Journal Pre-proof

Journal of

COMPUTATIONAL

| _&SCIENCE

The inherent overlapping in the parallel calculation of the Laplacian

N g
\ NN <&

X 1

J. Sanchez-Curto, P. Chamorro-Posada \

\

PII: S1877-7503(23)00005-4
DOI: https://doi.org/10.1016/j.jocs.2023.101945
Reference: JOCS 101945

To appear in: Journal of Computational Science

Received date: 1 March 2022
Revised date: 30 November 2022
Accepted date : 12 January 2023

Please cite this article as: J. Sdnchez-Curto and P. Chamorro-Posada, The inherent overlapping in
the parallel calculation of the Laplacian, Journal of Computational Science (2023), doi:
https://doi.org/10.1016/j.jocs.2023.101945.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier B.V.

https://doi.org/10.1016/j.jocs.2023.101945
https://doi.org/10.1016/j.jocs.2023.101945

Revised manuscript clean version

The inherent overlapping in the parallel calculation of
the Laplacian

J. Sanchez-Curto®*, P. Chamorro-Posada®

2 Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telemdtica,
Universidad de Valladolid, ETSI Telecomunicacion, Paseo Belén 15,
47011 Valladolid, Spain

Abstract

A new approach for the parallel computation of the Laplacian in the Fourier
domain is presented. This numerical problem inherits the intrinsic sequencing
involved in the calculation of any multidimensional Fast Fourier Transform
(FFT) where blocking communications assure that its computation is strictly
carried out dimension by dimension. Such data dependency vanishes when
one considers the Laplacian as the sum of n independent one-dimensional ker-
nels, so that computation and communication can be naturally overlapped
with nonblocking communications. Overlapping is demonstrated to be re-
sponsible for the speedup figures we obtain when our approach is compared
to state-of-the-art parallel multidimensional FFTs.

Key words: Laplacian, overlapping, nonblocking communications

1. Introduction

The Laplacian is a widely used differential operator. In fluid mechanics,
for instance, the three dimensional Laplacian accounts for the diffusion of the
particles in a fluid, so that it is an essential term in the Navier-Stokes equa-
tions [1]. In the study of semiconductors the diffusion of carriers is also ruled
by the Laplacian [2]. Another field of physics where the Laplacian plays an
essential role is in electrodynamics where the wave equation always includes
the Laplacian accounting, this time, for the wave diffraction in space. In the

*Corresponding author
Email address: julsan@tel.uva.es (J. Sdnchez-Curto)

Preprint submitted to Elsevier November 30, 2022

field of digital image processing, the Laplacian is a widely used sharpening
technique to detect edges and, in turn, enhance image perception [3].

The Laplacian is usually found as a term in Partial Differential Equations
(PDEs) which can be solved, among others, by spectral methods [4]. They
provide the spatial evolution of the system while the time evolution is pre-
served, thus turning PDEs into Ordinary Differential Equations (ODEs). In
terms of numerics, this offers a dual way of computing space and time, i.e.
a time-marching approach based on finite differences for time and a spec-
tral method for space [4]. Focusing our interest on wave propagation, this
strategy can be also applied to the study of propagation of quasi-stationary
beams, where the role of time is replaced by the longitudinal coordinate that
gives the evolution of the beam along the direction of propagation [5].

When Fourier series are used in spectral methods, the Laplacian is nu-
merically computed in the Fourier domain by means of the Fast Fourier
Transform (FFT) [1] which has been essential in the field of numerical signal
processing since its publication in 1965 [6]. The search of improvements in
its performance linked to the reduction in the number of FLOPS was the
origin of subsequent works, where alternative solutions to the 2-radix ap-
proach, such as the split-radix [7, 8] or the prime factor [9, 10] algorithms
were presented. An excellent review of three decades of literature can be
found in [11], where any reader can get more insight all relevant aspects of
the FFT computation. A second milestone in the development of the FFT
was the FFTW library [12], since it showed that the FFT performance is
tightly related to an optimal use of hardware resources rather than the strict
count of FLOPS of any implementation. Its subsequent success among the
scientific community was based on the auto-tuning process that, fully trans-
parent to the the programmer, guaranteed for each computer the optimal
implementation.

It is precisely in the parallel computation of the FFT where this connec-
tion between hardware and performance can be found since the early years of
the supercomputing era. Any kind of parallel system in the market received
its corresponding FFT implementation that was designed taking into account
the supercomputer architecture. From the pioneering vector supercomputers
[13, 14] or hypercubes machines [15-17] to the more recent shared memory
systems, such as GPUs [18-20], hundreds of FFT designs and implemen-
tations have been reported (see [21] and references therein). Nevertheless,
in the search of portable solutions to be run on heterogeneous distributed
memory systems, parallel FFTs libraries (see [22] and references therein)

2

have been developed based on the message passing paradigm.

In this work, however, we do not present yet another contribution on par-
allel FFTs, since we focus on a different problem, which is the computation of
the Laplacian as a whole, i.e. the kernel composed by forward and backward
parallel multidimensional FFTs separated by the Laplacian in the Fourier
domain. This kernel, usually embedded in the parallel computation of large-
scale simulations in the field of fluid mechanics [23], has not deserved any
particular attention, so that efficient parallel fluid solvers have exclusively fo-
cused on the design of novel parallel FFT libraries [24]. On the other hand,
we show here that the kernel posses an intrinsic data independency that can
be exploited to overlap computation and communication tasks. Traditionally,
parallel multidimensional FFTs are based on the transpose method [25] that
strictly alternates local computation stages and communication tasks (data
transposes) in a divide-and-conquer strategy. Blocking communications as-
sure that one dimension is computed when only the previous one is complete.
This inherent sequencing can be removed when one faces the computation of
the Laplacian not as one n-dimensional problem, but as n one-dimensional
kernels. Since no data dependency exists between them, the computation of
one kernel can take place while the result of a different one is currently being
sent. Computation and communications tasks can be naturally overlapped
with nonblocking communications.

The nonblocking facilities of parallel libraries were initially proposed to
enhance the performance of certain numerical problems in the pioneering
works of Hoefler [26-28]. As regards the FFT, most studies targeted at the
three dimensional problem (3D FFT), which was considered as an excellent
test-bed for exploiting the potential benefits of overlapping, since at least two
communications steps are sandwiched among highly demanding computa-
tions. In [29], for instance, existing FFTs parallel libraries, such as P3DFFT
[30], were redesigned to accommodate the potential overlapping associated
to the computation of successive FFTs. In the search of data independency
that allows overlapping, some authors have proposed a pipeline technique, i.e.
chopping local data into smaller blocks, so that a sub-block can be sent while
other is still being processed [31, 32]. Other works, however, have shown that
the mere replacement of the nonblocking capabilities of the Message Passing
Interface (MPI) standard [33, 34] by other alternatives [35] can enhance the
FFT performance. The nonblocking approach has been also incorporated in
more specific problems, such as the study of turbulence in fluid dynamics,
where overlapping was shown to speedup the numerical solution of Pseudo-

3

Spectral Simulations [36]. More recently, auto-tuning techniques, which can
automatically locate and maximize the overlapping of communication and
computation [37, 38|, have been also applied to the FFT case [39]. As far
as we know, the intrinsic overlapping embedded in the computation of the
Laplacian has not been reported in the literature before and constitutes the
basic motivation of our work.

This paper is structured as follows. In Sec. 2 we develop our proposal
for the two-dimensional case highlighting the differences with the classical
approach based on state-of-the-art FFTs. Since overlapping plays a major
role we briefly present for this particular problem a simple model for the
overlapping that help us understand the performance results. These are
displayed in Sec. 3 where series of tests are carried out for different problem
sizes and number of cores. Data are analyzed and discussed in Sec. 4 where
speedup figures are shown and explained in terms of the theory. Section 5
summarizes the main conclusions and presents the guidelines for future work.

2. A nonblocking approach for the Laplacian

The Laplacian of a two dimensional (2D) function u(x,y) can be calcu-
lated in the Fourier domain taking into account the differentiation property
of the Fourier transform

V2u(z,y) < —(Q2 + Q2)U(Qy, Q) (1)

where U (€4, Q) accounts for the 2D continuous Fourier Transform of u(z, y),

ie. u(z,y) & U(9Q4,€s), while £, and 2, are the continuous frequencies.
In the discrete domain, the numerical computation of the Laplacian can
be expressed as a two-step procedure where a 2D forward Discrete Fourier
Transform (DFT) is first computed

No—1 Ni—1
Ulki, ko] = E (Z U[”h”z]“zv?“) w2, (2)

no=0 n1=0

to be multiplied by H [k, ko] = —(ki+k3) and converted back to the discrete
domain by means of a 2D backward DFT

NQ—l N1—1
1 .
y[nl, ’I’LQ} = N E (E H[kl, kQ]UUfl, kg}w;lvllh) w?fzk‘". (3)
ko=0 \k1=0

In Eq. (2) ulng, ns] is a 2D array that results from the sampling of u(x, y)
over a finite square with N = N; x N, data points, so that n; and ny are
integers verifying 0 < n; < Ny and 0 < ny < Ny. In Eq. (3) y[n1, ns] contains
the 2D Laplacian, k; and k, are the discrete frequencies and wy, = e?2m/N;
for j =1, 2.

Our approach is based on the special form of H[ky, k»] that can be consid-
ered as a particular case of those functions verifying H [k, ko] = H|[k1]+ H [ks].
Taking into account the linear property of the DF'T, the substitution of Eq.(2)
in Eq.(3) turns the right side of Eq. (3) into

Np—1 Ni—1 N2—1 Ni—1
—nik1 —naks niki naka
N g E Hlk,] g g ulng, nojwy! Wy wy, | wa

ko=0 k1=0 n2=0 \n1=0
No—1 /Ni—1 No—1 /Ni—1
—niky —noko niky noks
E E Hky] E E uny, nplwy! Wiy wyt we® (4)
k1=0 ng=0 \n;=0

In Eq. (4), the forward and backward transforms along one dimension
cancel each other since H[k;] and H[ks] do not depend on ks and kq, respec-
tively, so that Eq. (3) can be rewritten as

ylni,me] = ye[ni, o) + y,[ng, no
1 Ni—1 N1 1
J— k1n1 k17l1
= — unl,nngl le
Ny
k1=0 n1=0
N2 1 N2 1
konso kono
+ AT [nl?nQ]ng wNQ ?
no=0

(5)

where y.[ni,ns] and y,[n;, ns] account for the 1D kernel along the columns
and rows of the matrix, respectively. Eq. (5) simply represents the calcula-
tion of V2 = 0?/0z% + 9%/0y? in the Fourier domain where each dimension
is independently calculated. The 1D kernel involves, in the case of y,.[nq, na],
N; forward and backward DFTs of length Ny where a point-to-point complex
multiplication by H|[ks] is sandwiched between them. An analogous defini-
tion addresses y.[n1,n2]. The four nested sums involved in Eqgs. (2) and (3)
are reduced to two in Eq. (5), thus turning a single 2D problem into two

1D problems. Only the explicit sum of y,[ny, na] and y.[ni, ns] makes the
Laplacian depend on both partial results. Of course, this procedure can be
extended to n > 2 dimensions.

The number of FLOPS in Eq.(2) and Eq. (3) when compared to Eq.(5)
is, in both cases, O(N log N). Nevertheless, the potential benefits of Eq. (5)
are revealed when one evaluates them in terms of parallel computing.

2.1. Parallel computing evaluation

The parallel computation of the Laplacian according to Egs. (2) and (3)
is illustrated in Fig. 1(a) where a slab (1D) distribution of processors is
assumed, so that rows are locally stored and columns are distributed among
P = 6 processors. Figure 1(a) shows the timeline corresponding to all the
operations involved, i.e. 2D forward and backward FFTs separated by a
point-to-point multiplication that represents the Fourier transformation of
the Laplacian (solid black circles in the middle of the figure). Each 2D
FFT involves the three operations enclosed by the horizontal parentheses, i.e.
the computation of forward 1D FFTs to the rows, a data transposition and
the computation of forward 1D FFTs to data that were initially spread out
among processors. The final transpose is saved as the Fourier transformation
of the Laplacian is transposed [40], so that the backward 2D FFTs starts
with the computation of the columns, instead of rows. One can proceed to
compute a new dimension when only the previous one is completed. This
imposes a strict sequentially between computation and communication which
is guaranteed by blocking communications.

The solution we propose in Eq. (5) is represented in Fig. 1(b) where the
two 1D kernels of Eq. (5) are represented. Each 1D kernel involves forward
and backward 1D FFTs separated by the point-to-point multiplication by
Hl[ky] or H|[ks] (black solid circles in the middle of the two kernels). An
initial double data distribution allocates N;/P rows and Ny/P columns in
each processors, and both kernels are locally computed after that. The solely
scattering of N;/P rows of a global array among processors would be ineffi-
cient in this case, since a subsequent data transpose should follow the initial
scattering to get the columns in each processor. Two consecutive collective
communications would be necessary on data which remain the same.

Figure 1 also shows that a data movement is necessary to transpose the
result of one 1D kernel and perform the final sum in Eq. (5). This data move-
ment and the computation of the second 1D kernel can take place simulta-
neously, since no data dependency exists. Communication and computation

6

Forward 2D-DFT Backward 2D-DFT

—> 0] «——
— (o[«—
— 0| ——
a — e —
— (0| «—
—— o[«——
Forward Blocking Forward Backward Blocking Backward
DFTs alltoall comm. DFTs DFTs alltoall comm. DFTs
(rows) (columns) (columns) (rows)
\
A ;
olejee|e]e Ye
1D comput. Nonblocking
b kernel alltoall comm. T
(columns) Y y = y'r + y(;
—> (@] «——
—— (0] «——
— (o] «—— Yr
—> (@] «——
—> (@] «——
1D comput.
kernel J

(rows)

time

Figure 1: Blocking (a) and nonblocking (b) approaches for the parallel computation of the
Laplacian in the Fourier domain. The vertical arrows in the bottom picture represent the
kernel computation along the columns which are also local to each processor.

tasks can be overlapped based on the use of nonblocking communications, as
it is illustrated in Fig. 1(b). The overlapped solution arises naturally from
Eq. (5), in contrast to other nonblocking approaches for the FFT [32] where
overlapping is obtained by the segmentation of large tasks. As the timeline
of Fig. 1 suggests, our approach should lead to a reduction in the elapsed
time when compared to the general approach represented in Fig. 1(a).

2.2. A simple model for overlapping

The impact of overlapping on the elapsed time for this particular problem
can be predicted based on a simple model we present in Fig. 2. The number
of processors P that a parallel system dedicates to solve this problem and the
time involved in its solution are displayed in the = and y axis, respectively.
We decompose the elapsed time tejqpseq (solid black line) as the sum of two
complementary contributions, i.e. computation f..m, and communication
teomm Which are represented with dashed black lines in Fig. 2. In this case,

we assume that teomp ~ P~! while t.gmm ~ PY with v > 1 depending on the
number of cores per node [41].

time

telapsed

t(.ouerlup

P

Figure 2: Theoretical enhancement of overlapping for this particular problem. Elapsed
time for a solution with (red) or without (black) overlapping. Maximum theoretical
speedup is achieved when computation and communication times are the same.

The grey area under both lines represents the potential overlapping, so
that toveriap = MIN{teomm, teomp}- The elapsed time for a solution with over-
lapping te pveriap = tetapsed — tovertap = MAT{teomp, teomm } 1S represented with
a red solid line which is superimposed on the dotted black one. The red line
shows a minimum when tcomm = teomp, thus obtaining the maximum theoret-
ical speedup S = teigpsed/te elapsed = 2. On the other hand, in those systems
when eomm > teomp OI Vice versa, overlapping will not provide any significant
improvement. Such is the case, for instance, of GPUs where communication
time prevails over computation time in large-scale FFTs [42].

The model of Fig. 2 represents an ideal situation where we have assumed
that the whole code of any numerical problem can be overlapped and all
system resources could be scheduled to guarantee that communication and
computation demands can be fulfilled simultaneously. A more realistic anal-
ysis should take into account these issues, as well as hardware characteristics
such as the cache size. The real overlapping must thus lie beyond the theo-
retical one, as it is represented in Fig. 2 by the dotted blue line inside the
grey area.

3. Performance results

Table 1 illustrates the code that develops the scheme shown in Fig. 1(b).
While the lines in red italic font correspond to the inter-core explicit commu-
nication, the instructions in blue regular font account for the computation of
the two 1D kernels, the final sum of Eq. (5) and the local data movements
that must take place before and after each transmission to complete a paral-
lel transpose [25]. Although these intra-core data movements are essential in
the communication process, it can not be overlapped with the explicit com-
munication. The code sandwiched between the nonblocking functions (in red
italic font) constitute the overlapped section of our approach.

rows < global /* local data allocation of Nj/P rows*/
columns < global /* local data allocation of Na/P columns */

/* 1D kernel: x/
fftwexecute(planl,columns) /* No/P forward FFTs of N points */
columns < H[ki]- columns /* point-to-point multiplication */
fftwexecute(plan2,columns) /* backward FFTs */

columnsT<— columns /* local data movement before sending */
MPI_Ialltoall(columnsT,..., columns,req) /* nonblocking sending of data */

/* 1D kernel: */
fftwexecute(plan3,rows) /* N1/P forward FFTs of N> points */
rows < H[ks]- rous /* point-to-point multiplication */
fftwexecute(plan4,rows) /* backward FFTs */

MPI_Wait (req)
columnsT < columns /* local data movement after reception */
rows < rows + columnsT /* Yy yr +yc */

Table 1: Code implementing Eq. (5) with nonblocking communications.

The implementation of our proposal has been written in C and commu-
nication issues have relied on the MPT library [43]. We have employed the
nonblocking version of the all-to-all communication (MPI_Ialltoall) and the
FFTW library [12] to perform the forward and backward FFTs involved in the
1D kernel. The data allocation resources of the FFTW-MPI have also been
used to provide the distribution of data not only among the columns, but
also the rows of a global array.

The local data movements before and after the all-to-all communication
are essentially data block transposes that can be very time demanding and
dominate the overall time for large problem sizes in small scale systems [32].
This crucial issue arises when one faces the design of any multidimensional
FFT, but data transpose is by itself a subject in parallel computing [25, 44]
and deserves a great attention when large amount of data are involved [45].

9

The access to non-contiguous large amount of data is prone to cause cache
misses [46] which are specially harmful in terms of performance. Cache-
oblivious algorithms have been proposed to minimize such effect regardless
of the cache size [47]. They propose data reordering based on Morton order
[48] and have have shown their effectiveness not only on data transpose and
linear algebra problems [49], but also in the design of collective MPI-based
communications [50]. In our work, instead of a naive approach for data
transpose, we have used cache-oblivious algorithms [47] where the optimum
sub-block or matrix size has been experimentally chosen.

(a) (b)

32 cores in 2 nodes 64 cores in 4 nodes

3 R - 3
10°¢ Blocking (2D-FETWMPI) 10°F Blocking (2D-FFTWMPI)
Nonblocking Nonblocking
— 107 — T
% 2
B £ 102
@ 10! @
A 8
= L° &= 10!
. 0
917 918 919 920 921 922 923 924 925 926 927 919 920 921 922 923 924 925 926 927 928
128 cores in 8 nodes 256 cores in 16 nodes
10° Blocking (2D-FFTWMPI) 103} Blocking (2D-FFTWMPI)
Nonblocking Nonblocking
£ 10° £10°
(5] o
& g
E 10! E 10!
10° 10°
221 922 923 924 925 926 927 928 929 923 924 925 926 927 928 929 930

(c) (d)

Figure 3: Elapsed time of our proposal (blue) and the conventional scheme (red) for
different problem sizes. The number of cores is 32 (a), 64 (b), 128 (¢) and 256 (d).
Speedup figures are displayed in Fig. 6.

We compare our implementation with the code summarized in Tab. 2
that shows the computation of the Laplacian based on the classical approach
represented by Egs. (2) and (3). The computation of 2D FFTs relies on
the FFTW-MPI [12] that constitutes an excellent reference for 2D problems
like this, where only a 1D (slab) data distribution among processors is rea-
sonable. This library has also developed its own specific blocking all-to-all

10

functions that replace the standard MPI counterpart, so that the commu-
nication process can also be tuned [12]. As it can be seen in Tab. 2, we
call the FFTW-MPI functions with the appropriate flags [12] in order to save
innecessary data transposes.

planiT=fftw.mpi_plan dft_2d(...,FFTW_MPI_TRANSPOSED_OUT); /*plan for a 2D forward FFT */
plan2T=fftw.mpi_plan_dft_2d(....,FFTW.MPI_TRANSPOSED_IN); /*plan for a 2D backward FFT */

rows < global /* local data allocation of Ni/P rows */
fftwexecute(planiT) /* 2D forward FFTs of N points without final transpose */
plan2T < H'[ki,ko|-planiT /* multiplication by the transposed Laplacian */
fftwexecute (plan2T) /* 2D backward FFTs of N points to transposed data */

Table 2: Code implementing Egs. (2) and (3) with blocking communications.

(a) (b)

24 cores 48 cores
10*} Blocking (2D-FFTWMPI) 10t Blocking (2D-FFTWMPI)
Nonblocking Nonblocking
70 710
< Fl
2 10! = 10!
& 10 & 10
10° 10°
32215 32217 3221‘] 32221 32223 3221(» 32218 3222(1 32222 32224
96 cores 192 cores

10°k Blocking (2D-FFTWMPI)
Nonblocking

10°; Blocking (2D-FFTWMPT)
Nonblocking

g 10° £ 102

< i)

g g

= 10! = 10!
100 1 0

32217 32219 32221 32223 3222" 0 32218 32220 32222 32221 32220
(c) ()
Figure 4: Elapsed time of our proposal (blue) and the conventional scheme (red) for

different problem sizes. The number of cores is 24 (a), 48 (b), 96 (¢) and 192 (d). Speedup
figures are displayed in Fig. 7.

Our work has been carried out at the Castilla y Ledn supercomputing
centre, SCAYLE. We have access to the Haswell cluster which is composed
of 114 nodes and each node has 2 octa-core Intel Xeon E5-2630 v3 (Haswell)

11

processors running at 2.40 GHz. Each node has a 32 GB RAM memory and
are interconnected through an Infiniband FDR network at 56 Gb/s. Series of
tests have been carried out to compare the performance of the codes described
in Tabs. 1 and 2.

(a) (b)

40 cores 80 cores
10*F Blocking (2D-FFTWMPI) 10*; Blocking (2D-FETWMPT)
Nonblocking Nonblocking
Z 10° gw‘l
& 10t £
10° 10°
5221 52216 52918 52920 52922 5221% 52217 52219 52221 5222
160 cores 320 cores
10*} Blocking (2D-FFTWMPI) 10¢| Blocking (2D-FFTWMPI)
Nonblocking Nonblocking
s e
g !
& Z 10!
10° 3 10°
5218 50 522 g 52210 522! 520% 5292

() (d)

Figure 5: Elapsed time of our proposal (blue) and the conventional scheme (red) for
different problem sizes. The number of cores is 40 (a), 80 (b), 160 (c) and 320 (d).
Speedup figures are displayed in Fig. 8.

Figures 3, 4 and 5 show the elapsed time of both solutions for different
problem sizes N = Nj x Ny and number of cores. In Fig. 3 we have assumed
that the number of cores P is a power of two, so that N = 2¥ where N; = N, if
k is even, and Ny = 2N, otherwise. Nevertheless, this condition on P is very
restrictive, since most computing systems hardly scale as a power of two.
We have thus performed tests for ordinary scenarios where P decomposes
as prime factors different from two. Since the number of data points in
the matrix must verify N/P? € Z [12], non-power-of-two Discrete Fourier
Transforms (DETSs) must be employed, which always has a negative impact
on performance. To minimize this effect, we choose P containing one single
prime factor different from two. As one can see in Fig. 4, while the number
of cores evolves as P = 3 - 2™ with m = 3,4, 5,6, the number of data points

12

is N = 322F with k assuming similar values as those of Fig. 3. A similar
argument is valid for Fig. 5, where we have replaced P = 3 by P = 5.

Elapsed times approximately span over three orders of magnitude, so
that a logarithmic plot has been used in the y-axis. The time represented in
the y-axis is the mean value that results from calculating the Laplacian 50
times, in order to assure the FFTW has finished the warm-up iterations and
has chosen a definitive and optimal solution among all possibilities tested.
Since the number of nodes we can access in the cluster is limited, we have
employed the maximum number of cores per node (16 cores) in order to study
the scalability of our solution.

4. Discussion

With the exception of one case we comment below, our nonblocking so-
lution exhibits a better performance than the blocking approach based on
the 2D-FFTWMPI. Since the computational load of both solutions is quite
similar and relies on the same FFTW library, the enhancement lies on the com-
munications side. All pictures in Figs. 3, 4 and 5 also show that our design
scales with the number of cores.

All plots in Figs. 3, 4 and 5 undergo a significant fall in performance of
both solutions that does not takes place simultaneously. Our solution dra-
matically gets worse when N/P? = 20 while the 2D-FFTWMPI replicates
such behaviour when N/P? = 21, As it is confirmed in the tests that only
evaluate communication time (see Fig. 9), it is a communication issue. Intra-
node data communication, that prevails in our tests, is performed through
memory copies of data on a shared memory space [50, 51] which may even-
tually get full. Larger memory demands are fulfilled through cache misses
which have a very negative impact on the performance, thus masking any
other possible improvement [46]. This can also explain why our solution get
worse first when compared to the 2D-FFTWMPI. Our proposal doubles the
amount of local data, thus increasing the memory demands when compared
to a conventional solution.

4.1. Speedup

The logarithmic plots of Sec. 3 provide a general overview of the perfor-
mance of both solutions, but they do not allow us to quantify the speedup.
Speedup figures from Figs. 3, 4 and 5 are plotted in Figs. 6, 7 and 8, respec-
tively. We have highlighted in red the exact value in each series where the

13

(a) (b)

32 cores in 2 nodes 64 cores in 4 nodes

Speedup
Speedup
]

0 917 918 919 920 921 922 923 921 925 926 927 0 919 920 921 922 923 92 925 926 927 928

128 cores in 8 nodes 256 cores in 16 nodes

w
=

Speedup
4
Speedup

o

0 22\ 222 22& 224 223 220 227 223(220 0 22& 224 22'; 22(; 237 227\ 22‘) 25\!
(c) (d)

Figure 6: Speedup figures for the cases of Fig. 3.

2D-FFTWMPI behaves better than our solution. The maximum values are
slightly greater than 2 in certain cases because our solution not only benefits
from overlapping, but also from the replacement of one data transpose by a
double initial data allocation. When both factors occur simultaneously, one
gets such figures.

4.2. Analysis of results

In order to explain such figures, we have carried out a second series of
tests that analyse the code in Tab. 1 evaluating separately computation and
communication. Results are displayed in Fig. 9 where we have interpolated
the data series with a 1:8 ratio to focus on the shape of the curves. Although
we have analysed the four cases of Fig. 3, we only show the case of 32 cores
since the behaviour is quite similar for a different number of cores. The
overall elapsed, computation and communication times are represented with
black squares, blue diamonds and red points, respectively. We have also
added a magenta line with triangles which is the sum of the blue and red
ones, so that the difference between the black and magenta lines represents
the time saved by overlapping. This difference is more significant in the five
cases labelled with upper-case letters in Fig. 9 that correspond to the bars
of Fig. 6(a) where speedup reaches the largest values. Overlapping is thus
responsible for these speedup figures.

14

(a) (b)

24 cores) 48 cores

Speedup
5 - &
Speedup

32915 32917 g29l8 gigil 3293 32910 g29I8 32920 32922 g2oni

96 cores 192 cores

Speedup
Speedup
9

Figure 7: Speedup figures for the cases of Fig. 4.

The prediction of the theoretical model of Fig. 2 reinforces this idea.
According to the model, speedup is maximum when computation and com-
munication times are comparable. This is precisely what the labeled cases in
Fig. 9 show, where the blue and red lines cross or have a very similar value.

Figure 9 also shows that elapsed time is dominated by communications
or computation depending on the the problem size. While computation time
evolves according to the computational load O(N log N), communication
time is severely affected by the cache miss we have analysed before. For
large values of N, the black and magenta lines are superimposed and the po-
tential benefit of overlapping vanishes. This was also predicted by the model
of Fig. 2 since one enters a regime where tomp >> teomm.

5. Conclusions and future work

This work has presented a new approach for the parallel computation of
the Laplacian in the Fourier domain. In contrast to the classical approach
based on computing successive multidimensional FFTs where blocking com-
munications separate local computations, we have presented a solution that
computes the Laplacian as n distinct one dimensional kernels. Communica-
tion and computation are overlapped by means of nonblocking communica-
tions, thus removing the inherent sequentially of the classical approach. This

15

(a) (b)

40 cores - 80 cores

o
S

Speedup

S - L
Speedup

-

-

5}
o

52214 52916 52918 52900 gRo2 52015 52917 g2gl9 2ol g2

160 cores 320 cores

w

o

Speedup
Speedup

=

5
o
o

Figure 8: Speedup figures for the cases of Fig. 5.

higher level of parallelism has led to a general better performance with the
exception of very particular cases. This work also shows how the benefits of
overlapping are limited to scenarios where computation and communications
times are comparable. This balance will depend on the problem size, paral-
lel resources and hardware characteristics of the nodes and it should be an
essential programmer task to find it out and work around it.

Our work has presented the performance results of the 2D Laplacian based
on a slab (1D) decomposition for a small-scale cluster. The extension of the
problem to the 3D case depends on the cluster size. Rewriting the 3D Lapla-
cian as V2 = VZ + 9%/92% where T denote the two transverse coordinates (z
and y) one has a straightforward mapping for the slab decomposition which
is suitable for a small-scale cluster. The expected speedup should not be
very different from the figures we have presented in this work. However, in
the case we had access to a large-scale cluster, a pencil (2D) decomposition
should be considered instead, like in other similar 3D problems such as the
3D FFT [52]. An estimation of the speedup in such scenario can be calcu-
lated based on the code percentage that can be overlapped. While the ratio
between the number of kernel computations and communication steps is 2:1
in the 2D case (see the code in Table 1), it would turn into a 3:2 ratio in the
3D case. Communication demands grow in relation to the computational
kernels as the number of dimensions goes up, thus increasing the amount

16

32 cores in 2 nodes

—— Computation and Communication =
—— Elapsed / 2 |
—— Communication / /
102 —— Computation - A
I v~ 4
2 . D "
g it
o / //
g
& o

e

217 218 219 220 221 222 223 224 225 226 227 228

Figure 9: Elapsed (black squares), communication (red points) and computation (blue
diamonds) times. Magenta triangles represent the the sum of the blue and red ones.

of code that is prone to be overlapped. As a result, higher speedup figures
should be expected for the 3D Laplacian on a pencil decomposition.

This work was supported by the Consejeria de Educacién, Junta de
Castilla y Leén [grant number VA296P18|.

References

[1] C. Canuto, M. Hussaini, A. Quarteroni, T. Zhang, Spectral Methods in
Fluid Dynamics, Springer, Berlin, 1988.

[2] E. M. Wright, W. J. Firth, I. Galbraith, Beam propagation in a medium
with a diffusive Kerr-type nonlinearity, J. Opt. Soc. Am. B 2 (2) (1985)
383-386. doi:https://doi.org/10.1364/JOSAB.2.000383.

[3] R. C. Gonzalez, R. E. Woods, Digital Image Processing, Prentice Hall,
Upper Saddle River, N.J., 2008.

[4] J. P. Boyd, Chebyshev and Fourier spectral methods, Courier Corpora-
tion, 2001.

17

[5]

[13]

[14]

[15]

P. Chamorro-Posada, G.S. McDonald, G.H.C. New, Non-paraxial beam
propagation methods, Optics Communications 192 (1) (2001) 1-12.
doi:https://doi.org/10.1016 /S0030-4018(01)01171-3.

J.W. Cooley, J.W. Tukey, An Algorithm for the Machine Calculation
of Complex Fourier Series, Mathematics of Computation 19 (1965) 297
301.

P. Duhamel, H. Hollmann, Split radix FFT algorithm, Electronics Let-
ters 20 (1984) 14-16(2).

H. Sorensen, M. Heideman, C. Burrus, On Computing the Split-Radix
FFT, IEEE Transactions on Acoustics, Speech, and Signal Processing
34 (1) (1986) 152-156. doi:10.1109/TASSP.1986.1164804.

S. Winograd, On Computing the Discrete Fourier Transform, Mathe-
matics of Computation 32 (141) (1978) 175-199.

H. Silverman, An introduction to programming the Winograd
Fourier transform algorithm (WEFTA), IEEE Transactions on Acous-
tics, Speech, and Signal Processing 25 (2) (1977) 152-165.
doi:10.1109/TASSP.1977.1162924.

C. van Loan, Computational Frameworks for the Fast Fourier Trans-
form, Society for Industrial and Applied Mathematics STAM, Philadel-
phia PA, 1992.

M. Frigo, S. G. Johnson, The Design and Implementation
of FFTW3, Proceedings of the IEEE 93 (2) (2005) 216-231.
doi:https://doi.org/10.1109/JPROC.2004.840301.

P. N. Swarztrauber, FFT algorithms for vector computers, Parallel
Computing 1 (1) (1984) 45-63. doi:https://doi.org/10.1016/S0167-
8191(84)90413-7.

D. A. Carlson, Ultrahigh-performance FFTs for the CRAY-2 and CRAY
Y-MP supercomputers, The Journal of Supercomputing 6 (1992) 107—
116. doi:https://doi.org/10.1007/BF00129773.

P. N. Swarztrauber, Multiprocessor FFTs, Parallel Computing 5 (1)
(1987) 197-210. doi:https://doi.org/10.1016/0167-8191(87)90018-4.

18

[16]

[20]

[21]

[22]

[23]

[24]

C. Tong, P. N. Swarztrauber, Ordered Fast Fourier Trans-
forms on a Massively Parallel Hypercube Multiprocessor, Jour-
nal of Parallel and Distributed Computing 12 (1) (1991) 50-59.
doi:https://doi.org/10.1016,/0743-7315(91)90028-8.

P. N. Swarztrauber, S. W. Hammond, A comparison of optimal FFTs on
torus and hypercube multicomputers, Parallel Computing 27 (6) (2001)
847-859. doi:https://doi.org/10.1016/S0167-8191(00)00107-1.

K. Moreland, E. Angel, The FFT on a GPU, in: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hard-
ware, 2003, pp. 112-119.

A. Nukada, S. Matsuoka, Auto-tuning 3-D FFT library for CUDA
GPUs, in: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009, pp. 1-10.
doi:10.1145/1654059.1654090.

A. Nukada, K. Sato, S. Matsuoka, Scalable multi-GPU 3-D FFT for
TSUBAME 2.0 Supercomputer, in: SC ’12: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Stor-
age and Analysis, 2012, pp. 1-10. doi:10.1109/SC.2012.100.

0. Ayala, L.-P. Wang, Parallel implementation and scala-
bility analysis of 3D Fast Fourier Transform using 2D do-
main decomposition, Parallel Computing 39 (1) (2013) 58-77.
doi:https://doi.org/10.1016 /j.parco.2012.12.002.

L. Dalcin, M. Mortensen, D. E. Keyes, Fast parallel multidimensional
FFT using advanced MPI, Journal of Parallel and Distributed Comput-
ing 128 (2019) 137-150. doi:https://doi.org/10.1016/].jpdc.2019.02.006.

M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, Y. Kaneda, Tflops Direct
Numerical Simulation of Turbulence by a Fourier Spectral Method on
the Earth Simulator, in: SC’02: Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, IEEE, 2002, pp. 50-50.

A. G. Chatterjee, M. K. Verma, A. Kumar, R. Samtaney,
B. Hadri, R. Khurram, Scaling of a Fast Fourier Transform

19

[27]

[28]

[29]

[31]

and a pseudo-spectral fluid solver up to 196608 cores, Jour-
nal of Parallel and Distributed Computing 113 (2018) 77-91.
doi:https://doi.org/10.1016/j.jpdc.2017.10.014.

A. Grama, A. Gupta, G. Karypis, V. Kumar, Introduction to Parallel
Computing, Addison Wesley, Harlow, England, 2003.

T. Hoefler, A. Lumsdaine, W. Rehm, Implementation and performance
analysis of non-blocking collective operations for MPI, in: SC’07: Pro-
ceedings of the 2007 ACM/IEEE Conference on Supercomputing, IEEE,
2007, pp. 1-10. doi:https://doi.org/10.1145/1362622.1362692.

T. Hoefler, P. Kambadur, R. L. Graham, G. Shipman, A. Lumsdaine,
A case for standard non-blocking collective operations, in: Proceedings
of the 14th European Conference on Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface, Springer-Verlag, Berlin,
Heidelberg, 2007, p. 125-134.

T. Hoefler, P. Gottschling, A. Lumsdaine, Leveraging non-blocking col-
lective communication in high-performance applications, in: Proceed-
ings of the Twentieth Annual Symposium on Parallelism in Algorithms
and Architectures, SPAA ’08, Association for Computing Machinery,
New York, NY, USA, 2008, p. 113-115. doi:10.1145/1378533.1378554.
URL https://doi.org/10.1145/1378533.1378554

K. Kandalla, H. Subramoni, K. Tomko, et al., High-performance and
scalable non-blocking all-to-all with collective offload on InfiniBand clus-
ters: a study with parallel 3D FFT, Comput. Sci. Res. Dev. 26 (2011)
237. doi:https://doi.org/10.1007/s00450-011-0170-4.

D. Pekurovsky, P3DFFT: A Framework for Parallel Compu-
tations of Fourier Transforms in Three Dimensions, SIAM
Journal on Scientific Computing 34 (4) (2012) C192-C2009.
doi:https://doi.org/10.1137/11082748X.

S. Song, J. K. Hollingsworth, Designing and Auto-Tuning Parallel 3-D
FFT for Computation-Communication Overlap, in: Proceedings of the
19th ACM SIGPLAN symposium on Principles and practice of parallel
programming, 2014, pp. 181-192.

20

[32]

[33]

[34]

[36]

[37]

[38]

S. Song, J. K. Hollingsworth, Computation—communication
overlap and parameter auto-tuning for scalable parallel 3-
D FFT, Journal of Computational Science 14 (2016) 38-50.
doi:https://doi.org/10.1016/j.jocs.2015.12.001.

W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Programming
with the Message Passing Interface, The MIT Press, Cambridge, Mas-
sachussets, 1999.

W. Gropp, E. Lusk, A. Skjellum, Using MPI-2: Advanced Features of
the Message Passing Interface, The MIT Press, Cambridge, Massachus-
sets, 1999.

R. Nishtala, P. H. Hargrove, D. O. Bonachea, K. A. Yelick, Scal-
ing Communication-Intensive Applications on BlueGene/P Using One-
Sided Communication and Overlap, in: 2009 IEEE International
Symposium on Parallel and Distributed Processing, 2009, pp. 1-12.
doi:10.1109/TPDPS.2009.5161076.

J. H. Gobbert, H. Iliev, C. Ansorge, H. Pitsch, Overlapping of communi-
cation and computation in nb3dfft for 3d fast fourier transformations, in:
Jilich Aachen Research Alliance (JARA) High-Performance Computing
Symposium, Springer, 2016, pp. 151-159.

Y. Barigou, On Communication-Computation Overlap in High-
Performance Computing, Master’s thesis, University of Houston (May
2016).

Y. Barigou, E. Gabriel, Maximizing Communication-Computation
Overlap Through Automatic Parallelization and Run-time Tuning of
Non-blocking Collective Operations, International Journal of Parallel
Programming 45 (6) (2017) 1390-1416.

D. Takahashi, Automatic Tuning of Computation-Communication Over-
lap for Parallel 1-D FFT, in: 2016 IEEE International Conference
on Computational Science and Engineering (CSE) and IEEE Inter-
national Conference on Embedded and Ubiquitous Computing (EUC)
and 15th International Symposium on Distributed Computing and Ap-
plications for Business Engineering (DCABES), 2016, pp. 253-256.
doi:10.1109/CSE-EUC-DCABES.2016.193.

21

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[48]

[49]

R.C. Agarwal, F.G. Gustafson, M. Zubair, A high performance paral-
lel algorithm for 1-D FFT, in: Proceedings of the 1994 Conference on
Supercomputing, IEEE Computer Society Press, 1994, pp. 34-40.

R. Kumar, A. Mamidala, D. K. Panda, Scaling alltoall collec-
tive on multi-core systems, in: 2008 IEEE International Sym-
posium on Parallel and Distributed Processing, 2008, pp. 1-8.
doi:https://doi.org/10.1109/TPDPS.2008.4536141.

Y. Chen, X. Cui, H. Mei, Large-Scale FFT on GPU Clusters, in: Pro-
ceedings of the 24th ACM International Conference on Supercomputing,
ICS 10, Association for Computing Machinery, New York, NY, USA,
2010, p. 315-324. doi:10.1145/1810085.1810128.

M. Snir, S. Otto, S.-H. Lederman, D. Walker, J. Dongarra, MPI-The
Complete Reference: Volume 1, The MPI Core, The MIT Press, Boston,
Massachusetts, 1998.

J. Choi, J. Dongarra, D. Walker, Parallel matrix transpose algorithms on
distributed memory concurrent computers, Parallel Computing 21 (9)
(1995) 1387-1405. doi:https://doi.org/10.1016/0167-8191(95)00016-H.

J. J. Suh, V. Prasanna, An efficient algorithm for out-of-core matrix
transposition, IEEE Transactions on Computers 51 (2002) 420-438.
doi:https://doi.org/10.1109/12.995452.

J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 5th Edition, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2011.

M. Frigo, C. E. Leiserson, H. Prokop, S. Ramachandran, Cache-
Oblivious Algorithms, ACM Trans. Algorithms 8 (1) (2012) 1-22.
doi:https://doi.org/10.1145/2071379.2071383.

G. M. Morton, A computer orientated Geodetic Data Base; and a New
Technique in File Sequencing, Tech. rep., IBM Ltd (1966).

J. Thiyagalingam, O. Beckmann, P. H. J. Kelly, Is Morton layout com-
petitive for large two-dimensional arrays yet?, Concurr. Comput.: Pract.
Exper. 18 (11) (2006) 1509-1539. doi:https://doi.org/10.1002/cpe.1018.

22

[50]

[51]

[52]

S. Li, Y. Zhang, T. Hoefler, Cache-oblivious MPI Al-lto-All
communications based on morton order, IEEE Transactions
on Parallel and Distributed Systems 29 (3) (2018) 542-555.
doi:https://doi.org/10.1109/TPDS.2017.2768413.

S. Ramos, T. Hoefler, Modeling communication in cache-coherent
SMP systems: a case-study with Xeon Phi, in: HPDC 2013 -
Proceedings of the 22nd ACM International Symposium on High-
Performance Parallel and Distributed Computing, 2013, pp. 97-108.
doi:https://doi.org/10.1145/2462902.2462916.

D. Takahashi, An Implementation of Parallel 3-D FFT with 2-D De-
composition on a Massively Parallel Cluster of Multi-core Processors, in:
Parallel Processing and Applied Mathematics, Springer Berlin Heidel-
berg, 2010, pp. 606-614. doi:https://doi.org/10.1007/978-3-642-14390-
8_63.

23

Highlights Journal Pre-proof

Inherent overlapping in the parallel calculation of the Laplacian
Nonblocking communications benefit from data independency

Nonblocking approaches lead to better performance results than blocking solutions

Journal Pre-proof

Author Biography

Julio Sanchez-Curto received his Ph.D. in 2009 from the University
of Valladolid. He joined the Department of Signal Theory and
Communications at the University of Valladolid, where he holds an
Associate Professor position since 2018. His main research
interests include microwave engineering, optical solitons,
nonlinear interfaces and the development of parallel algorithms
for nonlinear propagation problems.

Conflict of Interest

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

[OThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

