaciones
convexas), lo que implica la necesidad de aplicar técnicas alternativas de análisis de datos
para transformar el espacio de entrada no lineal en un espacio lineal más apropiado [215]. El
proceso se puede resumir como sigue: 1) transformación composicional a un espacio vectorial
euclidiano; y 2) aplicación de modelos de regresión euclidianos. Sin embargo, esto presenta
limitaciones sustanciales para realizar tareas inferenciales precisas y para construir métodos
matemáticos con garantías teóricas con muestras finitas. Además, las transformaciones com-
posicionales clásicas u otros enfoques más recientes no están bien definidos cuando hay ceros
en alguna de las partes de la representación. En la extensión funcional este problema se agrava
debido a que el soporte de la distribución de probabilidad varía entre los distintos individuos
que son objeto de monitorización.

Para superar esta limitación, proporcionamos un nuevo marco de análisis de datos fun-
cionales composicionales basado en el enfoque de la teoría del transporte óptimo, junto al
análisis estadístico en espacios métricos, concretamente en espacios de Hilbert de núcleo re-
productor (reproducing kernel Hilbert spaces - RKHS). De forma más específica, proponemos
un conjunto de núcleos con geometría de la distancia 2−Wasserstein, que es fácilmente com-
putable en el caso particular de distribuciones de probabilidad unidimensionales. Este marco de
análisis permite construir modelos de regresión, métodos de selección de variables, métodos de
cuantificación de la incertidumbre, y test de hipótesis. Abordamos el contexto usual de datos
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independientes e idénticamente distribuidos, así como otros más complejos como el de los dis-
eños de encuesta, o de datos perdidos, habituales estos últimos en los estudios longitudinales
cuando el paciente renuncia a continuar su participación.

La eficacia real de las representaciones distribucionales propuestas se evaluarán en los
ámbitos de la diabetes y la actividad física. Para ello, utilizaremos los datos de un estudio
longitudinal sobre la diabetes: el Estudio de Glicación e Inflamación de A Estrada (AEGIS)
[101], en el que se dispone para cada paciente de información sobre la monitorización continua
de la glucosa (continuous glucose monitoring - CGM) durante aproximadamente una semana.
Con esta información de alta resolución se pretende responder a algunas preguntas de interés
clínico sobre el impacto que determinadas representaciones distribucionales tienen sobre la
capacidad de predicción de los valores de glucosa a largo plazo. En el caso de la actividad física,
utilizamos datos de sucesivas encuestas NHANES (National Health and Nutrition Examination
Survey) en EE.UU., que disponen de información de los hábitos de actividad física de la
población americana medidos de forma objetiva mediante dispositivos de acelerometría. En
este caso, ilustraremos el uso y las ventajas de las representaciones distribucionales en este
contexto para analizar la relación entre la actividad física, la mortalidad y supervivencia de
los participantes en todo el espectro de intensidades de actividad física registradas por el
acelerómetro. En los distintos análisis realizados proporcionaremos evidencias sólidas sobre los
beneficios de usar estas representaciones en términos de capacidad de predicción y sensibilidad
clínica en los dominios mencionados.

Aquí conviene recordar que la diabetes es probablemente la pandemia más importante de
este siglo [120, 256] con unas tasas de prevalencia alarmantes que se espera que aumenten en
los próximos años, debido principalmente al empeoramiento de los estilos de vida, motivado
tanto por un incremento de los niveles de inactividad como por el empobrecimiento en la
calidad de las dietas en todo el mundo. Diversas organizaciones y especialistas reclaman
nuevas políticas de salud pública para mejorar el control y la propagación de la enfermedad.
Los enfoques de telemedicina, medicina digital y de precisión [45, 145] pueden ser un paso
adelante e inspirar nuevas soluciones de gran efectividad para revertir este problema. En
esta dirección, algunos trabajos recientes han planteado la hipótesis de que la inclusión de
biomarcadores digitales procedentes de la motorización continua de la glucosa puede mejorar
la detección temprana de la enfermedad [105]. Hace diez años la motorización continua de la
glucosa ya supuso un gran avance en la transformación de la gestión de la diabetes [135, 229].
Hoy en día, la adopción de estas tecnologías encuentra más aplicaciones, tanto en poblaciones
sanas como enfermas. Por ejemplo, los dispositivos de monitorización continua de la glucosa
se utilizan en la nutrición de precisión para personalizar las dietas en función de cómo la ingesta
de alimentos específicos modifica nuestros valores de glucosa [23].

En cuanto a la importancia de analizar los datos de actividad física, destacaremos que hoy
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en día la actividad física se considera la intervención no farmacológica de bajo coste más eficaz
para combatir un amplio espectro de enfermedades, como la diabetes o el síndrome metabólico
[208]. La actividad física es también una intervención efectiva para retrasar el deterioro cog-
nitivo y funcional asociado al envejecimiento [231]. Por todo ello, en la actualidad, hay un
importante consenso para promover el deporte como un elemento esencial en la construcción
de sociedades modernas saludables y la digitalización de la práctica deportiva puede ser un
punto esencial para alcanzar dicho objetivo. La adopción de enfoques de medicina personal-
izada en esta área de conocimiento es una tarea pendiente [233], y esta tesis introduce nuevas
aportaciones en esta dirección.

A continuación delimitamos con mayor precisión los objetivos y contenidos de cada uno de
los capítulos que componen esta tesis doctoral.

El capítulo 2 tiene como objetivo introducir las herramientas necesarias para entender
el formalismo del análisis estadístico de objetos complejos que toman valores en espacios
métricos. Asimismo, motivaremos el uso de estas herramientas de análisis mediante algunos
ejemplos de interés por sus múltiples aplicaciones en la medicina contemporánea. Primero
comenzaremos introduciendo la noción de media y varianza de Fréchet que generaliza la noción
de centro y dispersión usual en el contexto de los espacios métricos [82]. Introduciremos
algunas propiedades básicas del problema de estimación, que puede ser escrito en forma de
un problema de M-estimación [277] y, en consecuencia, permite usar la teoría existente para
derivar la teoría límite en algunos casos usando las herramientas clásicas de la teoría de procesos
empíricos [220]. De acuerdo a estas ideas introducimos la noción de modelo de regresión
lineal en espacios métricos [214], de nuevo expresando el problema como un problema de
M-estimación, y haciendo uso de la teoría asociada a esta familia general de estimadores. A
continuación, puesto que el objetivo de esta tesis es ilustrar los métodos en el caso particular de
las representaciones distribucionales con la geometría inducida por la distancia 2-Wasserstein,
y esta construcción está motivada por el problema del transporte óptimo de distribuciones
de probabilidad [205], introduciremos las métricas de Wasserstein. A continuación, en tanto
que planteamos realizar las distintas tareas de modelado bajo el paraguas de los espacios
de Hilbert con núcleo reproductor (RKHS) haremos una breve introducción a los elementos
centrales de este paradigma, que permite analizar e integrar datos de naturaleza compleja.
Además, introduciremos la noción de kernel mean embedding [191], que sirve como base formal
para definir distancias estadísticas entre las representaciones distribucionales y otros objetos
estadísticos complejos, y que nos servirá en capítulos posteriores para definir test estadísticos de
igualdad de distribución, test de independencia estadística o realizar análisis clúster. El capítulo
3 tiene como objetivo introducir desde un punto de vista formal las nuevas representaciones
distribucionales para aquellas series temporales que son generadas por un proceso estocástico
en tiempo continuo, como es el caso de un medidor de CGM, que mide los valores de la glucosa
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intersticial de forma dinámica y cada pocos minutos. Asimismo, proporcionaremos evidencias
de las ventajas de la nueva representación frente a las métricas existentes de resumen de la
información de los datos de CGM, como las métricas composicionales del tiempo en rango,
medidas de variabilidad glucémica u otros biomarcadores clínicos existentes. Finalmente, como
las nuevas representaciones distribucionales generan datos funcionales composicionales que
no se pueden analizar con las técnicas usuales de datos funcionales, proporcionaremos una
serie de técnicas de análisis estadístico en espacios métricos para analizar distintos problemas
que pueden aparecer en la clínica, como tests de hipótesis para evaluar la efectividad de un
tratamiento, análisis de regresión para predecir la evolución del paciente, o análisis clúster para
descubrir nuevos fenotipos clínicos.

De forma similar, el capítulo 4 tiene como objeto introducir formalmente y validar las
nuevas representaciones distribucionales, pero en el caso en que el proceso estocástico es
mixto, como ocurre con los datos de acelerómetros. Aquí la validación se realiza utilizando
datos del estudio NHANES, que provienen de un diseño experimental de encuesta. Extende-
mos algunos métodos predictivos previos a datos complejos, para poder analizar las ventajas
potenciales de las nuevas representaciones, como el método kernel ridge para la regresión, y
utilizamos el estimador Nadaraya-Watson para la clasificación en espacios métricos. Al final de
este capítulo proponemos como aplicación en la población mayor la identificación de nuevos
fenotipos clínicos de la actividad física, con importantes implicaciones en la práctica para mon-
itorizar la actividad física y como variables de seguimiento de la supervivencia y pronóstico de
los pacientes.

En el capítulo 5 proponemos nuevos métodos de aprendizaje estadístico supervisado
para problemas con datos perdidos en la variable respuesta, basados en métodos previos
del paradigma RKHS. Los nuevos métodos incluyen algoritmos de cuantificación de la
incertidumbre, medidas de dependencia estadística o algoritmos de selección de variables. La
tarea de modelización consiste en predecir cómo cambian los valores de glucosa a cinco años
en términos del biomarcador A1c, estándar de facto actual para el control y diagnóstico de
la enfermedad. Los resultados obtenidos en este capítulo son una prueba de que la inclusión
de la monitorización continua de la glucosa conduce a una mejora en la predicción de la
condición glucémica del paciente a largo plazo.

En el capítulo 6, y motivados por la necesidad de comparar las posibles variaciones en las
representaciones distribucionales en dos instantes de tiempo, por ejemplo, antes y después de
administrar un determinado tratamiento, proponemos nuevas pruebas de hipótesis para datos
emparejados y perdidos con objetos estadísticos complejos, mediante métodos núcleo. Vali-
daremos estos métodos, diseñados con carácter general, mediante un análisis de la evolución
de la glucosa a cinco años en distintos subgrupos de pacientes con los datos del estudio AEGIS.

Por último, en el capítulo 7, de Conclusiones, discutimos los avances metodológicos de
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la tesis en el modelado de objetos estadísticos complejos y, más importante, su potencial
clínico en la nueva era de la medicina digital y de precisión. También discutimos los diversos
trabajos activos motivados por esta tesis doctoral. Al final de este capítulo presentamos
nuevos problemas abiertos que hemos identificado y que consideramos abordar en el futuro,
para proporcionar a los usuarios nuevas herramientas de análisis de datos con aplicaciones en
la ciencia médica.

Se acompaña la tesis de un conjunto de Apéndices en los que escribimos formalmente
las pruebas matemáticas que, por espacio y claridad, se han separado del resto del material,
como es el caso de la consistencia de la estrategia bootstrap introducida en el capítulo 5 y
el estadístico de prueba introducido en el capítulo 6. También proporcionamos una pequeña
guía de uso del paquete software desarrollado para el entorno R, biosensor.usc, con el objetivo
de ilustrar cómo se pueden utilizar las técnicas aquí propuestas. Por último, como las distintas
pruebas introducidas en esta tesis dependen de la teoría de 𝑈 -estadísticos introducimos algunos
resultados básicos de esta teoría [137, 244].
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Resumo

Na última década producíronse importantes avances na transdución de sinais biolóxicos e o
posterior recoñecemento de eventos de interese fisiopatolóxico [153]. Os progresos nesta área
estimularon a aparición dunha prometedora e robusta tecnoloxía de biosensores a partires
de enfoques non invasivos e de baixo custo [274]. A adopción desta tecnoloxía na práctica
clínica impulsará o desenvolvemento de novos métodos para obter información máis sofisticada
sobre os cambios na saúde dos pacientes en tempo real [153, 274]. Un exemplo paradigmático
atopámolo nos sistemas de lazo pechado para a dispensación de insulina mediante unha bomba
que se axusta dinámicamente segundo a medición continua dos valores de glicosa, que está a
revolucionar a xestión de pacientes con diabetes tipo 1 [135, 229].

Coa ganancia da información rexistrada sobre os doentes e unha maior dispoñibilidade
destes sensores entre a poboación xeral, o desenvolvemento de modelos estatísticos e de
aprendizaxe automática é o seguinte gran paso para establecer as bases metodolóxicas dos
novos paradigmas clínicos da medicina dixital e de precisión [93, 138, 139, 153, 162, 298].

A medicina de precisión pretende optimizar a calidade da atención sanitaria individualizando
o proceso asistencial de acordo aos cambios da condición clínica do doente ao longo do tempo
[138]. Neste novo paradigma clínico as decisións apóianse fundamentalmente en enfoques
guiados por datos. Matematicamente, a medicina de precisión formalízase como un problema
de optimización dinámica. As accións potenciais poderían ser: a selección do fármaco a
empregar, a selección da dose, o momento da administración, a recomendación dunha dieta
ou a realización dun exercicio físico específico [138].

Desafortunadamente, a práctica xeneralizada na actualidade é que os tratamentos non se
prescriben de forma personalizada e céntranse en optimizar a saúde do individuo medio da
poboación de estudo. En consecuencia, o efecto dos tratamentos resulta subóptimo ao longo
dunha ampla lista de enfermidades e fenotipos de doentes [27, 28, 240, 243, 266].

Indubidablemente, a prescrición do tratamento óptimo é o obxectivo crucial da medic-
ina personalizada [138], pero para alcanzalo requírese da modelización dunha ampla lista de
problemas previos [139]. De acordo coas contribucións presentadas aquí, algunhas das no-
vas direccións de investigación teñen como obxecto deseñar novas representacións dos datos
proporcionados por biosensores e dispositivos vestibles que nos permitan rexistrar os cam-
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bios na saúde dos doentes con maior precisión e capturar máis información para alimentar
diferentes algoritmos preditivos con máis exactitude. No contexto da medicina dixital, cen-
trada na explotación da información proporcionada por dispositivos electrónicos de medición,
cada vez resulta máis común avaliar o impacto do tratamento no estado do doente mediante
biomarcadores dixitais (definidos a partir de métricas derivadas da monitorización de distintas
variables ambientais, biomecánicas ou fisiolóxicas [153]), presentando a miúdo unha natureza
complexa, xa sexa en forma de perfís funcionais para representar a variabilidade da frecuencia
cardíaca [196], o gasto enerxético [177], ou a concentración de glicosa [178], ou ben como
grafos de conectividade cerebral, que conteñen información fundamental acerca da estrutura
e topoloxía dos distintos patróns de actividade neuronal [289]. Neste contexto, resulta funda-
mental deseñar novas probas de hipóteses como medida confirmatoria da eficacia dun fármaco,
por exemplo, no marco dun ensaio clínico aleatorizado [49, 51, 57, 125, 139, 140].

Motivado polo progreso no campo da medicina de precisión cos elementos da medicina
dixital, o principal propósito desta tese é desenvolver novas metodoloxías estatísticas e de
aprendizaxe automática para analizar obxectos estatísticos complexos [62], como son os datos
funcionais euclidianos, ou construcións máis xerais en espazos métricos, como as distribucións
de probabilidade, que viven en espazos non lineais sen estrutura de espazo vectorial [178, 215].

Nesta tese, abordamos en primeiro lugar o reto de analizar series temporais biolóxicas
en doentes que se atopan monitorizados fóra da contorna hospitalaria, durante aquelas activi-
dades que forman parte da súa rutina diaria. Este reto presenta dificultades para levarse a cabo
cunha análise global comparativa das series de tempo rexistradas, debido a que os doentes
son monitorizados en períodos de distinta duración, seguen diferentes estilos de vida, ou exis-
ten importantes diferenzas cronobiolóxicas entre eles. Para solucionar o devandito problema,
atopamos na bibliografía distintas representacións que extraen características resumo da serie
temporal, en forma de valores promedio ou de indicadores da variabilidade [141, 187]. Así todo,
a día de hoxe as métricas vectoriais de natureza composicional constitúen o estándar de facto
para resumir a información dos datos biosensores en múltiples dominios, como na diabetes
mellitus, a partir do uso de monitores continuos da glicosa, ou na actividad física mediante
dispositivos de acelerometría [31, 64, 177, 178]. Estas métricas cuantifican a proporción de
tempo que o doente se atopa en cada unha das zonas obxetivo, ou noutras categorías definidas
de antemán. Precisamente, a súa gran simplicidad e interpretabilidade explican o seu éxito
entre os usuarios [187].

Porén, un dos maiores inconvintes no uso das métricas vectoriais de natureza composi-
cional é que non podemos cuantificar o impacto na saúde do tempo que permanece o doente
nun continuo de valores rexistrados polo dispositivo de monitorización. No seu lugar, estas
métricas proporcionan un resumo da información das series temporais nun conxunto reducido
de intervalos, coa conseguinte perda de información. Á parte desta importante desvantaxe,
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resumir a información en intervalos presenta outros importantes inconvenientes. Necesitamos
certo coñecemento experto para definir os puntos de corte, que poden depender da tarefa
de modelización específica e da poboación de estudo a analizar. Precisamente, este aspecto
vén sido cuestionado insistentemente nas últimas investigacións sobre a actividade física con
acelerómetros [187].

Nesta tese, e co fin de superar estes inconvenientes propoñemos usar a extensión natural
a nivel funcional das métricas vectoriais de natureza composicional, que permiten capturar
máis información. A idea de partida é considerar a distribución de probabilidade ou a función
de densidade dos diferentes segmentos da serie temporal biolóxica rexistrada [178]. Unha
das vantaxes desta nova representación é que non require a categorización da información en
intervalos definidos a partir do coñecemento experto.

Desde un punto de vista formal, propoñemos unha representación distribucional cuxa
análise deriva da análise de datos composicionais, pero de acordo a unha perspectiva fun-
cional [119, 265]. A este respecto, a análise de datos con esta representación presenta algúns
retos importantes. Por exemplo, dado que os datos composicionais viven nun simplex de
probabilidade, non existe unha estrutura de espazo vectorial (a menos que nos restrinxamos
ás combinacións convexas), o que implica a necesidade de aplicar técnicas alternativas de
análise de datos para transformar o espazo de entrada non lineal a un espazo lineal máis
apropiado [215]. O proceso pódese resumir como segue: 1) transformación composicional a
un espazo vectorial euclidiano; e 2) aplicación de modelos de regresión euclidianos. Con todo,
esta metodoloxía presenta limitacións substanciais para realizar tarefas inferenciais precisas
e para construír métodos matemáticos con garantías teóricas con mostras finitas. Ademais,
as transformacións composicionais clásicas ou outros enfoques máis recentes non están ben
definidos cando hai ceros nalgunha das partes da representación. Na extensión funcional este
problema agrávase debido a que o soporte da distribución de probabilidade varía entre os
distintos individuos que son obxecto de monitorización.

Para superar esta limitación, proporcionamos un novo marco de análise de datos funcionais
composicionais baseado no enfoque da teoría do transporte óptimo, xunto á análise estatística
en espazos métricos, concretamente en espazos de Hilbert de núcleo reprodutor (reproducing
kernel Hilbert spaces - RKHS). De forma máis específica, propoñemos un conxunto de núcleos
equipados coa xeometría da distancia 2−Wasserstein, que é facilmente computable no caso
particular de distribucións de probabilidade unidimensionais. Este marco de análise permite
construír modelos de regresión, métodos de selección de variables, métodos de cuantificación
da incerteza, e test de hipóteses. Abordaremos o contexto usual de datos independentes e
identicamente distribuídos, así como outros máis complexos como o dos deseños de enquisa, ou
de datos perdidos, habituais estes últimos nos estudos lonxitudinais cando o doente renuncia
a continuar a súa participación.
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A eficacia real das representacións distribucionais avaliarase nos eidos da diabetes e a activi-
dade física. Para iso, utilizaremos os datos dun estudo lonxitudinal sobre a diabetes: o Estudo
de Glicación e Inflamación da Estrada (AEGIS) [101], no que se dispón para cada doente de
información sobre a monitorización continua da glicosa (continuous glucose monitoring- CGM)
durante aproximadamente unha semana. Con esta información de alta resolución preténdese
responder a algunhas preguntas de interese clínico sobre o impacto que determinadas repre-
sentacións distribucionais teñen sobre a capacidade de predición dos valores de glicosa a longo
prazo. No caso da actividade física, empregamos datos das enquisas NHANES (National
Health and Nutrition Examination Survey) realizadas en EE.UU., que dispoñen de informa-
ción dos hábitos de actividade física da poboación americana medidos de forma obxectiva
mediante dispositivos de acelerometría. Neste caso, ilustraremos o uso e as vantaxes das rep-
resentacións distribucionais neste contexto para analizar a relación entre a actividade física,
a mortalidade e supervivencia dos participantes en todo o espectro de intensidades de activi-
dade física rexistradas polo acelerómetro. Nas distintas análises realizadas proporcionaremos
evidencias sólidas sobre os beneficios de usar estas representacións en termos de capacidade
de predición e sensibilidade clínica nos dominios mencionados.

Cumpre salientar aquí que a diabetes é probablemente a pandemia máis importante deste
século [120, 256] cunhas taxas de prevalencia alarmantes que se espera que aumenten nos
vindeiros anos, debido principalmente ao empeoramento dos estilos de vida, motivado tanto
por un incremento dos niveis de inactividade como polo empobrecemento na calidade das dietas
en todo o mundo. Diversas organizacións e especialistas reclaman novas políticas de saúde
pública para mellorar o control e a propagación da enfermidade. Os enfoques de telemedicina,
medicina dixital e de precisión [45, 145] poden ser un paso adiante e inspirar novas solucións
de gran efectividade para reverter este problema. Nesta dirección, algúns traballos recentes
expuxeron a hipótese de que a inclusión de biomarcadores dixitais procedentes da motorización
continua da glicosa pode mellorar a detección temperá da enfermidade [105]. Fai dez anos a
monitorización continua da glicosa xa supuxo un gran avance na transformación da xestión da
diabetes [135, 229]. Hoxe en día, a adopción destas tecnoloxías atopa máis aplicacións, tanto
en poboacións sas como enfermas. Por exemplo, os dispositivos de monitorización continua
da glicosa utilízanse na nutrición de precisión para personalizar as dietas en función de como
a inxesta de alimentos específicos modifica os nosos valores de glicosa [23].

En canto á importancia de analizar os datos de actividade física, destacamos que hoxe en día
a actividade física considérase a intervención non farmacolóxica de baixo custo máis eficaz para
combater un amplo espectro de enfermidades, como a diabetes ou a síndrome metabólico [208].
A actividade física é tamén unha intervención efectiva para atrasar a deterioración cognitiva e
funcional asociada ao envellecemento [231]. Por todo iso, na actualidade, hai un importante
consenso para promover o deporte como un elemento esencial na construción de sociedades
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modernas saudables e a dixitalización da práctica deportiva pode ser un punto esencial para
alcanzar o devandito obxectivo. A adopción de enfoques de medicina personalizada nesta
área de coñecemento é unha tarefa pendente [233], e esta tese introduce novas achegas nesta
dirección.

A continuación delimitamos con maior precisión os obxectivos e contidos de cada un dos
capítulos que compón esta tese de doutoramento.

O capítulo 2 ten como obxectivo introducir as ferramentas necesarias para entender o for-
malismo da análise estatística de obxectos complexos que toman valores en espazos métricos.
Así mesmo, motivaremos o uso destas ferramentas de análise mediante algúns exemplos de
interese polas súas múltiples aplicacións na medicina contemporánea. Primeiro comezaremos
introducindo a noción de media e varianza de Fréchet que xeneraliza a noción de centro e disper-
sión usual no contexto dos espazos métricos [82]. Introduciremos algunhas propiedades básicas
do problema de estimación, que pode ser escrito en forma de problema de M-estimación [277]
e, en consecuencia, permite empregar a teoría existente para derivar a teoría límite nalgúns ca-
sos mediante as ferramentas clásicas da teoría de procesos empíricos [220]. De acordo a estas
ideas introducimos a noción de modelo de regresión lineal en espazos métricos [214], de novo
expresando o problema como un problema de M-estimación, e facendo uso da teoría asociada
a esta familia xeral de estimadores. A continuación, posto que o obxectivo desta tese é ilustrar
os métodos no caso particular das representacións distribucionais coa xeometría inducida pola
distancia 2-Wasserstein, e esta construción está motivada polo problema do transporte óptimo
de distribucións de probabilidade [205], introduciremos as métricas de Wasserstein. A contin-
uación, e dado que realizamos as distintas tarefas de modelado baixo o paraugas dos espazos de
Hilbert con núcleo reprodutor (RKHS) faremos unha breve introdución aos elementos centrais
deste paradigma, que permite analizar e integrar datos de natureza complexa. Ademais, intro-
duciremos a noción de kernel mean embedding [191], que serve como base formal para definir
distancias estatísticas entre as representacións distribucionais e outros obxectos estatísticos
complexos, e que nos servirá en capítulos posteriores para definir test estatísticos de igualdade
de distribución, test de independencia estatística ou realizar análise de conglomerados.

O capítulo 3 ten como obxectivo introducir desde un punto de vista formal as novas
representacións distribucionais para aquelas series temporais que son xeradas por un proceso
estocástico en tempo continuo, como é o caso dun medidor de CGM, que mide os valores da
glicosa intersticial de forma dinámica e cada poucos mínutos. Así mesmo, proporcionamos
evidencias das vantaxes da nova representación fronte ás métricas existentes de resumo da
información dos datos de CGM, como as métricas composicionais do tempo en rango, medidas
de variabilidade glicémica ou outros biomarcadores clínicos existentes. Finalmente, como
as novas representacións distribucionales xeran datos funcionais composicionales que non se
poden analizar coas técnicas usuais de datos funcionais, proporcionamos unha serie de técnicas
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de análise estatística en espazos métricos para analizar distintos problemas que poden aparecer
na clínica, como tests de hipóteses para avaliar a efectividade dun tratamento, análise de
regresión para predicir a evolución do doente, ou análises de conglomerados para descubrir
novos fenotipos clínicos.

De forma semellante, o capítulo 4 ten como obxecto introducir formalmente e validar
as novas representacións distribucionais, pero no caso en que o proceso estocástico é mixto,
como ocorre cos datos de acelerómetros. Aquí a validación realízase empregando datos do
estudo NHANES, que proveñen dun deseño experimental de enquisa. Estendemos algúns
métodos preditivos previos a datos complexos, para poder analizar as vantaxes potenciais das
novas representacións, como o método kernel ridge para a regresión, e utilizamos o estimador
Nadaraya-Watson para a clasificación en espazos métricos. Ao final deste capítulo propoñemos
como aplicación na poboación maior a identificación de novos fenotipos clínicos da actividade
física, con importantes implicacións na práctica para monitorizar a actividade física e como
variables de seguimento da supervivencia e prognóstico dos pacientes.

No capítulo 5 propoñemos novos métodos de aprendizaxe estatística supervisada para prob-
lemas con datos perdidos na variable resposta, baseados na aprendizaxe con métodos núcleo en
espazos RKHS. Os novos métodos inclúen algoritmos de cuantificación da incerteza, medidas
de dependencia estatística ou algoritmos de selección de variables. A tarefa de modelización
consiste en predicir como cambian os valores de glicosa a cinco anos en termos do biomarcador
A1c, estándar actual para o control e diagnóstico da enfermidade. Os resultados obtidos neste
capítulo son unha proba de que a inclusión da monitorización continua da glicosa conduce a
unha mellora na predición da condición glicémica do paciente a longo prazo.

No capítulo 6, e motivados pola necesidade de comparar as posibles variacións nas rep-
resentacións distribucionais en dous instantes de tempo, por exemplo, antes e despois de
administrar un determinado tratamento, propoñemos novas probas de hipóteses para datos
emparellados e perdidos con obxectos estatísticos complexos, mediante métodos núcleo. Val-
idamos estes métodos, deseñados con carácter xeral, mediante unha análise da evolución da
glicosa a cinco anos en distintos subgrupos de pacientes cos datos do estudo AEGIS.

Por último, no capítulo 7, de Conclusións, discutimos os avances metodolóxicos da tese
no modelado de obxectos estatísticos complexos e, máis importante, o seu potencial clínico na
nova era da medicina dixital e de precisión. Tamén discutimos os diversos traballos activos que
foron motivados por esta tese doutoral. Ao final deste capítulo presentamos novos problemas
abertos que identificamos e que consideramos abordar no futuro, para proporcionar aos usuarios
novas ferramentas de análise de datos con aplicacións na ciencia médica.

Se acompaña a tese dun conxunto de Apéndices nos que escribimos formalmente as probas
matemáticas que, por espazo e claridade, foron separadas do resto do material, como a con-
sistencia da estratexia bootstrap introducida no capítulo 5 e o test estatístico introducido no
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capítulo 6. Tamén proporcionamos unha pequena guía de uso do paquete software desen-
volvido para o entorno R, biosensor.usc, co fin de ilustrar como se poden empregar as técnicas
aquí propostas. Por último, como as distintas probas introducidas nesta tese dependen da
teoría de 𝑈 -estatísticos introducimos algúns resultados básicos desta teoría [137, 244].
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1 Introduction and aims

The last decade has seen remarkable advances in biological signal transduction and subsequent
recognition of events of pathophysiological interest [153]. In addition, progress in this area has
stimulated the emergence of promising and robust biosensor technology through noninvasive
and low-cost approaches [153]. The adoption of this technology in clinical practice will surely
lead to the development of new methods to obtain more sophisticated information about
changes in patients’ health in real-time [153, 274]. A paradigmatic example is closed-loop
insulin pump systems that dynamically adjust based on continuous glucose reading, revolution-
izing the management of patients with type 1 diabetes [135, 229].

With the increase of recorded patient information and greater availability of these sensors
among the general population, the development of statistical and machine learning models is
the next big step in establishing the methodology foundations for the new clinical paradigms
of digital and precision medicine [93, 138, 139, 153, 162, 298].

Precision medicine aims to optimize healthcare quality by individualizing the care process
according to changes in the patient’s clinical condition over time [138]. In this new clinical
paradigm, decisions are fundamentally supported by data-driven approaches. Mathematically,
precision medicine can be formalized as a dynamic optimization problem. For example, poten-
tial actions could be: selecting the appropriate drug, selecting the appropriate dose, determin-
ing the time of administration, or recommending a specific diet or exercise [138].

Unfortunately, the widespread practice today is that treatments are not prescribed on a
personalized basis and focus is on optimizing the health of the average individual in the study
population. Consequently, the effect of treatments is suboptimal across a broad list of diseases
and patient phenotypes [27, 28, 240, 243, 266].

Undoubtedly, prescribing the optimal treatment is the key goal of personalized medicine
[138], but achieving it requires modeling an extensive list of upstream challenges [139]. Ac-
cording to the contributions presented here, some new research directions aim to design new
representations of the data provided by biosensors and wearable devices. These new methods
will allow us to record patient health changes more accurately and feed different predictive
algorithms with more information. In the context of digital medicine, which focuses on exploit-
ing the information provided by electronic measurement devices, it is becoming increasingly
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common to assess the impact of the treatment on the patient’s condition using digital biomark-
ers (environmental, biomechanical, and physiological metrics measured with biosensors [153]).
Notwithstanding, it is very common that data is complex in nature, e.g. functional nature,
such as heart rate variability metrics [196], energy expenditure [177], glucose concentration
[178], or as brain connectivity graphs, which contain essential information about the structure
and topology of different patterns of neuronal activity [289]. In this new research area, it is
essential to design new hypothesis tests as a confirmatory measure of a drug’s efficacy, for
example, in the context of a randomized clinical trial [49, 51, 57, 125, 139, 140].

Motivated by the progress in the field of precision medicine with the core elements of digital
medicine, the primary purpose of this dissertation is to develop new statistical and machine
learning methodologies to analyze complex statistical objects [62] such as Euclidean functional
data, or more general constructions in metric spaces, such as probability distributions, that
live in non-linear spaces without vector space structure [178, 215].

We first address the challenge of analyzing biological time series in patients who are moni-
tored in free-living environments. This challenge presents initial difficulties when approaching
a global comparative analysis of the recorded time series because patients are monitored for
periods of different duration, follow different lifestyles, or have critical chronological differ-
ences. To solve this problem, we find in the literature different representations that extract
some summary characteristics of the time series, by means of average values or other metrics
of variability [141, 187]. Still, to date the compositional vector metrics constitute the gold-
standard method to summarize information from biosensor data in multiple domains, such
as in diabetes from the use of continuous glucose monitors, or in physical activity using ac-
celerometry devices [31, 64, 177, 178]. Furthermore, these metrics quantify the proportion of
time that the patient is in each of the target zones or predefined categories. Precisely, their
great simplicity and interpretability explain the success of these metrics among users [187].

One of the significant drawbacks of using a compositional nature vector metrics in practice
is that we cannot quantify the health impact of the time spent by the patient on a continuum
of values recorded by the sensor device. Instead, these metrics provide a summary of time-
series information over a reduced set of intervals, with a consequent loss of information. Apart
from this critical disadvantage, summarizing the information in intervals has other essential
drawbacks. We need expert knowledge to define the cut-off points, which may depend on the
specific modeling task and the study population to be analyzed. This aspect has been strongly
questioned in recent research on physical activity with accelerometers [187].

In this dissertation, to overcome these drawbacks, we propose to use the natural extension
at the functional level of vector metrics of compositional nature, which allow for capturing
more information. The underlying idea is to consider the probability distribution or density
function of the different segments of the recorded biological time series [178]. One of the
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advantages of this new representation is that it does not require categorizing the information
into a set of intervals previously defined from expert knowledge.

From a formal point of view, we propose a distributional representation whose analysis
is derived from compositional data analysis, but according to a functional perspective, [119,
265]. In this regard, analyzing data with this representation presents some critical challenges.
For example, since compositional data live in a probability simplex, there is no vector space
structure (unless we restrict ourselves to convex combinations), which implies the need to
apply alternative data analysis techniques to transform the nonlinear input space to a more
appropriate linear space [215]. The process can be summarized as follows: 1) compositional
transformation of original input data to a Euclidean vector space, and 2) the application of
Euclidean regression models. However, this presents substantial limitations for performing
accurate inferential tasks and constructing mathematical methods with theoretical guarantees
with finite samples. Moreover, classical compositional transformations or other more recent
approaches are not well defined when there are zeros in any part of the representation. In
the functional extension, this problem is compounded by the fact that the support of the
probability distribution varies among the individuals being monitored.

To overcome this limitation, we provide a new framework for compositional functional
data analysis based on the optimal transport theory, coupled with statistical analysis in metric
spaces, namely Reproducing kernel Hilbert spaces (RKHS). More specifically, we propose a set
of kernels with 2−Wasserstein distance geometry, which is easily computable in the particular
case of one-dimensional probability distributions. This analysis framework allows us to build
regression models, variable selection methods, uncertainty quantification methods, and hy-
pothesis testing. In addition, we will address the usual context of independent and identically
distributed data, as well as more complex designs such as survey designs, or missing data, the
latter being common in longitudinal studies when the patient is lost to follow-up.

The effectiveness of the proposed distributional representations will be evaluated in the
areas of diabetes and physical activity. For this purpose, we will use data from a longitudi-
nal study on diabetes: the A Estrada Glycation and Inflammation Study (AEGIS) [101], in
which information on continuous glucose monitoring (CGM) is available for each patient for
approximately one week. This high-resolution information is intended to answer some clinically
exciting questions about the impact that certain distributional representations have on the pre-
dictive ability of long-term glucose values. In the case of physical activity, we use data from
the US NHANES (National Health and Nutrition Examination Survey) survey, which provides
information on the physical activity habits of the American population measured objectively
using accelerometry devices. Here, we will illustrate the use and advantages of distributional
representations in this context to analyze the relationship between physical activity, mortality,
and survival of participants across the spectrum of physical activity intensities recorded by
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the accelerometer. In the various analyses performed, we will provide strong evidence on the
benefits of using these representations to improve predictive ability and clinical sensitivity in
the domains mentioned above.

It should be taken into account that diabetes is probably the essential pandemic of this
century with alarming prevalence rates that are expected to increase in the coming years,
mainly due to worsening lifestyles, motivated both by an increase in inactivity levels and by the
impoverishment in the quality of diets worldwide [120, 256]. Therefore, several organizations
and specialists are calling for new public health policies to improve the control and spread of
the disease. Telemedicine, digital medicine, and precision medicine approach [45, 145] can be
a step forward and inspire new, highly effective solutions to reverse this problem. According
to these principles, some recent work has hypothesized that the inclusion of digital biomarkers
from continuous glucose monitorization may improve the early detection of the disease [105].
Ten years ago, continuous glucose monitorization was already a breakthrough in transforming
diabetes management [135, 229]. Nowadays, adopting these technologies is finding more
applications in healthy and diseased populations. For example, continuous glucose monitoring
devices are used in precision nutrition to personalize diets based on how the intake of specific
foods modifies our glucose values [23].

Regarding the importance of analyzing physical activity data, we will highlight that physical
activity is currently considered the most effective low-cost non-pharmacological intervention to
combat a broad spectrum of diseases, such as diabetes or metabolic syndrome [208]. Physical
activity is also an effective intervention to delay cognitive and functional decline associated
with aging [231]. For all these reasons, there is currently a solid consensus to promote sport
as an essential element in building healthy modern societies. In this respect, the digitization of
sports practice can be essential to achieving that goal. The adoption of personalized medicine
approaches in this area of knowledge is a pending task [233], and this dissertation introduces
new contributions in this direction.

In the following, we delimit more precisely the objectives and contents of each of the
chapters that compose this dissertation.

Chapter 2 aims to introduce the necessary tools to understand the formalism of the statis-
tical analysis of complex objects that take values in metric spaces. Likewise, we will illustrate
the use of these analysis tools by providing some examples of interest due to their multiple ap-
plications in contemporary medicine. First, we will begin by introducing the notion of Fréchet
mean and variance, which generalizes the usual notion of center and dispersion in the context
of metric spaces [82]. We will introduce some basic properties of the estimation problem,
which can be written in the form of an M-estimation problem [277] and, consequently, allows
us to use existing knowledge to derive the limit theory in some cases using the classical tools
of empirical process theory [220]. According to these ideas, we introduce the notion of linear
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regression model in metric spaces [214], again expressing the problem as an M-estimation
problem and using the theory associated with this general family of estimators. Next, this dis-
sertation aims to illustrate the methods in the particular case of distributional representations
with the geometry induced by the 2-Wasserstein distance. This construction is motivated by
the problem of optimal transport of probability distributions [205]; we will make a brief intro-
duction to the Monge problem and to the properties of considering Wasserstein metrics from
the empirical point of view. Next, we perform the various modeling tasks under the umbrella
of reproducing kernel Hilbert spaces (RKHS); we will briefly introduce the central elements
of this theory, which allows us to analyze and integrate data of complex nature. In addition,
we will introduce the notion of kernel mean embedding [191], which serves as a formal basis
for defining statistical distances between distributional representations and other complex sta-
tistical objects, and which will serve us in later chapters to define statistical tests of equality
of distribution, statistical independence tests or to perform cluster analysis. Finally, we will
show how to construct new kernels from the 2-Wasserstein distance, which can be of potential
interest together with classical kernels such as the Gaussian and the Laplacian.

Chapter 3 aims to introduce from a formal point of view the new distributional represen-
tations for those time series generated by a stochastic process in continuous time, as is the
case of a CGM monitor, which measures interstitial glucose values dynamically over time. We
will also provide evidence of the advantages of the new representation over existing metrics for
summarizing CGM data information, such as time-in-range compositional metrics, measures
of glycemic variability, or other existing clinical biomarkers. Finally, as the new distributional
representations generate functional compositional data that cannot be analyzed with standard
functional data techniques, we will provide a set of techniques on metric spaces to analyze dif-
ferent clinical problems, such as hypothesis tests to evaluate the effectiveness of a treatment,
regression analysis to predict patient evolution, or cluster analysis to discover new clinical
phenotypes.

Similarly, chapter 4 aims to introduce the new distributional representations when the
stochastic process is mixed, as is the case with accelerometer data. Here the validation is
performed using data from the NHANES study, derived from an experimental survey design.
We extend some previous predictive methods to complex data in this set-up, such as the
kernel ridge method for regression, in order to analyze the potential advantages of these
new representations, and we propose a Nadaraya-Watson estimator for classification in metric
spaces. At the end of this chapter, we propose as a clinical application in the elderly population
the identification of new clinical phenotypes of physical activity, with important implications
in practice for monitoring physical activity and as variables for follow-up of patient survival
and prognosis.

In chapter 5, we propose new supervised statistical learning methods for problems with
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missing data in the response variable, by extending some previous methods of the RKHS
paradigm. The new methods include uncertainty quantification algorithms, statistical depen-
dence measures, or variable selection algorithms. The modeling task is to predict how five-year
glucose values change in the A1c biomarker, the current standard for the control and diagnosis
of the diabetes disease. The results obtained in this chapter are evidence that the inclusion
of continuous glucose monitoring improves the prediction of the patient’s long-term glycemic
condition.

In chapter 6, motivated by the need to compare possible variations in distributional rep-
resentations at two points in time, for example, before and after treatment, we propose new
hypothesis tests for paired and missing data with complex statistical objects, using kernel
methods. We will validate these generally designed methods by analyzing the 5-year glucose
evolution in different subgroups of patients with data from the AEGIS study.

Finally, in the Conclusions chapter, we discuss the methodological advances of the disser-
tation in modeling complex statistical objects and, more importantly, their clinical potential
in the new era of digital and precision medicine. We also discuss the various active works
motivated by this dissertation. At the end of this chapter, we present new open problems
that we have identified and consider addressing in the future to provide users with new data
analysis tools with applications in medical science.

In the Appendices, we write the mathematical proofs that, for space and clarity, have been
moved from the corresponding chapters, such as the consistency of the bootstrap strategy
described in chapter 5 and the test statistic introduced in chapter 6. We also provide a short
guide to our R package, biosensor.usc, to illustrate how practitioners can use the proposed
techniques. Finally, since the various tests introduced in this dissertation depend on the 𝑈 -
statistic theory, we introduce the standard results of this theory [137, 244].
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2 Statistical analysis in metric spaces and
reproducing kernel Hilbert spaces

Object-oriented data statistics [172] or data analysis on nonstandard spaces [122] born with
regression modeling by Gauss and his contemporaries, for the purpose of answering different
physical questions involving angular and spherical data that arise from the astronomy field [217].
Nowadays, the specific use of these methods allows us to model the raw data recollected
by the many measuring instruments and sensors, exploiting their geometrical and intrinsic
characteristics. According to the mentioned example of angular and spherical data, several
works have shown the potential use of specific data analysis strategies in order to provide new
findings in a broad spectrum of applications [61, 171, 204, 206, 217].

From a general perspective of metric spaces, many data analysis techniques have been
proposed in the last decades, mainly motivated by practical problems. Examples include the
notion of centroid in metric space (Fréchet mean) [82] with applications to phylogenetical tree
analysis [201], or the extension of conditional linear regression models to metric spaces with
numerous applications in neuroimage and other medical problems [178, 214]. We can also
reference less general mathematical constructions by Riemann [155], and hyperbolic manifolds
[270], with interesting local geometrical properties and applications, for example, in shape
analysis [121].

Despite the recent scientific progress it can be said that the statistical analysis of complex
objects is still in its infancy. On the one hand, the number of well-established methods
and theoretical results from the multivariate Euclidean spaces with no equivalent in metric
spaces is large. Some examples of problems that require more attention can include the
selection of relevant variables in regression modeling [275], the assessment of uncertainty in
model outputs, the hypothesis testing, or the achievement of optimal theoretical guarantees in
the non-asymptotic regimes to understand the empirical model’s behavior with finite samples
[47, 285]. On the other hand, in metric spaces only a distance function is available, and the
underlying optimization problems can be complex, impairing the computational efficiency in
high-dimensional and large problems.

This chapter briefly introduces the core elements of statistical analysis on metric spaces.
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First, we motivate the interest of medical science in this sort of analysis with some relevant
applications. Subsequently, we introduce the notion of Fréchet’s mean and variance, together
with the global Fréchet model that generalizes the standard linear regression model to those
responses that take values in metric spaces. Then, we briefly introduce the framework of
reproducing kernel Hilbert spaces (RKHS). RKHS play a vital role in analyzing complex statis-
tical objects since they preserve the properties and advantages of Euclidean geometries. First,
we introduce the notion of positive definite kernel functions, the core elements of this frame-
work. Then, we present some statistical distances between random variables that we will use
in subsequent chapters, such as the energy distance and the maximum mean discrepancy.

2.1 Complex data in medicine

Bellow, we provide two important examples of complex data that arise in medical applications.

2.1.1 Graph and matrix structures

One of the fascinating research areas that has benefit from the emergence of new statistical
techniques for complex objects is neuroimaging [29, 41, 50, 62]. Surely, the analysis of func-
tional magnetic resonance imaging (fMRI) supplies the primary gold standard test to evaluate
brain structures. The use of fMRI data and specific statistical test has driven substantial
scientific progress about how the brain works and draws new insights into the brain behavior
[41, 211, 289].

In practice, the standard routine to summarize the rich and unique signature about brain
structures provided by fMRI data is to construct an individual profile from fMRI data estimat-
ing the intra- and inter-connections between cerebral regions utilizing continuous (correlation
matrix) and discrete (graph structures) representations [289].

In the continuous case, we can consider the metric space (𝒴,𝑑) where 𝒴 is the set of
Pearson correlation matrices of a fixed dimension 𝑟, and 𝑑 denotes the Frobenius metric
𝑑FRO (𝐴,𝐵) = √∑𝑟

𝑖,𝑗=1 (𝐴𝑖𝑗 −𝐵𝑖𝑗)
2. Similarly, we can consider the space of networks with

a fixed number, say 𝑟, of nodes and the same metric in Laplacian matrices. In order to
identify the space of the graphs with the space of Laplacian matrices, we must introduce some
technical assumptions.

Let 𝐺𝑚 = (𝑉 ,𝐸) be an arbitrary network with a set of nodes 𝑉 = {𝑣1,…,𝑣𝑟} and a
set of edge weights 𝐸 = {𝑤𝑖𝑗 ∶ 𝑤𝑖𝑗 ≥ 0; 𝑖,𝑗 = 1,…,𝑟}, where 𝑤𝑖𝑗 = 0 indicates that 𝑣𝑖, 𝑣𝑗
are unconnected. We assume: i) 𝐺𝑚 is simple, i.e., there are no self-loops or multi-edges;
ii) 𝐺𝑚 is weighted, undirected and labeled; iii) the edge weights 𝑤𝑖𝑗 are bounded, i.e, there
exists 𝑤 ≥ 0 such that 0 ≤ 𝑤𝑖𝑗 ≤ 𝑤. The first assumption is required for the one-to-one
correspondence between a network 𝐺𝑚 and its Laplacian matrix, which is the central tool
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to represent networks. Assumption two guarantees that the adjacency matrix 𝐴 = (𝑤𝑖𝑗) is
symmetric, i.e 𝑤𝑖𝑗 = 𝑤𝑗𝑖, ∀𝑖,𝑗. Assumption three limits the maximum strength of connections
between two nodes and prevents extremes. Any network satisfying these assumptions can be
uniquely associated with its Laplacian graph 𝐿 = (𝑙𝑖𝑗)

𝑙𝑖𝑗 = { −𝑤𝑖𝑗 𝑖 ≠ 𝑗
∑𝑘≠𝑖 𝑤𝑖𝑘 𝑖 = 𝑗 ,

for 𝑖, 𝑗 = 1,…,𝑟, which motivates to characterize the corresponding space of networks by

𝒴 = {𝐿 = (𝑙𝑖𝑗) ∶ 𝐿 = 𝐿𝑇 ; 𝐿1𝑟 = 0𝑟; −𝑤 ≤ 𝑙𝑖𝑗 ≤ 0 for 𝑖 ≤ 𝑗},

where 1𝑟 and 0𝑟 are the 𝑟-vectors of ones and zeros, respectively. A precise characterization
of the properties of the space of Laplacian graphs can be found in [92].
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Figure 2.1: Laplacian conditional matrix mean estimation from a person with schizophrenia.

In order to illustrate a Laplacian matrix structure, Figure 2.1 shows the Laplacian condi-
tional matrix mean estimation from a person with schizophrenia. We can see that along the 48
cerebral regions examined, the cerebral connectivity is limited to specific areas, and in general,
it is low (value 0 in the contour plot). The Laplacian matrix structures allow us to analyze the
spatial interconnections between different regions in integrated statistical objects, unlike the
primitive data analysis that only quantifies the specific cerebral activity intensity marginally.
As we can appreciate, this type of structures shows sparsity, and specific statistical methods
are being developed for this sort of data [227].
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2.1.2 Tree structures

Tree structures are increasingly common for registering medical information. The first applica-
tion of tree structures in medicine emerges in phylogenetical tree analysis [58, 114, 115] where
the models exploit the inheritance tree structure between ancestors in the analysis of evolution.
In this domain, new algorithms develop notions such as principal component analysis (PCA)
for non-Euclidean spaces, and new regression models in abstract spaces, e.g., tropical spaces
[293], have been proposed to handle general dependence relationships. More recently, tree
structures have been exploited in the analysis of pulmonary function and other human body
internal structures [287]. As an example, Figure 2.2 shows the three component blood vessel
trees from one person, in which the information captured by the device posses a hierarchical
tree structure.

Figure 2.2: The three component blood vessel trees from a given patient.

2.2 Statistical analysis in metric spaces

Definition 1. A metric space is a pair (𝒴,𝑑) where 𝒴 is a set and 𝑑 is a metric on 𝒴:

𝑑 ∶ 𝒴×𝒴 → ℝ+, (2.1)

such that for any 𝜔1,𝜔2,𝜔3 ∈ 𝒴, the following holds:

1. 𝑑(𝜔1,𝜔2) = 0 iff 𝜔1 = 𝜔2,

2. 𝑑(𝜔1,𝜔2) = 𝑑(𝜔2,𝜔1) ,

3. 𝑑(𝜔1,𝜔3) ≤ 𝑑(𝜔1,𝜔2)+𝑑(𝜔2,𝜔3) .

The theory of metric spaces has a large spectre of applications in measuring the similarity
between two arbitrary elements of the space using only a distance function. Importantly, in
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1948, Fréchet generalized the notion of centroid to metric spaces through the definition of the
so called Fréchet mean [82]. Thus, in the particular case of Euclidean data, the arithmetic
mean, median, and geometric mean can be considered as different Fréchet means under dif-
ferent choices of distance functions. The Fréchet variance is the corresponding generalized
measure of dispersion around the Fréchet mean. The extension of these concepts to this gen-
eral set-up allows us to operate with general structures that, as we have just seen, appear in
many modern medical applications.

Formally, let (𝒴,𝑑) be a separable and bounded metric space. Consider a random object
𝑌 ∼ 𝑃𝑌 , where 𝑌 takes values in 𝒴 and 𝑃𝑌 denotes the distribution function from 𝑌 . The
Fréchet mean and variance, denoted as 𝜇𝑌 and 𝜎2

𝑌 respectively, can be defined as [82]:

𝜇𝑌 = argmin
𝜔∈𝒴

𝐸 (𝑑2 (𝑌 ,𝜔)) , 𝜎2
𝑌 = 𝐸 (𝑑2 (𝑌 ,𝜇𝑌 )) . (2.2)

Let {𝑌𝑖}
𝑛
𝑖=1 be a collection of random objects i.i.d. according to 𝑃𝑌 . The empirical

Fréchet mean and variance are defined as follows:

̃𝜇𝑌 = argmin
𝜔∈𝒴

1
𝑛

𝑛
∑
𝑖=1

𝑑2 (𝑌𝑖,𝜔) , �̃�2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

𝑑2 (𝑌𝑖, ̃𝜇𝑌 ) . (2.3)

In order to guarantee the convergence of the empirical versions of Fréchet mean and
variance to population counterparts 𝜇𝑌 and 𝜎2

𝑌 , and to provide a central limit theorem to be
used in statistical inference, we must introduce the following technical assumptions from the
theory of M-estimators.

Assumption 1. The objects 𝜇𝑌 and 𝜎2
𝑌 exist and are unique, and for any 𝜖 > 0

inf𝑑(𝜇𝑌 ,𝜔)>𝜖 𝐸 (𝑑2 (𝑌 ,𝜔)) > 𝐸 (𝑑2 (𝑌 ,𝜇𝑌 )).

This assumption is instrumental to establish the weak convergence of the empirical process
𝐻𝑛 (𝜔) = 1

𝑛 ∑𝑛
𝑖=1 𝑑2 (𝑌𝑖,𝜔) to the population process 𝐻 (𝜔) = 𝐸 (𝑑2 (𝑌 ,𝜔)), which implies

the consistency of ̃𝜇𝑌 ,
𝑑( ̃𝜇𝑌 ,𝜇𝑌 ) = 𝑜𝑃 (1) . (2.4)

By observing that:

∣�̃�2
𝑌 −𝜎2

𝑌 ∣ ≤ ∣ 1
𝑛

𝑛
∑
𝑖=1

[𝑑2 (𝑌𝑖, ̃𝜇𝑌 )−𝑑2 (𝑌𝑖,𝜇𝑌 )]∣+ ∣ 1
𝑛

𝑛
∑
𝑖=1

𝑑2 (𝑌𝑖,𝜇𝑌 )−𝜎2
𝑌 ∣ , (2.5)

and due to the consistency of ̃𝜇𝑌 the consistency of �̃�2
𝑌 can be easily derived:

𝑑(�̃�2
𝑌 ,𝜎2

𝑌 ) = 𝑜𝑃 (1) . (2.6)

For a central limit theorem to hold for the empirical Fréchet variance we need an assumption
on the complexity of the metric space 𝒴, which can be quantified by a bound on the entropy
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integral for metric 𝛿-balls 𝐵𝛿(𝜔) of 𝒴, given by

𝐽 (𝛿,𝜔) = ∫
1

0
[1+ 𝑙𝑜𝑔 [𝜂 (𝜖𝛿/2,𝐵𝛿 (𝜔) ,𝑑)]]1/2 𝑑𝜖, (2.7)

where 𝐵𝛿(𝜔) is a 𝛿-ball in the metric 𝑑, centered at 𝜔, and 𝜂 (𝜖𝛿/2,𝐵𝛿(𝜔),𝑑) is the covering
number for 𝐵𝛿 (𝜔) using open balls of radius 𝜖𝛿/2.

Importantly, in the setting of metrics spaces, we do not have a guarantee that the central
limit theorem holds; that is why we must introduce specific entropy assumptions.

Assumption 2. For any 𝜔 ∈ 𝒴, it is hold that 𝐽 (𝛿,𝜔) → 0 as 𝛿 → 0.

Assumption 3. The entropy integral of 𝒴 is finite, that is ∫1
0 [1+ 𝑙𝑜𝑔 (𝜂 (𝜖,𝒴,𝑑))]1/2 𝑑𝜖 < ∞.

The central limit theorem for the Fréchet variance is as follows.

Theorem 1. [63] Suppose Assumptions 1-3 hold. Then
√𝑛(�̃�2

𝑌 −𝜎2
𝑌 ) → 𝑁 (0,𝜎2

𝐹 ) ,

in distribution, where 𝜎2
𝐹 = 𝑉 𝑎𝑟(𝑑2(𝑌 ,𝜇𝑌 )).

2.2.1 Anova test

Anova test is one of the core statistical tests to detect differences in localization (mean) and
scale (variation) between two or more populations. In this thesis, we are interested in using
this test to compare differences, for example, between women and men in their glucose values
in Chapter 3. Theorem 1 provides the theoretical foundations to develop an Anova test in
metric spaces and derive the asymptotic limit distribution under the null hypothesis. Bellow,
we introduce the formal details of the Anova test proposed in [63].

Let {𝑌𝑖}
𝑛
𝑖=1 denote an i.i.d random sample belonging to 𝑘 different disjoints groups whose

distribution functions are 𝐹1,𝐹2,…,𝐹𝑘, each of size 𝑛𝑗 (𝑗 = 1,…,𝑘), so that ∑𝑘
𝑗=1 𝑛𝑗 = 𝑛.

Authors define ̃𝜇𝑗 = argmin𝑔∈𝒴
1

𝑛𝑗
∑𝑖∈𝐺𝑗

𝑑2(𝑌𝑖,𝑔) and �̃�2
𝑗 = 1

𝑛𝑗
∑𝑖∈𝐺𝑗

𝑑2(𝑌𝑖, ̃𝜇𝑗), the
pooled sample Fréchet mean and the pooled sample Fréchet variance:

̃𝜇𝑝 = argmin
𝑔∈𝒴

𝑘
∑
𝑗=1

∑
𝑖∈𝐺𝑗

𝑑2(𝑌𝑖,𝑔), �̃�2
𝑝 = 1

𝑛
𝑘

∑
𝑗=1

∑
𝑖∈𝐺𝑗

𝑑2(𝑌𝑖, ̃𝜇𝑝),

and finally the empirical variance for �̃�2
𝑗 for each group:

𝑉 𝑎𝑟(�̃�2
𝑗 ) = 1

𝑛𝑗
∑
𝑖∈𝐺𝑗

𝑑4(𝑌𝑖, ̃𝜇𝑗)−
⎧{
⎨{⎩

1
𝑛𝑗

∑
𝑖∈𝐺𝑗

𝑑2(𝑌𝑖, ̃𝜇𝑗)
⎫}
⎬}⎭

2
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where 𝑗 = 1,…,𝑘. Then, with

𝐹𝑛 = �̃�2
𝑝 −

𝑘
∑
𝑗=1

𝜆𝑗,𝑛�̃�2
𝑗 , 𝑅𝑛 = ∑

𝑗<𝑙

𝜆𝑗,𝑛,𝜆𝑙,𝑛
�̃�2

𝑙 �̃�2
𝑗

(�̃�2
𝑗 −�̃�2

𝑙 ),

under the null hyphotesis 𝐻0 ∶ 𝐹1 = 𝐹2 = ⋯ = 𝐹𝑘, the proposed test statistic is

𝑇𝑛 = 𝑛𝑅𝑛
∑𝑘

𝑗=1
𝜆𝑗,𝑛

𝑉 𝑎𝑟(�̃�2
𝑗 )

+ 𝑛𝐹 2
𝑛

∑𝑘
𝑗=1 𝜆2

𝑗,𝑛𝑉 𝑎𝑟(�̃�2
𝑗 )

→ 𝜒2
𝑘−1, (2.8)

in distribution, where the weights 𝜆𝑗,𝑛 = 𝑛𝑗𝑛−1 sum 1. The consistency of the Efrón naive
calibration strategy of the test statistics can be obtained conditioned to the observed random
sample using similar theoretical arguments as used in Theorem 1. Further details can be found
in [63].

2.2.2 Empirical Fréchet mean: the Wasserstein metrics

A Wasserstein distance is a family of metrics to assess the similarity between density functions
𝑓 and 𝑔 (𝐹 and 𝐺 denote their distribution functions on a ground space 𝒳).

Let 𝒳 be a separable Banach space and 𝑃 (𝒳) the set of distribution functions over 𝒳.
The 𝑝-Wasserstein space on 𝒳 is defined as

𝒲𝑝 (𝒳) = {𝑓 ∶ 𝐹 ∈ 𝑃 (𝒳) and ∫
𝒳

‖𝑥‖𝑝 𝑓 (𝑥) < ∞}, 𝑝 ≥ 1. (2.9)

Recall that if 𝐹,𝐺 ∈ 𝑃 (𝒳), then Π(𝐹 ,𝐺) is defined to be the set of measures 𝜋 ∈ 𝑃 (𝒳2)
having as distribution function 𝐹 and 𝐺 as marginals. The p-Wasserstein distance between 𝑓
and 𝑔 is defined as the minimal transportation cost between the distributions 𝐹 and 𝐺:

𝑑𝒲𝑝
(𝑓,𝑔) = inf

𝜋∈Π(𝐹,𝐺)
(𝐶𝑝 (𝜋))1/𝑝 = ( inf

𝜋∈Π(𝐹,𝐺)
∫

𝒳×𝒳
‖𝑥1 −𝑥2‖𝑝 𝑑𝜋(𝑥1,𝑥2))

1/𝑝
, (2.10)

that can be interpreted, from a physical point of the view, as the minimum of amount of work
to change one distribution function into another. A proof that 𝒲𝑝 is a metric can be found
in Villani [283].

In general, estimating the p-Wasserstein metric is challenging and requires using a specific
numerical scheme to obtain the optimal solution. However, there are exceptions for the
coefficients 𝑝 = 1 and 𝑝 = 2. For example, for 𝑝 = 2, we can write the optimal solution in
terms of the quadratic distance of quantile functions:

𝑑𝒲2
(𝑓,𝑔) = √∫

1

0
(𝐹 −1 (𝑡)−𝐺−1 (𝑡))2 𝑑𝑡. (2.11)
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Still, this exception only holds for univariate density functions. Consider a random sample
{𝑓𝑖}

𝑛
𝑖=1, and let 𝒴 be the space of univariate density functions with support in 𝑇 ⊂ ℝ, equipped

with the metric 𝑑𝒲2
. In this case, we can find a closed-form expression to estimate the

Fréchet centroid as the usual mean in Euclidean spaces but from the Quantile representations
associated with the density functions:

̃𝜇𝑌 = argmin
𝑓∈𝒴

1
𝑛

𝑛
∑
𝑖=1

𝑑2 (𝑓𝑖,𝑓) = argmin
𝑓∈𝒴

1
𝑛

𝑛
∑
𝑖=1

∫
1

0
(𝐹 −1

𝑖 (𝑡)−𝐹 −1 (𝑡))2 𝑑𝑡. (2.12)

For a different 𝑝 ∈ (1,2), we must resort to specific gradient optimization approximations
to derive the notion of centroid [218], and the posterior estimation of the Fréchet variance.

2.2.3 Global Fréchet regression

Linear regression methods are the most commonly used to estimate the conditional mean be-
tween a random response variable 𝑌 and a predictor random vector 𝑋. Their interpretability
and closed-form expressions are the primary characteristics making them attractive to practi-
tioners.

Authors in [214] generalize the notion of linear regression to the case of the response
variable taking values in a metric space, but the predictors remaining Euclidean. We use later
this regression method in Chapter 3 to estimate the conditional glucose profiles according to
patient characteristics.

Let (𝑋,𝑌 ) ∼ 𝑃𝑋,𝑌 be a multivariate random variable, where 𝑋 ∈ ℝ𝑝, and 𝑌 ∈ 𝒴, being
(𝒴,𝑑) a properly bounded separable metric space. For each fixed 𝑋 = 𝑥 ∈ ℝ𝑝, the conditional
mean estimation can be obtained by solving the following optimization problem in metric
space:

𝑚(𝑥) = argmin
𝜔∈𝒴

𝐸 [[1+(𝑋 −𝑥)Σ−1 (𝑥−𝜇)]𝑑2 (𝑌 ,𝜔)] = argmin
𝜔∈𝒴

𝐸 [𝑤(𝑥,𝑋)𝑑2 (𝑌 ,𝜔)] ,

where Σ = 𝐶𝑜𝑣(𝑋,𝑋) 𝜇 = 𝐸 (𝑋), and 𝑤(𝑥,𝑋) = [1+(𝑋 −𝜇)Σ−1 (𝑥−𝜇)] is a proper
weight-function for enforcing the constraint that the conditional mean takes a linear structure.

Let us suppose that 𝒴 = ℝ and 𝑑(𝑥,𝑦) = |𝑥−𝑦|, we have

𝑚(𝑥) =argmin
𝜔∈𝒴

𝐸 [[1+(𝑋 −𝜇)Σ−1 (𝑥−𝜇)](𝑌 −𝜔)2]

=argmin
𝜔∈𝒴

𝐸 [(𝑌 −𝜔)2]+ argmin
𝜔∈𝒴

𝐸 [(𝑌 −𝑦)2 [(𝑋 −𝜇)Σ−1]](𝑥−𝜇)

=𝜇𝑌 +⟨𝛽,𝑥−𝜇⟩, (2.13)

that is, we can rewrite the solutions in terms of an intercept, 𝜇𝑌 , and a slope coefficient
𝛽 ∈ ℝ𝑝, recovering the traditional multivariate linear shape, that can be interpreted in terms
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of a linear projection 𝑚(𝑥) = 𝜇𝑌 + ⟨𝛽,𝑥 − 𝜇⟩, where ⟨𝑥,𝑦⟩, denotes a dot product between
two elements 𝑥,𝑦 ∈ ℝ𝑝.

Importantly, this prior interpretation only holds when 𝒴 is a separable Hilbert metric space,
as established in [214] and not only when the response variable takes values in the real line.

Assume that an i.i.d. random sample {(𝑋𝑖,𝑌𝑖)}𝑛
𝑖=1 from 𝑃𝑋,𝑌 is available, we can obtain

a estimation of conditional mean as follows:

�̃�(𝑥) = argmin
𝜔∈𝒴

1
𝑛

𝑛
∑
𝑖=1

[1+(𝑋𝑖 −𝑋)Σ̃−1 (𝑥−𝑋)𝑑2 (𝜔,𝑌𝑖)] , (2.14)

where 𝑋 = 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖, and Σ̃ = 1
𝑛−1 ∑𝑛

𝑖=1 (𝑋𝑖 −𝑋)(𝑋𝑖 −𝑋)𝑇 .
A more general abstract regression approach was proposed recently, for the case of the

response and predictors taking values in a separable metric space [47]. A random forest
algorithm with these same settings was proposed in [222].

2.3 Statistical learning in reproducing kernel Hilbert spaces

The reproducing kernel Hilbert spaces (RKHS) framework constitutes one of the most influ-
ential families of statistical learning algorithms in metric spaces [26]. Methods in RKHS are
a generalization from finite-dimensional Euclidean spaces to an infinite-dimensional context
preserving the advantages of Euclidean geometries [26]. Furthermore, they can naturally inte-
grate different sources of information, model non-linear relations of dependence, and analyze
complex statistical objects such as graphs, strings, or curves in a straightforward way [34, 191].
Furthermore, they can perform statistical learning in different modeling problems with excellent
ratios of convergence [43].

Suppose that we observe a random sample 𝒟𝑛 = {(𝑋𝑖,𝑌𝑖) ∈ 𝒳×𝒴}𝑛
𝑖=1 from a distribution

function 𝑃𝑋,𝑌 . The structure of many statistical learning problems from a functional analysis
perspective is as follows:

�̃� = argmin
𝑚∈ℱ

ℛ𝐿,𝒟𝑛
(𝑚)+𝜆Ω(𝑚), (2.15)

where ℛ𝐿,𝒟𝑛
(𝑚) denotes the empirical risk functional that can be defined in terms of loss-

function 𝐿 ∶ (𝑦,𝑦′) ∈ 𝒴 × 𝒴 → ℝ as follows ℛ𝐿,𝒟𝑛
(𝑚) = 1

𝑛 ∑𝑛
𝑖=1 𝐿(𝑌𝑖,𝑚(𝑋𝑖)). ℱ is the

class of functions over 𝒳 that we use to perform the statistical learning, 𝜆 > 0 denotes the
regularization parameter of regularization function Ω(𝑓) ∶ ℱ → ℝ+. We also assume that
convexity property holds in the loss-function 𝐿. Suppose for example the standard mean
regression problem as a particular case:

�̃� = argmin
𝑚∈ℱ

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 −𝑚(𝑋𝑖))
2 +𝜆‖𝑚‖2

ℱ . (2.16)
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In practice, the election of a very general class ℱ can be counterproductive. Let us suppose
that we fix the functional space ℱ = 𝐿2 ([0,1]) = {𝑓 ∶ ∫1

0 𝑓2 (𝑠)𝑑𝑠 < ∞}, where 𝑓 ∶ [0,1] → ℝ
is a measurable function. We can find examples in which the functional in Equation 2.15 may
diverge to infinity. Therefore, we must restrict the functional space ℱ in which we perform
the statistical learning for ensuring good properties, while we guarantee that it is rich enough
for the specific modeling task.

A natural way to do this is by performing the statistical learning in a proper reproducing
Kernel Hilbert space (RKHS) that we denote by ℋ. A key element of the RKHS theory
is the existence of a kernel 𝑘 ∶ 𝒳 × 𝒳 → ℝ+ that allows transforming the previous infinite-
dimensional problem into a finite-dimensional one [26]. Importantly, the function minimizing
the empirical risk functional in Equation 2.15 has a closed-form expression given by �̃�(𝑥) =
∑𝑛

𝑖=1 𝛼𝑖𝑘(𝑥,𝑋𝑖), according to the well-known representer theorem. Thus, many modeling
statistical problems can be expressed as a linear combination of the kernel function evaluated
at the training points [191].

Next, we formally review the RKHS framework [26]. First, consider a set 𝒳 and denote
ℱ(𝒳) = { 𝑓 ∶ 𝒳 → ℝ} the space of real-valued functions on 𝒳 with their vectorial space-
structure.

Definition 2. (reproducing kernel Hilbert spaces - RKHS) Let 𝒳 be a set, let ℋ ⊆ ℱ(𝒳)
be a Hilbert space. Then ℋ is called a RKHS if there exist a kernel 𝑘 on 𝒳 satisfying

• ∀𝑥 ∈ 𝒳 ∶ 𝑘(𝑥, ⋅) ∈ ℋ and

• ∀𝑓 ∈ ℋ,∀𝑥 ∈ 𝒳 ∶ ⟨𝑓,𝑘(𝑥, ⋅)⟩ℋ = 𝑓(𝑥).

Moreover, we call 𝑘(⋅, ⋅) a reproducing kernel of ℋ.

2.3.1 Positive-definite kernels

The key point for the success of statistical learning in RKHS spaces is that we can transform
many modeling problems in terms of a linear operator by means of the positive-definite kernel
𝑘 [26, 191]. Next, we introduce key properties of kernels.

Definition 3. (positive semi-definite kernel [26]) Let 𝒳 be a set, then a symmetric kernel in
their arguments 𝑘 on 𝒳 is called positive semi-definite if for all 𝑚 ∈ ℕ and for all 𝑥1,…,𝑥𝑚 ∈ 𝒳
the gram matrix 𝐾 given by 𝐾𝑖𝑗 = 𝑘(𝑥𝑖,𝑥𝑗) , 𝑖, 𝑗 = 1,…,𝑚 is positive semi-definite, and for
all 𝑧 ∈ ℝ𝑚 it is hold that 𝑧𝑡𝐾𝑧 > 0.

Examples of positive semi-definite kernels on 𝒳 = ℝ𝑛 are introduced bellow:
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• Gaussian kernel with bandwidth 𝜎 > 0,

𝑘(𝑥,𝑦) = 𝑒𝑥𝑝(−‖𝑥−𝑦‖2

2𝜎2 ) (2.17)

• Laplacian kernel with bandwidth 𝜎 > 0,

𝑘(𝑥,𝑦) = 𝑒𝑥𝑝(−‖𝑥−𝑦‖
𝜎 ) (2.18)

• Polynomial kernel of degree 𝑑 ∈ ℕ,

𝑘(𝑥,𝑦) = ⟨𝑥,𝑦⟩𝑑 (2.19)

• Sigmoid kernel with 𝜅, where 𝜅 is a real-function, and 𝜃 < 0,

𝑘(𝑥,𝑦) = 𝑡𝑎𝑛ℎ(𝜅⟨𝑥,𝑦⟩)+𝜃). (2.20)

We can introduce several operations between kernels that preserve semi-definite character.

1. if 𝑘1 is a kernel, and 𝑏 ≥ 0, then 𝑘1 +𝑏 is a kernel.

2. If 𝑘1 and 𝑘2 are kernels, and 𝛼1,𝛼2 ≥ 0, then 𝛼1𝑘1 +𝛼2𝑘2 is a kernel.

3. If 𝑘1 and 𝑘2 are kernels, then 𝑘(𝑥,𝑦) ∶= 𝑘1 (𝑥,𝑦)𝑘2 (𝑥,𝑦) is a kernel.

4. If 𝑘1,𝑘2,… are kernels, and 𝑘(𝑥,𝑦) ∶= lim𝑛→∞ 𝑘𝑛 (𝑥,𝑦) exists for all 𝑥,𝑦, then 𝑘 is a
kernel.

Based on these primitives, we can derive more complicated closure operations. For instance,
a polynomial function 𝑓 ∶ ℝ → ℝ with positive coefficients

𝑓 (𝑟) =
𝑑

∑
𝑖=0

𝑎𝑖𝑟𝑖, ,∀𝑑 ∈ ℕ ,𝑎𝑖 ≥ 0. (2.21)

We can also derive the polynomial kernel 𝑘(𝑥,𝑦) = (⟨𝑥,𝑦⟩+𝑐)𝑑 (𝑐 ≥ 0,𝑑 ∈ ℕ). Another
example is the exponential kernel 𝑘(𝑥,𝑦) = 𝑒𝑥𝑝(𝜎⟨𝑥,𝑦⟩) (𝜎 > 0) since

𝑒𝑥𝑝(𝜎𝑟) =
∞

∑
𝑖=0

𝜎𝑖

𝑖! 𝑟𝑖. (2.22)

A last example. The following function

𝑘(𝑥,𝑦) ∶= 𝑒𝑥𝑝(2𝜎⟨𝑥,𝑦⟩)
√𝑒𝑥𝑝(2𝜎⟨𝑥,𝑥⟩)√𝑒𝑥𝑝(2𝜎⟨𝑦,𝑦⟩)

(2.23)

is a kernel.
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Proposition 2. (uniqueness of the kernel) [26] Let 𝒳 be a set and let ℋ be a RKHS on 𝒳.
Assume both 𝑘 and �̃� are reproducing kernels on ℋ. Then 𝑘 = �̃�.

Theorem 3. (alternative characterization of RKHS) [26] Let 𝒳 be a set and for all 𝑥 ∈ 𝒳
let 𝛿𝑥 ∶ ℱ(𝒳) → ℝ be the function such that for all 𝑓 ∈ ℱ(𝒳) it holds that 𝛿𝑥(𝑓) = 𝑓(𝑥).
Then, a Hilbert space ℋ ⊆ ℱ(𝒳) is a reproducing kernel Hilbert space if and only if for all
𝑥 ∈ 𝒳 the function 𝛿𝑥 is continuous on ℋ.

Theorem 4. (separability and continuity) [26] Let 𝒳 be a set, let 𝑘 a continuous, bounded
and positive semi-definite kernel on 𝒳 and let ℋ be the RKHS with reproducing kernel 𝑘.
Then, ℋ is separable Hilbert space consisting only of continuous functions. Furthermore,
given an orthonormal basis (𝜙𝑛)𝑛∈ℕ of ℋ it holds for all 𝑥,𝑦 ∈ 𝒳 that

𝑘(𝑥,𝑦) =
∞

∑
𝑛=1

𝜙𝑛(𝑥)𝜙𝑛(𝑦). (2.24)

The Gaussian kernel on ℝ𝑛 holds all these conditions as well as all the kernels proposed in
this thesis.

2.3.2 Negative-type metrics and semi-definite kernels

Let (𝒳,𝑑) be a metric space. We say that (𝒳,𝑑) has a negative type if for all 𝑛 ≥ 1 and
all lists of 𝑛 red points 𝑥𝑖 and 𝑛 blue points 𝑥′

𝑖 in 𝒳, the sum 2∑𝑛
𝑖=1 ∑𝑛

𝑗=1 𝑑(𝑥𝑖,𝑥′
𝑗) of

the distances between the 2𝑛2 ordered pairs of points of opposite color is at least the sum
∑𝑛

𝑖=1 ∑𝑛
𝑗=1 𝑑(𝑥𝑖,𝑥𝑗) + 𝑑(𝑥′

𝑖,𝑥′
𝑗) of the distances between the 2𝑛2 ordered pairs of points

of the same color [168].
We can arrive at this formal property in metric spaces from a well-know and non-trivial prop-

erty of Euclidean spaces. For all 𝑛 ≥ 1, 𝑥1,…,𝑥𝑛 ∈ 𝒳, and 𝛼1,…,𝛼𝑛,∈ ℝ with ∑𝑛
𝑖=1 𝛼𝑖 = 0,

we have [168],
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝛼𝑖𝛼𝑗𝑑(𝑥𝑖,𝑥𝑗) ≤ 0, (2.25)

where 𝛼𝑖 can be interpreted as the indicator that 𝑥𝑖 is red minus the indicator that 𝑥𝑖 is blue.
We say that (𝒳,𝑑) has a strict negative type if, for every 𝑛 and all 𝑛-tuples of distinct

points 𝑥1,…,𝑥𝑛, equality holds in 2.25 iff 𝛼𝑖 = 0 for all 𝑖. Again, Euclidean spaces have strict
negative type. A simple example of a metric space with non-strict negative type is 𝑙1 distance
on ℝ2 on a 3-point space.

Given two (Borel) probability measure 𝐹 and 𝐺 on 𝒳 with finite first moment, we can
generalized the notion of negative type for infinite spaces. We say that (𝒳,𝑑) has a negative
type if

∫𝑑(𝑥1,𝑥2)𝑑 (𝐹 −𝐺)2 (𝑥1,𝑥2) ≤ 0. (2.26)
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We say that (𝒳,𝑑) has a strong negative type if it has a negative type and equality holds
only when 𝐹 = 𝐺 [167, 168].

The following result shows that semi-metrics of negative type and symmetric positive semi-
definite kernels are closely related [24]. Let

𝑘(𝑥,𝑦) = 1
2 [𝑑 (𝑥,𝑥0)+𝑑(𝑦,𝑥0)−𝑑(𝑥,𝑦)] , (2.27)

where 𝑥0 ∈ 𝒳 is an arbitrary family of fixed points. Then, it can be show that 𝑘 is positive
semi-definite iff 𝑑 is a semi-metric of negative type. We have a family of kernels, one for each
choice of 𝑥0. Conversely, if 𝑑 is a semi-metric of negative type and 𝑘 is a kernel in this family,
then

𝑑(𝑥,𝑦) = 𝑘(𝑥,𝑥)+𝑘(𝑦,𝑦)−2𝑘(𝑥,𝑦) . (2.28)

2.3.3 Kernel mean embeddings, characteristics and universal kernels

One of the main advantages of statistical learning in the 𝑅𝐾𝐻𝑆 framework is that we can
embed complex statistical objects into them and exploit the inherent Hilbert structure to
analyze these objects in an infinite-dimensional space that can preserve, for example, the
distributional properties of the original input data [191]. Therefore, we can express different
statistical problems as linear operations between inner products utilizing kernel function 𝑘
that transform the original input space. Many times, the final estimators possess closed-
form expressions. Along this thesis, we use this idea of embedding to transform a probability
distribution in the original space to an element of a RKHS.

Let 𝒳 be a separable metric space. Let 𝑘 be a continuous bounded positive semi-definite
kernel and let ℋ be the RKHS with reproducing kernel 𝑘. We denote as ℳ𝑓(𝒳) the set of
finite Borel measures on 𝒳.

Definition 4. (kernel mean embedding function) [191] The kernel mean embedding of prob-
ability measures in ℳ𝑓(𝒳) is defined by a mapping 𝜙 ∶ ℳ𝑓(𝒳) → ℋ with the property
that

𝜙(𝐹) = ∫
𝒳

𝑘(𝑥, ⋅)𝐹 (𝑑𝑥). (2.29)

Definition 5. (characteristic kernel) [191] The kernel 𝑘 is said to be characteristic if 𝜙 is
injective.

Definition 6. (universal kernel) [191] The kernel 𝑘 is said to be universal if ℋ is dense on
𝒞(𝒳), i.e. for every function 𝑓 ∈ 𝒞(𝒳), and 𝜖 > 0 there exist a function 𝑔 induced by 𝑘 with
‖𝑓 −𝑔‖∞ ≤ 𝜖.

Examples of universal kernels are provided bellow
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• 𝑘(𝑥,𝑦) = 𝑘(⟨𝑥,𝑦⟩) defined on ℝ𝑑, with power series expansion

𝑘(𝑟) =
∞

∑
𝑖=0

𝑎𝑖𝑟𝑖, (2.30)

is a universal kernel iff for all 𝑖, we have 𝑎𝑖 strictly positive.

• 𝑘(𝑥,𝑦) = 𝑘(𝑥−𝑦) defined on ℝ𝑑, with a Fourier transformation

𝐹 [𝑘](𝜔) = (2𝜋)− 𝑑
2 ∫

ℝ𝑑
𝑒𝑖⟨𝑤,𝑟⟩𝑘(𝑟)𝑑𝑟 (2.31)

is a universal kernel iff for all 𝜔, we have the Fourier coefficients strictly positive.

2.3.4 Energy distance and distances between embeddings

Distances between kernel mean embeddings such as the maximum mean discrepancy (MMD)
[191] and the energy distance (ED) [262] are two families of statistical distances between
arbitrary random elements that take values in separable Hilbert spaces. With their increase
in popularity at the beginning of this century, data analysis methods derived from them have
become an essential tool in many statistical modeling tasks, e.g., hypothesis testing, clustering
analysis, variable selection, and screening variables [263].

The equivalence between these two families of distances, at the population and finite sample
levels, was established in a series of recent papers using the connections between negative-type
semi-metrics and conditional symmetric positive definite kernels [180, 241]. Next, we provide
the formal definition of energy distance in Euclidean spaces.

Definition 7. (Euclidean energy distance) Let be 𝑋 ∼ 𝐹,𝑌 ∼ 𝐺 be two 𝒳-random variables
satisfying 𝐸 (‖𝑋‖2) < ∞ and 𝐸 (‖𝑌 ‖2) < ∞. The Euclidean energy distance of order 𝛼 ∈
(0,2] is defined as:

𝜖𝛼(𝑋,𝑌 ) = 2𝐸 (‖𝑋 −𝑌 ‖𝛼)−𝐸 (‖𝑋 −𝑋′‖𝛼)−𝐸 (‖𝑌 −𝑌 ′‖𝛼) , (2.32)

where 𝑋′ and 𝑌 ′ are i.i.d. random copies of random variables 𝑋 and 𝑌 , respectively.

Energy distance can be extended to obtain a more general family of statistical distances in
separable Hilbert Spaces. For this purpose, it is enough to consider an arbitrary semi-metric
of negative type 𝜌(⋅, ⋅) [24].

Definition 8. (general formulation of energy distance) Let 𝜌 ∶ 𝒳 × 𝒳 → ℝ+ be a metric of
negative type, and 𝑋 ∼ 𝐹,𝑌 ∼ 𝐺 two random variables in 𝒳 satisfying 𝐸 (𝜌2(𝑋,𝑜)) < ∞
and 𝐸 (𝜌2(𝑌 ,𝑜)) < ∞, where 𝑜 ∈ 𝒳 is an arbitrary fixed element of the space. We define
the energy distance as

𝜖𝜌(𝑋,𝑌 ) = 2𝐸 (𝜌(𝑋,𝑌 ))−𝐸 (𝜌(𝑋,𝑋′))−𝐸 (𝜌(𝑌 ,𝑌 ′)), (2.33)
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which is equivalent to Eq. (2.32) when 𝜌(𝑥,𝑦) = ‖𝑥−𝑦‖𝛼.

Finally, we define the maximum mean discrepancy in the RKHS framework.

Definition 9. (maximum mean discrepancy (MMD)) Let 𝑘 ∶ 𝒳 × 𝒳 → ℝ+ be a symmetric
and positive definite kernel, and 𝑋 ∼ 𝐹,𝑌 ∼ 𝐺 be two random variables in 𝒳 satisfying
𝐸 (𝑘(𝑋,𝑋′)) < ∞ and 𝐸 (𝑘(𝑌 ,𝑌 ′) < ∞. We define the maximun mean discrepancy as

𝑀𝑀𝐷(𝑋,𝑌 )2
𝑘 =‖𝜙(𝐹)−𝜙(𝐺)‖2

=∥∫𝑘(𝑥, ⋅)𝐹 (𝑑𝑥)−∫𝑘(𝑦, ⋅)𝐺(𝑑𝑦)∥
2

=𝐸 (𝑘(𝑋,𝑋′))+𝐸 (𝑘(𝑌 ,𝑌 ′))−2𝐸 (𝑘(𝑋,𝑌 )) . (2.34)

where 𝑋′ and 𝑌 ′ are i.i.d. random copies of random variables 𝑋 and 𝑌 , respectively.

Given two samples i.i.d {𝑋𝑖}
𝑛1
𝑖=1 ∼ 𝐹 and {𝑌𝑖}

𝑛2
𝑖=1 ∼ 𝐺, 𝑛1 +𝑛2 = 𝑛, we can straightfor-

wardly estimate their empirical counterparts, that we denote as ̂𝐹 and ̂𝐺, respectively. Using
this estimates, we estimate the aforementioned statistics as

𝜖𝜌 (𝑋,𝑌 ) = 2
𝑛1𝑛2

𝑛1

∑
𝑖=1

𝑛2

∑
𝑗=1

𝜌(𝑋𝑖,𝑌𝑗)− 1
𝑛2

1

𝑛1

∑
𝑖=1

𝑛1

∑
𝑗=1

𝜌(𝑋𝑖,𝑋𝑗)− 1
𝑛2

2

𝑛2

∑
𝑖=1

𝑛2

∑
𝑗=1

𝜌(𝑌𝑖,𝑌𝑗) ,

(2.35)
and

𝑀𝑀𝐷(𝑋,𝑌 )𝑘 = 1
𝑛2

1

𝑛1

∑
𝑖=1

𝑛1

∑
𝑗=1

𝑘(𝑋𝑖,𝑋𝑗)+ 1
𝑛2

2

𝑛2

∑
𝑖=1

𝑛2

∑
𝑗=1

𝑘(𝑌𝑖,𝑌𝑗)− 2
𝑛1𝑛2

𝑛1

∑
𝑖=1

𝑛2

∑
𝑗=1

𝑘(𝑋𝑖,𝑌𝑗)

(2.36)
The choice of the kernel function 𝑘, both in the energy distance and the maximum mean

discrepancy, is critical for the performance of different modeling tasks. However, it is not
easy to establish a general criterion since each choice of semi-metric characterizes distribu-
tional differences, giving more or less priority to a specific moment in the computation. This
information may not be available in practice and may be challenging to obtain from expert
knowledge or prior studies. Established principles for kernel choice on the basis of maximizing
the two-sample test power can be found in [99, 128].

The asymptotic behaviour of the previous statistics under the null (equality in distribution)
and alternative hypothesis can be derived applying the standard theory of U- and V-statistics
(see Appendix). The exact derivations can be found in the original references [97, 261, 262].
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3 Distributional representations of biosensor
data for continuous stochastic process with

application in CGM technology

The steadily increasing availability and prominence of biosensor data have given rise to new
methodological challenges for their statistical analysis. A primary feature of these data is
that the monitored individuals are in free-living conditions, making a direct analysis of the
recorded time series between groups of patients problematic if not infeasible. A clear example
of such data is found in the study of diabetes, where continuous glucose monitoring (CGM)
is increasingly used. The elevation of glucose is distinct between individuals and is influenced
by factors such as mealtimes, diet composition, or physical exercise [71]. Consequently, an
exciting topic of debate is how to exploit the enormous wealth of information recorded by CGM
to draw more reliable conclusions about glucose homeostasis rather than the cursory summary
measures such as fasting plasma glucose (FPG) or glycated hemoglobin (A1c) [295].

Since 2010, the American Diabetes Association (ADA) has included measurement of A1c
levels for both diagnosis and diabetes control [17]. A1c levels reflect underlying glucose levels
over the preceding 3 months, and its within‐patient reproducibility is superior to that of fasting
plasma glucose and oral glucose tolerance tests (OGTTs) [242]. However, recent works have
provided evidence for the need to go beyond A1c and use new measures for glycemic control
[100, 110], in order to capture more diverse aspects of the temporally evolving glucose levels
beyond the average, for example, glucose variability and time-in-range metrics. The metric
time-in-range measures the proportion of time an individual’s glucose levels are maintained
in different target zones. In the case of diabetes, these can include ranges corresponding to
hypoglycemia and hyperglycemia. In an innovative article [21], authors validated the time-
in-range metric, showing that it is a good predictor of long-term microvascular complications
despite just measuring glucose values seven times per day. [160] reached similar conclusions but
using CGM technology only for 24 hours in each patient. At the same time, it is well-known that
two patients may have the same glycosylated hemoglobin and a completely different glycemic
profile [22]. These new findings have led clinical specialists to consider that continuous glucose
measurement during long monitoring periods can lead to more accurate research and clinical
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practice results than standard methods [111]. In fact, since 2012, the European Medicine
Agency [79] recommends the use of CGM to validate the effect of drugs for treatment or
prevention of diabetes mellitus.

Traditionally, real-time continuous glucose monitoring combined with insulin pump therapy
has been shown to improve metabolic control and to reduce the rate of hypoglycemia in adults
with type 1 diabetes [59, 74, 142]. Notwithstanding, more recent applications of CGM have
been more general. For example, they involve screening patients, optimizing diet, epidemiolog-
ical studies, assessing patient prognosis, supporting treatment prescriptions, and having even
been used in healthy populations [83, 105, 161]. In addition to the increasing utility of CGM
data, the technology is gradually becoming cheaper, and new devices capable of measuring
glucose in a non-invasive way are quickly emerging [200]. All of these advances are facilitating
the adoption of CGM in standard clinical practice.

In 2012, a panel of experts discussed how to represent CGM data in an “easy to view
format” [25]. They also analyzed the convenience of using glycemic variability measures and
other summary measures such as time-in-range to extract the CGM’s recorded information. In
2019, ADA launched an updated consensus guide for promoting the correct and standardized
use of time-in-range metrics in standard clinical practice, defining several practitioners’ target
zones. A more recent review about the CGM metric establishes time-in-range as a gold-
standard measure [199].

Motivated by the problem of analyzing data gathered via CGM more precisely while still
leveraging the advantages possessed by time-in-range metrics, we propose an approach based
on the construction of a functional profile of glucose values for each subject. Conceptually,
the approach is a natural extension of time-in-range metrics in which the intervals simultane-
ously shrink in size and increase in number so that the new profile effectively measures the
proportion of time each patient spends at each specific glucose concentration rather than a
coarsely defined range. As a result, the new functional profile, which we refer to as a glucoden-
sity, automatically and simultaneously captures all parameters arising from individual glucose
distributions. To illustrate our new glucose representation graphically, Figure 3.1 shows a set
of constructed glucodensities that represent the data objects for which we will propose using
a tailored set of statistical methods. The glucose profile patterns are clearly heterogeneous be-
tween individuals, both in mean, variability, or any other distributional characteristics including
the hypo-hyper glucose range, where glucodensities have different support depending on pa-
tient condition. For example, in normoglycemic patients, glucose generally oscillates between
75 − 150𝑚𝑔/𝑑𝐿 while in some patients with diabetes, glucose can reach concentrations of
400𝑚𝑔/𝑑𝐿 in the range of severe hyperglycemia. Moreover, the shape of the glucodensities
are entirely different. Moreover, the shape of the glucodensities is entirely different, with exist-
ing variability patterns along all glucose concentrations between normoglycemic and diabetes
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patients.
Mathematically, glucodensities constitute functional-distributional data since each gluco-

density represents a distribution of glucose concentrations. As such, these complex and con-
strained curves cannot be directly analyzed with the usual techniques. To overcome this,
we introduce a framework for the analysis of distances between glucodensities by compiling
suitable methods based on the calculation of glucodensities distances. We also reveal our rep-
resentation’s superior clinical capacity compared to classical measures of diabetes control and
diagnostics. Finally, we demonstrate that our representation has a higher sensitivity than the
standard time-in-range metric to explain the glycemic differences between patients in various
settings, including regression analysis. A new shiny interface to use the methods outlined in
this chapter is available at https://tec.citius.usc.es/diabetes.
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Figure 3.1: Glucodensities are estimated from a random sample of the AEGIS study with diabetic and normo‐
glycemic patients. For each patient, this glucose representation estimates the proportion of time spent at
each glucose concentration over a continuum, representing a more sophisticated approach to assess glucose
metabolism.

The structure of this chapter is as follows. First, we briefly describe the AEGIS study. We
then formally introduce the concept of glucodensity, the estimation methods, and some essen-
tial statistical background to understand the statistical procedures introduced in the chapter.
Subsequently, we explain the regression models used in the validation of the representation.
Afterwards, we show the results that demonstrate the superiority of glucodensity over glucose
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Men (𝑛 = 220) Women (𝑛 = 361)
Age, years 47.8±14.8 48.2±14.5
A1c, % 5.6±0.9 5.5±0.7
FPG, mg/dL 97 ±23 91±21
HOMA-IR, mg/dL.𝜇IU/mL 3.97 ±5.56 2.74±2.47
BMI, kg/m2 28.9±4.7 27.7 ±5.3
CONGA, mg/dL 0.88±0.40 0.86±0.36
MAGE, mg/dL 33.6±22.3 31.2±14.6
MODD 0.84±0.58 0.77 ±0.33

Table 3.1: Characteristics of AEGIS study participants with CGM monitoring by sex. Means and standard
deviations are shown. A1c: glycated haemoglobin; FPG, fasting plasma glucose; HOMA‐IR, homeostasis model
assessment‐insulin resistance; BMI, body mass index; CONGA, glycemic variability in terms of continuous
overall net glycemic action; MAGE, mean amplitude of glycemic excursions; MODD, mean of daily difference.

representations in the state of the art. Then, we illustrate the use with real data of the gluco-
densities methodology in two-sample testing and cluster analysis. Finally, we discuss the new
perspectives opened by the use of glucodensities.

3.1 Sample and procedures

3.1.1 Study design

A subset of the subjects in the A Estrada Glycation and Inflammation Study (AEGIS; trial
NCT01796184 at www.clinicaltrials.gov) provided the sample for the present work. In
the latter cross-sectional study, an age-stratified random sample of the population (aged ≥
18) was drawn from Spain’s National Health System Registry. A detailed description has been
published elsewhere [101]. For a one-year period beginning in March, subjects were periodically
examined at their primary care center where they: i) completed an interviewer-administered
structured questionnaire; ii) provided a lifestyle description; iii) were subjected to biochemical
measurements, and iv) were prepared for CGM (lasting 6 days). The subjects who made up
the present sample were the 581 (361 women, 220 men) who completed at least 2 days of
monitoring, out of an original 622 persons who consented to undergo a 6-day period of CGM.
Another 41 original subjects were withdrawn from the study due to non-compliance with
protocol demands (n = 4) or difficulties in handling the device (n = 37). The characteristics
of the participants are shown in the Table 3.1.

3.1.2 Ethical approval and informed consent

The present study was reviewed and approved by the Clinical Research Ethics Committee from
Galicia, Spain (CEIC2012-025). Written informed consent was obtained from each participant
in the study, which conformed to the current Helsinki Declaration.
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3.1.3 Laboratory determinations

Glucose was determined in plasma samples from fasting participants by the glucose oxidase
peroxidase method. A1c was determined by high-performance liquid chromatography in a
Menarini Diagnostics HA-8160 analyzer; all A1c values were converted to DCCT-aligned val-
ues [112]. Insulin resistance was estimated using the homeostasis model assessment method
(HOMA-IR) according to [182].

3.1.3.1 Glycaemic variability

Glycaemic variability was measured in terms of continuous overall net glycemic action
(CONGA) [183], the mean amplitude of glycaemic excursions (MAGE) [246], and the mean
of the daily differences (MODD) [188] in glucose concentration.

3.1.3.2 CGM Procedures

At the start of each monitoring period, a research nurse inserted a sensor (Enlite™, Medtronic,
Inc, Northridge, CA, USA) subcutaneously into the subject’s abdomen and instructed him/her
in the use of the iPro™ CGM device (Medtronic, Inc, Northridge, CA, USA). The sensor
continuously measures the interstitial glucose level 40-400 (range mg/dL) of the subcutaneous
tissue, recording values every 5 min. Participants were also provided with a conventional
OneTouchR VerioR Pro glucometer (LifeScan, Milpitas, CA, USA) as well as compatible
lancets and test strips for calibrating the CGM. All subjects were asked to make at least three
capillary blood glucose measurements (usually before the main meals). These readings were
taken without checking the current CGM reading. The sensor was removed on the seventh day,
and the data downloaded and stored for further analysis. If the number of data-acquisition
“skips” per day totaled more than 2 h, the entire day’s data were discarded.

3.1.4 Time-in-range metric

The time-in-range metric was calculated with two different methods. First, we estimate the
deciles of CGM records with normoglycemic patients and use the deciles as cut-offs (Table
3.2). Second, we use the cut-off points established by the ADA in the 2019 Medical guideline
[20] (Table 3.3).

3.2 Definition and estimation of the glucodensity

Suppose that a random sample of 𝑛 patients is available. For patient 𝑖, denote the gathered
glucose monitoring data by pairs (𝑡𝑖𝑗,𝑋𝑖𝑗), 𝑗 = 1,…,𝑚𝑖, where the 𝑡𝑖𝑗 represent recording
times that are typically equally spaced across the observation interval, and 𝑋𝑖𝑗 is the glucose
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Range 1 < 85
Range 2 85−90
Range 3 91−94
Range 4 95−98
Range 5 99−101
Range 6 102−105
Range 7 106−109
Range 8 110−115
Range 9 116−124
Range 10 > 125

Table 3.2: Cut‐offs for time‐in‐range metrics using own estimations throught normoglucemic individuals of
AEGIS study

Range 1 < 54
Range 2 54−69
Range 3 70−180
Range 4 181−250
Range 5 > 250

Table 3.3: Cut‐offs for time‐in‐range metrics following ADA guidelines [20]

level at time 𝑡𝑖𝑗 ∈ [0,𝑇𝑖]. Note that the number of records 𝑚𝑖, the spacing between them, and
the overall observation length 𝑇𝑖 can vary by patient. One can think of these data as discrete
observations of a continuous latent processes 𝑌𝑖(𝑡), with 𝑋𝑖𝑗 = 𝑌𝑖(𝑡𝑖𝑗). The glucodensity for
this patient is defined in terms of this latent process as 𝑓𝑖(𝑥) = 𝐹 ′

𝑖 (𝑥), where

𝐹𝑖(𝑥) = 1
𝑇𝑖

∫
𝑇𝑖

0
1(𝑌𝑖(𝑡) ≤ 𝑥)d𝑡, (3.1)

for inf
𝑡∈[0,𝑇𝑖]

𝑌𝑖(𝑡) ≤ 𝑥 ≤ sup
𝑡∈[0,𝑇𝑖]

𝑌𝑖(𝑡), (3.2)

is the proportion of the observation interval in which the glucose levels remain below 𝑥. Since
𝐹𝑖 are increasing from 0 to 1, the data to be modeled are a set of probability density functions
𝑓𝑖, 𝑖 = 1,…,𝑛.

Of course, neither 𝐹𝑖 nor the glucodensity 𝑓𝑖 is observed in practice, but one can construct
an approximation through a density estimate ̃𝑓𝑖(⋅) obtained from the observed sample. In
the case of CGM data, the glucodensities may have different support and shape. Therefore,
we suggest using a non-parametric approach to estimate each density function. For example,
using a kernel-type estimator, we have

̃𝑓𝑖(𝑥) = 1
𝑚𝑖

𝑚𝑖

∑
𝑗=1

𝕂ℎ𝑖
(𝑥−𝑋𝑖𝑗),
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where ℎ𝑖 > 0 is the smoothing parameter and 𝕂ℎ𝑖
(𝑠) = 1

ℎ𝑖
𝕂( 𝑠

ℎ𝑖
). The choice of 𝐾 does

not have a big impact on the efficiency of the estimator, but the value of ℎ𝑖 is crucial [193].
In the standard setting of independent random samples, a vast number of approaches for

selecting the smoothing parameter are available in the literature. Common strategies include
cross-validation, minimizing the estimated mean integrated squared error (MISE), or a “rule of
thumb” derived from the assumption that the density is Gaussian. In this last case, the choice
can be explicitly written as ℎ̃𝑖 = 1.06�̃�𝑖𝑚−1/5

𝑖 , where �̃�𝑖 is the sample standard deviation of
the 𝑋𝑖𝑗 [249].

In our particular setup, we are estimating the density function of a stochastic process/time
series, which is more difficult in theory. However, in a seminal work in this area [106], au-
thors have shown that the rule of thumb and other traditional smoothing parameter selection
strategies behave well. Additionally, the number of density function estimators that exists is
considerable, and we can also employ other approaches as the use of orthogonal expansions
(e.g., Fourier or Wavelet basis), splines, and histograms. For further details, the reader is
referred to [14, 124, 193].

3.2.1 Distance-based Descriptive Statistics

Let [𝑎,𝑏] be an interval of the real line, which may be unbounded, and suppose that each
glucodensity 𝑓𝑖 has support contained in [𝑎,𝑏]. From a statistical point of view, the sample
𝑓1,…,𝑓𝑛 may be modeled and analyzed using methods of functional data analysis [226, 288].
However, since the 𝑓𝑖 must be positive and satisfy ∫𝑏

𝑎 𝑓𝑖(𝑥)𝑑𝑥 = 1, classical methods have
in recent years been adapted to account for the nonlinear, distributional structure of density
samples [119, 215]. The general approach is to define a metric or distance between densities
that, in turn, leads to descriptive statistics that respect the unique density properties. For
example, define the data space of glucodensities as 𝐴 ∶= {𝑓 ∶ [𝑎,𝑏] → ℝ+ ∶ ∫𝑏

𝑎 𝑓(𝑥)𝑑𝑥 =
1 and ∫𝑏

𝑎 𝑥2𝑓(𝑥)𝑑𝑥 < ∞}. Given two arbitrary glucodensities 𝑓,𝑔 ∈ 𝐴, the 2-Wasserstein
distance [283] between 𝑓 and 𝑔 is

𝑑𝒲2
(𝑓,𝑔) = √∫

1

0
(𝐹 −1(𝑥)−𝐺−1(𝑥))2𝑑𝑥, (3.3)

where 𝐹 and 𝐺 are the cumulative distribution functions (cdfs) of the density functions 𝑓 and
𝑔.

The 2-Wasserstein distance is a natural distance to measure the similarity between density
functions through its representation in the space of the quantile (inverse cdf) functions, and it
has already been successfully applied in biological problems [218]. Furthermore, it has compu-
tational and modeling advantages compared to the usual 𝐿2[𝑎,𝑏] metric when glucodensities
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have different support within [𝑎,𝑏]. Finally, it has a physical interpretation in the theory of
optimal transport [9, 283].

As glucodensities are distributional data, the subsequent application of the usual techniques
for functional data, such as estimation of mean, covariance, and regression models, may lead to
misleading results. Hence, we have chosen to use models based on the 2-Wasserstein distance,
although other choices are possible. As a starting point, based on the notion of distance we can
generalise the mean and variance of a random variable that takes values in an abstract space
with metric structure [82]. As we will see, similar adaptations can be developed for regression,
hypothesis testing, or to perform cluster analysis. Given a distance 𝑑 ∶ 𝐴 × 𝐴 → ℝ+ between
density functions, of which 𝑑𝑊2

is one example, and a random variable 𝑓 defined on 𝐴, the
Fréchet mean of 𝑓 is

𝜇𝑓 = argmin
𝑔∈𝐴

𝐸(𝑑2(𝑓,𝑔)).

The Fréchet variance of 𝑓 is then

𝜎2
𝑓 = 𝐸(𝑑2(𝑓,𝜇𝑓)).

If the choice of distance is the Wasserstein metric 𝑑𝒲2
, these are given the names of

Wasserstein mean and variance, respectively. In this particular case, (3.3) implies that 𝜇𝑓 is
the density whose quantile function is the pointwise mean of the random quantile function
𝐹 −1. Moreover, 𝜎2

𝑓 is interpretated as the integral of the pointwise variance of 𝐹 −1. In
general, calculation of the Fréchet mean is not easy, and we must resource to computational
approximations [205].

In the following subsections, we will extend this notions to statistical methods for regression,
clustering, and hypothesis testing.

3.3 Regression models with glucodensities

3.3.1 Non-parametric regression with glucodensity as the predictor

Let 𝑓 be a functional random variable taking values in (𝐴,𝑑𝒲2
) and 𝑌 a random variable

that takes values in the real line. We assume the following regression relationship between 𝑓
and 𝑌 , which represent the predictor and response variables, respectively:

𝑌 = 𝑚(𝑓)+𝜖 (3.4)

where 𝑚 ∶ 𝐴 → ℝ is an unknown smooth function, and the random error 𝜖 satisfies 𝐸(𝜖) = 0.
Given a sample {(𝑓𝑖,𝑌𝑖) ∈ 𝐴×ℝ}𝑛

𝑖=1, most non-parametric estimators �̃�(⋅) have the form
of a weighted average of the responses

�̃�(𝑥) =
𝑛

∑
𝑖=1

𝑤𝑛𝑖(𝑥)𝑌𝑖. (3.5)
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In general, the weights 𝑤𝑛𝑖(𝑥) depend on the distance selected to measure the similarities
between the density functions 𝑓𝑖 and 𝑥, with larger distances receiving lower weights, and
satisfy ∑𝑛

𝑖=1 𝑤𝑛𝑖(𝑥) = 1 [76]. A typical choice would be the Nadaraya–Watson weights

𝑤𝑛𝑖(𝑥) = 𝕂(𝑑(𝑥,𝑓𝑖)
ℎ )

∑𝑛
𝑖=1(𝕂(𝑑(𝑥,𝑓𝑗)

ℎ ))
, (3.6)

where ℎ is a smoothing parameter and 𝕂 ∶ ℝ → ℝ is a known univariate probability density
function called the kernel. For more details about this procedure see [76].

3.3.2 Regression with glucodensity as the response

In the case of the regression methods with a density function as response, the literature is
not very extensive to the current date [38, 107, 198, 216, 265]. In this chapter, we use the
method proposed in [216] which allows us to incorporate the desired metric 𝑑𝑊2

and is a direct
generalization of classical linear regression. The primary rationale for our use of this approach
is that, unlike the other approaches mentioned above, there is a methodology developed to
perform inferential procedures such as confidence bands and hypothesis testing in order to
establish the significance of the input variables in the model [213].

Let 𝑓 be a random variable (e.g. a glucodensity) that takes values in the space of (𝐴,𝑑𝒲2
)

defined above. Consider a random vector 𝑈 ⊂ ℝ𝑑 that contains the set of predictors. Our
interest is in the Fréchet regression function, or function of conditional Fréchet means (see
chapter 2.2.3 for more details),

�̃�(𝑢) ∶= argmin
𝑔∈𝐴

𝐸(𝑑2
𝒲2

(𝑓,𝑔)|𝑈 = 𝑢), 𝑢 ∈ ℝ𝑑. (3.7)

The approach in [216] imposes a particular model for �̃� that, in direct analogy to classical
linear regression, takes the form of a weighted Fréchet mean:

�̃�(𝑢) = argmin
𝑔∈𝐴

𝐸(𝑠(𝑈,𝑢)𝑑2
𝒲2

(𝑓,𝑔)), 𝑢 ∈ ℝ𝑑. (3.8)

Here, the weight function is

𝑠(𝑈,𝑢) = 1+(𝑈 −𝜇)𝑇 Σ−1(𝑢−𝜇), 𝜇 = 𝐸(𝑈),Σ = Cov(𝑈), (3.9)

and Σ is assumed to be positive definite.
Given a sample (𝑈𝑖,𝑓𝑖), 𝑖 = 1,…,𝑛, of independent pairs each distributed as (𝑈,𝑓), one

can proceed to estimate �̃�(𝑢) for any desired input 𝑢. Due to the intimate connection between
the Wasserstein metric and quantile functions as in (3.3), for most inferential procedures it is
sufficient to estimate the conditional Wasserstein mean quantile function 𝑄(𝑢) corresponding
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to 𝑓(𝑢). Let 𝐷 be the set of quantile functions, 𝑄𝑖 the quantile function corresponding to the
random density 𝑓𝑖, and define empirical weights 𝑠𝑖𝑛(𝑢) = 1 + (𝑈𝑖 − 𝑈)𝑇 Σ̃−1(𝑢 − 𝑈), where
𝑈 and Σ̃ are the sample mean and variance of the 𝑈𝑖, respectively. The natural estimator
under 𝑑𝒲2

is the weighted empirical mean quantile function

�̃�(𝑢) = argmin
𝑄∈𝐷

𝑛
∑
𝑖=1

𝑠𝑖𝑛(𝑢)‖𝑄−𝑄𝑖‖2, (3.10)

where ‖⋅‖ denotes the 𝐿2[0,1] norm on 𝐷.
A straightforward algorithm for computing �̃�(𝑢) is shown in [213]. In addition, two

algorithms are given to estimate the confidence bands at a given significance level 𝛼 for both
the quantile functional parameter 𝑄(⋅) and the density 𝑚(⋅).

3.3.3 Density estimation and software details

The density function of each individual was estimated with a non-parametric Nadaraya-Watson
procedure. For this purpose, we used a Gaussian kernel and rule of thumb as a smoothing
parameter. As some computations involving the 2-Wasserstein metric only require a quantile
function as input, these were estimated using the empirical quantile function of the observa-
tions.

Concerning prediction, the two regression methods previously described were used in glu-
codensity validation: i) The non-parametric kernel functional regression model with the 2-
Wasserstein distance having the glucodensity as predictor [76]; and ii) A global 2-Wasserstein
regression model where the glucodensity is the response [216]. In addition, with standard
vector-valued time-in-range metrics, 𝑘-nearest neighbor algorithms were employed with 𝑘 = 10
neighbors. These time-in-range metrics we first transformed using the isometric log-ratio (ilr)
transformation for compositional data prior to fitting the model. In order to avoid problems
associated with zero values in any of these predefined ranges, a fixed positive constant was
added to each range, which were then normalized to add to 1.

All analyses were carried out using R software. Functional data analysis was performed
using the fda.usc package [72], which is freely available at https://cran.r-project.org/.
In the case of the ANOVA test of [63] as well as Fréchet regression in [216] using the 2-
Wasserstein distance, we use our own implementations. The glucodensities and their quantile
representation were estimated using the R basis functions.

3.4 Clinical validation of the glucodensity

To validate the glucodensity representation, we use the AEGIS database [101]. This database
contains the continuous glucose monitoring data between 2-6 days of 581 patients from a
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Biomarker Clinical significance

A1c in diabetes diagnosis and control
Gold standard marker

HOMA-IR resistance and 𝛽-cell function
Measurements to quantify insulin

CONGA
MODD glucose variability

Summary indices of

MAGE
Table 3.4: Clinical importance of biomarkers used in the statistical analysis

general population’s random sample. To develop the validation task, we use two different
regression models: i) a non-parametric regression model where the unique predictor is gluco-
density, and ii) a linear regression model where the response is a glucodensity. The first model
was used to predict glycated hemoglobin (A1c) [133], homeostatic model assessment (HOMA-
IR) [19], and the following measures of glycemic variability [101, 189, 245]: continuous overall
net glycemic action (CONGA), mean amplitude of glycemic excursions (MAGE) and mean of
daily differences (MODD), through glucodensity representation. In contrast, the second was
used to predict the glucodensity with the five variables above. Figure 3.1 gives a visualization
of the sample of glucodensities used in these models. Biological significance in variables under
consideration is described in Table 3.4.

3.4.1 Prediction of biomarkers using the glucodensity

The aim of the first set of regression analyses is to demonstrate that the glucodensity is
sufficiently rich in its information content to recover the biomarkers mentioned above with
high precision. To quantify this precision, we estimated the 𝑅2 after fitting a non-parametric
model for each biomarker as the outcome variable, using the glucodensity as the sole predictor
(i.e., independent variable). The 𝑅2 estimates for A1c, HOMA-IR, MAGE, MODD, CONGA
were 0.79, 0.79, 0.92, 0.86, and 0.92 respectively. To supplement the results, Figure 3.2 shows
the predicted values against the observed values, where the outstanding predictive capacity of
the glucodensity can be seen independently of high or low response values.

3.4.2 Prediction of the glucodensity using biomarkers

In the second regression analysis with the glucodensity as the outcome variable, we aim to
show that the previous measurements commonly used in the clinical practice cannot capture
the glucodensity with high accuracy. This fact is not completely surprising because, as noted
by some authors [295], the information provided by a CGM is more precise than that contained
in summary measures. To accomplish this, we computed a suitable version of 𝑅2 for this task
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Figure 3.2: Real values vs estimated values when glucodensity is predictor.

after fitting a regression model where the response is a glucodensity, and the previous variables
are the predictors. In this case, the 𝑅2 estimated was 0.74. As predicted, compared to the
previous section’s results, we could not accurately capture the complex nature of glucodensities,
even while using the combined predictive power of several commonly used summary measures.
Moreover, in some cases, the prediction differences can be significant (see Figure 3.3).

3.4.3 Comparison of time-in-range metrics with glucodensities

To illustrate the higher clinical sensitivity of glucodensities compared to time-in-range metrics,
we compared each representation’s ability to predict A1c, HOMA-IR, and glycemic variability
metrics MODD, MAGE, and CONGA, using the data from the AEGIS study. The predictive
capacity of the glucodensity representation was illustrated above, and this section gives the
corresponding results for time-in-range metrics, where these were calculated according to two
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Chapter 3. Distributional representations of biosensor data for continuous stochastic process with
application in CGM technology
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Figure 3.3: Residuals in quantile space.

A1c HOMA-IR CONGA MAGE MODD
Normoglycemic cut-off 0.63 0.22 0.68 0.65 0.65

ADA cut-off 0.61 0.08 0.73 0.69 0.60

Table 3.5: 𝑅2 estimated with time‐in‐range metrics under consideration

sets of cut-offs. In the first, the normoglycemic individuals’ deciles from the AEGIS study
were used, while those proposed by the ADA were used in the second. Tables 3.2 and 3.3
show the exact cutoff values for both cases. Since the time-in-range metrics constitute a
sample of compositional data [207], the isometric log-ratio (ilr) transformation was employed
in combination with a 𝑘-nearest neighbor algorithm as a regression model for predicting the
scalar variables.

Figure 3.4 compares the real and estimated values of the previous five variables under the
two time-in-range metrics under consideration. Table 3.5 provides the estimates of 𝑅2 for
each variable and metric.

The predictive capacity is significantly worse than that attained by the glucodensity method-
ology. The superiority of the glucodensity is particularly noteworthy in the case of the HOMA-
IR variable, where the association is relatively weak for time-in-range metrics. Even for the
other variables where the values of 𝑅2 are moderate, the larger residuals seen in diabetes pa-
tients with more severe alterations of glucose metabolism indicate that time-in-range metrics
are particularly poorly suited for such patients. Interestingly, we do not observe substantial or
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consistent differences between the two time-in-range metrics used, as deciles perform better
than ADA criteria for two of the variables, while the ordering was reversed in other instances.
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Figure 3.4: Real values vs. estimated values when time‐in‐range metric is the predictor. (Blue) time‐in‐range
metric with cut‐offs calculated with normoglycemic patients of AEGIS database. (Red) time‐in‐range metric
using the cut‐offs suggested by ADA.

3.5 Hypothesis testing and clustering analysis with glucodensities

3.5.1 Analysis of variance

As a special case of regression, suppose we have a sample 𝑓1, … ,𝑓𝑛 of glucodensities defined
on (𝐴,𝑑𝑊 ) belonging to 𝑘 different groups 𝐺1,𝐺2,⋯,𝐺𝑘 that partition {1,…,𝑛} each of
them of size 𝑛𝑗 (𝑗 = 1,⋯,𝑘), so that ∑𝑘

𝑗=1 𝑛𝑗 = 𝑛. If the goal is to simply test whether
the Wasserstein means are equal for each group, [213] developed testing procedures based on
model (3.8) for this purpose. An advantage of this model is its flexibility, which allows for
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multiple factor layouts as well as tests for interactions. However, the theoretical properties of
these tests require a type of equal variance assumption that may be restrictive for some data
sets.

More generally, one may wish to test the null hypothesis that the population distribu-
tions of the 𝑘 groups share common Wasserstein means and variances, against the alternative
that at least one of the groups has a different population distribution compared to the oth-
ers in terms of either its Wasserstein mean or variance. In this scenario, [63] investigated a
test statistic based on the group proportions 𝜆𝑗,𝑛 = 𝑛𝑗𝑛−1, the groupwise sample Wasser-
stein means ̃𝜇𝑗 = argmin𝑔∈𝐴 ∑𝑖∈𝐺𝑗

𝑑2
𝑊2

(𝑓𝑖,𝑔) and variances �̃�2
𝑗 = 𝑛−1

𝑗 ∑𝑖∈𝐺𝑗
𝑑2

𝑊2
(𝑓𝑖, ̃𝜇𝑗),

the pooled Wasserstein mean ̂𝜇𝑝 = argmin𝑔∈𝐴 ∑𝑘
𝑗=1 ∑𝑖∈𝐺𝑗

𝑑2
𝑊2

(𝑓𝑖,𝑔) and variance �̃�2
𝑝 =

𝑛−1 ∑𝑘
𝑗=1 ∑𝑖∈𝐺𝑗

𝑑2
𝑊2

(𝑓𝑖, ̃𝜇𝑝), and finally the quantities

𝑉 𝑎𝑟(�̃�2
𝑗 ) = 1

𝑛𝑗
∑
𝑖∈𝐺𝑗

𝑑4
𝑊2

(𝑓𝑖, ̃𝜇𝑗)−
⎧{
⎨{⎩

1
𝑛𝑗

∑
𝑖∈𝐺𝑗

𝑑2
𝑊2

(𝑓𝑖, ̃𝜇𝑗)
⎫}
⎬}⎭

2

as estimates of the variance of �̃�2
𝑗 .

Then, with

𝐹𝑛 = �̃�2
𝑝 −

𝑘
∑
𝑗=1

𝜆𝑗,𝑛�̃�2
𝑗 , 𝑅𝑛 = ∑

𝑗<𝑙

𝜆𝑗,𝑛,𝜆𝑙,𝑛
�̃�2

𝑙 �̃�2
𝑗

(�̃�2
𝑗 −�̃�2

𝑙 ),

the proposed test statistic is

𝑇𝑛 = 𝑛𝑅𝑛
∑𝑘

𝑗=1
𝜆𝑗,𝑛

𝑉 𝑎𝑟(�̃�2
𝑗 )

+ 𝑛𝐹 2
𝑛

∑𝑘
𝑗=1 𝜆2

𝑗,𝑛𝑉 𝑎𝑟(�̃�2
𝑗 )

. (3.11)

Dubey and Müller [63] demonstrated that the corresponding test is distribution-free, in
that the limiting distribution of 𝑇𝑛 does not depend on the underlying distribution under some
assumptions. In practice, it was also demonstrated that it could be useful to calibrate the test
under the null hypothesis via a simple empirical bootstrap over the preceding statistics. For
formal details, we refer the reader to [63].

3.5.2 Energy distance methods with glucodensities

The energy distance is a statistical distance between two distribution functions proposed in
1984 by Gábor J. Székely [263]. This distance is inspired by the concept of gravitational energy
between two bodies and has experienced a rise in appeal for modern statistical applications
due to its applicability to data of a complex nature such as functions, graphs, or objects that
live in negative type space.
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Consider independent random variables 𝑌 ,𝑌 ′ ∼ 𝐹 and 𝑍,𝑍′ ∼ 𝐺 that are defined on a
(semi)metric space (Ω,𝜌) of negative type, where 𝜌 ∶ 𝑉 ×𝑉 → ℝ is the semi-metric. Though
the notation in this section is quite general, in particular we have in mind the case (Ω,𝜌) =
(𝐴,𝑑𝒲2

) corresponding to glucodensities. Let us recall that the energy distance associated
with 𝜌 between the distribution 𝐹 and 𝐺 is

𝜖𝜌(𝐹 ,𝐺) = 2𝐸(𝜌(𝑌 ,𝑍))−𝐸(𝜌(𝑌 ,𝑌 ′))−𝐸(𝜌(𝑍,𝑍′)).

Given random samples 𝑌1,…,𝑌𝑛
iid∼ 𝐹 and 𝑍1,…,𝑍𝑚

iid∼ 𝐺, the sample energy distance is

̃𝜖𝜌(𝐹 ,𝐺) = 2
𝑛𝑚

𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝜌(𝑌𝑖,𝑍𝑗)− 1
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑖=1

𝜌(𝑌𝑖,𝑌𝑗)

− 1
𝑚2

𝑚
∑
𝑖=1

𝑚
∑
𝑖=1

𝜌(𝑍𝑖,𝑍𝑗).

The asymptotic distribution of the above statistics for a null hypothesis (𝐻0 ∶ 𝐹 = 𝐺) as
well as for the alternative (𝐻𝑎 ∶ 𝐹 ≠ 𝐺) is dependent on the chosen semi-metric 𝜌. Besides,
its expression is difficult to calculate and to implement in practice. Hence, when using the
energy distance based methods, the distribution under the null hypothesis is usually calibrated
with a permutation method. Alternatives to calibrate the distribution under the null hypothesis
include the wild or a weighted boostrap, as described in [127, 151]. The energy distance can
also be extended to handle samples from more than two populations. Given 𝑘 independent
samples 𝑌𝑗1,…,𝑌𝑗𝑛𝑗

iid∼ 𝐹𝑗, 𝑗 = 1,…,𝑘, the energy distance statistic is

̃𝜖𝜌(𝐹1,…,𝐹𝑘) ∑
1≤𝑗<𝑙≤𝑘

𝑛𝑗𝑛𝑙
2𝑛 [2𝑔𝑗𝑙 −𝑔𝑗𝑗 −𝑔𝑙𝑙],

𝑔𝑗𝑙 = 1
𝑛𝑗𝑛𝑙

𝑛𝑗

∑
𝑖=1

𝑛𝑙

∑
𝑖′=1

𝜌(𝑌𝑗𝑖,𝑌𝑙𝑖′),

where 𝑛 = 𝑛1 +⋯+𝑛𝑘.
We now explain how this statistic can be adapted to perform clustering. Consider random

pairs (𝑌𝑖, 𝐼𝑖), 𝑖 = 1,…,𝑛, where 𝑌𝑖 is observed and takes values in (Ω,𝜌), while 𝐼𝑖 ∈ {1,…,𝑘}
is an unobserved label of cluster membership. The task is to recover the true clusters 𝐶∗

𝑗 =
{𝑖 ∶ 𝐼𝑖 = 𝑗}, 𝑗 = 1,…,𝑘. Let 𝐶1,…,𝐶𝑘 be a generic partition of {1,…,𝑛}, and denote the
size of each cluster by |𝐶𝑗|. Then a clustering may be chosen by optimizing the statistic

𝑆𝜌(𝐶1,…,𝐶𝑘) = ∑
1≤𝑗<𝑙≤𝑘

𝑛𝑗𝑛𝑙
2𝑛 [2 ̃𝑔𝑗𝑙 − ̃𝑔𝑗𝑗 − ̃𝑔𝑙𝑙], (3.12)

̃𝑔𝑗𝑙 = 1
|𝐶𝑗||𝐶𝑙|

∑
(𝑖,𝑖′)∈𝐶𝑗×𝐶𝑙

𝜌(𝑌𝑖,𝑌 ′
𝑖 ) (3.13)
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over all possible clusters 𝐶𝑗. At first view, this seems computationally intractable due to the
appearance of distances between the elements of each cluster. However, defining

𝑊𝜌(𝐶1,…,𝐶𝑘) =
𝑘

∑
𝑗=1

|𝐶𝑗|
2 ̃𝑔𝑗𝑗, (3.14)

it can be proven that 𝑆𝜌 + 𝑊𝜌 is constant. This implies that maximizing 𝑆𝜌 is equivalent to
minimizing 𝑊𝜌.

More specifically, in [80], the authors show the equivalence between the previous energy
distance optimization problem with the kernel 𝑘-means optimization problem. This equivalence
allows us to solve them by applying popular heuristics algorithms, such as Hartigan’s and
Lloyd’s ones.

3.5.3 Example of hypothesis testing and clustering analysis

Below, we illustrate the methodology of glucodensities in hypothesis testing and cluster analysis
with the 2-Wasserstein distance. We use the ANOVA test [63] and the 𝑘-groups algorithm
[80].

An interesting question to address in an epidemiological study is whether there are dif-
ferences between men and women in the glycemic profile. The ANOVA test is an important
instrument to establish whether there are statistically significant differences in mean and vari-
ance with glucodensities, where there are two or more patient groups. After applying this
method with AEGIS data, the test yields a p-value equal to 0.10. Therefore, there is no sta-
tistically significant difference between men and women at the significance level of 5 percent.

Figure 3.5 shows the glucodensity samples for each gender using their quantile representa-
tions. The pointwise means of these quantile functions constitute the quantile function of the
sample Wasserstein mean glucodensities. These, together with pointwise standard deviation
curves, are also shown in Figure 3.5. On average, the groups are quite similar. However,
certain discrepancies are observed between both groups in terms of their variance, although
not large enough for the test to show statistically significant differences.

Cluster analysis is an essential tool for identifying subgroups of patients with similar charac-
teristics. As an example, with the diabetes patients’ data from the AEGIS study, we perform a
cluster analysis using three clusters. To establish when a patient has diabetes, we use the doc-
tor’s previous diagnostic criteria, or if individuals currently have their glucose values measured
with A1c and FPG in the ADA ranges to be classified in that category.

Figure 3.6 contains the results of applying the cluster analysis in diabetes patients. The
algorithm has identified three differentiated groups of patients. The first group comprises
patients with normal glucose values, probably because they are on medication and the diagnosis
of diabetes was made in the past. The second group comprises patients with slightly altered
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Figure 3.5: (Left two panels) Glucodensities for women and men of the AEGIS study, plotted as quantile
functions; (Third panel) 2‐Wasserstein mean quantile functions for each group; (Fourth Panel) Cross‐sectional
standard deviation curves for quantile functions in each group.

diabetes metabolism. Finally, the last group comprises patients with severely altered glucose
values, and as can be seen in the glucodensities, their glucose is continuously fluctuating. The
two-dimensional graphical representation of the density function of A1c and FPG helps to
validate these findings.

3.6 Discussion

The primary contribution of this chapter is to propose a new representation of CGM data called
glucodensity. We have validated this representation from a clinical point of view, proving that
it is more accurate than the previous time-in-range metrics.

3.6.1 Diabetes etiology and biological components to capture
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Figure 3.6: Clustering analysis of diabetes patients in AEGIS study

Diabetes encompasses a heterogeneous group of impaired glucose metabolism, such as the
frequent presence of hyperglycemia or hypoglycemia [17]. Anomalous glucose fluctuations are
another essential trait of dysglycemic regulation [189, 190]. Accordingly, the use of glycemic
measures that capture other aspects beyond the average, particularly: i) the impact of time
spent along the whole spectrum of glucose concentrations on the glucose deregulation process,
and ii) the oscillations of glucose concentration associated with cellular damage [190], is
crucial in the management of patients with diabetes, as well as in the assessment of glucose
metabolism with a high degree of precision.

3.6.2 Clinical validation of glucodensity

Our proposal accurately captures the components of diabetes mentioned above. Using clinical
data, we evaluated the clinical sensitivity against established biomarkers in diabetes. We found
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a high association between A1c, HOMA-IR, CONGA, MODD, MAGE, and glucodensity. In the
case of the HOMA-IR variable, the predictive ability does not seem excellent, although, to the
best of our knowledge, no known marker shows a predictive ability against that variable. Still,
our model can provide consistent values in moderate and large HOMA-IR values. While the
fit for the variable A1c was not perfect, we must consider that the time scale for the A1c and
the glucodensities were quite different. A1c is a measure that reflects the average glucose over
2-3 months while patients undergo CGM for less than 1 week. Our 𝑅2 of 0.79 is better than
the average glucose recorded by the monitoring period (𝑅2=0.61), which indicates that an
individual’s glucose distributional values may give extra information to the long-term glucose
averages.

In the prediction of glucodensity from A1c, HOMA-IR, and glycemic variability measures,
the estimated 𝑅2 shows a moderate relationship between those variables. However, we are
introducing the essential variables of the glucose deregulation process. A possible explanation
of this is that the use of the summary measures commonly used in diabetes can hardly capture
an individual’s glycemic profile. Glucose metabolism is very complex and highly dependent
on the patient’s conditions. For example, the cellular mechanisms are different in type I and
type II diabetes. In the former, there is an inhibition of 𝛽-cell function and consequent non-
insulin production, while insulin secretion is reduced in the latter [268]. In this context, the
introduction of the concept of glucodensity provides greater clinical accuracy to the possible
decisions derived from such representation compared to traditional methods because we utilize
the entire distribution of glucose concentrations of an individual over time.

3.6.3 Time-in-range metrics vs. glucodensity

While time-in-range metrics may also achieve the previous aim, they do so to a clearly lesser
extent than the glucodensity. Our proposal can capture the differences between individuals in
each glucose concentration. Notwithstanding, time-in-range only measures glucose differences
along intervals with the subsequent loss of information. Also, time-in-range metrics are sub-
stantially limited since the target zones must be defined previously, and these may also depend
on the study population or the aim of the analysis.

Empirical results demonstrate the advantages of our proposal out of the theoretical frame-
work. The ability of glucodensity to predict A1c, HOMA-IR, and the CONGA, MAGE, and
MODD variability measures is surprisingly high, much higher than that achieved with the range
metric despite using two different target zones: the deciles of normoglycemic patients glucose
values and the target zones prescribed by the ADA.

The estimated 𝑅2 between glucodensities and A1c is similar to that reported by other
authors between A1c and average glucose values [197]. However, in this study, patients are
monitored only for 2-6 days and not for weeks. Two possible factors should be considered
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in the analysis of the results. First, there are both diabetic and non-diabetic patients in our
database, and, second, the glucodensity captures A1c better because it represents the entire
distribution of glucose concentration values, while glycation rates are known to increase with
glucose concentrations [251]. In particular, the estimated 𝑅2 between A1c and the mean
glucose in our database is only 0.61.

3.6.4 Statistical considerations

From a statistical standpoint, glucodensities are a special constrained type of functional data
known as distributional data; therefore, we cannot use the usual statistical techniques directly.
To alleviate this limitation, this paper proposes a framework for the analysis of these distribu-
tional data based on distances with existing techniques for hypothesis testing, cluster analysis,
and regression models. However, it is essential to remark that alternative approaches are
available, including functional transformations [215, 279] which embed the densities in an un-
constrained Hilbert Space, after which standard functional analysis techniques can be applied.
Nevertheless, these particular transformations cannot be applied directly in our setting due
to differences in support of the glucodensities. Moreover, functional transformation has the
significant disadvantage that does not allow some standard inferential tasks, such as building
a theoretical confidence interval. However, we can address this issue, for example, through
resampling techniques with distance methods proposed that exploit 2-Wasserstein geometry
[213]. Also, the application of these transformations implies a loss of interpretation; what
is the interpretation of an Anova test in a transformed space concerning the original mean
function?

3.6.5 Limitations

A potential limitation of our representation is that it ignores the order of events. Instead,
it analyzes only the distribution of glucose values. Nevertheless, following different animal
models in diabetes, the event sequence may not be a critical component in diabetes modeling.
The main factor of microvascular and macrovascular complications is chronic hyperglycemia
[48, 253], and this is captured with high accuracy by our models. Moreover, an essential
aspect of managing diabetes patients is hypoglycemia control, and our proposal also captures
this. Finally, the third component of dysglycemia [189], glucose variability, can be accurately
predicted by our representations, at least through metrics CONGA, MAGE, and MODD.

From another point of view, for other authors as Zaccardi and Khunti [295], it is expected
that different glucose fluctuations on different time scales may provide extra information on
glucose homeostasis. Two extensions of our models could potentially take into account this
variability. The first one is to utilize functional multilevel models [56] applied to transformed
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glucodensities, using the distributional transformations discussed above. A second approach
would be to build similar densities of glucose speed and acceleration values, both marginally
and as multivariate functions in the statistical models.

The sample size used may also be a limitation from a statistical point of view. Nevertheless,
in the field of diabetes, the AEGIS study is one the world’s largest database and, unlike other
studies, is composed of randomly selected individuals from a general population [297]. Finally,
for study validation, perhaps the most reliable way of validating the new representation is
in terms of the patients’ long-term prognosis. However, to the best of our knowledge, no
study with a reasonable sample size has this information from CGM technology’s intensive
use. Moreover, the clinical validation carried on was performed from variables associated with
the biological and molecular mechanisms of diabetes development, diabetes status, and future
diabetes prognosis, as we can see in the literature.

3.6.6 Potential Applications

Adopting the concept of glucodensity in clinical practice and biomedical research could be very
promising in the following ways.

• To have a simple and more accurate representation of the glycaemic profile of an individ-
ual. This representation is especially useful in managing diabetic patients and assessing
the effects of an intervention.

• To establish if there are statistically significant differences between patients subjected
to different interventions, for example, in a clinical trial.

• To identify different subtypes of patients based on their glycaemic condition and other
variables. Cluster analysis of glucodensities can create new patient subtypes based on
the risk of diabetes or other complications. Furthermore, it allows us to better describe
the disease’s etiology by creating groups of subjects whose glucose profiles and other
clinical characteristics are similar.

• To establish the prognosis or risk of a patient or analyze the relationship of an individual’s
glycemic profile with different clinical variables in epidemiological studies.

• To predict changes in the glycemic profile based on the individuals’ characteristics and
the intervention performed. For example: how does the glucodensity vary according to
the diet?

• To recommend the most advantageous treatments for a patient. Following the previous
idea, a causal inference model could be fitted where the response is glucodensity, for
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example, to establish which diet is the most beneficial for the individual to achieve
suitable glucose levels.
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4 Distributional representations of biosensor
data for mixed stochastic processes with

application in physical activity analysis

Physical activity level is an influential causal factor associated with the development of chronic
diseases, mortality, life-span, and increased medical costs [8, 33, 208]. At the same time,
regular physical exercise is one of the most effective interventions to control glucose values in
diabetic patients [185], reduce weight [81], minimize the effects of aging [237], and improve
health in general [36, 84], often without introducing pharmacological treatment. Most medical
guidelines recommend 150 minutes per week of aerobic exercise for the general population
[185]. However, to ensure the intervention’s success, a personalized training prescription and
evaluation are required [35, 176].

Traditionally, in epidemiological studies, physical activity level in the general population has
been measured using methods that introduce subjectivity, such as surveys, sleep-logs, and daily
diaries [252]. Similarly, in professional sports, subjective assessment metrics such as the rate
of perceived exertion (RPE) [70] have been widely used. With the boom of digital medicine
[144] and the possibilities of monitoring patients in real-time through biosensors, the objective
measurement of physical activity is becoming increasingly common [179]. The estimation of
energy expenditure using accelerometers is probably the most general and reliable procedure
for this purpose at the moment.

Accelerometer data provides a vast source of information that quantifies the intensity, vol-
ume, and direction of physical activity in real-time in the period in which the device is worn.
For the last 15 years, multiple epidemiological studies have used these devices to infer physical
activity patterns in various cohorts. For example, in [271], the authors describe the physical
activity patterns in the American population using simple summary measures by age-groups;
in [94], the authors analyze how physical activity patterns vary minute-to-minute through
functional data analysis techniques with children from New York. Other studies use accelerom-
eters to resolve complex questions such as the relationships between physical activity levels and
short-term mortality or life-span [69, 166, 267]. Precisely in this domain, a remarkable recent
study [254] showed that physical activity patterns may predict mortality more accurately than



MARCOS MATABUENA RODRÍGUEZ

well-established epidemiological variables such as age, smoking, and the presence of cancer.
Answering these questions with precision is essential to guide public health policies and design
physical activity routines that optimize the population’s health [60, 225]. The National Health
and Nutrition Examination Survey (NHANES) is a public database containing information on
the American population’s physical activity levels during the period 2003-2006, and is the
best-known database containing accelerometer monitoring. Other cohorts with available ac-
celerometer data include the Baltimore longitudinal study [195], and more recent studies with
the UK Biobank [258] or the International Children’s accelerometer Database [248], and have
provided new clinical knowledge with different study populations and other or similar sampling
designs.

In the current era of precision medicine [138], these devices are also beneficial for individ-
ualized prescription of physical exercise, given that the data obtained is vital for the control
and measurement of exercise performed in general and sports populations. For these reasons,
accelerometer technology has also been gradually used to evaluate interventions and more
beneficial physical activity therapies in clinical trials [194].

From a statistical point of view, the analysis of this data is usually complicated, and
summary measurements must be used to compress the information recorded by the curves
obtained with these devices. One of the main methodological obstacles that must be overcome
is that the curves can have different lengths, and the subjects are not in standardized conditions,
so a direct time series or functional data analysis is not usually workable. Given the inherent
difficulty for direct examination of this data, practitioners often define several target zones and
quantify the proportion of time (or total time) that the individual spends in each target zone
when the device is worn. In many domains, such as diabetes, these metrics are commonly
referred to as time-in-range metrics [30, 65]. When the characteristic vector obtained is a
ratio-vector, several authors have recently suggested to use specific compositional data analysis
techniques [31, 64, 65]. Naturally, time-in-range metrics suffer from a loss of information, as
the information is discrete in intervals. In addition, the cut-off points chosen may be arbitrary
and dependent on the characteristics of the population under study.

In this chapter, a similar strategy to that of glucodensities is applied, exploiting the connec-
tion between the Wasserstein geometry and quantile functions, with the dynamic accelerometer
data being represented as probability distributions. Here, the induced probability distribution
differs from the glucodensity extracted from CGM data in that it is a mixed distribution
containing an atom at zero representing the proportion of inactive time. With the intended
purpose of drawing more representative conclusions of physical activity levels at the popula-
tion level than can typically be achieved with observational studies, many of the main cohorts’
physical activity studies are designed with a complex survey structure including demographical
characteristics in sample selection, as is notably the case in the NHANES 2003-2006 dataset.
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In order to handle these sampling characteristics in our analysis, we propose adaptations of
well-known estimators, such as kernel smoothing [286] or machine learning approaches such as
kernel ridge regression [284], that accommodate the survey design structure as well as complex
objects like the proposed physical activity distribution representation of accelerometer data. In-
cluding these nonparametric regression models can be a valuable option for practitioners to
utilize their data more effectively by considering the study design’s specific nature. Although
there does not exist a vast amount of literature on nonparametric regression using survey data
[108, 165], such techniques have the potential to contribute to obtain new clinical findings by
modeling complex data relations that are common in biology and related fields. Since survey
data can lead to more reliable conclusions than observational data [2, 164], the development
of these tools for more complex data objects such as physical activity distributions has a high
potential impact. As it is increasingly frequent in standard clinical practice to use medical de-
vices that monitor patient conditions with high temporal resolution, the techniques proposed
in this chapter can potentially be used to handle the resulting complex statistical objects quite
broadly.

4.1 NHANES 2003-2006 dataset

The National Health and Nutrition Examination Survey (NHANES) 2003-2006 is an extensive,
stratified, multistage survey conducted by the Centers for Disease Control (CDC) that collects
health and nutrition data on the US population. The NHANES 2003-2006 data are publicly
available from the CDC (https://www.cdc.gov/nchs/nhanes/index.htm) and are broadly
categorized into six areas: demographics, dietary, examination, laboratory, questionnaires, and
limited access. The accelerometer data for a particular NHANES cohort can be downloaded
from the “Physical Activity Monitor” subcategory under the “Examination data” tab. In this
work, a subset of patients that are between 68 and 85 years old will be used. This subset is
different than that employed by [149] that involve patients within a wider age range (50-85
years old). The decision to restrict to a narrower age range in our applications was made for
two reasons. First, although the Area Under the Curve (AUC) metric was high in predicting
five-year mortality, the predictive model fitted in [149] did not classify any individuals as dead,
partially due to the large imbalance between classes in this data set. As a consequence, the
classical sensitivity vs. specificity analysis that is captured by the ROC curve is not sensible, and
AUC may not be the best metric to assess the usefulness and predictive capacity of a clinical
diagnostic model in this type of supervised modelling. Second, we think it is more clear to
constrain the analysis to a more specific target population that can show more realistically the
impact of physical inactivity than a more general and heterogeneous sample that involves lower-
risk patients. At the same time, one must interpret the impact of physical activity on mortality
with caution as opposed to the blind use of standard model performance metrics. For example,
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in this domain, if a model incorrectly predicts that a patient will die, any negative impact
may be very minor, with potential positive impacts such as identifying a high-risk individual
who may be able to transform their lifestyle in five years, reversing their medical condition.
While we cannot hope to predict mortality using only physical activity levels, these tools can
serve as instruments to identify highly inactive patients phenotypes with a more urgent need
for physical activity programs defined according to their specific characteristics. In general,
models used to predict mortality in five years have limited predictive capacity, as it is likely
necessary to use longitudinal models that realistically capture dynamic health evolution in this
type of predictive task.
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Figure 4.1: Example of transforming the raw accelerometer signal distributional profile for a randomly se‐
lected individual: (top) Physical activity recordings in real time; (middle) density function for active move‐
ment; and (bottom) quantile representation.

In order to explore the data, we estimate some basic characteristics of the patients ex-
amined using the survey weights for this target population, computed using the R package
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Table 4.1: Variable summaries for the chosen cohort grouped as survivors/decedents. The reported values
are mean (standard deviation) for continuous variables and counts (%) for categorical variables. Total ac‐
tivity count (TAC); total log‐transformed activity count (TLAC); total minutes of moderate/vigorous physical
activity (MVPA); active to sedentary/sleep/non‐wear transition probability (ASTP); sedentary/sleep/non‐wear
to active transition probability (SATP); Coronary heart disease CHD (CHD); Congestive heart failure (CHF)

.

Variable Survivors Decedents
TAC 193735.4 (115239.8) 129456.5 (76978.72)
Age 72.3 (4.5) 75.5 (5.5)
MVPA 12.3 (4.5) 4.5 (9.6)
ASTP 0.3 (0.1) 0.37 (0.12)
Sedentary time 1126.7 (112.1) 1180 (110.5)
TLAC 2651.7 (764.3) 2328.7 (766.7)
Mobility problem 367 (37%) 129 (60%)
SATP 0.078 (0.02) 0.075 (0.02)
Education
Less than high school 393 (39%) 81 (38%)
High school 262 (26%) 64 (30%)
More than high school 349 (35%) 71 (33%)
Drinking Status
Moderate Drinker 442 (44%) 75 (35%)
Non-Drinker 496 (49%) 118 (55)
Heavy Drinker 40 (3%) 15 (7%)
Missing alcohol 26 (2%) 8 (4%)
Smoking Status
Never 460 (46%) 68 (13%)
Former 466 (46%) 110 (51%)
Current 78 (8%) 38 (18%)
CHF 115 (11%) 37 (17%)
Gender
Male 519 (52%) 145 (67%)
Female 485 (48%) 71 (34%)
Diabetes 163 (18%) 48 (22%)
Cancer 231 (23%) 57 (26%)
BMI
Normal 283 (28%) 75 (35%)
Underweight 7 (1%) 7 (3%)
Overweight 414 (41%) 76 (35%)
Obese 300 (29%) 58 (27%)
CHD 115 (11%) 37 (17%)
Stroke 71 (7%) 31 (14%)
Race
White 648 (65%) 161 (74 %)
Mexican American 172 (17%) 22 (18.8%)
Other Hispanic 17 (2%) 0 (0%)
Black 144 (14%) 28 (10%)
Other 23 (2%) 5 (2%)
Wear time 878.4 (161.0) 892.2 (164.98)
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𝑟𝑛ℎ𝑎𝑛𝑒𝑠𝑑𝑎𝑡𝑎 [149]. Table 4.1 contains sample characteristics of individuals according to
their mortality status after five years. Furthermore, in Figure 4.1, we show the raw data dur-
ing several days of one participant selected randomly from the database. For each individual,
while the device is worn, accelerometer devices collect an estimate of minute-by-minute energy
expenditure. However, given that the device is not worn all day, the recorded signal cannot
be continuous, and could possess intricate missing data patterns.

In addition to the reasons given above, one of the main benefits of restricting attention
to aging populations in our analysis is that it mitigates against the effects of missing data. In
aging populations, intra- and inter-day homogeneity of the raw physical activity profiles is much
higher than in young populations, so that the impact of missing data is much lower. In order
to further increase the reliability of the analysis, we use the following preprocessing strategy
extracted from [254] in order to remove participants with poor quality in their accelerometry
data. Those participants who i) had fewer than three days of data with at least 10 hours of
estimated wear time or were deemed by NHANES to have poor quality data, or ii) had non-wear
periods, identified as intervals with at least 60 consecutive minutes of zero activity counts and
at most 2 minutes with counts between 0 and 100 were removed. These protocol instructions
were extracted from state-of-the-art accelerometer research (see, for example, [271]).

4.2 Functional representation of accelerometer data and regression models

4.2.1 Functional representation of accelerometer data

First, we introduce the formal definition of the new representation. For the 𝑖-th patient, let
𝑇𝑖 indicate the number of days (including partial days) for which accelerometer records are
available and 𝑛𝑖 be the number of observations recorded in form of pairs (𝑡𝑖𝑗,𝐴𝑖𝑗), 𝑗 = 1,…,𝑛𝑖.
Here, the 𝑡𝑖𝑗 are a sequence of time points in the interval [0,𝑇𝑖] in which the accelerometer
records activity information, and 𝐴𝑖𝑗 is the measurement of the accelerometer at time 𝑡𝑖𝑗.
Unlike continuous glucose monitoring data, accelerometer readings of exactly zero are quite
frequent, representing physical inactivity. Thus, in our distributional representation, we will
assign positive probability mass at zero equal to the fraction of total time that the individual is
physically inactive. In addition, the range of values measured by the accelerometer varies widely
between individuals and groups, which can present difficulties when trying to apply common
distributional data analysis methods, for example, functional transformations [119, 215, 279]
that can be an alternative strategy to handle the representation that we specify below.

In order to handle accelerometer data gathered over different monitoring periods in free-
living conditions, we propose to utilize a cumulative distribution function 𝐹𝑖 (𝑥) for each
individual. Formally, consider a latent process 𝑉𝑖(𝑡) such that the accelerometer measures
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𝐴𝑖𝑗 = 𝑉𝑖 (𝑡𝑖𝑗) (𝑗 = 1,…,𝑛𝑖), and define 𝐹𝑖 as

𝐹𝑖 (𝑥) = 1
𝑇𝑖

∫
𝑇𝑖

0
1(𝑉𝑖(𝑡) ≤ 𝑥)𝑑𝑡, for 𝑥 ≥ 0. (4.1)

This definition corresponds to using 𝑥 = 0 as a cutoff for inactivity; in the NHANES data set,
it always holds that 𝐹𝑖 (0) > 0. Thus, if 𝑈𝑖 is a random variable uniformly distributed on [0,𝑇𝑖]
that is independent of 𝑉𝑖, 𝐹𝑖 is the distribution function of 𝑉𝑖 (𝑈𝑖) . In practice, one could use
another reasonable cutoff for inactivity. For example, other studies have used accelerometer
measures between 0-100 to quantify the inactive range. In this case, one would define 𝐹𝑖 as the
distribution of the censored random variable which takes the value 100 whenever 𝑉𝑖 (𝑈𝑖) ≤ 100
and 𝑉𝑖 (𝑈𝑖) otherwise. Analogously, we may be interested in truncating the latent process from
above, for example to combine measurements representing high-intensity exercise, e.g., device
observations greater than or equal to 3500. For instance, this idea can be exploited to establish
high-intensity exercise benefits in the prediction of mortality or another relevant outcome.
Practically speaking, an upper threshold of this type would lead to a simpler model that could
be beneficial in the predictive task. Then 𝐹𝑖 would be the distribution of the censored random
variable taking values 𝑉𝑖 (𝑈𝑖) whenever this is at most 3500, and 3500 otherwise. Combination
of lower and upper cutoffs would be treated in a similarly straightforward manner.

In the remainder of the chapter, we define 𝐹𝑖 as in (4.1), and denote ℙ𝑖
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐹𝑖 (0),

𝐹 𝑖
𝑎𝑐𝑡𝑖𝑣𝑒 (𝑥) = 𝐹𝑖 (𝑥) − 𝐹𝑖 (0) for 𝑥 > 0, and 𝑓 𝑖

𝑎𝑐𝑡𝑖𝑣𝑒 (𝑥) = [𝐹 𝑖
𝑎𝑐𝑡𝑖𝑣𝑒]′ (𝑥). Hence, 𝐹𝑖 (𝑥) =

ℙ𝑖
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 + ∫𝑥

0 𝑓 𝑖
𝑎𝑐𝑡𝑖𝑣𝑒(𝑠)d𝑠, which more clearly demonstrates the mixed nature of the distri-

bution. In real world settings, ℙ𝑖
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 and 𝑓 𝑖

𝑎𝑐𝑡𝑖𝑣𝑒 (⋅) are not observed, but must estimated
from the observed sample, which we carry out using the following two-step strategy. First, we
estimate the proportion of inactivity-time, that is

ℙ̃𝑖
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = 1

𝑛𝑖

𝑛𝑖

∑
𝑗=1

1{𝐴𝑖𝑗=0}.

Second, we estimate the continuous physical activity profile as conditional smooth density
function. Letting 𝕂 denote a univariate probability density function and ℎ𝑖 > 0 the bandwidth
parameter, define

̃𝑓 𝑖
𝑎𝑐𝑡𝑖𝑣𝑒(𝑥) = (1−ℙ̃𝑖

𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒) 1
𝑛𝑎𝑐𝑡𝑖𝑣𝑒

𝑖 ℎ𝑖 ∑
𝑗∶𝐴𝑖𝑗>0

𝕂(𝐴𝑖𝑗 −𝑥
ℎ𝑖 ),

where 𝑛𝑎𝑐𝑡𝑖𝑣𝑒
𝑖 = ∑𝑛𝑖

𝑗=1 1{𝐴𝑖𝑗>0}. In our experiments, the Gaussian kernel was used for 𝕂 and
the bandwidth parameter was selected through Silverman’s rule of thumb [250]. More dis-
cussion about density estimation procedure and smoothing parameter selection with biosensor
data can be found in [178]. Hence, given 𝑛 samples of accelerometer measures belonging to 𝑛
individuals {𝐴𝑖𝑗}𝑛𝑖

𝑗=1, 𝑖 = 1,…,𝑛, we can use the above estimates to form empirical quantile
functions �̃�𝑖 = ̃𝐹 −1

𝑖 , where ̃𝐹𝑖 (𝑥) = ℙ̃𝑖
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 +∫𝑥

0
̃𝑓 𝑖

𝑎𝑐𝑡𝑖𝑣𝑒(𝑠)d𝑠.
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4.2.2 Statistical Framework for the Distributional Representation

While the representation of physical activity levels via the inactivity probability ℙ̃𝑖
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 and

activity density ̃𝑓 𝑖
𝑎𝑐𝑡𝑖𝑣𝑒 estimates provides a rich and fairly comprehensive representation of the

accelerometer data, the mathematical constraints of these objects makes statistical analysis
challenging. In particular, naive application of functional data analysis for the ̃𝑓 𝑖

𝑎𝑐𝑡𝑖𝑣𝑒 is known
to yield results that are often difficult to interpret, as these methods do not respect the
inherent constraints possessed by probability density functions. Thus, we will work under the
same framework outlined in [178], based on the Wasserstein distance of optimal transport [283].
This metric has theoretical appeal, has given intuitive results in a variety of applications, and
possesses many computational advantages due to its connection to quantile functions, as will be
seen below. Moreover, due to the mixed nature of the physical activity level distributions, the
Wasserstein geometry is even more attractive as it accommodates such distributions without
any special adaptation.

Next, we define the space of the physical activity distributional representations. Let 𝐴 ∶=
{𝑓 ∶ (0,∞) → ℝ+ ∶ ∫∞

0 𝑓 (𝑥)d𝑥 < 1 and ∫∞
0 𝑥2𝑓 (𝑥)d𝑥 < ∞}. Then the activity distribu-

tions constitute the set 𝒟 ⊂ [0,1]×𝐴, where (𝑐𝑓 ,𝑓) ∈ 𝒟 if 𝑓 ∈ 𝒜 and 𝑐𝑓 = 1−∫∞
0 𝑓 (𝑥)d𝑥.

Given two arbitrary inactive-active representations 𝔣 = (𝑐𝑓 ,𝑓) and 𝔤 = (𝑐𝑔,𝑔) ∈ 𝒟, the 2-
Wasserstein (or simply Wasserstein) distance between them is

𝑑𝒲2
(𝔣,𝔤) = √∫

1

0
(𝐹 −1 (𝑡)−𝐺−1 (𝑡))2d𝑡, (4.2)

where 𝐹 −1 and 𝐺−1 are the quantile functions corresponding to the distributions represented
by 𝔣 and 𝔤, respectively. Given a metric or distance 𝑑 on 𝒟, of which 𝑑𝒲2

is one example,
and a random variable 𝔣 defined on 𝒟, the Fréchet mean of 𝑓 [82] is

𝜇𝔣 = argmin
𝑔∈𝒟

𝐸 (𝑑2 (𝔣,𝑔)) .

The corresponding Fréchet variance of 𝔣 is then

𝜎2
𝔣 = 𝐸 (𝑑2 (𝔣,𝜇𝔣)).

With the particular choice 𝑑 = 𝑑𝒲2
, we have

𝜇𝔣 = argmin
𝔤∈𝒟

𝐸 [∫
1

0
(𝐹 −1 (𝑡)−𝐺−1 (𝑡))2 d𝑡],

and, with 𝑄𝔣 denoting the quantile function corresponding to 𝜇𝔣,

𝜎2
𝔣 = 𝐸 [∫

1

0
(𝐹 −1 (𝑡)−𝑄𝔣 (𝑡))2

d𝑡].
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Given samples of accelerometer measures belonging to 𝑛 individuals, we can follow the
above steps to form empirical quantile functions �̃�𝑖 = ̃𝐹 −1

𝑖 , where ̃𝐹𝑖 (𝑥) = ℙ̃𝑖
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 +

∫𝑥
0

̃𝑓 𝑖
𝑎𝑐𝑡𝑖𝑣𝑒(𝑠)d𝑠. Then, due to the Euclidean nature of (4.2), the empirical Fréchet mean

and variance, written in terms of quantile functions, take the form of

𝑄(𝑡) = �̃�𝔣 (𝑡) = 1
𝑛

𝑛
∑
𝑖=1

�̃�𝑖 (𝑡) , 𝑡 ∈ [0,1] , and

�̃�2
𝔣 = 1

𝑛−1
𝑛

∑
𝑖=1

∫
1

0
(�̃�𝑖 (𝑡)−𝑄(𝑡))

2
d𝑡.
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Figure 4.2: Summary curves of physical activity distributions in quantile space (mean and standard deviation)
between alive and dead patients groups after five years together with the mean of continuous movement
representation.

In this case, we also construct the estimated pointwise quantile variance curve �̃�2
𝑓 (𝑡),

representing the sample variance of the values �̃�1 (𝑡) ,…,�̃�𝑛 (𝑡) , for each 𝑡 ∈ [0,1]. Figure
4.1 illustrates the process of transforming raw data into our representation. In addition, Figure
4.2 shows the mean and variance curve of our representation, where patients are grouped by
mortality status after five years.

4.2.3 Survey regression models
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The individuals that we analyze from the NHANES database do not represent a simple random
sample of the US population. Instead, they are the result of a structured sample of a complex
survey design from a finite population of individuals. In order to perform inference correctly
and obtain reliable results, we must account for the effects of the specific sample design when
building a predictive model. Note that the information provided by this type of survey data
is typically richer than those used in most medical studies that are of an observational nature
[164]. In the latter case, the researcher does not explicitly control the sampling mechanism,
so that obtaining a representative sample can be challenging and would often demand colossal
data volumes.

Suppose that observations {(𝑋𝑖,𝑌𝑖) ; 𝑖 ∈ 𝑆} are available, where 𝑋𝑖 is a collection of
covariates taking values in a metric space, and 𝑌𝑖 is a scalar response variable. The index set
𝑆 represents a sample of 𝑛 units from a finite population. To account for this sampling, each
individual 𝑖 ∈ 𝑆 will be associated with a positive weight 𝑤𝑖. In our analyses, these weights
were taken to be the inverse of the probability 𝜋𝑖 > 0 of being selected into the sample [134],
i.e. 𝑤𝑖 = 1/𝜋𝑖 [165]. When performing estimation with survey data, a common approach is
to use the 𝑤𝑖 to define weighted versions of usual estimates designed for random samples. For
example, the normalization Horvitz-Thompson estimator [117, 223] for the population average
of the 𝑌𝑖 is the weighted sample average

𝑌 𝑤 = ∑
𝑖∈𝑆

1
𝜋𝑖

𝑌𝑖
∑𝑖∈𝑆

1
𝜋𝑖

= ∑
𝑖∈𝑆

𝑤𝑖𝑌𝑖
∑𝑖∈𝑆 𝑤𝑖

. (4.3)

In this chapter, we propose to use a general kernel smoother [286] for survey data with
weights that are composed of both the sampling weights 𝑤𝑖 as well as the usual local weights
that appear in such kernel methods. One main advantage of this estimator is its flexibility, as
it is valid for either regression or classification problems. In addition, we also extend kernel
ridge-regression [284], but this method is only appropriate for a continuous response variable.

4.2.4 Kernel smoother for survey data

Suppose the mean regression model

𝑌 = 𝑚(𝑋)+𝜖 (4.4)

holds, where 𝜖 is a random error term satisfying 𝐸 (𝜖|𝑋) = 0. Hence, the value 𝑚(𝑋)
represents the conditional mean of 𝑌 given 𝑋, where 𝑚 is assumed to be a smooth function.
Given a sample {(𝑋𝑖,𝑌𝑖,𝑤𝑖) ; 𝑖 ∈ 𝑆} of size 𝑛 from the finite population as described above,
an estimate of 𝑚(𝑥) for a generic input 𝑥 may be obtained using the standard kernel estimator
[286]

�̃�(𝑥) = ∑
𝑖∈𝑆

𝑠(𝑋𝑖,𝑥)𝑌𝑖, (4.5)
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where 𝑠(𝑋𝑖,𝑥) is an appropriate weight function that provides more weight for predictors 𝑋𝑖
with smaller distance to 𝑥. Furthermore, the constraint ∑𝑖∈𝑠 𝑠(𝑋𝑖,𝑥) = 1 must be satisfied
for all 𝑥 to obtain a coherent estimator. Typical choices for 𝑠 include Nadaraya-Watson weights
𝑠(𝑋𝑖,𝑥) = 𝕂(ℎ−1𝑑(𝑋𝑖,𝑥))

∑𝑖∈𝑠 𝕂(ℎ−1𝑑(𝑋𝑖,𝑥)) , where 𝑑 is a metric on the set of predictors, for example the
Wasserstein distance defined in (4.2) if the covariate 𝑋 represents a physical activity level
distribution, and ℎ > 0 is the smoothing parameter. The generalization of the standard
Nadaraya-Watson estimator, which was originally proposed for scalar or vector predictors, to
more abstract data types has been used to handle functional predictors [76] as well as predictors
and responses in more general spaces that possess a metric [257]. Here, we will utilize the
quantile functional representation of the accelerometer data along with the Wasserstein metric
to incorporate these complex objects as predictors of relevant outcomes.

Due to the survey design, we make the necessary adjustment to the usual Nadaraya-
Watson weights by scaling them according to the survey weights 𝑤𝑖. Specifically, we set
𝑠(𝑋𝑖,𝑥) = 𝕂(ℎ−1𝑑(𝑋𝑖,𝑥))𝑤𝑖

∑𝑖∈𝑠 𝕂(ℎ−1𝑑(𝑋𝑖,𝑥))𝑤𝑖
. This definition reflects that an observation should be given

higher weight when the probability of selection is lower (larger values of 𝑤𝑖), consistent with
the principles outlined in [117], and when the observed input 𝑋𝑖 is closer to the input 𝑥 at
which one desires an estimate of the conditional mean. In general, the kernel smoother in (4.5)
corresponds to a convex combination of the observed responses, a property that is not shared
by similar smoothers, for example local linear regression estimators. An important consequence
of this convexity property is in the case of a binary response variable 𝑌 ∈ {0,1}. In this case,
𝑚(𝑥) ∈ [0,1] represents a probability, so that (4.5) yields an estimate �̃�(𝑥) ∈ [0,1] that can
be interpreted properly as a probability, or used in classification tasks, for example, without
any post hoc modification.

When 𝑌 represents a categorical variable that can assume more than two values, a simple
modification of (4.5) can still be used to produce valid estimates of the various probabilities.

4.2.5 Kernel ridge regression for survey data

The Reproducing Kernel Hilbert Space (RKHS) learning paradigm provides a unique and rich
framework to create new and more flexible predictive models that can handle abstract variables
𝑋 as predictors by assuming that the regression function 𝑚 in (4.4) is an element of a space
of functions ℋ on 𝒟 that is an RKHS. This section focuses attention on a method known
as kernel ridge regression that leverages the properties of an RKHS to produce estimates that
can be viewed as generalizations of the usual ridge regression estimator for linear models. In
the following, we summarize the necessary components of the RKHS-based model and its
estimator, and then adapt the estimator to the case of survey data.

For each input value 𝑥 ∈ 𝒟, one way of defining an RKHS is to begin with a kernel
𝑘 ∶ 𝒟 × 𝒟 → ℝ that is symmetric and positive definite. Observe that the use of the term
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kernel is distinct from that of the previous section. For clarity, a distinct notation has been
introduced for the bivariate kernel of the current section. Beginning with functions of the type
𝜙𝑥 (⋅) = 𝑘(𝑥, ⋅) as basic elements, one can construct a Hilbert space of functions by taking
linear combinations and, finally, by taking the usual metric completion. The constructed Hilbert
space ℋ can be shown to have the inner product ⟨⋅, ⋅⟩ℋ with the property that ⟨𝜙𝑥,𝜙𝑦⟩ℋ =
𝑘(𝑥,𝑦). Furthermore, for any 𝑓 ∈ ℋ, one has 𝑓(𝑥) = ⟨𝜙𝑥,𝑓⟩ℋ = ⟨𝑘(𝑥, ⋅),𝑓⟩ℋ, so that 𝑘
is often referred to as a reproducing kernel, or the kernel that generates ℋ. Importantly, in
our application, we must build a kernel on the space 𝒟 of physical activity distributions. To
do so, consider a nonincreasing univariate function 𝜅 ∶ ℝ+ → ℝ+ and, for 𝑥,𝑦 ∈ 𝒟, define
𝑘(𝑥,𝑦) = 𝜅(𝑑𝒲2

(𝑥,𝑦)), where 𝑑𝒲2
is the Wasserstein distance defined in (4.2). In making

comparisons with models that use scalar TAC or vectors as the predictor, so that the input
space is simply ℝ𝑞, we will use the same approach to constructing an RKHS by defining
𝑘(𝑥,𝑦) = 𝜅(‖𝑥−𝑦‖) , with ‖⋅‖ being the Euclidean norm.

Considering the model defined Equation 4.4, an alternative to the smoothing method of
the previous section is to assume that the regression function 𝑚 ∈ ℋ. Given the infinite-
dimensional nature of ℋ, estimation of 𝑚 through the use of least squares, i.e.

�̃� = arg min
𝑚∈ℋ

∑
𝑖∈𝑆

(𝑌𝑖 −𝑚(𝑋𝑖))
2 (4.6)

is ill-defined. Specifically, there are many different solutions to (4.6) that attain zero empirical
error. Naturally, overfitting the model in this way results in poor predictive capacity for new
observations. In the RKHS framework, it is common to introduce a norm-based penalty on 𝑚
in the optimization procedure to induce regularization. The kernel ridge regression estimator
then becomes

�̃� = arg min
𝑚∈ℋ

∑
𝑖∈𝑆

(𝑌𝑖 −𝑚(𝑋𝑖))
2 +𝜆‖𝑚‖2

ℋ , (4.7)

where 𝜆 is the regularization parameter that controls the usual trade-off between bias and
variance, which in turn determines the capacity of the model to generalize to new observations.
By the classical Representer Theorem [238], the solution to (4.7) is known to take the form
�̃�(⋅) = ∑𝑖∈𝑆 𝛼𝑖𝑘(⋅,𝑋𝑖), so that the estimator is a linear combination of the kernel features
𝑘(⋅,𝑋𝑖) with coefficients 𝛼𝑖. Solving (4.7) under this restricted form of 𝑚 results in the
coefficient estimates ̃𝛼 = (𝐾 +𝜆𝐼)−1 𝑌 , where

𝐾 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑘(𝑋1,𝑋1) ,…,𝑘(𝑋1,𝑋𝑛)
𝑘(𝑋2,𝑋1) ,…,𝑘(𝑋2,𝑋𝑛)

⋯
𝑘(𝑋𝑛,𝑋1) ,…,𝑘(𝑋𝑛,𝑋𝑛)

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝑌 = ⎡⎢⎢
⎣

𝑌1
⋮

𝑌𝑛

⎤⎥⎥
⎦

,

and 𝐼 is the 𝑛×𝑛 identity matrix.
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The survey design can be incorporated into the optimization problem by utilizing the
Horvitz–Thompson version of the estimator, namely

�̃� = arg min
𝑚∈ℋ

∑
𝑖∈𝑆

𝑤𝑖 (𝑌𝑖 −𝑚(𝑋𝑖))
2 +𝜆‖𝑚‖2

ℋ . (4.8)

As (4.8) remains a convex objective function, the Representer Theorem holds and the solu-
tion will retain the same structure, �̃�(⋅) = ∑𝑖∈𝑆 𝛼𝑖𝑘(⋅,𝑋𝑖). However, the coefficients take
the form of regularized weighted least squares estimates ̃𝛼 = (𝑊𝐾 +𝜆𝐼)−1 𝑊𝑌 , with 𝑊
being a diagonal matrix with the weights 𝑤𝑖 constituting the diagonal elements. A notable
advantage of the kernel ridge regression is that it preserves some computational advantages
of linear models, as the optimal solution can be calculated via weighted least squares. This
fact also simplifies selection of the tuning parameter 𝜆, for example using Leave One Out
Cross-Validation (LOOCV), given that explicit leave-one-out formulas are available for linear
estimators [95].

Besides the regularization parameter, a crucial choice that determines the model’s empirical
performance is that of the RKHS learning space 𝑉 or, equivalently, the function 𝜅 that
determines the kernel 𝐾. In this work, the physical activity distributional representations are
estimated from a mixed stochastic process in continuous time that is not smooth, as there
are transitions between activity and inactivity time. Consequently, the probability distributions
and, more importantly, the mechanism by which the data arise cannot be very smooth. In
RKHS methods, there is a natural connection between smoothness of the data space and
that of the relevant operator [152], which is a regression operator in this case. Therefore,
we expect that statistical learning using very smooth functionals spaces, such as the RKHS
spaces induced by a Gaussian kernel, would yield inferior results. Specifically, the empirical risk
resulting from a a kernel that induces a very smooth functional space may overestimate the
true risk. Thus, it is critical to select a kernel function according to the expected smoothness
of the proper regression function 𝑚, using both expert knowledge about the problem and an
understanding of the data properties. In this regard, a recent reference about the performance
of kernel ridge regressions in terms of smoothness of the function 𝑚 is [276].

In our preliminary test, as we hypothesized, the best results are obtained with non-smooth
kernels such as the Laplace kernel induced by 𝜅(𝑢) = 𝑒−𝑢/𝜎. Hence, we consider this kernel in
the following. Here, 𝜎 > 0 is a scale parameter that can be chosen heuristically as in [88] by
considering the distribution of pairwise distances 𝑑(𝑋𝑖,𝑋𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. When the inputs
are physical activity distributions, the distance is taken to be 𝑑𝒲2

, while it is taken to be the
usual Euclidean metric when the inputs are vectors or scalar variables. Specifically, we use the
scalar value �̃� corresponding to the median of the discrete distribution with point masses at
the values 𝑑(𝑋𝑖,𝑋𝑗) of size 𝑤𝑖𝑤𝑗/∑1≤𝑖<𝑗≤𝑛 𝑤𝑖𝑤𝑗.
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4.3 Results

To show the potential of the new representation of accelerometer data and the application of
new nonparametric survey regression estimators, the analyses described below were performed
with the sample described in Section 4.1.

1. Four different response variables were analyzed, namely age, Body Mass Index (BMI),
blood pressure, and cholesterol levels. Kernel ridge regression was used to compare
our functional representation with TAC, the most relevant and commonly used physical
activity variable in different studies with this database [149, 254]. In addition, we further
compare our methods against recognized accelerometer metrics [149], including sleep,
sedentary behavior (SB), a measure of moderate-to-vigorous physical activity (MVPA),
and wear time (WT), in combination with the TAC metric.

2. The ability of our functional representation to estimate the risk of mortality after five
years was assessed with the Nadaraya-Watson survey estimator. Furthermore, an in-
depth clinical analysis of the results provided by the algorithm is given.

4.3.1 Comparison of distributional representation vs. TAC

This section shows that our representation contains more valuable information about patient
health than the standard TAC metric, which has been shown to be the most relevant physical
activity variable in the NHANES database. Indeed, the TAC value can be seen as a particular
scalar summary of our distributional representation, as this already contains information about
total energy expenditure. According to the steps followed in [149], we define the TAC variable
formally as follows. First, for each participant 𝑖 with 𝑑𝑖 days of valid accelerometer data, and
each day 𝑗, we consider the set of raw accelerometer data indices by 𝐶𝑖,𝑗. Then, we define the
total daily energy for the day 𝑗 as 𝑇 𝐴𝐶𝑖,𝑗 = ∑𝑘∈𝐶𝑖,𝑗

𝐴𝑖𝑘. Finally, we define the overall TAC

metric for individual 𝑖 as 𝑇 𝐴𝐶𝑖 = 1
𝑑𝑖

∑𝑑𝑖
𝑗=1 𝑇 𝐴𝐶𝑖,𝑗. Here, to obtain a reliable estimation of

the TAC metric, the data preprocessing introduced in Section 4.1 is critical.
One way to illustrate the benefits of our method is to compare its ability to capture essential

biomarkers associated with the health and decline of physiological function to that of TAC
and other commonly used scalar summaries of physical activity such as MVPA, SB, and WT
that measure the proportion of the time that patients spend at different exercise intensities.
For this purpose, we select age, Body mass index (BMI), blood pressure, and cholesterol as
response variables. As a regression estimator, we select the kernel ridge-regression introduced
in Section 4.2.5, with the Laplacian kernel. To make a conservative assessment of physical
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Table 4.2: R‐squared was computed for each representation used in kernel ridge‐regression models with
continuous variables being examined. MVPA is a compositional metric with a cut‐off equal to 2020 counts.
SB is the proportion of the time that an individual has an energy expenditure lesser than 100 counts. WT is
an estimation of the proportion of the time that the individual wear the accelerometer device

New representation TAC TAC+MVPA+SB+WT
Age 0.15 0.07 0.08
BMI 0.05 0.01 0.01
Blood pressure 0.02 -0.01 -0.01
Cholesterol total 0.034 0.016 0.018

activity levels, we calculate a survey-weighted leave-one-out version of 𝑅-square, defined as

𝑅2 = 1−
∑𝑖∈𝑆 𝑤𝑖 (𝑌𝑖 − ̃𝑓−𝑖 (𝑋𝑖))

2

∑𝑖∈𝑆 𝑤𝑖 (𝑌𝑖 −𝑌 𝑤)2 , (4.9)

where 𝑤𝑖’s are the survey weights, 𝑌 𝑤 is defined in (4.3), and ̃𝑓−𝑖 (⋅) is a generic regression
estimate obtained after deleting the 𝑖-th observation. As the models are nonlinear and leave-
one-out estimators are used, 𝑅2 as defined in (4.9) can be negative, as seen for blood pressure
as response with TAC as predictors in Table 4.2, where all results are compiled.

These results demonstrate that the statistical association is low to modest for all models,
with age and BMI being the most predictable variables. In all cases, it is clear that our
representation outperforms the summary metric TAC and the TAC variable in combinations
with another compositional measures. As the new representation retains more information
than summary metrics, we hypothesize that the advantages of the former may be even more
significant in larger databases.

4.3.2 Estimating five-year mortality risk

A Nadaraya-Watson estimator was used to estimate the five-year mortality risk either from
the distributional representation or from the TAC metric. In order to tune the bandwidth
parameter ℎ for each model, leave-one-out probabilities were estimated and used to provide
an intermediate classification for each patient by comparing the probability of death to 0.5;
the bandwidth was then chosen to minimize this intermediate classification error. The best
choice of ℎ for the distributional representation yielded 59 probabilities above 0.5, 23 of which
corresponded to patients that died in fact within 5 years. For the TAC metric, regardless of
the chosen smoothing parameter, leave-one-out estimates of probability of death was always
below 0.5 for all subjects, suggesting that TAC possesses little to no information about risk
for this cohort.

To appreciate the potential clinical advantages of our representation in this analysis, we
compare for each patient the estimated probability of death within five years by means of the
following models: 1) Nadaraya-Watson with our novel representation, 2) Nadaraya-Watson
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with TAC variable, 3) functional logistic using quantile functions as predictors. This last model
was fitted using functional principal component analysis, with the number of components
chosen to explain at least 95% of the overall variability, a common practical approach. Figure
4.3 shows that the novel representation is the only one to appropriately assign moderate to high
risk of death, and the discrimination capacity of probabilities assigned to each patient is more
reasonable than the competitors’ models. The choice of competing models thus reveals that:
i) distributional information beyond TAC, such as tail behavior and variability, and ii) non-linear
effect of the distribution, are essential to obtain a more reasonable probability estimates.
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Figure 4.3: Boxplot of estimated probabilities drawn by the models in 5‐year mortality prediction according
to mortality status. (Left) Nadaraya‐Watson distributional representation. (Center) Logistic regression intro‐
ducing the five scores PCA quantile analysis. (Right) Nadaraya‐Watson TAC variable.

In order to provide further clinical validation, we examined the long-term survival of patients
in this cohort. First, the patients were stratified by age (68-75, 76-80, and 81-85); next, the
patients in each strata were categorized into a risk and non-risk groups according to whether or
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not the estimated probability of death within 5 years (by the distributional model) was greater
than or less than 0.5. The age stratification is designed to illustrate that the model’s ability to
identify at-risk patients is relevant even in relatively younger subjects in the cohort. Overall,
the results (Figure 4.4) confirm the high clinical sensitivity of the probabilities estimated with
the Nadaraya-Watson model to stratify patients based on their long-term survival in more than
12 years of follow-up.
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Figure 4.4: Survival curves for risk and non‐risk groups, according to age stratification. The curves with only
lines identify the risk group and, in another case, the non‐risk group.

4.4 Discussion

In this work, we have introduced a new functional profile of an individual’s physical activity
to quantify more comprehensively the energy expenditure over a given period among a group
of individuals monitored in free-living conditions. Our procedure can be seen as a functional
extension of the so-called compositional metrics that constitute the most popular approach
to date in the accelerometer field. A fundamental advantage of the new method is that
it automatically captures information from compositional metrics, regardless of the cutoffs
used to define them. As such, one loses no information compared to these metrics, and
simultaneously avoids the need to define a-priori different cut-off points [30, 65]. Even with
expert knowledge, such a selection introduces subjectivity into the analysis, with the cutoffs
inevitably depending on sample characteristics or the analysis task at hand.
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In the different regression tasks considered in this chapter, we have seen that the new
representation possesses stronger associations than other common summary measures such as
TAC, which has been shown to be the most successful variable, for example, in predicting 5-year
mortality in the NHANES database in other studies [149, 254]. Overall, the strength of the
association between our representation and clinically relevant covariates, as quantified by the
leave-one-out R2 metric is modest, indicating that there is a large amount of variability in many
biomarkers associated with patient health, such as cholesterol, blood pressure, or BMI. Several
epidemiological studies have used multivariate regression models with these biomarkers as
response variables and summary measures of physical activity as covariates [18, 163]. Although
some have found physical activity to be a statistically significant factor, many of these models
only assess the statistical significance of the variable, rather than its practical significance or
predictive capacity [209]. Assessing only statistical significance fails to accurately assess the
magnitude of impact physical activity has on biomarker prediction, and obscures the conclusions
and reproducibility of findings reached. As mentioned previously, the evaluation of a clinical
diagnostic model aimed at predicting 5-year mortality by including physical activity levels as
predictors is not straightforward. An accurate evaluation must be done from a clinical point
of view using the long-term survival of the patients, a basic illustration of which is given by
the survival curve shown in Figure 4.4, though ideally with a follow-up of more than 12-years.

Despite the large number of studies that have analyzed the impact of physical activity
in the NHANES cohort against different biomarkers associated with health or with mortality
and survival, few studies incorporates the complex survey mechanism in the analyses, which is
very crucial for obtaining reliable and reproducible results that be a representative of American
population structure. To increase the reliability of the analyses, we model relationships between
the covariates and response variables nonparametrically. To the best of our knowledge, this
work is the first to combine survey methods for the estimation of nonparametric regression
models involving complex predictors such as the physical activity distributions we consider. In
particular, we have demonstrated how to implement the Nadaraya-Watson kernel smoother as
well as kernel ridge regression models in this context.

We believe that the proposed model constitutes an important step forward in the use of
complex objects with this type of data, which appear naturally in some important physical
activity cohorts, to obtain data representative of the physical activity patterns of a population,
and not only in NHANES as a particular case. It is likely that in the current technological
revolution the use of biosensors and smartphones in medical surveys will become increasingly
common to characterize the population health [224] and, in particular, the physical activity
levels of a population.

The analyses introduced here possess some potential limitations, and the methodology may
be improved and extended in the following directions discussed below. First, sample selection is
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essential in distributional representation validation, which may drive more predictive gains with
other criteria. Second, we are using accelerometer data from NHANES 2003-2006; however,
modern accelerometer devices can quantify the physical exercise profiles in light and high
intensity more accurately [91, 258], and our functional representations may prove to be more
accurate in different predictive tasks and risk analysis. This will be addressed in the next section.
Third, missing data in raw time series is another critical problem, particularly in young and
middle-aged populations. In the wearable data analysis literature, several works have proposed
methods for missing data to address this problem with accelerometer data (see, for example,
[3]). In this direction, if the MAR missing data mechanism holds, we can perform a more refined
quantile and distribution function estimation introducing inverse probability weight into the
estimator. In this sense, for the young and middle-aged population, maybe more extensive
periods are necessary to create a reliable physical activity profile of the individual. Fourth, to
minimize the curse of dimensionality in multivariate data, we could consider semi-parametric
functional models where we introduce the functional information non-parametrically. At the
same time, we can incorporate the rest of the variables in the linear model component terms,
exploiting the linear models’ inferential, robustness, and interpretation advantages. Finally,
an essential point in this discussion is that the mixed nature of physical activity probability
distribution implies that using a functional basis presents theoretical inconveniences due to
the discontinuity of the quantile functions in the transition between inactivity and activity
time. As a consequence, the already difficult task of interpreting output from even a basic
functional model, such as functional linear regression model, is exacerbated by the constrained
origin of the probability distribution. A straightforward procedure for doing so in terms of
the specific biological nature of the problem is not obvious. We also note that the novel
distributional representation has several applications that go beyond predictive tasks. For
example, we can use the novel functional profiles graphical tool in order to build models for
quantifying and assessing individual physical changes in physical exercise patterns over time
in a context of longitudinal clinical trials or in order to monitor the individual in the physical
activity prescription.

4.5 Application in NHANES 2011-2014: Discovering clinical physical activity
phenotypes in the U.S. population

Precision medicine is based on the idea of defining clinical phenotypes [44] or clusters of
people who share a similar prognosis or response either to treatment or to other clinical
interventions. These patient phenotypes are also helpful to define the different transitions or
changes in individual health characteristics and classify the expected patient evolution more
accurately. Unfortunately, to date few contributions that propose physical activity phenotypes
using accelerometer data exist [118]. A better understanding of the health consequences of
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individual profiles of physical activity, using the full spectrum of accelerometry intensity across
the day, would arguably help inform public health recommendations to promote the health of
the population.

Benefiting from the abundant and unique information provided in the 2011-2014 National
Health and Nutrition Examination Survey (NHANES) study, including the availability of high
resolution accelerometry data, the current work aims to define new physical activity phenotypes
using an unsupervised clustering analysis in people aged 65 to 80 years old. The secondary
aim of this study is to ascertain the prospective associations of these phenotypes with 5-
year survival probability and mortality. To achieve these aims, we capitalize on previously
proposed distributional representations of accelerometry-based physical activity, which allows
the quantification of time spent across the full spectrum of physical activity intensity without
limiting to collapse the whole information into a few intensity intervals, as previously done
using more traditional compositional metrics [65].

4.5.1 Materials and Methods

We use physical activity data from the NHANES waves 2011-2014, recorded with a more
modern accelerometer device ActiGraph GT3X+ (ActiGraph of Pensacola, FL), that allows to
measure light and high-intensity target zones with more precision.

A total of 2023 older adults aged 65 to 80 years old (with physical activity monitoring avail-
able at least hours per day for days) were included in the analysis. For the multivariate analysis,
supported by additional biochemical, grip strength, and comorbidities variables, participants,
were included due to missing data on covariates. In both cases, specific re-weight techniques on
raw NHANES survey data were applied to handle the specific sampling mechanisms properly.

Sociodemographic and clinical data

Age (both as a categorical and continuous variable), race, gender, diagnosis of cancer or di-
abetes (as categorical variables), and blood pressure, combined grip strength measure, body
mass index (BMI) and biochemical biomarkers including cholesterol and triglycerides (as con-
tinuous variables), were considered in the analysis. Age was divided into three ranges (65 –
70, 70 – 75 and 75 – 80, respectively) for age-stratified analysis. Race variable was coded as 1
= Mexican American; 2 = Other Hispanic; 3 = Non-Hispanic white; 4 = Non-Hispanic black;
5 = Non-Hispanic Asian; and 6 = Other Race, including multi-racial.

Physical activity monitoring

Physical activity signals were pre-processed by staff from the National Center for Health
Statistics (NCHS) to determine signal patterns that were unlikely to be a result of human
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movement. Then, acceleration measurements were summarized at the minute level by using
Monitor-Independent Movement Summary (MIMS) units, an open-source, device-independent
universal summary metric [129].

This new distributional representation allows us to measure the difference between physical
activity profiles of different individuals by quantifying more comprehensively the amount of
movement (i.e., acceleration, which resonates energy expenditure) over a given period and
across the full spectrum of physical activity intensity.

Mortality and survival

NHANES data can be linked to the National Death Index (NDI), enabling the study of the
association between acceleration data, mortality status and survival time. To this end, we ac-
cessed the 2015 Public-Use Linked Mortality Files [78], and included a binary variable indicating
survival (or death) five years later, and the censored time to death.

Statistical analysis

The primary goal was to identify a reduced set of clinically relevant phenotypes of physical
activity supported by the new distributional representation and evaluate their impact on health.
To this aim, we performed a clustering analysis using the kernel-group algorithm [80]. We
assessed the clinical relevance of these phenotypes to predict five-year mortality and survival,
and compared their clinical sensitivity and accuracy with age. We performed logistic and Cox
regression on survey data. We then implemented the Kaplan-Meier estimator and included
the phenotype as a categorical predictor. Odds ratios and hazard ratios, and graphical survival
plots were used to quantify the prospective associations of these phenotypes on mortality and
survival in the study sample. Then, in order to remove the effect of potential confounding
variables, we fitted again the logistic and Cox regression models and included also comorbidities,
gender, race, cholesterol and triglycerides as predictors in the models. All statistical analyses
were conducted using R software. Cluster analysis was performed using the Energy package,
and survey analysis was performed using the Survey package.

4.5.2 Results

Physical activity phenotypes

Five clinical phenotypes were identified by means of a cluster analysis based on Euclidean
energy distance. The optimal number of clusters was selected according to the rule-of-thumb
[259]. Figure 4.5 displays the mean quantile curves and the standard deviation quantile curves
for the distributional representation of physical activity of each phenotype. The proportion of
individuals who died after five years is also shown. We observed three phenotypes (Phenotypes
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2, 3 and 5) with low mortality rate (less than 8%) and two phenotypes (Phenotypes 1 and
4) with a mortality rate of 27.3% and 12.8%, respectively. The average distributional profiles
of Phenotypes 1 and 4 showed a distinctive inactivity pattern: more than 80% of the time of
participants in these two clusters is spent in sedentary behaviors (90% time vs. 80% time), with
also important differences in the proportion of time spent in light and moderate to vigorous
physical activity (MVPA) (5% vs. 10% and 2.9% vs. 6.5% respectively). Participants in
Phenotypes 3 and 5 spent similar amount of time in sedentary (72% vs. 73%, respectively)
and in light intensity (10% vs. 8%, respectively) activities but Phenotype 3 had 5% more
time in MVPA. Finally, participants in the Phenotype 2, with the lowest mortality rate, only
spent 62% percent of time sedentary, 10% in light intensity, 15% in MVPA and 13% in higher
intensities.

Marginal survival analysis

Figure 4.6 displays a comparison of the survival curves for the different phenotypes and for
the different age ranges. Participants in Phenotype 1 (the most inactive group) showed a
lower survival compared with older individuals (75 - 80 years old). Figure 4.5 shows the 5-year
mortality associated with each phenotype. Phenotypes 2 - 5 showed more than 90% less risk
of mortality compared with Phenotype 1.

Multivariate Analysis

Population-based characteristics of the participants included in the multivariate analysis are
shown in Table 4.3. Participants in Phenotype 1 were older on average than participants in
the rest of phenotypes, had a higher BMI, higher triglyceride level and higher blood pressure.
Phenotype 4, the second phenotype with more mortality rate, had a higher rate of diabetes and
cancer, and the second higher BMI and age. Phenotype 1 (mortality rate of 27.3%) presented
significant lower values of combined grip strength. However, Phenotype 4 (mortality rate of
12.8%) presented similar values of combined grip strength than the rest of physical activity
phenotypes. Table 4.5 shows the multivariate estimated coefficients (hazard and odds ratios)
for mortality associated with physical activity phenotypes. Results remained consistent with
univariate models presented in Table 4.4. Importantly, the confidence intervals for odds and
hazard ratios do not cross 1, suggesting statistical significance.

4.5.3 Discussion

This study reveals new physical activity phenotypes for the U.S. older population using novel
distributional representations of accelerometer-derived physical activity. The new clinical phe-
notypes yield a higher clinical sensitivity for predicting 5-year mortality and survival outcomes
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Figure 4.5: Mean and standard deviation of distributional representations for the five phenotypes together
wit their mortality rate.

than age alone. Our results show that the most inactive physical activity phenotype has a
much lower survival probability than the oldest participants in our sample.

Our findings reinforce the idea that information related to physical activity is a key non-
pharmacological biomarker of functional decline status and general health [103]. Previous
studies [254] have shown the greater clinical sensitivity of physical activity to predict 5-year
mortality with the NHANES data 2003-2006 (compared to age), although such level of perfor-
mance was not observed in the UK-Biobank study [150]. This discrepancy is likely due to the
limitation of UK-Biobank study design and the selection bias. Our results were confirmed in
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Figure 4.6: Kaplan‐Meier curves for each phenotype and age group strata.

multivariate analyses adjusting for potential confounders, such as age, race, sex, comorbidities,
or biochemical variables such as cholesterol or triglycerides. We also derived specific weights
for the sample included in the analysis, thereby reinforcing the generalizability of our results.

The introduction of new clinical phenotypes with the novel distributional representations
allowed us to assess the amount of movement along each intensity recorded by the accelerom-
eter monitor, unlike other existing compositional metrics used in the literature [130]. The
summary functional curves (mean and variance) derived from the cluster analysis done in our
study show differentiated patterns of physical activity, with remarkable differences across the
intensity spectrum from inactivity; and highlight the need to monitor and quantify physical
activity more precisely, also to detect the impact on health of intensities often hidden in previ-
ous, threshold-based monitoring of physical activity. The phenotypes generated in this study
may serve as a formal framework to assess activity changes, for example, with an intervention.
In this sense, it is worth mentioning that a reduction in mortality risk between two of the
phenotypes might only be due to an increase in the MVPA duration. In addition, the gen-
erated phenotypes could be used as a prognosis and monitoring tool. Our work adds to the
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Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4 Phenotype 5
Gender (Men) 0.65 0.376 0.507 0.633 0.4664
Hight Blood Presure 0.748 0.52 0.62 0.68 0.607
Cancer (yes) 0.273 0.224 0.258 0.286 0.162
Diabetes (yes) 0.531 0.5 0.484 0.591 0.492
No Alcohol consume 0.064 0.039 0.095 0.243 0.307
Middle Alcohol Consume 0.07 0.097 0.175 0.408 0.661
Hight Alcohol Consume 0 0 0.008 0.016 0.026
Mexican American 0.042 0.096 0.054 0.042 0.068
Other Hispanic 0.021 0.136 0.072 0.062 0.11
Non-Hispanic white 0.669 0.488 0.552 0.615 0.618
Non-Hispanic black 0.197 0 0.303 0.216 0.126
Non-Hispanic Asian 0.049 0.144 0.014 0.039 0.068
Other Race, including Multi-Racial 0.021 0.136 0.005 0.026 0.01
Age (years) 75.53±4.87 69.38±4.5 72.35±5.21 73.1±5.22 70.65±4.76
BMI (𝐾𝑔/𝑚2) 29±5.75 26±4.85 28±6.15 29±5.69 28±4.76
Combined grip strength (𝑘𝑔) 50.6±18.9 55.7 ±15.6 58.2±19.1 59.5±19.5 59.8±18.4
Triglycerides (𝑚𝑔/𝑑𝐿) 1.84±0.93 1.47 ±0.92 1.59±1.04 1.68±1.06 1.74±0.98
Cholesterol (𝑚𝑔/𝑑𝐿) 181.49±43.88 191.46±38.47 193.75±39.69 179.07 ±41.28 198.79±43.84

Table 4.3: Summary clinical characteristics of participants in each cluster. In binary variables, we show the
rate, and in continuous variables, we show the mean and standard deviation.

Hazard ratio 2.5% 97.5% Odds ratio 2.5% 97.5%
Phenotype 2 0.07 0.02 0.27 0.06 0.02 0.23
Phenotype 3 0.34 0.19 0.59 0.34 0.19 0.62
Phenotype 4 0.54 0.39 0.75 0.52 0.35 0.75
Phenotype 5 0.09 0.04 0.23 0.09 0.04 0.23
Age (years) 1.12 1.08 1.16 1.14 1.09 1.18
Gender 0.86 0.64 1.16 0.87 0.63 1.21

Table 4.4: Hazard ratios and odds ratios (95% confidence interval) of mortality outcomes associated with
different physical activity phenotypes (Reference: Group 1 ‐ Inactivity phenotype.)

(yet scarce) number of works that have explored the idea of physical activity phenotypes as a
health monitoring tool [118].

A recent review indicated that there may not exist solid evidence of the benefits of physical
activity in patient prognosis in some diseases such as cardiovascular problems [53]. However,
it is remarkable to note the sizeable individual response of patients to physical activity and
that patients with standardized training programs improve fitness and not necessarily maximal
oxygen uptake [116, 181, 186, 233]. Several investigations have shown the relationship between
maximal oxygen uptake and the prognosis of these patients and their survival and risk of
mortality [116]. Thus, monitoring patient profiles at a high level of resolution is essential to
ensure the optimal prescription of physical activity. Indeed, some recent works showed the
protective role of light intensity activity for longevity [52, 68]. In addition, the health impact
of the optimal intensity-volume coupling is the result of a complex process influenced by many
factors such as genetic and environmental, that must be considered in exercise prescription
[91, 258]. In this regard, the new patient stratification methods may provide a framework for
analyzing these factors and guiding training prescription.
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Hazard ratio 2.5% 97.5% Odds ratio 2.5% 97.5%
Phenotype 2 0.12 0.02 0.66 0.10 0.02 0.62
Phenotype 3 0.29 0.11 0.75 0.30 0.11 0.80
Phenotype 4 0.55 0.31 0.98 0.49 0.25 0.98
Phenotype 5 0.07 0.01 0.61 0.07 0.01 0.62

Age 1.10 1.04 1.17 1.12 1.05 1.19
Gender (woman) 0.92 0.57 1.47 0.99 0.61 1.63

Other Hispanic 0.81 0.14 4.49 0.69 0.11 4.38
Non-Hispanic white 0.79 0.35 1.80 0.60 0.25 1.43
Non-Hispanic black 0.43 0.15 1.21 0.35 0.12 1.05
Non-Hispanic Asian 1.13 0.31 4.12 1.17 0.27 5.06

Other Race, inc. multi-racial 1.21 0.35 4.14 1.18 0.29 4.76
Blood presure hight 0.84 0.40 1.80 0.77 0.35 1.71

BMI 0.99 0.93 1.06 0.99 0.93 1.06
Middle Alcohol 0.55 0.33 0.92 0.60 0.33 1.10

High Alcohol 0.97 0.12 8.17 1.68 0.15 18.64
Cancer (no) 0.84 0.48 1.47 0.95 0.51 1.75

Diabetes (no) 0.89 0.59 1.35 0.91 0.58 1.44
Tryglycerides 0.80 0.54 1.19 0.79 0.54 1.17

Cholesterol 1.00 0.99 1.00 1.00 0.99 1.00
Table 4.5: Results of logistics and Cox survey regression model in terms of hazard ratios and odds ratios (95%
confidence interval). Reference: Group 1‐Inactivity phenotype.

The main strength of this study is that the data used is a random sample from a complex
survey design, unlike a significant fraction of physical activity studies that use observational
data. Thanks to the NHANES survey design we can obtain more general conclusions about
the impact of physical activity on health profiles of the U.S. population. The sample size is
another strength; although other cohorts such as the UK Biobank have a more significant
number of participants; yet its experimental design has inherent limitations.

Distributional representations provide further advantages in statistical modeling, since they
intrinsically capture the information represented by compositional metrics [39, 90, 177] and
lead to more refined physical activity profiles which expand along the continuous spectrum of
intensity. In addition, the new and more sophisticated pre-processing of accelerometer data
[129] leads to greater sensitivity, especially for detecting differences in light and high intensity
physical activity.

An inherent limitation of this study is the non-incorporation of potential confounders such
as genetic variables, but this is present also in other observational studies. In addition, with
a more extensive physical activity monitoring period, we could have drawn more reliable con-
clusions about the impact of individual physical activity patterns on health. However, in this
paper, we analyzed older individuals with lower functional capacity, and this could limit the
impact of intraday variability in physical activity patterns (i.e., our population may show more
consistent patterns of physical activity than younger and fitter populations). Similarly, the non-
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inclusion of the temporal component of distribution representations is another added problem
that may lead to new findings of the role of physical activity on health. For example, recent
studies have shown the effects of the chronobiology differences in physical activity on health
[184].

In summary, this study provides new phenotypes in the aging U.S. population and shows
their clinical utility to predict the mortality and survival outcomes in the study sample. Fol-
lowing the principles of precision medicine [138], and according to the phenotypes obtained,
differences in light and high-intensity physical activity are relevant for health. The use of
distributional representations could be advantageous over more traditional threshold-based
analytical approaches to explore the effects of physical activity on human health.
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5 Statistical independence, variable selection
and conformal inference with missing responses

in long-term glucose modeling using
distributional representations

Missing data are common in epidemiological and medical studies. On the face of it, the
extended practice of excluding participants with only partially available data on the variables
of interest results in ignoring valuable information, thereby leading to biased estimates which
often rely on unrealistic assumptions [123, 157, 210]. To draw reliable conclusions, principled
methods are imperative by appropriate modeling of the missingness mechanism [272].

Kernel methods are a class of effective pattern recognition algorithms that are well suited
to model nonlinear relations between the response and predictors. These are built on the
notion of a kernel function as a similarity function between a new instance and those included
in the training set [113, 239]. One of the most significant achievements of kernel methods
is the proposal of appropriate kernel functions for managing complex statistical objects such
as graphs, strings, or probability distributions [191]. Thus, kernel methods are expanding the
range of possible applications for machine learning in the health domain, challenged with the
rapid increase in new complex medical data.

The main purpose of this Chapter is to propose a set of kernel methods (Section 5.2) to
handle missing responses for statistical independence testing (Section 5.2.2), variable selection
(Section 5.2.3), and conformal inference (Section 5.2.4). One major advantage of these
methods is their ability to operate as a sequence of predictive stages which increasingly filter
out irrelevant information, while also providing an evaluation of the limits of the ensuing
predictions. In particular, the present proposal is based on the reproducing kernel Hilbert
space (RKHS) framework, providing a Hilbert space of functions that is fully characterized
by a reproducing kernel. Importantly, every function in an RKHS that minimizes an empirical
risk function can be written as a linear combination of the kernel function evaluated at the
training data, and it is ensured that a solution for a machine learning problem that is close
to the true solution and also generalizes well to the test data can be obtained. An essential
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property of the RKHS framework is that it overcomes the limitations of previous proposals
focused on Euclidean functional representations [73].

The proposed methods are motivated by the need to explore the limits of predicting long-
term glucose changes in a five-year longitudinal population-based study, including both healthy
and diabetic individuals, where a subsample of participants underwent continuous glucose
monitoring procedures at the beginning of the study. As expected, a substantial number of
participants withdrew from the study, and therefore, an analysis robust to missing values in
the response variable is required in order to maintain the validity of the statistical inferences
[158]. We include a novel distributional representation for CGM data as a predictor (see
Figure 5.1) [178]. Among the different biomarkers, we select the glycated haemoglobin (A1c)
as the response variable. A1c is a measure of the average blood glucose level over the past
three months, and it is the preferred option because it provides more reproducible values in the
laboratory and is subject to less measurement error [242]. Furthermore, we aimed to assess and
discuss the residuals and predictive capacity of several variables associated with the evolution
of A1c in the long term, providing interpretable clinical phenotypes for large uncertainty cases.
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Figure 5.1: (Left) The 5‐day CGM recording from a normoglycemic patient is shown. (Center) Glucodensity
designates a distributional representation that estimates the proportion of time the patient spent at each
glucose concentration. (Right) Quantile representation. Dotted, solid and dashed lines represent concentra‐
tions for 20 percent, 50 percent and 80 percent quantiles, respectively.

5.1 Data analysis outline

This chapter presents a data analysis framework designed as a pipeline of kernel methods for
predictive problems with missing data. Their subsequent application to diabetes mellitus will
allow us to examine the relationship between the baseline characteristics of participants in
a five-year study and A1c as the response variable. The proposed framework comprises the
following steps:
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1. To measure the statistical association between each predictor and the response variable
with an efficient statistical independence test. If the response is proven to be independent
of a predictor, it can be screened out from further consideration. To this end, we adapted
a previous kernel independence test and designed a new bootstrap method to perform
test calibration. The test was applied to check the association between some diabetes
biomarkers and five-year changes in the A1c variable, A1c5𝑦𝑒𝑎𝑟𝑠−A1c𝑖𝑛𝑖𝑡𝑖𝑎𝑙.

2. To identify the best subset of predictors revealing higher-order interactions with the
response variable in order to improve the prediction. To this end, we adapted a previ-
ous kernel variable selection method and applied it to find the best subset of diabetes
biomarkers most strongly associated with A1c5𝑦𝑒𝑎𝑟𝑠.

3. To explore the prediction ability of a set of explanatory variables through a non-linear
regression method. To this end, we adapted a previous kernel ridge regression method
and applied it to predict A1c5𝑦𝑒𝑎𝑟𝑠.

4. To estimate the uncertainty of the predictions. To this end, we designed a new method
to provide a prediction interval for the response variable, based on conformal inference.
Using this method, we can measure the limits of the regression models previously ob-
tained and, significantly, identify specific patient subpopulations that do not fit the
expected behaviour, which is a key issue for clinical decision-making.

5.2 Methods

5.2.1 Preliminaries

We first pose the problem in general terms. Let (𝑋,𝑌 ,𝛿) ∈ 𝒳 × ℝ × {0,1} be a random
vector such that 𝑋 = (𝑋1,…,𝑋𝑝) denotes the predictor variables, 𝑌 is the response variable,
and 𝛿 is a binary random variable that indicates whether the response is missing. 𝒳 denotes a
general topological space, meaning that it can be arbitrary, discrete, continuous, or structured.

Let 𝒟𝑛 = {(𝑋𝑖,𝑌𝑖, 𝛿𝑖)}𝑛
𝑖=1 be a random sample of independent, identically distributed

observations, where 𝑌𝑖 is missing if 𝛿𝑖 = 0. We assume that 𝛿 conditioned to 𝑋 is distributed
according to 𝛿|𝑋 ∼ 𝐵𝑒𝑟(𝜋 (𝑋)), with 𝜋(⋅) = 𝑃 (𝛿 = 1|𝑋 = ⋅); hence, some of the predictors
can have an impact on the mechanism of missing data 𝜋(⋅) = 𝑃 (𝛿 = 1|𝑋 = ⋅). For instance,
in our example, older patients are more reluctant to perform a second CGM monitoring, so
the probability of not observing a patient increases with age. We also assume a missing at
random (MAR) mechanism in the response 𝑌 , namely, 𝛿 and 𝑌 are conditionally independent
given 𝑋 or, in short, 𝛿 is independent 𝑌 |𝑋.
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Consider the following relation between 𝑋 and 𝑌 :

𝑌 = 𝑚(𝑋)+𝜖, (5.1)

where 𝜖 denotes a random noise with 𝐸 (𝜖|𝑋) = 0, and 𝑚 is the true regression function. Our
goal is to predict 𝑌 by proposing a new data analysis framework that is robust to datasets in
which some values for 𝑌 are not observed. To this end, we provide: 1) a method for univariate
analysis based on testing the statistical independence between each predictor variable and the
response variable; 2) a method for selecting the subset of predictor variables that best predicts
the response variable; and 3) methods for predicting the response variable and inferring the
uncertainty in the predictions.

These methods are based on the reproducing kernel Hilbert space (RKHS) learn-
ing paradigm. The core element of this paradigm is a positive definite kernel function
𝑘𝒳 ∶ 𝒳 × 𝒳 → ℝ which allows us to measure the similarity between any 𝑥 and 𝑦, with
𝑥,𝑦 ∈ 𝒳. The positive definiteness of the kernel function guarantees the existence of a dot
product space ℋ and feature mapping 𝜙 ∶ 𝒳 → ℋ, such that 𝑘𝒳(𝑥,𝑦) = ⟨𝜙(𝑥),𝜙(𝑦)⟩ℋ.
Thus, we can express a broad spectrum of statistical modeling problems as linear [152],
allowing computational algorithms to easily determine optimal solutions.

5.2.2 Testing statistical independence

We wish to test whether two random variables 𝑋 ∼ 𝑃𝑋 and 𝑌 ∼ 𝑃𝑌 are independent, that is,
if we can reject the null hypotheses 𝐻0 ∶ 𝑋 is independent 𝑌 , from 𝑛 samples {(𝑋𝑖,𝑌𝑖)}𝑛

𝑖=1.
To do this, we must calibrate the test under the null hypothesis to determine the results that
are expected to occur with a certain probability if the null hypothesis holds. In our specific
case, we must consider the effects of the mechanism of missing data in the response variable
𝑌 . We propose a methodology to address this problem based on kernel mean embeddings,
which is valid when both covariate and response variables live in a separable Hilbert space. In
addition, we introduce a new bootstrap procedure to perform the test calibration adapted to
kernel mean embeddings.

Hilbert space embeddings of distributions or, in short, kernel mean embeddings [191],
allow us to map distributions into a reproducing kernel Hilbert space (RKHS), in which kernel
methods can be extended to probability measures. Kernel mean embeddings can be used to
define a metric for distributions, the maximum mean discrepancy (MMD), which in turn can
be applied to define an independence test, the Hilbert-Schmidt Independence criterion (HSIC),
a non-parametric test of independence with the important property that it does not make any
assumption as to the nature of the possible dependence among the two variables [98]. We
extended this test to a missing data setting.
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A reproducing kernel of ℋ is a kernel function that satisfies (1) ∀𝑥 ∈ 𝒳, 𝑘𝒳 (⋅,𝑥) ∈ ℋ,
and (2) ∀𝑥 ∈ 𝒳, ∀𝑓 ∈ ℋ, ⟨𝑓,𝑘𝒳 (⋅,𝑥)⟩ℋ = 𝑓 (𝑥). If ℋ has a reproducing kernel, it is
said to be an RKHS, ℋ𝑘𝒳

. Kernel mean embedding results from extending the mapping 𝜙
to the space of probability distributions by representing each distribution as a mean function
𝜙(𝑃) = ∫𝒳 𝑘(⋅,𝑥)𝑃 (𝑑𝑥), resulting in the transformation of a distribution 𝑃 into an element
of the RKHS ℋ𝑘𝒳

. Given two probability measures 𝑃 and 𝑄, the RKHS distance between
their embeddings can be defined as the MMD [97]:

𝑀𝑀𝐷(𝑃 ,𝑄)𝑘 = ‖𝜙(𝑃)−𝜙(𝑄)‖ℋ𝑘𝒳
. (5.2)

For the class of characteristic kernels, the embeddings are injective, that is,
𝑀𝑀𝐷𝑘 (𝑃 ,𝑄) = 0, if and only if 𝑃 = 𝑄. MMD can then be applied to measure
the degree of dependence between the random variables 𝑋 ∈ 𝒳 and 𝑌 ∈ 𝒴 with marginal
distributions 𝑃𝑋 and 𝑃𝑌 and jointly distributed as 𝑃𝑋,𝑌 . Note that testing the null hypoth-
esis 𝐻0 ∶ 𝑋 is independent 𝑌 is equivalent to testing 𝐻0 ∶ 𝑃𝑋,𝑌 = 𝑃𝑋𝑃𝑌 . We denote by
𝜙𝑋 (⋅), 𝜙𝑌 (⋅) and 𝜙𝑋,𝑌 (⋅) the kernel mean embeddings of 𝑃𝑋, 𝑃𝑌 , and 𝑃𝑋,𝑌 , respectively.
Assuming ℋ𝑘𝒵

is a RKHS over 𝒳×𝒴 with kernel 𝑘𝒵 ((𝑥,𝑦) , (𝑥′,𝑦′)) = 𝑘𝒳 (𝑥,𝑥′)𝑘𝒴 (𝑦,𝑦′),
so that ℋ𝑘𝒵

is a direct product ℋ𝑘𝑋
⊗ ℋ𝑘𝑌

(with ⊗ being the tensor product), then a
natural way of testing independence is measuring the MMD distance between the functions
𝜙𝑋,𝑌 (⋅) and 𝜙𝑌 (⋅) ⊗ 𝜙𝑋 (⋅), which can be written as the Hilbert-Schmidt Independence
Criterion (HSIC) between 𝑋 and 𝑌 [97], defined as

𝐻𝑆𝐼𝐶 (𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) = ‖𝜙𝑋,𝑌 −𝜙𝑋 ⊗𝜙𝑌 ‖2
ℋ𝑘𝑋⊗ℋ𝑘𝑌

. (5.3)

It can be shown that when 𝑘𝒳 and 𝑘𝒴 are characteristic kernels, 𝐻𝑆𝐼𝐶 (𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) = 0
if and only if 𝑋 is independent of 𝑌 . Expanding Equation 5.3, we have

𝐻𝑆𝐼𝐶(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) = ⟨𝜙𝑋,𝑌 −𝜙𝑋 ⊗𝜙𝑌 ,𝜙𝑋,𝑌 −𝜙𝑋 ⊗𝜙𝑌 ⟩ℋ𝑘𝑋⊗ℋ𝑘𝑌

= ⟨𝜙𝑋,𝑌 ,𝜙𝑋,𝑌 ⟩+⟨𝜙𝑋 ⊗𝜙𝑌 ,𝜙𝑋 ⊗𝜙𝑌 ⟩−2⟨𝜙𝑋,𝑌 ,𝜙𝑋 ⊗𝜙𝑌 ⟩ (5.4)

where ℋ𝑘𝑋
⊗ ℋ𝑘𝑌

is dropped in the subscript for brevity. From the reproducing property,
𝐸𝑃 [𝑓 (𝑥)] = ⟨𝑓,𝜙(𝑃 )⟩ℋ, ∀𝑓 ∈ ℋ, and Fubini’s theorem, we obtain

𝐻𝑆𝐼𝐶 (𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) =𝐸𝑋,𝑌 ,𝑋′,𝑌 ′ [𝑘𝒳 (𝑋,𝑋′)𝑘𝒴 (𝑌 ,𝑌 ′)]
+𝐸𝑋,𝑋′ [𝑘𝒳 (𝑋,𝑋′)]𝐸𝑌 ,𝑌 ′ [𝑘𝒴 (𝑌 ,𝑌 ′)]
−2𝐸𝑋,𝑌 [𝐸𝑋′ [𝑘𝒳 (𝑋,𝑋′)]𝐸𝑌 ′ [𝑘𝒴 (𝑌 ,𝑌 ′)]] , (5.5)

where 𝑋′ and 𝑌 ′ are independent copies of random variables 𝑋 and 𝑌 , respectively. Ul-
timately, testing independence involves calculating the squared distance between two mean
functions in the appropriate RKHS space, resulting from transforming the original data to
capture all distributional differences between both random variables.
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In practice, a limited number of random elements, {(𝑋𝑖,𝑌𝑖, 𝛿𝑖)}𝑛
𝑖=1, are observed. There-

fore, we must replace the population mean with the sample mean, defined through its empirical
distribution. Then, the Hilbert-Schmidt independence criterion can be estimated as

𝐻𝑆𝐼𝐶(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) = 1
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑘𝒳 (𝑥𝑖,𝑥𝑗)𝑘𝒴 (𝑦𝑖,𝑦𝑗)

+ 1
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑘𝒳 (𝑥𝑖,𝑥𝑗)
1
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑘𝒴 (𝑦𝑖,𝑦𝑗)

− 1
𝑛3

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

𝑘𝒳 (𝑥𝑖,𝑥𝑗)𝑘𝒴 (𝑦𝑖,𝑦𝑘) . (5.6)

Under the MAR assumption, we observe {(𝑋𝑖,𝑌𝑖, 𝛿𝑖)}𝑛
𝑖=1, and we must estimate the

missing data mechanism given by the function 𝜋(⋅) = 𝑃 (𝛿 = 1|𝑋 = ⋅). Several procedures
have been proposed in the literature for this purpose, such as logistic regression, lasso, random
forest, and ensemble methods. Subsequently, we re-weighted the dataset, taking into account
the difficulty of observing the response of the 𝑖𝑡ℎ datum. In particular, we associate weight
𝑤𝑖 with the 𝑖𝑡ℎ datum via an inverse probability weighting (IPW) estimator [272] given by

𝑤𝑖 = 𝛿𝑖
𝑛𝜋(𝑥𝑖)

, 𝑖 = 1,…,𝑛, (5.7)

which results in assigning large 𝑤𝑖 values as the probability of observing a response decreases.
Using this procedure, we obtain an asymptotic unbiased estimator that balances the sampling
mechanism and allows us to make a proper inference according to the target population
examined.

We define the normalized weight of 𝑤𝑖 as

𝑤∗
𝑖 = 𝑤𝑖

∑𝑛
𝑖=1 𝑤𝑖

, 𝑖 = 1,…,𝑛. (5.8)

We denote the estimated and normalized 𝑖𝑡ℎ weight as 𝑤𝑖 and 𝑤∗
𝑖 , respectively, after

estimating ̃𝜋 (⋅).
To obtain an estimator of HSIC with missing data, it is sufficient to replace the uniform

weight 1/𝑛 of the empirical distribution with normalised weights 𝑊 ∗ = (𝑤∗
1,…,𝑤∗

𝑛) in Equa-
tion 5.6. Thus, we obtain

𝐻𝑆𝐼𝐶(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑤∗
𝑖𝑤∗

𝑗𝑘𝒳 (𝑋𝑖,𝑋𝑗)𝑘𝒴 (𝑌𝑖,𝑌𝑗)

+
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑤∗
𝑖𝑤∗

𝑗𝑘𝒳 (𝑋𝑖,𝑋𝑗)
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑤∗
𝑖𝑤∗

𝑗𝑘𝒴 (𝑌𝑖,𝑌𝑗)

−
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

𝑤∗
𝑖𝑤∗

𝑗𝑤∗
𝑘𝑘𝒳 (𝑋𝑖,𝑋𝑗)𝑘𝒴 (𝑌𝑖,𝑌𝑘) . (5.9)
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Calibration under the null hypothesis with the precedent statistic is not trivial, and the
permutation approach is generally not valid because the response 𝑌 is not exchangeable due
to the non-homogeneous missing data mechanism. To overcome this difficulty, we propose a
novel bootstrap approach that properly deals with non-vectorial predictors [66].

Under null hypothesis 𝐻0 ∶ 𝑃𝑋,𝑌 = 𝑃𝑋𝑃𝑌 , it can be assumed that 𝜙𝑋,𝑌 (⋅) − 𝜙𝑋 (⋅) ⊗
𝜙𝑌 (⋅) = 0(⋅). Therefore,

𝐻𝑆𝐼𝐶(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) =⟨ ̃𝜙𝑋,𝑌 − ̃𝜙𝑋 ⊗ ̃𝜙𝑌 , ̃𝜙𝑋,𝑌 − ̃𝜙𝑋 ⊗ ̃𝜙𝑌 ⟩ℋ𝒳⊗ℋ𝒴

=⟨ ̃𝜙𝑋,𝑌 −𝜙𝑋,𝑌 +𝜙𝑋 ⊗𝜙𝑌 − ̃𝜙𝑋 ⊗ ̃𝜙𝑌 ,
̃𝜙𝑋,𝑌 −𝜙𝑋,𝑌 +𝜙𝑋 ⊗𝜙𝑌 − ̃𝜙𝑋 ⊗ ̃𝜙𝑌 ⟩. (5.10)

Then, a natural bootstrap procedure that allows us to estimate the 𝑝-value for the test of
independence is developed as follows:

1. To randomly sample with replacement 𝑛 elements from the original dataset 𝒟𝑛, repeat-
ing 𝑚 times. We denote by 𝒟𝑗∗

𝑛 = {(𝑋𝑗∗

𝑖 ,𝑌 𝑗∗

𝑖 , 𝛿𝑗∗

𝑖 )}𝑛
𝑖=1, 𝑗 = 1,…,𝑚 the 𝑗𝑡ℎ random

sample obtained.

2. To calculate 𝐻𝑆𝐼𝐶
𝑗∗

(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) as

𝐻𝑆𝐼𝐶
𝑗∗

(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) =⟨ ̃𝜙𝑋,𝑌 − ̃𝜙𝑗∗

𝑋,𝑌 + ̃𝜙𝑗∗

𝑋 ⊗ ̃𝜙𝑗∗

𝑌 − ̃𝜙𝑋 ⊗ ̃𝜙𝑌 ,
̃𝜙𝑋,𝑌 − ̃𝜙𝑗∗

𝑋,𝑌 + ̃𝜙𝑗∗

𝑋 ⊗ ̃𝜙𝑗∗

𝑌 − ̃𝜙𝑋 ⊗ ̃𝜙𝑌 ⟩ℋ𝒳⊗ℋ𝒴
, (5.11)

where 𝑗 = 1,…,𝑚, ̃𝜙𝑗∗

𝑋,𝑌 (⋅), ̃𝜙𝑗∗

𝑋 (⋅), and ̃𝜙𝑗∗

𝑋 (⋅) are the kernel mean embeddings esti-
mated from the 𝑗𝑡ℎ bootstrap sample 𝒟𝑗∗

𝑛 = {(𝑋𝑗∗

𝑖 ,𝑌 𝑗∗

𝑖 , 𝛿𝑗∗

𝑖 )}𝑛
𝑖=1.

3. To estimate the 𝑝-value as

𝑝-value = 1
𝑚

𝑚
∑
𝑗=1

1(𝐻𝑆𝐼𝐶
𝑗∗

(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) ≥ 𝐻𝑆𝐼𝐶(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ). (5.12)

Bootstrap consistency with missing data can be proved by using standard tools of empirical
process theory [278], and it is provided in the Appendix.

5.2.3 Variable selection

Independence screening methods select predictor variables based on individual prediction ability;
hence, they are ineffective in selecting a subset of variables that are individually weak but
strong in combination. Subset selection aims to overcome this drawback by considering and
evaluating the prediction ability of a subset of variables as a whole. One popular approach to
subset selection is to directly optimize an objective function consisting of two terms: a data
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fitting term to attain prediction accuracy and a regularization term to penalize a large number
of variables [104].

Subset selection has recently been approached using the RKHS paradigm with satisfactory
results. Two strategies stand out: first, minimizing the trace of the conditional covariance
operator [40] and second, identifying those variables with a non-zero gradient function [292].
The first strategy scales poorly with the number of variables used. The second strategy can
be formulated in a more compact manner. Here, it is extended to missing data.

Following [292], we identify the relevant predictors by learning the gradient of regres-
sion function 𝑚. Thus, it is assumed that if variable 𝑋𝑟 is not relevant for predicting 𝑌 ,
then 𝑔𝑟 = 𝜕𝑚(𝑋)/𝜕𝑋𝑟 = 0 for any value of 𝑋. Let us denote by 𝑔 (𝑋) = ∇𝑚(𝑋) =
(𝑔1 (𝑋),…,𝑔𝑝 (𝑋))𝑇 the gradient function. In a small neighborhood of 𝑋𝑖 we can use the
Taylor expansion to approximate 𝑚(𝑋), so when 𝑋𝑗 is sufficiently close to 𝑋𝑖, 𝑚(𝑋𝑗) ≈
𝑌𝑖 +𝑔(𝑋𝑖)(𝑋𝑗 −𝑋𝑖). We then define the estimation error as a function of 𝑔 (⋅):

𝐸 (𝑔) = 𝐸𝑋,𝑌 ,𝑋′,𝑌 ′ [𝜔(𝑋,𝑋′)(𝑌 −𝑌 ′ −𝑔(𝑋)𝑇 (𝑋 −𝑋′))]
2
,

where 𝑋′,𝑌 ′ denote independent and random variables distributed as 𝑋 and 𝑌 , respectively.
Function 𝜔(𝑋𝑖,𝑋𝑗) is an appropriate weight function that decreases as ‖𝑋𝑖 −𝑋𝑗‖ increases
and ensures that the local neighbourhood of 𝑋𝑖 contributes more to estimating the gradient
𝑔 (𝑋𝑖). Typically, 𝜔(𝑋𝑖,𝑋𝑗) = 𝑒−∥𝑋𝑖−𝑋𝑗∥2/𝜏2

𝑛 , where 𝜏2
𝑛 is a positive parameter which must

be adjusted to ensure asymptotic estimation consistency.
Because only a limited number of samples {(𝑋𝑖,𝑌𝑖, 𝛿𝑖)}𝑛

𝑖=1 are observed, we approximate
𝐸 (𝑔) using its empirical counterpart

𝐸 (𝑔) = 1
𝑛2

𝑛
∑
𝑖,𝑗=1

𝜔𝑖𝑗 (𝑌𝑗 −𝑌𝑖 −𝑔(𝑋𝑖)
𝑇 (𝑋𝑗 −𝑋𝑖))

2
, (5.13)

where 𝜔𝑖𝑗 = 𝜔(𝑋𝑖,𝑋𝑗).
We can add a regularization term for enforcing a sparsity constraint on the gradient vector,

with the aim of shrinking the partial derivatives 𝑔𝑟 towards zero with respect to irrelevant
variables. We then add the term 𝐽 (𝑔) = 𝜆𝑛 ∑𝑝

𝑟=1 𝜂𝑟𝐽 (𝑔𝑟), where 𝜂𝑟 are adaptive tuning
parameters. On the other hand, we can define the estimation error in (5.13) as a functional
in the RKHS ℋ𝑝

𝑘, and thus 𝑔 ∈ ℋ𝑝
𝑘 and ℰ ∶ ℋ𝑘 × 𝑝⋯×ℋ𝑘 → ℝ+, induced by a pre-specified

positive kernel 𝑘. Thus, we propose the following optimization formula to learn the gradient
vector:

argmin
𝑔∈ℋ𝑝

𝑘

1
𝑛2

𝑛
∑
𝑖,𝑗=1

𝜔𝑖𝑗 (𝑌𝑖 −𝑌𝑗 −𝑔(𝑋𝑖)
𝑇 (𝑋𝑖 −𝑋𝑗))

2
+𝐽 (𝑔) . (5.14)

Under the MAR assumption, we propose substituting 𝜔𝑖𝑗 weights with �̃�∗
𝑖𝑗 = �̃�∗

𝑖 �̃�∗
𝑗𝜔𝑖𝑗,

where �̃�∗
𝑖 and �̃�∗

𝑗 denote the estimated normalized weights associated with data 𝑖𝑡ℎ and 𝑗𝑡ℎ,
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respectively, according to (5.8). The variable selection expression can be rewritten as follows:

argmin
𝑔∈ℋ𝑝

𝑘

1
𝑛2

𝑛
∑
𝑖,𝑗=1

�̃�∗
𝑖𝑗 (𝑌𝑖 −𝑌𝑗 −𝑔(𝑋𝑖)

𝑇 (𝑋𝑖 −𝑋𝑗))
2

+𝐽 (𝑔) . (5.15)

The representer theorem states that the minimizer of (5.15) can be represented as a finite
linear combination of kernel products evaluated on the dataset samples [238]:

𝑔𝑟 (⋅) =
𝑛

∑
𝑖=1

𝛼𝑟
𝑖 𝑘𝒳𝑓 (⋅,𝑋𝑖) , 𝑟 = 1,…,𝑝, (5.16)

where 𝛼𝑟 ∈ ℝ𝑛. Given this representation, 𝑔𝑟 (⋅) = 0 iff 𝛼𝑟 = (𝛼𝑟
1, ...,𝛼𝑟

𝑛)𝑇 = (0,…,0)𝑇 , or
more concisely, ‖𝛼𝑟‖2 = 0.

Several regularization terms have been considered in previous studies. We adopted the
group lasso penalty [85, 292]:

𝐽 (𝑔𝑟) = inf{‖𝛼𝑟‖2 ∶ 𝑔𝑟 (⋅) =
𝑛

∑
𝑖=1

𝛼𝑟
𝑖 𝑘𝒳 (⋅,𝑋𝑖)}, (5.17)

which encourages all 𝛼𝑟
𝑖 , 𝑖 = 1, ...,𝑛 to be selected or shrunk to zero together to achieve the

purpose of variable selection. Thus, our optimization problem can be rewritten as:

argmin
𝛼1,⋯,𝛼𝑝

𝑛
∑
𝑖,𝑗=1

�̂�∗
𝑖𝑗 (𝑦𝑖 −𝑓∗ (𝑥𝑖,𝑥𝑗))2 +𝜆𝑛

𝑝
∑
𝑟=1

𝜂𝑟‖𝛼𝑟‖2, (5.18)

where 𝑓∗ (𝑋𝑖,𝑋𝑗) = 𝑦𝑗 − ∑𝑝
𝑟=1 𝑘𝑇

𝑖 𝛼𝑟 (𝑥𝑟
𝑖 −𝑋𝑟

𝑗 ), 𝑘𝑖 = (𝑘(𝑋𝑖,𝑋1) ,…,𝑘(𝑋𝑖,𝑋𝑛))𝑇 is the
𝑖𝑡ℎ row of 𝐾 = (𝑘(𝑋𝑖,𝑋𝑗))𝑛×𝑛, and 𝜆𝑛 are tuning parameters. This last expression simplifies
the original optimization framework (5.14) from a functional space to a vector space, and it
can be solved in 𝑂(|𝑈|2𝑝2) using a block coordinate descent algorithm [292].

5.2.4 Prediction and uncertainty analysis

Let us recall that the ultimate goal is to predict 𝑌 using the information provided by predictor
variables 𝑋. To achieve this aim, we adopt the kernel ridge regression approach proposed by Liu
and Goldberg [159]. However, we draw on the linear regression theory to efficiently compute the
leave-one-out cross-validation regularization parameter. This class of regularization parameters
has been proven to largely shape the model performance [154]. Furthermore, estimating
the uncertainty of predictions by providing robust confidence intervals is a valuable tool for
subsequent decisions. Thus, we compute intervals with good finite sample coverage using
advances in conformal inference recently exploited in causal theory [147].

Let us assume a linear regression model:

𝑌𝑖 = 𝑚(𝑋𝑖)+𝜖 = 𝑋𝑇
𝑖 𝛽 +𝜖 𝑖 = 1,…,𝑛, (5.19)
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where 𝛽 is the vector of coefficients of the linear model. Given the original dataset 𝒟𝑛 =
{(𝑋𝑖,𝑌𝑖, 𝛿𝑖)}𝑛

𝑖=1, kernel ridge regression is based on solving the following optimization prob-
lem:

̃𝛽 = arg min
𝛽∈ℝ𝑝

𝑛
∑
𝑖=1

(𝑌𝑖 −𝑋𝑇
𝑖 𝛽)2 +𝜆||𝛽||22, (5.20)

which is solved by ̃𝛽 = (𝑋𝑇 𝑋 +𝜆𝐼)−1 𝑋𝑇 𝑌 , where 𝑋 = (𝑋1,…,𝑋𝑛)𝑇 , 𝑌 = (𝑌1,…,𝑌𝑛)𝑇 ,
and 𝜆 > 0 is the smoothing parameter of the regularization term.

Let ℋ𝑘 be an RKHS with a kernel 𝑘𝒳. Then, by replacing every 𝑋𝑖 with 𝜙(𝑋𝑖) and
assuming that 𝛽 = ∑𝑛

𝑖=1 𝛼𝑖𝜙(𝑋𝑖), we obtain an analogue solution to that of Equation (5.20)
by exploiting the linear structure of the problem but changing the usual dot product by the inner
product of the selected RKHS. In particular, ̃𝛼 = (𝐾 +𝜆𝐼)−1 𝑌 , where 𝐾 = (𝑘(𝑋𝑖,𝑋𝑗))𝑛×𝑛.

In [159], the authors proposed two estimators for the missing data. In both cases, the
solution has the same closed-form expression, given by the representer theorem. The first
is ̃𝛼 = (𝜆𝐼 +𝑊𝐾)−1 𝑊𝑌 , where the missing data mechanism is handled using the IPW
estimator. The second is obtained through doubly robust estimation, combining a preliminary
imputation of the missing response with the IPW estimator:

̃𝛼 = (𝐾 +𝜆𝐼)−1 (𝑊𝑌 +(𝐼 −𝑊)𝜇(𝑋)) , (5.21)

where 𝑊 = 𝑑𝑖𝑎𝑔 (𝑤1,…,𝑤𝑛) denotes a diagonal matrix containing the weights (see Equation
5.7) and 𝜇(𝑋) = (𝜇(𝑋𝑖) ,…,𝜇(𝑋𝑛))𝑇 denotes the imputation function.

Doubly robust estimators achieve optimal asymptotic variance when their weights
𝑤1,…,𝑤𝑛 and imputation function 𝜇(⋅) are correctly specified, and only one of them needs
to be correctly specified to achieve consistency. However, when any of them fails, the
regression model performance can deteriorate dramatically with a finite sample [132, 282],
thereby failing to provide real advantages with respect to the IPW estimator.

The impact of the smoothing parameter on model generalization is an essential issue for
the ensuing performance and is strongly related to the minimum-norm interpolation problem
in the context of RKHS. Therefore, we propose the selection of the smoothing parameter
through leave-one-out cross-validation by adapting estimators to missing data [154].

To supply a prediction interval for the response with a confidence level of 1−𝛼, we provide
a novel algorithm for performing conformal inference [146, 147], which is valid for handling
missing responses and heteroscedastic noise.

We randomly split the dataset 𝒟𝑛 = {(𝑋𝑖,𝑌𝑖, 𝛿𝑖)}𝑛
𝑖=1 into training and test sets 𝒟𝑡𝑟𝑎𝑖𝑛 =

{(𝑋𝑡𝑟𝑎𝑖𝑛
𝑖 ,𝑌 𝑡𝑟𝑎𝑖𝑛

𝑖 , 𝛿𝑡𝑟𝑎𝑖𝑛
𝑖 )}𝑛1

𝑖=1 and 𝒟𝑡𝑒𝑠𝑡 = {(𝑋𝑡𝑒𝑠𝑡
𝑖 ,𝑌 𝑡𝑒𝑠𝑡

𝑖 , 𝛿𝑡𝑒𝑠𝑡
𝑖 )}𝑛2

𝑖=1, where 𝑛 = 𝑛1 +𝑛2.
For a given new observation 𝑋𝑛+1 we go through the following steps:

1. Fit the mean regression function �̃�(⋅) from the set 𝒟𝑡𝑟𝑎𝑖𝑛, according to Equation 5.21.
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2. Compute the residuals ̃𝜖𝑖 = |𝑌 𝑡𝑒𝑠𝑡
𝑖 −�̃�(𝑋𝑡𝑒𝑠𝑡

𝑖 ) |/�̃� (𝑋𝑡𝑒𝑠𝑡
𝑖 ), for every 𝑖 = 1,…,𝑛2 with

𝛿𝑡𝑒𝑠𝑡
𝑖 = 1. The value �̃�(𝑋𝑡𝑒𝑠𝑡

𝑖 ) is estimated by a regression function that predicts the
absolute deviation of the residuals fitted with the training sample.

3. Estimate the empirical distribution as follows:

𝐹 𝜖
𝑛2+1 (𝑥) = 1

∑𝑛2+1
𝑖=1 𝑤𝑡𝑒𝑠𝑡

𝑖
(

𝑛2

∑
𝑖=1

1{ ̃𝜖𝑖 ≤ 𝑥}𝑤𝑡𝑒𝑠𝑡
𝑖 +𝑤𝑡𝑒𝑠𝑡

𝑛2+1
), (5.22)

where we also incorporate the weights of 𝑋𝑛+1 and 𝑤𝑡𝑒𝑠𝑡
𝑛2+1

into the estimation.

4. Compute the 1−𝛼 quantile, ̃𝑞1−𝛼, from 𝐹 𝜖
𝑛2+1.

5. Finally, return [ ̃𝑓 (𝑋𝑛+1)− ̃𝑞1−𝛼�̃� (𝑋𝑛+1) , ̃𝑓 (𝑋𝑛+1)+ ̃𝑞1−𝛼�̃� (𝑋𝑛+1)] as the required
prediction interval.

5.3 An application in modelling long-term changes in glucose levels

Diabetes mellitus is one of the most critical public health problems and the ninth major cause
of mortality worldwide [299]. At present, over 416 million and 47 million patients have type
2 (T2D) and type 1 (T1D) diabetes, respectively, [234]. Significantly, around 50% of patients
with diabetes are undiagnosed [234]. Considering the impact of this pandemic among the
general population, there is a need for new health policies and guidelines to enable early
recognition of at-risk patients and improvement in the methodology of disease diagnosis in the
standard clinical routine [120].

Some previous studies have focused on developing predictive models for patient stratifi-
cation. Thus, the Finnish FINDRISC provides a diabetes score to predict the probability of
developing diabetes within ten years using logistic regression [170]. In addition, the German
GDRS provides a different score to predict the time to becoming a diabetic person using a
survival model based on Cox regression [192]. In contrast, some authors argue against using
thresholds and categorising patients into different ranges of glucose levels, and hence, against
defining diabetes as a homogeneous disease [87].

The availability and rapid adoption of new digital medical devices have enabled an emerging
clinical paradigm based on precision medicine, which will be called to raise early diagnosis and
guide subsequent clinical decision-making through the intensive use of statistical models and
machine learning techniques [46, 138, 240, 269]. In the case of diabetes, the latest advances
in sensing technology allow for the assessment of glucose metabolism at a high-resolution
level by capturing the individual differences in glucose fluctuations at different time scales via
continuous glucose monitoring (CGM) [295]. In this sense, although T1D cannot be prevented
at present, monitoring is of utmost importance. Recent studies have shown improved glycemic
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control and decreased rates of hypoglycaemia in T1D patients using CGM, leading both the
Endocrine Society and the American Diabetes Association to state that CGM use represents
the standard of care for T1D [10, 212]. With respect to T2D, strong scientific evidence
shows that it can be prevented by regular exercise, healthy eating, and the control of blood
pressure and lipids [203], spurring innovation in wearable technology to enable its prediction
and prevention in the general population [131].

Still, few studies have explored the use of CGM data from healthy populations to draw
new conclusions regarding glucose homeostasis. It is worth mentioning [105], which provides
some remarkable insights into the heterogeneity of glucose dysregulation, highlighting the
inadequacy of a common designation as T2D for categorising and subsequently managing pre-
dictably different conditions. Importantly, this study refutes the assumption of similar glucose
excursions for the same amount and composition of food. Ultimately, the specific glucose
profiles observed for each patient depend on the complex interplay between the pathophysi-
ological mechanisms of insulin resistance and insulin secretion [105, 295], thus enabling the
treatment of the glycemic profile of an individual as a personal signature of glucose homeosta-
sis. Accordingly, an appropriate interpretation of CGM data could help identify early stages of
glucose dysregulation in apparently healthy individuals, with the possibility of providing early
and tailored interventions. In this sense, there is a need for further research on the predictive
value of CGM data [295].

This study aimed to examine the predictability of long-term changes in glucose levels by
using a random sample of the general population. The exploration of the predictive value of
the information provided by CGM data is of particular interest. For this purpose, we use the
glucodensity representation. Intuitively, glucodensity is more sensitive than the previous CGM
summary metrics. We then explored its use in modeling long-term glucose changes and com-
pared it with TBR, TIR, and TAR measures. In addition, we also considered different summary
metrics derived from CGM data [96, 230]: CONGA (continuous overall net glycemic action),
MAGE (mean amplitude of glycemic excursions), and MODD (mean of daily differences).

5.3.1 The AEGIS diabetes study

Let us recall that the AEGIS diabetes population study, conducted in the Spanish town of A
Estrada (Galicia), aimed to analyze the longitudinal changes in some clinical features related to
circulating glucose in 1516 patients over 5 years. In addition, non-routine medical tests, such
as CGM, are performed every five years on a randomized subset composed of 581 patients.
At the beginning of this study [101], 581 participants were randomly selected to wear a CGM
device for 3-7 days. Of the 581 participants, 68 were diagnosed with diabetes before the start
of the study and 22 were diagnosed during the study. Table 3.1 lists the baseline characteristics
of the 581 patients grouped by sex. After a five-year follow-up, a significant fraction of those
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individuals did not agree to perform a second glucose monitoring, while some five-year relevant
outcomes such as A1c could only be measured in 339 patients. Complete details of the study
design and measurement methodology protocol can be found in [101].

5.3.2 Integrating multiple data sources

RKHS offers a powerful and natural data analysis paradigm that can cope with data of different
natures [34]. A crucial issue is to select a suitable kernel that accurately captures the differences
and specific characteristics of each information source examined. In our particular case, we
take into account a continuous probability distribution and certain real-valued and categorical
data 𝑋 = (𝑋𝑔𝑙𝑢𝑐𝑜,𝑋𝑟𝑒𝑎𝑙,𝑋𝑐𝑎𝑡𝑒𝑔). A reasonable choice commonly used in the literature
is the Laplacian kernel, 𝐾 = (𝑘(𝑋𝑖,𝑋𝑗))𝑛×𝑛, where 𝑘(𝑋𝑖,𝑋𝑗) = 𝑒− ||𝑋𝑖−𝑋𝑗||

𝜎 . Here, we
propose using the Laplacian kernel with the standard Euclidean distance as a universal and
characteristic kernel in a real vector space. Moreover, it can be shown that the Laplacian
kernel retains these properties considering the set of continuous density functions endowed
with 2−Wasserstein distance, providing theoretical guarantees that we can approximate a
large variety of regression functions. Based on the connection between positive kernels and
negative-type metrics [24, 241], we propose using a simple and global Laplacian kernel that
integrates these three sources:

𝑘𝒳(𝑋𝑖,𝑋𝑗) = 𝑒−(𝑎 ||𝑋𝑔𝑙𝑢𝑐𝑜
𝑖 −𝑋𝑔𝑙𝑢𝑐𝑜

𝑗 ||
𝜎𝑔𝑙𝑢𝑐𝑜

+𝑏 ||𝑋𝑟𝑒𝑎𝑙
𝑖 −𝑋𝑟𝑒𝑎𝑙

𝑗 ||
𝜎𝑟𝑒𝑎𝑙

+𝑐 ||𝑋𝑐𝑎𝑡𝑒𝑔
𝑖 −𝑋𝑐𝑎𝑡𝑒𝑔

𝑗 ||
𝜎𝑐𝑎𝑡𝑒𝑔 ), (5.23)

where 𝑎,𝑏,𝑐,𝜎𝑔𝑙𝑢𝑐𝑜,𝜎𝑟𝑒𝑎𝑙,𝜎𝑐𝑎𝑡𝑒𝑔 > 0 and we assume for the sake of simplicity that (𝑎,𝑏,𝑐) ∈
𝒮2, where 𝒮2 is a 2-simplex, 𝒮2 = {(𝑎,𝑏,𝑐) ∈ ℝ3 ∶ 𝑎 + 𝑏 + 𝑐 = 1;0 ≤ 𝑎 ≤ 1,0 ≤ 𝑏 ≤ 1,0 ≤
𝑐 ≤ 1}.

5.4 Results

The present framework of predictive tools allows us to answer some open clinical questions
concerning long-term glucose changes from the analysis of data in the AEGIS study.

1. Glycated haemoglobin A1c is a haemoglobin-glucose combination formed within the cell;
it is a useful indicator of long-term blood glucose control and is considered the standard
biomarker for diabetes diagnosis and management. Is there a prognostic variable that
can be used to predict future A1c changes in healthy individuals?

2. Current medical literature assigns a considerable relevance to all of the predictor variables
listed in Table 3.1 for characterizing the evolution and impact of glucose homeostasis
on health. However, from a biological perspective, these variables are well known to be
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Variable 𝑝 −𝑣𝑎𝑙𝑢𝑒
Age 0.32
Sex 0.16
FPG 0.50
HOMA-IR 0.52
BMI 0.42
A1c 0.03
CONGA 0.24
MAGE 0.68
MODD 0.16
Glucodensity < 0.001

Table 5.1: Estimated raw p‐values of A1c total variation vs each biomarker using the method proposed in
Section 5.2.2 with normoglycemic patients.

highly correlated. Can we identify a reduced subset of relevant explanatory variables to
predict five-year A1c changes?

3. CGM technology may provide a more suitable tool for assessing glucose homeostasis
than traditional diabetes biomarkers. How does CGM data improve our ability to predict
future A1c changes?

4. An increased uncertainty in predictions for a specific region of the feature space may
suggest a subpopulation that has not been properly modeled. Can we provide a charac-
terization of individuals for whom the model yields a less accurate prediction?

5.4.1 Is there a prognostic variable that can be used to predict future A1c changes

in healthy individuals?

To answer this question, we studied whether there was any evidence of a univariate statistical
association for normoglycemic patients (A1c<5.7% and FPG<100 mg/dL) between glucose
variation measured by A1c5𝑦𝑒𝑎𝑟𝑠−A1c𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and the predictor variables shown in Table 3.1.

For this purpose, we use the Hilbert-Schmidt independence criterion proposed in the con-
text of missing data (Section 5.2.2) together with a specific bootstrap approach designed for
this task. The underlying mechanism of missing data was estimated using univariate logistic
regression.

The results in Table 5.1 show that the only statistically significant variables with a p-value
of less than 5% are glucodensity and basal A1c. Figure 5.2 illustrates that the marginal
relationships with other variables, if any, are weak.

5.4.2 Can we identify a reduced subset of relevant variables to predict five-year
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Figure 5.2: Marginal dependence relation between examined variables in the AEGIS database.

A1c changes?

Multivariate models can exploit higher-order interactions between the predictors and the re-
sponse to improve predictions. However, a key point in increasing the interpretability and
generalization ability of the model is to identify a subset of the variables that capture the
essential information in the dataset, thus removing redundancy. We adjusted the method pro-
posed in Section 5.2.3 to find the subset of variables most strongly associated with A1c5𝑦𝑒𝑎𝑟𝑠.
For this purpose, both diabetic and non-diabetic patients were analysed, and we considered all
the variables in Table 3.1 except for sex. We also included the TBR, TIR, and TAR measures
specified in Section 6.1. To avoid overfitting and improve the reproducibility of the results,
we selected model parameters by cross-validation. We estimated the underlying missing data
mechanism using lasso logistic regression.

Finally, the explanatory variables selected by the algorithm were age, A1c𝑖𝑛𝑖𝑡𝑖𝑎𝑙, FPG, BMI,
and MAGE. Notably, the CGM contribution is made through the specific MAGE index, leaving

113



MARCOS MATABUENA RODRÍGUEZ

aside time in ranges.

5.4.3 How does CGM data improve our ability to predict future A1c changes?

To answer this question, we fit several kernel ridge regression models (Section 5.2.4) for
predicting A1c5𝑦𝑒𝑎𝑟𝑠: 1) excluding CGM data as a predictor; 2) including CGM data through
the MAGE index; 3) including CGM data through the above-mentioned time in ranges; and
4) including CGM data through glucodensity representation. Both share age, A1c𝑖𝑛𝑖𝑡𝑖𝑎𝑙, FPG,
and BMI as covariates. The kernel selection and parameter tuning were calibrated as described
in Section 5.3.2.

To compare the performance of these regression models, we used 𝑅2 after including the
specific missing data mechanism:

𝑅2 = 1−
∑𝑛

𝑖=1 (𝑌𝑖 − ∑𝑛
𝑗=1,𝑗≠𝑖 𝑤𝑗𝑌𝑗

∑𝑛
𝑗=1,𝑗≠𝑖 𝑤𝑗

)
2

∑𝑛
𝑖=1 (𝑌𝑖 − ̃𝑓−𝑖 (𝑋𝑖))

2 , (5.24)

where ̃𝑓−𝑖 (⋅), is the regression function fitted to {(𝑋𝑗,𝑌𝑗, 𝛿𝑗)}𝑛
𝑗≠𝑖, i.e. excluding the 𝑖𝑡ℎ-

datum.
The performance results, obtained using leave-one cross-validation, are: 1) 𝑅2

𝑛𝑜𝐶𝐺𝑀 =
0.61; 2) 𝑅2

𝑀𝐴𝐺𝐸 = 0.65, 3) 𝑅2
𝑇 𝐼𝑅 = 0.64; and 4) 𝑅2

𝑔𝑙𝑢𝑐𝑜 = 0.71. Figure 5.3 depicts the
residuals versus the A1c𝑖𝑛𝑖𝑡𝑖𝑎𝑙 values. As can be seen, the highest residuals are found in
diabetic patients; otherwise, the distribution of residuals is heterogeneous. Ultimately, CGM
data represented by glucodensities provide valuable information for predicting long-term A1c
changes.

5.4.4 Can we provide a characterization of individuals for whom the model yields

a less accurate prediction?

Figure 5.4 depicts prediction intervals at a confidence level of 90%, after applying conformal
inference (Section 5.2.4) to measure the uncertainty of the predictions performed by the above
regression model (CGM data included as a covariate).

We regard an A1c5𝑦𝑒𝑎𝑟 prediction as significantly affected by uncertainty if the length of
the interval is greater than 0.7 because a deviation greater than this threshold can entail a
change in the glycemic state of the patient, for example, from normoglycemic to diabetes.
Hence, we can identify certain clinical features that allow us to assign each patient to high-or
low-variability groups based on the uncertainty of future glucose values. This can be useful to
phenotypically characterize some subpopulations for which the model provides an unreliable
prediction, and therefore, a more personalised follow-up is advisable. In particular, Figure 5.5
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Figure 5.3: Residuals vs. A1c𝑖𝑛𝑖𝑡𝑖𝑎𝑙 for the model that includes glucodensity as a covariate in the AEGIS
database. Red circles correspond to diabetic patients

shows that long-term changes cannot be adequately predicted for individuals with elevated
FPG levels. The same holds true for individuals with FPG levels in the normoglycemic range
and overweight. More refined decision rules can be established at higher measurement costs.

5.5 Discussion

The above analysis aimed to explore the predictability of glucose regulation in the general
population by studying the relationship between patient basal characteristics at the start of a
longitudinal study and A1c values obtained five years later. Specifically, we intend to exploit the
ability of CGM data to effectively capture a personal signature of glucose homeostasis through
the inclusion of glucodensity, a novel distributional representation of glucose excursions, as a
predictor.

The AEGIS study makes it possible to assess the predictive capacity of glucodensity in the
context of well-known biomarkers for diabetes diagnosis and control, providing some interesting
findings. First, glucodensity shows a significant association with A1c changes, using statistical
dependence measures in normoglycemic subjects. Nevertheless, the weak marginal association
of biomarkers with A1c5𝑦𝑒𝑎𝑟𝑠 suggests the need for a multivariate approach to capture the
complexity of long-term glucose changes. The application of a variable selection procedure
supplies a subset of relevant biomarkers (age, A1c𝑖𝑛𝑖𝑡𝑖𝑎𝑙, FPG, BMI, and MAGE) resulting
from the detection of higher-order interactions with A1c5𝑦𝑒𝑎𝑟𝑠. Then, the ability to predict
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Figure 5.4: Prediction intervals for each response observed in the AEGIS database (90% confidence level).
The red circles correspond to patients with diabetes.
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Figure 5.5: Clinical decision rules that allow us to identify those patients with a significant uncertainty in
their A1c5𝑦𝑒𝑎𝑟 predictions.
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A1c5𝑦𝑒𝑎𝑟𝑠 from this subset of biomarkers is analysed using several regression models that differ
in terms of including CGM data as a predictor. As a result, the 𝑅2

𝑔𝑙𝑢𝑐𝑜 value, corresponding
to the model which adopts a glucodensity-based representation for CGM data, shows a good
proportion of variance explained by the model and is similar to that reported by other authors
for short-term predictions [89, 296]. Moreover, glucodensity has a positive impact on improving
accuracy in predicting A1c5𝑦𝑒𝑎𝑟𝑠 by expanding the model expressiveness along the continuous
spectrum of glucose concentrations.

Some recent studies have proposed different machine learning methods for predicting the
progression to diabetes from a healthy or prediabetic state with relatively good performance
[37, 290]. The strength of both studies lies in their inclusion of a large number of subjects. Both
of them proposed a classification strategy relying on a threshold-based categorization upon
different ranges of glucose or A1c. This allows them to obtain robust results but at the expense
of making an inappropriate interpretation in physiological terms [87, 295]. Furthermore, both
studies are of observational nature and subjects with only partially available data were excluded
from the analysis. This suggests that caution should be exercised when utilising these results
for decision-making.

The present line of research assigns a key role to the analysis of glucose excursions from
CGM data in search of better phenotyping and corresponding progress towards the implemen-
tation of a personalized intervention [105, 273]. An interesting asset of the present proposal
is the proper evaluation of the limits of predictive models by estimating the uncertainty of the
predictions for each new subject. Thus, a careful analysis of the results that exhibit significant
discrepancies with the model predictions provides the opportunity to identify certain patient
phenotypes that need to be followed up more closely. These discrepancies can be explained
by many different factors (lifestyle, diet, disease, pharmacological treatments, etc.) over time.
The present study shows that these discrepancies can be promptly recognized using routine
clinical practice biomarkers.

An inherent limitation of the AEGIS study was its modest sample size. In this respect,
kernel methods have proven effective in coping with a distributional representation, but at
the cost of a substantial amount of data to show a significant advantage in high uncertainty
settings. A larger sample size would refine the predictive model and enable the inclusion of
stratification effects in future studies [4, 5]. Another limitation can be found in the 3-7-days
CGM recording period of this study. An extension of this period to 14 days would probably
limit possible intraday variations in glycemic profile representation; however, the discomfort
from wearing a CGM device for such a long period is not a minor issue.

Ultimately, our findings enforce the prominent role of CGM data in providing a compre-
hensive picture of glucose metabolism [100] and allow us to envision new research on further
characterizing glucose dynamics by devising new methods for (1) measuring the variability of
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glucose excursion, (2) clustering different glucose profiles, or (3) unveiling patterns of glucose
excursions related to specific pathophysiological mechanisms. In particular, the inclusion of
both CGM-based information and longitudinal multi-omics information in the analysis may
provide deep insight into the underlying mechanisms involved in the onset and progression of
the disease [300]. Lastly, further research is needed on new glycemic outcomes, beyond aver-
age measures like A1c, in order to capture a more accurate picture of glycemic dynamics, and
glucodensity might be exploited as a new source of information for more robust predictions.
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6 Hypothesis testing in the presence of
complex paired missing data by maximum mean

discrepancy: An application to continuous
glucose monitoring

A common experimental design in clinical studies, especially longitudinal ones, is the matched
pairs design where observations are made from the same subjects under two different conditions,
often at two points in time. Testing the null hypothesis that observations come from the same
distribution represents an essential step before performing any modeling task. However, a
typical issue when dealing with paired data is the occurrence of missing data.

The literature on matched pairs with missing data has primarily focused on one-dimensional,
continuous, discrete or ordinal variables, aimed at detecting changes in location/mean [67, 102,
173, 291], scale/variance [55], and distribution [86]. Some of the proposals apply multiple
imputation techniques [6, 7, 281], but they often require large sample sizes for being correct.
Other proposals rely on specific model assumptions such as symmetry or bivariate normality
[67, 235, 291], but they exhibit a non-robust behavior against deviations. The common
approach recently adopted in literature results from combining in a non parametric approach
separate test statistics for the paired and unpaired observations, by using either weighted test
statistics [12, 77, 86, 136, 173, 236], a multiplication combination test [11], or combined
p-values [13, 143, 221, 294]

The recent scientific and technological progress in measuring biological processes has en-
abled monitoring of patient’s condition with a growing level of detail and complexity. Thus,
beyond the ongoing identification of univariate biomarkers, new complex data structures are be-
ing incorporated into the analysis, as is the case of population ages and mortality distributions
[32], distributions of functional connectivity patterns in the brain [62, 215], post-intracerebral
hemorrhage hematoma densities [213], graph-based representations of connectivity and func-
tional brain activity [264], and glucose distributions from continuous monitoring [178].

The aim of the present chapter is to provide a statistical test for matched pairs with missing
data which does not require any parametric assumptions and uses all observations available.
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We propose new maximum mean discrepancy (MMD) estimators to achieve this aim [97].
The energy distance and the MMD are two equivalent statistical metrics with the ability to
detect distributional differences between random samples [247, 260]. Moreover, MMD-based
statistics can also be seen as a natural generalization of the ANOVA test to cases where
the distributions are not necessary Gaussian [228]. MMD overcomes Gaussian assumptions
by representing distances between distributions as distances between mean embeddings in a
reproducing kernel Hilbert space (RKHS). MMD has been successfully applied to independence
testing [261], two-sample testing [97], survival analysis [75], or clustering analysis [80].

Besides conducting an extensive simulation study, the new testing procedures are applied to
the AEGIS diabetes dataset, resulting from a longitudinal population-based study [101]. This
dataset includes data from continuous glucose monitoring (CGM), performed at the beginning
of the study and five years later. Let us recall that there is a substantial loss to follow up. A
distributional representation of glucose concentration summarizes several days of monitoring,
providing a personal signature of glucose homeostasis [178]. The present approach allows us
to address some interesting questions related to the possible changes in CGM profile with
ageing, or the relation between obesity and diabetes. Furthermore, an adaption of a previous
clustering method to matched pairs with missing data allows us to find out specific patient
phenotypes, with potential applications in patient stratification [80].

The rest of this chapter is outlined as follows. In Section 6.1 we provide a motivation
for the new methods from the distributional representation of CGM data. In Section 6.2 we
define the problem in general terms and introduce the statistical model based on the MMD
metric, providing weighted test statistics for dealing with missing data under MCAR mechanism
(Section 6.2.1) and under MAR mechanism (Section 6.2.2). A proof presenting theoretical
guarantees of the proposed methods is delivered in the Appendix. In Section 6.2.3 the choice
of kernel functions and corresponding hyperparameters is discussed. Then we present the
results of an extensive simulation study in Section 6.2.4. In Section 6.2.5 a previous clustering
method is adapted to missing data under the MAR mechanism. We present in Section 6.3
some applications of both hypothesis testing and clustering analysis to the AEGIS study, by
exploiting the distributional representation of CGM data. We close with a discussion in Section
6.4.

6.1 Motivation from glucodensity representation

Figure 6.1 contains an example of the glucodensity representation for the continuous glucose
monitoring performed on two different individuals, both in a prediabetes and later diabetes
status. This figure immediately poses the challenge of defining new statistical methods to
compare two sets of glucodensity measurements to assess whether some population statistics
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differ. This can be useful to compare the glucose homeostasis before and after a treatment,
or after a certain period of time.

Figure 6.1: Glucodensity changes in prediabetic patients (blue) who develope diabetes after 5 years (red).

6.2 Hypotheses and statistics

Let 𝒟 be a separable Hilbert space and (𝑋1,𝑋2)𝑇 ∈ 𝒟2 a random pair representing two
different measurements on a subject at two different time points. Let us consider a general
matched pairs design given by i.i.d. random variables

X𝑗 = (𝑋1𝑗
𝑋2𝑗

), 𝑗 = 1, ...,𝑛. (6.1)

𝑋1𝑗 can represent the glucodensity at the beginning of a certain study for the j-th patient,
and 𝑋2𝑗 the glucodensity at the end of the study for the same patient. Let assume that both
{𝑋1𝑗}𝑛

𝑗=1 and {𝑋2𝑗}𝑛
𝑗=1 are drawn from probability measures 𝑃1 and 𝑃2, respectively. We are

interested in testing the equality of distributions as null hypothesis 𝐻0 ∶ {𝑃1 = 𝑃2} against the
alternative 𝐻1 ∶ {𝑃1 ≠ 𝑃2}, i.e., to check whether there are systematical differences between
the outcomes at different time points.
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6.2.1 Missing Completely at Random (MCAR) mechanism

When some of the elements of the matched pairs are missing completely at random the
available data can be sorted as:

X = (𝑋11
𝑋21

)⋯(𝑋1𝑛1

𝑋2𝑛1

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

Complete data Xcom

𝑛1 observations

(𝑋1𝑛1+1

− )⋯(𝑋1𝑛1+𝑛2

− )
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Incomplete data Xinc
1𝑛2 observations

( −
𝑋2𝑛1+𝑛2+1

)⋯( −
𝑋2𝑛1+𝑛2+𝑛3

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Incomplete data Xinc
2𝑛3 observations

,

(6.2)
where 𝑛 = 𝑛1 +𝑛2 +𝑛3. For ease of notation, we denote Xcom

1 = {𝑋1𝑗}𝑛1
𝑗=1, Xcom

2 = {𝑋2𝑗}𝑛1
𝑗=1,

Xinc
1 = {𝑋1𝑗}𝑛1+𝑛2

𝑗=𝑛1+1 and Xinc
2 = {𝑋2𝑗}𝑛

𝑗=𝑛1+𝑛2+1. Additionally, a missingness status variable
can be defined 𝛿𝑖𝑗 ∈ {0,1}, 𝑖 = 1,2, 𝑗 = 1,…,𝑛, so 𝛿𝑖𝑗 = 1 if the element is missing and
𝛿𝑖𝑗 = 0 otherwise.

A natural way of testing the equality of distributions is measuring the distance between
them. We propose two test statistics: 𝒯1 for the complete data sets Xcom

1 and Xcom
2 , and

𝒯2 for the incomplete data sets Xinc
1 and Xinc

2 , which are then combined in one weighted test
statistic:

𝒯(X) = 𝛼𝒯1(Xcom
1 ,Xcom

2 )+(1−𝛼)𝒯2(Xinc
1 ,Xinc

2 ), (6.3)

for some weighting parameter 𝛼 ∈ [0,1]. Both 𝒯1 and 𝒯2 are based on the maximum mean
discrepancy (MMD) to measure the empirical distance between the marginal distributions
[97]. Let 𝑘 ∶ 𝒟 × 𝒟 → ℝ+ be a symmetric definite positive kernel. The existence of a dot
product space ℋ and feature mapping 𝜙 ∶ 𝒟 → ℋ is guaranteed, such that 𝑘(𝑋,𝑋′) =
⟨𝜙(𝑋),𝜙(𝑋′)⟩ℋ. Kernel mean embedding results from extending the mapping 𝜙 to the
space of probability distributions by representing each distribution as a mean function 𝜙(𝐹) =
E[𝑘(⋅,𝑋)] = ∫𝒟 𝑘(⋅,𝑋)𝑑𝑃 . The kernel mean embedding can be empirically estimated by

̃𝜙 = 1
𝑛 ∑𝑛

𝑖=1 𝑘(⋅,𝑋). Then, we can measure the distance between random samples as follows:
𝑛1

𝑛1 +𝑛2 +𝑛3
𝒯1 (Xcom

1 ,Xcom
2 ) = ∥ ̃𝜙com

1 − ̃𝜙com
2 ∥

2

ℋ

= ⟨ 1
𝑛1

𝑛1

∑
𝑖=1

𝑘(⋅,𝑋1𝑖)− 1
𝑛1

𝑛1

∑
𝑖=1

𝑘(⋅,𝑋2𝑖) , 1
𝑛1

𝑛1

∑
𝑖=1

𝑘(⋅,𝑋1𝑖)− 1
𝑛1

𝑛1

∑
𝑖=1

𝑘(⋅,𝑋2𝑖)⟩

= 1
𝑛2

1

𝑛1

∑
𝑖=1

𝑛1

∑
𝑗=1

𝑘(𝑋1𝑖,𝑋1𝑗)+ 1
𝑛2

1

𝑛1

∑
𝑖=1

𝑛1

∑
𝑗=1

𝑘(𝑋2𝑖,𝑋2𝑗)− 2
𝑛2

1

𝑛1

∑
𝑖=1

𝑛1

∑
𝑗=1

𝑘(𝑋1𝑖,𝑋2𝑗) .

Analogously,
𝑛2 +𝑛3

𝑛1 +𝑛2 +𝑛3
𝒯2 (Xinc

1 ,Xinc
2 ) = ∥ ̃𝜙inc

1 − ̃𝜙inc
2 ∥

2

ℋ

= 1
𝑛2

2

𝑛1+𝑛2

∑
𝑖=𝑛1+1

𝑛1+𝑛2

∑
𝑗=𝑛1+1

𝑘(𝑋1𝑖,𝑋1𝑗)+ 1
𝑛2

3

𝑛1+𝑛2+𝑛3

∑
𝑖=𝑛1+𝑛2+1

𝑛1+𝑛2+𝑛3

∑
𝑗=𝑛1+𝑛2+1

𝑘(𝑋2𝑖,𝑋2𝑗)
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− 2
𝑛2𝑛3

𝑛1+𝑛2

∑
𝑖=𝑛1+1

𝑛1+𝑛2+𝑛3

∑
𝑗=𝑛1+𝑛2+1

𝑘(𝑋1𝑖,𝑋2𝑗) .

Importantly, for the class of characteristic kernels, the embeddings are injective, and hence
‖𝑃1 −𝑃2‖2

ℋ = 0, if and only if 𝑃1 = 𝑃2 [255].
In order to calibrate the tests under the null hypothesis it should be pointed out that both

𝒯1 and 𝒯2 do not follow a free asymptotic distribution. The empirical estimate of MMD
is a one-sample V-statistic and hence asymptotic distribution is difficult to obtain due to the
degeneracy of the V-statistic, which incorporates a correlation structure for the complete paired
observations Xcom [97]. To address this issue we propose a wild bootstrap procedure for the
first 𝑛1 observations, while the remaining 𝑛2 + 𝑛3 observations can be properly handled by
permutations methods, that can achieve an exact type I error control. For each 𝑏 = 1,…,𝐵,
it proceeds as follows:

1. For the first 𝑛1 complete paired observations, take random weights 𝑤𝑏
𝑖 , 𝑖 = 1,…,𝑛1,

with

𝑤𝑏
𝑖 = 𝑒−1/𝑙𝑛1 𝑤𝑏

𝑖−1 +√1−𝑒−2/𝑙𝑛1 𝜖𝑖,
where 𝑤𝑏

0, 𝜖1,⋯,𝜖𝑛1
are independent standard normal variables, and 𝑙𝑛1

is a boot-
strap parameter used to mimic the dependence structure, such that 𝑙𝑛1

= 𝑜(𝑛1) but
lim𝑛1→∞ 𝑙𝑛1

= ∞. Then,

𝒯𝑏
1 (Xcom

1 ,Xcom
2 ) = 1

𝑛2
1

𝑛1

∑
𝑖=1

𝑛1

∑
𝑗=1

𝑤𝑏
𝑖𝑤𝑏

𝑗 [𝑘(𝑋1𝑖,𝑋1𝑗)+𝑘(𝑋2𝑖,𝑋2𝑗)−2𝑘(𝑋1𝑖,𝑋2𝑗)] .

2. The remaining 𝑛2 +𝑛3 observations belonging to Xinc
1 and Xinc

2 are randomly permuted,
i.e. each observation is randomly assigned to new Xinc(𝜋)

1 or Xinc(𝜋)
2 sets, resulting in

new 𝒯𝑏
2(Xinc(𝜋)

1 ,Xinc(𝜋)
2 ).

3. Then, calculate

𝒯𝑏 = 𝛼𝒯𝑏
1 (Xcom

1 ,Xcom
2 )+(1−𝛼)𝒯𝑏

2 (Xinc(𝜋)
1 ,Xinc(𝜋)

2 )

Finally, return 𝑝-value= 1
𝐵 ∑𝐵

𝑏=1 1{𝒯𝑏 ≥ 𝒯(X)}.

Theorem 5. Let Xcom = {(𝑋1𝑖,𝑋2𝑖)
𝑇 }𝑛1

𝑖=1 be a set of i.i.d. complete paired samples, and
Xinc

1 = {𝑋1𝑖}𝑛1+𝑛2
𝑖=𝑛1+1, and Xinc

2 = {𝑋2𝑖}𝑛1+𝑛2+𝑛3
𝑖=𝑛1+𝑛2+1 two sets of i.i.d. incomplete paired samples.

Let suppose that 𝑛1/(𝑛1 +𝑛2 +𝑛3) → 𝜅1 ∈ (0,1) and 𝑛2/(𝑛1 +𝑛2 +𝑛3) → 𝜅2 ∈ (0,1) as
𝑛1,𝑛2,𝑛3 → ∞; then, the test statistic given by (6.3) is consistent against the alternative
𝐻1 ∶ {𝑃1 ≠ 𝑃2}; we can detect a difference in distribution with the sample size growing to
infinity. Furthermore, the calibration strategy described above is also consistent in the same
sense.
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A proof is provided in the Appendix.

6.2.2 Missing at Random (MAR) mechanism

We assume a MAR mechanism where the probability of being missing on the second time
point is based on the corresponding value on the first time point, which can be described as
follows

X = (𝑋11
𝑋21

)⋯(𝑋1𝑛1

𝑋2𝑛1

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

Complete data Xcom

𝑛1 observations

(𝑋1𝑛1+1
− )⋯(𝑋1𝑛1+𝑛2

− )
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Incomplete data Xinc
1𝑛2 observations

, (6.4)

where 𝑛 = 𝑛1 + 𝑛2. We denote by 𝜋(⋅) = 𝑃 (𝛿2𝑗 = 1|𝑋1𝑗 = ⋅), the conditional probability
that the observation 𝑋2𝑗 will be missing given 𝑋1𝑗. A natural way to incorporate the missing
data mechanism in the test statistic is to associate weight 𝜔𝑗 with the 𝑗-th observation via an
inverse probability weighting (IPW) estimator [272], given by

𝜔𝑗 = 𝛿2𝑗
𝑛𝜋(𝑋1𝑗)

, 𝑗 = 1,…,𝑛. (6.5)

We define the normalized weight of 𝜔𝑗 as �̂�𝑗 = 𝜔𝑗/∑𝑛
𝑗=1 𝜔𝑗, 𝑗 = 1, ...,𝑛. In practice, we

estimate the probability 𝜋(⋅) by means of a binary classification algorithm, and denote by �̃�𝑗
the ensuing estimated normalized weight. We propose the following test statistic

𝒯(X) = 𝒯(Xcom
1 ,Xcom

2 ) = ∥ ̃𝜙com
1 − ̃𝜙com

2 ∥
2

ℋ

= ⟨
𝑛1

∑
𝑗=1

�̃�𝑗𝑘(⋅,𝑋1𝑗)−
𝑛1

∑
𝑗=1

�̃�𝑗𝑘(⋅,𝑋2𝑗) ,
𝑛1

∑
𝑗=1

�̃�𝑗𝑘(⋅,𝑋1𝑗)−
𝑛1

∑
𝑗=1

�̃�𝑗𝑘(⋅,𝑋2𝑗)⟩

=
𝑛1

∑
𝑖=1

𝑛1

∑
𝑗=1

�̃�𝑖�̃�𝑗𝑘(𝑋1𝑖,𝑋2𝑗)+
𝑛1

∑
𝑖=1

𝑛1

∑
𝑗=1

�̃�𝑖�̃�𝑗𝑘(𝑋1𝑖,𝑋2𝑗)−2
𝑛1

∑
𝑖=1

𝑛1

∑
𝑗=1

�̃�𝑖�̃�𝑗𝑘(𝑋1𝑖,𝑋2𝑗) .

In this scenario, we propose to calibrate the test under the null hypothesis in an analogous
manner to the MCAR mechanism. Specifically, for each bootstrap iteration we propose to use
the following estimator

𝒯𝑏 (X) = 1
𝑛2

1

𝑛1

∑
𝑖=1

𝑛1

∑
𝑗=1

𝑤𝑏
𝑖𝑤𝑏

𝑗�̃�𝑖�̃�𝑗 [𝑘(𝑋1𝑖,𝑋1𝑗)+𝑘(𝑋2𝑖,𝑋2𝑗)−2𝑘(𝑋1𝑖,𝑋2𝑗)] .

6.2.3 Kernel choice and kernel hyperparameters

We propose using the Gaussian kernel 𝑘(𝑋,𝑌 ) = 𝑒−‖𝑋−𝑌 ‖2/𝜎 for 𝑋,𝑌 ∈ ℝ, and 𝑘(𝑋,𝑌 ) =
𝑒−𝑑2

𝒲2(𝑋,𝑌 )/𝜎 for 𝑋,𝑌 ∈ 𝒟, where 𝜎 > 0. Importantly, the Gaussian kernel is a character-
istic kernel, and thus we can detect asymptotically any difference in distribution. The kernel
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bandwidth 𝜎 was estimated through the median heuristic 𝜎2 = 𝑚𝑒𝑑𝑖𝑎𝑛{||𝑋𝑖 − 𝑋𝑗||2 ∶ 1 ≤
𝑖 < 𝑗 ≤ 𝑛}.

6.2.4 Simulation study

We investigate the finite sample behavior of the above methods in extensive simulations. A
total of 2,000 simulations were performed for both MCAR and MAR scenarios. Methods
were examined with respect to their Type-I error rate control at level 5%. A total of 2,000
bootstrap runs and permutation replicas were held. The wild bootstrap parameter 𝑙𝑛1

was
selected according to 𝑙𝑛1

= √𝑛1.
The observations were generated by mimicking the sort of distributional representations

commonly obtained from CGM data. Since the 2-Wasserstein distance depends only on
quantile functions, observations were sampled from the following location-scale model on
quantile functions [213]: let 𝑍 ∈ ℝ𝑝 be a random vector of predictor variables and let
𝑄0 be a fixed quantile function; here we considered the age as the only predictor variable
and fixed 𝑄0 (𝑡) = 70 + 240𝑡 in the range of glucose values expected from type-2 diabetes;
let 𝜂 (𝑧) = 𝑎0 + 𝑎1𝑧1 and 𝜏 (𝑧) = 𝑏0 + 𝑏1𝑧1 be the location and scale components of the
model, respectively, where 𝑎 = (𝑎0,𝑎1) and 𝑏 = (𝑏0, 𝑏1) are the corresponding coefficients
and we assume that 𝜏 (𝑍) > 0 almost surely; let 𝑉1 and 𝑉2 two random variables that satisfy
𝐸 (𝑉1|𝑍) = 0,𝐸 (𝑉2|𝑍) = 1, and 𝑉2 > 0 almost surely; the model is given by

𝑄(𝑡) = 𝑉1 +𝑉2𝜂 (𝑍)+𝑉2𝜏 (𝑍)𝑄0 (𝑡) , (6.6)

MCAR scenario

We fixed 𝑛1 = 𝑛2 = 𝑛3 = 150. In order to introduce correlation structure into the quantile
functions for Xcom

1 and Xcom
2 , we sampled variables 𝑉 ∗

1 and 𝑉 ∗
2 from bivariate uniform distribu-

tions with correlation given by 𝜌 ∈ {0.00,0.20,0.40,0.60,0.80}. The location-scale model is
given by 𝑉1 = −20+40𝑉 ∗

1 and 𝑉2 = 0.8+0.4𝑉 ∗
2 , and fixed parameters 𝑎0 = 𝑏0 = 0, 𝑎1 = 0.3

and 𝑏1 = 0.005. The observations for Xinc
1 and Xinc

2 were i.i.d. generated and then we applied
the same location-scale model than before. A total of 2,000 simulations were performed as-
suming that the age was distributed as 𝑍1,𝑍2 ∼ 𝒰[30,50] both at the beginning and at the
end of the study, that is, for all the variables in X. Another 2,000 simulations were performed
assuming that the age was distributed as 𝑍1 ∼ 𝒰[30,50] at the beginning of the study, that is,
for all the variables in Xcom

1 and Xinc
1 , and was distributed as 𝑍2 ∼ 𝒰[50,70] at the end of the

study, that is, for all the variables in Xcom
2 and Xinc

2 .
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MAR scenario

We fixed 𝑛 = 300. The missing mechanism is given by 𝑃 (𝛿2𝑗 = 1|𝑌1,𝑌2) = (1 +
𝑒−1+𝑌1+𝑌2)−1, 𝑗 = 1,…,𝑛, where 𝑌1,𝑌2 ∼ 𝒩(0,1) are two independent random variables.
We introduced correlation structure into the quantile functions for Xcom

1 and Xcom
2 as we did

in the MCAR scenario. We used the same location-scale model. The same methodology as
in the MCAR scenario was applied for sampling the age.

Results

Table 6.1 shows the results of the simulation study. We can see that calibration under the
null hypothesis provides acceptable results. However, some biases under the two missingness
mechanisms can be noted. As long as the difference between the sample data and the null
hypothesis increases, the test rejects more frequently the null hypothesis.

𝜌 𝑍1 𝑍2 MCAR MAR
0.00 𝒰[30,50] 𝒰[30,50] 0.03 0.03
0.20 𝒰[30,50] 𝒰[30,50] 0.04 0.03
0.40 𝒰[30,50] 𝒰[30,50] 0.05 0.03
0.60 𝒰[30,50] 𝒰[30,50] 0.03 0.04
0.80 𝒰[30,50] 𝒰[30,50] 0.04 0.04
0.00 𝒰[30,50] 𝒰[50,70] 0.98 0.88
0.20 𝒰[30,50] 𝒰[50,70] 0.99 0.90
0.40 𝒰[30,50] 𝒰[50,70] 0.99 0.91
0.60 𝒰[30,50] 𝒰[50,70] 0.99 0.93
0.80 𝒰[30,50] 𝒰[50,70] 0.99 0.96

Table 6.1: The proportion of simulations rejecting the null hypothesis under MCAR and MAR mechanisms is
shown.

6.2.5 Paired missing data clustering

Let X = {(𝑋1𝑗,𝑋2𝑗, 𝛿2𝑗)}𝑛
𝑗=1, be a dataset of i.i.d. random variables obtained under a

MAR mechanism, where we denote again by 𝜋(⋅) = 𝑃 (𝛿2𝑗 = 1|𝑋1𝑗 = ⋅), the conditional
probability that the observation 𝑋2𝑗 will be missing given 𝑋1𝑗. We associate a weight �̃�𝑗
with the 𝑗-th observation via an IPW estimator, by applying equation (6.5). Let X𝑗 =
(𝑋1𝑗,𝑋2𝑗)𝑇 , Xℎ = (𝑋1ℎ,𝑋2ℎ)𝑇 ∈ Xcom be two different complete paired samples. We
define the following bivariate kernel 𝑘(X𝑗,Xℎ) = 𝑒−(𝑑2

𝒲2(𝑋1𝑗,𝑋1ℎ)+𝑑2
𝒲2(𝑋2𝑗,𝑋2ℎ))/𝜎, where

𝜎2 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑑2
𝒲2

(𝑋1𝑗,𝑋1ℎ)+𝑑2
𝒲2

(𝑋2𝑗,𝑋2ℎ) ∶ 1 ≤ 𝑗 < ℎ ≤ 𝑛}.
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Consider a disjoint partition Xcom = ⋃𝑘
𝑖=1 𝐶𝑖, with 𝐶𝑖 ∩ 𝐶𝑙 = ∅, for all 𝑖 ≠ 𝑙. Following

[80], we aim to build a new partition ̃𝐶1,…, ̃𝐶𝑘 by maximizing an objective function given by

( ̃𝐶1,…, ̃𝐶𝑘) = arg max
(𝐶1,…,𝐶𝑘)

𝑘
∑
𝑖=1

1
𝑣𝑖

∑
X𝑗,Xℎ∈𝐶𝑖

�̃�𝑗�̃�ℎ𝑘(X𝑗,Xℎ) , (6.7)

where 𝑣𝑖 = ∑X𝑗∈𝐶𝑖
�̃�𝑗. We can iteratively solve this optimization problem by mea-

suring the impact of moving each observation to another cluster. Let denote by
𝑆𝑖 = ∑X𝑗,Xℎ∈𝐶𝑖

�̃�𝑗�̃�ℎ𝑘(X𝑗,Xℎ) the internal similarity of cluster 𝐶𝑖, and 𝑆𝑖 (X𝑗) =
∑Xℎ∈𝐶𝑖

�̃�𝑗�̃�ℎ𝑘(X𝑗,Xℎ) the internal similarity with respect to the observation X𝑗. By
moving the observation X𝑗 from cluster 𝐶𝑖 to 𝐶𝑙 we change the result of the objective
function by

Δ𝑆𝑖→𝑙 (X𝑗) = 𝑆+
𝑙

𝑣𝑙 +�̃�𝑗
+ 𝑆−

𝑖
𝑣𝑖 −�̃�𝑗

− 𝑆𝑙
𝑣𝑙

− 𝑆𝑖
𝑣𝑖

, (6.8)

where 𝑆+
𝑙 = 𝑆𝑙 + 2𝑆𝑙 (X𝑗) + �̃�𝑗�̃�𝑗𝑘(X𝑗,X𝑗) is the internal similarity of the new cluster 𝐶𝑙

after the addition of the observation X𝑗, and 𝑆−
𝑖 = 𝑆𝑖 − 2𝑆𝑖 (X𝑗) + �̃�𝑗�̃�𝑗𝑘(X𝑗,X𝑗) is the

internal similarity of the new cluster 𝐶𝑖 after removing the observation X𝑗. Ultimately, we
compute 𝑖∗ = argmax𝑙=1…,𝑘|𝑙≠𝑖 Δ𝑄𝑖→𝑙 (X𝑗), and if Δ𝑆𝑖→𝑖∗(X𝑗) > 0 we move X𝑗 to cluster
𝐶𝑖∗ , otherwise we keep it in 𝐶𝑖.

6.3 Illustrative data analysis

As a practical application, we consider again the AEGIS study, aimed at analyzing the evolution
of different clinical biomarkers related to circulating glucose in a initial random sample of 1516
patients. In addition, a CGM are performed every five years on a randomized subset of patients.
Specifically, at the beginning of the study, 581 participants were randomly selected for wearing
a CGM device for 3-7 days. Out of the total of 581 participants, 68 were diagnosed with
diabetes before the study and 22 during the first five years. Table 3.1 shows the baseline
characteristics of these 581 patients grouped by sex. After a five-year follow-up, only 161
participants agreed to perform a second glucose monitoring.

The AEGIS study raises some interesting questions that can be addressed with the present
approach.

Changes in CGM profile with ageing. Some recent works explore the important role of
ageing in glucose dysregulation, and the difficulties inherent in maintaining glucose homeostasis
as close to normal as possible [42]. The proposed 𝒯-test gives us the opportunity to examine
if there exist statistical differences after five years at a distributional level. We estimate
the missing data mechanism by means of logistic regression, using as predictors the age and
glycaemic status (normoglycemic, prediabetes or type-2 diabetes) at the beginning of the study
and sex of each participant. We applied the 𝒯-test considering glucodensities at both time
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points to check the null hypothesis of equality of distributions. We obtained a p-value =
0.048, identifying significant differences at both time points.

Obesity in diabetes. Obesity is a critical risk factor for the development of type-2
diabetes [148]. In order to further characterize this risk subpopulation, we analyzed those
normoglycemic subjects with overweight in the AEGIS dataset, by examining again if there
exist statistical differences after five years at a distributional level. We applied the 𝒯-test to
check the null hypothesis in the following two subgroups of the normoglycemic population: i)
individuals with a body mass index less than 22𝐾𝑔/𝑚2 (low body mass index); ii) individuals
with a body mass index higher than 22𝐾𝑔/𝑚2 (overweight and obesity). In the first case
we obtained a 𝑝-value = 0.36, providing no evidence against the null hypothesis, while in the
second case we obtained a 𝑝-value = 0.056, which can be interpreted as borderline. Figure
6.2 shows the difference between the quantile curves in these two subgroups.
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Figure 6.2: Difference between the quantile curves (before and after) in normoglycemic individuals according
to body mass status. The dispersion is more significant for the overweight and obesity subgroup, consistent
with an increasing glycemic risk.

Patient stratification. Clustering analysis can be a useful tool for providing distinctive
and meaningful patient phenotypes and, consequently, in guiding patient stratification for
delivering more personalized care [138]. We applied a clustering analysis to those individuals
for whom CGM has been performed at both time points. Figure 6.3 shows the resulting
two clusters. The individuals in cluster 1 do not present significant changes between both
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time points, while some significant differences are noted in cluster 2. Table 6.2 shows the
baseline clinical characteristics of each cluster. Both groups of individuals have important
differences in insulin resistance and glycaemic variability metrics. Importantly, in cluster 2 the
average glycaemic characteristics in terms of glycated hemoglobin and fasting plasma glucose
are consistent with prediabetes (5.7% ≤ A1c ≤ 6.4% or 100 mg/dl ≤ FPG ≤ 125 mg/dl
according to American Diabetes Association guidelines). In contrast, cluster 1 is composed of
normoglycemic individuals. Ultimately, clustering results effectively correlates with a significant
change in the glycaemic status.

Finally, we performed stepwise logistic regression with forward selection to identify which
baseline characteristics independently predicted the corresponding group, resulting age, FPG
and CONGA. We checked the null hypothesis that each coefficient is equal to zero. Table 6.3
shows the results of this analysis, identifying FPG and CONGA as the subset of characteristics
that best predicted the outcome.
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Figure 6.3: Resulting clusters are shown. Both quantile curves at the beginning of the study (blue) and five
years later (orange) are shown for each cluster.
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cluster 1 cluster 2
Age (years decimal) 43.66±12.80 53.11±12.34
A1c, % 5.27 ±0.25 6.20±1.07
FPG, mg/dl 84.83±9.93 108.39±32.61
HOMA-IR, mg/dl.𝜇 IU/ml 2.28±1.16 4.97 ±8.50
BMI, kg/m2 27.09±4.87 29.29±4.83
Waist, cm 87.29±13.60 95.18±14.43
CONGA, mg/dl 0.75±0.20 1.21±0.52
MAGE, mg/dl 26.16±7.16 45.80±24.58
MODD 0.66±0.18 1.05±0.48

Table 6.2: Clinical baseline characteristics for the individuals belonging to each cluster. Mean and standard
deviation are shown.

Coefficients
(Intercept) −10.01 (1.82)∗∗∗

age 0.04 (0.02)
FPG 0.05 (0.02)∗∗

CONGA 3.60 (0.91)∗∗∗

Quality measures
AIC 140.37
BIC 152.69
Log Likelihood −66.18
Deviance 132.37
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01

Table 6.3: Coefficients obtained from logistic regression. Results from some different model selection criteria
for the fitted model are shown.

6.4 Discussion

The analysis of paired data with missing values is becoming critical in longitudinal studies,
particularly when comparing the participants’ condition across different time points. The
available methods in the literature are not applicable when data adopt non-vectorial represen-
tations, better suited to capture functional, structural or other complex forms of information
increasingly common in current medicine. To overcome this limitation we have provided novel
methods for hypothesis testing in the presence of complex paired missing data under both
MCAR and MAR mechanisms. They are not based on any parametric assumption and use all
observations within the matched pairs design. The methods are based on the notion of maxi-
mum mean discrepancy, a metric between mean embeddings in a RKHS that can be applied to
both Euclidean and non-Euclidean data, with different structured, functional and distributional
representations, by an appropriate design of the reproducing kernel. Specifically, the space of
probability density functions has been used throughout the text to test the feasibility of this
approach.
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The asymptotic validity of the methods was proven and can be found in the appendix. In an
extensive simulation study, the type-I error rate control of the tests has been examined under
both MCAR and MAR mechanisms, performing well with different correlation coefficients. The
sample size affects the behavior of the tests, since inference in a functional space customarily
demands more data than in a vectorial space. Hence a worsening of performance is expected
for very small sample sizes.

The application of these methods to a real longitudinal, population-based, diabetes study
has highlighted some of their capabilities and advantages to explore new clinical findings, by
exploiting monitoring information along the continuous range of glucose values. It should be
emphasized the robustness of the results, even in an scenario with an important proportion
of missing data. Furthermore, a complementary clustering analysis has revealed the effective-
ness of this approach to provide an early risk identification with the potential to enable a
personalized strategy. This chapter thus adds to recent debate on the identification of novel
subgroups of diabetes for a proper stratification of treatment and progression to complica-
tions [5, 54, 109], here emphasizing the crucial role of continuous glucose monitoring for this
purpose.
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7 Conclusions

The present work proposes a new representation for time series data in metric spaces and the
corresponding descriptive and predictive methods stemming from the confluence of statistics
and machine learning research. The distributional nature of this new representation allows
us to go beyond traditional compositional representations by using the full spectrum of time
series values across a given period of time. The proposed methodology finds a direct ap-
plication in biosensor data analysis and possesses the potential to contribute to support the
sort of reasoning that characterizes the personalized medicine paradigm. The effectiveness
of these methods has been tested in the domains of diabetes and physical activity, for which
we show their advantages in different predictive tasks as compared to existing data analysis
methodology.

The new distributional representation is introduced in Chapter 3 for a continuous stochastic
process, with an application to CGM data in the form of a new statistical object which we
call glucodensity [178]. The intuitive idea behind glucodensity representation is to deliver the
density function of the CGM time series, which takes values in a non-linear space. Consequently,
a list of non-linear methods based on distances and kernels is provided to perform hypothesis
testing, cluster analysis, regression modeling, and to overcome the technical difficulties derived
from the unavailability of the rich properties given by Euclidean geometries.

The methods provided avoid technical difficulties that appear in compositional data -as the
problems with zeros- and that naturally emerge in biosensor data analysis with compositional
metrics. Importantly, these methods work in real-world scenarios under minimal theoretical
conditions. In particular, for the methods based on kernels and energy distance, only the
existence of moments of second order is required. On the other hand, Hölder and Sobolev
regularity conditions are required in the case of smoothing methods such as Nadaraya-Watson
kernel regression estimators, which are often held by biosensor data.

The validation of such methods is conducted in the diabetes domain even though they
are also deemed applicable to other domains (ECG, fMRI, ...). In the case of diabetes, the
results on the AEGIS study clearly show that glucodensity captures more information about
the glucose homeostasis signature than traditional diabetes biomarkers. An essential point of
the validation is that we use a random sample drawn from the general population, including
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normoglycaemic, prediabetes, and diabetes individuals. In future work, an extension of the
present framework can be provided as a multilevel distributional representation for capturing
information about different resolution scales. In addition, we are also interested in the notion of
multidimensional glucodensity, in which we simultaneously analyze the glucose concentration,
speed, and acceleration in a tridimensional density function. These new representations would
minimize the loss of information due to the current removal of the order of events in the
representation. In the case of multidimensional glucodensity, we can use the methods developed
here. However, we must resort to computational intensive numerical methods to calculate the
distances between densities based on optimal transportation theory [218].

Chapter 4 introduces a distributional representation for certain mixed stochastic processes,
motivated by the need for analysing the physical activity recorded by an accelerometer device in
the NHANES 2003-2006 cohort. To this end, we propose an extension of the Nadaraya-Watson
kernel estimator and of the kernel ridge regression method for complex survey designs. The
analysis of the NHANES dataset shows the advantages of the distributional representations over
existing accelerometer summary measures in predicting different clinical outcomes, including
long-term survival. One of the advantages of our validation process is the very design of
the NHANES dataset. Still, the use of more modern accelerometer devices, enabling the
recording at a high level of resolution of the amount and intensity of physical activity, made
us feel confident of achieving better predictive results. Therefore, we used the prior methods
in the NHANES 2011-2014 cohort to define clinical physical activity phenotypes in the elderly
American population, and evaluated their clinical meaningfulness in terms of survival and
mortality of the patients [174]. The results show that the new phenotypes of patients possess
a high statistical association with survival and mortality, which can be stronger than that
shown by the variable age. From a clinical point of view, these phenotypes are promising tools
to improve the clinical interventions according to the principles of personalized medicine.

The following chapters focus on developing new statistical methods for statistical complex
objects in longitudinal studies suffering from missing data.

Chapter 5 introduces a new framework for coping with missing data in different predictive
tasks under the RKHS paradigm [175]. New methods are provided for independence testing,
variable selection and uncertainty quantification. Furthermore, we adapt the notions of dis-
tance correlation and Hilbert Schmidt independence criterion, two measures of dependence
between two paired random vectors, for missing responses. Moreover, we propose a new
calibration test strategy based on Efron’s bootstrap that works in non-Euclidean spaces and
overcomes the problems and limitations cautioned by Arcones and Gine for U- or V-statistics
[15]. The new methods are motivated by the opportunity of including the glucodensity as
a predictor variable for modeling long-term glucose changes. For independence testing, we
consider a proper mapping based on the 2-Wasserstein distance after embedding the data in a
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proper quantile space endowed with a Hilbertian structure. We also adapt to the missing data
setting a previous variable selection method based on the gradient of the conditional mean re-
gression function. Finally, we extend the ideas of conformal inference to missing responses and
heteroscedastic noise, aimed at addressing the important level of uncertainty typically present
in biomedical applications. As a result, we supply a prediction interval for the response. The
results obtained after applying these techniques to model long-term glucose changes prove
the advantages of distributional representations with regard to the state-of-the-art diabetes
diagnosis and control biomarkers.

On the other hand, a closer inspection of the level of uncertainty in the prediction results
can provide a crucial information for clinical management. Thus, a phenotypically characteri-
zation of those subpopulations for which the model provides an unreliable prediction may be
used to guide a specific approach, built on new assumptions, measurement procedures and
interventions. As we have highlighted in Chapter 5 we can then promote a more personalized
follow-up engaged with precision medicine principles.

Chapter 6 is motivated by the need to assess the possible changes in distributional rep-
resentations from the same subjects under two different conditions, often at two temporal
points, for example, before and after administering a treatment. Besides, it is assumed the
general setting of longitudinal studies where there is a loss to follow-up. We propose new
estimators of the maximum mean discrepancy to handle complex matched pairs with missing
data. These estimators can detect differences in data distributions under different missing-
ness mechanisms, MCAR and MAR. New calibration test strategies combining permutation
and wild bootstrap are provided in order to incorporate the correlation between two temporal
points of the repeated measure.

CGM data from the AEGIS study are used to illustrate the application of this approach. By
employing the new distributional representations new clinical criteria on how glucose changes
vary on the long term can be explored. It should be emphasized the robustness of the results,
even in an scenario with an important proportion of missing data. Furthermore, a complemen-
tary clustering analysis has revealed the effectiveness of this approach to provide an early risk
identification with the potential to enable a personalized strategy.

From a clinical point of view, estimating the distributional representations using more
extensive time periods may be necessary to increase the reliability in the construction of func-
tional profiles. An exciting task for further research would be to evaluate the representation’s
effectiveness with a more considerable number of patients in fundamental medical questions.
For example, with diabetes complications such as retinopathy or to predict the development
of diabetes mellitus in prediabetes populations incorporating CGM information. Answering
these research questions and developing new statistical and machine learning models are the
following steps to guide and address many future challenges of digital medicine.
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Beyond the merits of the methodological contributions, the findings of the present the-
sis strengthen the role of the new biosensors in providing further insight into the onset and
progression of the disease, since they supply a characterization of the underlying pathophysi-
ological processes in increasing levels of resolution, and importantly, in free-living conditions.
Ultimately, the proposed distributional representations and the corresponding methods are in-
tended to reveal new information hidden in monitoring data and, therefore, be useful for prac-
titioners to move from a diseased-centered approach towards a more focused patient-centered
one.

With the aim of facilitating the reproducibility of the results, the proposed core methods
were implemented under Open Source Licenses in the R package Biosensors.usc.

7.1 New opportunities

The validation processes in this work have involved several longitudinal studies, the AEGIS
in the diabetes domain, and the NHANES, in its waves from years 2003 through 2006 and
from years 2011 through 2014, in the physical activity domain. All of them include different
sort of data types and, interestingly, also the continuous recording for several physiological
variables provided by wearable monitoring devices, aimed at making increasingly objective the
characterization of the status and evolution of the participants.

Indeed, according to the availability of new biosensors, a considerable effort to compile
extensive data collections from patients monitored with these technologies is recently arising.
For instance, the UK Biobank, created in 2006, is a large-scale biomedical database providing
global access to medical and genetic data from half a million volunteer participants to improve
our understanding of the prevention, diagnosis and treatment of a wide range of serious and
life-threatening illnesses. On the other hand, in 2016, the National Institutes of Health (NIH),
as part of the Precision Medicine Initiative, has launched the study known as the ”All of Us”
research project [202], intended to involve a cohort of at least one million volunteers from
around the United States over ten years, with a prominent role of digital health technology. In
addition, a multi-institutional research initiative called ”Project Baseline”, aimed at creating a
map of human health, has been enrolling volunteers since June 2017 seeking a ten thousand
sample size [16]. Also, similar initiatives have been promoted in Israel and other first-world
countries. Undoubtedly, these studies will be a key part of the expected progress in extracting
new clinical knowledge from large population cohorts. Regarding the present thesis, the high
sample size of these databases outlines a new opportunity to use distributional representations
with more reliable and conclusive results.

A critical point in the translation of the new findings to the clinical practice is the approval
of digital biomarkers as new measures for the control and diagnosis of diseases and the pre-
scription of clinical treatments by health institutions such as the American Food and Drug

138



Chapter 7. Conclusions

Administration (FDA) and European Medicine Agency (EMA). As an example, in the last few
years, the use of CGM as a confirmatory measure has been validated to assess the efficacy of
diabetes treatments [178], and new additions are expected in the next years.

7.2 Future work

To conclude, we would like to sketch some open problems raised in the course of this work.

• The global Fréchet regression method [214] presents important drawbacks in many real
problems, by solely capturing those linear relations between the predictors and the re-
sponse. New semi-parametric methods can be designed in the event that the response
variable lies in metric spaces as well as new non linear regression methods based on
the RKHS paradigm. As an example, an extension of the popular Wahba’s classical
representer theorem [238] with Euclidean predictors to the setting of separable metric
spaces can be provided as a continuation of the global Fréchet method.

• Wearable technology simultaneously captures several physiological, environmental, and
biomechanical variables. Therefore, a clear research direction is an extension of distribu-
tional representations for multidimensional/multimodal data.

• The estimation of distributional representations in practice is subject to a good deal of
uncertainty. Adapting the methods discussed here to the Bayesian approach can lead
to the quantification of the uncertainty in the response and most parameters in a more
refined way than the frequentist approach. In this sense, the uncertainty quantification
in density estimation and posterior aggregation in the regression model as a plug-in
requires new double complex bootstrap strategies. Bayesian approach easily introduces
aggregations in classical models and similarly, uncertainty quantification in the posterior
distribution can be done.

• Causal inference in digital medicine [1, 232] is one of the most promising research
directions to produce reliable scientific knowledge and improve the dynamic assignment
of optimal treatment. In the setting of complex data, few proposals are available in
the literature [156]. The extension of the methods discussed here to the field of causal
inference is an exciting challenge that should be further addressed. We should advance
that the estimators proposed in Chapters 5 and 6 can be applied to counterfactual
inference because the IPW estimator also works in this setting.
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A Theory of U and V-statistics

This section is based on [137, 244].

A.1 The notions of U-and V-statistics to derive limit distributions

Definition 10. Let 𝑚 ∈ ℕ, 𝑞 ∈ {1,…,𝑚}, 𝒳 a metric space, (Ω,ℱ,ℙ) a probability space,
𝑋 ∶ Ω → 𝒳 a random variable with law 𝑃𝑋 and (𝑋𝑖)𝑖∈ℕ ⊂ 𝒳 of iid copies of 𝑋, i.e, (𝑋𝑖)𝑖∈ℕ

iid∼
𝑃𝑋.

Furthermore, consider the following sets

• 𝐶𝑞 (𝑚) ∶= {(𝑖1,…,𝑖𝑞) ∈ {1,…,𝑚} ∶ 𝑖1 < ⋯ < 𝑖𝑞},

• 𝑀𝑞 (𝑚) ∶= {1,…,𝑚}𝑞 (all mappings).

Observe that ∣𝐶𝑞 (𝑚)∣ = (𝑚
𝑞 ), ∣𝑃𝑞 (𝑚)∣ = 𝑚!

(𝑚−𝑞)! and ∣𝑀𝑞(𝑚)∣ = 𝑚𝑞.
Consider a measurable symmetric function 𝑔 ∶ 𝒳𝑞 → ℝ, and suppose that we are interested

in the statistical functional

𝜃𝑔 ∶= 𝜃𝑔 (𝑃𝑋) ∶= 𝐸 (𝑔(𝑋1,…,𝑋𝑞)) . (A.1)

We define the 𝑈− statistics estimator as follows

𝑈𝑚 (𝑔) ∶= (𝑚
𝑞 )

−1
∑

𝐶𝑞(𝑚)
𝑔(𝑋𝑖1

,…,𝑋𝑖𝑞
), (A.2)

while the 𝑉 − statistics estimator as

𝑉𝑚 (𝑔) ∶= 1
𝑚𝑞 ∑

𝑀𝑞(𝑚)
𝑔(𝑋𝑖1

,…,𝑋𝑖𝑞
). (A.3)

Due to the symmetry of 𝑔, 𝑈𝑚 (𝑔) is unbiased estimators of the statistical functional 𝜃𝑔.
The 𝑉 − statistics on the other hand has a bias due to the occurrence of equal indices in
𝑀𝑞 (𝑚). The function 𝑔 in the literature is also know as kernel function.

Now, we consider, for each 𝑐 ∈ {1,…,𝑞 −1}, the function 𝑔𝑐 ∶ 𝒳𝑐 → ℝ by
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𝑔𝑐 (𝑋1,…,𝑋𝑐) ∶= 𝐸 (𝑔(𝑋1,…,𝑋𝑐,𝑋𝑐+1,…,𝑋𝑞)) , (A.4)

and we define for each 𝑐 ∈ {1,…,𝑞},

𝜖𝑐 ∶= 𝑉 𝑎𝑟(𝑔𝑐 (𝑋1,…,𝑋𝑐)) .

Theorem 6. The variance of 𝑈𝑚 (𝑔) is given by

𝑉 𝑎𝑟(𝑈𝑚 (𝑔)) = (𝑚
𝑞 )

−1 𝑞
∑
𝑐=1

(𝑞
𝑐)(𝑚−𝑞

𝑞 −𝑐 )𝜖𝑐. (A.5)

Definition 11. The Hayék projection of the first order of 𝑈𝑚 (𝑔) is given by

𝑈𝑚 (𝑔) =
𝑚

∑
𝑗=1

𝐸 (𝑈𝑚 (𝑔) |𝑋𝑗)−(𝑚−1)𝜃𝑔. (A.6)

Proposition 7. The center Hayék projection of the first order can be written as

𝑈𝑚 (𝑔)−𝜃𝑔 = 𝑞
𝑚

𝑚
∑
𝑗=1

̃𝑔1 (𝑋𝑗) . (A.7)

Theorem 8. Assume that 𝐸 (𝑔2 (𝑋1,…,𝑋𝑞)) < ∞. Then

𝐸 [(𝑈𝑚 (𝑔)− ̃𝑈𝑚 (𝑔))2] = 𝒪(𝑚−2). (A.8)

as 𝑚 → ∞.

Theorem 9. Assume that 𝐸 (∣𝑔(𝑋1,…,𝑋𝑞)∣) < ∞. Then

𝑈𝑚 (𝑔) → 𝜃𝑔 (A.9)

as 𝑚 → ∞.

Definition 12. (Degenerate and non degenerate U-statistics) A U-statistics is called degener-
ate if 𝜖1 = 𝑉 𝑎𝑟(𝑔1 (𝑋1)) = 0 and non-degenerate if 𝜖1 > 0.

Theorem 10. (Central Limit theorem of 𝑈−statistic) Assume that 𝐸 (𝑔2 (𝑋1,…,𝑋𝑞)) < ∞.
Then

• if 𝜖1 > 0 it is hold that
√𝑚(𝑈𝑚(𝑔)−𝜃𝑔) →𝑑 𝒩(0,𝑞2𝜖1) . (A.10)

as 𝑚 → ∞
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• 𝜖1 = 0 it is hold that

𝑚(𝑈𝑚(𝑔)−𝜃𝑔) →𝑑 (𝑞
2)

∞
∑
𝑗=1

𝜆𝑗 (𝑍2
𝑗 −1) (A.11)

as 𝑚 → ∞, and where for any 𝑗 ∈ ℕ, 𝑍𝑗 ∼ 𝒩(0,1), and 𝜆′
𝑗𝑠 are solution of the

following integral equation

(𝑇 ̃𝑔2
(𝑓))(𝑥) = ∫

𝒳
̃𝑔2 (𝑥,𝑦)𝑓 (𝑦)𝑃𝑋 (𝑑𝑦) = 𝐸 ( ̃𝑔2 (𝑥,𝑌 )) . (A.12)

Theorem 11. (Central Limit theorem of 𝑉 −statistic) Assume that 𝐸 (𝑔2 (𝑋1,…,𝑋𝑞)) < ∞.
Then

• if 𝜖1 > 0 it is hold that
√𝑚(𝑉𝑚(𝑔)−𝜃𝑔) →𝑑 𝒩(0,𝑞2𝜖1) . (A.13)

as 𝑚 → ∞

• 𝜖1 = 0 it is hold that

𝑚(𝑉𝑚 (𝑔)−𝜃𝑔) →𝑑 (𝑞
2)

∞
∑
𝑗=1

𝜆𝑗𝑍2
𝑗 (A.14)

as 𝑚 → ∞, and where for any 𝑗 ∈ ℕ, 𝑍𝑗 ∼ 𝒩(0,1), and 𝜆′
𝑗𝑠 are solution of the following

integral equation

(𝑇 ̃𝑔2
(𝑓))(𝑥) = ∫

𝒳
̃𝑔2 (𝑥,𝑦)𝑓 (𝑦)𝑃𝑋 (𝑑𝑦) = 𝐸 ( ̃𝑔2 (𝑥,𝑌 )) . (A.15)
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B.1 Chapter 5

Definition 13. (Gaussian process) A Gaussian process is a stochastic time continuous process
{𝑋(𝑡) ∶ 𝑡 ∈ [0,1]} with state space ℝ such that any finite-dimensional projection have a joint
Gaussian distribution.

A Gaussian process is centered if 𝐸(𝑋(𝑡)) = 0 for all 𝑡 ∈ [0,1] and its covariance func-
tion is the symmetric covariance function 𝑐𝑜𝑣(𝑋(𝑠),𝑋(𝑡)) = 𝐸[(𝑋(𝑠) − 𝐸(𝑋(𝑠)))(𝑋(𝑡) −
𝐸(𝑋(𝑡)))]

Proposition 12. A centered Gaussian process 𝑋 = {𝑋(𝑡) ∶ 𝑡 ∈ [0,1]}, with 𝑋(⋅) ∈ 𝐿2[0,1],
satisfies the following property:

‖𝑋‖2 = ∫
1

0
𝑋(𝑡)2𝑑𝑡 𝑑=

∞
∑
𝑛=0

𝜆𝑛𝑍2
𝑛,

where 𝑍𝑛 ∼ 𝑁(0,𝜆𝑛) and the values of sequence {𝜆𝑛}∞
𝑛=0 are strictly positive.

Proof. Let {𝑋(𝑡) ∶ 𝑡 ∈ [0,1]} be a centered Gaussian process with covariance function 𝑘(𝑠, 𝑡) =
𝐸(𝑋(𝑠)𝑋(𝑡)). Let {𝜙𝑛}∞

𝑛=0 be an orthonormal basis of 𝐿2[0,1], then by Parseval’s theorem
any 𝑋(⋅) ∈ 𝐿2[0,1] has the representation

𝑋 =
∞

∑
𝑛=0

⟨𝑋,𝜙𝑛⟩𝜙𝑛, where ⟨𝑓,𝑔⟩ = ∫
1

0
𝑓(𝑡)𝑔(𝑡)𝑑𝑡. (B.1)

Consequently,

‖𝑋‖2 =
∞

∑
𝑛=1

⟨𝑋,𝜙𝑛⟩2. (B.2)

Let 𝒦 ∶ 𝐿2[0,1] → 𝐿2[0,1] be an operator such that 𝒦𝑓(𝑡) = ∫1
0 𝑘(𝑠, 𝑡)𝑓(𝑠)𝑑𝑠 and let

{𝛾𝑛}∞
𝑛=0 be the orthonormal basis induced by the spectral problem related with 𝒦, satisfying

𝒦𝛾𝑛 = 𝜆𝑛𝛾𝑛,∀𝑛 ∈ ℕ. We compute 𝑋𝑛 as the orthogonal projection of 𝑋 on the subspace
spanned by functions {𝛾𝑛}∞

𝑛=0

𝑋𝑛 = ⟨𝑋,𝛾𝑛⟩ = ∫
1

0
𝑋(𝑡)𝛾𝑛(𝑡)𝑑𝑡, (B.3)
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which satisfies

𝐸(𝑋𝑛) = ∫
1

0
𝐸 (𝑋(𝑡)𝛾𝑛(𝑡))𝑑𝑡 = 0 (B.4)

and

𝑉 𝑎𝑟(𝑋𝑛) = 𝐸 (𝑋2
𝑛) =𝐸 (∫

1

0
∫

1

0
𝑋(𝑠)𝑋(𝑡)𝛾𝑛(𝑠)𝛾𝑛(𝑡)𝑑𝑠𝑑𝑡)

=∫
1

0
∫

1

0
[𝑘(𝑠, 𝑡)𝛾𝑛(𝑠)𝑑𝑠]𝛾𝑛(𝑡) 𝑑𝑡 = 𝜆𝑛 ‖𝛾𝑛‖2 = 𝜆𝑛. (B.5)

Thus, 𝑋𝑛 ∼ 𝑁(0,𝜆𝑛). In addition, 𝐶𝑜𝑣(𝑋𝑛,𝑋𝑚) = 0 if 𝑛 ≠ 𝑚, and, as a consequence the
random variables of the sequence {𝑋𝑛}∞

𝑛=1 are independent Gaussian.
On the other hand, since 𝑋𝑛

√𝜆𝑛
∼ 𝑁(0,1), then, 𝑋2

𝑛
𝜆𝑛

∼ 𝜒2
1, and finally

‖𝑋‖2 = ∫
1

0
𝑋(𝑡)2𝑑𝑡 =

∞
∑
𝑛=1

⟨𝑋,𝛾𝑛⟩2 =
∞

∑
𝑛=1

𝑋2
𝑛 =

∞
∑
𝑛=1

𝜆𝑛𝑍2
𝑛,

where {𝑍𝑛}∞
𝑛=1 are independent Gaussian, i.e. 𝑍𝑛 ∼ 𝑁(0,1).

In order to adapt the Hilbert-Schmidt Independence Criterion to missing responses, we must
introduce specific assumptions for the missing data mechanism through propensity scores.

Assumption 4. (Conditioning missing data mechanism) Let 𝜋(𝑥,𝜃) be a missing data mech-
anism, with 𝑥 ∈ 𝒳 and 𝜃 ∈ Θ, being Θ the space of parameters, which is a closed subset of
ℝ𝑝. The following assumptions are made

1. 𝜋(𝑥,𝜃) > 𝑐 where 𝑐 > 0.

2. 𝜋(𝑥,𝜃) is twice continuously differentiable almost everywhere, with bounded derivatives
with respect to 𝜃 ∈ Θ.

3. The family of functions ℱ = { 1
𝜋(𝑥,𝜃) ∶ 𝜃 ∈ Θ} satisfies the uniform entropy condition,

that is,
∫

∞

0
sup

𝑄
√𝑁(𝜖,ℱ,𝐿2(𝑄))𝑑𝜖 < ∞ (B.6)

where 𝑁(𝜖,ℱ,𝐿2(𝑄)) stands for the covering number of the family ℱ with respect to
the 𝐿2(𝑄)-norm and the supremum is taken over all finitely discrete probability measures
𝑄 on 𝒳.

4. Let 𝑋1,𝑋2,…,𝑋𝑛 be independent observations, the estimator ̃𝜃 admits a Bahadur rep-
resentation,

√𝑛( ̃𝜃 −𝜃) = 1√𝑛 ∑𝑛
𝑖=1 ℎ(𝑋𝑖)+0𝑃 (1), where ℎ(⋅) is an influence function

that satisfies 𝐸(ℎ(𝑋)) = 0, and 𝐸(ℎ(𝑋)2) < ∞.
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Assumption 4.1 restricts the minimum value of the missing data mechanism in order to
guarantee that it is far from zero. Such a condition is necessary to ensure that the limit of the
IPW estimator will be Gaussian (see [169] for further details). Assumption 4.2 is a standard
regularity condition for consistency and allows us to derive the asymptotic distribution of
the parameter 𝜃 as well as to construct new statistics involving the missing data mechanism.
Assumption 4.3 is a more technical condition from empirical process theory that guarantees the
empirical consistency of the IPW estimator. Finally, assumption 4.4 is a simplified condition
that guarantees that the asymptotic expansion of ̃𝜃 follows a linear structure, and, as a
consequence, the central limit theorem is satisfied.

Here we pay attention to the case that the missing data mechanism is specified by a
finite-dimensional parameter 𝜃 ∈ Θ, e.g., through a logistic regression. However, we could
introduce more general assumptions on the space in which we perform the statistical learning
for the missing data mechanism. From now on, we denote 𝜋(⋅,𝜃) simply by 𝜋(⋅). Moreover,
before proving the omnibus character of the test statistics introduced in Section 5.2.2 together
with the bootstrap consistency of the test calibration strategy, we suppose that 𝜋(⋅) is known
beforehand.

We establish the following key lemma to prove the final result.

Lemma 13. Given 𝐸(𝑘𝒳(𝑋,𝑋′)2) < ∞, 𝐸(𝑘𝒴(𝑌 ,𝑌 ′)2) < ∞, and a missing data mech-
anism 𝜋(⋅) = 𝑃(𝛿 = 1|𝑋 = ⋅) satisfying Assumptions 4.1 and 4.2. Then, the empirical and
bootstrap Hilbert-Schmidt calibration strategy statistics defined in Section 5.2.2 are consistent
for detecting all second-order finite-moment alternatives.

Proof. Let 𝒟𝑛 = {(𝑋𝑖,𝑌𝑖, 𝛿𝑖)}𝑛
𝑖=1 be a random sample of independent, identically distributed

observations. Let us recall the equations 5.7 and 5.8 for calculating the weights 𝑤𝑖 and the
normalized weights 𝑤∗

𝑖 :

𝑤𝑖 = 𝛿𝑖
𝑛𝜋(𝑋𝑖)

, 𝑖 = 1,…,𝑛,

𝑤∗
𝑖 = 𝑤𝑖

∑𝑛
𝑖=1 𝑤𝑖

, 𝑖 = 1,…,𝑛.

Let ℱ̃ = { 𝛿
𝜋(𝑋)𝑓(𝑌 ),𝑓 ∈ ℱ} be a class of functions where ℱ is a Donsker class of those

functions including the events that define the empirical distribution {1(𝑌 ≤ 𝑡) ∶ 𝑡 ∈ ℝ}. Using
Assumptions 4.1 and 4.2 together with the fact that 𝜋(⋅) is a fixed function we infer that ℱ̃
is also a Donsker class [280].

We introduce the empirical measure associated to the variable 𝑌 as

ℙ𝜋
𝑌 ,𝑛 = 1

𝑛
𝑛

∑
𝑛=1

𝛿𝑖
𝜋(𝑋𝑖)

1{𝑌𝑖} (B.7)
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where 1{𝑌𝑖} denotes the Dirac measure centered at the observation 𝑌𝑖. The corresponding
empirical process is

√𝑛(ℙ𝜋
𝑌 ,𝑛 −𝑃𝑌 ). Since ℱ̃ is a Donsker class, by applying the central limit

theorem we obtain the following asymptotic convergence [280]
√𝑛(ℙ𝜋

𝑌 ,𝑛 −𝑃𝑌 ) 𝑑−→ 𝔹(𝑃𝑌 ),

where 𝔹(𝑃𝑌 ) is a Brownian process with a specific covariance structure determined by function
𝜋(⋅).

Analogously, we obtain for the empirical process
√𝑛(ℙ𝑋,𝑛 − 𝑃𝑋) the next asymptotic

convergence,
√𝑛(ℙ𝑋,𝑛 −𝑃𝑋) 𝑑−→ 𝔹(𝑃𝑋),

and for the empirical process
√𝑛(ℙ𝜋

𝑋,𝑌 ,𝑛 −𝑃𝑋,𝑌 ),
√𝑛(ℙ𝜋

𝑋,𝑌 ,𝑛 −𝑃𝑋,𝑌 ) 𝑑−→ 𝔹(𝑃𝑋,𝑌 ).

According to [280], we can obtain the same asymptotic convergence for the corresponding
bootstrap empirical processes,

√𝑛(ℙ∗,𝜋
𝑌 ,𝑛 −ℙ𝜋

𝑌 ,𝑛) 𝑑−→ 𝔹(𝑃𝑌 ),

and we get analogous results for ℙ∗,𝜋
𝑋,𝑌 ,𝑛 and ℙ∗

𝑋,𝑛.
In Section 5.2.2 we propose the following test statistic (Equation 5.10),

𝐻𝑆𝐼𝐶( ̃𝑃𝑋,𝑌 , ̃𝑃𝑋 ̃𝑃𝑌 ) = ⟨ ̃𝜙𝑋,𝑌 − ̃𝜙𝑌 ⊗ ̃𝜙𝑋, ̃𝜙𝑋,𝑌 − ̃𝜙𝑌 ⊗ ̃𝜙𝑋⟩,

and its bootstrap counterpart (Equation 5.11),

𝐻𝑆𝐼𝐶
𝑗∗

(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) =⟨ ̃𝜙𝑋,𝑌 − ̃𝜙𝑗∗

𝑋,𝑌 + ̃𝜙𝑗∗

𝑋 ⊗ ̃𝜙𝑗∗

𝑌 − ̃𝜙𝑋 ⊗ ̃𝜙𝑌 ,
̃𝜙𝑋,𝑌 − ̃𝜙𝑗∗

𝑋,𝑌 + ̃𝜙𝑗∗

𝑋 ⊗ ̃𝜙𝑗∗

𝑌 − ̃𝜙𝑋 ⊗ ̃𝜙𝑌 ⟩,

Since ̃𝜙𝑌 = ∑𝑛
𝑖=1 𝑤𝑖𝑘(⋅,𝑌𝑖) ∈ ℋ, we can write ̃𝜙𝑌 = 𝜓𝑌 (ℙ𝜋

𝑌 ,𝑛) and 𝜙𝑌 = 𝜓𝑌 (𝑃𝑌 ),
where 𝜓𝑌 (⋅) is an appropriate mapping satisfying certain regularity conditions such as
Hadamard Differentiability or Quasi Hadamard Differentiability, and where subscript 𝑌
denotes dependence on variable 𝑌 . Here we assume that 𝜓𝑌 (⋅) is Hadamard Differentiability
and, as a consequence, we can directly apply functional delta method:

√𝑛( ̃𝜙𝑌 −𝜙𝑌 ) = √𝑛(𝜓𝑌 (ℙ𝜋
𝑌 ,𝑛)−𝜓𝑌 (𝑃𝑌 )) 𝑑−→ 𝔹𝑘(𝜙𝑌 ), (B.8)

or more specifically,

√𝑛(
𝑛

∑
𝑖=1

𝑤𝑖𝑘(⋅,𝑌𝑖)−∫𝑘(⋅,𝑦)𝑃 (𝑑𝑦)) 𝑑−→ 𝔹𝑘(𝜙𝑌 ), (B.9)
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where 𝔹𝑘(𝜙𝑌 ) is a Brownian process but, in this case, it also depends on the function 𝑘(⋅,𝑦).
We can obtain the same asymptotic convergence for the corresponding bootstrap process.

By combining the previous results with the functional delta methods, we can establish that

√𝑛( ̃𝜙𝑋,𝑌 − ̃𝜙𝑌 ⊗ ̃𝜙𝑋) 𝑑−→ 𝔹𝑘(𝜙𝐻𝑆𝐼𝐶), (B.10)

where again 𝔹𝑘(𝜙𝐻𝑆𝐼𝐶) is a Brownian process.
According to the convention introduced in the notation, we can write the proposed test

statistics as

𝐻𝑆𝐼𝐶( ̃𝑃𝑋,𝑌 , ̃𝑃𝑋 ̃𝑃𝑌 ) =
=⟨𝜓𝑋,𝑌 (ℙ𝜋

𝑋,𝑌 ,𝑛)−𝜓𝑌 (ℙ𝜋
𝑌 ,𝑛)⊗𝜓𝑋(ℙ𝜋

𝑋,𝑛),
𝜓𝑋,𝑌 (ℙ𝜋

𝑋,𝑌 ,𝑛)−𝜓𝑌 (ℙ𝜋
𝑌 ,𝑛)⊗𝜓𝑋(ℙ𝜋

𝑋,𝑛)⟩
=‖𝜓𝑋,𝑌 (ℙ𝜋

𝑋,𝑌 ,𝑛)−𝜓𝑌 (ℙ𝜋
𝑌 ,𝑛)⊗𝜓𝑋(ℙ𝜋

𝑋,𝑛)‖2 (B.11)

and

𝐻𝑆𝐼𝐶∗( ̃𝑃𝑋,𝑌 , ̃𝑃𝑋 ̃𝑃𝑌 ) =
=⟨𝜓𝑋,𝑌 (ℙ∗,𝜋

𝑋,𝑌 ,𝑛)−𝜓𝑋,𝑌 (ℙ𝜋
𝑋,𝑌 ,𝑛)+𝜓𝑌 (ℙ∗,𝜋

𝑌 ,𝑛)⊗
𝜓𝑋(ℙ∗,𝜋

𝑋,𝑛)−𝜓𝑌 (ℙ𝜋
𝑌 ,𝑛)⊗𝜓𝑋(ℙ𝜋

𝑋,𝑛),
𝜓(𝑋,𝑌 )(ℙ∗,𝜋

𝑋,𝑌 ,𝑛)−𝜓(𝑋,𝑌 )(ℙ𝜋
𝑋,𝑌 ,𝑛)+𝜓𝑌 (ℙ∗,𝜋

𝑌 ,𝑛)⊗
𝜓𝑋(ℙ∗,𝜋

𝑋,𝑛)−𝜓𝑌 (ℙ𝜋
𝑌 ,𝑛)⊗𝜓𝑋(ℙ𝜋

𝑋,𝑛)⟩
=‖𝜓𝑋,𝑌 (ℙ∗,𝜋

𝑋,𝑌 ,𝑛)−𝜓𝑋,𝑌 (ℙ𝜋
𝑋,𝑌 ,𝑛)+𝜓𝑌 (ℙ∗,𝜋

𝑌 ,𝑛)⊗
𝜓𝑋(ℙ∗,𝜋

𝑋,𝑛)−𝜓𝑌 (ℙ𝜋
𝑌 ,𝑛)⊗𝜓𝑋(ℙ𝜋

𝑋,𝑛)‖2, (B.12)

where for keeping the notation uncluttered we have removed the j superscript corresponding
to each bootstrap instance. We can write

𝐻𝑆𝐼𝐶( ̃𝑃𝑋,𝑌 , ̃𝑃𝑋 ̃𝑃𝑌 ) = ‖𝜑(𝜓𝑋,𝑌 (ℙ𝜋
𝑋,𝑌 ,𝑛),𝜓𝑌 (ℙ𝜋

𝑌 ,𝑛)⊗𝜓𝑋(ℙ𝜋
𝑋,𝑛))‖2 (B.13)

and

𝐻𝑆𝐼𝐶∗( ̃𝑃𝑋,𝑌 , ̃𝑃𝑋 ̃𝑃𝑌 ) = ‖𝜑′ (𝜓𝑋,𝑌 (ℙ∗,𝜋
𝑋,𝑌 ,𝑛),𝜓𝑌 (ℙ∗,𝜋

𝑌 ,𝑛)⊗𝜓𝑋(ℙ∗,𝜋
𝑋,𝑛))‖2 (B.14)

where 𝜑 and 𝜑′ are two mappings that allow us to write the test statistics in a more compact
form. Under the null hyphotesis 𝐻0 ∶ 𝑃𝑋,𝑌 = 𝑃𝑋𝑃𝑌 , and according to proposition 12, we
have

𝑛(𝐻𝑆𝐼𝐶( ̃𝑃𝑋,𝑌 , ̃𝑃𝑋 ̃𝑃𝑌 )) 𝑑−→ 𝜒2(𝜙𝐻𝑆𝐼𝐶), (B.15)
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where 𝜒2(𝜙𝐻𝑆𝐼𝐶) is an infinite combination of weighted 𝜒2 distributions. Moreover, also
under the null hypothesis, the centered bootstrap process satisfies the same property

𝑛(𝐻𝑆𝐼𝐶∗( ̃𝑃𝑋,𝑌 , ̃𝑃𝑋 ̃𝑃𝑌 )) 𝑑−→ 𝜒2(𝜙𝐻𝑆𝐼𝐶). (B.16)

It can be easily proven the convergence 𝐻𝑆𝐼𝐶( ̃𝑃𝑋,𝑌 , ̃𝑃𝑋 ̃𝑃𝑌 )
𝑝
−→ 𝐻𝑆𝐼𝐶(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ), by

direct application of continuous mapping theorem to expression B.13, and noting that the
joint and marginal empirical measures weakly converge to population measures, that is,

‖ℙ𝜋
𝑌 ,𝑛 −𝑃𝑌 ‖∞

𝑝
−→ 0, ‖ℙ𝑋,𝑛 −𝑃𝑋‖∞

𝑝
−→ 0 and ‖ℙ𝜋

𝑋,𝑌 ,𝑛 −𝑃𝑋,𝑌 ‖∞
𝑝
−→ 0,

by the Glivenko–Cantelli theorem.
Let us note that by definition, 𝐻𝑆𝐼𝐶(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 ) ≥ 0, where the equality holds if

and only if 𝑋 and 𝑌 are independent. Thus, when the null hypothesis is not true the test
statistic diverges asymptotically, due to statistics consistency. In addition, since the bootstrap
test calibration strategy under the null hypothesis mimics the limit distribution, the bootstrap
consistency of the proposed calibration strategy is guaranteed [126].

Importantly, this test statistic can be written as a V-statistic, but the Efrón bootstrap is
no longer consistent in general [15], and it is necessary to resort to other strategies such as
subsampling [219] or to provide a different centered statistic.

Finally, even though we apply Efrón Boostrap to an HSIC-based statistic for missing data,
also providing theoretical guarantees, the arguments remain valid in the complete data case.

Theorem 14. Given 𝐸(𝑘𝒳(𝑋,𝑋′)2) < ∞, 𝐸(𝑘𝒴(𝑌 ,𝑌 ′)2) < ∞, and an estimates of a
missing data mechanism ̃𝜋(⋅) = ℙ(𝑅 = 1|𝑋 = ⋅) satisfying Assumptions 4.1-4.4. Then, the
empirical and bootstrap Hilbert-Schmidt calibration strategy statistics defined in Section 5.2.2,
are consistent for detecting all second-order finite-moment alternatives.

Proof. Consider the following simple decomposition:

𝑛(𝐻𝑆𝐼𝐶(ℙ�̃�
𝑛,𝑋,𝑌 ,ℙ𝑛,𝑋ℙ�̃�

𝑛,𝑌 )−𝐻𝑆𝐼𝐶(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 )) =
= 𝑛(𝐻𝑆𝐼𝐶(ℙ�̃�

𝑛,𝑋,𝑌 ,ℙ𝑛,𝑋ℙ�̃�
𝑛,𝑌 )−𝐻𝑆𝐼𝐶(ℙ𝜋

𝑛,𝑋,𝑌 ,ℙ𝑛,𝑋ℙ𝜋
𝑛,𝑌 )

+𝐻𝑆𝐼𝐶(ℙ𝜋
𝑛,𝑋,𝑌 ,ℙ𝑛,𝑋ℙ𝜋

𝑛,𝑌 )−𝐻𝑆𝐼𝐶(𝑃𝑋,𝑌 ,𝑃𝑋𝑃𝑌 )) (B.17)

By using the notation introduced in equation B.13

𝐻𝑆𝐼𝐶(ℙ�̃�
𝑛,𝑋,𝑌 ,ℙ𝑛,𝑋ℙ�̃�

𝑛,𝑌 )−𝐻𝑆𝐼𝐶(ℙ𝜋
𝑛,𝑋,𝑌 ,ℙ𝑛,𝑋ℙ𝜋

𝑛,𝑌 ) =
= ‖𝜑(𝜓𝑋,𝑌 (ℙ�̃�

𝑋,𝑌 ,𝑛),𝜓𝑌 (ℙ�̃�
𝑌 ,𝑛)⊗𝜓𝑋(ℙ𝑋,𝑛))‖2

−‖𝜑(𝜓𝑋,𝑌 (ℙ𝜋
𝑋,𝑌 ,𝑛),𝜓𝑌 (ℙ𝜋

𝑌 ,𝑛)⊗𝜓𝑋(ℙ𝑋,𝑛))‖2, (B.18)
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where in the first term on the right-hand side the missing data mechanism ̃𝜋(⋅) is estimated,
while in the second one 𝜋(⋅) it is known.

Assumptions 4.1-4.4 allow us to establish the weak convergence given by ℙ�̃�
𝑋,𝑌 ,𝑛 → ℙ𝜋

𝑋,𝑌 ,𝑛
and ℙ�̃�

𝑌 ,𝑛 → ℙ𝜋
𝑌 ,𝑛. By virtue of the continuous mapping theorem we have

𝐻𝑆𝐼𝐶(ℙ�̃�
𝑛,𝑋,𝑌 ,ℙ𝑛,𝑋ℙ�̃�

𝑛,𝑌 )−𝐻𝑆𝐼𝐶(ℙ𝜋
𝑛,𝑋,𝑌 ,ℙ𝑛,𝑋ℙ𝜋

𝑛,𝑌 ) → 0. (B.19)

Finally, by invoking the Slutsky theorem and using the results established in the prior
Lemma, we deduce the asympotic 𝜒2 distribution and test consistency under the null hypothe-
sis. By replicating the same arguments as before, we obtain the counterpart for the bootstrap
process.

B.2 Chapter 6

B.2.1 Proof of Theorem 5

Theorem. Let Xcom = {(𝑋1𝑖,𝑋2𝑖)
𝑇 }𝑛1

𝑖=1 be a set of i.i.d. complete paired samples, and
Xinc

1 = {𝑋1𝑖}𝑛1+𝑛2
𝑖=𝑛1+1, and Xinc

2 = {𝑋2𝑖}𝑛1+𝑛2+𝑛3
𝑖=𝑛1+𝑛2+1 two sets of i.i.d. incomplete paired samples.

Let suppose that 𝑛1/(𝑛1 +𝑛2 +𝑛3) → 𝜅1 ∈ (0,1) and 𝑛2/(𝑛1 +𝑛2 +𝑛3) → 𝜅2 ∈ (0,1) as
𝑛1,𝑛2,𝑛3 → ∞; then, the test statistic given by (6.3) is consistent against the alternative
𝐻1 ∶ {𝑃1 ≠ 𝑃2}; we can detect a difference in distribution with the sample size growing to
infinity. Furthermore, the calibration strategy described above is also consistent in the same
sense.

Proof. The test statistics given by (6.3) is a convex combination of two independent statistics
𝒯1 and 𝒯2.

We must note that 𝒯1 is a degenerate one-sample V-statistic with kernel: ℎ(𝑧𝑖,𝑧𝑗) =
𝑘(𝑥1𝑖,𝑥1𝑗)−𝑘(𝑥1𝑖,𝑥2𝑗)−𝑘(𝑥1𝑗,𝑥2𝑖)+𝑘(𝑥2𝑖,𝑥2𝑗), where 𝑧𝑖 = (𝑥1𝑖,𝑥2𝑖). It follows from
the weak law of large numbers of V-statistics that we have convergence in probability to the
expected value

𝑛1
𝑛1 +𝑛2 +𝑛3

𝒯1 (Xcom
1 ,Xcom

2 )
𝑝

→ E[ℎ(𝑍,𝑍′)], (B.20)

where 𝑍′ is a i.i.d copy from 𝑍, and under the null hypothesis, and E[ℎ(𝑍,𝑍′)] = 0. The
wild bootstrap consistency for the calibration strategy easily derives from results by [151].

Similarly, 𝒯2 is a degenerate two sample V-statistic; following [97] we note the point-wise-
consistency

𝑛2 +𝑛3
𝑛1 +𝑛2 +𝑛3

𝒯2 (Xinc
1 ,Xinc

2 )
𝑝

→ E[ℎ((𝑋,𝑋′) , (𝑌 ,𝑌 ′))], (B.21)
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where 𝑋,𝑋′ from Xinc
1 and 𝑌 ,𝑌 ′ from Xinc

2 are i.i.d copies, and ℎ((𝑥𝑖,𝑥𝑗), (𝑦𝑙,𝑦𝑚)) =
𝑘(𝑥𝑖,𝑥𝑗) − 𝑘(𝑥𝑖,𝑦𝑙) − 𝑘(𝑥𝑗,𝑦𝑚) + 𝑘(𝑦𝑙,𝑦𝑚). Moreover, under the null hypothesis
𝐸[ℎ((𝑋,𝑋′), (𝑌 ,𝑌 ′))] = 0. Furthermore, permutation calibration strategy under random
permutation of the pooled sample has been proved consistent by [262].

We must note that if the null hypothesis is not true then both statistics diverge. Moreover,
the combination test is omnibus.
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C R package: Biosensors.usc

The R package biosensor.usc aims to provide a unified and user-friendly framework for using
new distributional representations of biosensors data in different statistical modeling tasks:
regression models, hypothesis testing, cluster analysis, visualization, and descriptive analysis.
Distributional representations are a functional extension of compositional time-in-range metrics
and we have used them successfully so far in modeling glucose profiles and accelerometer data.
However, these functional representations can be used to represent any biosensor data such
as ECG or medical imaging such as fMRI.

C.1 Installation

You can install this package from source code using the devtools library:

devtools::install_github("glucodensities/biosensors.usc@main",
type = "source")

C.1.1 Quick start

The purpose of this section is to give users a general sense of the package, including the
components, what they do and some basic usage. We will briefly go over the main functions,
see the basic operations and have a look at the outputs. Users may have a better idea after this
section what functions are available. More details are available in the package documentation.

First, we load the biosensors.usc package:

library(biosensors.usc)

C.1.2 Package example

This example is extracted from the paper [105].
We include part of this data set in the inst/exdata folder. This data set has two different

types of files. The first one contains the functional data, which csv files must have long format
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with, at least, the following three columns: id, time, and value. The id identifies the individual,
the time indicates the moment in which the data was captured, and the value is a monitor
measure:

file1 = system.file("extdata", "data_1.csv", package = "biosensors.usc")

The second type contains the clinical variables. This csv file must contain a row per
individual and must have a column id identifying this individual:

file2 = system.file("extdata", "variables_1.csv", package = "biosensors.usc")

From these files, biosensor data can be loaded as follow:

data1 = load_data(file1, file2)
class(data1)
#> [1] "biosensor"
names(data1)
#> [1] "data" "densities" "quantiles" "variables"

The load_data function returns a biosensor object. This object contains a data frame with
biosensor raw data, a functional data object (fdata) with a non-parametric density estimation,
a functional data object (fdata) with the empirical quantile estimation, and a data frame with
the covariates.

C.1.2.1 Wasserstein regression and prediction

You can call the Wasserstein regression, using as predictor the distributional representation
and as response a scalar outcome. In this example, we use the previously loaded biosensor
data and the BMI covariate:

regm = regmod_regression(data1, "BMI")
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As result, this function returns the fitted regression and plots the residuals of the curves
against the fitted values. In addition, the function plots the confidance band of the mean
values.

We can obtain the regression prediction from a kxp matrix of input values for regressors
for prediction, where k is the number of points we do the prediction and p is the dimension of
the input variables:

xpred = as.matrix(25)
pred = regmod_prediction(regm, xpred)
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C.1.2.2 Ridge regression

Call the ridge regression as follows, using as predictor the distributional representation and as
response a scalar outcome:

ridg = ridge_regression(data1, "BMI")

C.1.2.3 Nadaraya-Watson regression and prediction

Use the following function to obtain the functional non-parametric Nadaraya-Watson regression
with 2-Wasserstein distance, using as predictor the distributional representation and as response
a scalar outcome:

nada = nadayara_regression(data1, "BMI")
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Use the previously computed Nadaraya-Watson regression to obtain the regression predic-
tion given the quantile curves:

npre = nadayara_prediction(nada, t(colMeans(data1quantilesdata)))

C.1.2.4 Hypothesis testing

We can perform hypothesis testing between two random samples of distributional representa-
tions to detect differences in scale and localization (ANOVA test) or distributional differences
(energy distance).

Let’s load first another sample:

file3 = system.file("extdata", "data_2.csv", package = "biosensors.usc")
file4 = system.file("extdata", "variables_2.csv", package = "biosensors.usc")
data2 = load_data(file3, file4)

Then call the following function:

htest = hypothesis_testing(data1, data2)
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The function will plot the quantile mean and the quantile variance of the two populations.
The corresponding p-values of the ANOVA test and distributional differences are stored in the
following names:

print(htestenergy_pvalue)
#> [1] 0.00990099
print(htestanova_pvalue)
#> [1] 0.0003094763

C.1.2.5 Clustering

Call the energy clustering with Wasserstein distance using quantile distributional representa-
tions as covariates:

clus = clustering(data1, clusters=3)
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The function also plots the clusters of quantiles and densities.
We can also use the previously computed clustering to obtain the clusters of another set

of objects calling the following function:
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assignments = clustering_prediction(clus, data1quantilesdata)
print(assignments)
#> [1] 1 1 1 1 1 2 2 1 1 1 1 2 2 3 1 2 1 3 2
#> [20] 3 1 2 1 3 2 1 3 1 3 2 2 2 1 1 1 1 2 1
#> [39] 3 2 3 3 3 3 2 3 2 1 3 2 3 1
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Esta tesis tiene como objetivo proponer nuevas 
representaciones distribucionales y métodos estadísticos en 
espacios métricos para modelar de forma eficaz los datos 
procedentes de la monitorización continua de los pacientes 
durante las actividades propias de su vida diaria. Proponemos 
nuevas pruebas de hipótesis para datos emparejados, modelos 
de regresión, algoritmos de cuantificación de la incertidumbre, 
pruebas de independencia estadística y algoritmos de análisis 
de conglomerados para las nuevas representaciones 
distribucionales y otros objetos estadísticos complejos. Los 
diferentes resultados recogidos a lo largo de la tesis muestran 
las ventajas en términos de predicción, interpretabilidad y 
capacidad de modelización de las nuevas propuestas frente a 
los metodos existentes.
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