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Abstract- Heart rate variability (HRV) is modulated by sleep stages and apneic events. 

Previous studies in children compared classical HRV parameters during sleep stages 

between obstructive sleep apnea (OSA) and controls. However, HRV-based 

characterization incorporating both sleep stages and apneic events has not been 

conducted. Furthermore, recently proposed novel HRV OSA-specific parameters have 

not been evaluated. Therefore, the aim of this study was to characterize and compare 

classic and pediatric OSA-specific HRV parameters while including both sleep stages 

and apneic events. A total of 1,610 electrocardiograms from the Childhood 

Adenotonsillectomy Trial (CHAT) database were split into 10-minute segments to extract 

HRV parameters. Segments were characterized and grouped by sleep stage (wake, W; 

non-rapid eye movement, NREMS; and REMS) and presence of apneic events (under 1 

apneic event per segment, e/s; 1-5 e/s; 5-10 e/s; and over 10 e/s). NREMS showed 

significant changes in HRV parameters as apneic event frequency increased, which were 

less marked in REMS. In both NREMS and REMS, power in BW2, a pediatric OSA-

specific frequency domain, allowed for the optimal differentiation among segments. 

Moreover, in the absence of apneic events, another defined band, BWRes, resulted in best 

differentiation between sleep stages. The clinical usefulness of segment-based HRV 

characterization was then confirmed by two ensemble-learning models aimed at 

estimating apnea-hypopnea index and classifying sleep stages, respectively. We surmise 

that basal sympathetic activity during REMS may mask apneic events-induced 

sympathetic excitation, thus highlighting the importance of incorporating sleep stages as 

well as apneic events when evaluating HRV in pediatric OSA. 

Keywords- Obstructive sleep apnea; Children; Heart rate variability; Apneic events; 

Sleep stages; Childhood Adenotonsillectomy Trial. 
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1. INTRODUCTION 

The spectral characteristics of cardiac function differ between wakefulness and 

sleep and are closely modulated by sleep stage. Typically, there is a sympathetic 

inhibition along with parasympathetic predominance during non-rapid eye movement 

sleep (NREMS), leading to a decrease in heart rate (HR) and blood pressure (BP) [1,2].  

Conversely, the trends during wakefulness (W) and rapid eye movement sleep (REMS) 

consist of sympathetic predominance with parasympathetic inhibition, leading to 

increased heart rate and BP [2]. This modulation of both branches of the autonomic 

nervous system (ANS) can be non-invasively monitored by heart rate variability (HRV) 

analyses [3]. Accordingly, previous studies have identified these ANS alterations during 

sleep as diminished high frequency (HF) HRV activity and elevated low frequency (LF) 

and LF/HF ratios during W and REMS, and reciprocal changes during NREMS in both 

healthy adults and children [1,2,4–6]. 

Together with the changes in the cardiac dynamics that take place through sleep 

stages, children cardiac behaviors during sleep can also be altered by pediatric obstructive 

sleep apnea (OSA) [7,8]. In its original description in adults, OSA-related alterations in 

heart rhythm were defined as a pattern of continuing bradycardia during apneic episodes, 

followed by an abrupt tachycardia when the apneic events end [9]. In children, these 

patterns have also been detected, but with a high degree of variability depending on the 

presence and duration of the apneic events [7,8,10–12]. Thus, these alterations in the 

healthy ANS performance threaten the cardiac health in children, with pediatric OSA 

having been linked to increased cardiovascular risks [13,14], thereby emphasizing the 

usefulness of HRV analysis in the pediatric OSA context. 

Previous studies have analyzed pediatric OSA-related alterations by comparing 

HRV patterns across sleep stages between children suffering from OSA and healthy 
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children [15–20]. However, these studies addressed the differences emerging across the 

sleep stages but did not assess the specific effects of apneic events [15–17]. Furthermore, 

some of these reports excluded those segments in the recordings containing apneic 

episodes from their analyses [18,19,21]. Therefore, HRV assessments that include both 

sleep stages and apneic events or their absence has not yet been conducted. Furthermore, 

we have recently defined and characterized three pediatric OSA-specific HRV spectral 

bands [22]. Those bands have been proposed as an alternative to the classic very low 

frequency (VLF), LF, and HF ranges in pediatric OSA studies, establishing the changes 

in the activity of those bands and concomitant changes in OSA severity and resolution of 

OSA after treatment [23]. Accordingly, the analysis of the evolution of the HRV activity 

in these specific-spectral bands across sleep stages, and using segments with different 

number of apneic events, is a natural step forward required to gain insights into the 

behavior of these novel frequency bands. 

Therefore, we hypothesized that HRV analysis at segmented time intervals that 

segregate and include the information on sleep stages and apneic events and employ 

analyses of both classic and OSA-specific HRV parameters could reveal previously 

unknown information of ANS alterations during night. A secondary goal was to evaluate 

the potential clinical application of the extracted features from these segments for the 

automatic diagnosis of pediatric OSA and for sleep stage classification. 

2. SUBJECTS AND SIGNALS  

This study involved 1,610 polysomnographic (PSG) studies from children ages 5 

to 9.9 years from the Childhood Adenotonsillectomy Trial (CHAT) database (Number of 

Clinical Trial NCT00560859). All the information regarding rationale, design, and 

primary outcomes of the original CHAT study can be consulted in the published literature 

[24,25]. The CHAT data is publicly available under request at 
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https://sleepdata.org/datasets/chat. The children included in the CHAT study were 

referred to a sleep laboratory for a nocturnal PSG due clinical symptoms suggestive of 

the presence of OSA. The CHAT population involved in the current study was: i) 451 

children with OSA included the baseline group, who underwent an initial nocturnal PSG, 

met the inclusion criteria of the original study, and were randomized to different OSA 

treatments (see reference [25] for more details); ii) 755 children from the nonrandomized 

group, who did not meet the inclusion criteria of the original study but whose first 

nocturnal PSG was available; and iii) 404 children from the follow-up group, who 

completed a second overnight PSG, 7-months after the initial PSG with approximately 

half having undergo adenotonsillectomy as standard treatment of OSA and the rest being 

allocated to the watchful waiting group. For the nonrandomized group, 75% of the 

subjects were assigned to the training set (567 recordings), 12.5% to the validation set 

(94 recordings), and the remaining 12.5% were assigned to the test set (94 recordings). 

For the baseline and follow-up groups, 50% of the 404 subjects with a follow-up study 

were assigned to the training set (202 recordings from each baseline and follow-up), 25% 

were assigned to the validation set (101 recordings from each baseline and follow-up), 

and 25% to the test set (101 recordings from each baseline and follow-up). Of note, for 

each child with both follow-up and baseline recordings, we ensured that both recordings 

were included in the same group to avoid biases. The remaining 47 recordings from 

baseline without a follow-up study were assigned to the training set. Demographic and 

clinical data of the children included in the study are shown in Table 1. 

The sleep studies were scored and annotated following the scoring rules established 

by the American Academy of Sleep Medicine (AASM) [26]. Based on these annotations, 

the diagnosis of OSA was based on the apnea-hypopnea index (AHI), defined as the 

number of apneic and hypopneic events per hour of sleep (e/h) [26]. Thus, in this study 
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we assigned each child to one out of four commonly used OSA severity groups, as 

follows: no OSA (AHI < 1 e/h), mild OSA (1 ≤ AHI < 5 e/h), moderate OSA (5 ≤ AHI < 

10 e/h), and severe OSA (AHI ≥ 10 e/h).  

Table 1. Demographic and clinical data of the children included in the CHAT database. Data are 

presented as median [interquartile range] or n (percentage); BMI: body mass index; AHI: apnea–

hypopnea index; e/s: apneic events per segment; W: Wake; NREMS: non rapid eye-movement; 

REMS: rapid eye movement. 

 Training set Validation set  Test set 

Subjects (n) 1018 296 296 

Age (years) 7.0 [2.1] 6.9 [2.0] 7.0 [2.0] 

Males (n) 500 (49.12%) 129 (43.58%) 145 (48.99%) 

BMI (kg/m2) 17.28 [5.81] 17.68 [6.22] 17.09 [6.61] 

AHI (e/h) 2.23 [4.15] 3.8 [7.76] 1.46 [2.07] 

AHI ≥ 1 (e/h) 771 (75.74%) 246 (83.11%) 249 (84.12%) 

AHI ≥ 5 (e/h) 264 (25.93%) 96 (32.43%) 108 (36.49%) 

AHI ≥ 10 (e/h) 124 (12.18%) 46 (15.54%) 45 (15.20%) 

#Segments < 1 e/s 40105 (79.71%) 11391 (77.69%) 11326 (77.16%) 

#Segments 1 to 5 e/s 8419 (16.73%) 2677 (18.26%) 2748 (18.72%) 

#Segments 5 to 10 e/s 1023 (2.03%) 371 (2.53%) 394 (2.68%) 

#Segments ≥ 10 e/s 770 (1.53%) 223 (1.52%) 211 (1.44%) 

#Segments W 8733 (17.36%) 2590 (17.66%) 2604 (17.74%) 

#Segments NREMS 34961 (69.48%) 10151 (69.23%) 10177 (69.33%) 

< 1 e/s 27766 (79.42%) 7833 (77.17%) 7792 (76.57%) 

1 to 5 e/s 6164 (17.63%) 1988 (19.58%) 2036 (20.00%) 

5 to 10 e/s 602 (1.72%) 210 (2.07%) 243 (2.39%) 

≥ 10 e/s 429 (1.23%) 120 (1.18%) 106 (1.04%) 

#Segments REMS 6623 (13.16%) 1921 (13.10%) 1898 (12.93%) 

< 1 e/s 3606 (54.45%) 968 (50.39%) 930 (49.00%) 

1 to 5 e/s 2255 (34.05%) 689 (35.87%) 712 (37.51%) 

5 to 10 e/s 421 (6.35 %) 161 (8.38%) 151 (7.96%) 

≥ 10 e/s 341 (5.15%) 103 (5.36%) 105 (5.53%) 
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3. METHODS 

The methods employed herein can be partitioned into three stages. First, we 

performed a signal processing stage to partition all of the recordings into timed segments 

with artefact removal and extract the ECG channel for subsequent processing. Secondly, 

we conducted a feature extraction stage to achieve ANS characterization of the segments 

included in the study. Finally, we assessed the clinical relevance of the features by 

evaluating its ability to conduct pediatric OSA diagnosis and to automatically classify 

sleep stages. Figure 1 shows a global overview of the protocol followed across the study, 

from the ECG acquisition to the evaluation of the clinical applicability of the HRV 

segments characterization based on the two approaches considered. Details of the whole 

protocol are included in the next subsections. 

3.1. Signal processing and segmentation 

For HRV analysis, the electrocardiogram (ECG) channel from each PSG was 

extracted and pre-processed. The ECG signals were originally recorded at sampling 

frequencies of 200, 256 or 512 Hz. Signals were split into 10-minute segments. The 

duration of these segments was selected since it constitutes a trade-off between a 

complete description of the VLF fluctuations in the HRV spectral domain and limiting 

the number of segments with two or more sleep stages. Then, for each segment, a R peak 

detection algorithm was applied, as proposed by Benitez et al. [27]. This algorithm has 

been previously implemented to extract the signals required for HRV characterization in 

pediatric OSA [22,23,28]. After the R peak detection, we computed the R-R intervals, 

and conducted an artifact rejection procedure to include only physiologically coherent 

intervals (N-N intervals). To this effect, R-R  intervals that did not fit the following rules 

were discarded [29]: (i) 0.33 s < R-R interval < 1.5 s and (ii) maximum difference between 

a R-R interval and the previous one of 0.66s. Following artifact rejection, those segments 
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Figure 1. Flowchart of the protocol followed across the study from the ECG acquisition to the 

evaluation of the clinical applicability of the characterization of HRV segments following two 

approaches: OSA diagnostic ability (left branch) and sleep stage classification (right branch). 

Green boxes means that the corresponding stage of the protocol was applied per subject. Blue 

boxes means that it was a segment-level stage. 
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containing less than 500 normal R peaks were removed. This threshold was selected by 

establishing 50 beats per minute (bpm) as the minimum heart rate for children between 5 

and 10 years old [30]. 

The analysis of signals in the frequency domain requires a uniform sampling rate. 

Therefore, after the erroneous intervals removal, each segment was resampled to a 

constant rate of 3.41 Hz, based on HRV signal interpolation. Also, through this 

interpolation the erroneous beats that were removed are replaced, fulfilling with the 

recommendation of the guidelines for the analysis of HRV signal [3]. The sampling rate 

of 3.41 Hz was selected in order to use a power of two window-length to estimate the 

power spectral density (PSD) using the Fast Fourier Transform (FFT) [22,23,29]. Then, 

the normalized PSD (PSDn) to the whole spectrum power of each segment was estimated 

using a Hamming window of 211 samples (2048 samples), making PSD estimation 

computationally efficient. 

Later, a continuous score was assigned to each segment. Hence, if a 10-minute 

segment contained one apneic event, the assigned score was one. If it contains two and a 

half apneic events, the score assigned was 2.5, and so on. Then, to conduct the exploration 

of the pediatric OSA effects in each segment, we assigned them into four severity groups. 

For this purpose, we adopted the classification commonly established to categorize OSA 

severity in pediatric subjects [22,31–33]: no apneic segments (< 1 apneic event per 

segment, e/s), 1 e/s ≤ apneic events < 5 e/s, 5 e/s ≤ apneic events < 10 e/s, and ≥ 10 e/s. 

Finally, we also assigned one of three sleep stages to each 10-minute segment (W, 

NREMS or REMS). To this effect, the original CHAT sleep stage scoring was available. 

This initial sleep stage annotation was performed by medical experts based on the AASM 

rules for scoring [26], and following an epoch-by-epoch approach. In the original study, 

PSG recordings were divided into consecutive 30s epochs, assigning a specific sleep stage 
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to each one of them. Therefore, based on this 30s annotations, we considered that a 10-

minute segment belongs to a particular sleep stage if 75% of the time was labeled with 

that stage (7.5 minutes, i.e., at least 15 of the original 30s epochs). This was a trade-off 

between reducing the overall number of segments containing sleep stage transitions and 

also not to increase the complexity introduced by 3 different NREMS sub-stages. Based 

on these rules a total of 11.4% of the segments could not be assigned to any sleep stage 

and were discarded from the study. Of note, this percentage is relatively low compared to 

the large number of segments available in this study. 

3.2. ANS Characterization of the different type of segments 

3.2.1. Time domain features 

We used three common time-domain metrics to evaluate differences between HRV 

activity in each type of segment under study:  

• Mean heart rate (mHR), measured in bpm.  

• Standard deviation of normal-to-normal interval time series (SDNN). This 

parameter globally reflects the variability in the NN time series acting as an 

overall ANS activity measure [3]. 

• Root Mean Square of successive differences of NN intervals (RMSSD), 

which is mainly influenced by parasympathetic activity [3]. 

3.2.2. Frequency domain features 

The remaining parameters included in the study were computed in the frequency 

domain. We have included classical frequency domain HRV measures, as well as relative 

power (RP) in the three recently defined pediatric OSA-specific spectral bands, all of 

them extracted from the PSDns: 

• RP inside VLF band (RPVLF, 0-0.04 Hz). The physiological meaning of the 
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activity along this band is controversial, hypothesized to be related to slow 

regulatory mechanism, such as thermoregulation or renin-angiotensin 

system [34], but the frequency and amplitude of its oscillations could also 

be influenced by the sympathetic nervous system (SNS) [35]. This 

parameter has been shown to be highly correlated with SDNN [35]. 

• RP inside LF band (RPLF, 0.04-0.15 Hz). This band may reflect both SNS 

and parasympathetic nervous system (PNS) activity, and also baroreceptors 

activity regulating BP [34,35]. LF activity has also been correlated with 

SDNN [35]. 

• RP inside HF band (RPHF, 0.15-0.40 Hz). HF activity reflects HR changes 

due to respiratory cycles and has been related to PNS activity, being 

correlated with RMSSD [34,35]. 

• Normalized power in LF (LFn), computed as the ratio between RP in LF and 

the sum of RP inside LF and HF. This parameter is commonly used as an 

index of sympathovagal balance, as the normalization emphasizes the 

balanced activation of the two branches of the ANS [3]. 

• RP inside BW1 band (RPBW1, 0.001-0.005 Hz). This band was the first out 

of three pediatric OSA-specific frequency bands that we reported in a 

previous work, and has been linked to macro-sleep disruptions [22]. 

• RP inside BW2 band (RPBW2, 0.028-0.074 Hz). This pediatric OSA-related 

frequency band has been linked to the duration and number of apneic events 

[22], and has been proposed as a potential biomarker of pediatric OSA 

resolution [23]. 

• RP inside BWRes band (RPBWRes, adaptive band of ±0.04 Hz around the 

frequency of the maximum amplitude inside the HF band). This individual 
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adaptive band, designed to consider changes of the respiratory peak inside 

HF due to age, has been correlated with oxygen desaturations [22]. 

3.3. Evaluation of potential clinical applicability 

In light of the HRV alterations attributable to the presence of OSA in children and 

the effects of sleep stages, we selected two ensemble-learning boosting algorithms to 

evaluate the clinical applicability of the HRV segment characterization performed in the 

previous steps described above: least-squares boosting (LSBoost) for pediatric OSA 

diagnosis, and adaptive boosting (AdaBoost) for sleep stage classification. Both of these 

methodologies have previously proven useful in the context of OSA [32,36–39].  

3.3.1. LSBoost for pediatric OSA diagnosis 

We selected LSBoost as a regression algorithm to estimate the number of apneic 

events in each time segment. Ensemble-learning methods combine multiple weak base-

learners decisions, leading to a robust algorithm with high generalization ability [40]. 

When using boosting algorithms, the estimations of the base-learners are sequentially 

computed. Accordingly, the next learner is trained based on the estimations of the 

previous ones [41]. In the present study, the target variable 𝑦𝑖 was the number of apneic 

events of each HRV segment, the estimated output 𝑓𝑚(𝑥) was the estimated number of 

apneic events for each segment, and 𝑥𝑖 the feature vector for each HRV segment 

composed of the ten extracted features detailed in the previous section. We decided to use 

decision stumps (trees with three nodes, one parent and two children) as base-learners as 

this approach conduct a feature selection stage de facto when training the models [36].The 

formal definition of LSBoost can be specified this way [41,42]: 

1. Being 𝑓𝑚(𝑥) the estimated output, set m to 0 and initialize the corresponding 

estimated output 𝑓0(𝑥). 
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2. Increase m (the number of learners) by 1 and obtain the residuals as: 𝑈𝑖 =  𝑦𝑖 −

 𝑓𝑚−1(𝑥𝑖) for i=1,2…,N, where N refers to the number of segments in the 

training set. 

3. Fit the residual vector with least squares loss function, the weak learner h, and 

the predictors for each segment 𝑥𝑖: (𝜆𝑚, 𝑎𝑚) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆,𝒂 ∑ [𝑈𝑖
𝑚 −𝑁

𝑖=1

𝜆ℎ(𝑥𝑖; 𝑎)]2, where 𝜆 is a regularization parameter ranging from 0 to 1, and 𝑎 the 

set of parameters of h. 

4. Update 𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + 𝜆𝑚ℎ(𝑥; 𝑎𝑚). 

5. Repeat iteratively steps 2 to 4 until m = 𝑁𝐿𝑆𝐵, being 𝑁𝐿𝑆𝐵 the number of learners 

included. 

Once the estimation for each HRV segment was obtained, the AHI for each subject can 

be computed as the rate between the estimated apneic events and the total recording time. 

However, using the total recording time leads to an underestimation of the actual AHI. 

Accordingly, we added a subsequent linear regression stage between the real and 

estimated AHI, which was modeled using the training set. Once that the model was fitted, 

it was applied to the AHI estimated in the validation and test sets, to correct for the 

underestimation trend imposed by the total recording time [31,43]. 

Two hyperparameters that needed to be optimized included: 𝑁𝐿𝑆𝐵 and 𝜆. We varied 

λ from 0.1 to 1 in steps of 0.1, and NLSB was varied from 1 to 10,000 increasing the step 

each multiple of 10 (from 1 to 9 in steps of 1, from 10 to 100 in steps of 10, and so on). 

All the trained models for each (𝑁𝐿𝑆𝐵 , λ) pair with the training set were subsequently 

evaluated using the validation set, and the optimum (𝑁𝐿𝑆𝐵 , λ) pair was selected as the one 

that maximized multiclass Cohen’s kappa (𝑘). 

Furthermore, as an effort to explain the role of each feature in the automated AHI 

estimation, we computed the relative importance of the included features. When using 
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decision stumps, every ℎ(𝑥; 𝑎𝑚) is function of a unique feature, so a procedure of feature 

selection is performed by default at each iteration [41,42]. Based on the mean squared 

error (MSE) of the empirical improvement across the trees, the relative importance can 

be estimated as [36,44]: 

𝐼𝑗
2 =

1

𝑁𝐿𝑆𝐵
∑ 𝑀𝑆𝐸𝑚(𝑥𝑗) ∙ 𝑤𝑚 − (𝑀𝑆𝐸𝑚

𝑝
(𝑥𝑗) ∙ 𝑤𝑚

𝑝
+ 𝑀𝑆𝐸𝑚

𝑟 (𝑥𝑗) ∙ 𝑤𝑚
𝑟 )

𝑁𝐿𝑆𝐵

𝑚=1

,     (1) 

where 𝑀𝑆𝐸𝑚 is the mean squared error for the 𝑚 regression tree linked to 𝑥𝑗, 𝑤𝑚 the 

weight of the parent node probability, and 𝑝 − 𝑟 the parameters associated with the 

children nodes. Once that 𝐼𝑗
2 of each feature is obtained, the predictors importance can be 

scaled as a percentage of contribution, with higher values meaning higher influence in 

the LSBoost model [45]. 

3.3.2. AdaBoost for sleep stage classification 

The other approach to assess the clinical applicability of the HRV extracted features 

was to conduct per-segment sleep stage classification. To do this, we selected the boosting 

classification algorithm AdaBoost. Similar to LSBoost, AdaBoost combines several weak 

base classifier decisions sequentially, obtaining a more robust final classification 

decision, that is, a more generalized decision [40]. In this case, we selected linear 

discriminant analysis (LDA) as weak classifiers that have proven their applicability along 

with AdaBoost in previous studies addressing OSA [32,37]. 

At each 𝑚 iteration of the AdaBoost algorithm, it assigns a weight 𝑤𝑖
𝑚 to each 

vector 𝑥𝑖 in the training group. Then, the classifier of that iteration is trained with the 

corresponding weighted features, and the performance is evaluated computing an error, 

𝜀𝑚. This 𝜀𝑚 is used to determine the weighted vote of the classifier trained in that 

iteration, 𝛼𝑚 [40], so that the smaller the 𝜀𝑚, the higher the contribution of the classifier 
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to the final decision. When the iteration ends, the weights of the misclassified 𝑥𝑖 are 

updated (𝑤𝑖
𝑚+1) [40]. At this point, the weights of all features are normalized, 

maintaining their original distribution [46]. Through this reweighting, the LDA classifiers 

in the next iterations give more importance to those 𝑥𝑖 misclassified in previous ones, 

thereby increasing the probability of being rightly classified [40,46]. 

As our aim was to classify each segment into one out of three sleep stages (W, 

NREMS and REMS), we used AdaBoost.M2, which is the AdaBoost algorithm version 

designed for multiclass classification [46]. When using AdaBoost.M2, 𝜀𝑚 is computed as 

follows [46]: 

                 𝜀𝑚 =
1

2
∙ ∑ ∑ 𝑤𝑖,𝑙

𝑚 ∙ (1 − 𝑐𝑚(𝑥𝑖 , 𝑙𝑡𝑟𝑢𝑒) + 𝑐𝑚(𝑥𝑖 , 𝑙))

𝑙≠𝑙𝑡𝑟𝑢𝑒

𝑁

𝑘=1

,          (2) 

where 𝑙 is a categorical variable representing the multiple classes, 𝑙𝑡𝑟𝑢𝑒 is the real class 

labeled for 𝑥𝑖, and 𝑐𝑚 is the confidence of LDA prediction for a vector 𝑥𝑖 and a given 

class. To conduct the final classification task, the class with the highest sum of votes from 

all the LDA classifiers is returned, considering the weight of their predictions 𝛼𝑚 as [46]: 

                                                     𝛼𝑚 =  ln(𝛽𝑚),                                                         (3) 

with 𝛽𝑚 defined as 
(1−𝜀𝑚)

𝜀𝑚
 [46]. In order address the potential issue of overfitting, we also 

included a learning rate 𝜐 to redefine 𝛽𝑚 in each iteration (𝛽𝑚)𝜐. As in the case of 

LSBoost, we needed to fit two hyperparameters, the number of LDA classifiers (𝑁𝐴𝐵) 

and 𝜐. The combinations of (𝑁𝐴𝐵 , 𝜐) values trained were the same than (𝑁𝐿𝑆𝐵 , λ), and we 

selected the combination of 𝑁𝐴𝐵 and 𝜐 that maximized the multiclass 𝑘 in the validation 

set. 

Finally, we also conducted a feature importance analysis in the sleep stage 

classification task. In this case, as we use a linear weak learner, we decided to use local 

interpretable model-agnostic explanation (LIME) technique with the AdaBoost model 
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[47]. LIME is an explanation technique for machine-learning models that provides 

explanations of the predictions performed in an interpretable and faithful way [47]. The 

rationale behind LIME is to learn an interpretable model of the classifier locally around 

each prediction. Thus, for each instance of the test set, we computed LIME fitting a linear 

model locally, obtaining a weighted coefficient for each instance and feature, 𝑊𝑖𝑗. Then, 

the global importance of each feature can be obtained as [47]: 

                                                     𝐼𝑗 =  √∑|𝑊𝑖𝑗|

𝑛

𝑖=1

  .                                                    (4) 

After the computation of 𝐼𝑗, the global importance can be scaled as a percentage of the 

contribution, obtaining the relative importance for the AdaBoost Model as well. 

3.4. Statistical analysis 

The features computed in each segment in the training set did not fit either 

normality or homoscedasticity assumptions. Consequently, the non-parametric Mann-

Whitney U test was used to assess two-by-two statistical differences between segment 

severity groups in each sleep stage, as well as between sleep stages in each segment 

severity group. Statistically significant differences between segment features were 

defined as those p-values < 0.05 after Bonferroni correction (eighteen comparisons). 

However, when large sample sizes are available, the p-value by itself would not be 

sufficient for a comprehensive interpretation of the results [48]. Thus, we decided to 

complement the evaluation of differences between segment groups reporting the effect 

size of each comparison through the non-parametric Cohen’s d measure [49]. Based on 

the Cohen’s d, results can be interpreted as small (0.2 ≤ d < 0.5), medium (0.5 ≤ d < 0.8) 

or large (d ≥ 0.8) effect size [48,50].  We also visually represented the differences between 

segment groups with boxplots of the distribution for the different features considered. 
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Regarding the AHI estimations obtained from LSBoost, we evaluated its OSA 

diagnostic ability by splitting the subjects into four severity levels (No OSA: AHI < 1 

e/h; Mild OSA: 1 ≤ AHI < 5 e/h; Moderate OSA: 5 ≤ AHI < 10 e/h; Severe OSA: AHI ≥ 

10 e/h), and obtaining the confusion matrix, the four-class accuracy (Acc4) and 𝑘. Besides, 

the diagnostic performance using the three common AHI cutoffs (1 e/h, 5 e/h and 10 e/h) 

was also evaluated using sensitivity (Se), specificity (Sp), accuracy (Acc), positive 

predictive value (PPV), negative predictive value (NPV), positive and negative likelihood 

ratios (LR+, LR-), the area under the receiver operating characteristics curve (AUC), and 

F1-score, which are widely used metrics to assess OSA diagnosis [12,31–33,36–

39,43,51–53]. 

Regarding the AdaBoost model, the overall performance in the classification task 

into three sleep stages (W, NREMS and REMS) was reported by means of a confusion 

matrix, the three-class accuracy (Acc3) and 𝑘. Additionally, for specific sleep stages, 

individual performance was evaluated in terms of PPV (also known as precision), Se (also 

known as recall), and F1-score (harmonic mean of precision and recall), as those metrics 

are commonly assessed to perform this task [54–56]. 

4. RESULTS 

4.1. Exploratory analysis in the training set 

4.1.1. Differences in the PSDns between segments 

Figure 2 shows the averaged PSDns of the segments in the training set by 

considering three sleep stages and differentiating between no apneic/hypopneic 

segments(< 1 e/s) and apneic/hypopneic segments (> 1 e/s). The three classical spectral 

bands and two of the pediatric OSA-specific frequency bands have been shaded in the 

background (as mentioned above, the third OSA-specific band, BWRes, adapts to each  
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Figure 2. A) Averaged PSDns in the 0-0.4 Hz range for five types of segments in the training set. 

Shaded areas represent those frequencies corresponding with the three classic spectral HRV bands 

(VLF: 0-0.04 Hz; LF: 0.04-0.15 Hz; HF: 0.15-0.4 Hz) and two of the pediatric OSA-specific 

frequency bands (BW1: 0.001-0.005 Hz; BW2: 0.028-0.074 Hz). B) Zoomed area in the VLF 

range. 

subject). It can be observed that PSDns within the REMS stage behave more similar 

between control and apneic segments than in the case of NREMS segments. Segments 

among W, NREMS, and REMS were better differentiated in frequencies below the LF 

range (see Figure 2B). Inside the BW2 band, NREMS apneic event segments presented 

higher power spectral values than the rest of groups. Finally, inside the HF band, NREMS 

segments presented higher power spectral values, as expected due to parasympathetic 

predominance, with NREMS no apneic segments showing higher activity than NREMS 

segments containing apneic segments. 

4.1.2. Descriptive analysis of the features 

Figures 3-5 show the boxplots for the HRV segments differentiated by sleep stage 

and segment severity groups in the temporal measures, classic frequency bands, and 
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pediatric OSA-related frequency bands, respectively. As commented in the methods 

section, due to the high number of the HRV segments involved in the study, rather than 

only using p-values, a better way to quantify the differences found among the segments 

is considering the effect size. Thus, Table 2 shows the Cohen’s d measure to assess the 

effect size for the different comparisons conducted, with those effect sizes corresponding 

to statistically significant p-values highlighted in bold. The specific p-value for each 

comparison can be seen in the Supplementary Table 1. 

Although most of the comparisons resulted in statistically significant differences 

(p-value < 0.05), many of these comparisons showed negligible effect size (d < 0.2, see 

Table 2), which emphasizes the applicability of the evaluation of the differences through 

d values. Regarding intra-sleep stage comparisons, it can be observed in Table 2 that 

while NREMS showed a high number of comparisons with considerable effect size 

between segments with different number of apneic events (d = 0.5 or higher), these effects 

were attenuated in REMS. Particularly, NREMS RPBW2 displayed the highest effect size 

in five out of six comparisons between apneic severity segments. These marked 

differences in NREMS can also be observed as an increment of RPBW2 as the presence of 

apneic events increased (see Figure 5B). Furthermore, the increased tendency in NREMS 

was also apparent in mHR, SDNN, RPLF, and LFn, and to a lesser degree, i.e., lower d 

values. In contrast, RPHF and RPBWRes showed decreasing tendencies inside these 

frequency ranges as the frequency of apneic events increased, with RPBWRes showing 

medium or large effects for all the comparisons considered. RMSSD was the only measure 

that showed negligible effect size within the two sleep stages. Inside REMS, SDNN and 

RPVLF also showed negligible values in all the comparisons performed, and RPHF and 

RPBW1 obtained negligible or small effect sizes too. The reduction of the effect size inside 

REMS can also be observed in the boxplots (Figures 3-5) where the parameters followed 
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similar tendencies than in NREMS but are less pronounced. RPBW2 and mHR displayed 

the largest differences between apneic severity segments, with mHR consisting of the only 

parameter  

 

Figure 3. Boxplot distribution of the temporal features computed for each type of segment 

included in the study in the training set. A) mHR boxplots; B) SDNN boxplots; C) RMSSD 

boxplots. 

 

Figure 4. Boxplot distribution of the frequency features in the classic HRV frequency bands 

computed for each type of segment included in the study in the training set. A) RPVLF boxplots; B) 

RPLF boxplots; C) RPHF boxplots; D) LFn. 
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Figure 5. Boxplot distribution of the frequency features in the pediatric OSA-specific HRV 

frequency bands computed for each type of segment included in the study in the training set. A) 

RPBW1 boxplots; B) RPBW2 boxplots; C) RPBWRes boxplots. 

 

that allowed to differentiate between 1 ≤ apneic events < 5 segments and 5 ≤ apneic events 

< 10 segments (p-value < 0.05), albeit with an associated small effect size (d = 0.263). 

In the inter sleep stages comparisons, when assessing sleep stages in the absence of 

apneic events, RPBW2 was the only measure showing negligible effect size between sleep 

stages, thus corroborating the high dependence of this information on apneic events. 

RPBWRes showed the highest effect size (d > 0.8) for W vs. NREMS, and NREMS vs. 

REMS segments. For the W vs. REMS comparison, only mHR and RPBWRes showed at 

least a medium effect size, being higher in mHR. When including the presence of apneic 

events, RPBWRes and RPVLF allowed to differentiate (d > 0.5) between NREMS and REMS 

for 1 ≤ apneic events < 5 segments, with higher effect size for RPBWRes. For the 5 ≤ apneic 

events < 10 segments and ≥10 apneic events segments, RPBW2 was again the parameter 

that allowed for a better differentiation between NREMS and REMS, showing large effect 

size in both cases. 
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Table 2. Cohen’s d measures obtained to assess the effect size associated to the 

comparisons performed between all the types of segments considered in the study in the 

training set.  

Intra-Stages NREMS Segments 

Feature 

< 1  

vs  

1≤events<5  

< 1  

vs  

5≤events<10 

< 1  

vs  

≥ 10 events 

1≤events<5 

vs  

5≤events<10 

1≤events<5 

vs  

≥ 10 events 

5≤events<10 

vs  

≥ 10 events 

mHR 0.147 0.539** 0.634** 0.412* 0.516** 0.100 

SDNN 0.318* 0.456* 0.745** 0.140 0.433* 0.312* 

RMSSD 0.076 0.065 0.123 0.011 0.050 0.068 

RPVLF 0.610* 0.754* 0.579* 0.137 0.035 0.201 

RPLF 0.325 1.007*** 2.038*** 0.628** 1.553*** 0.733** 

RPHF 0.633** 1.042*** 1.335*** 0.452* 0.773** 0.413* 

LFn 0.578** 1.233*** 1.912*** 0.584** 1.196*** 0.625** 

RPBW1 0.440* 0.483* 0.072 0.028 0.337 0.391 

RPBW2 0.546** 1.531*** 3.106*** 0.779** 2.017*** 0.963*** 

RPBWRes 0.608** 1.023*** 1.272*** 0.541** 0.859*** 0.565** 

Intra-Stages REMS Segments 

Feature 

< 1  

vs  

1≤events<5  

< 1  

vs  

5≤events<10 

< 1  

vs  

≥ 10 events 

1≤events<5 

vs  

5≤events<10 

1≤events<5 

vs  

≥ 10 events 

5≤events<10 

vs  

≥ 10 events 

mHR 0.242* 0.500** 0.904*** 0.263* 0.671** 0.398* 

SDNN 0.036 0.043 0.148 0.082 0.190 0.115 

RMSSD 0.070 0.000 0.028 0.071 0.101 0.031 

RPVLF 0.142 0.194 0.064 0.054 0.080 0.142 

RPLF 0.046 0.177 0.423* 0.134 0.473* 0.587** 

RPHF 0.156 0.202* 0.388* 0.049 0.243* 0.213* 

LFn 0.097 0.043 0.503** 0.054 0.392* 0.459* 

RPBW1 0.067 0.084 0.134 0.017 0.203* 0.224* 

RPBW2 0.105 0.220* 0.875*** 0.113 0.751** 0.573** 

RPBWRes 0.152 0.243 0.511** 0.103 0.401 0.379 

Inter-Stages <1 event Segments 
1≤events<5 

Segments 

5≤events<10 

Segments 

≥ 10 events 

Segments 

Feature 
W vs 

NREMS 
W vs REMS 

NREMS 

vs REMS 

NREMS vs 

REMS 

NREMS vs 

REMS 

NREMS vs 

REMS 

mHR 0.958*** 0.755** 0.115 0.190 0.007 0.298 

SDNN 0.223* 0.204* 0.023 0.343* 0.452* 0.709** 

RMSSD 0.126 0.279* 0.144 0.299* 0.243* 0.300 

RPVLF 0.547** 0.441* 1.074*** 0.597** 0.569** 0.647** 

RPLF 0.417* 0.261* 0.158 0.210* 0.927*** 1.096*** 

RPHF 1.233*** 0.286 0.954*** 0.480* 0.060 0.176 

LFn 1.168*** 0.453* 0.728** 0.209* 0.465* 0.700** 

RPBW1 0.589** 0.008 0.739** 0.334* 0.313* 0.539** 

RPBW2 0.062 0.021 0.080 0.351* 1.005*** 1.420*** 

RPBWRes 1.460*** 0.514** 1.133*** 0.764** 0.361* 0.072 

NREMS: Non rapid eye movement sleep; REMS: Rapid Eye Movement Sleep; mHR: Mean Heart Rate; 

SDNN: Standard deviation of normal-to-normal interval time series; RMSSD: Root Mean Square of 

successive differences of NN intervals; RP: Relative Power; VLF: Very Low Frequency; LF: Low 

Frequency; HF: High Frequency; W: Wake. 

Statistically significant comparisons (p-value <0.05) have been highlighted in bold. 

*Small effect (0.2 ≤ d < 0.5); ** medium effect (0.5 ≤ d < 0.8); *** large effect (d ≥ 0.8). 
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4.1.3. LSBoost and AdaBoost models training and validation 

Following extraction of the ten features for each segment, we optimized both the 

LSBoost and AdaBoost models to evaluate the clinical applicability of the previous HRV 

characterization. As previously mentioned, this optimization was based on the pair of 

hyperparameters that maximized Cohen’s k in the validation set. The combinations of 

(𝑁𝐴𝐵 , 𝜐) values trained were the same than (𝑁𝐿𝑆𝐵, λ), varying 𝑁𝐴𝐵 and 𝑁𝐿𝑆𝐵 from 1 to 

10,000, increasing the step each multiple of 10, and 𝜐 and λ from 0.1 to 1 in steps of 0.1. 

Supplemental Figure 1A shows the evolution of the Cohen’s k in the validation set for 

each (𝑁𝐿𝑆𝐵 , λ) pair. The optimum values selected for the LSBoost model were λ=0.3 and 

NLSB = 300. The optimization process was similar for AdaBoost. The evolution of the 

Cohen’s 𝑘 in the validation set for those values can be observed in Supplemental Figure 

1B. The optimum (𝑁𝐴𝐵 , 𝜐)  pair were 𝜐 =0.1 and 𝑁𝐴𝐵 = 3,000. 

4.2. Evaluation of the clinical applicability in the test set 

4.2.1. Clinical applicability for pediatric OSA diagnosis 

Figure 6 shows the confusion matrix along with the corresponding Acc4 and 𝑘 

obtained after using the LSBoost-estimated AHI to determine the OSA severity degree of 

the subjects in the test set. The color code of the confusion matrix allows to observe how 

the model performs. The darker the colors of the main diagonal, the better the diagnosis 

performance. It becomes apparent an overestimation of the AHI for the No OSA subjects, 

which achieved the lowest proportion of subjects rightly classified among the four 

classes. Similarly, the highest proportion was obtained for the moderate OSA subjects. 

The diagnosis obtained to predict OSA presence using the three reference AHI 

cutoffs is shown in Table 3. The increase of the AUC with the increasing cutoffs reflects 

an increment in the overall diagnosis performance with OSA severity cutoffs. Figure 7A 
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Figure 6. Confusion matrix for pediatric OSA diagnosis using the LSBoost model in the 

test set. The main diagonal represents the number and proportion of subjects rightly 

classified. The darkness of the cells represents the proportion of the actual class assigned 

to each group. 1: No OSA (AHI < 1 e/h); 2: Mild OSA (1 ≤ AHI < 5 e/h); 3: Moderate 

OSA (5 ≤ AHI < 10 e/h); 4: Severe OSA (AHI ≥ 10 e/h). 

Table 3. Diagnostic performance by the LSBoost Model in the test set for binary 

classification in the three apnea-hypopnea index cutoffs 1, 5 and 10 events/hour (e/h). 

LSBoost Model: λ=0.3; NLSB = 300  

 Cutoff Se Sp Acc PPV NPV LR+ LR- AUC F1-score 

Test Set 

1 e/h 90.76 23.40 80.07 86.26 32.35 1.18 0.39 0.651 0.885 

5 e/h 66.67 61.17 63.18 49.66 76.16 1.72 0.54 0.677 0.569 

10 e/h 40.00 92.03 84.12 47.37 89.53 5.02 0.65 0.742 0.434 

 

Figure 7. Feature importance for both the LSBoost and AdaBoost models. A) Relative 

importance of the ten features through the tree base classifiers in the LSBoost Model. B) 

Relative importance of the ten features included in the AdaBoost Model, computed using 

LIME. 
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shows the relative importance of the features included in the LSBoost model. It can be 

observed that, by far, RPBW2 was the feature that accounted the most for the relative 

importance (72.01%), followed by SDNN (7.09%), and RPLF (6.08%). The four first 

features (the previous ones plus RPBWRes) contributed over 90% to the final AHI 

estimation. 

4.2.2. Clinical applicability for sleep stage classification 

For the multiclass sleep stage classification task, the confusion matrix, Acc3 and 𝑘 

achieved by AdaBoost in the test set are shown in Figure 8. In this setting, the greatest 

proportion of segments correctly classified was obtained for the REMS segments. 

However, when checking the individual sleep stage classification results, which are 

shown in Table 4, despite the high recall obtained in the REMS stage (77.13%), this stage 

also achieved the lowest precision (39.17%). Thus, the highest overall classification 

performance was achieved in NREMS with the greatest precision (94.55%) and F1-score 

(0.818) among the three sleep stages included herein. 

Finally, Figure 7B shows the relative predictor importance computed using LIME 

for the features included in the AdaBoost model in the classification task. In the case of 

sleep stages, RPBWRes was the feature with the highest importance among the ten included 

(20.04%), followed by RPHF (17.52%) and RPVLF (12.54%). In general, the relative 

importance of the ten features is higher for sleep stage classification than for the apneic 

event estimation, which is clearly dominated by BW2. 
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Figure 8. Confusion matrix of the classification in sleep stages by the AdaBoost model 

in the test set. The main diagonal represents the number and proportion of subjects rightly 

classified. The darkness of the cells represents the proportion of the actual class assigned 

to each group. 

 

Table 4. AdaBoost model classification performance in the test set for individual sleep 

stage classification in the three sleep stages considered: W, NREMS and REMS.  

AdaBoost Model: υ=0.1; NAB = 3000 

 Sleep Stage Precision (%) Recall (%) F1-score 

Test Set 

W 54.78 66.94 0.603 

NREMS 94.55 72.08 0.818 

REMS 39.17 77.13 0.516 
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5. DISCUSSION 

In this study, a segment-based characterization of HRV that accounts for both sleep 

stages and the presence of apneic events was performed for the first time in the context 

of pediatric OSA. The marked differences in the HRV parameters across NREMS 

according to severity of respiratory disturbance were attenuated in REMS. In both cases, 

BW2, a pediatric OSA-specific frequency band, achieved the highest differentiation 

ability. However, in the absence of apneic events, another novel pediatric OSA-related 

frequency band, BWRes, achieved a better differentiation ability across sleep stages. The 

usefulness of BW2 and BWRes in HRV analysis was also confirmed when analyzing its 

clinical applicability to diagnose pediatric OSA and to classify sleep stages, respectively. 

5.1. Physiological interpretation of the characterization of the segments 

Our approach showed greater differences for NREMS compared to REMS between 

segments with variable numbers of apneic events. This was appreciable in the averaged 

PSDns of the segments (see Figure 2), the feature boxplots (see Figures 3-5) and in a 

general reduction of the effect size in the REMS features. As mentioned above, NREMS 

has been associated with downregulation of SNS activity along with enhanced PNS 

activity, whereas this trend is reversed during REMS and wakefulness [2]. Likewise, 

previous pediatric OSA studies have found overall increased sympathetic activity in OSA 

children [2,15], which has been reduced with treatment [57]. This increased sympathetic 

activity has been confirmed in our study and is significantly associated with an increased 

number of apneic events. In parallel, we identified that the parameters that measure SNS 

activity to some extent (RPBW2, mHR, SDNN, and RPLF) also show increased correlation 

within NREMS (see Figures 3-5). However, these trends were reduced in REMS, with 

RPBW2 and mHR emerging as the only parameters reaching considerable effect size (see 

Table 2) in three out of the six comparisons evaluated. Accordingly, despite the fact that 
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apneic events occur more often during REMS in the context of pediatric OSA [2], it seems 

that REMS basal SNS activation may be masking the effect imposed by the respiratory 

perturbations. In this regard, RPBW2 reached considerable effect sizes in all the 

comparisons conducted for NREMS and achieved the highest feature importance for the 

diagnosis of pediatric OSA. Therefore, we highlight this frequency band as a measure of 

specific SNS activation during apneic events, which is further accentuated when these 

events occur during NREMS. 

According to the effect size analyses, the utility of RPBW2 to characterize HRV 

alterations in the context of pediatric OSA seems to disappear in the absence of 

respiratory disturbances. However, another recently defined OSA-specific band (RPBWRes) 

was the only measure that performed well according to effect size in all the comparisons 

among sleep stages for no apneic segments (see Table 2). One possible explanation for 

property is that W, NREMS, and REMS can be readily differentiated by their effects on 

respiratory patterning [58–61]. During wakefulness, respiratory rate is regulated by both 

voluntary and automatic controllers, but the voluntary regulation disappears while asleep 

[62]. During NREMS, breathing is characterized by regular patterns with decreased 

variability. However, during REMS, irregular breathing and short respiratory pauses 

appear in healthy children, with increments in the respiratory rate [62]. The HF band 

reflects HR and blood pressure oscillations induced by such changes respiratory activity, 

and is a marker of PNS activity [62]. Nonetheless, the inter-individual variability of the 

respiratory frequencies due to other aspects such as age makes the adaptive RPBWRes better 

suited to assess respiratory influence on HRV [22], as highlighted in the relative 

importance analysis conducted in the AdaBoost model. Taken together, the importance 

of respiration to discriminate sleep stages is robustly represented in our study as RPBWRes 

and RPHF achieved the highest relative importance in the classification of sleep stages, 
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with LFn (also influenced by HF) achieving a high relative importance as well. 

Non-apneic NREMS segments reflected an enhanced PNS activity compared to W 

and REMS (see RPHF and RPBWRes in Figures 4-5). However, when such segments 

included apneic events, the PNS activity during NREMS measured by the HF band and 

BWRes decreased, reaching REMS-like levels in the 5 ≤ apneic events < 10 e/s and ≥ 10 

e/s segments. This reduction resulted in effect sizes under the 0.5 threshold in NREMS 

vs. REMS comparisons for both RPHF and RPBWRes. Remarkably, as the presence of apneic 

events increased, RPBW2 also increased, achieving the highest differentiation (d > 0.8) 

between NREMS and REMS for the 5 ≤ apneic events < 10 e/s and ≥ 10 e/s segments. 

These results highlight the importance of BW2 beyond detecting segments with 

respiratory disturbances and, specifically, to differentiate NREMS from REMS segments 

even when apneic events are present. Accordingly, we have shown that both BWRes and 

BW2 play important roles to differentiate sleep stages in the context of pediatric OSA. 

5.2. Clinical applicability of the characterization of the nocturnal HRV segments 

In the present study, the clinical applicability of the information extracted through 

the characterization of HRV has been highlighted. In the case of the diagnosis of pediatric 

OSA, we observed an increment of performance with disease severity, achieving the 

highest diagnostic yield in the 10 e/h cutoff with an Acc = 84.12% and AUC = 0.742, but 

with an unbalanced Se/Sp pair (40.00/92.03%). This increase in the performance with the 

severity threshold may be due to the well-tuned characterization that RPBW2 showed in 

the presence of apneic events. However, considering the modest overall diagnostic 

performance, the most useful approach for an automatic strategy using our LSBoost 

model would be detecting OSA presence (90.76% Se and 86.26% PPV for an AHI cutoff 

of 1 e/h) and discarding severe OSA (92.03% Sp and 89.53% NPV for an AHI cutoff of 

10 e/h). Relative to the sleep stage classification task, the performance metrics were 
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remarkably higher than in the diagnostic approach, as higher values of both multiclass k 

(0.499 vs. 0.166) and accuracy (Acc3 = 71.82% vs. Acc4 = 41.89%) were reached. NREMS 

was the sleep stage with the best overall classification performance (72.08% recall and 

94.55% precision), which is coherent with the largest differences found after the 

characterization step.  

According to these findings, a real clinical implementation using a single-signal 

approach based on HRV in the context of pediatric OSA diagnosis could benefit from an 

initial step such as to detect NREMS HRV followed by a second step to estimate AHI 

from the recorded segments, since these are the segments with the highest discriminant 

ability. In summary, we have shown that the characterization of HRV segments, is a 

promising approach to classify sleep stages, as well as to detect the presence of OSA in 

children, and to discard severe OSA, rather than to automatically perform multiclass 

classification of pediatric OSA. Further studies in large prospective cohorts should further 

allow for confirmation of these assumptions. 

5.3. Comparison with previous work 

To the best of our knowledge, this is the first study in which a HRV segment-based 

evaluation considering both sleep stages and apneic events presence was conducted in a 

pediatric population. However, some similarities with previous studies evaluating 

changes among classical HRV parameters across sleep stages should be mentioned. 

Kontos et al. [6] reported segment-based HRV during sleep of healthy children and 

adolescents, and their results can be compared with our findings when excluding the 

presence of apneic events. These investigators observed the same tendencies in HRV 

spectral power within LF and HF bands. Also, they measured mean NN, which is the 

inverse of our mHR, obtaining opposing tendencies, i.e., the same outcomes. Despite 

these similarities, dissimilar results were obtained from SDNN and RMSSD measures. 
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These discrepancies could be due to the fact that they only considered the first W pre-

sleep segment, as well as the different segment size they used in each sleep stage (3 

minutes for W and REMS, and 6 minutes for NREMS). Also, they evaluated 7 segments 

for each child, with a total of 75 children included in the study. This means that the 

conclusions by Kontos and collaborators were based on 525 segments, against the 40,105 

segments without apneic events analyzed by us in the training set. 

When HRV segments were compared between healthy and OSA children, the 

studies excluded segments with apneic events. Two of these studies agreed that for all the 

severity groups (healthy, primary snorers, mild OSA, and moderate-severe OSA) there 

was a decrease in the HF band power from NREMS to REMS [18,21]. This decrease was 

also observed in our study in RPHF for the no apneic segments. There is also another study 

that excluded apneic episodes from its analysis and compared HRV parameters in 

different sleep stages across severity groups [19]. Following this approach, they reported 

an absence of differences in LF power between groups, and only reported differences 

between moderate-severe OSA and controls in the power of the HF band and in the LF/HF 

ratio across all sleep stages. Notwithstanding the differences found, the authors concluded 

that pediatric OSA did not manifest autonomic dysfunction [19]. However, in the present 

study we have shown that the presence of apneic events modulates HRV across several 

HRV measures. Thus, in the aforementioned study [19], exclusion of apneic events could 

have hidden  the evidence pointing to autonomic dysfunction due to OSA, highlighting 

the importance of considering the presence of apneic events to detect HRV differences 

across the night. 

Other published studies included apneic events, but their analyses included 

segments with and without apneic events clumped together. Nonetheless, some affinity 

between these studies and the present study are worthy of mention. Baharav et al. [15] 
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compared the overnight HRV in OSA and healthy children, and observed higher LF 

activity and LF/HF ratio in pediatric OSA in all the sleep stages considered. In the present 

study, we observed increasing tendencies in RPLF and LFn as the presence of apneic 

events increased, particularly during NREMS. Similarly, Horne et al. [16] also compared 

HRV throughout the night but differentiating additional children groups: control non 

snorers, normal weight primary snorers, normal weight OSA, overweight primary 

snorers, and overweight OSA children. They showed that overweight OSA presented 

elevated overnight HR compared to healthy children, and lower HF activity than normal 

weight primary snorers in NREMS. Also, LF activity was higher for normal weight OSA 

than overweight primary snorers. Again, as the presence of apneic events is minimal in 

healthy children and primary snorers, the trends observed in the present work as the 

density of apneic events increased in those parameters are in accordance with the results 

reported by Horne and colleagues [16]. Recently, Wu et al. [17] also reported an evolution 

of HRV parameters across sleep stages comparing healthy children to mild and moderate-

to-severe OSA. In their results, the mean RR (that is, the inverse of mHR) decreased with 

OSA severity in all sleep stages, while LF/HF ratio increased with OSA severity, thus 

agreeing with the results of the above-mentioned studies [15,16], and with the present 

study.  

Regarding clinical usefulness assessment, Shouldice et al. [12] reported per-subject 

classification results, obtaining Acc = 84%, Se = 85.7%, PPV= 85.7%, Sp = 81.8%, and 

NPV= 81.8% when using a 12.5 e/h AHI cutoff. In addition, three studies from another 

research group [51–53] also conducted per-subject classification in pediatric OSA using 

HRV features derived from decreases in the fluctuation of the photoplethysmography 

signal. They reported Acc in the range 73.3-80%, Se in the range 62.5-87.5%, PPV in the 

range 75.0-85.71%, Sp in the range 71.45-85.7%, and NPV in the range 66.7-83.3% when 
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classifying OSA (>18 e/h) vs. healthy subjects (< 5 e/h). Although lower Se was identified 

in the present study, Table 3 shows that our approach is more useful to discard children 

without severe OSA, as reflected by higher Sp and NPV with a stricter severity threshold 

(10 e/h). It would allow to reduce the subjects sent to a normal evaluation, reducing 

waiting lists. Of course, population differences among the studies, as well as the criteria 

used to establish OSA hinder any further comparisons. Therefore, our previous studies 

examining HRV in the context of pediatric OSA [22,28] will need to serve as best 

comparators. Although these studies were not segment-based, the diagnostic performance 

in the same AHI cutoffs used here were reported. Overall diagnostic performance in the 

5 and 10 e/h cutoffs was lower here than in these previous studies. However, the highest 

diagnostic performance was achieved in the present study for a cut-off of 1 e/h in terms 

of Acc, AUC, Se and PPV. These findings highlight the potentially advantageous clinical 

applicability of the characterization of HRV segments to detect the presence of OSA even 

in its mildest forms. 

Sleep stage classification using only cardiac measures has been scarcely 

investigated in children. To the best of our knowledge, this is the first study in which 

HRV metrics were used to evaluate classification of sleep stages in the context of 

pediatric OSA. However, sleep stage classification in healthy infants has been previously 

investigated. Haddad et al. [63] conducted the assessment of sleep stages in 9 infants (1 

to 4 months of age) using cardiorespiratory measures to distinguish REMS and quiet 

sleep. After a preliminary evaluation, they observed that the variation of the respiratory 

cycle time had the highest chances to differentiate sleep stages, reporting Se of 93% in 

quiet sleep, and ~99% in REMS. However, the classification performance of cardiac 

measures alone was not reported [63]. Harper et al. [64] also conducted sleep stage 

classification through cardiorespiratory measures in 25 infants (up to 6 months of life). 
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They differentiated 1-minute segments of W, quiet sleep, and REMS, reporting and Acc3 

= 84.8% when using 7 cardiorespiratory measures. This overall accuracy was reduced to 

82% using cardiac measures alone [64]. Finally, Lewicke et al. [65] conducted sleep vs. 

W classification in 30-seconds segments of 190 infants using several machine learning 

models with HRV measures. They reported accuracies of ~78%, which increased to 85-

87% when rejecting 30% of segments difficult to classify [65]. Unfortunately, the nature 

and size of the sample of the previous studies, as well as the kind of sleep stages 

considered, make it virtually impossible to compare to our present findings. 

5.4. Limitations and future work 

Several limitations deserve mention. First, although the main aim of this study was 

to characterize HRV using sleep-specific segments, the results obtained from the LSBoost 

and AdaBoost models are not sufficiently robust for widespread implementation. Thus, 

future machine-learning focused efforts will be needed to determine their usefulness in 

the tasks of achieving reliable determination of a diagnosis of pediatric patients and in 

sleep stage classification. Furthermore, there is imbalance between the number of 

different type of segments considered. Although the number of segments included for 

each class is large (see Table 1), there were more NREMS and <1 apneic event segments. 

To test if balancing the dataset would change the performance, we performed a reanalysis 

of both LSBoost and AdaBoost models with a balanced subset of the segments, but these 

results did not lead to an improvement in any of the performances for both tasks. In the 

future, inclusion of more segments with apneic events, as well as more segments 

corresponding to W and REMS would be desirable to increase the generalizability of our 

results. Besides, the original annotations of sleep stages were performed on 30 seconds 

epochs, but some of the features included cannot be computed for this length of register, 

so we performed sleep stage annotations based on 10-minute segments. Thus, the 
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selection of metrics that cannot be computed for 30 seconds of HRV signal, despite being 

a common practice in the literature, constitutes another limitation of our study. In 

addition, we have only considered W, NREMS, or REMS sleep stages. Although this is 

an approach followed in many studies aimed at sleep stage classification and 

characterization [6,18,63,64], the AASM establishes that NREMS sleep stage can be 

divided into N1, N2 and N3 [66]. Therefore, further HRV segment-based analyses may 

benefit from inclusion of NREMS sub-stages. Of note, evaluating the clinical 

applicability of current findings in prediction of OSA-associated cardiovascular risks may 

provide further value if applicable. 

6. CONCLUSIONS 

This is the first study in which a segment-based evaluation of HRV incorporating 

sleep stages and apneic events has been conducted in children. In addition, the evolution 

of HRV measures in pediatric OSA-specific frequency bands across sleep stages is 

introduced. Besides, the reliability of models trained with HRV OSA-specific frequency 

measures through ensemble-learning algorithms in the context of pediatric OSA has also 

been assessed for the first time. This approach allowed us to observe that two of these 

novel spectral bands, BW2 and BWRes, displayed increased relevance when compared 

to conventional spectral bands when establishing pediatric OSA severity and to classify 

sleep stages, respectively. Although an increased effect of sympathetic activation would 

be expected during REMS in the presence of respiratory disturbances, the 

characteristically increased basal sympathetic activity of REMS appears to mask the 

sympathetic excitation induced by apneic or hypopneic events. Such phenomenon is 

therefore easier to distinguish during NREMS. Accordingly, when evaluating HRV in 

pediatric OSA, both the sleep stage and the presence of apneic events need to be 
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considered. Furthermore, the analysis of the pediatric-OSA specific spectral bands may 

prove particularly useful in both the automated diagnosis of OSA and in machine-based 

sleep stage classification in children. 
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HIGHLIGHTS 

 

• Pediatric HRV segments were characterized, grouped by sleep stages and presence of 

apneic events. 
 

• Increased presence of apneic events resulted in significant changes in HRV 

parameters inside NREM, which were less marked in REM. 

 

• The basal sympathetic activity during REMS may be masking respiratory-events 

induced sympathetic excitation. 

 

• BW2, a pediatric OSA-specific novel frequency band, allowed for the best 

differentiation between groups of apneic segments. 

 

• When differentiating sleep stages, BWRes, another recently OSA-related defined 

frequency band, performed best. 
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